Fix a few typos
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55 #include <algorithm>
56
57
58 static unsigned int xtensa_debug_level = 0;
59
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
79
80
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
85
86
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96 #define TX_PS 0x20
97
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
113
114 #define XTENSA_ENTRY_LENGTH 3
115
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
122
123 static int
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125 {
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131 }
132
133 /* Convert a live A-register number to the corresponding AR-register
134 number. */
135 static int
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int arreg;
140
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
144
145 return arreg + tdep->ar_base;
146 }
147
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150 static int
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152 {
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
161 }
162
163 /* Read Xtensa register directly from the hardware. */
164 static unsigned long
165 xtensa_read_register (int regnum)
166 {
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171 }
172
173 /* Write Xtensa register directly to the hardware. */
174 static void
175 xtensa_write_register (int regnum, ULONGEST value)
176 {
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178 }
179
180 /* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191 static int
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
193 {
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
195 int winsize = 4;
196 int insn;
197 gdb_byte buf[4];
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
213 if (byte_order == BFD_ENDIAN_LITTLE)
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
222 }
223 return winsize;
224 }
225
226
227 /* REGISTER INFORMATION */
228
229 /* Find register by name. */
230 static int
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
232 {
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243 }
244
245 /* Returns the name of a register. */
246 static const char *
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
248 {
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
253
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256 }
257
258 /* Return the type of a register. Create a new type, if necessary. */
259
260 static struct type *
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
271
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
275
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
279 {
280 xtensa_register_t* reg = &tdep->regmap[regnum];
281
282 /* Set ctype for this register (only the first time). */
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
289 /* We always use the memory representation,
290 even if the register width is smaller. */
291 switch (size)
292 {
293 case 1:
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
295 break;
296
297 case 2:
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
299 break;
300
301 case 4:
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
303 break;
304
305 case 8:
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
307 break;
308
309 case 16:
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
311 break;
312
313 default:
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
320 char *name = xstrprintf ("int%d", size * 8);
321
322 tp = XNEW (struct ctype_cache);
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
325 tp->size = size;
326 tp->virtual_type
327 = arch_integer_type (gdbarch, size * 8, 1, name);
328 xfree (name);
329 }
330
331 reg->ctype = tp->virtual_type;
332 }
333 }
334 return reg->ctype;
335 }
336
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
338 return 0;
339 }
340
341
342 /* Return the 'local' register number for stubs, dwarf2, etc.
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
345
346 static int
347 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
348 {
349 int i;
350
351 if (regnum >= 0 && regnum < 16)
352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
353
354 for (i = 0;
355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
356 i++)
357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
358 return i;
359
360 return -1;
361 }
362
363
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
368
369 static void
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
372 {
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
445 }
446 }
447 }
448
449
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
452
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
456 {
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
477 if (r >= 0)
478 {
479 enum register_status status;
480 ULONGEST val;
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
539
540 return REG_VALID;
541 }
542
543
544 /* Read pseudo registers. */
545
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551 {
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
563 enum register_status status;
564
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 buf);
568 if (status != REG_VALID)
569 return status;
570 regnum = arreg_number (gdbarch, regnum,
571 extract_unsigned_integer (buf, 4, byte_order));
572 }
573
574 /* We can always read non-pseudo registers. */
575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
576 return regcache_raw_read (regcache, regnum, buffer);
577
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
580
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
587 return REG_VALID;
588 }
589 /* Pseudo registers. */
590 else if (regnum >= 0
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
593 {
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
597
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
605 return REG_VALID;
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
616 return REG_VALID;
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
623 return REG_VALID;
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
630
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
633 }
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637 }
638
639
640 /* Write pseudo registers. */
641
642 static void
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647 {
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
652
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
657 {
658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
659
660 regcache_raw_read (regcache,
661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
662 regnum = arreg_number (gdbarch, regnum,
663 extract_unsigned_integer (buf, 4, byte_order));
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
669 regcache_raw_write (regcache, regnum, buffer);
670
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
678 /* Pseudo registers. */
679 else if (regnum >= 0
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
682 {
683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
684 xtensa_register_type_t type = reg->type;
685 int flags = gdbarch_tdep (gdbarch)->target_flags;
686
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
694 xtensa_register_name (gdbarch, regnum));
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
721 xtensa_register_write_masked (regcache, reg, buffer);
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731 }
732
733 static struct reggroup *xtensa_ar_reggroup;
734 static struct reggroup *xtensa_user_reggroup;
735 static struct reggroup *xtensa_vectra_reggroup;
736 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
737
738 static void
739 xtensa_init_reggroups (void)
740 {
741 int i;
742 char cpname[] = "cp0";
743
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
747
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 {
750 cpname[2] = '0' + i;
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
752 }
753 }
754
755 static void
756 xtensa_add_reggroups (struct gdbarch *gdbarch)
757 {
758 int i;
759
760 /* Predefined groups. */
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
768
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
776 }
777
778 static int
779 xtensa_coprocessor_register_group (struct reggroup *group)
780 {
781 int i;
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
785 return i;
786
787 return -1;
788 }
789
790 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
793
794 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
796
797 static int
798 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
799 int regnum,
800 struct reggroup *group)
801 {
802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
805 int cp_number;
806
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
810 return 1;
811
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
814
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
816 return 0;
817 if (group == all_reggroup)
818 return 1;
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
831 if (group == restore_reggroup)
832 return (regnum < gdbarch_num_regs (gdbarch)
833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
834 cp_number = xtensa_coprocessor_register_group (group);
835 if (cp_number >= 0)
836 return rg & (xtRegisterGroupCP0 << cp_number);
837 else
838 return 1;
839 }
840
841
842 /* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
845
846 static void
847 xtensa_supply_gregset (const struct regset *regset,
848 struct regcache *rc,
849 int regnum,
850 const void *gregs,
851 size_t len)
852 {
853 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
854 struct gdbarch *gdbarch = get_regcache_arch (rc);
855 int i;
856
857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
858
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
865 (char *) &regs->windowbase);
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
868 (char *) &regs->windowstart);
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
871 (char *) &regs->lbeg);
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
874 (char *) &regs->lend);
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
877 (char *) &regs->lcount);
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
880 (char *) &regs->sar);
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
884 regcache_raw_supply (rc, regnum,
885 (char *) &regs->ar[regnum - gdbarch_tdep
886 (gdbarch)->ar_base]);
887 else if (regnum == -1)
888 {
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
891 (char *) &regs->ar[i]);
892 }
893 }
894
895
896 /* Xtensa register set. */
897
898 static struct regset
899 xtensa_gregset =
900 {
901 NULL,
902 xtensa_supply_gregset
903 };
904
905
906 /* Iterate over supported core file register note sections. */
907
908 static void
909 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
911 void *cb_data,
912 const struct regcache *regcache)
913 {
914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
915
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
917 NULL, cb_data);
918 }
919
920
921 /* Handling frames. */
922
923 /* Number of registers to save in case of Windowed ABI. */
924 #define XTENSA_NUM_SAVED_AREGS 12
925
926 /* Frame cache part for Windowed ABI. */
927 typedef struct xtensa_windowed_frame_cache
928 {
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
935
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
939 } xtensa_windowed_frame_cache_t;
940
941 /* Call0 ABI Definitions. */
942
943 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
944 analysis. */
945 #define C0_NREGS 16 /* Number of A-registers to track. */
946 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
947 #define C0_SP 1 /* Register used as SP. */
948 #define C0_FP 15 /* Register used as FP. */
949 #define C0_RA 0 /* Register used as return address. */
950 #define C0_ARGS 2 /* Register used as first arg/retval. */
951 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
952
953 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
954 A-register where the current content of the reg came from (in terms
955 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
956 mean that the orignal content of the register was saved to the stack.
957 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
958 know where SP will end up until the entire prologue has been analyzed. */
959
960 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
961 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
962 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
963
964 extern xtensa_isa xtensa_default_isa;
965
966 typedef struct xtensa_c0reg
967 {
968 int fr_reg; /* original register from which register content
969 is derived, or C0_CONST, or C0_INEXP. */
970 int fr_ofs; /* constant offset from reg, or immediate value. */
971 int to_stk; /* offset from original SP to register (4-byte aligned),
972 or C0_NOSTK if register has not been saved. */
973 } xtensa_c0reg_t;
974
975 /* Frame cache part for Call0 ABI. */
976 typedef struct xtensa_call0_frame_cache
977 {
978 int c0_frmsz; /* Stack frame size. */
979 int c0_hasfp; /* Current frame uses frame pointer. */
980 int fp_regnum; /* A-register used as FP. */
981 int c0_fp; /* Actual value of frame pointer. */
982 int c0_fpalign; /* Dinamic adjustment for the stack
983 pointer. It's an AND mask. Zero,
984 if alignment was not adjusted. */
985 int c0_old_sp; /* In case of dynamic adjustment, it is
986 a register holding unaligned sp.
