GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
[deliverable/binutils-gdb.git] / gdb / vax-tdep.c
1 /* Target-dependent code for the VAX.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "floatformat.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "gdbcore.h"
28 #include "gdbtypes.h"
29 #include "osabi.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "value.h"
34
35 #include "vax-tdep.h"
36
37 /* Return the name of register REGNUM. */
38
39 static const char *
40 vax_register_name (struct gdbarch *gdbarch, int regnum)
41 {
42 static char *register_names[] =
43 {
44 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
45 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
46 "ps",
47 };
48
49 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
50 return register_names[regnum];
51
52 return NULL;
53 }
54
55 /* Return the GDB type object for the "standard" data type of data in
56 register REGNUM. */
57
58 static struct type *
59 vax_register_type (struct gdbarch *gdbarch, int regnum)
60 {
61 return builtin_type (gdbarch)->builtin_int;
62 }
63 \f
64 /* Core file support. */
65
66 /* Supply register REGNUM from the buffer specified by GREGS and LEN
67 in the general-purpose register set REGSET to register cache
68 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
69
70 static void
71 vax_supply_gregset (const struct regset *regset, struct regcache *regcache,
72 int regnum, const void *gregs, size_t len)
73 {
74 const gdb_byte *regs = (const gdb_byte *) gregs;
75 int i;
76
77 for (i = 0; i < VAX_NUM_REGS; i++)
78 {
79 if (regnum == i || regnum == -1)
80 regcache_raw_supply (regcache, i, regs + i * 4);
81 }
82 }
83
84 /* VAX register set. */
85
86 static const struct regset vax_gregset =
87 {
88 NULL,
89 vax_supply_gregset
90 };
91
92 /* Iterate over core file register note sections. */
93
94 static void
95 vax_iterate_over_regset_sections (struct gdbarch *gdbarch,
96 iterate_over_regset_sections_cb *cb,
97 void *cb_data,
98 const struct regcache *regcache)
99 {
100 cb (".reg", VAX_NUM_REGS * 4, &vax_gregset, NULL, cb_data);
101 }
102 \f
103 /* The VAX UNIX calling convention uses R1 to pass a structure return
104 value address instead of passing it as a first (hidden) argument as
105 the VMS calling convention suggests. */
106
107 static CORE_ADDR
108 vax_store_arguments (struct regcache *regcache, int nargs,
109 struct value **args, CORE_ADDR sp)
110 {
111 struct gdbarch *gdbarch = get_regcache_arch (regcache);
112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
113 gdb_byte buf[4];
114 int count = 0;
115 int i;
116
117 /* We create an argument list on the stack, and make the argument
118 pointer to it. */
119
120 /* Push arguments in reverse order. */
121 for (i = nargs - 1; i >= 0; i--)
122 {
123 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
124
125 sp -= (len + 3) & ~3;
126 count += (len + 3) / 4;
127 write_memory (sp, value_contents_all (args[i]), len);
128 }
129
130 /* Push argument count. */
131 sp -= 4;
132 store_unsigned_integer (buf, 4, byte_order, count);
133 write_memory (sp, buf, 4);
134
135 /* Update the argument pointer. */
136 store_unsigned_integer (buf, 4, byte_order, sp);
137 regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);
138
139 return sp;
140 }
141
142 static CORE_ADDR
143 vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
144 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
145 struct value **args, CORE_ADDR sp, int struct_return,
146 CORE_ADDR struct_addr)
147 {
148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
149 CORE_ADDR fp = sp;
150 gdb_byte buf[4];
151
152 /* Set up the function arguments. */
153 sp = vax_store_arguments (regcache, nargs, args, sp);
154
155 /* Store return value address. */
156 if (struct_return)
157 regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);
158
159 /* Store return address in the PC slot. */
160 sp -= 4;
161 store_unsigned_integer (buf, 4, byte_order, bp_addr);
162 write_memory (sp, buf, 4);
163
164 /* Store the (fake) frame pointer in the FP slot. */
165 sp -= 4;
166 store_unsigned_integer (buf, 4, byte_order, fp);
167 write_memory (sp, buf, 4);
168
169 /* Skip the AP slot. */
170 sp -= 4;
171
172 /* Store register save mask and control bits. */
173 sp -= 4;
174 store_unsigned_integer (buf, 4, byte_order, 0);
175 write_memory (sp, buf, 4);
176
177 /* Store condition handler. */
178 sp -= 4;
179 store_unsigned_integer (buf, 4, byte_order, 0);
180 write_memory (sp, buf, 4);
181
182 /* Update the stack pointer and frame pointer. */
183 store_unsigned_integer (buf, 4, byte_order, sp);
184 regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
185 regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);
186
187 /* Return the saved (fake) frame pointer. */
188 return fp;
189 }
190
191 static struct frame_id
192 vax_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
193 {
194 CORE_ADDR fp;
195
196 fp = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM);
197 return frame_id_build (fp, get_frame_pc (this_frame));
198 }
199 \f
200
201 static enum return_value_convention
202 vax_return_value (struct gdbarch *gdbarch, struct value *function,
203 struct type *type, struct regcache *regcache,
204 gdb_byte *readbuf, const gdb_byte *writebuf)
205 {
206 int len = TYPE_LENGTH (type);
207 gdb_byte buf[8];
208
209 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
210 || TYPE_CODE (type) == TYPE_CODE_UNION
211 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
212 {
213 /* The default on VAX is to return structures in static memory.
