Replace regcache_raw_read with regcache->raw_read
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
54 #include <algorithm>
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 /* Big enough to hold the size of the largest register in bytes. */
123 #define XTENSA_MAX_REGISTER_SIZE 64
124
125 static int
126 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127 {
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 }
134
135 /* Convert a live A-register number to the corresponding AR-register
136 number. */
137 static int
138 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
139 {
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 int arreg;
142
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
146
147 return arreg + tdep->ar_base;
148 }
149
150 /* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152 static int
153 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
163 }
164
165 /* Read Xtensa register directly from the hardware. */
166 static unsigned long
167 xtensa_read_register (int regnum)
168 {
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173 }
174
175 /* Write Xtensa register directly to the hardware. */
176 static void
177 xtensa_write_register (int regnum, ULONGEST value)
178 {
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 }
181
182 /* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
186 has returned to the caller. On Xtensa, the register that holds the return
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193 static int
194 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
195 {
196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
197 int winsize = 4;
198 int insn;
199 gdb_byte buf[4];
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
205 insn = extract_unsigned_integer (buf, 3, byte_order);
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
215 if (byte_order == BFD_ENDIAN_LITTLE)
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
224 }
225 return winsize;
226 }
227
228
229 /* REGISTER INFORMATION */
230
231 /* Find register by name. */
232 static int
233 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
234 {
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245 }
246
247 /* Returns the name of a register. */
248 static const char *
249 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
250 {
251 /* Return the name stored in the register map. */
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
255
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258 }
259
260 /* Return the type of a register. Create a new type, if necessary. */
261
262 static struct type *
263 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
267 /* Return signed integer for ARx and Ax registers. */
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
272 return builtin_type (gdbarch)->builtin_int;
273
274 if (regnum == gdbarch_pc_regnum (gdbarch)
275 || regnum == tdep->a0_base + 1)
276 return builtin_type (gdbarch)->builtin_data_ptr;
277
278 /* Return the stored type for all other registers. */
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
281 {
282 xtensa_register_t* reg = &tdep->regmap[regnum];
283
284 /* Set ctype for this register (only the first time). */
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
291 /* We always use the memory representation,
292 even if the register width is smaller. */
293 switch (size)
294 {
295 case 1:
296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
297 break;
298
299 case 2:
300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
301 break;
302
303 case 4:
304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
305 break;
306
307 case 8:
308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
309 break;
310
311 case 16:
312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
313 break;
314
315 default:
316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
322 char *name = xstrprintf ("int%d", size * 8);
323
324 tp = XNEW (struct ctype_cache);
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
327 tp->size = size;
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, name);
330 xfree (name);
331 }
332
333 reg->ctype = tp->virtual_type;
334 }
335 }
336 return reg->ctype;
337 }
338
339 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
340 return 0;
341 }
342
343
344 /* Return the 'local' register number for stubs, dwarf2, etc.
345 The debugging information enumerates registers starting from 0 for A0
346 to n for An. So, we only have to add the base number for A0. */
347
348 static int
349 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
350 {
351 int i;
352
353 if (regnum >= 0 && regnum < 16)
354 return gdbarch_tdep (gdbarch)->a0_base + regnum;
355
356 for (i = 0;
357 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
358 i++)
359 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
360 return i;
361
362 return -1;
363 }
364
365
366 /* Write the bits of a masked register to the various registers.
367 Only the masked areas of these registers are modified; the other
368 fields are untouched. The size of masked registers is always less
369 than or equal to 32 bits. */
370
371 static void
372 xtensa_register_write_masked (struct regcache *regcache,
373 xtensa_register_t *reg, const gdb_byte *buffer)
374 {
375 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
376 const xtensa_mask_t *mask = reg->mask;
377
378 int shift = 0; /* Shift for next mask (mod 32). */
379 int start, size; /* Start bit and size of current mask. */
380
381 unsigned int *ptr = value;
382 unsigned int regval, m, mem = 0;
383
384 int bytesize = reg->byte_size;
385 int bitsize = bytesize * 8;
386 int i, r;
387
388 DEBUGTRACE ("xtensa_register_write_masked ()\n");
389
390 /* Copy the masked register to host byte-order. */
391 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
392 for (i = 0; i < bytesize; i++)
393 {
394 mem >>= 8;
395 mem |= (buffer[bytesize - i - 1] << 24);
396 if ((i & 3) == 3)
397 *ptr++ = mem;
398 }
399 else
400 for (i = 0; i < bytesize; i++)
401 {
402 mem >>= 8;
403 mem |= (buffer[i] << 24);
404 if ((i & 3) == 3)
405 *ptr++ = mem;
406 }
407
408 /* We might have to shift the final value:
409 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
410 bytesize & 3 == x -> shift (4-x) * 8. */
411
412 *ptr = mem >> (((0 - bytesize) & 3) * 8);
413 ptr = value;
414 mem = *ptr;
415
416 /* Write the bits to the masked areas of the other registers. */
417 for (i = 0; i < mask->count; i++)
418 {
419 start = mask->mask[i].bit_start;
420 size = mask->mask[i].bit_size;
421 regval = mem >> shift;
422
423 if ((shift += size) > bitsize)
424 error (_("size of all masks is larger than the register"));
425
426 if (shift >= 32)
427 {
428 mem = *(++ptr);
429 shift -= 32;
430 bitsize -= 32;
431
432 if (shift > 0)
433 regval |= mem << (size - shift);
434 }
435
436 /* Make sure we have a valid register. */
437 r = mask->mask[i].reg_num;
438 if (r >= 0 && size > 0)
439 {
440 /* Don't overwrite the unmasked areas. */
441 ULONGEST old_val;
442 regcache_cooked_read_unsigned (regcache, r, &old_val);
443 m = 0xffffffff >> (32 - size) << start;
444 regval <<= start;
445 regval = (regval & m) | (old_val & ~m);
446 regcache_cooked_write_unsigned (regcache, r, regval);
447 }
448 }
449 }
450
451
452 /* Read a tie state or mapped registers. Read the masked areas
453 of the registers and assemble them into a single value. */
454
455 static enum register_status
456 xtensa_register_read_masked (struct regcache *regcache,
457 xtensa_register_t *reg, gdb_byte *buffer)
458 {
459 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
460 const xtensa_mask_t *mask = reg->mask;
461
462 int shift = 0;
463 int start, size;
464
465 unsigned int *ptr = value;
466 unsigned int regval, mem = 0;
467
468 int bytesize = reg->byte_size;
469 int bitsize = bytesize * 8;
470 int i;
471
472 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
473 reg->name == 0 ? "" : reg->name);
474
475 /* Assemble the register from the masked areas of other registers. */
476 for (i = 0; i < mask->count; i++)
477 {
478 int r = mask->mask[i].reg_num;
479 if (r >= 0)
480 {
481 enum register_status status;
482 ULONGEST val;
483
484 status = regcache_cooked_read_unsigned (regcache, r, &val);
485 if (status != REG_VALID)
486 return status;
487 regval = (unsigned int) val;
488 }
489 else
490 regval = 0;
491
492 start = mask->mask[i].bit_start;
493 size = mask->mask[i].bit_size;
494
495 regval >>= start;
496
497 if (size < 32)
498 regval &= (0xffffffff >> (32 - size));
499
500 mem |= regval << shift;
501
502 if ((shift += size) > bitsize)
503 error (_("size of all masks is larger than the register"));
504
505 if (shift >= 32)
506 {
507 *ptr++ = mem;
508 bitsize -= 32;
509 shift -= 32;
510
511 if (shift == 0)
512 mem = 0;
513 else
514 mem = regval >> (size - shift);
515 }
516 }
517
518 if (shift > 0)
519 *ptr = mem;
520
521 /* Copy value to target byte order. */
522 ptr = value;
523 mem = *ptr;
524
525 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
526 for (i = 0; i < bytesize; i++)
527 {
528 if ((i & 3) == 0)
529 mem = *ptr++;
530 buffer[bytesize - i - 1] = mem & 0xff;
531 mem >>= 8;
532 }
533 else
534 for (i = 0; i < bytesize; i++)
535 {
536 if ((i & 3) == 0)
537 mem = *ptr++;
538 buffer[i] = mem & 0xff;
539 mem >>= 8;
540 }
541
542 return REG_VALID;
543 }
544
545
546 /* Read pseudo registers. */
547
548 static enum register_status
549 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
550 struct regcache *regcache,
551 int regnum,
552 gdb_byte *buffer)
553 {
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 ULONGEST value;
563 enum register_status status;
564
565 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
566 &value);
567 if (status != REG_VALID)
568 return status;
569 regnum = arreg_number (gdbarch, regnum, value);
570 }
571
572 /* We can always read non-pseudo registers. */
573 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
574 return regcache->raw_read (regnum, buffer);
575
576 /* We have to find out how to deal with priveleged registers.
577 Let's treat them as pseudo-registers, but we cannot read/write them. */
578
579 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
580 || regnum < gdbarch_tdep (gdbarch)->a0_base)
581 {
582 buffer[0] = (gdb_byte)0;
583 buffer[1] = (gdb_byte)0;
584 buffer[2] = (gdb_byte)0;
585 buffer[3] = (gdb_byte)0;
586 return REG_VALID;
587 }
588 /* Pseudo registers. */
589 else if (regnum >= 0
590 && regnum < gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
592 {
593 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
594 xtensa_register_type_t type = reg->type;
595 int flags = gdbarch_tdep (gdbarch)->target_flags;
596
597 /* We cannot read Unknown or Unmapped registers. */
598 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
599 {
600 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
601 {
602 warning (_("cannot read register %s"),
603 xtensa_register_name (gdbarch, regnum));
604 return REG_VALID;
605 }
606 }
607
608 /* Some targets cannot read TIE register files. */
609 else if (type == xtRegisterTypeTieRegfile)
610 {
611 /* Use 'fetch' to get register? */
612 if (flags & xtTargetFlagsUseFetchStore)
613 {
614 warning (_("cannot read register"));
615 return REG_VALID;
616 }
617
618 /* On some targets (esp. simulators), we can always read the reg. */
619 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
620 {
621 warning (_("cannot read register"));
622 return REG_VALID;
623 }
624 }
625
626 /* We can always read mapped registers. */
627 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
628 return xtensa_register_read_masked (regcache, reg, buffer);
629
630 /* Assume that we can read the register. */
631 return regcache->raw_read (regnum, buffer);
632 }
633 else
634 internal_error (__FILE__, __LINE__,
635 _("invalid register number %d"), regnum);
636 }
637
638
639 /* Write pseudo registers. */
640
641 static void
642 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
643 struct regcache *regcache,
644 int regnum,
645 const gdb_byte *buffer)
646 {
647 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
648 regnum, xtensa_register_name (gdbarch, regnum));
649
650 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
651 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
652 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
653 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
654 {
655 ULONGEST value;
656 regcache_raw_read_unsigned (regcache,
657 gdbarch_tdep (gdbarch)->wb_regnum, &value);
658 regnum = arreg_number (gdbarch, regnum, value);
659 }
660
661 /* We can always write 'core' registers.
662 Note: We might have converted Ax->ARy. */
663 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
664 regcache_raw_write (regcache, regnum, buffer);
665
666 /* We have to find out how to deal with priveleged registers.