987 C0_INEXP, when undefined. */
988 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
989 stack offset. C0_NOSTK otherwise. */
990
991 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
992 } xtensa_call0_frame_cache_t;
993
994 typedef struct xtensa_frame_cache
995 {
996 CORE_ADDR base; /* Stack pointer of this frame. */
997 CORE_ADDR pc; /* PC of this frame at the function entry point. */
998 CORE_ADDR ra; /* The raw return address of this frame. */
999 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1000 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1001 int call0; /* It's a call0 framework (else windowed). */
1002 union
1003 {
1004 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1005 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1006 };
1007 } xtensa_frame_cache_t;
1008
1009
1010 static struct xtensa_frame_cache *
1011 xtensa_alloc_frame_cache (int windowed)
1012 {
1013 xtensa_frame_cache_t *cache;
1014 int i;
1015
1016 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1017
1018 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1019
1020 cache->base = 0;
1021 cache->pc = 0;
1022 cache->ra = 0;
1023 cache->ps = 0;
1024 cache->prev_sp = 0;
1025 cache->call0 = !windowed;
1026 if (cache->call0)
1027 {
1028 cache->c0.c0_frmsz = -1;
1029 cache->c0.c0_hasfp = 0;
1030 cache->c0.fp_regnum = -1;
1031 cache->c0.c0_fp = -1;
1032 cache->c0.c0_fpalign = 0;
1033 cache->c0.c0_old_sp = C0_INEXP;
1034 cache->c0.c0_sp_ofs = C0_NOSTK;
1035
1036 for (i = 0; i < C0_NREGS; i++)
1037 {
1038 cache->c0.c0_rt[i].fr_reg = i;
1039 cache->c0.c0_rt[i].fr_ofs = 0;
1040 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1041 }
1042 }
1043 else
1044 {
1045 cache->wd.wb = 0;
1046 cache->wd.ws = 0;
1047 cache->wd.callsize = -1;
1048
1049 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1050 cache->wd.aregs[i] = -1;
1051 }
1052 return cache;
1053 }
1054
1055
1056 static CORE_ADDR
1057 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1058 {
1059 return address & ~15;
1060 }
1061
1062
1063 static CORE_ADDR
1064 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065 {
1066 gdb_byte buf[8];
1067 CORE_ADDR pc;
1068
1069 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1070 host_address_to_string (next_frame));
1071
1072 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1073 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1074
1075 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1076
1077 return pc;
1078 }
1079
1080
1081 static struct frame_id
1082 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1083 {
1084 CORE_ADDR pc, fp;
1085
1086 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1087
1088 pc = get_frame_pc (this_frame);
1089 fp = get_frame_register_unsigned
1090 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1091
1092 /* Make dummy frame ID unique by adding a constant. */
1093 return frame_id_build (fp + SP_ALIGNMENT, pc);
1094 }
1095
1096 /* Returns true, if instruction to execute next is unique to Xtensa Window
1097 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1098
1099 static int
1100 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1101 {
1102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1103 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1104 unsigned int code;
1105
1106 if (byte_order == BFD_ENDIAN_BIG)
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0xf000ff00;
1110 if ((code == 0x00009000) || (code == 0x00009400))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0xffffff00;
1114 return ((code == 0x00430000) || (code == 0x00530000));
1115 }
1116 else
1117 {
1118 /* Check, if this is L32E or S32E. */
1119 code = insn & 0x00ff000f;
1120 if ((code == 0x090000) || (code == 0x490000))
1121 return 1;
1122 /* Check, if this is RFWU or RFWO. */
1123 code = insn & 0x00ffffff;
1124 return ((code == 0x00003400) || (code == 0x00003500));
1125 }
1126 }
1127
1128 /* Returns the best guess about which register is a frame pointer
1129 for the function containing CURRENT_PC. */
1130
1131 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1132 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1133
1134 static unsigned int
1135 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1136 {
1137 #define RETURN_FP goto done
1138
1139 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1140 CORE_ADDR start_addr;
1141 xtensa_isa isa;
1142 xtensa_insnbuf ins, slot;
1143 gdb_byte ibuf[XTENSA_ISA_BSZ];
1144 CORE_ADDR ia, bt, ba;
1145 xtensa_format ifmt;
1146 int ilen, islots, is;
1147 xtensa_opcode opc;
1148 const char *opcname;
1149
1150 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1151 if (start_addr == 0)
1152 return fp_regnum;
1153
1154 if (!xtensa_default_isa)
1155 xtensa_default_isa = xtensa_isa_init (0, 0);
1156 isa = xtensa_default_isa;
1157 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1158 ins = xtensa_insnbuf_alloc (isa);
1159 slot = xtensa_insnbuf_alloc (isa);
1160 ba = 0;
1161
1162 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1163 {
1164 if (ia + xtensa_isa_maxlength (isa) > bt)
1165 {
1166 ba = ia;
1167 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1168 ? ba + XTENSA_ISA_BSZ : current_pc;
1169 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1170 RETURN_FP;
1171 }
1172
1173 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1174 ifmt = xtensa_format_decode (isa, ins);
1175 if (ifmt == XTENSA_UNDEFINED)
1176 RETURN_FP;
1177 ilen = xtensa_format_length (isa, ifmt);
1178 if (ilen == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180 islots = xtensa_format_num_slots (isa, ifmt);
1181 if (islots == XTENSA_UNDEFINED)
1182 RETURN_FP;
1183
1184 for (is = 0; is < islots; ++is)
1185 {
1186 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1187 RETURN_FP;
1188
1189 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1190 if (opc == XTENSA_UNDEFINED)
1191 RETURN_FP;
1192
1193 opcname = xtensa_opcode_name (isa, opc);
1194
1195 if (strcasecmp (opcname, "mov.n") == 0
1196 || strcasecmp (opcname, "or") == 0)
1197 {
1198 unsigned int register_operand;
1199
1200 /* Possible candidate for setting frame pointer
1201 from A1. This is what we are looking for. */
1202
1203 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1204 is, slot, &register_operand) != 0)
1205 RETURN_FP;
1206 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1207 RETURN_FP;
1208 if (register_operand == 1) /* Mov{.n} FP A1. */
1209 {
1210 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1211 &register_operand) != 0)
1212 RETURN_FP;
1213 if (xtensa_operand_decode (isa, opc, 0,
1214 &register_operand) != 0)
1215 RETURN_FP;
1216
1217 fp_regnum
1218 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1219 RETURN_FP;
1220 }
1221 }
1222
1223 if (
1224 /* We have problems decoding the memory. */
1225 opcname == NULL
1226 || strcasecmp (opcname, "ill") == 0
1227 || strcasecmp (opcname, "ill.n") == 0
1228 /* Hit planted breakpoint. */
1229 || strcasecmp (opcname, "break") == 0
1230 || strcasecmp (opcname, "break.n") == 0
1231 /* Flow control instructions finish prologue. */
1232 || xtensa_opcode_is_branch (isa, opc) > 0
1233 || xtensa_opcode_is_jump (isa, opc) > 0
1234 || xtensa_opcode_is_loop (isa, opc) > 0
1235 || xtensa_opcode_is_call (isa, opc) > 0
1236 || strcasecmp (opcname, "simcall") == 0
1237 || strcasecmp (opcname, "syscall") == 0)
1238 /* Can not continue analysis. */
1239 RETURN_FP;
1240 }
1241 }
1242 done:
1243 xtensa_insnbuf_free(isa, slot);
1244 xtensa_insnbuf_free(isa, ins);
1245 return fp_regnum;
1246 }
1247
1248 /* The key values to identify the frame using "cache" are
1249
1250 cache->base = SP (or best guess about FP) of this frame;
1251 cache->pc = entry-PC (entry point of the frame function);
1252 cache->prev_sp = SP of the previous frame. */
1253
1254 static void
1255 call0_frame_cache (struct frame_info *this_frame,
1256 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1257
1258 static void
1259 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1260 xtensa_frame_cache_t *cache,
1261 CORE_ADDR pc);
1262
1263 static struct xtensa_frame_cache *
1264 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1265 {
1266 xtensa_frame_cache_t *cache;
1267 CORE_ADDR ra, wb, ws, pc, sp, ps;
1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1270 unsigned int fp_regnum;
1271 int windowed, ps_regnum;
1272
1273 if (*this_cache)
1274 return (struct xtensa_frame_cache *) *this_cache;
1275
1276 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1277 ps_regnum = gdbarch_ps_regnum (gdbarch);
1278 ps = (ps_regnum >= 0
1279 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1280
1281 windowed = windowing_enabled (gdbarch, ps);
1282
1283 /* Get pristine xtensa-frame. */
1284 cache = xtensa_alloc_frame_cache (windowed);
1285 *this_cache = cache;
1286
1287 if (windowed)
1288 {
1289 LONGEST op1;
1290
1291 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1292 wb = get_frame_register_unsigned (this_frame,
1293 gdbarch_tdep (gdbarch)->wb_regnum);
1294 ws = get_frame_register_unsigned (this_frame,
1295 gdbarch_tdep (gdbarch)->ws_regnum);
1296
1297 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1298 && XTENSA_IS_ENTRY (gdbarch, op1))
1299 {
1300 int callinc = CALLINC (ps);
1301 ra = get_frame_register_unsigned
1302 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1303
1304 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1305 cache->wd.callsize = 0;
1306 cache->wd.wb = wb;
1307 cache->wd.ws = ws;
1308 cache->prev_sp = get_frame_register_unsigned
1309 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1310
1311 /* This only can be the outermost frame since we are
1312 just about to execute ENTRY. SP hasn't been set yet.
1313 We can assume any frame size, because it does not
1314 matter, and, let's fake frame base in cache. */
1315 cache->base = cache->prev_sp - 16;
1316
1317 cache->pc = pc;
1318 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1319 cache->ps = (ps & ~PS_CALLINC_MASK)
1320 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1321
1322 return cache;
1323 }
1324 else
1325 {
1326 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1327 ra = get_frame_register_unsigned (this_frame,
1328 gdbarch_tdep (gdbarch)->a0_base);
1329 cache->wd.callsize = WINSIZE (ra);
1330 cache->wd.wb = (wb - cache->wd.callsize / 4)
1331 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1332 cache->wd.ws = ws & ~(1 << wb);
1333
1334 cache->pc = get_frame_func (this_frame);
1335 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1336 cache->ps = (ps & ~PS_CALLINC_MASK)
1337 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1338 }
1339
1340 if (cache->wd.ws == 0)
1341 {
1342 int i;
1343
1344 /* Set A0...A3. */
1345 sp = get_frame_register_unsigned
1346 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1347
1348 for (i = 0; i < 4; i++, sp += 4)
1349 {
1350 cache->wd.aregs[i] = sp;
1351 }
1352
1353 if (cache->wd.callsize > 4)
1354 {
1355 /* Set A4...A7/A11. */
1356 /* Get the SP of the frame previous to the previous one.
