windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "floatformat.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
54
55
56 static unsigned int xtensa_debug_level = 0;
57
58 #define DEBUGWARN(args...) \
59 if (xtensa_debug_level > 0) \
60 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
61
62 #define DEBUGINFO(args...) \
63 if (xtensa_debug_level > 1) \
64 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
65
66 #define DEBUGTRACE(args...) \
67 if (xtensa_debug_level > 2) \
68 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
69
70 #define DEBUGVERB(args...) \
71 if (xtensa_debug_level > 3) \
72 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
73
74
75 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
76 #define SP_ALIGNMENT 16
77
78
79 /* On Windowed ABI, we use a6 through a11 for passing arguments
80 to a function called by GDB because CALL4 is used. */
81 #define ARGS_NUM_REGS 6
82 #define REGISTER_SIZE 4
83
84
85 /* Extract the call size from the return address or PS register. */
86 #define PS_CALLINC_SHIFT 16
87 #define PS_CALLINC_MASK 0x00030000
88 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
89 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
90
91 /* On TX, hardware can be configured without Exception Option.
92 There is no PS register in this case. Inside XT-GDB, let us treat
93 it as a virtual read-only register always holding the same value. */
94 #define TX_PS 0x20
95
96 /* ABI-independent macros. */
97 #define ARG_NOF(gdbarch) \
98 (gdbarch_tdep (gdbarch)->call_abi \
99 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
100 #define ARG_1ST(gdbarch) \
101 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
102 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
103 : (gdbarch_tdep (gdbarch)->a0_base + 6))
104
105 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
106 indicates that the instruction is an ENTRY instruction. */
107
108 #define XTENSA_IS_ENTRY(gdbarch, op1) \
109 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
110 ? ((op1) == 0x6c) : ((op1) == 0x36))
111
112 #define XTENSA_ENTRY_LENGTH 3
113
114 /* windowing_enabled() returns true, if windowing is enabled.
115 WOE must be set to 1; EXCM to 0.
116 Note: We assume that EXCM is always 0 for XEA1. */
117
118 #define PS_WOE (1<<18)
119 #define PS_EXC (1<<4)
120
121 static int
122 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
123 {
124 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
125 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
126 return 0;
127
128 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
129 }
130
131 /* Convert a live A-register number to the corresponding AR-register
132 number. */
133 static int
134 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137 int arreg;
138
139 arreg = a_regnum - tdep->a0_base;
140 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
141 arreg &= tdep->num_aregs - 1;
142
143 return arreg + tdep->ar_base;
144 }
145
146 /* Convert a live AR-register number to the corresponding A-register order
147 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
148 static int
149 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
150 {
151 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152 int areg;
153
154 areg = ar_regnum - tdep->ar_base;
155 if (areg < 0 || areg >= tdep->num_aregs)
156 return -1;
157 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
158 return (areg > 15) ? -1 : areg;
159 }
160
161 /* Read Xtensa register directly from the hardware. */
162 static unsigned long
163 xtensa_read_register (int regnum)
164 {
165 ULONGEST value;
166
167 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
168 return (unsigned long) value;
169 }
170
171 /* Write Xtensa register directly to the hardware. */
172 static void
173 xtensa_write_register (int regnum, ULONGEST value)
174 {
175 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
176 }
177
178 /* Return the window size of the previous call to the function from which we
179 have just returned.
180
181 This function is used to extract the return value after a called function
182 has returned to the caller. On Xtensa, the register that holds the return
183 value (from the perspective of the caller) depends on what call
184 instruction was used. For now, we are assuming that the call instruction
185 precedes the current address, so we simply analyze the call instruction.
186 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
187 method to call the inferior function. */
188
189 static int
190 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
191 {
192 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
193 int winsize = 4;
194 int insn;
195 gdb_byte buf[4];
196
197 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
198
199 /* Read the previous instruction (should be a call[x]{4|8|12}. */
200 read_memory (pc-3, buf, 3);
201 insn = extract_unsigned_integer (buf, 3, byte_order);
202
203 /* Decode call instruction:
204 Little Endian
205 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
206 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
207 Big Endian
208 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
209 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
210
211 if (byte_order == BFD_ENDIAN_LITTLE)
212 {
213 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
214 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
215 }
216 else
217 {
218 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
219 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
220 }
221 return winsize;
222 }
223
224
225 /* REGISTER INFORMATION */
226
227 /* Find register by name. */
228 static int
229 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
230 {
231 int i;
232
233 for (i = 0; i < gdbarch_num_regs (gdbarch)
234 + gdbarch_num_pseudo_regs (gdbarch);
235 i++)
236
237 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
238 return i;
239
240 return -1;
241 }
242
243 /* Returns the name of a register. */
244 static const char *
245 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
246 {
247 /* Return the name stored in the register map. */
248 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
249 + gdbarch_num_pseudo_regs (gdbarch))
250 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
251
252 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
253 return 0;
254 }
255
256 /* Return the type of a register. Create a new type, if necessary. */
257
258 static struct type *
259 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
262
263 /* Return signed integer for ARx and Ax registers. */
264 if ((regnum >= tdep->ar_base
265 && regnum < tdep->ar_base + tdep->num_aregs)
266 || (regnum >= tdep->a0_base
267 && regnum < tdep->a0_base + 16))
268 return builtin_type (gdbarch)->builtin_int;
269
270 if (regnum == gdbarch_pc_regnum (gdbarch)
271 || regnum == tdep->a0_base + 1)
272 return builtin_type (gdbarch)->builtin_data_ptr;
273
274 /* Return the stored type for all other registers. */
275 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
276 + gdbarch_num_pseudo_regs (gdbarch))
277 {
278 xtensa_register_t* reg = &tdep->regmap[regnum];
279
280 /* Set ctype for this register (only the first time). */
281
282 if (reg->ctype == 0)
283 {
284 struct ctype_cache *tp;
285 int size = reg->byte_size;
286
287 /* We always use the memory representation,
288 even if the register width is smaller. */
289 switch (size)
290 {
291 case 1:
292 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
293 break;
294
295 case 2:
296 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
297 break;
298
299 case 4:
300 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
301 break;
302
303 case 8:
304 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
305 break;
306
307 case 16:
308 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
309 break;
310
311 default:
312 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
313 if (tp->size == size)
314 break;
315
316 if (tp == NULL)
317 {
318 char *name = xstrprintf ("int%d", size * 8);
319 tp = xmalloc (sizeof (struct ctype_cache));
320 tp->next = tdep->type_entries;
321 tdep->type_entries = tp;
322 tp->size = size;
323 tp->virtual_type
324 = arch_integer_type (gdbarch, size * 8, 1, name);
325 xfree (name);
326 }
327
328 reg->ctype = tp->virtual_type;
329 }
330 }
331 return reg->ctype;
332 }
333
334 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
335 return 0;
336 }
337
338
339 /* Return the 'local' register number for stubs, dwarf2, etc.
340 The debugging information enumerates registers starting from 0 for A0
341 to n for An. So, we only have to add the base number for A0. */
342
343 static int
344 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
345 {
346 int i;
347
348 if (regnum >= 0 && regnum < 16)
349 return gdbarch_tdep (gdbarch)->a0_base + regnum;
350
351 for (i = 0;
352 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
353 i++)
354 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
355 return i;
356
357 internal_error (__FILE__, __LINE__,
358 _("invalid dwarf/stabs register number %d"), regnum);
359 return 0;
360 }
361
362
363 /* Write the bits of a masked register to the various registers.
364 Only the masked areas of these registers are modified; the other
365 fields are untouched. The size of masked registers is always less
366 than or equal to 32 bits. */
367
368 static void
369 xtensa_register_write_masked (struct regcache *regcache,
370 xtensa_register_t *reg, const gdb_byte *buffer)
371 {
372 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
373 const xtensa_mask_t *mask = reg->mask;
374
375 int shift = 0; /* Shift for next mask (mod 32). */
376 int start, size; /* Start bit and size of current mask. */
377
378 unsigned int *ptr = value;
379 unsigned int regval, m, mem = 0;
380
381 int bytesize = reg->byte_size;
382 int bitsize = bytesize * 8;
383 int i, r;
384
385 DEBUGTRACE ("xtensa_register_write_masked ()\n");
386
387 /* Copy the masked register to host byte-order. */
388 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
389 for (i = 0; i < bytesize; i++)
390 {
391 mem >>= 8;
392 mem |= (buffer[bytesize - i - 1] << 24);
393 if ((i & 3) == 3)
394 *ptr++ = mem;
395 }
396 else
397 for (i = 0; i < bytesize; i++)
398 {
399 mem >>= 8;
400 mem |= (buffer[i] << 24);
401 if ((i & 3) == 3)
402 *ptr++ = mem;
403 }
404
405 /* We might have to shift the final value:
406 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
407 bytesize & 3 == x -> shift (4-x) * 8. */
408
409 *ptr = mem >> (((0 - bytesize) & 3) * 8);
410 ptr = value;
411 mem = *ptr;
412
413 /* Write the bits to the masked areas of the other registers. */
414 for (i = 0; i < mask->count; i++)
415 {
416 start = mask->mask[i].bit_start;
417 size = mask->mask[i].bit_size;
418 regval = mem >> shift;
419
420 if ((shift += size) > bitsize)
421 error (_("size of all masks is larger than the register"));
422
423 if (shift >= 32)
424 {
425 mem = *(++ptr);
426 shift -= 32;
427 bitsize -= 32;
428
429 if (shift > 0)
430 regval |= mem << (size - shift);
431 }
432
433 /* Make sure we have a valid register. */
434 r = mask->mask[i].reg_num;
435 if (r >= 0 && size > 0)
436 {
437 /* Don't overwrite the unmasked areas. */
438 ULONGEST old_val;
439 regcache_cooked_read_unsigned (regcache, r, &old_val);
440 m = 0xffffffff >> (32 - size) << start;
441 regval <<= start;
442 regval = (regval & m) | (old_val & ~m);
443 regcache_cooked_write_unsigned (regcache, r, regval);
444 }
445 }
446 }
447
448
449 /* Read a tie state or mapped registers. Read the masked areas
450 of the registers and assemble them into a single value. */
451
452 static enum register_status
453 xtensa_register_read_masked (struct regcache *regcache,
454 xtensa_register_t *reg, gdb_byte *buffer)
455 {
456 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
457 const xtensa_mask_t *mask = reg->mask;
458
459 int shift = 0;
460 int start, size;
461
462 unsigned int *ptr = value;
463 unsigned int regval, mem = 0;
464
465 int bytesize = reg->byte_size;
466 int bitsize = bytesize * 8;
467 int i;
468
469 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
470 reg->name == 0 ? "" : reg->name);
471
472 /* Assemble the register from the masked areas of other registers. */
473 for (i = 0; i < mask->count; i++)
474 {
475 int r = mask->mask[i].reg_num;
476 if (r >= 0)
477 {
478 enum register_status status;
479 ULONGEST val;
480
481 status = regcache_cooked_read_unsigned (regcache, r, &val);
482 if (status != REG_VALID)
483 return status;
484 regval = (unsigned int) val;
485 }
486 else
487 regval = 0;
488
489 start = mask->mask[i].bit_start;
490 size = mask->mask[i].bit_size;
491
492 regval >>= start;
493
494 if (size < 32)
495 regval &= (0xffffffff >> (32 - size));
496
497 mem |= regval << shift;
498
499 if ((shift += size) > bitsize)
500 error (_("size of all masks is larger than the register"));
501
502 if (shift >= 32)
503 {
504 *ptr++ = mem;
505 bitsize -= 32;
506 shift -= 32;
507
508 if (shift == 0)
509 mem = 0;
510 else
511 mem = regval >> (size - shift);
512 }
513 }
514
515 if (shift > 0)
516 *ptr = mem;
517
518 /* Copy value to target byte order. */
519 ptr = value;
520 mem = *ptr;
521
522 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
523 for (i = 0; i < bytesize; i++)
524 {
525 if ((i & 3) == 0)
526 mem = *ptr++;
527 buffer[bytesize - i - 1] = mem & 0xff;
528 mem >>= 8;
529 }
530 else
531 for (i = 0; i < bytesize; i++)
532 {
533 if ((i & 3) == 0)
534 mem = *ptr++;
535 buffer[i] = mem & 0xff;
536 mem >>= 8;
537 }
538
539 return REG_VALID;
540 }
541
542
543 /* Read pseudo registers. */
544
545 static enum register_status
546 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
547 struct regcache *regcache,
548 int regnum,
549 gdb_byte *buffer)
550 {
551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552
553 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
554 regnum, xtensa_register_name (gdbarch, regnum));
555
556 if (regnum == gdbarch_num_regs (gdbarch)
557 + gdbarch_num_pseudo_regs (gdbarch) - 1)
558 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
559
560 /* Read aliases a0..a15, if this is a Windowed ABI. */
561 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
562 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
563 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
564 {
565 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
566 enum register_status status;
567
568 status = regcache_raw_read (regcache,
569 gdbarch_tdep (gdbarch)->wb_regnum,
570 buf);
571 if (status != REG_VALID)
572 return status;
573 regnum = arreg_number (gdbarch, regnum,
574 extract_unsigned_integer (buf, 4, byte_order));
575 }
576
577 /* We can always read non-pseudo registers. */
578 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
579 return regcache_raw_read (regcache, regnum, buffer);
580
581 /* We have to find out how to deal with priveleged registers.