667 Let's treat them as pseudo-registers, but we cannot read/write them. */
668
669 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
670 {
671 return;
672 }
673 /* Pseudo registers. */
674 else if (regnum >= 0
675 && regnum < gdbarch_num_regs (gdbarch)
676 + gdbarch_num_pseudo_regs (gdbarch))
677 {
678 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
679 xtensa_register_type_t type = reg->type;
680 int flags = gdbarch_tdep (gdbarch)->target_flags;
681
682 /* On most targets, we cannot write registers
683 of type "Unknown" or "Unmapped". */
684 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
685 {
686 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
687 {
688 warning (_("cannot write register %s"),
689 xtensa_register_name (gdbarch, regnum));
690 return;
691 }
692 }
693
694 /* Some targets cannot read TIE register files. */
695 else if (type == xtRegisterTypeTieRegfile)
696 {
697 /* Use 'store' to get register? */
698 if (flags & xtTargetFlagsUseFetchStore)
699 {
700 warning (_("cannot write register"));
701 return;
702 }
703
704 /* On some targets (esp. simulators), we can always write
705 the register. */
706 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
707 {
708 warning (_("cannot write register"));
709 return;
710 }
711 }
712
713 /* We can always write mapped registers. */
714 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
715 {
716 xtensa_register_write_masked (regcache, reg, buffer);
717 return;
718 }
719
720 /* Assume that we can write the register. */
721 regcache_raw_write (regcache, regnum, buffer);
722 }
723 else
724 internal_error (__FILE__, __LINE__,
725 _("invalid register number %d"), regnum);
726 }
727
728 static struct reggroup *xtensa_ar_reggroup;
729 static struct reggroup *xtensa_user_reggroup;
730 static struct reggroup *xtensa_vectra_reggroup;
731 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
732
733 static void
734 xtensa_init_reggroups (void)
735 {
736 int i;
737
738 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
739 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
740 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
741
742 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
743 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
744 }
745
746 static void
747 xtensa_add_reggroups (struct gdbarch *gdbarch)
748 {
749 int i;
750
751 /* Predefined groups. */
752 reggroup_add (gdbarch, all_reggroup);
753 reggroup_add (gdbarch, save_reggroup);
754 reggroup_add (gdbarch, restore_reggroup);
755 reggroup_add (gdbarch, system_reggroup);
756 reggroup_add (gdbarch, vector_reggroup);
757 reggroup_add (gdbarch, general_reggroup);
758 reggroup_add (gdbarch, float_reggroup);
759
760 /* Xtensa-specific groups. */
761 reggroup_add (gdbarch, xtensa_ar_reggroup);
762 reggroup_add (gdbarch, xtensa_user_reggroup);
763 reggroup_add (gdbarch, xtensa_vectra_reggroup);
764
765 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
766 reggroup_add (gdbarch, xtensa_cp[i]);
767 }
768
769 static int
770 xtensa_coprocessor_register_group (struct reggroup *group)
771 {
772 int i;
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 if (group == xtensa_cp[i])
776 return i;
777
778 return -1;
779 }
780
781 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
782 | XTENSA_REGISTER_FLAGS_WRITABLE \
783 | XTENSA_REGISTER_FLAGS_VOLATILE)
784
785 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
786 | XTENSA_REGISTER_FLAGS_WRITABLE)
787
788 static int
789 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
790 int regnum,
791 struct reggroup *group)
792 {
793 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
794 xtensa_register_type_t type = reg->type;
795 xtensa_register_group_t rg = reg->group;
796 int cp_number;
797
798 if (group == save_reggroup)
799 /* Every single register should be included into the list of registers
800 to be watched for changes while using -data-list-changed-registers. */
801 return 1;
802
803 /* First, skip registers that are not visible to this target
804 (unknown and unmapped registers when not using ISS). */
805
806 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
807 return 0;
808 if (group == all_reggroup)
809 return 1;
810 if (group == xtensa_ar_reggroup)
811 return rg & xtRegisterGroupAddrReg;
812 if (group == xtensa_user_reggroup)
813 return rg & xtRegisterGroupUser;
814 if (group == float_reggroup)
815 return rg & xtRegisterGroupFloat;
816 if (group == general_reggroup)
817 return rg & xtRegisterGroupGeneral;
818 if (group == system_reggroup)
819 return rg & xtRegisterGroupState;
820 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
821 return rg & xtRegisterGroupVectra;
822 if (group == restore_reggroup)
823 return (regnum < gdbarch_num_regs (gdbarch)
824 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
825 cp_number = xtensa_coprocessor_register_group (group);
826 if (cp_number >= 0)
827 return rg & (xtRegisterGroupCP0 << cp_number);
828 else
829 return 1;
830 }
831
832
833 /* Supply register REGNUM from the buffer specified by GREGS and LEN
834 in the general-purpose register set REGSET to register cache
835 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
836
837 static void
838 xtensa_supply_gregset (const struct regset *regset,
839 struct regcache *rc,
840 int regnum,
841 const void *gregs,
842 size_t len)
843 {
844 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
845 struct gdbarch *gdbarch = rc->arch ();
846 int i;
847
848 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
849
850 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
851 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
852 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
853 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
854 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
855 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
856 (char *) &regs->windowbase);
857 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
858 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
859 (char *) &regs->windowstart);
860 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
861 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
862 (char *) &regs->lbeg);
863 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
865 (char *) &regs->lend);
866 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
868 (char *) &regs->lcount);
869 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
871 (char *) &regs->sar);
872 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
873 && regnum < gdbarch_tdep (gdbarch)->ar_base
874 + gdbarch_tdep (gdbarch)->num_aregs)
875 regcache_raw_supply (rc, regnum,
876 (char *) &regs->ar[regnum - gdbarch_tdep
877 (gdbarch)->ar_base]);
878 else if (regnum == -1)
879 {
880 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
881 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
882 (char *) &regs->ar[i]);
883 }
884 }
885
886
887 /* Xtensa register set. */
888
889 static struct regset
890 xtensa_gregset =
891 {
892 NULL,
893 xtensa_supply_gregset
894 };
895
896
897 /* Iterate over supported core file register note sections. */
898
899 static void
900 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
901 iterate_over_regset_sections_cb *cb,
902 void *cb_data,
903 const struct regcache *regcache)
904 {
905 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
906
907 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
908 NULL, cb_data);
909 }
910
911
912 /* Handling frames. */
913
914 /* Number of registers to save in case of Windowed ABI. */
915 #define XTENSA_NUM_SAVED_AREGS 12
916
917 /* Frame cache part for Windowed ABI. */
918 typedef struct xtensa_windowed_frame_cache
919 {
920 int wb; /* WINDOWBASE of the previous frame. */
921 int callsize; /* Call size of this frame. */
922 int ws; /* WINDOWSTART of the previous frame. It keeps track of
923 life windows only. If there is no bit set for the
924 window, that means it had been already spilled
925 because of window overflow. */
926
927 /* Addresses of spilled A-registers.
928 AREGS[i] == -1, if corresponding AR is alive. */
929 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
930 } xtensa_windowed_frame_cache_t;
931
932 /* Call0 ABI Definitions. */
933
934 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
935 analysis. */
936 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
937 #define C0_SP 1 /* Register used as SP. */
938 #define C0_FP 15 /* Register used as FP. */
939 #define C0_RA 0 /* Register used as return address. */
940 #define C0_ARGS 2 /* Register used as first arg/retval. */
941 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
942
943 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
944 A-register where the current content of the reg came from (in terms
945 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
946 mean that the orignal content of the register was saved to the stack.
947 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
948 know where SP will end up until the entire prologue has been analyzed. */
949
950 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
951 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
952 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
953
954 extern xtensa_isa xtensa_default_isa;
955
956 typedef struct xtensa_c0reg
957 {
958 int fr_reg; /* original register from which register content
959 is derived, or C0_CONST, or C0_INEXP. */
960 int fr_ofs; /* constant offset from reg, or immediate value. */
961 int to_stk; /* offset from original SP to register (4-byte aligned),
962 or C0_NOSTK if register has not been saved. */
963 } xtensa_c0reg_t;
964
965 /* Frame cache part for Call0 ABI. */
966 typedef struct xtensa_call0_frame_cache
967 {
968 int c0_frmsz; /* Stack frame size. */
969 int c0_hasfp; /* Current frame uses frame pointer. */
970 int fp_regnum; /* A-register used as FP. */
971 int c0_fp; /* Actual value of frame pointer. */
972 int c0_fpalign; /* Dinamic adjustment for the stack
973 pointer. It's an AND mask. Zero,
974 if alignment was not adjusted. */
975 int c0_old_sp; /* In case of dynamic adjustment, it is
976 a register holding unaligned sp.