1357 To achieve this, we have to dereference SP twice. */
1358 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1359 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1360 sp -= cache->wd.callsize * 4;
1361
1362 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1363 {
1364 cache->wd.aregs[i] = sp;
1365 }
1366 }
1367 }
1368
1369 if ((cache->prev_sp == 0) && ( ra != 0 ))
1370 /* If RA is equal to 0 this frame is an outermost frame. Leave
1371 cache->prev_sp unchanged marking the boundary of the frame stack. */
1372 {
1373 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1374 {
1375 /* Register window overflow already happened.
1376 We can read caller's SP from the proper spill loction. */
1377 sp = get_frame_register_unsigned
1378 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1379 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1380 }
1381 else
1382 {
1383 /* Read caller's frame SP directly from the previous window. */
1384 int regnum = arreg_number
1385 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1386 cache->wd.wb);
1387
1388 cache->prev_sp = xtensa_read_register (regnum);
1389 }
1390 }
1391 }
1392 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1393 {
1394 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1395
1396 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1397 /* Everything was set already, including cache->base. */
1398 return cache;
1399 }
1400 else /* Call0 framework. */
1401 {
1402 call0_frame_cache (this_frame, cache, pc);
1403 fp_regnum = cache->c0.fp_regnum;
1404 }
1405
1406 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1407
1408 return cache;
1409 }
1410
1411 static int xtensa_session_once_reported = 1;
1412
1413 /* Report a problem with prologue analysis while doing backtracing.
1414 But, do it only once to avoid annoyng repeated messages. */
1415
1416 static void
1417 warning_once (void)
1418 {
1419 if (xtensa_session_once_reported == 0)
1420 warning (_("\
1421 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1422 This message will not be repeated in this session.\n"));
1423
1424 xtensa_session_once_reported = 1;
1425 }
1426
1427
1428 static void
1429 xtensa_frame_this_id (struct frame_info *this_frame,
1430 void **this_cache,
1431 struct frame_id *this_id)
1432 {
1433 struct xtensa_frame_cache *cache =
1434 xtensa_frame_cache (this_frame, this_cache);
1435
1436 if (cache->prev_sp == 0)
1437 return;
1438
1439 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1440 }
1441
1442 static struct value *
1443 xtensa_frame_prev_register (struct frame_info *this_frame,
1444 void **this_cache,
1445 int regnum)
1446 {
1447 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1448 struct xtensa_frame_cache *cache;
1449 ULONGEST saved_reg = 0;
1450 int done = 1;
1451
1452 if (*this_cache == NULL)
1453 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1454 cache = (struct xtensa_frame_cache *) *this_cache;
1455
1456 if (regnum ==gdbarch_pc_regnum (gdbarch))
1457 saved_reg = cache->ra;
1458 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1459 saved_reg = cache->prev_sp;
1460 else if (!cache->call0)
1461 {
1462 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1463 saved_reg = cache->wd.ws;
1464 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1465 saved_reg = cache->wd.wb;
1466 else if (regnum == gdbarch_ps_regnum (gdbarch))
1467 saved_reg = cache->ps;
1468 else
1469 done = 0;
1470 }
1471 else
1472 done = 0;
1473
1474 if (done)
1475 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1476
1477 if (!cache->call0) /* Windowed ABI. */
1478 {
1479 /* Convert A-register numbers to AR-register numbers,
1480 if we deal with A-register. */
1481 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1482 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1483 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1484
1485 /* Check, if we deal with AR-register saved on stack. */
1486 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1487 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1488 + gdbarch_tdep (gdbarch)->num_aregs))
1489 {
1490 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1491
1492 if (areg >= 0
1493 && areg < XTENSA_NUM_SAVED_AREGS
1494 && cache->wd.aregs[areg] != -1)
1495 return frame_unwind_got_memory (this_frame, regnum,
1496 cache->wd.aregs[areg]);
1497 }
1498 }
1499 else /* Call0 ABI. */
1500 {
1501 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1502 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1503 + C0_NREGS))
1504 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1505
1506 if (reg < C0_NREGS)
1507 {
1508 CORE_ADDR spe;
1509 int stkofs;
1510
1511 /* If register was saved in the prologue, retrieve it. */
1512 stkofs = cache->c0.c0_rt[reg].to_stk;
1513 if (stkofs != C0_NOSTK)
1514 {
1515 /* Determine SP on entry based on FP. */
1516 spe = cache->c0.c0_fp
1517 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1518
1519 return frame_unwind_got_memory (this_frame, regnum,
1520 spe + stkofs);
1521 }
1522 }
1523 }
1524
1525 /* All other registers have been either saved to
1526 the stack or are still alive in the processor. */
1527
1528 return frame_unwind_got_register (this_frame, regnum, regnum);
1529 }
1530
1531
1532 static const struct frame_unwind
1533 xtensa_unwind =
1534 {
1535 NORMAL_FRAME,
1536 default_frame_unwind_stop_reason,
1537 xtensa_frame_this_id,
1538 xtensa_frame_prev_register,
1539 NULL,
1540 default_frame_sniffer
1541 };
1542
1543 static CORE_ADDR
1544 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1545 {
1546 struct xtensa_frame_cache *cache =
1547 xtensa_frame_cache (this_frame, this_cache);
1548
1549 return cache->base;
1550 }
1551
1552 static const struct frame_base
1553 xtensa_frame_base =
1554 {
1555 &xtensa_unwind,
1556 xtensa_frame_base_address,
1557 xtensa_frame_base_address,
1558 xtensa_frame_base_address
1559 };
1560
1561
1562 static void
1563 xtensa_extract_return_value (struct type *type,
1564 struct regcache *regcache,
1565 void *dst)
1566 {
1567 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1568 bfd_byte *valbuf = (bfd_byte *) dst;
1569 int len = TYPE_LENGTH (type);
1570 ULONGEST pc, wb;
1571 int callsize, areg;
1572 int offset = 0;
1573
1574 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1575
1576 gdb_assert(len > 0);
1577
1578 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1579 {
1580 /* First, we have to find the caller window in the register file. */
1581 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1582 callsize = extract_call_winsize (gdbarch, pc);
1583
1584 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1585 if (len > (callsize > 8 ? 8 : 16))
1586 internal_error (__FILE__, __LINE__,
1587 _("cannot extract return value of %d bytes long"),
1588 len);
1589
1590 /* Get the register offset of the return
1591 register (A2) in the caller window. */
1592 regcache_raw_read_unsigned
1593 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1594 areg = arreg_number (gdbarch,
1595 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1596 }
1597 else
1598 {
1599 /* No windowing hardware - Call0 ABI. */
1600 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1601 }
1602
1603 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1604
1605 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1606 offset = 4 - len;
1607
1608 for (; len > 0; len -= 4, areg++, valbuf += 4)
1609 {
1610 if (len < 4)
1611 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1612 else
1613 regcache_raw_read (regcache, areg, valbuf);
1614 }
1615 }
1616
1617
1618 static void
1619 xtensa_store_return_value (struct type *type,
1620 struct regcache *regcache,
1621 const void *dst)
1622 {
1623 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1624 const bfd_byte *valbuf = (const bfd_byte *) dst;
1625 unsigned int areg;
1626 ULONGEST pc, wb;
1627 int callsize;
1628 int len = TYPE_LENGTH (type);
1629 int offset = 0;
1630
1631 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1632
1633 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1634 {
1635 regcache_raw_read_unsigned
1636 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1637 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1638 callsize = extract_call_winsize (gdbarch, pc);
1639
1640 if (len > (callsize > 8 ? 8 : 16))
1641 internal_error (__FILE__, __LINE__,
1642 _("unimplemented for this length: %d"),
1643 TYPE_LENGTH (type));
1644 areg = arreg_number (gdbarch,
1645 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1646
1647 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1648 callsize, (int) wb);
1649 }
1650 else
1651 {
1652 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1653 }
1654
1655 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1656 offset = 4 - len;
1657
1658 for (; len > 0; len -= 4, areg++, valbuf += 4)
1659 {
1660 if (len < 4)
1661 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1662 else
1663 regcache_raw_write (regcache, areg, valbuf);
1664 }
1665 }
1666
1667
1668 static enum return_value_convention
1669 xtensa_return_value (struct gdbarch *gdbarch,
1670 struct value *function,
1671 struct type *valtype,
1672 struct regcache *regcache,
1673 gdb_byte *readbuf,
1674 const gdb_byte *writebuf)
1675 {
1676 /* Structures up to 16 bytes are returned in registers. */
1677
1678 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1679 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1680 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1681 && TYPE_LENGTH (valtype) > 16);
1682
1683 if (struct_return)
1684 return RETURN_VALUE_STRUCT_CONVENTION;
1685
1686 DEBUGTRACE ("xtensa_return_value(...)\n");
1687
1688 if (writebuf != NULL)
1689 {
1690 xtensa_store_return_value (valtype, regcache, writebuf);
1691 }
1692
1693 if (readbuf != NULL)
1694 {
1695 gdb_assert (!struct_return);
1696 xtensa_extract_return_value (valtype, regcache, readbuf);
1697 }
1698 return RETURN_VALUE_REGISTER_CONVENTION;
1699 }
1700
1701
1702 /* DUMMY FRAME */
1703
1704 static CORE_ADDR
1705 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1706 struct value *function,
1707 struct regcache *regcache,
1708 CORE_ADDR bp_addr,
1709 int nargs,
1710 struct value **args,
1711 CORE_ADDR sp,
1712 int struct_return,
1713 CORE_ADDR struct_addr)
1714 {
1715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1716 int i;
1717 int size, onstack_size;
1718 gdb_byte *buf = (gdb_byte *) alloca (16);
1719 CORE_ADDR ra, ps;
1720 struct argument_info
1721 {
1722 const bfd_byte *contents;
1723 int length;
1724 int onstack; /* onstack == 0 => in reg */
1725 int align; /* alignment */
1726 union
1727 {
1728 int offset; /* stack offset if on stack. */
1729 int regno; /* regno if in register. */
1730 } u;
1731 };
1732
1733 struct argument_info *arg_info =
1734 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1735
1736 CORE_ADDR osp = sp;
1737
1738 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1739
1740 if (xtensa_debug_level > 3)
1741 {
1742 int i;
1743 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1744 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1745 "struct_addr=0x%x\n",
1746 (int) sp, (int) struct_return, (int) struct_addr);
1747
1748 for (i = 0; i < nargs; i++)
1749 {
1750 struct value *arg = args[i];
1751 struct type *arg_type = check_typedef (value_type (arg));
1752 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1753 host_address_to_string (arg),
1754 TYPE_LENGTH (arg_type));
1755 switch (TYPE_CODE (arg_type))
1756 {
1757 case TYPE_CODE_INT:
1758 fprintf_unfiltered (gdb_stdlog, "int");
1759 break;
1760 case TYPE_CODE_STRUCT:
1761 fprintf_unfiltered (gdb_stdlog, "struct");
1762 break;
1763 default:
1764 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1765 break;
1766 }
1767 fprintf_unfiltered (gdb_stdlog, " %s\n",
1768 host_address_to_string (value_contents (arg)));
1769 }
1770 }
1771
1772 /* First loop: collect information.