582 Let's treat them as pseudo-registers, but we cannot read/write them. */
583
584 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
585 {
586 buffer[0] = (gdb_byte)0;
587 buffer[1] = (gdb_byte)0;
588 buffer[2] = (gdb_byte)0;
589 buffer[3] = (gdb_byte)0;
590 return REG_VALID;
591 }
592 /* Pseudo registers. */
593 else if (regnum >= 0
594 && regnum < gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch))
596 {
597 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
598 xtensa_register_type_t type = reg->type;
599 int flags = gdbarch_tdep (gdbarch)->target_flags;
600
601 /* We cannot read Unknown or Unmapped registers. */
602 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
603 {
604 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
605 {
606 warning (_("cannot read register %s"),
607 xtensa_register_name (gdbarch, regnum));
608 return REG_VALID;
609 }
610 }
611
612 /* Some targets cannot read TIE register files. */
613 else if (type == xtRegisterTypeTieRegfile)
614 {
615 /* Use 'fetch' to get register? */
616 if (flags & xtTargetFlagsUseFetchStore)
617 {
618 warning (_("cannot read register"));
619 return REG_VALID;
620 }
621
622 /* On some targets (esp. simulators), we can always read the reg. */
623 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
624 {
625 warning (_("cannot read register"));
626 return REG_VALID;
627 }
628 }
629
630 /* We can always read mapped registers. */
631 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
632 return xtensa_register_read_masked (regcache, reg, buffer);
633
634 /* Assume that we can read the register. */
635 return regcache_raw_read (regcache, regnum, buffer);
636 }
637 else
638 internal_error (__FILE__, __LINE__,
639 _("invalid register number %d"), regnum);
640 }
641
642
643 /* Write pseudo registers. */
644
645 static void
646 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
647 struct regcache *regcache,
648 int regnum,
649 const gdb_byte *buffer)
650 {
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
652
653 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
654 regnum, xtensa_register_name (gdbarch, regnum));
655
656 if (regnum == gdbarch_num_regs (gdbarch)
657 + gdbarch_num_pseudo_regs (gdbarch) -1)
658 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
659
660 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
661 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
662 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
663 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
664 {
665 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
666
667 regcache_raw_read (regcache,
668 gdbarch_tdep (gdbarch)->wb_regnum, buf);
669 regnum = arreg_number (gdbarch, regnum,
670 extract_unsigned_integer (buf, 4, byte_order));
671 }
672
673 /* We can always write 'core' registers.
674 Note: We might have converted Ax->ARy. */
675 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
676 regcache_raw_write (regcache, regnum, buffer);
677
678 /* We have to find out how to deal with priveleged registers.
679 Let's treat them as pseudo-registers, but we cannot read/write them. */
680
681 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
682 {
683 return;
684 }
685 /* Pseudo registers. */
686 else if (regnum >= 0
687 && regnum < gdbarch_num_regs (gdbarch)
688 + gdbarch_num_pseudo_regs (gdbarch))
689 {
690 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
691 xtensa_register_type_t type = reg->type;
692 int flags = gdbarch_tdep (gdbarch)->target_flags;
693
694 /* On most targets, we cannot write registers
695 of type "Unknown" or "Unmapped". */
696 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
697 {
698 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
699 {
700 warning (_("cannot write register %s"),
701 xtensa_register_name (gdbarch, regnum));
702 return;
703 }
704 }
705
706 /* Some targets cannot read TIE register files. */
707 else if (type == xtRegisterTypeTieRegfile)
708 {
709 /* Use 'store' to get register? */
710 if (flags & xtTargetFlagsUseFetchStore)
711 {
712 warning (_("cannot write register"));
713 return;
714 }
715
716 /* On some targets (esp. simulators), we can always write
717 the register. */
718 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
719 {
720 warning (_("cannot write register"));
721 return;
722 }
723 }
724
725 /* We can always write mapped registers. */
726 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
727 {
728 xtensa_register_write_masked (regcache, reg, buffer);
729 return;
730 }
731
732 /* Assume that we can write the register. */
733 regcache_raw_write (regcache, regnum, buffer);
734 }
735 else
736 internal_error (__FILE__, __LINE__,
737 _("invalid register number %d"), regnum);
738 }
739
740 static struct reggroup *xtensa_ar_reggroup;
741 static struct reggroup *xtensa_user_reggroup;
742 static struct reggroup *xtensa_vectra_reggroup;
743 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
744
745 static void
746 xtensa_init_reggroups (void)
747 {
748 int i;
749 char cpname[] = "cp0";
750
751 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
752 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
753 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
754
755 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
756 {
757 cpname[2] = '0' + i;
758 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
759 }
760 }
761
762 static void
763 xtensa_add_reggroups (struct gdbarch *gdbarch)
764 {
765 int i;
766
767 /* Predefined groups. */
768 reggroup_add (gdbarch, all_reggroup);
769 reggroup_add (gdbarch, save_reggroup);
770 reggroup_add (gdbarch, restore_reggroup);
771 reggroup_add (gdbarch, system_reggroup);
772 reggroup_add (gdbarch, vector_reggroup);
773 reggroup_add (gdbarch, general_reggroup);
774 reggroup_add (gdbarch, float_reggroup);
775
776 /* Xtensa-specific groups. */
777 reggroup_add (gdbarch, xtensa_ar_reggroup);
778 reggroup_add (gdbarch, xtensa_user_reggroup);
779 reggroup_add (gdbarch, xtensa_vectra_reggroup);
780
781 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
782 reggroup_add (gdbarch, xtensa_cp[i]);
783 }
784
785 static int
786 xtensa_coprocessor_register_group (struct reggroup *group)
787 {
788 int i;
789
790 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
791 if (group == xtensa_cp[i])
792 return i;
793
794 return -1;
795 }
796
797 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
798 | XTENSA_REGISTER_FLAGS_WRITABLE \
799 | XTENSA_REGISTER_FLAGS_VOLATILE)
800
801 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
802 | XTENSA_REGISTER_FLAGS_WRITABLE)
803
804 static int
805 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
806 int regnum,
807 struct reggroup *group)
808 {
809 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
810 xtensa_register_type_t type = reg->type;
811 xtensa_register_group_t rg = reg->group;
812 int cp_number;
813
814 if (group == save_reggroup)
815 /* Every single register should be included into the list of registers
816 to be watched for changes while using -data-list-changed-registers. */
817 return 1;
818
819 /* First, skip registers that are not visible to this target
820 (unknown and unmapped registers when not using ISS). */
821
822 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
823 return 0;
824 if (group == all_reggroup)
825 return 1;
826 if (group == xtensa_ar_reggroup)
827 return rg & xtRegisterGroupAddrReg;
828 if (group == xtensa_user_reggroup)
829 return rg & xtRegisterGroupUser;
830 if (group == float_reggroup)
831 return rg & xtRegisterGroupFloat;
832 if (group == general_reggroup)
833 return rg & xtRegisterGroupGeneral;
834 if (group == system_reggroup)
835 return rg & xtRegisterGroupState;
836 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
837 return rg & xtRegisterGroupVectra;
838 if (group == restore_reggroup)
839 return (regnum < gdbarch_num_regs (gdbarch)
840 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
841 cp_number = xtensa_coprocessor_register_group (group);
842 if (cp_number >= 0)
843 return rg & (xtRegisterGroupCP0 << cp_number);
844 else
845 return 1;
846 }
847
848
849 /* Supply register REGNUM from the buffer specified by GREGS and LEN
850 in the general-purpose register set REGSET to register cache
851 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
852
853 static void
854 xtensa_supply_gregset (const struct regset *regset,
855 struct regcache *rc,
856 int regnum,
857 const void *gregs,
858 size_t len)
859 {
860 const xtensa_elf_gregset_t *regs = gregs;
861 struct gdbarch *gdbarch = get_regcache_arch (rc);
862 int i;
863
864 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
865
866 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
868 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
869 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
870 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
872 (char *) &regs->windowbase);
873 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
874 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
875 (char *) &regs->windowstart);
876 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
877 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
878 (char *) &regs->lbeg);
879 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
880 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
881 (char *) &regs->lend);
882 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
883 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
884 (char *) &regs->lcount);
885 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
886 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
887 (char *) &regs->sar);
888 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
889 && regnum < gdbarch_tdep (gdbarch)->ar_base
890 + gdbarch_tdep (gdbarch)->num_aregs)
891 regcache_raw_supply (rc, regnum,
892 (char *) &regs->ar[regnum - gdbarch_tdep
893 (gdbarch)->ar_base]);
894 else if (regnum == -1)
895 {
896 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
897 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
898 (char *) &regs->ar[i]);
899 }
900 }
901
902
903 /* Xtensa register set. */
904
905 static struct regset
906 xtensa_gregset =
907 {
908 NULL,
909 xtensa_supply_gregset
910 };
911
912
913 /* Iterate over supported core file register note sections. */
914
915 static void
916 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
917 iterate_over_regset_sections_cb *cb,
918 void *cb_data,
919 const struct regcache *regcache)
920 {
921 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
922
923 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
924 NULL, cb_data);
925 }
926
927
928 /* Handling frames. */
929
930 /* Number of registers to save in case of Windowed ABI. */
931 #define XTENSA_NUM_SAVED_AREGS 12
932
933 /* Frame cache part for Windowed ABI. */
934 typedef struct xtensa_windowed_frame_cache
935 {
936 int wb; /* WINDOWBASE of the previous frame. */
937 int callsize; /* Call size of this frame. */
938 int ws; /* WINDOWSTART of the previous frame. It keeps track of
939 life windows only. If there is no bit set for the
940 window, that means it had been already spilled
941 because of window overflow. */
942
943 /* Addresses of spilled A-registers.
944 AREGS[i] == -1, if corresponding AR is alive. */
945 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
946 } xtensa_windowed_frame_cache_t;
947
948 /* Call0 ABI Definitions. */
949
950 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
951 analysis. */
952 #define C0_NREGS 16 /* Number of A-registers to track. */
953 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
954 #define C0_SP 1 /* Register used as SP. */
955 #define C0_FP 15 /* Register used as FP. */
956 #define C0_RA 0 /* Register used as return address. */
957 #define C0_ARGS 2 /* Register used as first arg/retval. */
958 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
959
960 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
961 A-register where the current content of the reg came from (in terms
962 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
963 mean that the orignal content of the register was saved to the stack.