977 C0_INEXP, when undefined. */
978 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
979 stack offset. C0_NOSTK otherwise. */
980
981 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
982 } xtensa_call0_frame_cache_t;
983
984 typedef struct xtensa_frame_cache
985 {
986 CORE_ADDR base; /* Stack pointer of this frame. */
987 CORE_ADDR pc; /* PC of this frame at the function entry point. */
988 CORE_ADDR ra; /* The raw return address of this frame. */
989 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
990 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
991 int call0; /* It's a call0 framework (else windowed). */
992 union
993 {
994 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
995 xtensa_call0_frame_cache_t c0; /* call0 == true. */
996 };
997 } xtensa_frame_cache_t;
998
999
1000 static struct xtensa_frame_cache *
1001 xtensa_alloc_frame_cache (int windowed)
1002 {
1003 xtensa_frame_cache_t *cache;
1004 int i;
1005
1006 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1007
1008 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1009
1010 cache->base = 0;
1011 cache->pc = 0;
1012 cache->ra = 0;
1013 cache->ps = 0;
1014 cache->prev_sp = 0;
1015 cache->call0 = !windowed;
1016 if (cache->call0)
1017 {
1018 cache->c0.c0_frmsz = -1;
1019 cache->c0.c0_hasfp = 0;
1020 cache->c0.fp_regnum = -1;
1021 cache->c0.c0_fp = -1;
1022 cache->c0.c0_fpalign = 0;
1023 cache->c0.c0_old_sp = C0_INEXP;
1024 cache->c0.c0_sp_ofs = C0_NOSTK;
1025
1026 for (i = 0; i < C0_NREGS; i++)
1027 {
1028 cache->c0.c0_rt[i].fr_reg = i;
1029 cache->c0.c0_rt[i].fr_ofs = 0;
1030 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1031 }
1032 }
1033 else
1034 {
1035 cache->wd.wb = 0;
1036 cache->wd.ws = 0;
1037 cache->wd.callsize = -1;
1038
1039 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1040 cache->wd.aregs[i] = -1;
1041 }
1042 return cache;
1043 }
1044
1045
1046 static CORE_ADDR
1047 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1048 {
1049 return address & ~15;
1050 }
1051
1052
1053 static CORE_ADDR
1054 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1055 {
1056 gdb_byte buf[8];
1057 CORE_ADDR pc;
1058
1059 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1060 host_address_to_string (next_frame));
1061
1062 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1063 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1064
1065 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1066
1067 return pc;
1068 }
1069
1070
1071 static struct frame_id
1072 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1073 {
1074 CORE_ADDR pc, fp;
1075
1076 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1077
1078 pc = get_frame_pc (this_frame);
1079 fp = get_frame_register_unsigned
1080 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1081
1082 /* Make dummy frame ID unique by adding a constant. */
1083 return frame_id_build (fp + SP_ALIGNMENT, pc);
1084 }
1085
1086 /* Returns true, if instruction to execute next is unique to Xtensa Window
1087 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1088
1089 static int
1090 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1091 {
1092 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1093 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1094 unsigned int code;
1095
1096 if (byte_order == BFD_ENDIAN_BIG)
1097 {
1098 /* Check, if this is L32E or S32E. */
1099 code = insn & 0xf000ff00;
1100 if ((code == 0x00009000) || (code == 0x00009400))
1101 return 1;
1102 /* Check, if this is RFWU or RFWO. */
1103 code = insn & 0xffffff00;
1104 return ((code == 0x00430000) || (code == 0x00530000));
1105 }
1106 else
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0x00ff000f;
1110 if ((code == 0x090000) || (code == 0x490000))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0x00ffffff;
1114 return ((code == 0x00003400) || (code == 0x00003500));
1115 }
1116 }
1117
1118 /* Returns the best guess about which register is a frame pointer
1119 for the function containing CURRENT_PC. */
1120
1121 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1122 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1123
1124 static unsigned int
1125 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1126 {
1127 #define RETURN_FP goto done
1128
1129 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1130 CORE_ADDR start_addr;
1131 xtensa_isa isa;
1132 xtensa_insnbuf ins, slot;
1133 gdb_byte ibuf[XTENSA_ISA_BSZ];
1134 CORE_ADDR ia, bt, ba;
1135 xtensa_format ifmt;
1136 int ilen, islots, is;
1137 xtensa_opcode opc;
1138 const char *opcname;
1139
1140 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1141 if (start_addr == 0)
1142 return fp_regnum;
1143
1144 isa = xtensa_default_isa;
1145 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1146 ins = xtensa_insnbuf_alloc (isa);
1147 slot = xtensa_insnbuf_alloc (isa);
1148 ba = 0;
1149
1150 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1151 {
1152 if (ia + xtensa_isa_maxlength (isa) > bt)
1153 {
1154 ba = ia;
1155 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1156 ? ba + XTENSA_ISA_BSZ : current_pc;
1157 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1158 RETURN_FP;
1159 }
1160
1161 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1162 ifmt = xtensa_format_decode (isa, ins);
1163 if (ifmt == XTENSA_UNDEFINED)
1164 RETURN_FP;
1165 ilen = xtensa_format_length (isa, ifmt);
1166 if (ilen == XTENSA_UNDEFINED)
1167 RETURN_FP;
1168 islots = xtensa_format_num_slots (isa, ifmt);
1169 if (islots == XTENSA_UNDEFINED)
1170 RETURN_FP;
1171
1172 for (is = 0; is < islots; ++is)
1173 {
1174 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1175 RETURN_FP;
1176
1177 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1178 if (opc == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180
1181 opcname = xtensa_opcode_name (isa, opc);
1182
1183 if (strcasecmp (opcname, "mov.n") == 0
1184 || strcasecmp (opcname, "or") == 0)
1185 {
1186 unsigned int register_operand;
1187
1188 /* Possible candidate for setting frame pointer
1189 from A1. This is what we are looking for. */
1190
1191 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1192 is, slot, &register_operand) != 0)
1193 RETURN_FP;
1194 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1195 RETURN_FP;
1196 if (register_operand == 1) /* Mov{.n} FP A1. */
1197 {
1198 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1199 &register_operand) != 0)
1200 RETURN_FP;
1201 if (xtensa_operand_decode (isa, opc, 0,
1202 &register_operand) != 0)
1203 RETURN_FP;
1204
1205 fp_regnum
1206 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1207 RETURN_FP;
1208 }
1209 }
1210
1211 if (
1212 /* We have problems decoding the memory. */
1213 opcname == NULL
1214 || strcasecmp (opcname, "ill") == 0
1215 || strcasecmp (opcname, "ill.n") == 0
1216 /* Hit planted breakpoint. */
1217 || strcasecmp (opcname, "break") == 0
1218 || strcasecmp (opcname, "break.n") == 0
1219 /* Flow control instructions finish prologue. */
1220 || xtensa_opcode_is_branch (isa, opc) > 0
1221 || xtensa_opcode_is_jump (isa, opc) > 0
1222 || xtensa_opcode_is_loop (isa, opc) > 0
1223 || xtensa_opcode_is_call (isa, opc) > 0
1224 || strcasecmp (opcname, "simcall") == 0
1225 || strcasecmp (opcname, "syscall") == 0)
1226 /* Can not continue analysis. */
1227 RETURN_FP;
1228 }
1229 }
1230 done:
1231 xtensa_insnbuf_free(isa, slot);
1232 xtensa_insnbuf_free(isa, ins);
1233 return fp_regnum;
1234 }
1235
1236 /* The key values to identify the frame using "cache" are
1237
1238 cache->base = SP (or best guess about FP) of this frame;
1239 cache->pc = entry-PC (entry point of the frame function);
1240 cache->prev_sp = SP of the previous frame. */
1241
1242 static void
1243 call0_frame_cache (struct frame_info *this_frame,
1244 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1245
1246 static void
1247 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1248 xtensa_frame_cache_t *cache,
1249 CORE_ADDR pc);
1250
1251 static struct xtensa_frame_cache *
1252 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1253 {
1254 xtensa_frame_cache_t *cache;
1255 CORE_ADDR ra, wb, ws, pc, sp, ps;
1256 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1258 unsigned int fp_regnum;
1259 int windowed, ps_regnum;
1260
1261 if (*this_cache)
1262 return (struct xtensa_frame_cache *) *this_cache;
1263
1264 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1265 ps_regnum = gdbarch_ps_regnum (gdbarch);
1266 ps = (ps_regnum >= 0
1267 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1268
1269 windowed = windowing_enabled (gdbarch, ps);
1270
1271 /* Get pristine xtensa-frame. */
1272 cache = xtensa_alloc_frame_cache (windowed);
1273 *this_cache = cache;
1274
1275 if (windowed)
1276 {
1277 LONGEST op1;
1278
1279 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1280 wb = get_frame_register_unsigned (this_frame,
1281 gdbarch_tdep (gdbarch)->wb_regnum);
1282 ws = get_frame_register_unsigned (this_frame,
1283 gdbarch_tdep (gdbarch)->ws_regnum);
1284
1285 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1286 && XTENSA_IS_ENTRY (gdbarch, op1))
1287 {
1288 int callinc = CALLINC (ps);
1289 ra = get_frame_register_unsigned
1290 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1291
1292 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1293 cache->wd.callsize = 0;
1294 cache->wd.wb = wb;
1295 cache->wd.ws = ws;
1296 cache->prev_sp = get_frame_register_unsigned
1297 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1298
1299 /* This only can be the outermost frame since we are
1300 just about to execute ENTRY. SP hasn't been set yet.
1301 We can assume any frame size, because it does not
1302 matter, and, let's fake frame base in cache. */
1303 cache->base = cache->prev_sp - 16;
1304
1305 cache->pc = pc;
1306 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1307 cache->ps = (ps & ~PS_CALLINC_MASK)
1308 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1309
1310 return cache;
1311 }
1312 else
1313 {
1314 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1315 ra = get_frame_register_unsigned (this_frame,
1316 gdbarch_tdep (gdbarch)->a0_base);
1317 cache->wd.callsize = WINSIZE (ra);
1318 cache->wd.wb = (wb - cache->wd.callsize / 4)
1319 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1320 cache->wd.ws = ws & ~(1 << wb);
1321
1322 cache->pc = get_frame_func (this_frame);
1323 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1324 cache->ps = (ps & ~PS_CALLINC_MASK)
1325 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1326 }
1327
1328 if (cache->wd.ws == 0)
1329 {
1330 int i;
1331
1332 /* Set A0...A3. */
1333 sp = get_frame_register_unsigned
1334 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1335
1336 for (i = 0; i < 4; i++, sp += 4)
1337 {
1338 cache->wd.aregs[i] = sp;
1339 }
1340
1341 if (cache->wd.callsize > 4)
1342 {
1343 /* Set A4...A7/A11. */
1344 /* Get the SP of the frame previous to the previous one.
1345 To achieve this, we have to dereference SP twice. */
1346 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1347 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1348 sp -= cache->wd.callsize * 4;
1349
1350 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1351 {
1352 cache->wd.aregs[i] = sp;
1353 }
1354 }
1355 }
1356
1357 if ((cache->prev_sp == 0) && ( ra != 0 ))
1358 /* If RA is equal to 0 this frame is an outermost frame. Leave
1359 cache->prev_sp unchanged marking the boundary of the frame stack. */
1360 {
1361 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1362 {
1363 /* Register window overflow already happened.
1364 We can read caller's SP from the proper spill loction. */
1365 sp = get_frame_register_unsigned
1366 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1367 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1368 }
1369 else
1370 {
1371 /* Read caller's frame SP directly from the previous window. */
1372 int regnum = arreg_number
1373 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1374 cache->wd.wb);
1375
1376 cache->prev_sp = xtensa_read_register (regnum);
1377 }
1378 }
1379 }
1380 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1381 {
1382 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1383
1384 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1385 /* Everything was set already, including cache->base. */
1386 return cache;
1387 }
1388 else /* Call0 framework. */
1389 {
1390 call0_frame_cache (this_frame, cache, pc);
1391 fp_regnum = cache->c0.fp_regnum;
1392 }
1393
1394 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1395
1396 return cache;
1397 }
1398
1399 static int xtensa_session_once_reported = 1;
1400
1401 /* Report a problem with prologue analysis while doing backtracing.
