2005-02-02 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / vax-tdep.c
1 /* Target-dependent code for the VAX.
2
3 Copyright 1986, 1989, 1991, 1992, 1995, 1996, 1998, 1999, 2000,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "dis-asm.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "regset.h"
34 #include "trad-frame.h"
35 #include "value.h"
36
37 #include "gdb_string.h"
38
39 #include "vax-tdep.h"
40
41 /* Return the name of register REGNUM. */
42
43 static const char *
44 vax_register_name (int regnum)
45 {
46 static char *register_names[] =
47 {
48 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
49 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
50 "ps",
51 };
52
53 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
54 return register_names[regnum];
55
56 return NULL;
57 }
58
59 /* Return the GDB type object for the "standard" data type of data in
60 register REGNUM. */
61
62 static struct type *
63 vax_register_type (struct gdbarch *gdbarch, int regnum)
64 {
65 return builtin_type_int;
66 }
67 \f
68 /* Core file support. */
69
70 /* Supply register REGNUM from the buffer specified by GREGS and LEN
71 in the general-purpose register set REGSET to register cache
72 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
73
74 static void
75 vax_supply_gregset (const struct regset *regset, struct regcache *regcache,
76 int regnum, const void *gregs, size_t len)
77 {
78 const char *regs = gregs;
79 int i;
80
81 for (i = 0; i < VAX_NUM_REGS; i++)
82 {
83 if (regnum == i || regnum == -1)
84 regcache_raw_supply (regcache, i, regs + i * 4);
85 }
86 }
87
88 /* VAX register set. */
89
90 static struct regset vax_gregset =
91 {
92 NULL,
93 vax_supply_gregset
94 };
95
96 /* Return the appropriate register set for the core section identified
97 by SECT_NAME and SECT_SIZE. */
98
99 static const struct regset *
100 vax_regset_from_core_section (struct gdbarch *gdbarch,
101 const char *sect_name, size_t sect_size)
102 {
103 if (strcmp (sect_name, ".reg") == 0 && sect_size >= VAX_NUM_REGS * 4)
104 return &vax_gregset;
105
106 return NULL;
107 }
108 \f
109 /* The VAX UNIX calling convention uses R1 to pass a structure return
110 value address instead of passing it as a first (hidden) argument as
111 the VMS calling convention suggests. */
112
113 static CORE_ADDR
114 vax_store_arguments (struct regcache *regcache, int nargs,
115 struct value **args, CORE_ADDR sp)
116 {
117 char buf[4];
118 int count = 0;
119 int i;
120
121 /* We create an argument list on the stack, and make the argument
122 pointer to it. */
123
124 /* Push arguments in reverse order. */
125 for (i = nargs - 1; i >= 0; i--)
126 {
127 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
128
129 sp -= (len + 3) & ~3;
130 count += (len + 3) / 4;
131 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
132 }
133
134 /* Push argument count. */
135 sp -= 4;
136 store_unsigned_integer (buf, 4, count);
137 write_memory (sp, buf, 4);
138
139 /* Update the argument pointer. */
140 store_unsigned_integer (buf, 4, sp);
141 regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);
142
143 return sp;
144 }
145
146 static CORE_ADDR
147 vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
148 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
149 struct value **args, CORE_ADDR sp, int struct_return,
150 CORE_ADDR struct_addr)
151 {
152 CORE_ADDR fp = sp;
153 char buf[4];
154
155 /* Set up the function arguments. */
156 sp = vax_store_arguments (regcache, nargs, args, sp);
157
158 /* Store return value address. */
159 if (struct_return)
160 regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);
161
162 /* Store return address in the PC slot. */
163 sp -= 4;
164 store_unsigned_integer (buf, 4, bp_addr);
165 write_memory (sp, buf, 4);
166
167 /* Store the (fake) frame pointer in the FP slot. */
168 sp -= 4;
169 store_unsigned_integer (buf, 4, fp);
170 write_memory (sp, buf, 4);
171
172 /* Skip the AP slot. */
173 sp -= 4;
174
175 /* Store register save mask and control bits. */
176 sp -= 4;
177 store_unsigned_integer (buf, 4, 0);
178 write_memory (sp, buf, 4);
179
180 /* Store condition handler. */
181 sp -= 4;
182 store_unsigned_integer (buf, 4, 0);
183 write_memory (sp, buf, 4);
184
185 /* Update the stack pointer and frame pointer. */
186 store_unsigned_integer (buf, 4, sp);
187 regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
188 regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);
189
190 /* Return the saved (fake) frame pointer. */
191 return fp;
192 }
193
194 static struct frame_id
195 vax_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
196 {
197 CORE_ADDR fp;
198
199 fp = frame_unwind_register_unsigned (next_frame, VAX_FP_REGNUM);
200 return frame_id_build (fp, frame_pc_unwind (next_frame));
201 }
202 \f
203
204 static enum return_value_convention
205 vax_return_value (struct gdbarch *gdbarch, struct type *type,
206 struct regcache *regcache, void *readbuf,
207 const void *writebuf)
208 {
209 int len = TYPE_LENGTH (type);
210 char buf[8];
211
212 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
213 || TYPE_CODE (type) == TYPE_CODE_UNION
214 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
215 {
216 /* The default on VAX is to return structures in static memory.