1773 Cast into type_long. (This shouldn't happen often for C because
1774 GDB already does this earlier.) It's possible that GDB could
1775 do it all the time but it's harmless to leave this code here. */
1776
1777 size = 0;
1778 onstack_size = 0;
1779 i = 0;
1780
1781 if (struct_return)
1782 size = REGISTER_SIZE;
1783
1784 for (i = 0; i < nargs; i++)
1785 {
1786 struct argument_info *info = &arg_info[i];
1787 struct value *arg = args[i];
1788 struct type *arg_type = check_typedef (value_type (arg));
1789
1790 switch (TYPE_CODE (arg_type))
1791 {
1792 case TYPE_CODE_INT:
1793 case TYPE_CODE_BOOL:
1794 case TYPE_CODE_CHAR:
1795 case TYPE_CODE_RANGE:
1796 case TYPE_CODE_ENUM:
1797
1798 /* Cast argument to long if necessary as the mask does it too. */
1799 if (TYPE_LENGTH (arg_type)
1800 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1801 {
1802 arg_type = builtin_type (gdbarch)->builtin_long;
1803 arg = value_cast (arg_type, arg);
1804 }
1805 /* Aligment is equal to the type length for the basic types. */
1806 info->align = TYPE_LENGTH (arg_type);
1807 break;
1808
1809 case TYPE_CODE_FLT:
1810
1811 /* Align doubles correctly. */
1812 if (TYPE_LENGTH (arg_type)
1813 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1815 else
1816 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1817 break;
1818
1819 case TYPE_CODE_STRUCT:
1820 default:
1821 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1822 break;
1823 }
1824 info->length = TYPE_LENGTH (arg_type);
1825 info->contents = value_contents (arg);
1826
1827 /* Align size and onstack_size. */
1828 size = (size + info->align - 1) & ~(info->align - 1);
1829 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1830
1831 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1832 {
1833 info->onstack = 1;
1834 info->u.offset = onstack_size;
1835 onstack_size += info->length;
1836 }
1837 else
1838 {
1839 info->onstack = 0;
1840 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1841 }
1842 size += info->length;
1843 }
1844
1845 /* Adjust the stack pointer and align it. */
1846 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1847
1848 /* Simulate MOVSP, if Windowed ABI. */
1849 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1850 && (sp != osp))
1851 {
1852 read_memory (osp - 16, buf, 16);
1853 write_memory (sp - 16, buf, 16);
1854 }
1855
1856 /* Second Loop: Load arguments. */
1857
1858 if (struct_return)
1859 {
1860 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1861 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1862 }
1863
1864 for (i = 0; i < nargs; i++)
1865 {
1866 struct argument_info *info = &arg_info[i];
1867
1868 if (info->onstack)
1869 {
1870 int n = info->length;
1871 CORE_ADDR offset = sp + info->u.offset;
1872
1873 /* Odd-sized structs are aligned to the lower side of a memory
1874 word in big-endian mode and require a shift. This only
1875 applies for structures smaller than one word. */
1876
1877 if (n < REGISTER_SIZE
1878 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1879 offset += (REGISTER_SIZE - n);
1880
1881 write_memory (offset, info->contents, info->length);
1882
1883 }
1884 else
1885 {
1886 int n = info->length;
1887 const bfd_byte *cp = info->contents;
1888 int r = info->u.regno;
1889
1890 /* Odd-sized structs are aligned to the lower side of registers in
1891 big-endian mode and require a shift. The odd-sized leftover will
1892 be at the end. Note that this is only true for structures smaller
1893 than REGISTER_SIZE; for larger odd-sized structures the excess
1894 will be left-aligned in the register on both endiannesses. */
1895
1896 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1897 {
1898 ULONGEST v;
1899 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1900 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1901
1902 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1903 regcache_cooked_write (regcache, r, buf);
1904
1905 cp += REGISTER_SIZE;
1906 n -= REGISTER_SIZE;
1907 r++;
1908 }
1909 else
1910 while (n > 0)
1911 {
1912 regcache_cooked_write (regcache, r, cp);
1913
1914 cp += REGISTER_SIZE;
1915 n -= REGISTER_SIZE;
1916 r++;
1917 }
1918 }
1919 }
1920
1921 /* Set the return address of dummy frame to the dummy address.
1922 The return address for the current function (in A0) is
1923 saved in the dummy frame, so we can savely overwrite A0 here. */
1924
1925 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1926 {
1927 ULONGEST val;
1928
1929 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1930 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1931 ps = (unsigned long) val & ~0x00030000;
1932 regcache_cooked_write_unsigned
1933 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1934 regcache_cooked_write_unsigned (regcache,
1935 gdbarch_ps_regnum (gdbarch),
1936 ps | 0x00010000);
1937
1938 /* All the registers have been saved. After executing
1939 dummy call, they all will be restored. So it's safe
1940 to modify WINDOWSTART register to make it look like there
1941 is only one register window corresponding to WINDOWEBASE. */
1942
1943 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1944 regcache_cooked_write_unsigned
1945 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1946 1 << extract_unsigned_integer (buf, 4, byte_order));
1947 }
1948 else
1949 {
1950 /* Simulate CALL0: write RA into A0 register. */
1951 regcache_cooked_write_unsigned
1952 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1953 }
1954
1955 /* Set new stack pointer and return it. */
1956 regcache_cooked_write_unsigned (regcache,
1957 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1958 /* Make dummy frame ID unique by adding a constant. */
1959 return sp + SP_ALIGNMENT;
1960 }
1961
1962 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1963
1964 static int
1965 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1966 {
1967 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1968 return 2;
1969 else
1970 return 4;
1971 }
1972
1973 /* Return a breakpoint for the current location of PC. We always use
1974 the density version if we have density instructions (regardless of the
1975 current instruction at PC), and use regular instructions otherwise. */
1976
1977 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1978 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1979 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1980 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1981
1982 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1983
1984 static const gdb_byte *
1985 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1986 {
1987 *size = kind;
1988
1989 if (kind == 4)
1990 {
1991 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1992 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1993
1994 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1995 return big_breakpoint;
1996 else
1997 return little_breakpoint;
1998 }
1999 else
2000 {
2001 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
2002 static unsigned char density_little_breakpoint[]
2003 = DENSITY_LITTLE_BREAKPOINT;
2004
2005 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2006 return density_big_breakpoint;
2007 else
2008 return density_little_breakpoint;
2009 }
2010 }
2011
2012 /* Call0 ABI support routines. */
2013
2014 /* Return true, if PC points to "ret" or "ret.n". */
2015
2016 static int
2017 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2018 {
2019 #define RETURN_RET goto done
2020 xtensa_isa isa;
2021 xtensa_insnbuf ins, slot;
2022 gdb_byte ibuf[XTENSA_ISA_BSZ];
2023 CORE_ADDR ia, bt, ba;
2024 xtensa_format ifmt;
2025 int ilen, islots, is;
2026 xtensa_opcode opc;
2027 const char *opcname;
2028 int found_ret = 0;
2029
2030 isa = xtensa_default_isa;
2031 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2032 ins = xtensa_insnbuf_alloc (isa);
2033 slot = xtensa_insnbuf_alloc (isa);
2034 ba = 0;
2035
2036 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2037 {
2038 if (ia + xtensa_isa_maxlength (isa) > bt)
2039 {
2040 ba = ia;
2041 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2042 ? ba + XTENSA_ISA_BSZ : finish_pc;
2043 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2044 RETURN_RET;
2045 }
2046
2047 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2048 ifmt = xtensa_format_decode (isa, ins);
2049 if (ifmt == XTENSA_UNDEFINED)
2050 RETURN_RET;
2051 ilen = xtensa_format_length (isa, ifmt);
2052 if (ilen == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054 islots = xtensa_format_num_slots (isa, ifmt);
2055 if (islots == XTENSA_UNDEFINED)
2056 RETURN_RET;
2057
2058 for (is = 0; is < islots; ++is)
2059 {
2060 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2061 RETURN_RET;
2062
2063 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2064 if (opc == XTENSA_UNDEFINED)
2065 RETURN_RET;
2066
2067 opcname = xtensa_opcode_name (isa, opc);
2068
2069 if ((strcasecmp (opcname, "ret.n") == 0)
2070 || (strcasecmp (opcname, "ret") == 0))
2071 {
2072 found_ret = 1;
2073 RETURN_RET;
2074 }
2075 }
2076 }
2077 done:
2078 xtensa_insnbuf_free(isa, slot);
2079 xtensa_insnbuf_free(isa, ins);
2080 return found_ret;
2081 }
2082
2083 /* Call0 opcode class. Opcodes are preclassified according to what they
2084 mean for Call0 prologue analysis, and their number of significant operands.