964 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
965 know where SP will end up until the entire prologue has been analyzed. */
966
967 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
968 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
969 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
970
971 extern xtensa_isa xtensa_default_isa;
972
973 typedef struct xtensa_c0reg
974 {
975 int fr_reg; /* original register from which register content
976 is derived, or C0_CONST, or C0_INEXP. */
977 int fr_ofs; /* constant offset from reg, or immediate value. */
978 int to_stk; /* offset from original SP to register (4-byte aligned),
979 or C0_NOSTK if register has not been saved. */
980 } xtensa_c0reg_t;
981
982 /* Frame cache part for Call0 ABI. */
983 typedef struct xtensa_call0_frame_cache
984 {
985 int c0_frmsz; /* Stack frame size. */
986 int c0_hasfp; /* Current frame uses frame pointer. */
987 int fp_regnum; /* A-register used as FP. */
988 int c0_fp; /* Actual value of frame pointer. */
989 int c0_fpalign; /* Dinamic adjustment for the stack
990 pointer. It's an AND mask. Zero,
991 if alignment was not adjusted. */
992 int c0_old_sp; /* In case of dynamic adjustment, it is
993 a register holding unaligned sp.
994 C0_INEXP, when undefined. */
995 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
996 stack offset. C0_NOSTK otherwise. */
997
998 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
999 } xtensa_call0_frame_cache_t;
1000
1001 typedef struct xtensa_frame_cache
1002 {
1003 CORE_ADDR base; /* Stack pointer of this frame. */
1004 CORE_ADDR pc; /* PC of this frame at the function entry point. */
1005 CORE_ADDR ra; /* The raw return address of this frame. */
1006 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1007 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1008 int call0; /* It's a call0 framework (else windowed). */
1009 union
1010 {
1011 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1012 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1013 };
1014 } xtensa_frame_cache_t;
1015
1016
1017 static struct xtensa_frame_cache *
1018 xtensa_alloc_frame_cache (int windowed)
1019 {
1020 xtensa_frame_cache_t *cache;
1021 int i;
1022
1023 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1024
1025 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1026
1027 cache->base = 0;
1028 cache->pc = 0;
1029 cache->ra = 0;
1030 cache->ps = 0;
1031 cache->prev_sp = 0;
1032 cache->call0 = !windowed;
1033 if (cache->call0)
1034 {
1035 cache->c0.c0_frmsz = -1;
1036 cache->c0.c0_hasfp = 0;
1037 cache->c0.fp_regnum = -1;
1038 cache->c0.c0_fp = -1;
1039 cache->c0.c0_fpalign = 0;
1040 cache->c0.c0_old_sp = C0_INEXP;
1041 cache->c0.c0_sp_ofs = C0_NOSTK;
1042
1043 for (i = 0; i < C0_NREGS; i++)
1044 {
1045 cache->c0.c0_rt[i].fr_reg = i;
1046 cache->c0.c0_rt[i].fr_ofs = 0;
1047 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1048 }
1049 }
1050 else
1051 {
1052 cache->wd.wb = 0;
1053 cache->wd.ws = 0;
1054 cache->wd.callsize = -1;
1055
1056 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1057 cache->wd.aregs[i] = -1;
1058 }
1059 return cache;
1060 }
1061
1062
1063 static CORE_ADDR
1064 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1065 {
1066 return address & ~15;
1067 }
1068
1069
1070 static CORE_ADDR
1071 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1072 {
1073 gdb_byte buf[8];
1074 CORE_ADDR pc;
1075
1076 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1077 host_address_to_string (next_frame));
1078
1079 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1080 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1081
1082 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1083
1084 return pc;
1085 }
1086
1087
1088 static struct frame_id
1089 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1090 {
1091 CORE_ADDR pc, fp;
1092
1093 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1094
1095 pc = get_frame_pc (this_frame);
1096 fp = get_frame_register_unsigned
1097 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1098
1099 /* Make dummy frame ID unique by adding a constant. */
1100 return frame_id_build (fp + SP_ALIGNMENT, pc);
1101 }
1102
1103 /* Returns true, if instruction to execute next is unique to Xtensa Window
1104 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1105
1106 static int
1107 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1108 {
1109 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1110 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1111 unsigned int code;
1112
1113 if (byte_order == BFD_ENDIAN_BIG)
1114 {
1115 /* Check, if this is L32E or S32E. */
1116 code = insn & 0xf000ff00;
1117 if ((code == 0x00009000) || (code == 0x00009400))
1118 return 1;
1119 /* Check, if this is RFWU or RFWO. */
1120 code = insn & 0xffffff00;
1121 return ((code == 0x00430000) || (code == 0x00530000));
1122 }
1123 else
1124 {
1125 /* Check, if this is L32E or S32E. */
1126 code = insn & 0x00ff000f;
1127 if ((code == 0x090000) || (code == 0x490000))
1128 return 1;
1129 /* Check, if this is RFWU or RFWO. */
1130 code = insn & 0x00ffffff;
1131 return ((code == 0x00003400) || (code == 0x00003500));
1132 }
1133 }
1134
1135 /* Returns the best guess about which register is a frame pointer
1136 for the function containing CURRENT_PC. */
1137
1138 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1139 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1140
1141 static unsigned int
1142 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1143 {
1144 #define RETURN_FP goto done
1145
1146 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1147 CORE_ADDR start_addr;
1148 xtensa_isa isa;
1149 xtensa_insnbuf ins, slot;
1150 gdb_byte ibuf[XTENSA_ISA_BSZ];
1151 CORE_ADDR ia, bt, ba;
1152 xtensa_format ifmt;
1153 int ilen, islots, is;
1154 xtensa_opcode opc;
1155 const char *opcname;
1156
1157 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1158 if (start_addr == 0)
1159 return fp_regnum;
1160
1161 if (!xtensa_default_isa)
1162 xtensa_default_isa = xtensa_isa_init (0, 0);
1163 isa = xtensa_default_isa;
1164 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1165 ins = xtensa_insnbuf_alloc (isa);
1166 slot = xtensa_insnbuf_alloc (isa);
1167 ba = 0;
1168
1169 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1170 {
1171 if (ia + xtensa_isa_maxlength (isa) > bt)
1172 {
1173 ba = ia;
1174 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1175 ? ba + XTENSA_ISA_BSZ : current_pc;
1176 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1177 RETURN_FP;
1178 }
1179
1180 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1181 ifmt = xtensa_format_decode (isa, ins);
1182 if (ifmt == XTENSA_UNDEFINED)
1183 RETURN_FP;
1184 ilen = xtensa_format_length (isa, ifmt);
1185 if (ilen == XTENSA_UNDEFINED)
1186 RETURN_FP;
1187 islots = xtensa_format_num_slots (isa, ifmt);
1188 if (islots == XTENSA_UNDEFINED)
1189 RETURN_FP;
1190
1191 for (is = 0; is < islots; ++is)
1192 {
1193 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1194 RETURN_FP;
1195
1196 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1197 if (opc == XTENSA_UNDEFINED)
1198 RETURN_FP;
1199
1200 opcname = xtensa_opcode_name (isa, opc);
1201
1202 if (strcasecmp (opcname, "mov.n") == 0
1203 || strcasecmp (opcname, "or") == 0)
1204 {
1205 unsigned int register_operand;
1206
1207 /* Possible candidate for setting frame pointer
1208 from A1. This is what we are looking for. */
1209
1210 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1211 is, slot, &register_operand) != 0)
1212 RETURN_FP;
1213 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1214 RETURN_FP;
1215 if (register_operand == 1) /* Mov{.n} FP A1. */
1216 {
1217 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1218 &register_operand) != 0)
1219 RETURN_FP;
1220 if (xtensa_operand_decode (isa, opc, 0,
1221 &register_operand) != 0)
1222 RETURN_FP;
1223
1224 fp_regnum
1225 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1226 RETURN_FP;
1227 }
1228 }
1229
1230 if (
1231 /* We have problems decoding the memory. */
1232 opcname == NULL
1233 || strcasecmp (opcname, "ill") == 0
1234 || strcasecmp (opcname, "ill.n") == 0
1235 /* Hit planted breakpoint. */
1236 || strcasecmp (opcname, "break") == 0
1237 || strcasecmp (opcname, "break.n") == 0
1238 /* Flow control instructions finish prologue. */
1239 || xtensa_opcode_is_branch (isa, opc) > 0
1240 || xtensa_opcode_is_jump (isa, opc) > 0
1241 || xtensa_opcode_is_loop (isa, opc) > 0
1242 || xtensa_opcode_is_call (isa, opc) > 0
1243 || strcasecmp (opcname, "simcall") == 0
1244 || strcasecmp (opcname, "syscall") == 0)
1245 /* Can not continue analysis. */
1246 RETURN_FP;
1247 }
1248 }
1249 done:
1250 xtensa_insnbuf_free(isa, slot);
1251 xtensa_insnbuf_free(isa, ins);
1252 return fp_regnum;
1253 }
1254
1255 /* The key values to identify the frame using "cache" are
1256
1257 cache->base = SP (or best guess about FP) of this frame;
1258 cache->pc = entry-PC (entry point of the frame function);
1259 cache->prev_sp = SP of the previous frame. */
1260
1261 static void
1262 call0_frame_cache (struct frame_info *this_frame,
1263 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1264
1265 static void
1266 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1267 xtensa_frame_cache_t *cache,
1268 CORE_ADDR pc);
1269
1270 static struct xtensa_frame_cache *
1271 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1272 {
1273 xtensa_frame_cache_t *cache;
1274 CORE_ADDR ra, wb, ws, pc, sp, ps;
1275 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1276 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1277 unsigned int fp_regnum;
1278 int windowed, ps_regnum;
1279
1280 if (*this_cache)
1281 return *this_cache;
1282
1283 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1284 ps_regnum = gdbarch_ps_regnum (gdbarch);
1285 ps = (ps_regnum >= 0
1286 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1287
1288 windowed = windowing_enabled (gdbarch, ps);
1289
1290 /* Get pristine xtensa-frame. */
1291 cache = xtensa_alloc_frame_cache (windowed);
1292 *this_cache = cache;
1293
1294 if (windowed)
1295 {
1296 char op1;
1297
1298 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1299 wb = get_frame_register_unsigned (this_frame,
1300 gdbarch_tdep (gdbarch)->wb_regnum);
1301 ws = get_frame_register_unsigned (this_frame,
1302 gdbarch_tdep (gdbarch)->ws_regnum);
1303
1304 op1 = read_memory_integer (pc, 1, byte_order);
1305 if (XTENSA_IS_ENTRY (gdbarch, op1))
1306 {
1307 int callinc = CALLINC (ps);
1308 ra = get_frame_register_unsigned
1309 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1310
1311 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1312 cache->wd.callsize = 0;
1313 cache->wd.wb = wb;
1314 cache->wd.ws = ws;
1315 cache->prev_sp = get_frame_register_unsigned
1316 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1317
1318 /* This only can be the outermost frame since we are
1319 just about to execute ENTRY. SP hasn't been set yet.
1320 We can assume any frame size, because it does not
1321 matter, and, let's fake frame base in cache. */
1322 cache->base = cache->prev_sp - 16;
1323
1324 cache->pc = pc;
1325 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1326 cache->ps = (ps & ~PS_CALLINC_MASK)
1327 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1328
1329 return cache;
1330 }
1331 else
1332 {
1333 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1334 ra = get_frame_register_unsigned (this_frame,
1335 gdbarch_tdep (gdbarch)->a0_base);
1336 cache->wd.callsize = WINSIZE (ra);
1337 cache->wd.wb = (wb - cache->wd.callsize / 4)
1338 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1339 cache->wd.ws = ws & ~(1 << wb);
1340
1341 cache->pc = get_frame_func (this_frame);
1342 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1343 cache->ps = (ps & ~PS_CALLINC_MASK)
1344 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1345 }
1346
1347 if (cache->wd.ws == 0)
1348 {
1349 int i;
1350
1351 /* Set A0...A3. */
1352 sp = get_frame_register_unsigned
1353 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1354
1355 for (i = 0; i < 4; i++, sp += 4)
1356 {
1357 cache->wd.aregs[i] = sp;
1358 }
1359
1360 if (cache->wd.callsize > 4)
1361 {
1362 /* Set A4...A7/A11. */
1363 /* Get the SP of the frame previous to the previous one.