217 Consequently a function must return the address where we can
218 find the return value. */
219
220 if (readbuf)
221 {
222 ULONGEST addr;
223
224 regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
225 read_memory (addr, readbuf, len);
226 }
227
228 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
229 }
230
231 if (readbuf)
232 {
233 /* Read the contents of R0 and (if necessary) R1. */
234 regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
235 if (len > 4)
236 regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
237 memcpy (readbuf, buf, len);
238 }
239 if (writebuf)
240 {
241 /* Read the contents to R0 and (if necessary) R1. */
242 memcpy (buf, writebuf, len);
243 regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
244 if (len > 4)
245 regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
246 }
247
248 return RETURN_VALUE_REGISTER_CONVENTION;
249 }
250 \f
251
252 /* Use the program counter to determine the contents and size of a
253 breakpoint instruction. Return a pointer to a string of bytes that
254 encode a breakpoint instruction, store the length of the string in
255 *LEN and optionally adjust *PC to point to the correct memory
256 location for inserting the breakpoint. */
257
258 static const unsigned char *
259 vax_breakpoint_from_pc (CORE_ADDR *pc, int *len)
260 {
261 static unsigned char break_insn[] = { 3 };
262
263 *len = sizeof (break_insn);
264 return break_insn;
265 }
266 \f
267 /* Advance PC across any function entry prologue instructions
268 to reach some "real" code. */
269
270 static CORE_ADDR
271 vax_skip_prologue (CORE_ADDR pc)
272 {
273 unsigned char op = read_memory_unsigned_integer (pc, 1);
274
275 if (op == 0x11)
276 pc += 2; /* skip brb */
277 if (op == 0x31)
278 pc += 3; /* skip brw */
279 if (op == 0xC2
280 && (read_memory_unsigned_integer (pc + 2, 1)) == 0x5E)
281 pc += 3; /* skip subl2 */
282 if (op == 0x9E
283 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xAE
284 && (read_memory_unsigned_integer (pc + 3, 1)) == 0x5E)
285 pc += 4; /* skip movab */
286 if (op == 0x9E
287 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xCE
288 && (read_memory_unsigned_integer (pc + 4, 1)) == 0x5E)
289 pc += 5; /* skip movab */
290 if (op == 0x9E
291 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xEE
292 && (read_memory_unsigned_integer (pc + 6, 1)) == 0x5E)
293 pc += 7; /* skip movab */
294
295 return pc;
296 }
297 \f
298
299 /* Unwinding the stack is relatively easy since the VAX has a
300 dedicated frame pointer, and frames are set up automatically as the
301 result of a function call. Most of the relevant information can be
302 inferred from the documentation of the Procedure Call Instructions
303 in the VAX MACRO and Instruction Set Reference Manual. */
304
305 struct vax_frame_cache
306 {
307 /* Base address. */
308 CORE_ADDR base;
309
310 /* Table of saved registers. */
311 struct trad_frame_saved_reg *saved_regs;
312 };
313
314 struct vax_frame_cache *
315 vax_frame_cache (struct frame_info *next_frame, void **this_cache)
316 {
317 struct vax_frame_cache *cache;
318 CORE_ADDR addr;
319 ULONGEST mask;
320 int regnum;
321
322 if (*this_cache)
323 return *this_cache;
324
325 /* Allocate a new cache. */
326 cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache);
327 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
328
329 /* The frame pointer is used as the base for the frame. */
330 cache->base = frame_unwind_register_unsigned (next_frame, VAX_FP_REGNUM);
331 if (cache->base == 0)
332 return cache;
333
334 /* The register save mask and control bits determine the layout of
335 the stack frame. */
336 mask = get_frame_memory_unsigned (next_frame, cache->base + 4, 4) >> 16;
337
338 /* These are always saved. */
339 cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16;
340 cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12;
341 cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8;
342 cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4;
343
344 /* Scan the register save mask and record the location of the saved
345 registers. */
346 addr = cache->base + 20;
347 for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++)
348 {
349 if (mask & (1 << regnum))
350 {
351 cache->saved_regs[regnum].addr = addr;
352 addr += 4;
353 }
354 }
355
356 /* The CALLS/CALLG flag determines whether this frame has a General
357 Argument List or a Stack Argument List. */
358 if (mask & (1 << 13))
359 {
360 ULONGEST numarg;
361
362 /* This is a procedure with Stack Argument List. Adjust the
363 stack address for the arguments that were pushed onto the
364 stack. The return instruction will automatically pop the
365 arguments from the stack. */
366 numarg = get_frame_memory_unsigned (next_frame, addr, 1);
367 addr += 4 + numarg * 4;
368 }
369
370 /* Bits 1:0 of the stack pointer were saved in the control bits. */