2085 The purpose of this is to simplify prologue analysis by separating
2086 instruction decoding (libisa) from the semantics of prologue analysis. */
2087
2088 typedef enum
2089 {
2090 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2091 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2092 c0opc_flow, /* Flow control insn. */
2093 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2094 c0opc_break, /* Debugger software breakpoints. */
2095 c0opc_add, /* Adding two registers. */
2096 c0opc_addi, /* Adding a register and an immediate. */
2097 c0opc_and, /* Bitwise "and"-ing two registers. */
2098 c0opc_sub, /* Subtracting a register from a register. */
2099 c0opc_mov, /* Moving a register to a register. */
2100 c0opc_movi, /* Moving an immediate to a register. */
2101 c0opc_l32r, /* Loading a literal. */
2102 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2103 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2104 c0opc_l32e, /* L32E instruction. */
2105 c0opc_s32e, /* S32E instruction. */
2106 c0opc_rfwo, /* RFWO instruction. */
2107 c0opc_rfwu, /* RFWU instruction. */
2108 c0opc_NrOf /* Number of opcode classifications. */
2109 } xtensa_insn_kind;
2110
2111 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2112
2113 static int
2114 rwx_special_register (const char *opcname)
2115 {
2116 char ch = *opcname++;
2117
2118 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2119 return 0;
2120 if (*opcname++ != 's')
2121 return 0;
2122 if (*opcname++ != 'r')
2123 return 0;
2124 if (*opcname++ != '.')
2125 return 0;
2126
2127 return 1;
2128 }
2129
2130 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2131
2132 static xtensa_insn_kind
2133 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2134 {
2135 const char *opcname;
2136 xtensa_insn_kind opclass = c0opc_uninteresting;
2137
2138 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2139
2140 /* Get opcode name and handle special classifications. */
2141
2142 opcname = xtensa_opcode_name (isa, opc);
2143
2144 if (opcname == NULL
2145 || strcasecmp (opcname, "ill") == 0
2146 || strcasecmp (opcname, "ill.n") == 0)
2147 opclass = c0opc_illegal;
2148 else if (strcasecmp (opcname, "break") == 0
2149 || strcasecmp (opcname, "break.n") == 0)
2150 opclass = c0opc_break;
2151 else if (strcasecmp (opcname, "entry") == 0)
2152 opclass = c0opc_entry;
2153 else if (strcasecmp (opcname, "rfwo") == 0)
2154 opclass = c0opc_rfwo;
2155 else if (strcasecmp (opcname, "rfwu") == 0)
2156 opclass = c0opc_rfwu;
2157 else if (xtensa_opcode_is_branch (isa, opc) > 0
2158 || xtensa_opcode_is_jump (isa, opc) > 0
2159 || xtensa_opcode_is_loop (isa, opc) > 0
2160 || xtensa_opcode_is_call (isa, opc) > 0
2161 || strcasecmp (opcname, "simcall") == 0
2162 || strcasecmp (opcname, "syscall") == 0)
2163 opclass = c0opc_flow;
2164
2165 /* Also, classify specific opcodes that need to be tracked. */
2166 else if (strcasecmp (opcname, "add") == 0
2167 || strcasecmp (opcname, "add.n") == 0)
2168 opclass = c0opc_add;
2169 else if (strcasecmp (opcname, "and") == 0)
2170 opclass = c0opc_and;
2171 else if (strcasecmp (opcname, "addi") == 0
2172 || strcasecmp (opcname, "addi.n") == 0
2173 || strcasecmp (opcname, "addmi") == 0)
2174 opclass = c0opc_addi;
2175 else if (strcasecmp (opcname, "sub") == 0)
2176 opclass = c0opc_sub;
2177 else if (strcasecmp (opcname, "mov.n") == 0
2178 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2179 opclass = c0opc_mov;
2180 else if (strcasecmp (opcname, "movi") == 0
2181 || strcasecmp (opcname, "movi.n") == 0)
2182 opclass = c0opc_movi;
2183 else if (strcasecmp (opcname, "l32r") == 0)
2184 opclass = c0opc_l32r;
2185 else if (strcasecmp (opcname, "s32i") == 0
2186 || strcasecmp (opcname, "s32i.n") == 0)
2187 opclass = c0opc_s32i;
2188 else if (strcasecmp (opcname, "l32e") == 0)
2189 opclass = c0opc_l32e;
2190 else if (strcasecmp (opcname, "s32e") == 0)
2191 opclass = c0opc_s32e;
2192 else if (rwx_special_register (opcname))
2193 opclass = c0opc_rwxsr;
2194
2195 return opclass;
2196 }
2197
2198 /* Tracks register movement/mutation for a given operation, which may
2199 be within a bundle. Updates the destination register tracking info
2200 accordingly. The pc is needed only for pc-relative load instructions
2201 (eg. l32r). The SP register number is needed to identify stores to
2202 the stack frame. Returns 0, if analysis was succesfull, non-zero
2203 otherwise. */
2204
2205 static int
2206 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2207 xtensa_insn_kind opclass, int nods, unsigned odv[],
2208 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2209 {
2210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2211 unsigned litbase, litaddr, litval;
2212
2213 switch (opclass)
2214 {
2215 case c0opc_addi:
2216 /* 3 operands: dst, src, imm. */
2217 gdb_assert (nods == 3);
2218 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2219 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2220 break;
2221 case c0opc_add:
2222 /* 3 operands: dst, src1, src2. */
2223 gdb_assert (nods == 3);
2224 if (src[odv[1]].fr_reg == C0_CONST)
2225 {
2226 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2227 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2228 }
2229 else if (src[odv[2]].fr_reg == C0_CONST)
2230 {
2231 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2232 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2233 }
2234 else dst[odv[0]].fr_reg = C0_INEXP;
2235 break;
2236 case c0opc_and:
2237 /* 3 operands: dst, src1, src2. */
2238 gdb_assert (nods == 3);
2239 if (cache->c0.c0_fpalign == 0)
2240 {
2241 /* Handle dynamic stack alignment. */
2242 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2243 {
2244 if (src[odv[2]].fr_reg == C0_CONST)
2245 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2246 break;
2247 }
2248 else if ((src[odv[0]].fr_reg == spreg)
2249 && (src[odv[2]].fr_reg == spreg))
2250 {
2251 if (src[odv[1]].fr_reg == C0_CONST)
2252 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2253 break;
2254 }
2255 /* else fall through. */
2256 }
2257 if (src[odv[1]].fr_reg == C0_CONST)
2258 {
2259 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2260 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2261 }
2262 else if (src[odv[2]].fr_reg == C0_CONST)
2263 {
2264 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2265 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2266 }
2267 else dst[odv[0]].fr_reg = C0_INEXP;
2268 break;
2269 case c0opc_sub:
2270 /* 3 operands: dst, src1, src2. */
2271 gdb_assert (nods == 3);
2272 if (src[odv[2]].fr_reg == C0_CONST)
2273 {
2274 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2275 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2276 }
2277 else dst[odv[0]].fr_reg = C0_INEXP;
2278 break;
2279 case c0opc_mov:
2280 /* 2 operands: dst, src [, src]. */
2281 gdb_assert (nods == 2);
2282 /* First, check if it's a special case of saving unaligned SP
2283 to a spare register in case of dynamic stack adjustment.
2284 But, only do it one time. The second time could be initializing
2285 frame pointer. We don't want to overwrite the first one. */
2286 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2287 cache->c0.c0_old_sp = odv[0];
2288
2289 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2290 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2291 break;
2292 case c0opc_movi:
2293 /* 2 operands: dst, imm. */
2294 gdb_assert (nods == 2);
2295 dst[odv[0]].fr_reg = C0_CONST;
2296 dst[odv[0]].fr_ofs = odv[1];
2297 break;
2298 case c0opc_l32r:
2299 /* 2 operands: dst, literal offset. */
2300 gdb_assert (nods == 2);
2301 /* litbase = xtensa_get_litbase (pc); can be also used. */
2302 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2303 ? 0 : xtensa_read_register
2304 (gdbarch_tdep (gdbarch)->litbase_regnum);
2305 litaddr = litbase & 1
2306 ? (litbase & ~1) + (signed)odv[1]
2307 : (pc + 3 + (signed)odv[1]) & ~3;
2308 litval = read_memory_integer (litaddr, 4, byte_order);
2309 dst[odv[0]].fr_reg = C0_CONST;
2310 dst[odv[0]].fr_ofs = litval;
2311 break;
2312 case c0opc_s32i:
2313 /* 3 operands: value, base, offset. */
2314 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2315 /* First, check if it's a spill for saved unaligned SP,
2316 when dynamic stack adjustment was applied to this frame. */
2317 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2318 && (odv[1] == spreg) /* SP usage indicates spill. */
2319 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2320 cache->c0.c0_sp_ofs = odv[2];
2321
2322 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2323 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2324 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2325 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2326 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2327 {
2328 /* ISA encoding guarantees alignment. But, check it anyway. */
2329 gdb_assert ((odv[2] & 3) == 0);
2330 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2331 }
2332 break;
2333 /* If we end up inside Window Overflow / Underflow interrupt handler
2334 report an error because these handlers should have been handled
2335 already in a different way. */
2336 case c0opc_l32e:
2337 case c0opc_s32e:
2338 case c0opc_rfwo:
2339 case c0opc_rfwu:
2340 return 1;
2341 default:
2342 return 1;
2343 }
2344 return 0;
2345 }
2346
2347 /* Analyze prologue of the function at start address to determine if it uses
2348 the Call0 ABI, and if so track register moves and linear modifications
2349 in the prologue up to the PC or just beyond the prologue, whichever is
2350 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2351 prologue. The prologue may overlap non-prologue instructions but is
2352 guaranteed to end by the first flow-control instruction (jump, branch,
2353 call or return). Since an optimized function may move information around
2354 and change the stack frame arbitrarily during the prologue, the information
2355 is guaranteed valid only at the point in the function indicated by the PC.