214 Consequently a function must return the address where we can
215 find the return value. */
216
217 if (readbuf)
218 {
219 ULONGEST addr;
220
221 regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
222 read_memory (addr, readbuf, len);
223 }
224
225 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
226 }
227
228 if (readbuf)
229 {
230 /* Read the contents of R0 and (if necessary) R1. */
231 regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
232 if (len > 4)
233 regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
234 memcpy (readbuf, buf, len);
235 }
236 if (writebuf)
237 {
238 /* Read the contents to R0 and (if necessary) R1. */
239 memcpy (buf, writebuf, len);
240 regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
241 if (len > 4)
242 regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
243 }
244
245 return RETURN_VALUE_REGISTER_CONVENTION;
246 }
247 \f
248
249 /* Use the program counter to determine the contents and size of a
250 breakpoint instruction. Return a pointer to a string of bytes that
251 encode a breakpoint instruction, store the length of the string in
252 *LEN and optionally adjust *PC to point to the correct memory
253 location for inserting the breakpoint. */
254
255 static gdb_byte break_insn[] = { 3 };
256
257 GDBARCH_BREAKPOINT_MANIPULATION (vax, break_insn)
258 \f
259 /* Advance PC across any function entry prologue instructions
260 to reach some "real" code. */
261
262 static CORE_ADDR
263 vax_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
264 {
265 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
266 gdb_byte op = read_memory_unsigned_integer (pc, 1, byte_order);
267
268 if (op == 0x11)
269 pc += 2; /* skip brb */
270 if (op == 0x31)
271 pc += 3; /* skip brw */
272 if (op == 0xC2
273 && read_memory_unsigned_integer (pc + 2, 1, byte_order) == 0x5E)
274 pc += 3; /* skip subl2 */
275 if (op == 0x9E
276 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xAE
277 && read_memory_unsigned_integer (pc + 3, 1, byte_order) == 0x5E)
278 pc += 4; /* skip movab */
279 if (op == 0x9E
280 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xCE
281 && read_memory_unsigned_integer (pc + 4, 1, byte_order) == 0x5E)
282 pc += 5; /* skip movab */
283 if (op == 0x9E
284 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xEE
285 && read_memory_unsigned_integer (pc + 6, 1, byte_order) == 0x5E)
286 pc += 7; /* skip movab */
287
288 return pc;
289 }
290 \f
291
292 /* Unwinding the stack is relatively easy since the VAX has a
293 dedicated frame pointer, and frames are set up automatically as the
294 result of a function call. Most of the relevant information can be
295 inferred from the documentation of the Procedure Call Instructions
296 in the VAX MACRO and Instruction Set Reference Manual. */
297
298 struct vax_frame_cache
299 {
300 /* Base address. */
301 CORE_ADDR base;
302
303 /* Table of saved registers. */
304 struct trad_frame_saved_reg *saved_regs;
305 };
306
307 static struct vax_frame_cache *
308 vax_frame_cache (struct frame_info *this_frame, void **this_cache)
309 {
310 struct vax_frame_cache *cache;
311 CORE_ADDR addr;
312 ULONGEST mask;
313 int regnum;
314
315 if (*this_cache)
316 return (struct vax_frame_cache *) *this_cache;
317
318 /* Allocate a new cache. */
319 cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache);
320 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
321
322 /* The frame pointer is used as the base for the frame. */
323 cache->base = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM);
324 if (cache->base == 0)
325 return cache;
326
327 /* The register save mask and control bits determine the layout of
328 the stack frame. */
329 mask = get_frame_memory_unsigned (this_frame, cache->base + 4, 4) >> 16;
330
331 /* These are always saved. */
332 cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16;
333 cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12;
334 cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8;
335 cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4;
336
337 /* Scan the register save mask and record the location of the saved
338 registers. */
339 addr = cache->base + 20;
340 for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++)
341 {
342 if (mask & (1 << regnum))
343 {
344 cache->saved_regs[regnum].addr = addr;
345 addr += 4;
346 }
347 }
348
349 /* The CALLS/CALLG flag determines whether this frame has a General
350 Argument List or a Stack Argument List. */
351 if (mask & (1 << 13))
352 {
353 ULONGEST numarg;
354
355 /* This is a procedure with Stack Argument List. Adjust the
356 stack address for the arguments that were pushed onto the
357 stack. The return instruction will automatically pop the
358 arguments from the stack. */
359 numarg = get_frame_memory_unsigned (this_frame, addr, 1);
360 addr += 4 + numarg * 4;
361 }
362
363 /* Bits 1:0 of the stack pointer were saved in the control bits. */