1364 To achieve this, we have to dereference SP twice. */
1365 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1366 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1367 sp -= cache->wd.callsize * 4;
1368
1369 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1370 {
1371 cache->wd.aregs[i] = sp;
1372 }
1373 }
1374 }
1375
1376 if ((cache->prev_sp == 0) && ( ra != 0 ))
1377 /* If RA is equal to 0 this frame is an outermost frame. Leave
1378 cache->prev_sp unchanged marking the boundary of the frame stack. */
1379 {
1380 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1381 {
1382 /* Register window overflow already happened.
1383 We can read caller's SP from the proper spill loction. */
1384 sp = get_frame_register_unsigned
1385 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1386 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1387 }
1388 else
1389 {
1390 /* Read caller's frame SP directly from the previous window. */
1391 int regnum = arreg_number
1392 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1393 cache->wd.wb);
1394
1395 cache->prev_sp = xtensa_read_register (regnum);
1396 }
1397 }
1398 }
1399 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1400 {
1401 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1402
1403 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1404 /* Everything was set already, including cache->base. */
1405 return cache;
1406 }
1407 else /* Call0 framework. */
1408 {
1409 call0_frame_cache (this_frame, cache, pc);
1410 fp_regnum = cache->c0.fp_regnum;
1411 }
1412
1413 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1414
1415 return cache;
1416 }
1417
1418 static int xtensa_session_once_reported = 1;
1419
1420 /* Report a problem with prologue analysis while doing backtracing.
1421 But, do it only once to avoid annoyng repeated messages. */
1422
1423 static void
1424 warning_once (void)
1425 {
1426 if (xtensa_session_once_reported == 0)
1427 warning (_("\
1428 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1429 This message will not be repeated in this session.\n"));
1430
1431 xtensa_session_once_reported = 1;
1432 }
1433
1434
1435 static void
1436 xtensa_frame_this_id (struct frame_info *this_frame,
1437 void **this_cache,
1438 struct frame_id *this_id)
1439 {
1440 struct xtensa_frame_cache *cache =
1441 xtensa_frame_cache (this_frame, this_cache);
1442
1443 if (cache->prev_sp == 0)
1444 return;
1445
1446 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1447 }
1448
1449 static struct value *
1450 xtensa_frame_prev_register (struct frame_info *this_frame,
1451 void **this_cache,
1452 int regnum)
1453 {
1454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1455 struct xtensa_frame_cache *cache;
1456 ULONGEST saved_reg = 0;
1457 int done = 1;
1458
1459 if (*this_cache == NULL)
1460 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1461 cache = *this_cache;
1462
1463 if (regnum ==gdbarch_pc_regnum (gdbarch))
1464 saved_reg = cache->ra;
1465 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1466 saved_reg = cache->prev_sp;
1467 else if (!cache->call0)
1468 {
1469 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1470 saved_reg = cache->wd.ws;
1471 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1472 saved_reg = cache->wd.wb;
1473 else if (regnum == gdbarch_ps_regnum (gdbarch))
1474 saved_reg = cache->ps;
1475 else
1476 done = 0;
1477 }
1478 else
1479 done = 0;
1480
1481 if (done)
1482 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1483
1484 if (!cache->call0) /* Windowed ABI. */
1485 {
1486 /* Convert A-register numbers to AR-register numbers,
1487 if we deal with A-register. */
1488 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1489 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1490 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1491
1492 /* Check, if we deal with AR-register saved on stack. */
1493 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1494 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1495 + gdbarch_tdep (gdbarch)->num_aregs))
1496 {
1497 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1498
1499 if (areg >= 0
1500 && areg < XTENSA_NUM_SAVED_AREGS
1501 && cache->wd.aregs[areg] != -1)
1502 return frame_unwind_got_memory (this_frame, regnum,
1503 cache->wd.aregs[areg]);
1504 }
1505 }
1506 else /* Call0 ABI. */
1507 {
1508 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1509 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1510 + C0_NREGS))
1511 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1512
1513 if (reg < C0_NREGS)
1514 {
1515 CORE_ADDR spe;
1516 int stkofs;
1517
1518 /* If register was saved in the prologue, retrieve it. */
1519 stkofs = cache->c0.c0_rt[reg].to_stk;
1520 if (stkofs != C0_NOSTK)
1521 {
1522 /* Determine SP on entry based on FP. */
1523 spe = cache->c0.c0_fp
1524 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1525
1526 return frame_unwind_got_memory (this_frame, regnum,
1527 spe + stkofs);
1528 }
1529 }
1530 }
1531
1532 /* All other registers have been either saved to
1533 the stack or are still alive in the processor. */
1534
1535 return frame_unwind_got_register (this_frame, regnum, regnum);
1536 }
1537
1538
1539 static const struct frame_unwind
1540 xtensa_unwind =
1541 {
1542 NORMAL_FRAME,
1543 default_frame_unwind_stop_reason,
1544 xtensa_frame_this_id,
1545 xtensa_frame_prev_register,
1546 NULL,
1547 default_frame_sniffer
1548 };
1549
1550 static CORE_ADDR
1551 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1552 {
1553 struct xtensa_frame_cache *cache =
1554 xtensa_frame_cache (this_frame, this_cache);
1555
1556 return cache->base;
1557 }
1558
1559 static const struct frame_base
1560 xtensa_frame_base =
1561 {
1562 &xtensa_unwind,
1563 xtensa_frame_base_address,
1564 xtensa_frame_base_address,
1565 xtensa_frame_base_address
1566 };
1567
1568
1569 static void
1570 xtensa_extract_return_value (struct type *type,
1571 struct regcache *regcache,
1572 void *dst)
1573 {
1574 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1575 bfd_byte *valbuf = dst;
1576 int len = TYPE_LENGTH (type);
1577 ULONGEST pc, wb;
1578 int callsize, areg;
1579 int offset = 0;
1580
1581 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1582
1583 gdb_assert(len > 0);
1584
1585 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1586 {
1587 /* First, we have to find the caller window in the register file. */
1588 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1589 callsize = extract_call_winsize (gdbarch, pc);
1590
1591 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1592 if (len > (callsize > 8 ? 8 : 16))
1593 internal_error (__FILE__, __LINE__,
1594 _("cannot extract return value of %d bytes long"),
1595 len);
1596
1597 /* Get the register offset of the return
1598 register (A2) in the caller window. */
1599 regcache_raw_read_unsigned
1600 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1601 areg = arreg_number (gdbarch,
1602 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1603 }
1604 else
1605 {
1606 /* No windowing hardware - Call0 ABI. */
1607 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1608 }
1609
1610 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1611
1612 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1613 offset = 4 - len;
1614
1615 for (; len > 0; len -= 4, areg++, valbuf += 4)
1616 {
1617 if (len < 4)
1618 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1619 else
1620 regcache_raw_read (regcache, areg, valbuf);
1621 }
1622 }
1623
1624
1625 static void
1626 xtensa_store_return_value (struct type *type,
1627 struct regcache *regcache,
1628 const void *dst)
1629 {
1630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1631 const bfd_byte *valbuf = dst;
1632 unsigned int areg;
1633 ULONGEST pc, wb;
1634 int callsize;
1635 int len = TYPE_LENGTH (type);
1636 int offset = 0;
1637
1638 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1639
1640 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1641 {
1642 regcache_raw_read_unsigned
1643 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1644 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1645 callsize = extract_call_winsize (gdbarch, pc);
1646
1647 if (len > (callsize > 8 ? 8 : 16))
1648 internal_error (__FILE__, __LINE__,
1649 _("unimplemented for this length: %d"),
1650 TYPE_LENGTH (type));
1651 areg = arreg_number (gdbarch,
1652 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1653
1654 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1655 callsize, (int) wb);
1656 }
1657 else
1658 {
1659 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1660 }
1661
1662 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1663 offset = 4 - len;
1664
1665 for (; len > 0; len -= 4, areg++, valbuf += 4)
1666 {
1667 if (len < 4)
1668 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1669 else
1670 regcache_raw_write (regcache, areg, valbuf);
1671 }
1672 }
1673
1674
1675 static enum return_value_convention
1676 xtensa_return_value (struct gdbarch *gdbarch,
1677 struct value *function,
1678 struct type *valtype,
1679 struct regcache *regcache,
1680 gdb_byte *readbuf,
1681 const gdb_byte *writebuf)
1682 {
1683 /* Structures up to 16 bytes are returned in registers. */
1684
1685 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1686 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1687 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1688 && TYPE_LENGTH (valtype) > 16);
1689
1690 if (struct_return)
1691 return RETURN_VALUE_STRUCT_CONVENTION;
1692
1693 DEBUGTRACE ("xtensa_return_value(...)\n");
1694
1695 if (writebuf != NULL)
1696 {
1697 xtensa_store_return_value (valtype, regcache, writebuf);
1698 }
1699
1700 if (readbuf != NULL)
1701 {
1702 gdb_assert (!struct_return);
1703 xtensa_extract_return_value (valtype, regcache, readbuf);
1704 }
1705 return RETURN_VALUE_REGISTER_CONVENTION;
1706 }
1707
1708
1709 /* DUMMY FRAME */
1710
1711 static CORE_ADDR
1712 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1713 struct value *function,
1714 struct regcache *regcache,
1715 CORE_ADDR bp_addr,
1716 int nargs,
1717 struct value **args,
1718 CORE_ADDR sp,
1719 int struct_return,
1720 CORE_ADDR struct_addr)
1721 {
1722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1723 int i;
1724 int size, onstack_size;
1725 gdb_byte *buf = (gdb_byte *) alloca (16);
1726 CORE_ADDR ra, ps;
1727 struct argument_info
1728 {
1729 const bfd_byte *contents;
1730 int length;
1731 int onstack; /* onstack == 0 => in reg */
1732 int align; /* alignment */
1733 union
1734 {
1735 int offset; /* stack offset if on stack. */
1736 int regno; /* regno if in register. */
1737 } u;
1738 };
1739
1740 struct argument_info *arg_info =
1741 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1742
1743 CORE_ADDR osp = sp;
1744
1745 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1746
1747 if (xtensa_debug_level > 3)
1748 {
1749 int i;
1750 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1751 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1752 "struct_addr=0x%x\n",
1753 (int) sp, (int) struct_return, (int) struct_addr);
1754
1755 for (i = 0; i < nargs; i++)
1756 {
1757 struct value *arg = args[i];
1758 struct type *arg_type = check_typedef (value_type (arg));
1759 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1760 host_address_to_string (arg),
1761 TYPE_LENGTH (arg_type));
1762 switch (TYPE_CODE (arg_type))
1763 {
1764 case TYPE_CODE_INT:
1765 fprintf_unfiltered (gdb_stdlog, "int");
1766 break;
1767 case TYPE_CODE_STRUCT:
1768 fprintf_unfiltered (gdb_stdlog, "struct");
1769 break;
1770 default:
1771 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1772 break;
1773 }
1774 fprintf_unfiltered (gdb_stdlog, " %s\n",
1775 host_address_to_string (value_contents (arg)));
1776 }
1777 }
1778
1779 /* First loop: collect information.