1402 But, do it only once to avoid annoyng repeated messages. */
1403
1404 static void
1405 warning_once (void)
1406 {
1407 if (xtensa_session_once_reported == 0)
1408 warning (_("\
1409 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1410 This message will not be repeated in this session.\n"));
1411
1412 xtensa_session_once_reported = 1;
1413 }
1414
1415
1416 static void
1417 xtensa_frame_this_id (struct frame_info *this_frame,
1418 void **this_cache,
1419 struct frame_id *this_id)
1420 {
1421 struct xtensa_frame_cache *cache =
1422 xtensa_frame_cache (this_frame, this_cache);
1423
1424 if (cache->prev_sp == 0)
1425 return;
1426
1427 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1428 }
1429
1430 static struct value *
1431 xtensa_frame_prev_register (struct frame_info *this_frame,
1432 void **this_cache,
1433 int regnum)
1434 {
1435 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1436 struct xtensa_frame_cache *cache;
1437 ULONGEST saved_reg = 0;
1438 int done = 1;
1439
1440 if (*this_cache == NULL)
1441 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1442 cache = (struct xtensa_frame_cache *) *this_cache;
1443
1444 if (regnum ==gdbarch_pc_regnum (gdbarch))
1445 saved_reg = cache->ra;
1446 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1447 saved_reg = cache->prev_sp;
1448 else if (!cache->call0)
1449 {
1450 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1451 saved_reg = cache->wd.ws;
1452 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1453 saved_reg = cache->wd.wb;
1454 else if (regnum == gdbarch_ps_regnum (gdbarch))
1455 saved_reg = cache->ps;
1456 else
1457 done = 0;
1458 }
1459 else
1460 done = 0;
1461
1462 if (done)
1463 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1464
1465 if (!cache->call0) /* Windowed ABI. */
1466 {
1467 /* Convert A-register numbers to AR-register numbers,
1468 if we deal with A-register. */
1469 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1470 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1471 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1472
1473 /* Check, if we deal with AR-register saved on stack. */
1474 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1475 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1476 + gdbarch_tdep (gdbarch)->num_aregs))
1477 {
1478 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1479
1480 if (areg >= 0
1481 && areg < XTENSA_NUM_SAVED_AREGS
1482 && cache->wd.aregs[areg] != -1)
1483 return frame_unwind_got_memory (this_frame, regnum,
1484 cache->wd.aregs[areg]);
1485 }
1486 }
1487 else /* Call0 ABI. */
1488 {
1489 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1490 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1491 + C0_NREGS))
1492 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1493
1494 if (reg < C0_NREGS)
1495 {
1496 CORE_ADDR spe;
1497 int stkofs;
1498
1499 /* If register was saved in the prologue, retrieve it. */
1500 stkofs = cache->c0.c0_rt[reg].to_stk;
1501 if (stkofs != C0_NOSTK)
1502 {
1503 /* Determine SP on entry based on FP. */
1504 spe = cache->c0.c0_fp
1505 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1506
1507 return frame_unwind_got_memory (this_frame, regnum,
1508 spe + stkofs);
1509 }
1510 }
1511 }
1512
1513 /* All other registers have been either saved to
1514 the stack or are still alive in the processor. */
1515
1516 return frame_unwind_got_register (this_frame, regnum, regnum);
1517 }
1518
1519
1520 static const struct frame_unwind
1521 xtensa_unwind =
1522 {
1523 NORMAL_FRAME,
1524 default_frame_unwind_stop_reason,
1525 xtensa_frame_this_id,
1526 xtensa_frame_prev_register,
1527 NULL,
1528 default_frame_sniffer
1529 };
1530
1531 static CORE_ADDR
1532 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1533 {
1534 struct xtensa_frame_cache *cache =
1535 xtensa_frame_cache (this_frame, this_cache);
1536
1537 return cache->base;
1538 }
1539
1540 static const struct frame_base
1541 xtensa_frame_base =
1542 {
1543 &xtensa_unwind,
1544 xtensa_frame_base_address,
1545 xtensa_frame_base_address,
1546 xtensa_frame_base_address
1547 };
1548
1549
1550 static void
1551 xtensa_extract_return_value (struct type *type,
1552 struct regcache *regcache,
1553 void *dst)
1554 {
1555 struct gdbarch *gdbarch = regcache->arch ();
1556 bfd_byte *valbuf = (bfd_byte *) dst;
1557 int len = TYPE_LENGTH (type);
1558 ULONGEST pc, wb;
1559 int callsize, areg;
1560 int offset = 0;
1561
1562 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1563
1564 gdb_assert(len > 0);
1565
1566 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1567 {
1568 /* First, we have to find the caller window in the register file. */
1569 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1570 callsize = extract_call_winsize (gdbarch, pc);
1571
1572 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1573 if (len > (callsize > 8 ? 8 : 16))
1574 internal_error (__FILE__, __LINE__,
1575 _("cannot extract return value of %d bytes long"),
1576 len);
1577
1578 /* Get the register offset of the return
1579 register (A2) in the caller window. */
1580 regcache_raw_read_unsigned
1581 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1582 areg = arreg_number (gdbarch,
1583 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1584 }
1585 else
1586 {
1587 /* No windowing hardware - Call0 ABI. */
1588 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1589 }
1590
1591 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1592
1593 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1594 offset = 4 - len;
1595
1596 for (; len > 0; len -= 4, areg++, valbuf += 4)
1597 {
1598 if (len < 4)
1599 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1600 else
1601 regcache_raw_read (regcache, areg, valbuf);
1602 }
1603 }
1604
1605
1606 static void
1607 xtensa_store_return_value (struct type *type,
1608 struct regcache *regcache,
1609 const void *dst)
1610 {
1611 struct gdbarch *gdbarch = regcache->arch ();
1612 const bfd_byte *valbuf = (const bfd_byte *) dst;
1613 unsigned int areg;
1614 ULONGEST pc, wb;
1615 int callsize;
1616 int len = TYPE_LENGTH (type);
1617 int offset = 0;
1618
1619 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1620
1621 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1622 {
1623 regcache_raw_read_unsigned
1624 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1625 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1626 callsize = extract_call_winsize (gdbarch, pc);
1627
1628 if (len > (callsize > 8 ? 8 : 16))
1629 internal_error (__FILE__, __LINE__,
1630 _("unimplemented for this length: %d"),
1631 TYPE_LENGTH (type));
1632 areg = arreg_number (gdbarch,
1633 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1634
1635 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1636 callsize, (int) wb);
1637 }
1638 else
1639 {
1640 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1641 }
1642
1643 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1644 offset = 4 - len;
1645
1646 for (; len > 0; len -= 4, areg++, valbuf += 4)
1647 {
1648 if (len < 4)
1649 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1650 else
1651 regcache_raw_write (regcache, areg, valbuf);
1652 }
1653 }
1654
1655
1656 static enum return_value_convention
1657 xtensa_return_value (struct gdbarch *gdbarch,
1658 struct value *function,
1659 struct type *valtype,
1660 struct regcache *regcache,
1661 gdb_byte *readbuf,
1662 const gdb_byte *writebuf)
1663 {
1664 /* Structures up to 16 bytes are returned in registers. */
1665
1666 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1667 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1668 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1669 && TYPE_LENGTH (valtype) > 16);
1670
1671 if (struct_return)
1672 return RETURN_VALUE_STRUCT_CONVENTION;
1673
1674 DEBUGTRACE ("xtensa_return_value(...)\n");
1675
1676 if (writebuf != NULL)
1677 {
1678 xtensa_store_return_value (valtype, regcache, writebuf);
1679 }
1680
1681 if (readbuf != NULL)
1682 {
1683 gdb_assert (!struct_return);
1684 xtensa_extract_return_value (valtype, regcache, readbuf);
1685 }
1686 return RETURN_VALUE_REGISTER_CONVENTION;
1687 }
1688
1689
1690 /* DUMMY FRAME */
1691
1692 static CORE_ADDR
1693 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1694 struct value *function,
1695 struct regcache *regcache,
1696 CORE_ADDR bp_addr,
1697 int nargs,
1698 struct value **args,
1699 CORE_ADDR sp,
1700 int struct_return,
1701 CORE_ADDR struct_addr)
1702 {
1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 int i;
1705 int size, onstack_size;
1706 gdb_byte *buf = (gdb_byte *) alloca (16);
1707 CORE_ADDR ra, ps;
1708 struct argument_info
1709 {
1710 const bfd_byte *contents;
1711 int length;
1712 int onstack; /* onstack == 0 => in reg */
1713 int align; /* alignment */
1714 union
1715 {
1716 int offset; /* stack offset if on stack. */
1717 int regno; /* regno if in register. */
1718 } u;
1719 };
1720
1721 struct argument_info *arg_info =
1722 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1723
1724 CORE_ADDR osp = sp;
1725
1726 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1727
1728 if (xtensa_debug_level > 3)
1729 {
1730 int i;
1731 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1732 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1733 "struct_addr=0x%x\n",
1734 (int) sp, (int) struct_return, (int) struct_addr);
1735
1736 for (i = 0; i < nargs; i++)
1737 {
1738 struct value *arg = args[i];
1739 struct type *arg_type = check_typedef (value_type (arg));
1740 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1741 host_address_to_string (arg),
1742 TYPE_LENGTH (arg_type));
1743 switch (TYPE_CODE (arg_type))
1744 {
1745 case TYPE_CODE_INT:
1746 fprintf_unfiltered (gdb_stdlog, "int");
1747 break;
1748 case TYPE_CODE_STRUCT:
1749 fprintf_unfiltered (gdb_stdlog, "struct");
1750 break;
1751 default:
1752 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1753 break;
1754 }
1755 fprintf_unfiltered (gdb_stdlog, " %s\n",
1756 host_address_to_string (value_contents (arg)));
1757 }
1758 }
1759
1760 /* First loop: collect information.
1761 Cast into type_long. (This shouldn't happen often for C because
1762 GDB already does this earlier.) It's possible that GDB could
1763 do it all the time but it's harmless to leave this code here. */
1764
1765 size = 0;
1766 onstack_size = 0;
1767 i = 0;
1768
1769 if (struct_return)
1770 size = REGISTER_SIZE;
1771
1772 for (i = 0; i < nargs; i++)
1773 {
1774 struct argument_info *info = &arg_info[i];
1775 struct value *arg = args[i];
1776 struct type *arg_type = check_typedef (value_type (arg));
1777
1778 switch (TYPE_CODE (arg_type))
1779 {
1780 case TYPE_CODE_INT:
1781 case TYPE_CODE_BOOL:
1782 case TYPE_CODE_CHAR:
1783 case TYPE_CODE_RANGE:
1784 case TYPE_CODE_ENUM:
1785
1786 /* Cast argument to long if necessary as the mask does it too. */
1787 if (TYPE_LENGTH (arg_type)
1788 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1789 {
1790 arg_type = builtin_type (gdbarch)->builtin_long;
1791 arg = value_cast (arg_type, arg);
1792 }
1793 /* Aligment is equal to the type length for the basic types. */
1794 info->align = TYPE_LENGTH (arg_type);
1795 break;
1796
1797 case TYPE_CODE_FLT:
1798
1799 /* Align doubles correctly. */
1800 if (TYPE_LENGTH (arg_type)
1801 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1802 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1803 else
1804 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1805 break;
1806
1807 case TYPE_CODE_STRUCT:
1808 default:
1809 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1810 break;
1811 }
1812 info->length = TYPE_LENGTH (arg_type);
1813 info->contents = value_contents (arg);
1814
1815 /* Align size and onstack_size. */
1816 size = (size + info->align - 1) & ~(info->align - 1);
1817 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1818
1819 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1820 {
1821 info->onstack = 1;
1822 info->u.offset = onstack_size;
1823 onstack_size += info->length;
1824 }
1825 else
1826 {
1827 info->onstack = 0;
1828 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1829 }
1830 size += info->length;
1831 }
1832
1833 /* Adjust the stack pointer and align it. */
1834 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1835
1836 /* Simulate MOVSP, if Windowed ABI. */
1837 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1838 && (sp != osp))
1839 {
1840 read_memory (osp - 16, buf, 16);
1841 write_memory (sp - 16, buf, 16);
1842 }
1843
1844 /* Second Loop: Load arguments. */
1845
1846 if (struct_return)
1847 {
1848 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1849 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1850 }
1851
1852 for (i = 0; i < nargs; i++)
1853 {
1854 struct argument_info *info = &arg_info[i];
1855
1856 if (info->onstack)
1857 {
1858 int n = info->length;
1859 CORE_ADDR offset = sp + info->u.offset;
1860
1861 /* Odd-sized structs are aligned to the lower side of a memory
1862 word in big-endian mode and require a shift. This only
1863 applies for structures smaller than one word. */
1864
1865 if (n < REGISTER_SIZE
1866 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1867 offset += (REGISTER_SIZE - n);
1868
1869 write_memory (offset, info->contents, info->length);
1870
1871 }
1872 else
1873 {
1874 int n = info->length;
1875 const bfd_byte *cp = info->contents;
1876 int r = info->u.regno;
1877
1878 /* Odd-sized structs are aligned to the lower side of registers in
1879 big-endian mode and require a shift. The odd-sized leftover will
1880 be at the end. Note that this is only true for structures smaller
1881 than REGISTER_SIZE; for larger odd-sized structures the excess
1882 will be left-aligned in the register on both endiannesses. */
1883
1884 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1885 {
1886 ULONGEST v;
1887 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1888 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1889
1890 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1891 regcache_cooked_write (regcache, r, buf);
1892
1893 cp += REGISTER_SIZE;
1894 n -= REGISTER_SIZE;
1895 r++;
1896 }
1897 else
1898 while (n > 0)
1899 {
1900 regcache_cooked_write (regcache, r, cp);
1901
1902 cp += REGISTER_SIZE;
1903 n -= REGISTER_SIZE;
1904 r++;
1905 }
1906 }
1907 }
1908
1909 /* Set the return address of dummy frame to the dummy address.