2356 May be used to skip the prologue or identify the ABI, w/o tracking.
2357
2358 Returns: Address of first instruction after prologue, or PC (whichever
2359 is first), or 0, if decoding failed (in libisa).
2360 Input args:
2361 start Start address of function/prologue.
2362 pc Program counter to stop at. Use 0 to continue to end of prologue.
2363 If 0, avoids infinite run-on in corrupt code memory by bounding
2364 the scan to the end of the function if that can be determined.
2365 nregs Number of general registers to track.
2366 InOut args:
2367 cache Xtensa frame cache.
2368
2369 Note that these may produce useful results even if decoding fails
2370 because they begin with default assumptions that analysis may change. */
2371
2372 static CORE_ADDR
2373 call0_analyze_prologue (struct gdbarch *gdbarch,
2374 CORE_ADDR start, CORE_ADDR pc,
2375 int nregs, xtensa_frame_cache_t *cache)
2376 {
2377 CORE_ADDR ia; /* Current insn address in prologue. */
2378 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2379 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2380 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2381 xtensa_isa isa; /* libisa ISA handle. */
2382 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2383 xtensa_format ifmt; /* libisa instruction format. */
2384 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2385 xtensa_opcode opc; /* Opcode in current slot. */
2386 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2387 int nods; /* Opcode number of operands. */
2388 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2389 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2390 int j; /* General loop counter. */
2391 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2392 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2393 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2394
2395 struct symtab_and_line prologue_sal;
2396
2397 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2398 (int)start, (int)pc);
2399
2400 /* Try to limit the scan to the end of the function if a non-zero pc
2401 arg was not supplied to avoid probing beyond the end of valid memory.
2402 If memory is full of garbage that classifies as c0opc_uninteresting.
2403 If this fails (eg. if no symbols) pc ends up 0 as it was.
2404 Initialize the Call0 frame and register tracking info.
2405 Assume it's Call0 until an 'entry' instruction is encountered.
2406 Assume we may be in the prologue until we hit a flow control instr. */
2407
2408 rtmp = NULL;
2409 body_pc = UINT_MAX;
2410 end_pc = 0;
2411
2412 /* Find out, if we have an information about the prologue from DWARF. */
2413 prologue_sal = find_pc_line (start, 0);
2414 if (prologue_sal.line != 0) /* Found debug info. */
2415 body_pc = prologue_sal.end;
2416
2417 /* If we are going to analyze the prologue in general without knowing about
2418 the current PC, make the best assumtion for the end of the prologue. */
2419 if (pc == 0)
2420 {
2421 find_pc_partial_function (start, 0, NULL, &end_pc);
2422 body_pc = std::min (end_pc, body_pc);
2423 }
2424 else
2425 body_pc = std::min (pc, body_pc);
2426
2427 cache->call0 = 1;
2428 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2429
2430 if (!xtensa_default_isa)
2431 xtensa_default_isa = xtensa_isa_init (0, 0);
2432 isa = xtensa_default_isa;
2433 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2434 ins = xtensa_insnbuf_alloc (isa);
2435 slot = xtensa_insnbuf_alloc (isa);
2436
2437 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2438 {
2439 /* (Re)fill instruction buffer from memory if necessary, but do not
2440 read memory beyond PC to be sure we stay within text section
2441 (this protection only works if a non-zero pc is supplied). */
2442
2443 if (ia + xtensa_isa_maxlength (isa) > bt)
2444 {
2445 ba = ia;
2446 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2447 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2448 error (_("Unable to read target memory ..."));
2449 }
2450
2451 /* Decode format information. */
2452
2453 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2454 ifmt = xtensa_format_decode (isa, ins);
2455 if (ifmt == XTENSA_UNDEFINED)
2456 {
2457 fail = 1;
2458 goto done;
2459 }
2460 ilen = xtensa_format_length (isa, ifmt);
2461 if (ilen == XTENSA_UNDEFINED)
2462 {
2463 fail = 1;
2464 goto done;
2465 }
2466 islots = xtensa_format_num_slots (isa, ifmt);
2467 if (islots == XTENSA_UNDEFINED)
2468 {
2469 fail = 1;
2470 goto done;
2471 }
2472
2473 /* Analyze a bundle or a single instruction, using a snapshot of
2474 the register tracking info as input for the entire bundle so that
2475 register changes do not take effect within this bundle. */
2476
2477 for (j = 0; j < nregs; ++j)
2478 rtmp[j] = cache->c0.c0_rt[j];
2479
2480 for (is = 0; is < islots; ++is)
2481 {
2482 /* Decode a slot and classify the opcode. */
2483
2484 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2485 if (fail)
2486 goto done;
2487
2488 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2489 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2490 (unsigned)ia, opc);
2491 if (opc == XTENSA_UNDEFINED)
2492 opclass = c0opc_illegal;
2493 else
2494 opclass = call0_classify_opcode (isa, opc);
2495
2496 /* Decide whether to track this opcode, ignore it, or bail out. */
2497
2498 switch (opclass)
2499 {
2500 case c0opc_illegal:
2501 case c0opc_break:
2502 fail = 1;
2503 goto done;
2504
2505 case c0opc_uninteresting:
2506 continue;
2507
2508 case c0opc_flow: /* Flow control instructions stop analysis. */
2509 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2510 goto done;
2511
2512 case c0opc_entry:
2513 cache->call0 = 0;
2514 ia += ilen; /* Skip over 'entry' insn. */
2515 goto done;
2516
2517 default:
2518 cache->call0 = 1;
2519 }
2520
2521 /* Only expected opcodes should get this far. */
2522
2523 /* Extract and decode the operands. */
2524 nods = xtensa_opcode_num_operands (isa, opc);
2525 if (nods == XTENSA_UNDEFINED)
2526 {
2527 fail = 1;
2528 goto done;
2529 }
2530
2531 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2532 {
2533 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2534 is, slot, &odv[j]);
2535 if (fail)
2536 goto done;
2537
2538 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2539 if (fail)
2540 goto done;
2541 }
2542
2543 /* Check operands to verify use of 'mov' assembler macro. */
2544 if (opclass == c0opc_mov && nods == 3)
2545 {
2546 if (odv[2] == odv[1])
2547 {
2548 nods = 2;
2549 if ((odv[0] == 1) && (odv[1] != 1))
2550 /* OR A1, An, An , where n != 1.
2551 This means we are inside epilogue already. */
2552 goto done;
2553 }
2554 else
2555 {
2556 opclass = c0opc_uninteresting;
2557 continue;
2558 }
2559 }
2560
2561 /* Track register movement and modification for this operation. */
2562 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2563 opclass, nods, odv, ia, 1, cache);
2564 if (fail)
2565 goto done;
2566 }
2567 }
2568 done:
2569 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2570 (unsigned)ia, fail ? "failed" : "succeeded");
2571 xtensa_insnbuf_free(isa, slot);
2572 xtensa_insnbuf_free(isa, ins);
2573 return fail ? XTENSA_ISA_BADPC : ia;
2574 }
2575
2576 /* Initialize frame cache for the current frame in CALL0 ABI. */
2577
2578 static void
2579 call0_frame_cache (struct frame_info *this_frame,
2580 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2581 {
2582 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2584 CORE_ADDR start_pc; /* The beginning of the function. */
2585 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2586 CORE_ADDR sp, fp, ra;
2587 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2588
2589 sp = get_frame_register_unsigned
2590 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2591 fp = sp; /* Assume FP == SP until proven otherwise. */
2592
2593 /* Find the beginning of the prologue of the function containing the PC
2594 and analyze it up to the PC or the end of the prologue. */
2595
2596 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2597 {
2598 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2599
2600 if (body_pc == XTENSA_ISA_BADPC)
2601 {
2602 warning_once ();
2603 ra = 0;
2604 goto finish_frame_analysis;
2605 }
2606 }
2607
2608 /* Get the frame information and FP (if used) at the current PC.
2609 If PC is in the prologue, the prologue analysis is more reliable
2610 than DWARF info. We don't not know for sure, if PC is in the prologue,
2611 but we do know no calls have yet taken place, so we can almost
2612 certainly rely on the prologue analysis. */
2613
2614 if (body_pc <= pc)
2615 {
2616 /* Prologue analysis was successful up to the PC.
2617 It includes the cases when PC == START_PC. */
2618 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2619 /* c0_hasfp == true means there is a frame pointer because
2620 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2621 was derived from SP. Otherwise, it would be C0_FP. */
2622 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2623 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2624 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2625 }
2626 else /* No data from the prologue analysis. */
2627 {
2628 c0_hasfp = 0;
2629 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2630 c0_frmsz = 0;
2631 start_pc = pc;
2632 }
2633
2634 if (cache->c0.c0_fpalign)
2635 {
2636 /* This frame has a special prologue with a dynamic stack adjustment
2637 to force an alignment, which is bigger than standard 16 bytes. */
2638
2639 CORE_ADDR unaligned_sp;
2640
2641 if (cache->c0.c0_old_sp == C0_INEXP)
2642 /* This can't be. Prologue code should be consistent.