1780 Cast into type_long. (This shouldn't happen often for C because
1781 GDB already does this earlier.) It's possible that GDB could
1782 do it all the time but it's harmless to leave this code here. */
1783
1784 size = 0;
1785 onstack_size = 0;
1786 i = 0;
1787
1788 if (struct_return)
1789 size = REGISTER_SIZE;
1790
1791 for (i = 0; i < nargs; i++)
1792 {
1793 struct argument_info *info = &arg_info[i];
1794 struct value *arg = args[i];
1795 struct type *arg_type = check_typedef (value_type (arg));
1796
1797 switch (TYPE_CODE (arg_type))
1798 {
1799 case TYPE_CODE_INT:
1800 case TYPE_CODE_BOOL:
1801 case TYPE_CODE_CHAR:
1802 case TYPE_CODE_RANGE:
1803 case TYPE_CODE_ENUM:
1804
1805 /* Cast argument to long if necessary as the mask does it too. */
1806 if (TYPE_LENGTH (arg_type)
1807 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1808 {
1809 arg_type = builtin_type (gdbarch)->builtin_long;
1810 arg = value_cast (arg_type, arg);
1811 }
1812 /* Aligment is equal to the type length for the basic types. */
1813 info->align = TYPE_LENGTH (arg_type);
1814 break;
1815
1816 case TYPE_CODE_FLT:
1817
1818 /* Align doubles correctly. */
1819 if (TYPE_LENGTH (arg_type)
1820 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1821 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1822 else
1823 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1824 break;
1825
1826 case TYPE_CODE_STRUCT:
1827 default:
1828 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1829 break;
1830 }
1831 info->length = TYPE_LENGTH (arg_type);
1832 info->contents = value_contents (arg);
1833
1834 /* Align size and onstack_size. */
1835 size = (size + info->align - 1) & ~(info->align - 1);
1836 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1837
1838 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1839 {
1840 info->onstack = 1;
1841 info->u.offset = onstack_size;
1842 onstack_size += info->length;
1843 }
1844 else
1845 {
1846 info->onstack = 0;
1847 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1848 }
1849 size += info->length;
1850 }
1851
1852 /* Adjust the stack pointer and align it. */
1853 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1854
1855 /* Simulate MOVSP, if Windowed ABI. */
1856 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1857 && (sp != osp))
1858 {
1859 read_memory (osp - 16, buf, 16);
1860 write_memory (sp - 16, buf, 16);
1861 }
1862
1863 /* Second Loop: Load arguments. */
1864
1865 if (struct_return)
1866 {
1867 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1868 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1869 }
1870
1871 for (i = 0; i < nargs; i++)
1872 {
1873 struct argument_info *info = &arg_info[i];
1874
1875 if (info->onstack)
1876 {
1877 int n = info->length;
1878 CORE_ADDR offset = sp + info->u.offset;
1879
1880 /* Odd-sized structs are aligned to the lower side of a memory
1881 word in big-endian mode and require a shift. This only
1882 applies for structures smaller than one word. */
1883
1884 if (n < REGISTER_SIZE
1885 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1886 offset += (REGISTER_SIZE - n);
1887
1888 write_memory (offset, info->contents, info->length);
1889
1890 }
1891 else
1892 {
1893 int n = info->length;
1894 const bfd_byte *cp = info->contents;
1895 int r = info->u.regno;
1896
1897 /* Odd-sized structs are aligned to the lower side of registers in
1898 big-endian mode and require a shift. The odd-sized leftover will
1899 be at the end. Note that this is only true for structures smaller
1900 than REGISTER_SIZE; for larger odd-sized structures the excess
1901 will be left-aligned in the register on both endiannesses. */
1902
1903 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1904 {
1905 ULONGEST v;
1906 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1907 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1908
1909 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1910 regcache_cooked_write (regcache, r, buf);
1911
1912 cp += REGISTER_SIZE;
1913 n -= REGISTER_SIZE;
1914 r++;
1915 }
1916 else
1917 while (n > 0)
1918 {
1919 regcache_cooked_write (regcache, r, cp);
1920
1921 cp += REGISTER_SIZE;
1922 n -= REGISTER_SIZE;
1923 r++;
1924 }
1925 }
1926 }
1927
1928 /* Set the return address of dummy frame to the dummy address.
1929 The return address for the current function (in A0) is
1930 saved in the dummy frame, so we can savely overwrite A0 here. */
1931
1932 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1933 {
1934 ULONGEST val;
1935
1936 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1937 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1938 ps = (unsigned long) val & ~0x00030000;
1939 regcache_cooked_write_unsigned
1940 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1941 regcache_cooked_write_unsigned (regcache,
1942 gdbarch_ps_regnum (gdbarch),
1943 ps | 0x00010000);
1944
1945 /* All the registers have been saved. After executing
1946 dummy call, they all will be restored. So it's safe
1947 to modify WINDOWSTART register to make it look like there
1948 is only one register window corresponding to WINDOWEBASE. */
1949
1950 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1951 regcache_cooked_write_unsigned
1952 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1953 1 << extract_unsigned_integer (buf, 4, byte_order));
1954 }
1955 else
1956 {
1957 /* Simulate CALL0: write RA into A0 register. */
1958 regcache_cooked_write_unsigned
1959 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1960 }
1961
1962 /* Set new stack pointer and return it. */
1963 regcache_cooked_write_unsigned (regcache,
1964 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1965 /* Make dummy frame ID unique by adding a constant. */
1966 return sp + SP_ALIGNMENT;
1967 }
1968
1969
1970 /* Return a breakpoint for the current location of PC. We always use
1971 the density version if we have density instructions (regardless of the
1972 current instruction at PC), and use regular instructions otherwise. */
1973
1974 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1975 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1976 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1977 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1978
1979 static const unsigned char *
1980 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1981 int *lenptr)
1982 {
1983 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1984 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1985 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1986 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1987
1988 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1989
1990 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1991 {
1992 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1993 {
1994 *lenptr = sizeof (density_big_breakpoint);
1995 return density_big_breakpoint;
1996 }
1997 else
1998 {
1999 *lenptr = sizeof (density_little_breakpoint);
2000 return density_little_breakpoint;
2001 }
2002 }
2003 else
2004 {
2005 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2006 {
2007 *lenptr = sizeof (big_breakpoint);
2008 return big_breakpoint;
2009 }
2010 else
2011 {
2012 *lenptr = sizeof (little_breakpoint);
2013 return little_breakpoint;
2014 }
2015 }
2016 }
2017
2018 /* Call0 ABI support routines. */
2019
2020 /* Return true, if PC points to "ret" or "ret.n". */
2021
2022 static int
2023 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2024 {
2025 #define RETURN_RET goto done
2026 xtensa_isa isa;
2027 xtensa_insnbuf ins, slot;
2028 gdb_byte ibuf[XTENSA_ISA_BSZ];
2029 CORE_ADDR ia, bt, ba;
2030 xtensa_format ifmt;
2031 int ilen, islots, is;
2032 xtensa_opcode opc;
2033 const char *opcname;
2034 int found_ret = 0;
2035
2036 isa = xtensa_default_isa;
2037 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2038 ins = xtensa_insnbuf_alloc (isa);
2039 slot = xtensa_insnbuf_alloc (isa);
2040 ba = 0;
2041
2042 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2043 {
2044 if (ia + xtensa_isa_maxlength (isa) > bt)
2045 {
2046 ba = ia;
2047 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2048 ? ba + XTENSA_ISA_BSZ : finish_pc;
2049 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2050 RETURN_RET;
2051 }
2052
2053 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2054 ifmt = xtensa_format_decode (isa, ins);
2055 if (ifmt == XTENSA_UNDEFINED)
2056 RETURN_RET;
2057 ilen = xtensa_format_length (isa, ifmt);
2058 if (ilen == XTENSA_UNDEFINED)
2059 RETURN_RET;
2060 islots = xtensa_format_num_slots (isa, ifmt);
2061 if (islots == XTENSA_UNDEFINED)
2062 RETURN_RET;
2063
2064 for (is = 0; is < islots; ++is)
2065 {
2066 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2067 RETURN_RET;
2068
2069 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2070 if (opc == XTENSA_UNDEFINED)
2071 RETURN_RET;
2072
2073 opcname = xtensa_opcode_name (isa, opc);
2074
2075 if ((strcasecmp (opcname, "ret.n") == 0)
2076 || (strcasecmp (opcname, "ret") == 0))
2077 {
2078 found_ret = 1;
2079 RETURN_RET;
2080 }
2081 }
2082 }
2083 done:
2084 xtensa_insnbuf_free(isa, slot);
2085 xtensa_insnbuf_free(isa, ins);
2086 return found_ret;
2087 }
2088
2089 /* Call0 opcode class. Opcodes are preclassified according to what they
2090 mean for Call0 prologue analysis, and their number of significant operands.
2091 The purpose of this is to simplify prologue analysis by separating
2092 instruction decoding (libisa) from the semantics of prologue analysis. */
2093
2094 typedef enum
2095 {
2096 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2097 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2098 c0opc_flow, /* Flow control insn. */
2099 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2100 c0opc_break, /* Debugger software breakpoints. */
2101 c0opc_add, /* Adding two registers. */
2102 c0opc_addi, /* Adding a register and an immediate. */
2103 c0opc_and, /* Bitwise "and"-ing two registers. */
2104 c0opc_sub, /* Subtracting a register from a register. */
2105 c0opc_mov, /* Moving a register to a register. */
2106 c0opc_movi, /* Moving an immediate to a register. */
2107 c0opc_l32r, /* Loading a literal. */
2108 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2109 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2110 c0opc_l32e, /* L32E instruction. */
2111 c0opc_s32e, /* S32E instruction. */
2112 c0opc_rfwo, /* RFWO instruction. */
2113 c0opc_rfwu, /* RFWU instruction. */
2114 c0opc_NrOf /* Number of opcode classifications. */
2115 } xtensa_insn_kind;
2116
2117 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2118
2119 static int
2120 rwx_special_register (const char *opcname)
2121 {
2122 char ch = *opcname++;
2123
2124 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2125 return 0;
2126 if (*opcname++ != 's')
2127 return 0;
2128 if (*opcname++ != 'r')
2129 return 0;
2130 if (*opcname++ != '.')