1910 The return address for the current function (in A0) is
1911 saved in the dummy frame, so we can savely overwrite A0 here. */
1912
1913 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1914 {
1915 ULONGEST val;
1916
1917 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1918 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1919 ps = (unsigned long) val & ~0x00030000;
1920 regcache_cooked_write_unsigned
1921 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1922 regcache_cooked_write_unsigned (regcache,
1923 gdbarch_ps_regnum (gdbarch),
1924 ps | 0x00010000);
1925
1926 /* All the registers have been saved. After executing
1927 dummy call, they all will be restored. So it's safe
1928 to modify WINDOWSTART register to make it look like there
1929 is only one register window corresponding to WINDOWEBASE. */
1930
1931 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1932 regcache_cooked_write_unsigned
1933 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1934 1 << extract_unsigned_integer (buf, 4, byte_order));
1935 }
1936 else
1937 {
1938 /* Simulate CALL0: write RA into A0 register. */
1939 regcache_cooked_write_unsigned
1940 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1941 }
1942
1943 /* Set new stack pointer and return it. */
1944 regcache_cooked_write_unsigned (regcache,
1945 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1946 /* Make dummy frame ID unique by adding a constant. */
1947 return sp + SP_ALIGNMENT;
1948 }
1949
1950 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1951
1952 static int
1953 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1954 {
1955 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1956 return 2;
1957 else
1958 return 4;
1959 }
1960
1961 /* Return a breakpoint for the current location of PC. We always use
1962 the density version if we have density instructions (regardless of the
1963 current instruction at PC), and use regular instructions otherwise. */
1964
1965 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1966 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1967 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1968 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1969
1970 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1971
1972 static const gdb_byte *
1973 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1974 {
1975 *size = kind;
1976
1977 if (kind == 4)
1978 {
1979 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1980 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1981
1982 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1983 return big_breakpoint;
1984 else
1985 return little_breakpoint;
1986 }
1987 else
1988 {
1989 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1990 static unsigned char density_little_breakpoint[]
1991 = DENSITY_LITTLE_BREAKPOINT;
1992
1993 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1994 return density_big_breakpoint;
1995 else
1996 return density_little_breakpoint;
1997 }
1998 }
1999
2000 /* Call0 ABI support routines. */
2001
2002 /* Return true, if PC points to "ret" or "ret.n". */
2003
2004 static int
2005 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2006 {
2007 #define RETURN_RET goto done
2008 xtensa_isa isa;
2009 xtensa_insnbuf ins, slot;
2010 gdb_byte ibuf[XTENSA_ISA_BSZ];
2011 CORE_ADDR ia, bt, ba;
2012 xtensa_format ifmt;
2013 int ilen, islots, is;
2014 xtensa_opcode opc;
2015 const char *opcname;
2016 int found_ret = 0;
2017
2018 isa = xtensa_default_isa;
2019 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2020 ins = xtensa_insnbuf_alloc (isa);
2021 slot = xtensa_insnbuf_alloc (isa);
2022 ba = 0;
2023
2024 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2025 {
2026 if (ia + xtensa_isa_maxlength (isa) > bt)
2027 {
2028 ba = ia;
2029 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2030 ? ba + XTENSA_ISA_BSZ : finish_pc;
2031 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2032 RETURN_RET;
2033 }
2034
2035 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2036 ifmt = xtensa_format_decode (isa, ins);
2037 if (ifmt == XTENSA_UNDEFINED)
2038 RETURN_RET;
2039 ilen = xtensa_format_length (isa, ifmt);
2040 if (ilen == XTENSA_UNDEFINED)
2041 RETURN_RET;
2042 islots = xtensa_format_num_slots (isa, ifmt);
2043 if (islots == XTENSA_UNDEFINED)
2044 RETURN_RET;
2045
2046 for (is = 0; is < islots; ++is)
2047 {
2048 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2049 RETURN_RET;
2050
2051 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2052 if (opc == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054
2055 opcname = xtensa_opcode_name (isa, opc);
2056
2057 if ((strcasecmp (opcname, "ret.n") == 0)
2058 || (strcasecmp (opcname, "ret") == 0))
2059 {
2060 found_ret = 1;
2061 RETURN_RET;
2062 }
2063 }
2064 }
2065 done:
2066 xtensa_insnbuf_free(isa, slot);
2067 xtensa_insnbuf_free(isa, ins);
2068 return found_ret;
2069 }
2070
2071 /* Call0 opcode class. Opcodes are preclassified according to what they
2072 mean for Call0 prologue analysis, and their number of significant operands.
2073 The purpose of this is to simplify prologue analysis by separating
2074 instruction decoding (libisa) from the semantics of prologue analysis. */
2075
2076 typedef enum
2077 {
2078 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2079 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2080 c0opc_flow, /* Flow control insn. */
2081 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2082 c0opc_break, /* Debugger software breakpoints. */
2083 c0opc_add, /* Adding two registers. */
2084 c0opc_addi, /* Adding a register and an immediate. */
2085 c0opc_and, /* Bitwise "and"-ing two registers. */
2086 c0opc_sub, /* Subtracting a register from a register. */
2087 c0opc_mov, /* Moving a register to a register. */
2088 c0opc_movi, /* Moving an immediate to a register. */
2089 c0opc_l32r, /* Loading a literal. */
2090 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2091 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2092 c0opc_l32e, /* L32E instruction. */
2093 c0opc_s32e, /* S32E instruction. */
2094 c0opc_rfwo, /* RFWO instruction. */
2095 c0opc_rfwu, /* RFWU instruction. */
2096 c0opc_NrOf /* Number of opcode classifications. */
2097 } xtensa_insn_kind;
2098
2099 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2100
2101 static int
2102 rwx_special_register (const char *opcname)
2103 {
2104 char ch = *opcname++;
2105
2106 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2107 return 0;
2108 if (*opcname++ != 's')
2109 return 0;
2110 if (*opcname++ != 'r')
2111 return 0;
2112 if (*opcname++ != '.')
2113 return 0;
2114
2115 return 1;
2116 }
2117
2118 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2119
2120 static xtensa_insn_kind
2121 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2122 {
2123 const char *opcname;
2124 xtensa_insn_kind opclass = c0opc_uninteresting;
2125
2126 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2127
2128 /* Get opcode name and handle special classifications. */
2129
2130 opcname = xtensa_opcode_name (isa, opc);
2131
2132 if (opcname == NULL
2133 || strcasecmp (opcname, "ill") == 0
2134 || strcasecmp (opcname, "ill.n") == 0)
2135 opclass = c0opc_illegal;
2136 else if (strcasecmp (opcname, "break") == 0
2137 || strcasecmp (opcname, "break.n") == 0)
2138 opclass = c0opc_break;
2139 else if (strcasecmp (opcname, "entry") == 0)
2140 opclass = c0opc_entry;
2141 else if (strcasecmp (opcname, "rfwo") == 0)
2142 opclass = c0opc_rfwo;
2143 else if (strcasecmp (opcname, "rfwu") == 0)
2144 opclass = c0opc_rfwu;
2145 else if (xtensa_opcode_is_branch (isa, opc) > 0
2146 || xtensa_opcode_is_jump (isa, opc) > 0
2147 || xtensa_opcode_is_loop (isa, opc) > 0
2148 || xtensa_opcode_is_call (isa, opc) > 0
2149 || strcasecmp (opcname, "simcall") == 0
2150 || strcasecmp (opcname, "syscall") == 0)
2151 opclass = c0opc_flow;
2152
2153 /* Also, classify specific opcodes that need to be tracked. */
2154 else if (strcasecmp (opcname, "add") == 0
2155 || strcasecmp (opcname, "add.n") == 0)
2156 opclass = c0opc_add;
2157 else if (strcasecmp (opcname, "and") == 0)
2158 opclass = c0opc_and;
2159 else if (strcasecmp (opcname, "addi") == 0
2160 || strcasecmp (opcname, "addi.n") == 0
2161 || strcasecmp (opcname, "addmi") == 0)
2162 opclass = c0opc_addi;
2163 else if (strcasecmp (opcname, "sub") == 0)
2164 opclass = c0opc_sub;
2165 else if (strcasecmp (opcname, "mov.n") == 0
2166 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2167 opclass = c0opc_mov;
2168 else if (strcasecmp (opcname, "movi") == 0
2169 || strcasecmp (opcname, "movi.n") == 0)
2170 opclass = c0opc_movi;
2171 else if (strcasecmp (opcname, "l32r") == 0)
2172 opclass = c0opc_l32r;
2173 else if (strcasecmp (opcname, "s32i") == 0
2174 || strcasecmp (opcname, "s32i.n") == 0)
2175 opclass = c0opc_s32i;
2176 else if (strcasecmp (opcname, "l32e") == 0)
2177 opclass = c0opc_l32e;
2178 else if (strcasecmp (opcname, "s32e") == 0)
2179 opclass = c0opc_s32e;
2180 else if (rwx_special_register (opcname))
2181 opclass = c0opc_rwxsr;
2182
2183 return opclass;
2184 }
2185
2186 /* Tracks register movement/mutation for a given operation, which may
2187 be within a bundle. Updates the destination register tracking info
2188 accordingly. The pc is needed only for pc-relative load instructions
2189 (eg. l32r). The SP register number is needed to identify stores to
2190 the stack frame. Returns 0, if analysis was succesfull, non-zero
2191 otherwise. */
2192
2193 static int
2194 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2195 xtensa_insn_kind opclass, int nods, unsigned odv[],
2196 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2197 {
2198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2199 unsigned litbase, litaddr, litval;
2200
2201 switch (opclass)
2202 {
2203 case c0opc_addi:
2204 /* 3 operands: dst, src, imm. */
2205 gdb_assert (nods == 3);
2206 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2207 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2208 break;
2209 case c0opc_add:
2210 /* 3 operands: dst, src1, src2. */
2211 gdb_assert (nods == 3);
2212 if (src[odv[1]].fr_reg == C0_CONST)
2213 {
2214 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2215 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2216 }
2217 else if (src[odv[2]].fr_reg == C0_CONST)
2218 {
2219 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2220 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2221 }
2222 else dst[odv[0]].fr_reg = C0_INEXP;
2223 break;
2224 case c0opc_and:
2225 /* 3 operands: dst, src1, src2. */
2226 gdb_assert (nods == 3);
2227 if (cache->c0.c0_fpalign == 0)
2228 {
2229 /* Handle dynamic stack alignment. */
2230 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2231 {
2232 if (src[odv[2]].fr_reg == C0_CONST)
2233 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2234 break;
2235 }
2236 else if ((src[odv[0]].fr_reg == spreg)
2237 && (src[odv[2]].fr_reg == spreg))
2238 {
2239 if (src[odv[1]].fr_reg == C0_CONST)
2240 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2241 break;
2242 }
2243 /* else fall through. */
2244 }
2245 if (src[odv[1]].fr_reg == C0_CONST)
2246 {
2247 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2248 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2249 }
2250 else if (src[odv[2]].fr_reg == C0_CONST)
2251 {
2252 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2253 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2254 }
2255 else dst[odv[0]].fr_reg = C0_INEXP;
2256 break;
2257 case c0opc_sub:
2258 /* 3 operands: dst, src1, src2. */
2259 gdb_assert (nods == 3);
2260 if (src[odv[2]].fr_reg == C0_CONST)
2261 {
2262 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2264 }
2265 else dst[odv[0]].fr_reg = C0_INEXP;
2266 break;
2267 case c0opc_mov:
2268 /* 2 operands: dst, src [, src]. */
2269 gdb_assert (nods == 2);
2270 /* First, check if it's a special case of saving unaligned SP
2271 to a spare register in case of dynamic stack adjustment.