2643 Unaligned stack pointer should be saved in a spare register. */
2644 {
2645 warning_once ();
2646 ra = 0;
2647 goto finish_frame_analysis;
2648 }
2649
2650 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2651 /* Saved unaligned value of SP is kept in a register. */
2652 unaligned_sp = get_frame_register_unsigned
2653 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2654 else
2655 /* Get the value from stack. */
2656 unaligned_sp = (CORE_ADDR)
2657 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2658
2659 prev_sp = unaligned_sp + c0_frmsz;
2660 }
2661 else
2662 prev_sp = fp + c0_frmsz;
2663
2664 /* Frame size from debug info or prologue tracking does not account for
2665 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2666 if (c0_hasfp)
2667 {
2668 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2669
2670 /* Update the stack frame size. */
2671 c0_frmsz += fp - sp;
2672 }
2673
2674 /* Get the return address (RA) from the stack if saved,
2675 or try to get it from a register. */
2676
2677 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2678 if (to_stk != C0_NOSTK)
2679 ra = (CORE_ADDR)
2680 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2681 4, byte_order);
2682
2683 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2684 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2685 {
2686 /* Special case for terminating backtrace at a function that wants to
2687 be seen as the outermost one. Such a function will clear it's RA (A0)
2688 register to 0 in the prologue instead of saving its original value. */
2689 ra = 0;
2690 }
2691 else
2692 {
2693 /* RA was copied to another register or (before any function call) may
2694 still be in the original RA register. This is not always reliable:
2695 even in a leaf function, register tracking stops after prologue, and
2696 even in prologue, non-prologue instructions (not tracked) may overwrite
2697 RA or any register it was copied to. If likely in prologue or before
2698 any call, use retracking info and hope for the best (compiler should
2699 have saved RA in stack if not in a leaf function). If not in prologue,
2700 too bad. */
2701
2702 int i;
2703 for (i = 0;
2704 (i < C0_NREGS)
2705 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2706 ++i);
2707 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2708 i = C0_RA;
2709 if (i < C0_NREGS)
2710 {
2711 ra = get_frame_register_unsigned
2712 (this_frame,
2713 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2714 }
2715 else ra = 0;
2716 }
2717
2718 finish_frame_analysis:
2719 cache->pc = start_pc;
2720 cache->ra = ra;
2721 /* RA == 0 marks the outermost frame. Do not go past it. */
2722 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2723 cache->c0.fp_regnum = fp_regnum;
2724 cache->c0.c0_frmsz = c0_frmsz;
2725 cache->c0.c0_hasfp = c0_hasfp;
2726 cache->c0.c0_fp = fp;
2727 }
2728
2729 static CORE_ADDR a0_saved;
2730 static CORE_ADDR a7_saved;
2731 static CORE_ADDR a11_saved;
2732 static int a0_was_saved;
2733 static int a7_was_saved;
2734 static int a11_was_saved;
2735
2736 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2737 static void
2738 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2739 {
2740 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2741 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2742 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2743 unsigned int spilled_value
2744 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2745
2746 if ((at == 0) && !a0_was_saved)
2747 {
2748 a0_saved = xtensa_read_register (atreg);
2749 a0_was_saved = 1;
2750 }
2751 else if ((at == 7) && !a7_was_saved)
2752 {
2753 a7_saved = xtensa_read_register (atreg);
2754 a7_was_saved = 1;
2755 }
2756 else if ((at == 11) && !a11_was_saved)
2757 {
2758 a11_saved = xtensa_read_register (atreg);
2759 a11_was_saved = 1;
2760 }
2761
2762 xtensa_write_register (atreg, spilled_value);
2763 }
2764
2765 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2766 static void
2767 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2768 {
2769 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2770 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2771 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2772 ULONGEST spilled_value = xtensa_read_register (atreg);
2773
2774 write_memory_unsigned_integer (addr, 4,
2775 gdbarch_byte_order (gdbarch),
2776 spilled_value);
2777 }
2778
2779 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2780
2781 typedef enum
2782 {
2783 xtWindowOverflow,
2784 xtWindowUnderflow,
2785 xtNoExceptionHandler
2786 } xtensa_exception_handler_t;
2787
2788 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2789 Return type of Xtensa Window Interrupt Handler on success. */
2790 static xtensa_exception_handler_t
2791 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2792 {
2793 xtensa_isa isa;
2794 xtensa_insnbuf ins, slot;
2795 gdb_byte ibuf[XTENSA_ISA_BSZ];
2796 CORE_ADDR ia, bt, ba;
2797 xtensa_format ifmt;
2798 int ilen, islots, is;
2799 xtensa_opcode opc;
2800 int insn_num = 0;
2801 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2802
2803 uint32_t at, as, offset;
2804
2805 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2806 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2807
2808 isa = xtensa_default_isa;
2809 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2810 ins = xtensa_insnbuf_alloc (isa);
2811 slot = xtensa_insnbuf_alloc (isa);
2812 ba = 0;
2813 ia = current_pc;
2814 bt = ia;
2815
2816 a0_was_saved = 0;
2817 a7_was_saved = 0;
2818 a11_was_saved = 0;
2819
2820 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2821 {
2822 if (ia + xtensa_isa_maxlength (isa) > bt)
2823 {
2824 ba = ia;
2825 bt = (ba + XTENSA_ISA_BSZ);
2826 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2827 return xtNoExceptionHandler;
2828 }
2829 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2830 ifmt = xtensa_format_decode (isa, ins);
2831 if (ifmt == XTENSA_UNDEFINED)
2832 return xtNoExceptionHandler;
2833 ilen = xtensa_format_length (isa, ifmt);
2834 if (ilen == XTENSA_UNDEFINED)
2835 return xtNoExceptionHandler;
2836 islots = xtensa_format_num_slots (isa, ifmt);
2837 if (islots == XTENSA_UNDEFINED)
2838 return xtNoExceptionHandler;
2839 for (is = 0; is < islots; ++is)
2840 {
2841 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2842 return xtNoExceptionHandler;
2843 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2844 if (opc == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 switch (call0_classify_opcode (isa, opc))
2847 {
2848 case c0opc_illegal:
2849 case c0opc_flow:
2850 case c0opc_entry:
2851 case c0opc_break:
2852 /* We expect none of them here. */
2853 return xtNoExceptionHandler;
2854 case c0opc_l32e:
2855 func = execute_l32e;
2856 break;
2857 case c0opc_s32e:
2858 func = execute_s32e;
2859 break;
2860 case c0opc_rfwo: /* RFWO. */
2861 /* Here, we return from WindowOverflow handler and,
2862 if we stopped at the very beginning, which means
2863 A0 was saved, we have to restore it now. */
2864 if (a0_was_saved)
2865 {
2866 int arreg = arreg_number (gdbarch,
2867 gdbarch_tdep (gdbarch)->a0_base,
2868 wb);
2869 xtensa_write_register (arreg, a0_saved);
2870 }
2871 return xtWindowOverflow;
2872 case c0opc_rfwu: /* RFWU. */
2873 /* Here, we return from WindowUnderflow handler.
2874 Let's see if either A7 or A11 has to be restored. */
2875 if (WindowUnderflow12)
2876 {
2877 if (a11_was_saved)
2878 {
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base + 11,
2881 wb);
2882 xtensa_write_register (arreg, a11_saved);
2883 }
2884 }
2885 else if (a7_was_saved)
2886 {
2887 int arreg = arreg_number (gdbarch,
2888 gdbarch_tdep (gdbarch)->a0_base + 7,
2889 wb);
2890 xtensa_write_register (arreg, a7_saved);
2891 }
2892 return xtWindowUnderflow;
2893 default: /* Simply skip this insns. */
2894 continue;
2895 }
2896
2897 /* Decode arguments for L32E / S32E and simulate their execution. */
2898 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 0, &at))
2903 return xtNoExceptionHandler;
2904 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2905 return xtNoExceptionHandler;
2906 if (xtensa_operand_decode (isa, opc, 1, &as))
2907 return xtNoExceptionHandler;
2908 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2909 return xtNoExceptionHandler;
2910 if (xtensa_operand_decode (isa, opc, 2, &offset))
2911 return xtNoExceptionHandler;
2912
2913 (*func) (gdbarch, at, as, offset, wb);
2914 }
2915
2916 ia += ilen;
2917 }
2918 return xtNoExceptionHandler;
2919 }
2920
2921 /* Handle Window Overflow / Underflow exception frames. */
2922
2923 static void
2924 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2925 xtensa_frame_cache_t *cache,
2926 CORE_ADDR pc)
2927 {
2928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2929 CORE_ADDR ps, wb, ws, ra;
2930 int epc1_regnum, i, regnum;
2931 xtensa_exception_handler_t eh_type;
2932
2933 /* Read PS, WB, and WS from the hardware. Note that PS register
2934 must be present, if Windowed ABI is supported. */
2935 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2936 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2937 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2938
2939 /* Execute all the remaining instructions from Window Interrupt Handler
2940 by simulating them on the remote protocol level. On return, set the
2941 type of Xtensa Window Interrupt Handler, or report an error. */
2942 eh_type = execute_code (gdbarch, pc, wb);
2943 if (eh_type == xtNoExceptionHandler)
2944 error (_("\
2945 Unable to decode Xtensa Window Interrupt Handler's code."));
2946
2947 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2948 cache->call0 = 0; /* It's Windowed ABI. */
2949
2950 /* All registers for the cached frame will be alive. */
2951 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2952 cache->wd.aregs[i] = -1;
2953
2954 if (eh_type == xtWindowOverflow)
2955 cache->wd.ws = ws ^ (1 << wb);
2956 else /* eh_type == xtWindowUnderflow. */
2957 cache->wd.ws = ws | (1 << wb);
2958
2959 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2960 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2961 cache->wd.wb);
2962 ra = xtensa_read_register (regnum);
2963 cache->wd.callsize = WINSIZE (ra);
2964 cache->prev_sp = xtensa_read_register (regnum + 1);
2965 /* Set regnum to a frame pointer of the frame being cached. */
2966 regnum = xtensa_scan_prologue (gdbarch, pc);
2967 regnum = arreg_number (gdbarch,
2968 gdbarch_tdep (gdbarch)->a0_base + regnum,
2969 cache->wd.wb);
2970 cache->base = get_frame_register_unsigned (this_frame, regnum);
2971
2972 /* Read PC of interrupted function from EPC1 register. */
2973 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2974 if (epc1_regnum < 0)
2975 error(_("Unable to read Xtensa register EPC1"));
2976 cache->ra = xtensa_read_register (epc1_regnum);
2977 cache->pc = get_frame_func (this_frame);
2978 }
2979
2980
2981 /* Skip function prologue.