2131 return 0;
2132
2133 return 1;
2134 }
2135
2136 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2137
2138 static xtensa_insn_kind
2139 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2140 {
2141 const char *opcname;
2142 xtensa_insn_kind opclass = c0opc_uninteresting;
2143
2144 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2145
2146 /* Get opcode name and handle special classifications. */
2147
2148 opcname = xtensa_opcode_name (isa, opc);
2149
2150 if (opcname == NULL
2151 || strcasecmp (opcname, "ill") == 0
2152 || strcasecmp (opcname, "ill.n") == 0)
2153 opclass = c0opc_illegal;
2154 else if (strcasecmp (opcname, "break") == 0
2155 || strcasecmp (opcname, "break.n") == 0)
2156 opclass = c0opc_break;
2157 else if (strcasecmp (opcname, "entry") == 0)
2158 opclass = c0opc_entry;
2159 else if (strcasecmp (opcname, "rfwo") == 0)
2160 opclass = c0opc_rfwo;
2161 else if (strcasecmp (opcname, "rfwu") == 0)
2162 opclass = c0opc_rfwu;
2163 else if (xtensa_opcode_is_branch (isa, opc) > 0
2164 || xtensa_opcode_is_jump (isa, opc) > 0
2165 || xtensa_opcode_is_loop (isa, opc) > 0
2166 || xtensa_opcode_is_call (isa, opc) > 0
2167 || strcasecmp (opcname, "simcall") == 0
2168 || strcasecmp (opcname, "syscall") == 0)
2169 opclass = c0opc_flow;
2170
2171 /* Also, classify specific opcodes that need to be tracked. */
2172 else if (strcasecmp (opcname, "add") == 0
2173 || strcasecmp (opcname, "add.n") == 0)
2174 opclass = c0opc_add;
2175 else if (strcasecmp (opcname, "and") == 0)
2176 opclass = c0opc_and;
2177 else if (strcasecmp (opcname, "addi") == 0
2178 || strcasecmp (opcname, "addi.n") == 0
2179 || strcasecmp (opcname, "addmi") == 0)
2180 opclass = c0opc_addi;
2181 else if (strcasecmp (opcname, "sub") == 0)
2182 opclass = c0opc_sub;
2183 else if (strcasecmp (opcname, "mov.n") == 0
2184 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2185 opclass = c0opc_mov;
2186 else if (strcasecmp (opcname, "movi") == 0
2187 || strcasecmp (opcname, "movi.n") == 0)
2188 opclass = c0opc_movi;
2189 else if (strcasecmp (opcname, "l32r") == 0)
2190 opclass = c0opc_l32r;
2191 else if (strcasecmp (opcname, "s32i") == 0
2192 || strcasecmp (opcname, "s32i.n") == 0)
2193 opclass = c0opc_s32i;
2194 else if (strcasecmp (opcname, "l32e") == 0)
2195 opclass = c0opc_l32e;
2196 else if (strcasecmp (opcname, "s32e") == 0)
2197 opclass = c0opc_s32e;
2198 else if (rwx_special_register (opcname))
2199 opclass = c0opc_rwxsr;
2200
2201 return opclass;
2202 }
2203
2204 /* Tracks register movement/mutation for a given operation, which may
2205 be within a bundle. Updates the destination register tracking info
2206 accordingly. The pc is needed only for pc-relative load instructions
2207 (eg. l32r). The SP register number is needed to identify stores to
2208 the stack frame. Returns 0, if analysis was succesfull, non-zero
2209 otherwise. */
2210
2211 static int
2212 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2213 xtensa_insn_kind opclass, int nods, unsigned odv[],
2214 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2215 {
2216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2217 unsigned litbase, litaddr, litval;
2218
2219 switch (opclass)
2220 {
2221 case c0opc_addi:
2222 /* 3 operands: dst, src, imm. */
2223 gdb_assert (nods == 3);
2224 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2225 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2226 break;
2227 case c0opc_add:
2228 /* 3 operands: dst, src1, src2. */
2229 gdb_assert (nods == 3);
2230 if (src[odv[1]].fr_reg == C0_CONST)
2231 {
2232 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2233 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2234 }
2235 else if (src[odv[2]].fr_reg == C0_CONST)
2236 {
2237 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2238 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2239 }
2240 else dst[odv[0]].fr_reg = C0_INEXP;
2241 break;
2242 case c0opc_and:
2243 /* 3 operands: dst, src1, src2. */
2244 gdb_assert (nods == 3);
2245 if (cache->c0.c0_fpalign == 0)
2246 {
2247 /* Handle dynamic stack alignment. */
2248 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2249 {
2250 if (src[odv[2]].fr_reg == C0_CONST)
2251 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2252 break;
2253 }
2254 else if ((src[odv[0]].fr_reg == spreg)
2255 && (src[odv[2]].fr_reg == spreg))
2256 {
2257 if (src[odv[1]].fr_reg == C0_CONST)
2258 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2259 break;
2260 }
2261 /* else fall through. */
2262 }
2263 if (src[odv[1]].fr_reg == C0_CONST)
2264 {
2265 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2266 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2267 }
2268 else if (src[odv[2]].fr_reg == C0_CONST)
2269 {
2270 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2271 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2272 }
2273 else dst[odv[0]].fr_reg = C0_INEXP;
2274 break;
2275 case c0opc_sub:
2276 /* 3 operands: dst, src1, src2. */
2277 gdb_assert (nods == 3);
2278 if (src[odv[2]].fr_reg == C0_CONST)
2279 {
2280 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2281 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2282 }
2283 else dst[odv[0]].fr_reg = C0_INEXP;
2284 break;
2285 case c0opc_mov:
2286 /* 2 operands: dst, src [, src]. */
2287 gdb_assert (nods == 2);
2288 /* First, check if it's a special case of saving unaligned SP
2289 to a spare register in case of dynamic stack adjustment.
2290 But, only do it one time. The second time could be initializing
2291 frame pointer. We don't want to overwrite the first one. */
2292 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2293 cache->c0.c0_old_sp = odv[0];
2294
2295 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2296 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2297 break;
2298 case c0opc_movi:
2299 /* 2 operands: dst, imm. */
2300 gdb_assert (nods == 2);
2301 dst[odv[0]].fr_reg = C0_CONST;
2302 dst[odv[0]].fr_ofs = odv[1];
2303 break;
2304 case c0opc_l32r:
2305 /* 2 operands: dst, literal offset. */
2306 gdb_assert (nods == 2);
2307 /* litbase = xtensa_get_litbase (pc); can be also used. */
2308 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2309 ? 0 : xtensa_read_register
2310 (gdbarch_tdep (gdbarch)->litbase_regnum);
2311 litaddr = litbase & 1
2312 ? (litbase & ~1) + (signed)odv[1]
2313 : (pc + 3 + (signed)odv[1]) & ~3;
2314 litval = read_memory_integer (litaddr, 4, byte_order);
2315 dst[odv[0]].fr_reg = C0_CONST;
2316 dst[odv[0]].fr_ofs = litval;
2317 break;
2318 case c0opc_s32i:
2319 /* 3 operands: value, base, offset. */
2320 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2321 /* First, check if it's a spill for saved unaligned SP,
2322 when dynamic stack adjustment was applied to this frame. */
2323 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2324 && (odv[1] == spreg) /* SP usage indicates spill. */
2325 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2326 cache->c0.c0_sp_ofs = odv[2];
2327
2328 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2329 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2330 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2331 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2332 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2333 {
2334 /* ISA encoding guarantees alignment. But, check it anyway. */
2335 gdb_assert ((odv[2] & 3) == 0);
2336 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2337 }
2338 break;
2339 /* If we end up inside Window Overflow / Underflow interrupt handler
2340 report an error because these handlers should have been handled
2341 already in a different way. */
2342 case c0opc_l32e:
2343 case c0opc_s32e:
2344 case c0opc_rfwo:
2345 case c0opc_rfwu:
2346 return 1;
2347 default:
2348 return 1;
2349 }
2350 return 0;
2351 }
2352
2353 /* Analyze prologue of the function at start address to determine if it uses
2354 the Call0 ABI, and if so track register moves and linear modifications
2355 in the prologue up to the PC or just beyond the prologue, whichever is
2356 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2357 prologue. The prologue may overlap non-prologue instructions but is
2358 guaranteed to end by the first flow-control instruction (jump, branch,
2359 call or return). Since an optimized function may move information around
2360 and change the stack frame arbitrarily during the prologue, the information
2361 is guaranteed valid only at the point in the function indicated by the PC.
2362 May be used to skip the prologue or identify the ABI, w/o tracking.
2363
2364 Returns: Address of first instruction after prologue, or PC (whichever
2365 is first), or 0, if decoding failed (in libisa).
2366 Input args:
2367 start Start address of function/prologue.
2368 pc Program counter to stop at. Use 0 to continue to end of prologue.
2369 If 0, avoids infinite run-on in corrupt code memory by bounding
2370 the scan to the end of the function if that can be determined.
2371 nregs Number of general registers to track.
2372 InOut args:
2373 cache Xtensa frame cache.
2374
2375 Note that these may produce useful results even if decoding fails
2376 because they begin with default assumptions that analysis may change. */
2377
2378 static CORE_ADDR
2379 call0_analyze_prologue (struct gdbarch *gdbarch,
2380 CORE_ADDR start, CORE_ADDR pc,
2381 int nregs, xtensa_frame_cache_t *cache)
2382 {
2383 CORE_ADDR ia; /* Current insn address in prologue. */
2384 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2385 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2386 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2387 xtensa_isa isa; /* libisa ISA handle. */
2388 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2389 xtensa_format ifmt; /* libisa instruction format. */
2390 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2391 xtensa_opcode opc; /* Opcode in current slot. */
2392 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2393 int nods; /* Opcode number of operands. */
2394 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2395 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2396 int j; /* General loop counter. */
2397 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2398 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2399 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2400
2401 struct symtab_and_line prologue_sal;
2402
2403 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2404 (int)start, (int)pc);
2405
2406 /* Try to limit the scan to the end of the function if a non-zero pc
2407 arg was not supplied to avoid probing beyond the end of valid memory.
2408 If memory is full of garbage that classifies as c0opc_uninteresting.
2409 If this fails (eg. if no symbols) pc ends up 0 as it was.
2410 Intialize the Call0 frame and register tracking info.
2411 Assume it's Call0 until an 'entry' instruction is encountered.
2412 Assume we may be in the prologue until we hit a flow control instr. */
2413
2414 rtmp = NULL;
2415 body_pc = UINT_MAX;
2416 end_pc = 0;
2417
2418 /* Find out, if we have an information about the prologue from DWARF. */
2419 prologue_sal = find_pc_line (start, 0);
2420 if (prologue_sal.line != 0) /* Found debug info. */
2421 body_pc = prologue_sal.end;
2422
2423 /* If we are going to analyze the prologue in general without knowing about
2424 the current PC, make the best assumtion for the end of the prologue. */
2425 if (pc == 0)
2426 {
2427 find_pc_partial_function (start, 0, NULL, &end_pc);
2428 body_pc = min (end_pc, body_pc);
2429 }
2430 else
2431 body_pc = min (pc, body_pc);
2432
2433 cache->call0 = 1;
2434 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2435
2436 if (!xtensa_default_isa)
2437 xtensa_default_isa = xtensa_isa_init (0, 0);
2438 isa = xtensa_default_isa;
2439 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2440 ins = xtensa_insnbuf_alloc (isa);
2441 slot = xtensa_insnbuf_alloc (isa);
2442
2443 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2444 {
2445 /* (Re)fill instruction buffer from memory if necessary, but do not
2446 read memory beyond PC to be sure we stay within text section
2447 (this protection only works if a non-zero pc is supplied). */
2448
2449 if (ia + xtensa_isa_maxlength (isa) > bt)
2450 {
2451 ba = ia;
2452 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2453 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2454 error (_("Unable to read target memory ..."));
2455 }
2456
2457 /* Decode format information. */
2458
2459 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2460 ifmt = xtensa_format_decode (isa, ins);
2461 if (ifmt == XTENSA_UNDEFINED)
2462 {
2463 fail = 1;
2464 goto done;
2465 }
2466 ilen = xtensa_format_length (isa, ifmt);
2467 if (ilen == XTENSA_UNDEFINED)
2468 {
2469 fail = 1;
2470 goto done;
2471 }
2472 islots = xtensa_format_num_slots (isa, ifmt);
2473 if (islots == XTENSA_UNDEFINED)
2474 {
2475 fail = 1;
2476 goto done;
2477 }
2478
2479 /* Analyze a bundle or a single instruction, using a snapshot of
2480 the register tracking info as input for the entire bundle so that
2481 register changes do not take effect within this bundle. */
2482
2483 for (j = 0; j < nregs; ++j)
2484 rtmp[j] = cache->c0.c0_rt[j];
2485
2486 for (is = 0; is < islots; ++is)
2487 {
2488 /* Decode a slot and classify the opcode. */
2489
2490 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2491 if (fail)
2492 goto done;
2493
2494 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2495 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2496 (unsigned)ia, opc);
2497 if (opc == XTENSA_UNDEFINED)
2498 opclass = c0opc_illegal;
2499 else
2500 opclass = call0_classify_opcode (isa, opc);
2501
2502 /* Decide whether to track this opcode, ignore it, or bail out. */
2503
2504 switch (opclass)
2505 {
2506 case c0opc_illegal:
2507 case c0opc_break:
2508 fail = 1;
2509 goto done;
2510
2511 case c0opc_uninteresting:
2512 continue;
2513
2514 case c0opc_flow: /* Flow control instructions stop analysis. */
2515 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2516 goto done;
2517
2518 case c0opc_entry:
2519 cache->call0 = 0;
2520 ia += ilen; /* Skip over 'entry' insn. */
2521 goto done;
2522
2523 default:
2524 cache->call0 = 1;
2525 }
2526
2527 /* Only expected opcodes should get this far. */
2528
2529 /* Extract and decode the operands. */
2530 nods = xtensa_opcode_num_operands (isa, opc);
2531 if (nods == XTENSA_UNDEFINED)
2532 {
2533 fail = 1;
2534 goto done;
2535 }
2536
2537 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2538 {
2539 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2540 is, slot, &odv[j]);
2541 if (fail)
2542 goto done;
2543
2544 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2545 if (fail)
2546 goto done;
2547 }
2548
2549 /* Check operands to verify use of 'mov' assembler macro. */
2550 if (opclass == c0opc_mov && nods == 3)
2551 {
2552 if (odv[2] == odv[1])
2553 {
2554 nods = 2;
2555 if ((odv[0] == 1) && (odv[1] != 1))
2556 /* OR A1, An, An , where n != 1.