2272 But, only do it one time. The second time could be initializing
2273 frame pointer. We don't want to overwrite the first one. */
2274 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2275 cache->c0.c0_old_sp = odv[0];
2276
2277 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2278 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2279 break;
2280 case c0opc_movi:
2281 /* 2 operands: dst, imm. */
2282 gdb_assert (nods == 2);
2283 dst[odv[0]].fr_reg = C0_CONST;
2284 dst[odv[0]].fr_ofs = odv[1];
2285 break;
2286 case c0opc_l32r:
2287 /* 2 operands: dst, literal offset. */
2288 gdb_assert (nods == 2);
2289 /* litbase = xtensa_get_litbase (pc); can be also used. */
2290 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2291 ? 0 : xtensa_read_register
2292 (gdbarch_tdep (gdbarch)->litbase_regnum);
2293 litaddr = litbase & 1
2294 ? (litbase & ~1) + (signed)odv[1]
2295 : (pc + 3 + (signed)odv[1]) & ~3;
2296 litval = read_memory_integer (litaddr, 4, byte_order);
2297 dst[odv[0]].fr_reg = C0_CONST;
2298 dst[odv[0]].fr_ofs = litval;
2299 break;
2300 case c0opc_s32i:
2301 /* 3 operands: value, base, offset. */
2302 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2303 /* First, check if it's a spill for saved unaligned SP,
2304 when dynamic stack adjustment was applied to this frame. */
2305 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2306 && (odv[1] == spreg) /* SP usage indicates spill. */
2307 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2308 cache->c0.c0_sp_ofs = odv[2];
2309
2310 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2311 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2312 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2313 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2314 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2315 {
2316 /* ISA encoding guarantees alignment. But, check it anyway. */
2317 gdb_assert ((odv[2] & 3) == 0);
2318 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2319 }
2320 break;
2321 /* If we end up inside Window Overflow / Underflow interrupt handler
2322 report an error because these handlers should have been handled
2323 already in a different way. */
2324 case c0opc_l32e:
2325 case c0opc_s32e:
2326 case c0opc_rfwo:
2327 case c0opc_rfwu:
2328 return 1;
2329 default:
2330 return 1;
2331 }
2332 return 0;
2333 }
2334
2335 /* Analyze prologue of the function at start address to determine if it uses
2336 the Call0 ABI, and if so track register moves and linear modifications
2337 in the prologue up to the PC or just beyond the prologue, whichever is
2338 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2339 prologue. The prologue may overlap non-prologue instructions but is
2340 guaranteed to end by the first flow-control instruction (jump, branch,
2341 call or return). Since an optimized function may move information around
2342 and change the stack frame arbitrarily during the prologue, the information
2343 is guaranteed valid only at the point in the function indicated by the PC.
2344 May be used to skip the prologue or identify the ABI, w/o tracking.
2345
2346 Returns: Address of first instruction after prologue, or PC (whichever
2347 is first), or 0, if decoding failed (in libisa).
2348 Input args:
2349 start Start address of function/prologue.
2350 pc Program counter to stop at. Use 0 to continue to end of prologue.
2351 If 0, avoids infinite run-on in corrupt code memory by bounding
2352 the scan to the end of the function if that can be determined.
2353 nregs Number of general registers to track.
2354 InOut args:
2355 cache Xtensa frame cache.
2356
2357 Note that these may produce useful results even if decoding fails
2358 because they begin with default assumptions that analysis may change. */
2359
2360 static CORE_ADDR
2361 call0_analyze_prologue (struct gdbarch *gdbarch,
2362 CORE_ADDR start, CORE_ADDR pc,
2363 int nregs, xtensa_frame_cache_t *cache)
2364 {
2365 CORE_ADDR ia; /* Current insn address in prologue. */
2366 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2367 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2368 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2369 xtensa_isa isa; /* libisa ISA handle. */
2370 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2371 xtensa_format ifmt; /* libisa instruction format. */
2372 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2373 xtensa_opcode opc; /* Opcode in current slot. */
2374 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2375 int nods; /* Opcode number of operands. */
2376 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2377 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2378 int j; /* General loop counter. */
2379 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2380 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2381 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2382
2383 struct symtab_and_line prologue_sal;
2384
2385 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2386 (int)start, (int)pc);
2387
2388 /* Try to limit the scan to the end of the function if a non-zero pc
2389 arg was not supplied to avoid probing beyond the end of valid memory.
2390 If memory is full of garbage that classifies as c0opc_uninteresting.
2391 If this fails (eg. if no symbols) pc ends up 0 as it was.
2392 Initialize the Call0 frame and register tracking info.
2393 Assume it's Call0 until an 'entry' instruction is encountered.
2394 Assume we may be in the prologue until we hit a flow control instr. */
2395
2396 rtmp = NULL;
2397 body_pc = UINT_MAX;
2398 end_pc = 0;
2399
2400 /* Find out, if we have an information about the prologue from DWARF. */
2401 prologue_sal = find_pc_line (start, 0);
2402 if (prologue_sal.line != 0) /* Found debug info. */
2403 body_pc = prologue_sal.end;
2404
2405 /* If we are going to analyze the prologue in general without knowing about
2406 the current PC, make the best assumtion for the end of the prologue. */
2407 if (pc == 0)
2408 {
2409 find_pc_partial_function (start, 0, NULL, &end_pc);
2410 body_pc = std::min (end_pc, body_pc);
2411 }
2412 else
2413 body_pc = std::min (pc, body_pc);
2414
2415 cache->call0 = 1;
2416 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2417
2418 isa = xtensa_default_isa;
2419 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2420 ins = xtensa_insnbuf_alloc (isa);
2421 slot = xtensa_insnbuf_alloc (isa);
2422
2423 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2424 {
2425 /* (Re)fill instruction buffer from memory if necessary, but do not
2426 read memory beyond PC to be sure we stay within text section
2427 (this protection only works if a non-zero pc is supplied). */
2428
2429 if (ia + xtensa_isa_maxlength (isa) > bt)
2430 {
2431 ba = ia;
2432 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2433 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2434 error (_("Unable to read target memory ..."));
2435 }
2436
2437 /* Decode format information. */
2438
2439 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2440 ifmt = xtensa_format_decode (isa, ins);
2441 if (ifmt == XTENSA_UNDEFINED)
2442 {
2443 fail = 1;
2444 goto done;
2445 }
2446 ilen = xtensa_format_length (isa, ifmt);
2447 if (ilen == XTENSA_UNDEFINED)
2448 {
2449 fail = 1;
2450 goto done;
2451 }
2452 islots = xtensa_format_num_slots (isa, ifmt);
2453 if (islots == XTENSA_UNDEFINED)
2454 {
2455 fail = 1;
2456 goto done;
2457 }
2458
2459 /* Analyze a bundle or a single instruction, using a snapshot of
2460 the register tracking info as input for the entire bundle so that
2461 register changes do not take effect within this bundle. */
2462
2463 for (j = 0; j < nregs; ++j)
2464 rtmp[j] = cache->c0.c0_rt[j];
2465
2466 for (is = 0; is < islots; ++is)
2467 {
2468 /* Decode a slot and classify the opcode. */
2469
2470 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2471 if (fail)
2472 goto done;
2473
2474 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2475 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2476 (unsigned)ia, opc);
2477 if (opc == XTENSA_UNDEFINED)
2478 opclass = c0opc_illegal;
2479 else
2480 opclass = call0_classify_opcode (isa, opc);
2481
2482 /* Decide whether to track this opcode, ignore it, or bail out. */
2483
2484 switch (opclass)
2485 {
2486 case c0opc_illegal:
2487 case c0opc_break:
2488 fail = 1;
2489 goto done;
2490
2491 case c0opc_uninteresting:
2492 continue;
2493
2494 case c0opc_flow: /* Flow control instructions stop analysis. */
2495 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2496 goto done;
2497
2498 case c0opc_entry:
2499 cache->call0 = 0;
2500 ia += ilen; /* Skip over 'entry' insn. */
2501 goto done;
2502
2503 default:
2504 cache->call0 = 1;
2505 }
2506
2507 /* Only expected opcodes should get this far. */
2508
2509 /* Extract and decode the operands. */
2510 nods = xtensa_opcode_num_operands (isa, opc);
2511 if (nods == XTENSA_UNDEFINED)
2512 {
2513 fail = 1;
2514 goto done;
2515 }
2516
2517 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2518 {
2519 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2520 is, slot, &odv[j]);
2521 if (fail)
2522 goto done;
2523
2524 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2525 if (fail)
2526 goto done;
2527 }
2528
2529 /* Check operands to verify use of 'mov' assembler macro. */
2530 if (opclass == c0opc_mov && nods == 3)
2531 {
2532 if (odv[2] == odv[1])
2533 {
2534 nods = 2;
2535 if ((odv[0] == 1) && (odv[1] != 1))
2536 /* OR A1, An, An , where n != 1.