2982
2983 Return the pc of the first instruction after prologue. GDB calls this to
2984 find the address of the first line of the function or (if there is no line
2985 number information) to skip the prologue for planting breakpoints on
2986 function entries. Use debug info (if present) or prologue analysis to skip
2987 the prologue to achieve reliable debugging behavior. For windowed ABI,
2988 only the 'entry' instruction is skipped. It is not strictly necessary to
2989 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2990 backtrace at any point in the prologue, however certain potential hazards
2991 are avoided and a more "normal" debugging experience is ensured by
2992 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2993 For example, if we don't skip the prologue:
2994 - Some args may not yet have been saved to the stack where the debug
2995 info expects to find them (true anyway when only 'entry' is skipped);
2996 - Software breakpoints ('break' instrs) may not have been unplanted
2997 when the prologue analysis is done on initializing the frame cache,
2998 and breaks in the prologue will throw off the analysis.
2999
3000 If we have debug info ( line-number info, in particular ) we simply skip
3001 the code associated with the first function line effectively skipping
3002 the prologue code. It works even in cases like
3003
3004 int main()
3005 { int local_var = 1;
3006 ....
3007 }
3008
3009 because, for this source code, both Xtensa compilers will generate two
3010 separate entries ( with the same line number ) in dwarf line-number
3011 section to make sure there is a boundary between the prologue code and
3012 the rest of the function.
3013
3014 If there is no debug info, we need to analyze the code. */
3015
3016 /* #define DONT_SKIP_PROLOGUE */
3017
3018 static CORE_ADDR
3019 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3020 {
3021 struct symtab_and_line prologue_sal;
3022 CORE_ADDR body_pc;
3023
3024 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3025
3026 #if DONT_SKIP_PROLOGUE
3027 return start_pc;
3028 #endif
3029
3030 /* Try to find first body line from debug info. */
3031
3032 prologue_sal = find_pc_line (start_pc, 0);
3033 if (prologue_sal.line != 0) /* Found debug info. */
3034 {
3035 /* In Call0, it is possible to have a function with only one instruction
3036 ('ret') resulting from a one-line optimized function that does nothing.
3037 In that case, prologue_sal.end may actually point to the start of the
3038 next function in the text section, causing a breakpoint to be set at
3039 the wrong place. Check, if the end address is within a different
3040 function, and if so return the start PC. We know we have symbol
3041 information. */
3042
3043 CORE_ADDR end_func;
3044
3045 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3046 && call0_ret (start_pc, prologue_sal.end))
3047 return start_pc;
3048
3049 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3050 if (end_func != start_pc)
3051 return start_pc;
3052
3053 return prologue_sal.end;
3054 }
3055
3056 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3057 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3058 xtensa_alloc_frame_cache (0));
3059 return body_pc != 0 ? body_pc : start_pc;
3060 }
3061
3062 /* Verify the current configuration. */
3063 static void
3064 xtensa_verify_config (struct gdbarch *gdbarch)
3065 {
3066 struct ui_file *log;
3067 struct cleanup *cleanups;
3068 struct gdbarch_tdep *tdep;
3069 long length;
3070 char *buf;
3071
3072 tdep = gdbarch_tdep (gdbarch);
3073 log = mem_fileopen ();
3074 cleanups = make_cleanup_ui_file_delete (log);
3075
3076 /* Verify that we got a reasonable number of AREGS. */
3077 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3078 fprintf_unfiltered (log, _("\
3079 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3080 tdep->num_aregs);
3081
3082 /* Verify that certain registers exist. */
3083
3084 if (tdep->pc_regnum == -1)
3085 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3086 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3087 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3088
3089 if (tdep->isa_use_windowed_registers)
3090 {
3091 if (tdep->wb_regnum == -1)
3092 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3093 if (tdep->ws_regnum == -1)
3094 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3095 if (tdep->ar_base == -1)
3096 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3097 }
3098
3099 if (tdep->a0_base == -1)
3100 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3101
3102 buf = ui_file_xstrdup (log, &length);
3103 make_cleanup (xfree, buf);
3104 if (length > 0)
3105 internal_error (__FILE__, __LINE__,
3106 _("the following are invalid: %s"), buf);
3107 do_cleanups (cleanups);
3108 }
3109
3110
3111 /* Derive specific register numbers from the array of registers. */
3112
3113 static void
3114 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3115 {
3116 xtensa_register_t* rmap;
3117 int n, max_size = 4;
3118
3119 tdep->num_regs = 0;
3120 tdep->num_nopriv_regs = 0;
3121
3122 /* Special registers 0..255 (core). */
3123 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3124
3125 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3126 {
3127 if (rmap->target_number == 0x0020)
3128 tdep->pc_regnum = n;
3129 else if (rmap->target_number == 0x0100)
3130 tdep->ar_base = n;
3131 else if (rmap->target_number == 0x0000)
3132 tdep->a0_base = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3134 tdep->wb_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3136 tdep->ws_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3138 tdep->debugcause_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3140 tdep->exccause_regnum = n;
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3142 tdep->excvaddr_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3144 tdep->lbeg_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3146 tdep->lend_regnum = n;
3147 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3148 tdep->lcount_regnum = n;
3149 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3150 tdep->sar_regnum = n;
3151 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3152 tdep->litbase_regnum = n;
3153 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3154 tdep->ps_regnum = n;
3155 #if 0
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3157 tdep->interrupt_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3159 tdep->interrupt2_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3161 tdep->cpenable_regnum = n;
3162 #endif
3163
3164 if (rmap->byte_size > max_size)
3165 max_size = rmap->byte_size;
3166 if (rmap->mask != 0 && tdep->num_regs == 0)
3167 tdep->num_regs = n;
3168 /* Find out out how to deal with priveleged registers.
3169
3170 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3171 && tdep->num_nopriv_regs == 0)
3172 tdep->num_nopriv_regs = n;
3173 */
3174 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3175 && tdep->num_regs == 0)
3176 tdep->num_regs = n;
3177 }
3178
3179 /* Number of pseudo registers. */
3180 tdep->num_pseudo_regs = n - tdep->num_regs;
3181
3182 /* Empirically determined maximum sizes. */
3183 tdep->max_register_raw_size = max_size;
3184 tdep->max_register_virtual_size = max_size;
3185 }
3186
3187 /* Module "constructor" function. */
3188
3189 extern struct gdbarch_tdep xtensa_tdep;
3190
3191 static struct gdbarch *
3192 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3193 {
3194 struct gdbarch_tdep *tdep;
3195 struct gdbarch *gdbarch;
3196
3197 DEBUGTRACE ("gdbarch_init()\n");
3198
3199 /* We have to set the byte order before we call gdbarch_alloc. */
3200 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3201
3202 tdep = &xtensa_tdep;
3203 gdbarch = gdbarch_alloc (&info, tdep);
3204 xtensa_derive_tdep (tdep);
3205
3206 /* Verify our configuration. */
3207 xtensa_verify_config (gdbarch);
3208 xtensa_session_once_reported = 0;
3209
3210 /* Pseudo-Register read/write. */
3211 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3212 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3213
3214 /* Set target information. */
3215 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3216 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3217 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3218 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3219 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3220
3221 /* Renumber registers for known formats (stabs and dwarf2). */
3222 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3223 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3224
3225 /* We provide our own function to get register information. */
3226 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3227 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3228
3229 /* To call functions from GDB using dummy frame. */
3230 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3231
3232 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3233
3234 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3235
3236 /* Advance PC across any prologue instructions to reach "real" code. */
3237 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3238
3239 /* Stack grows downward. */
3240 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3241
3242 /* Set breakpoints. */
3243 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3244 xtensa_breakpoint_kind_from_pc);
3245 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3246 xtensa_sw_breakpoint_from_kind);
3247
3248 /* After breakpoint instruction or illegal instruction, pc still
3249 points at break instruction, so don't decrement. */
3250 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3251
3252 /* We don't skip args. */
3253 set_gdbarch_frame_args_skip (gdbarch, 0);
3254
3255 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3256
3257 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3258
3259 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3260
3261 /* Frame handling. */
3262 frame_base_set_default (gdbarch, &xtensa_frame_base);
3263 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3264 dwarf2_append_unwinders (gdbarch);
3265
3266 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3267
3268 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3269
3270 xtensa_add_reggroups (gdbarch);
3271 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3272
3273 set_gdbarch_iterate_over_regset_sections
3274 (gdbarch, xtensa_iterate_over_regset_sections);
3275
3276 set_solib_svr4_fetch_link_map_offsets
3277 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3278
3279 /* Hook in the ABI-specific overrides, if they have been registered. */
3280 gdbarch_init_osabi (info, gdbarch);
3281
3282 return gdbarch;
3283 }
3284
3285 static void
3286 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3287 {
3288 error (_("xtensa_dump_tdep(): not implemented"));
3289 }
3290
3291 /* Provide a prototype to silence -Wmissing-prototypes. */
3292 extern initialize_file_ftype _initialize_xtensa_tdep;
3293
3294 void
3295 _initialize_xtensa_tdep (void)
3296 {
3297 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3298 xtensa_init_reggroups ();
3299
3300 add_setshow_zuinteger_cmd ("xtensa",
3301 class_maintenance,
3302 &xtensa_debug_level,
3303 _("Set Xtensa debugging."),
3304 _("Show Xtensa debugging."), _("\
3305 When non-zero, Xtensa-specific debugging is enabled. \
3306 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3307 NULL,
3308 NULL,
3309 &setdebuglist, &showdebuglist);
3310 }
This page took 0.110169 seconds and 5 git commands to generate.