2557 This means we are inside epilogue already. */
2558 goto done;
2559 }
2560 else
2561 {
2562 opclass = c0opc_uninteresting;
2563 continue;
2564 }
2565 }
2566
2567 /* Track register movement and modification for this operation. */
2568 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2569 opclass, nods, odv, ia, 1, cache);
2570 if (fail)
2571 goto done;
2572 }
2573 }
2574 done:
2575 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2576 (unsigned)ia, fail ? "failed" : "succeeded");
2577 xtensa_insnbuf_free(isa, slot);
2578 xtensa_insnbuf_free(isa, ins);
2579 return fail ? XTENSA_ISA_BADPC : ia;
2580 }
2581
2582 /* Initialize frame cache for the current frame in CALL0 ABI. */
2583
2584 static void
2585 call0_frame_cache (struct frame_info *this_frame,
2586 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2587 {
2588 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2590 CORE_ADDR start_pc; /* The beginning of the function. */
2591 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2592 CORE_ADDR sp, fp, ra;
2593 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2594
2595 sp = get_frame_register_unsigned
2596 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2597 fp = sp; /* Assume FP == SP until proven otherwise. */
2598
2599 /* Find the beginning of the prologue of the function containing the PC
2600 and analyze it up to the PC or the end of the prologue. */
2601
2602 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2603 {
2604 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2605
2606 if (body_pc == XTENSA_ISA_BADPC)
2607 {
2608 warning_once ();
2609 ra = 0;
2610 goto finish_frame_analysis;
2611 }
2612 }
2613
2614 /* Get the frame information and FP (if used) at the current PC.
2615 If PC is in the prologue, the prologue analysis is more reliable
2616 than DWARF info. We don't not know for sure, if PC is in the prologue,
2617 but we do know no calls have yet taken place, so we can almost
2618 certainly rely on the prologue analysis. */
2619
2620 if (body_pc <= pc)
2621 {
2622 /* Prologue analysis was successful up to the PC.
2623 It includes the cases when PC == START_PC. */
2624 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2625 /* c0_hasfp == true means there is a frame pointer because
2626 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2627 was derived from SP. Otherwise, it would be C0_FP. */
2628 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2629 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2630 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2631 }
2632 else /* No data from the prologue analysis. */
2633 {
2634 c0_hasfp = 0;
2635 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2636 c0_frmsz = 0;
2637 start_pc = pc;
2638 }
2639
2640 if (cache->c0.c0_fpalign)
2641 {
2642 /* This frame has a special prologue with a dynamic stack adjustment
2643 to force an alignment, which is bigger than standard 16 bytes. */
2644
2645 CORE_ADDR unaligned_sp;
2646
2647 if (cache->c0.c0_old_sp == C0_INEXP)
2648 /* This can't be. Prologue code should be consistent.
2649 Unaligned stack pointer should be saved in a spare register. */
2650 {
2651 warning_once ();
2652 ra = 0;
2653 goto finish_frame_analysis;
2654 }
2655
2656 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2657 /* Saved unaligned value of SP is kept in a register. */
2658 unaligned_sp = get_frame_register_unsigned
2659 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2660 else
2661 /* Get the value from stack. */
2662 unaligned_sp = (CORE_ADDR)
2663 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2664
2665 prev_sp = unaligned_sp + c0_frmsz;
2666 }
2667 else
2668 prev_sp = fp + c0_frmsz;
2669
2670 /* Frame size from debug info or prologue tracking does not account for
2671 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2672 if (c0_hasfp)
2673 {
2674 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2675
2676 /* Update the stack frame size. */
2677 c0_frmsz += fp - sp;
2678 }
2679
2680 /* Get the return address (RA) from the stack if saved,
2681 or try to get it from a register. */
2682
2683 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2684 if (to_stk != C0_NOSTK)
2685 ra = (CORE_ADDR)
2686 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2687 4, byte_order);
2688
2689 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2690 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2691 {
2692 /* Special case for terminating backtrace at a function that wants to
2693 be seen as the outermost one. Such a function will clear it's RA (A0)
2694 register to 0 in the prologue instead of saving its original value. */
2695 ra = 0;
2696 }
2697 else
2698 {
2699 /* RA was copied to another register or (before any function call) may
2700 still be in the original RA register. This is not always reliable:
2701 even in a leaf function, register tracking stops after prologue, and
2702 even in prologue, non-prologue instructions (not tracked) may overwrite
2703 RA or any register it was copied to. If likely in prologue or before
2704 any call, use retracking info and hope for the best (compiler should
2705 have saved RA in stack if not in a leaf function). If not in prologue,
2706 too bad. */
2707
2708 int i;
2709 for (i = 0;
2710 (i < C0_NREGS)
2711 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2712 ++i);
2713 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2714 i = C0_RA;
2715 if (i < C0_NREGS)
2716 {
2717 ra = get_frame_register_unsigned
2718 (this_frame,
2719 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2720 }
2721 else ra = 0;
2722 }
2723
2724 finish_frame_analysis:
2725 cache->pc = start_pc;
2726 cache->ra = ra;
2727 /* RA == 0 marks the outermost frame. Do not go past it. */
2728 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2729 cache->c0.fp_regnum = fp_regnum;
2730 cache->c0.c0_frmsz = c0_frmsz;
2731 cache->c0.c0_hasfp = c0_hasfp;
2732 cache->c0.c0_fp = fp;
2733 }
2734
2735 static CORE_ADDR a0_saved;
2736 static CORE_ADDR a7_saved;
2737 static CORE_ADDR a11_saved;
2738 static int a0_was_saved;
2739 static int a7_was_saved;
2740 static int a11_was_saved;
2741
2742 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2743 static void
2744 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2745 {
2746 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2747 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2748 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2749 unsigned int spilled_value
2750 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2751
2752 if ((at == 0) && !a0_was_saved)
2753 {
2754 a0_saved = xtensa_read_register (atreg);
2755 a0_was_saved = 1;
2756 }
2757 else if ((at == 7) && !a7_was_saved)
2758 {
2759 a7_saved = xtensa_read_register (atreg);
2760 a7_was_saved = 1;
2761 }
2762 else if ((at == 11) && !a11_was_saved)
2763 {
2764 a11_saved = xtensa_read_register (atreg);
2765 a11_was_saved = 1;
2766 }
2767
2768 xtensa_write_register (atreg, spilled_value);
2769 }
2770
2771 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2772 static void
2773 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2774 {
2775 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2776 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2777 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2778 ULONGEST spilled_value = xtensa_read_register (atreg);
2779
2780 write_memory_unsigned_integer (addr, 4,
2781 gdbarch_byte_order (gdbarch),
2782 spilled_value);
2783 }
2784
2785 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2786
2787 typedef enum
2788 {
2789 xtWindowOverflow,
2790 xtWindowUnderflow,
2791 xtNoExceptionHandler
2792 } xtensa_exception_handler_t;
2793
2794 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2795 Return type of Xtensa Window Interrupt Handler on success. */
2796 static xtensa_exception_handler_t
2797 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2798 {
2799 xtensa_isa isa;
2800 xtensa_insnbuf ins, slot;
2801 gdb_byte ibuf[XTENSA_ISA_BSZ];
2802 CORE_ADDR ia, bt, ba;
2803 xtensa_format ifmt;
2804 int ilen, islots, is;
2805 xtensa_opcode opc;
2806 int insn_num = 0;
2807 int fail = 0;
2808 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2809
2810 uint32_t at, as, offset;
2811
2812 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2813 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2814
2815 isa = xtensa_default_isa;
2816 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2817 ins = xtensa_insnbuf_alloc (isa);
2818 slot = xtensa_insnbuf_alloc (isa);
2819 ba = 0;
2820 ia = current_pc;
2821 bt = ia;
2822
2823 a0_was_saved = 0;
2824 a7_was_saved = 0;
2825 a11_was_saved = 0;
2826
2827 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2828 {
2829 if (ia + xtensa_isa_maxlength (isa) > bt)
2830 {
2831 ba = ia;
2832 bt = (ba + XTENSA_ISA_BSZ);
2833 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2834 return xtNoExceptionHandler;
2835 }
2836 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2837 ifmt = xtensa_format_decode (isa, ins);
2838 if (ifmt == XTENSA_UNDEFINED)
2839 return xtNoExceptionHandler;
2840 ilen = xtensa_format_length (isa, ifmt);
2841 if (ilen == XTENSA_UNDEFINED)
2842 return xtNoExceptionHandler;
2843 islots = xtensa_format_num_slots (isa, ifmt);
2844 if (islots == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 for (is = 0; is < islots; ++is)
2847 {
2848 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2849 return xtNoExceptionHandler;
2850 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2851 if (opc == XTENSA_UNDEFINED)
2852 return xtNoExceptionHandler;
2853 switch (call0_classify_opcode (isa, opc))
2854 {
2855 case c0opc_illegal:
2856 case c0opc_flow:
2857 case c0opc_entry:
2858 case c0opc_break:
2859 /* We expect none of them here. */
2860 return xtNoExceptionHandler;
2861 case c0opc_l32e:
2862 func = execute_l32e;
2863 break;
2864 case c0opc_s32e:
2865 func = execute_s32e;
2866 break;
2867 case c0opc_rfwo: /* RFWO. */
2868 /* Here, we return from WindowOverflow handler and,
2869 if we stopped at the very beginning, which means
2870 A0 was saved, we have to restore it now. */
2871 if (a0_was_saved)
2872 {
2873 int arreg = arreg_number (gdbarch,
2874 gdbarch_tdep (gdbarch)->a0_base,
2875 wb);
2876 xtensa_write_register (arreg, a0_saved);
2877 }
2878 return xtWindowOverflow;
2879 case c0opc_rfwu: /* RFWU. */
2880 /* Here, we return from WindowUnderflow handler.
