2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / vax-tdep.c
1 /* Target-dependent code for the VAX.
2
3 Copyright (C) 1986, 1989, 1991, 1992, 1995, 1996, 1998, 1999, 2000, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "osabi.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "trad-frame.h"
34 #include "value.h"
35
36 #include "gdb_string.h"
37
38 #include "vax-tdep.h"
39
40 /* Return the name of register REGNUM. */
41
42 static const char *
43 vax_register_name (struct gdbarch *gdbarch, int regnum)
44 {
45 static char *register_names[] =
46 {
47 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
48 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
49 "ps",
50 };
51
52 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
53 return register_names[regnum];
54
55 return NULL;
56 }
57
58 /* Return the GDB type object for the "standard" data type of data in
59 register REGNUM. */
60
61 static struct type *
62 vax_register_type (struct gdbarch *gdbarch, int regnum)
63 {
64 return builtin_type_int;
65 }
66 \f
67 /* Core file support. */
68
69 /* Supply register REGNUM from the buffer specified by GREGS and LEN
70 in the general-purpose register set REGSET to register cache
71 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
72
73 static void
74 vax_supply_gregset (const struct regset *regset, struct regcache *regcache,
75 int regnum, const void *gregs, size_t len)
76 {
77 const gdb_byte *regs = gregs;
78 int i;
79
80 for (i = 0; i < VAX_NUM_REGS; i++)
81 {
82 if (regnum == i || regnum == -1)
83 regcache_raw_supply (regcache, i, regs + i * 4);
84 }
85 }
86
87 /* VAX register set. */
88
89 static struct regset vax_gregset =
90 {
91 NULL,
92 vax_supply_gregset
93 };
94
95 /* Return the appropriate register set for the core section identified
96 by SECT_NAME and SECT_SIZE. */
97
98 static const struct regset *
99 vax_regset_from_core_section (struct gdbarch *gdbarch,
100 const char *sect_name, size_t sect_size)
101 {
102 if (strcmp (sect_name, ".reg") == 0 && sect_size >= VAX_NUM_REGS * 4)
103 return &vax_gregset;
104
105 return NULL;
106 }
107 \f
108 /* The VAX UNIX calling convention uses R1 to pass a structure return
109 value address instead of passing it as a first (hidden) argument as
110 the VMS calling convention suggests. */
111
112 static CORE_ADDR
113 vax_store_arguments (struct regcache *regcache, int nargs,
114 struct value **args, CORE_ADDR sp)
115 {
116 gdb_byte buf[4];
117 int count = 0;
118 int i;
119
120 /* We create an argument list on the stack, and make the argument
121 pointer to it. */
122
123 /* Push arguments in reverse order. */
124 for (i = nargs - 1; i >= 0; i--)
125 {
126 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
127
128 sp -= (len + 3) & ~3;
129 count += (len + 3) / 4;
130 write_memory (sp, value_contents_all (args[i]), len);
131 }
132
133 /* Push argument count. */
134 sp -= 4;
135 store_unsigned_integer (buf, 4, count);
136 write_memory (sp, buf, 4);
137
138 /* Update the argument pointer. */
139 store_unsigned_integer (buf, 4, sp);
140 regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);
141
142 return sp;
143 }
144
145 static CORE_ADDR
146 vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
147 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
148 struct value **args, CORE_ADDR sp, int struct_return,
149 CORE_ADDR struct_addr)
150 {
151 CORE_ADDR fp = sp;
152 gdb_byte buf[4];
153
154 /* Set up the function arguments. */
155 sp = vax_store_arguments (regcache, nargs, args, sp);
156
157 /* Store return value address. */
158 if (struct_return)
159 regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);
160
161 /* Store return address in the PC slot. */
162 sp -= 4;
163 store_unsigned_integer (buf, 4, bp_addr);
164 write_memory (sp, buf, 4);
165
166 /* Store the (fake) frame pointer in the FP slot. */
167 sp -= 4;
168 store_unsigned_integer (buf, 4, fp);
169 write_memory (sp, buf, 4);
170
171 /* Skip the AP slot. */
172 sp -= 4;
173
174 /* Store register save mask and control bits. */
175 sp -= 4;
176 store_unsigned_integer (buf, 4, 0);
177 write_memory (sp, buf, 4);
178
179 /* Store condition handler. */
180 sp -= 4;
181 store_unsigned_integer (buf, 4, 0);
182 write_memory (sp, buf, 4);
183
184 /* Update the stack pointer and frame pointer. */
185 store_unsigned_integer (buf, 4, sp);
186 regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
187 regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);
188
189 /* Return the saved (fake) frame pointer. */
190 return fp;
191 }
192
193 static struct frame_id
194 vax_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
195 {
196 CORE_ADDR fp;
197
198 fp = frame_unwind_register_unsigned (next_frame, VAX_FP_REGNUM);
199 return frame_id_build (fp, frame_pc_unwind (next_frame));
200 }
201 \f
202
203 static enum return_value_convention
204 vax_return_value (struct gdbarch *gdbarch, struct type *type,
205 struct regcache *regcache, gdb_byte *readbuf,
206 const gdb_byte *writebuf)
207 {
208 int len = TYPE_LENGTH (type);
209 gdb_byte buf[8];
210
211 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
212 || TYPE_CODE (type) == TYPE_CODE_UNION
213 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
214 {
215 /* The default on VAX is to return structures in static memory.