2537 This means we are inside epilogue already. */
2538 goto done;
2539 }
2540 else
2541 {
2542 opclass = c0opc_uninteresting;
2543 continue;
2544 }
2545 }
2546
2547 /* Track register movement and modification for this operation. */
2548 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2549 opclass, nods, odv, ia, 1, cache);
2550 if (fail)
2551 goto done;
2552 }
2553 }
2554 done:
2555 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2556 (unsigned)ia, fail ? "failed" : "succeeded");
2557 xtensa_insnbuf_free(isa, slot);
2558 xtensa_insnbuf_free(isa, ins);
2559 return fail ? XTENSA_ISA_BADPC : ia;
2560 }
2561
2562 /* Initialize frame cache for the current frame in CALL0 ABI. */
2563
2564 static void
2565 call0_frame_cache (struct frame_info *this_frame,
2566 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2567 {
2568 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2569 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2570 CORE_ADDR start_pc; /* The beginning of the function. */
2571 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2572 CORE_ADDR sp, fp, ra;
2573 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2574
2575 sp = get_frame_register_unsigned
2576 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2577 fp = sp; /* Assume FP == SP until proven otherwise. */
2578
2579 /* Find the beginning of the prologue of the function containing the PC
2580 and analyze it up to the PC or the end of the prologue. */
2581
2582 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2583 {
2584 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2585
2586 if (body_pc == XTENSA_ISA_BADPC)
2587 {
2588 warning_once ();
2589 ra = 0;
2590 goto finish_frame_analysis;
2591 }
2592 }
2593
2594 /* Get the frame information and FP (if used) at the current PC.
2595 If PC is in the prologue, the prologue analysis is more reliable
2596 than DWARF info. We don't not know for sure, if PC is in the prologue,
2597 but we do know no calls have yet taken place, so we can almost
2598 certainly rely on the prologue analysis. */
2599
2600 if (body_pc <= pc)
2601 {
2602 /* Prologue analysis was successful up to the PC.
2603 It includes the cases when PC == START_PC. */
2604 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2605 /* c0_hasfp == true means there is a frame pointer because
2606 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2607 was derived from SP. Otherwise, it would be C0_FP. */
2608 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2609 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2610 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2611 }
2612 else /* No data from the prologue analysis. */
2613 {
2614 c0_hasfp = 0;
2615 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2616 c0_frmsz = 0;
2617 start_pc = pc;
2618 }
2619
2620 if (cache->c0.c0_fpalign)
2621 {
2622 /* This frame has a special prologue with a dynamic stack adjustment
2623 to force an alignment, which is bigger than standard 16 bytes. */
2624
2625 CORE_ADDR unaligned_sp;
2626
2627 if (cache->c0.c0_old_sp == C0_INEXP)
2628 /* This can't be. Prologue code should be consistent.
2629 Unaligned stack pointer should be saved in a spare register. */
2630 {
2631 warning_once ();
2632 ra = 0;
2633 goto finish_frame_analysis;
2634 }
2635
2636 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2637 /* Saved unaligned value of SP is kept in a register. */
2638 unaligned_sp = get_frame_register_unsigned
2639 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2640 else
2641 /* Get the value from stack. */
2642 unaligned_sp = (CORE_ADDR)
2643 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2644
2645 prev_sp = unaligned_sp + c0_frmsz;
2646 }
2647 else
2648 prev_sp = fp + c0_frmsz;
2649
2650 /* Frame size from debug info or prologue tracking does not account for
2651 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2652 if (c0_hasfp)
2653 {
2654 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2655
2656 /* Update the stack frame size. */
2657 c0_frmsz += fp - sp;
2658 }
2659
2660 /* Get the return address (RA) from the stack if saved,
2661 or try to get it from a register. */
2662
2663 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2664 if (to_stk != C0_NOSTK)
2665 ra = (CORE_ADDR)
2666 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2667 4, byte_order);
2668
2669 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2670 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2671 {
2672 /* Special case for terminating backtrace at a function that wants to
2673 be seen as the outermost one. Such a function will clear it's RA (A0)
2674 register to 0 in the prologue instead of saving its original value. */
2675 ra = 0;
2676 }
2677 else
2678 {
2679 /* RA was copied to another register or (before any function call) may
2680 still be in the original RA register. This is not always reliable:
2681 even in a leaf function, register tracking stops after prologue, and
2682 even in prologue, non-prologue instructions (not tracked) may overwrite
2683 RA or any register it was copied to. If likely in prologue or before
2684 any call, use retracking info and hope for the best (compiler should
2685 have saved RA in stack if not in a leaf function). If not in prologue,
2686 too bad. */
2687
2688 int i;
2689 for (i = 0;
2690 (i < C0_NREGS)
2691 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2692 ++i);
2693 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2694 i = C0_RA;
2695 if (i < C0_NREGS)
2696 {
2697 ra = get_frame_register_unsigned
2698 (this_frame,
2699 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2700 }
2701 else ra = 0;
2702 }
2703
2704 finish_frame_analysis:
2705 cache->pc = start_pc;
2706 cache->ra = ra;
2707 /* RA == 0 marks the outermost frame. Do not go past it. */
2708 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2709 cache->c0.fp_regnum = fp_regnum;
2710 cache->c0.c0_frmsz = c0_frmsz;
2711 cache->c0.c0_hasfp = c0_hasfp;
2712 cache->c0.c0_fp = fp;
2713 }
2714
2715 static CORE_ADDR a0_saved;
2716 static CORE_ADDR a7_saved;
2717 static CORE_ADDR a11_saved;
2718 static int a0_was_saved;
2719 static int a7_was_saved;
2720 static int a11_was_saved;
2721
2722 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2723 static void
2724 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2725 {
2726 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2727 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2728 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2729 unsigned int spilled_value
2730 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2731
2732 if ((at == 0) && !a0_was_saved)
2733 {
2734 a0_saved = xtensa_read_register (atreg);
2735 a0_was_saved = 1;
2736 }
2737 else if ((at == 7) && !a7_was_saved)
2738 {
2739 a7_saved = xtensa_read_register (atreg);
2740 a7_was_saved = 1;
2741 }
2742 else if ((at == 11) && !a11_was_saved)
2743 {
2744 a11_saved = xtensa_read_register (atreg);
2745 a11_was_saved = 1;
2746 }
2747
2748 xtensa_write_register (atreg, spilled_value);
2749 }
2750
2751 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2752 static void
2753 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2754 {
2755 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2756 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2757 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2758 ULONGEST spilled_value = xtensa_read_register (atreg);
2759
2760 write_memory_unsigned_integer (addr, 4,
2761 gdbarch_byte_order (gdbarch),
2762 spilled_value);
2763 }
2764
2765 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2766
2767 typedef enum
2768 {
2769 xtWindowOverflow,
2770 xtWindowUnderflow,
2771 xtNoExceptionHandler
2772 } xtensa_exception_handler_t;
2773
2774 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2775 Return type of Xtensa Window Interrupt Handler on success. */
2776 static xtensa_exception_handler_t
2777 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2778 {
2779 xtensa_isa isa;
2780 xtensa_insnbuf ins, slot;
2781 gdb_byte ibuf[XTENSA_ISA_BSZ];
2782 CORE_ADDR ia, bt, ba;
2783 xtensa_format ifmt;
2784 int ilen, islots, is;
2785 xtensa_opcode opc;
2786 int insn_num = 0;
2787 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2788
2789 uint32_t at, as, offset;
2790
2791 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2792 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2793
2794 isa = xtensa_default_isa;
2795 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2796 ins = xtensa_insnbuf_alloc (isa);
2797 slot = xtensa_insnbuf_alloc (isa);
2798 ba = 0;
2799 ia = current_pc;
2800 bt = ia;
2801
2802 a0_was_saved = 0;
2803 a7_was_saved = 0;
2804 a11_was_saved = 0;
2805
2806 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2807 {
2808 if (ia + xtensa_isa_maxlength (isa) > bt)
2809 {
2810 ba = ia;
2811 bt = (ba + XTENSA_ISA_BSZ);
2812 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2813 return xtNoExceptionHandler;
2814 }
2815 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2816 ifmt = xtensa_format_decode (isa, ins);
2817 if (ifmt == XTENSA_UNDEFINED)
2818 return xtNoExceptionHandler;
2819 ilen = xtensa_format_length (isa, ifmt);
2820 if (ilen == XTENSA_UNDEFINED)
2821 return xtNoExceptionHandler;
2822 islots = xtensa_format_num_slots (isa, ifmt);
2823 if (islots == XTENSA_UNDEFINED)
2824 return xtNoExceptionHandler;
2825 for (is = 0; is < islots; ++is)
2826 {
2827 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2828 return xtNoExceptionHandler;
2829 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2830 if (opc == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 switch (call0_classify_opcode (isa, opc))
2833 {
2834 case c0opc_illegal:
2835 case c0opc_flow:
2836 case c0opc_entry:
2837 case c0opc_break:
2838 /* We expect none of them here. */
2839 return xtNoExceptionHandler;
2840 case c0opc_l32e:
2841 func = execute_l32e;
2842 break;
2843 case c0opc_s32e:
2844 func = execute_s32e;
2845 break;
2846 case c0opc_rfwo: /* RFWO. */
2847 /* Here, we return from WindowOverflow handler and,
2848 if we stopped at the very beginning, which means
2849 A0 was saved, we have to restore it now. */
2850 if (a0_was_saved)
2851 {
2852 int arreg = arreg_number (gdbarch,
2853 gdbarch_tdep (gdbarch)->a0_base,
2854 wb);
2855 xtensa_write_register (arreg, a0_saved);
2856 }
2857 return xtWindowOverflow;
2858 case c0opc_rfwu: /* RFWU. */
2859 /* Here, we return from WindowUnderflow handler.
2860 Let's see if either A7 or A11 has to be restored. */
2861 if (WindowUnderflow12)
2862 {
2863 if (a11_was_saved)
2864 {
2865 int arreg = arreg_number (gdbarch,
2866 gdbarch_tdep (gdbarch)->a0_base + 11,
2867 wb);
2868 xtensa_write_register (arreg, a11_saved);
2869 }
2870 }
2871 else if (a7_was_saved)
2872 {
2873 int arreg = arreg_number (gdbarch,
2874 gdbarch_tdep (gdbarch)->a0_base + 7,
2875 wb);
2876 xtensa_write_register (arreg, a7_saved);
2877 }
2878 return xtWindowUnderflow;
2879 default: /* Simply skip this insns. */
2880 continue;
2881 }
2882
2883 /* Decode arguments for L32E / S32E and simulate their execution. */
2884 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2885 return xtNoExceptionHandler;
2886 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2887 return xtNoExceptionHandler;
2888 if (xtensa_operand_decode (isa, opc, 0, &at))
2889 return xtNoExceptionHandler;
2890 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2891 return xtNoExceptionHandler;
2892 if (xtensa_operand_decode (isa, opc, 1, &as))
2893 return xtNoExceptionHandler;
2894 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_decode (isa, opc, 2, &offset))
2897 return xtNoExceptionHandler;
2898
2899 (*func) (gdbarch, at, as, offset, wb);
2900 }
2901
2902 ia += ilen;
2903 }
2904 return xtNoExceptionHandler;
2905 }
2906
2907 /* Handle Window Overflow / Underflow exception frames. */
2908
2909 static void
2910 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2911 xtensa_frame_cache_t *cache,
2912 CORE_ADDR pc)
2913 {
2914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2915 CORE_ADDR ps, wb, ws, ra;
2916 int epc1_regnum, i, regnum;
2917 xtensa_exception_handler_t eh_type;
2918
2919 /* Read PS, WB, and WS from the hardware. Note that PS register
2920 must be present, if Windowed ABI is supported. */
2921 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2922 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2923 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2924
2925 /* Execute all the remaining instructions from Window Interrupt Handler
2926 by simulating them on the remote protocol level. On return, set the
2927 type of Xtensa Window Interrupt Handler, or report an error. */
2928 eh_type = execute_code (gdbarch, pc, wb);
2929 if (eh_type == xtNoExceptionHandler)
2930 error (_("\
2931 Unable to decode Xtensa Window Interrupt Handler's code."));
2932
2933 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2934 cache->call0 = 0; /* It's Windowed ABI. */
2935
2936 /* All registers for the cached frame will be alive. */
2937 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2938 cache->wd.aregs[i] = -1;
2939
2940 if (eh_type == xtWindowOverflow)
2941 cache->wd.ws = ws ^ (1 << wb);
2942 else /* eh_type == xtWindowUnderflow. */
2943 cache->wd.ws = ws | (1 << wb);
2944
2945 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2946 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2947 cache->wd.wb);
2948 ra = xtensa_read_register (regnum);
2949 cache->wd.callsize = WINSIZE (ra);
2950 cache->prev_sp = xtensa_read_register (regnum + 1);
2951 /* Set regnum to a frame pointer of the frame being cached. */
2952 regnum = xtensa_scan_prologue (gdbarch, pc);
2953 regnum = arreg_number (gdbarch,
2954 gdbarch_tdep (gdbarch)->a0_base + regnum,
2955 cache->wd.wb);
2956 cache->base = get_frame_register_unsigned (this_frame, regnum);
2957
2958 /* Read PC of interrupted function from EPC1 register. */
2959 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2960 if (epc1_regnum < 0)
2961 error(_("Unable to read Xtensa register EPC1"));
2962 cache->ra = xtensa_read_register (epc1_regnum);
2963 cache->pc = get_frame_func (this_frame);
2964 }
2965
2966
2967 /* Skip function prologue.