2881 Let's see if either A7 or A11 has to be restored. */
2882 if (WindowUnderflow12)
2883 {
2884 if (a11_was_saved)
2885 {
2886 int arreg = arreg_number (gdbarch,
2887 gdbarch_tdep (gdbarch)->a0_base + 11,
2888 wb);
2889 xtensa_write_register (arreg, a11_saved);
2890 }
2891 }
2892 else if (a7_was_saved)
2893 {
2894 int arreg = arreg_number (gdbarch,
2895 gdbarch_tdep (gdbarch)->a0_base + 7,
2896 wb);
2897 xtensa_write_register (arreg, a7_saved);
2898 }
2899 return xtWindowUnderflow;
2900 default: /* Simply skip this insns. */
2901 continue;
2902 }
2903
2904 /* Decode arguments for L32E / S32E and simulate their execution. */
2905 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2906 return xtNoExceptionHandler;
2907 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2908 return xtNoExceptionHandler;
2909 if (xtensa_operand_decode (isa, opc, 0, &at))
2910 return xtNoExceptionHandler;
2911 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2912 return xtNoExceptionHandler;
2913 if (xtensa_operand_decode (isa, opc, 1, &as))
2914 return xtNoExceptionHandler;
2915 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2916 return xtNoExceptionHandler;
2917 if (xtensa_operand_decode (isa, opc, 2, &offset))
2918 return xtNoExceptionHandler;
2919
2920 (*func) (gdbarch, at, as, offset, wb);
2921 }
2922
2923 ia += ilen;
2924 }
2925 return xtNoExceptionHandler;
2926 }
2927
2928 /* Handle Window Overflow / Underflow exception frames. */
2929
2930 static void
2931 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2932 xtensa_frame_cache_t *cache,
2933 CORE_ADDR pc)
2934 {
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 CORE_ADDR ps, wb, ws, ra;
2937 int epc1_regnum, i, regnum;
2938 xtensa_exception_handler_t eh_type;
2939
2940 /* Read PS, WB, and WS from the hardware. Note that PS register
2941 must be present, if Windowed ABI is supported. */
2942 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2943 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2944 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2945
2946 /* Execute all the remaining instructions from Window Interrupt Handler
2947 by simulating them on the remote protocol level. On return, set the
2948 type of Xtensa Window Interrupt Handler, or report an error. */
2949 eh_type = execute_code (gdbarch, pc, wb);
2950 if (eh_type == xtNoExceptionHandler)
2951 error (_("\
2952 Unable to decode Xtensa Window Interrupt Handler's code."));
2953
2954 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2955 cache->call0 = 0; /* It's Windowed ABI. */
2956
2957 /* All registers for the cached frame will be alive. */
2958 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2959 cache->wd.aregs[i] = -1;
2960
2961 if (eh_type == xtWindowOverflow)
2962 cache->wd.ws = ws ^ (1 << wb);
2963 else /* eh_type == xtWindowUnderflow. */
2964 cache->wd.ws = ws | (1 << wb);
2965
2966 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2967 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2968 cache->wd.wb);
2969 ra = xtensa_read_register (regnum);
2970 cache->wd.callsize = WINSIZE (ra);
2971 cache->prev_sp = xtensa_read_register (regnum + 1);
2972 /* Set regnum to a frame pointer of the frame being cached. */
2973 regnum = xtensa_scan_prologue (gdbarch, pc);
2974 regnum = arreg_number (gdbarch,
2975 gdbarch_tdep (gdbarch)->a0_base + regnum,
2976 cache->wd.wb);
2977 cache->base = get_frame_register_unsigned (this_frame, regnum);
2978
2979 /* Read PC of interrupted function from EPC1 register. */
2980 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2981 if (epc1_regnum < 0)
2982 error(_("Unable to read Xtensa register EPC1"));
2983 cache->ra = xtensa_read_register (epc1_regnum);
2984 cache->pc = get_frame_func (this_frame);
2985 }
2986
2987
2988 /* Skip function prologue.
2989
2990 Return the pc of the first instruction after prologue. GDB calls this to
2991 find the address of the first line of the function or (if there is no line
2992 number information) to skip the prologue for planting breakpoints on
2993 function entries. Use debug info (if present) or prologue analysis to skip
2994 the prologue to achieve reliable debugging behavior. For windowed ABI,
2995 only the 'entry' instruction is skipped. It is not strictly necessary to
2996 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2997 backtrace at any point in the prologue, however certain potential hazards
2998 are avoided and a more "normal" debugging experience is ensured by
2999 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
3000 For example, if we don't skip the prologue:
3001 - Some args may not yet have been saved to the stack where the debug
3002 info expects to find them (true anyway when only 'entry' is skipped);
3003 - Software breakpoints ('break' instrs) may not have been unplanted
3004 when the prologue analysis is done on initializing the frame cache,
3005 and breaks in the prologue will throw off the analysis.
3006
3007 If we have debug info ( line-number info, in particular ) we simply skip
3008 the code associated with the first function line effectively skipping
3009 the prologue code. It works even in cases like
3010
3011 int main()
3012 { int local_var = 1;
3013 ....
3014 }
3015
3016 because, for this source code, both Xtensa compilers will generate two
3017 separate entries ( with the same line number ) in dwarf line-number
3018 section to make sure there is a boundary between the prologue code and
3019 the rest of the function.
3020
3021 If there is no debug info, we need to analyze the code. */
3022
3023 /* #define DONT_SKIP_PROLOGUE */
3024
3025 static CORE_ADDR
3026 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3027 {
3028 struct symtab_and_line prologue_sal;
3029 CORE_ADDR body_pc;
3030
3031 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3032
3033 #if DONT_SKIP_PROLOGUE
3034 return start_pc;
3035 #endif
3036
3037 /* Try to find first body line from debug info. */
3038
3039 prologue_sal = find_pc_line (start_pc, 0);
3040 if (prologue_sal.line != 0) /* Found debug info. */
3041 {
3042 /* In Call0, it is possible to have a function with only one instruction
3043 ('ret') resulting from a one-line optimized function that does nothing.
3044 In that case, prologue_sal.end may actually point to the start of the
3045 next function in the text section, causing a breakpoint to be set at
3046 the wrong place. Check, if the end address is within a different
3047 function, and if so return the start PC. We know we have symbol
3048 information. */
3049
3050 CORE_ADDR end_func;
3051
3052 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3053 && call0_ret (start_pc, prologue_sal.end))
3054 return start_pc;
3055
3056 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3057 if (end_func != start_pc)
3058 return start_pc;
3059
3060 return prologue_sal.end;
3061 }
3062
3063 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3064 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3065 xtensa_alloc_frame_cache (0));
3066 return body_pc != 0 ? body_pc : start_pc;
3067 }
3068
3069 /* Verify the current configuration. */
3070 static void
3071 xtensa_verify_config (struct gdbarch *gdbarch)
3072 {
3073 struct ui_file *log;
3074 struct cleanup *cleanups;
3075 struct gdbarch_tdep *tdep;
3076 long length;
3077 char *buf;
3078
3079 tdep = gdbarch_tdep (gdbarch);
3080 log = mem_fileopen ();
3081 cleanups = make_cleanup_ui_file_delete (log);
3082
3083 /* Verify that we got a reasonable number of AREGS. */
3084 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3085 fprintf_unfiltered (log, _("\
3086 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3087 tdep->num_aregs);
3088
3089 /* Verify that certain registers exist. */
3090
3091 if (tdep->pc_regnum == -1)
3092 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3093 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3094 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3095
3096 if (tdep->isa_use_windowed_registers)
3097 {
3098 if (tdep->wb_regnum == -1)
3099 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3100 if (tdep->ws_regnum == -1)
3101 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3102 if (tdep->ar_base == -1)
3103 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3104 }
3105
3106 if (tdep->a0_base == -1)
3107 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3108
3109 buf = ui_file_xstrdup (log, &length);
3110 make_cleanup (xfree, buf);
3111 if (length > 0)
3112 internal_error (__FILE__, __LINE__,
3113 _("the following are invalid: %s"), buf);
3114 do_cleanups (cleanups);
3115 }
3116
3117
3118 /* Derive specific register numbers from the array of registers. */
3119
3120 static void
3121 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3122 {
3123 xtensa_register_t* rmap;
3124 int n, max_size = 4;
3125
3126 tdep->num_regs = 0;
3127 tdep->num_nopriv_regs = 0;
3128
3129 /* Special registers 0..255 (core). */
3130 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3131
3132 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3133 {
3134 if (rmap->target_number == 0x0020)
3135 tdep->pc_regnum = n;
3136 else if (rmap->target_number == 0x0100)
3137 tdep->ar_base = n;
3138 else if (rmap->target_number == 0x0000)
3139 tdep->a0_base = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3141 tdep->wb_regnum = n;
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3143 tdep->ws_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3145 tdep->debugcause_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3147 tdep->exccause_regnum = n;
3148 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3149 tdep->excvaddr_regnum = n;
3150 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3151 tdep->lbeg_regnum = n;
3152 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3153 tdep->lend_regnum = n;
3154 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3155 tdep->lcount_regnum = n;
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3157 tdep->sar_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3159 tdep->litbase_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3161 tdep->ps_regnum = n;
3162 #if 0
3163 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3164 tdep->interrupt_regnum = n;
3165 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3166 tdep->interrupt2_regnum = n;
3167 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3168 tdep->cpenable_regnum = n;
3169 #endif
3170
3171 if (rmap->byte_size > max_size)
3172 max_size = rmap->byte_size;
3173 if (rmap->mask != 0 && tdep->num_regs == 0)
3174 tdep->num_regs = n;
3175 /* Find out out how to deal with priveleged registers.
3176
3177 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3178 && tdep->num_nopriv_regs == 0)
3179 tdep->num_nopriv_regs = n;
3180 */
3181 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3182 && tdep->num_regs == 0)
3183 tdep->num_regs = n;
3184 }
3185
3186 /* Number of pseudo registers. */
3187 tdep->num_pseudo_regs = n - tdep->num_regs;
3188
3189 /* Empirically determined maximum sizes. */
3190 tdep->max_register_raw_size = max_size;
3191 tdep->max_register_virtual_size = max_size;
3192 }
3193
3194 /* Module "constructor" function. */
3195
3196 extern struct gdbarch_tdep xtensa_tdep;
3197
3198 static struct gdbarch *
3199 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3200 {
3201 struct gdbarch_tdep *tdep;
3202 struct gdbarch *gdbarch;
3203 struct xtensa_abi_handler *abi_handler;
3204
3205 DEBUGTRACE ("gdbarch_init()\n");
3206
3207 /* We have to set the byte order before we call gdbarch_alloc. */
3208 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3209
3210 tdep = &xtensa_tdep;
3211 gdbarch = gdbarch_alloc (&info, tdep);
3212 xtensa_derive_tdep (tdep);
3213
3214 /* Verify our configuration. */
3215 xtensa_verify_config (gdbarch);
3216 xtensa_session_once_reported = 0;
3217
3218 /* Pseudo-Register read/write. */
3219 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3220 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3221
3222 /* Set target information. */
3223 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3224 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3225 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3226 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3227 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3228
3229 /* Renumber registers for known formats (stabs and dwarf2). */
3230 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3231 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3232
3233 /* We provide our own function to get register information. */
3234 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3235 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3236
3237 /* To call functions from GDB using dummy frame. */
3238 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3239
3240 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3241
3242 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3243
3244 /* Advance PC across any prologue instructions to reach "real" code. */
3245 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3246
3247 /* Stack grows downward. */
3248 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3249
3250 /* Set breakpoints. */
3251 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3252
3253 /* After breakpoint instruction or illegal instruction, pc still
3254 points at break instruction, so don't decrement. */
3255 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3256
3257 /* We don't skip args. */
3258 set_gdbarch_frame_args_skip (gdbarch, 0);
3259
3260 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3261
3262 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3263
3264 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3265
3266 /* Frame handling. */
3267 frame_base_set_default (gdbarch, &xtensa_frame_base);
3268 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3269 dwarf2_append_unwinders (gdbarch);
3270
3271 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3272
3273 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3274
3275 xtensa_add_reggroups (gdbarch);
3276 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3277
3278 set_gdbarch_iterate_over_regset_sections
3279 (gdbarch, xtensa_iterate_over_regset_sections);
3280
3281 set_solib_svr4_fetch_link_map_offsets
3282 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3283
3284 return gdbarch;
3285 }
3286
3287 static void
3288 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3289 {
3290 error (_("xtensa_dump_tdep(): not implemented"));
3291 }
3292
3293 /* Provide a prototype to silence -Wmissing-prototypes. */
3294 extern initialize_file_ftype _initialize_xtensa_tdep;
3295
3296 void
3297 _initialize_xtensa_tdep (void)
3298 {
3299 struct cmd_list_element *c;
3300
3301 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3302 xtensa_init_reggroups ();
3303
3304 add_setshow_zuinteger_cmd ("xtensa",
3305 class_maintenance,
3306 &xtensa_debug_level,
3307 _("Set Xtensa debugging."),
3308 _("Show Xtensa debugging."), _("\
3309 When non-zero, Xtensa-specific debugging is enabled. \
3310 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3311 NULL,
3312 NULL,
3313 &setdebuglist, &showdebuglist);
3314 }
This page took 0.128263 seconds and 4 git commands to generate.