216 Consequently a function must return the address where we can
217 find the return value. */
218
219 if (readbuf)
220 {
221 ULONGEST addr;
222
223 regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
224 read_memory (addr, readbuf, len);
225 }
226
227 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
228 }
229
230 if (readbuf)
231 {
232 /* Read the contents of R0 and (if necessary) R1. */
233 regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
234 if (len > 4)
235 regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
236 memcpy (readbuf, buf, len);
237 }
238 if (writebuf)
239 {
240 /* Read the contents to R0 and (if necessary) R1. */
241 memcpy (buf, writebuf, len);
242 regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
243 if (len > 4)
244 regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
245 }
246
247 return RETURN_VALUE_REGISTER_CONVENTION;
248 }
249 \f
250
251 /* Use the program counter to determine the contents and size of a
252 breakpoint instruction. Return a pointer to a string of bytes that
253 encode a breakpoint instruction, store the length of the string in
254 *LEN and optionally adjust *PC to point to the correct memory
255 location for inserting the breakpoint. */
256
257 static const gdb_byte *
258 vax_breakpoint_from_pc (CORE_ADDR *pc, int *len)
259 {
260 static gdb_byte break_insn[] = { 3 };
261
262 *len = sizeof (break_insn);
263 return break_insn;
264 }
265 \f
266 /* Advance PC across any function entry prologue instructions
267 to reach some "real" code. */
268
269 static CORE_ADDR
270 vax_skip_prologue (CORE_ADDR pc)
271 {
272 gdb_byte op = read_memory_unsigned_integer (pc, 1);
273
274 if (op == 0x11)
275 pc += 2; /* skip brb */
276 if (op == 0x31)
277 pc += 3; /* skip brw */
278 if (op == 0xC2
279 && (read_memory_unsigned_integer (pc + 2, 1)) == 0x5E)
280 pc += 3; /* skip subl2 */
281 if (op == 0x9E
282 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xAE
283 && (read_memory_unsigned_integer (pc + 3, 1)) == 0x5E)
284 pc += 4; /* skip movab */
285 if (op == 0x9E
286 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xCE
287 && (read_memory_unsigned_integer (pc + 4, 1)) == 0x5E)
288 pc += 5; /* skip movab */
289 if (op == 0x9E
290 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xEE
291 && (read_memory_unsigned_integer (pc + 6, 1)) == 0x5E)
292 pc += 7; /* skip movab */
293
294 return pc;
295 }
296 \f
297
298 /* Unwinding the stack is relatively easy since the VAX has a
299 dedicated frame pointer, and frames are set up automatically as the
300 result of a function call. Most of the relevant information can be
301 inferred from the documentation of the Procedure Call Instructions
302 in the VAX MACRO and Instruction Set Reference Manual. */
303
304 struct vax_frame_cache
305 {
306 /* Base address. */
307 CORE_ADDR base;
308
309 /* Table of saved registers. */
310 struct trad_frame_saved_reg *saved_regs;
311 };
312
313 struct vax_frame_cache *
314 vax_frame_cache (struct frame_info *next_frame, void **this_cache)
315 {
316 struct vax_frame_cache *cache;
317 CORE_ADDR addr;
318 ULONGEST mask;
319 int regnum;
320
321 if (*this_cache)
322 return *this_cache;
323
324 /* Allocate a new cache. */
325 cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache);
326 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
327
328 /* The frame pointer is used as the base for the frame. */
329 cache->base = frame_unwind_register_unsigned (next_frame, VAX_FP_REGNUM);
330 if (cache->base == 0)
331 return cache;
332
333 /* The register save mask and control bits determine the layout of
334 the stack frame. */
335 mask = get_frame_memory_unsigned (next_frame, cache->base + 4, 4) >> 16;
336
337 /* These are always saved. */
338 cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16;
339 cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12;
340 cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8;
341 cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4;
342
343 /* Scan the register save mask and record the location of the saved
344 registers. */
345 addr = cache->base + 20;
346 for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++)
347 {
348 if (mask & (1 << regnum))
349 {
350 cache->saved_regs[regnum].addr = addr;
351 addr += 4;
352 }
353 }
354
355 /* The CALLS/CALLG flag determines whether this frame has a General
356 Argument List or a Stack Argument List. */
357 if (mask & (1 << 13))
358 {
359 ULONGEST numarg;
360
361 /* This is a procedure with Stack Argument List. Adjust the
362 stack address for the arguments that were pushed onto the
363 stack. The return instruction will automatically pop the
364 arguments from the stack. */
365 numarg = get_frame_memory_unsigned (next_frame, addr, 1);
366 addr += 4 + numarg * 4;
367 }
368
369 /* Bits 1:0 of the stack pointer were saved in the control bits. */
370 trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14));
371
372 return cache;
373 }
374
375 static void
376 vax_frame_this_id (struct frame_info *next_frame, void **this_cache,