364 trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14));
365
366 return cache;
367 }
368
369 static void
370 vax_frame_this_id (struct frame_info *this_frame, void **this_cache,
371 struct frame_id *this_id)
372 {
373 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
374
375 /* This marks the outermost frame. */
376 if (cache->base == 0)
377 return;
378
379 (*this_id) = frame_id_build (cache->base, get_frame_func (this_frame));
380 }
381
382 static struct value *
383 vax_frame_prev_register (struct frame_info *this_frame,
384 void **this_cache, int regnum)
385 {
386 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
387
388 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
389 }
390
391 static const struct frame_unwind vax_frame_unwind =
392 {
393 NORMAL_FRAME,
394 default_frame_unwind_stop_reason,
395 vax_frame_this_id,
396 vax_frame_prev_register,
397 NULL,
398 default_frame_sniffer
399 };
400 \f
401
402 static CORE_ADDR
403 vax_frame_base_address (struct frame_info *this_frame, void **this_cache)
404 {
405 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
406
407 return cache->base;
408 }
409
410 static CORE_ADDR
411 vax_frame_args_address (struct frame_info *this_frame, void **this_cache)
412 {
413 return get_frame_register_unsigned (this_frame, VAX_AP_REGNUM);
414 }
415
416 static const struct frame_base vax_frame_base =
417 {
418 &vax_frame_unwind,
419 vax_frame_base_address,
420 vax_frame_base_address,
421 vax_frame_args_address
422 };
423
424 /* Return number of arguments for FRAME. */
425
426 static int
427 vax_frame_num_args (struct frame_info *frame)
428 {
429 CORE_ADDR args;
430
431 /* Assume that the argument pointer for the outermost frame is
432 hosed, as is the case on NetBSD/vax ELF. */
433 if (get_frame_base_address (frame) == 0)
434 return 0;
435
436 args = get_frame_register_unsigned (frame, VAX_AP_REGNUM);
437 return get_frame_memory_unsigned (frame, args, 1);
438 }
439
440 static CORE_ADDR
441 vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
442 {
443 return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM);
444 }
445 \f
446
447 /* Initialize the current architecture based on INFO. If possible, re-use an
448 architecture from ARCHES, which is a list of architectures already created
449 during this debugging session.
450
451 Called e.g. at program startup, when reading a core file, and when reading
452 a binary file. */
453
454 static struct gdbarch *
455 vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
456 {
457 struct gdbarch *gdbarch;
458
459 /* If there is already a candidate, use it. */
460 arches = gdbarch_list_lookup_by_info (arches, &info);
461 if (arches != NULL)
462 return arches->gdbarch;
463
464 gdbarch = gdbarch_alloc (&info, NULL);
465
466 set_gdbarch_float_format (gdbarch, floatformats_vax_f);
467 set_gdbarch_double_format (gdbarch, floatformats_vax_d);
468 set_gdbarch_long_double_format (gdbarch, floatformats_vax_d);
469 set_gdbarch_long_double_bit (gdbarch, 64);
470
471 /* Register info */
472 set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
473 set_gdbarch_register_name (gdbarch, vax_register_name);
474 set_gdbarch_register_type (gdbarch, vax_register_type);
475 set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
476 set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
477 set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
478
479 set_gdbarch_iterate_over_regset_sections
480 (gdbarch, vax_iterate_over_regset_sections);
481
482 /* Frame and stack info */
483 set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
484 set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
485 set_gdbarch_frame_args_skip (gdbarch, 4);
486
487 /* Stack grows downward. */
488 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
489
490 /* Return value info */
491 set_gdbarch_return_value (gdbarch, vax_return_value);
492
493 /* Call dummy code. */
494 set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call);
495 set_gdbarch_dummy_id (gdbarch, vax_dummy_id);
496
497 /* Breakpoint info */
498 SET_GDBARCH_BREAKPOINT_MANIPULATION (vax);
499
500 /* Misc info */
501 set_gdbarch_deprecated_function_start_offset (gdbarch, 2);
502 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
503
504 set_gdbarch_print_insn (gdbarch, print_insn_vax);
505
506 set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc);
507
508 frame_base_set_default (gdbarch, &vax_frame_base);
509
510 /* Hook in ABI-specific overrides, if they have been registered. */
511 gdbarch_init_osabi (info, gdbarch);
512
513 frame_unwind_append_unwinder (gdbarch, &vax_frame_unwind);
514
515 return (gdbarch);
516 }
517
518 /* Provide a prototype to silence -Wmissing-prototypes. */
519 void _initialize_vax_tdep (void);
520
521 void
522 _initialize_vax_tdep (void)
523 {
524 gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
525 }
This page took 0.040667 seconds and 5 git commands to generate.