2968
2969 Return the pc of the first instruction after prologue. GDB calls this to
2970 find the address of the first line of the function or (if there is no line
2971 number information) to skip the prologue for planting breakpoints on
2972 function entries. Use debug info (if present) or prologue analysis to skip
2973 the prologue to achieve reliable debugging behavior. For windowed ABI,
2974 only the 'entry' instruction is skipped. It is not strictly necessary to
2975 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2976 backtrace at any point in the prologue, however certain potential hazards
2977 are avoided and a more "normal" debugging experience is ensured by
2978 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2979 For example, if we don't skip the prologue:
2980 - Some args may not yet have been saved to the stack where the debug
2981 info expects to find them (true anyway when only 'entry' is skipped);
2982 - Software breakpoints ('break' instrs) may not have been unplanted
2983 when the prologue analysis is done on initializing the frame cache,
2984 and breaks in the prologue will throw off the analysis.
2985
2986 If we have debug info ( line-number info, in particular ) we simply skip
2987 the code associated with the first function line effectively skipping
2988 the prologue code. It works even in cases like
2989
2990 int main()
2991 { int local_var = 1;
2992 ....
2993 }
2994
2995 because, for this source code, both Xtensa compilers will generate two
2996 separate entries ( with the same line number ) in dwarf line-number
2997 section to make sure there is a boundary between the prologue code and
2998 the rest of the function.
2999
3000 If there is no debug info, we need to analyze the code. */
3001
3002 /* #define DONT_SKIP_PROLOGUE */
3003
3004 static CORE_ADDR
3005 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3006 {
3007 struct symtab_and_line prologue_sal;
3008 CORE_ADDR body_pc;
3009
3010 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3011
3012 #if DONT_SKIP_PROLOGUE
3013 return start_pc;
3014 #endif
3015
3016 /* Try to find first body line from debug info. */
3017
3018 prologue_sal = find_pc_line (start_pc, 0);
3019 if (prologue_sal.line != 0) /* Found debug info. */
3020 {
3021 /* In Call0, it is possible to have a function with only one instruction
3022 ('ret') resulting from a one-line optimized function that does nothing.
3023 In that case, prologue_sal.end may actually point to the start of the
3024 next function in the text section, causing a breakpoint to be set at
3025 the wrong place. Check, if the end address is within a different
3026 function, and if so return the start PC. We know we have symbol
3027 information. */
3028
3029 CORE_ADDR end_func;
3030
3031 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3032 && call0_ret (start_pc, prologue_sal.end))
3033 return start_pc;
3034
3035 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3036 if (end_func != start_pc)
3037 return start_pc;
3038
3039 return prologue_sal.end;
3040 }
3041
3042 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3043 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3044 xtensa_alloc_frame_cache (0));
3045 return body_pc != 0 ? body_pc : start_pc;
3046 }
3047
3048 /* Verify the current configuration. */
3049 static void
3050 xtensa_verify_config (struct gdbarch *gdbarch)
3051 {
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053 string_file log;
3054
3055 /* Verify that we got a reasonable number of AREGS. */
3056 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3057 log.printf (_("\
3058 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3059 tdep->num_aregs);
3060
3061 /* Verify that certain registers exist. */
3062
3063 if (tdep->pc_regnum == -1)
3064 log.printf (_("\n\tpc_regnum: No PC register"));
3065 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3066 log.printf (_("\n\tps_regnum: No PS register"));
3067
3068 if (tdep->isa_use_windowed_registers)
3069 {
3070 if (tdep->wb_regnum == -1)
3071 log.printf (_("\n\twb_regnum: No WB register"));
3072 if (tdep->ws_regnum == -1)
3073 log.printf (_("\n\tws_regnum: No WS register"));
3074 if (tdep->ar_base == -1)
3075 log.printf (_("\n\tar_base: No AR registers"));
3076 }
3077
3078 if (tdep->a0_base == -1)
3079 log.printf (_("\n\ta0_base: No Ax registers"));
3080
3081 if (!log.empty ())
3082 internal_error (__FILE__, __LINE__,
3083 _("the following are invalid: %s"), log.c_str ());
3084 }
3085
3086
3087 /* Derive specific register numbers from the array of registers. */
3088
3089 static void
3090 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3091 {
3092 xtensa_register_t* rmap;
3093 int n, max_size = 4;
3094
3095 tdep->num_regs = 0;
3096 tdep->num_nopriv_regs = 0;
3097
3098 /* Special registers 0..255 (core). */
3099 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3100 /* User registers 0..255. */
3101 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3102
3103 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3104 {
3105 if (rmap->target_number == 0x0020)
3106 tdep->pc_regnum = n;
3107 else if (rmap->target_number == 0x0100)
3108 tdep->ar_base = n;
3109 else if (rmap->target_number == 0x0000)
3110 tdep->a0_base = n;
3111 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3112 tdep->wb_regnum = n;
3113 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3114 tdep->ws_regnum = n;
3115 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3116 tdep->debugcause_regnum = n;
3117 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3118 tdep->exccause_regnum = n;
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3120 tdep->excvaddr_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3122 tdep->lbeg_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3124 tdep->lend_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3126 tdep->lcount_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3128 tdep->sar_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3130 tdep->litbase_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3132 tdep->ps_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3134 tdep->threadptr_regnum = n;
3135 #if 0
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3137 tdep->interrupt_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3139 tdep->interrupt2_regnum = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3141 tdep->cpenable_regnum = n;
3142 #endif
3143
3144 if (rmap->byte_size > max_size)
3145 max_size = rmap->byte_size;
3146 if (rmap->mask != 0 && tdep->num_regs == 0)
3147 tdep->num_regs = n;
3148 /* Find out out how to deal with priveleged registers.
3149
3150 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3151 && tdep->num_nopriv_regs == 0)
3152 tdep->num_nopriv_regs = n;
3153 */
3154 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3155 && tdep->num_regs == 0)
3156 tdep->num_regs = n;
3157 }
3158
3159 /* Number of pseudo registers. */
3160 tdep->num_pseudo_regs = n - tdep->num_regs;
3161
3162 /* Empirically determined maximum sizes. */
3163 tdep->max_register_raw_size = max_size;
3164 tdep->max_register_virtual_size = max_size;
3165 }
3166
3167 /* Module "constructor" function. */
3168
3169 extern struct gdbarch_tdep xtensa_tdep;
3170
3171 static struct gdbarch *
3172 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3173 {
3174 struct gdbarch_tdep *tdep;
3175 struct gdbarch *gdbarch;
3176
3177 DEBUGTRACE ("gdbarch_init()\n");
3178
3179 if (!xtensa_default_isa)
3180 xtensa_default_isa = xtensa_isa_init (0, 0);
3181
3182 /* We have to set the byte order before we call gdbarch_alloc. */
3183 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3184
3185 tdep = &xtensa_tdep;
3186 gdbarch = gdbarch_alloc (&info, tdep);
3187 xtensa_derive_tdep (tdep);
3188
3189 /* Verify our configuration. */
3190 xtensa_verify_config (gdbarch);
3191 xtensa_session_once_reported = 0;
3192
3193 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3194 set_gdbarch_wchar_signed (gdbarch, 0);
3195
3196 /* Pseudo-Register read/write. */
3197 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3198 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3199
3200 /* Set target information. */
3201 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3202 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3203 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3204 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3205 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3206
3207 /* Renumber registers for known formats (stabs and dwarf2). */
3208 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3209 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3210
3211 /* We provide our own function to get register information. */
3212 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3213 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3214
3215 /* To call functions from GDB using dummy frame. */
3216 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3217
3218 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3219
3220 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3221
3222 /* Advance PC across any prologue instructions to reach "real" code. */
3223 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3224
3225 /* Stack grows downward. */
3226 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3227
3228 /* Set breakpoints. */
3229 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3230 xtensa_breakpoint_kind_from_pc);
3231 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3232 xtensa_sw_breakpoint_from_kind);
3233
3234 /* After breakpoint instruction or illegal instruction, pc still
3235 points at break instruction, so don't decrement. */
3236 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3237
3238 /* We don't skip args. */
3239 set_gdbarch_frame_args_skip (gdbarch, 0);
3240
3241 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3242
3243 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3244
3245 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3246
3247 /* Frame handling. */
3248 frame_base_set_default (gdbarch, &xtensa_frame_base);
3249 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3250 dwarf2_append_unwinders (gdbarch);
3251
3252 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3253
3254 xtensa_add_reggroups (gdbarch);
3255 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3256
3257 set_gdbarch_iterate_over_regset_sections
3258 (gdbarch, xtensa_iterate_over_regset_sections);
3259
3260 set_solib_svr4_fetch_link_map_offsets
3261 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3262
3263 /* Hook in the ABI-specific overrides, if they have been registered. */
3264 gdbarch_init_osabi (info, gdbarch);
3265
3266 return gdbarch;
3267 }
3268
3269 static void
3270 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3271 {
3272 error (_("xtensa_dump_tdep(): not implemented"));
3273 }
3274
3275 void
3276 _initialize_xtensa_tdep (void)
3277 {
3278 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3279 xtensa_init_reggroups ();
3280
3281 add_setshow_zuinteger_cmd ("xtensa",
3282 class_maintenance,
3283 &xtensa_debug_level,
3284 _("Set Xtensa debugging."),
3285 _("Show Xtensa debugging."), _("\
3286 When non-zero, Xtensa-specific debugging is enabled. \
3287 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3288 NULL,
3289 NULL,
3290 &setdebuglist, &showdebuglist);
3291 }
This page took 0.148953 seconds and 5 git commands to generate.