377 struct frame_id *this_id)
378 {
379 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
380
381 /* This marks the outermost frame. */
382 if (cache->base == 0)
383 return;
384
385 (*this_id) = frame_id_build (cache->base,
386 frame_func_unwind (next_frame, NORMAL_FRAME));
387 }
388
389 static void
390 vax_frame_prev_register (struct frame_info *next_frame, void **this_cache,
391 int regnum, int *optimizedp,
392 enum lval_type *lvalp, CORE_ADDR *addrp,
393 int *realnump, gdb_byte *valuep)
394 {
395 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
396
397 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
398 optimizedp, lvalp, addrp, realnump, valuep);
399 }
400
401 static const struct frame_unwind vax_frame_unwind =
402 {
403 NORMAL_FRAME,
404 vax_frame_this_id,
405 vax_frame_prev_register
406 };
407
408 static const struct frame_unwind *
409 vax_frame_sniffer (struct frame_info *next_frame)
410 {
411 return &vax_frame_unwind;
412 }
413 \f
414
415 static CORE_ADDR
416 vax_frame_base_address (struct frame_info *next_frame, void **this_cache)
417 {
418 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
419
420 return cache->base;
421 }
422
423 static CORE_ADDR
424 vax_frame_args_address (struct frame_info *next_frame, void **this_cache)
425 {
426 return frame_unwind_register_unsigned (next_frame, VAX_AP_REGNUM);
427 }
428
429 static const struct frame_base vax_frame_base =
430 {
431 &vax_frame_unwind,
432 vax_frame_base_address,
433 vax_frame_base_address,
434 vax_frame_args_address
435 };
436
437 /* Return number of arguments for FRAME. */
438
439 static int
440 vax_frame_num_args (struct frame_info *frame)
441 {
442 CORE_ADDR args;
443
444 /* Assume that the argument pointer for the outermost frame is
445 hosed, as is the case on NetBSD/vax ELF. */
446 if (get_frame_base_address (frame) == 0)
447 return 0;
448
449 args = get_frame_register_unsigned (frame, VAX_AP_REGNUM);
450 return get_frame_memory_unsigned (frame, args, 1);
451 }
452
453 static CORE_ADDR
454 vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
455 {
456 return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM);
457 }
458 \f
459
460 /* Initialize the current architecture based on INFO. If possible, re-use an
461 architecture from ARCHES, which is a list of architectures already created
462 during this debugging session.
463
464 Called e.g. at program startup, when reading a core file, and when reading
465 a binary file. */
466
467 static struct gdbarch *
468 vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
469 {
470 struct gdbarch *gdbarch;
471
472 /* If there is already a candidate, use it. */
473 arches = gdbarch_list_lookup_by_info (arches, &info);
474 if (arches != NULL)
475 return arches->gdbarch;
476
477 gdbarch = gdbarch_alloc (&info, NULL);
478
479 set_gdbarch_float_format (gdbarch, floatformats_vax_f);
480 set_gdbarch_double_format (gdbarch, floatformats_vax_d);
481 set_gdbarch_long_double_format (gdbarch, floatformats_vax_d);
482 set_gdbarch_long_double_bit (gdbarch, 64);
483
484 /* Register info */
485 set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
486 set_gdbarch_register_name (gdbarch, vax_register_name);
487 set_gdbarch_register_type (gdbarch, vax_register_type);
488 set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
489 set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
490 set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
491
492 set_gdbarch_regset_from_core_section
493 (gdbarch, vax_regset_from_core_section);
494
495 /* Frame and stack info */
496 set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
497 set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
498 set_gdbarch_frame_args_skip (gdbarch, 4);
499
500 /* Stack grows downward. */
501 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
502
503 /* Return value info */
504 set_gdbarch_return_value (gdbarch, vax_return_value);
505
506 /* Call dummy code. */
507 set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call);
508 set_gdbarch_unwind_dummy_id (gdbarch, vax_unwind_dummy_id);
509
510 /* Breakpoint info */
511 set_gdbarch_breakpoint_from_pc (gdbarch, vax_breakpoint_from_pc);
512
513 /* Misc info */
514 set_gdbarch_deprecated_function_start_offset (gdbarch, 2);
515 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
516
517 set_gdbarch_print_insn (gdbarch, print_insn_vax);
518
519 set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc);
520
521 frame_base_set_default (gdbarch, &vax_frame_base);
522
523 /* Hook in ABI-specific overrides, if they have been registered. */
524 gdbarch_init_osabi (info, gdbarch);
525
526 frame_unwind_append_sniffer (gdbarch, vax_frame_sniffer);
527
528 return (gdbarch);
529 }
530
531 /* Provide a prototype to silence -Wmissing-prototypes. */
532 void _initialize_vax_tdep (void);
533
534 void
535 _initialize_vax_tdep (void)
536 {
537 gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
538 }
This page took 0.051445 seconds and 5 git commands to generate.