371 trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14));
372
373 return cache;
374 }
375
376 static void
377 vax_frame_this_id (struct frame_info *next_frame, void **this_cache,
378 struct frame_id *this_id)
379 {
380 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
381
382 /* This marks the outermost frame. */
383 if (cache->base == 0)
384 return;
385
386 (*this_id) = frame_id_build (cache->base, frame_func_unwind (next_frame));
387 }
388
389 static void
390 vax_frame_prev_register (struct frame_info *next_frame, void **this_cache,
391 int regnum, int *optimizedp,
392 enum lval_type *lvalp, CORE_ADDR *addrp,
393 int *realnump, void *valuep)
394 {
395 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
396
397 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
398 optimizedp, lvalp, addrp, realnump, valuep);
399 }
400
401 static const struct frame_unwind vax_frame_unwind =
402 {
403 NORMAL_FRAME,
404 vax_frame_this_id,
405 vax_frame_prev_register
406 };
407
408 static const struct frame_unwind *
409 vax_frame_sniffer (struct frame_info *next_frame)
410 {
411 return &vax_frame_unwind;
412 }
413 \f
414
415 static CORE_ADDR
416 vax_frame_base_address (struct frame_info *next_frame, void **this_cache)
417 {
418 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
419
420 return cache->base;
421 }
422
423 static CORE_ADDR
424 vax_frame_args_address (struct frame_info *next_frame, void **this_cache)
425 {
426 return frame_unwind_register_unsigned (next_frame, VAX_AP_REGNUM);
427 }
428
429 static const struct frame_base vax_frame_base =
430 {
431 &vax_frame_unwind,
432 vax_frame_base_address,
433 vax_frame_base_address,
434 vax_frame_args_address
435 };
436
437 /* Return number of arguments for FRAME. */
438
439 static int
440 vax_frame_num_args (struct frame_info *frame)
441 {
442 CORE_ADDR args;
443
444 /* Assume that the argument pointer for the outermost frame is
445 hosed, as is the case on NetBSD/vax ELF. */
446 if (get_frame_base_address (frame) == 0)
447 return 0;
448
449 args = get_frame_register_unsigned (frame, VAX_AP_REGNUM);
450 return get_frame_memory_unsigned (frame, args, 1);
451 }
452
453 static CORE_ADDR
454 vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
455 {
456 return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM);
457 }
458 \f
459
460 /* Initialize the current architecture based on INFO. If possible, re-use an
461 architecture from ARCHES, which is a list of architectures already created
462 during this debugging session.
463
464 Called e.g. at program startup, when reading a core file, and when reading
465 a binary file. */
466
467 static struct gdbarch *
468 vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
469 {
470 struct gdbarch *gdbarch;
471
472 /* If there is already a candidate, use it. */
473 arches = gdbarch_list_lookup_by_info (arches, &info);
474 if (arches != NULL)
475 return arches->gdbarch;
476
477 gdbarch = gdbarch_alloc (&info, NULL);
478
479 /* Register info */
480 set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
481 set_gdbarch_register_name (gdbarch, vax_register_name);
482 set_gdbarch_register_type (gdbarch, vax_register_type);
483 set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
484 set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
485 set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
486
487 set_gdbarch_regset_from_core_section
488 (gdbarch, vax_regset_from_core_section);
489
490 /* Frame and stack info */
491 set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
492 set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
493 set_gdbarch_frame_args_skip (gdbarch, 4);
494
495 /* Stack grows downward. */
496 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
497
498 /* Return value info */
499 set_gdbarch_return_value (gdbarch, vax_return_value);
500
501 /* Call dummy code. */
502 set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call);
503 set_gdbarch_unwind_dummy_id (gdbarch, vax_unwind_dummy_id);
504
505 /* Breakpoint info */
506 set_gdbarch_breakpoint_from_pc (gdbarch, vax_breakpoint_from_pc);
507
508 /* Misc info */
509 set_gdbarch_deprecated_function_start_offset (gdbarch, 2);
510 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
511
512 set_gdbarch_print_insn (gdbarch, print_insn_vax);
513
514 set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc);
515
516 frame_base_set_default (gdbarch, &vax_frame_base);
517
518 /* Hook in ABI-specific overrides, if they have been registered. */
519 gdbarch_init_osabi (info, gdbarch);
520
521 frame_unwind_append_sniffer (gdbarch, vax_frame_sniffer);
522
523 return (gdbarch);
524 }
525
526 /* Provide a prototype to silence -Wmissing-prototypes. */
527 void _initialize_vax_tdep (void);
528
529 void
530 _initialize_vax_tdep (void)
531 {
532 gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
533 }
This page took 0.056244 seconds and 5 git commands to generate.