Update copyright year in most headers.
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "solib-svr4.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
44
45 #include "arch-utils.h"
46 #include "gdbarch.h"
47 #include "remote.h"
48 #include "serial.h"
49
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "gdb_assert.h"
53
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
57
58
59 static int xtensa_debug_level = 0;
60
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76
77
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
80
81
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
86
87
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93
94 /* ABI-independent macros. */
95 #define ARG_NOF(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi \
97 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
98 #define ARG_1ST(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
100 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
101 : (gdbarch_tdep (gdbarch)->a0_base + 6))
102
103 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
104 indicates that the instruction is an ENTRY instruction. */
105
106 #define XTENSA_IS_ENTRY(gdbarch, op1) \
107 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
108 ? ((op1) == 0x6c) : ((op1) == 0x36))
109
110 #define XTENSA_ENTRY_LENGTH 3
111
112 /* windowing_enabled() returns true, if windowing is enabled.
113 WOE must be set to 1; EXCM to 0.
114 Note: We assume that EXCM is always 0 for XEA1. */
115
116 #define PS_WOE (1<<18)
117 #define PS_EXC (1<<4)
118
119 /* Convert a live A-register number to the corresponding AR-register number. */
120 static int
121 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
122 {
123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
124 int arreg;
125
126 arreg = a_regnum - tdep->a0_base;
127 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
128 arreg &= tdep->num_aregs - 1;
129
130 return arreg + tdep->ar_base;
131 }
132
133 /* Convert a live AR-register number to the corresponding A-register order
134 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
135 static int
136 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int areg;
140
141 areg = ar_regnum - tdep->ar_base;
142 if (areg < 0 || areg >= tdep->num_aregs)
143 return -1;
144 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
145 return (areg > 15) ? -1 : areg;
146 }
147
148 static inline int
149 windowing_enabled (CORE_ADDR ps)
150 {
151 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
152 }
153
154 /* Return the window size of the previous call to the function from which we
155 have just returned.
156
157 This function is used to extract the return value after a called function
158 has returned to the caller. On Xtensa, the register that holds the return
159 value (from the perspective of the caller) depends on what call
160 instruction was used. For now, we are assuming that the call instruction
161 precedes the current address, so we simply analyze the call instruction.
162 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
163 method to call the inferior function. */
164
165 static int
166 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
167 {
168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
169 int winsize = 4;
170 int insn;
171 gdb_byte buf[4];
172
173 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
174
175 /* Read the previous instruction (should be a call[x]{4|8|12}. */
176 read_memory (pc-3, buf, 3);
177 insn = extract_unsigned_integer (buf, 3, byte_order);
178
179 /* Decode call instruction:
180 Little Endian
181 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
182 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
183 Big Endian
184 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
185 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
186
187 if (byte_order == BFD_ENDIAN_LITTLE)
188 {
189 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
190 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
191 }
192 else
193 {
194 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
195 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
196 }
197 return winsize;
198 }
199
200
201 /* REGISTER INFORMATION */
202
203 /* Returns the name of a register. */
204 static const char *
205 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
206 {
207 /* Return the name stored in the register map. */
208 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
209 + gdbarch_num_pseudo_regs (gdbarch))
210 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
211
212 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
213 return 0;
214 }
215
216 /* Return the type of a register. Create a new type, if necessary. */
217
218 static struct type *
219 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222
223 /* Return signed integer for ARx and Ax registers. */
224 if ((regnum >= tdep->ar_base
225 && regnum < tdep->ar_base + tdep->num_aregs)
226 || (regnum >= tdep->a0_base
227 && regnum < tdep->a0_base + 16))
228 return builtin_type (gdbarch)->builtin_int;
229
230 if (regnum == gdbarch_pc_regnum (gdbarch)
231 || regnum == tdep->a0_base + 1)
232 return builtin_type (gdbarch)->builtin_data_ptr;
233
234 /* Return the stored type for all other registers. */
235 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch))
237 {
238 xtensa_register_t* reg = &tdep->regmap[regnum];
239
240 /* Set ctype for this register (only the first time). */
241
242 if (reg->ctype == 0)
243 {
244 struct ctype_cache *tp;
245 int size = reg->byte_size;
246
247 /* We always use the memory representation,
248 even if the register width is smaller. */
249 switch (size)
250 {
251 case 1:
252 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
253 break;
254
255 case 2:
256 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
257 break;
258
259 case 4:
260 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
261 break;
262
263 case 8:
264 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
265 break;
266
267 case 16:
268 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
269 break;
270
271 default:
272 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
273 if (tp->size == size)
274 break;
275
276 if (tp == NULL)
277 {
278 char *name = xmalloc (16);
279 tp = xmalloc (sizeof (struct ctype_cache));
280 tp->next = tdep->type_entries;
281 tdep->type_entries = tp;
282 tp->size = size;
283
284 sprintf (name, "int%d", size * 8);
285 tp->virtual_type
286 = arch_integer_type (gdbarch, size * 8, 1, xstrdup (name));
287 }
288
289 reg->ctype = tp->virtual_type;
290 }
291 }
292 return reg->ctype;
293 }
294
295 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
296 return 0;
297 }
298
299
300 /* Return the 'local' register number for stubs, dwarf2, etc.
301 The debugging information enumerates registers starting from 0 for A0
302 to n for An. So, we only have to add the base number for A0. */
303
304 static int
305 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
306 {
307 int i;
308
309 if (regnum >= 0 && regnum < 16)
310 return gdbarch_tdep (gdbarch)->a0_base + regnum;
311
312 for (i = 0;
313 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
314 i++)
315 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
316 return i;
317
318 internal_error (__FILE__, __LINE__,
319 _("invalid dwarf/stabs register number %d"), regnum);
320 return 0;
321 }
322
323
324 /* Write the bits of a masked register to the various registers.
325 Only the masked areas of these registers are modified; the other
326 fields are untouched. The size of masked registers is always less
327 than or equal to 32 bits. */
328
329 static void
330 xtensa_register_write_masked (struct regcache *regcache,
331 xtensa_register_t *reg, const gdb_byte *buffer)
332 {
333 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
334 const xtensa_mask_t *mask = reg->mask;
335
336 int shift = 0; /* Shift for next mask (mod 32). */
337 int start, size; /* Start bit and size of current mask. */
338
339 unsigned int *ptr = value;
340 unsigned int regval, m, mem = 0;
341
342 int bytesize = reg->byte_size;
343 int bitsize = bytesize * 8;
344 int i, r;
345
346 DEBUGTRACE ("xtensa_register_write_masked ()\n");
347
348 /* Copy the masked register to host byte-order. */
349 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
350 for (i = 0; i < bytesize; i++)
351 {
352 mem >>= 8;
353 mem |= (buffer[bytesize - i - 1] << 24);
354 if ((i & 3) == 3)
355 *ptr++ = mem;
356 }
357 else
358 for (i = 0; i < bytesize; i++)
359 {
360 mem >>= 8;
361 mem |= (buffer[i] << 24);
362 if ((i & 3) == 3)
363 *ptr++ = mem;
364 }
365
366 /* We might have to shift the final value:
367 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
368 bytesize & 3 == x -> shift (4-x) * 8. */
369
370 *ptr = mem >> (((0 - bytesize) & 3) * 8);
371 ptr = value;
372 mem = *ptr;
373
374 /* Write the bits to the masked areas of the other registers. */
375 for (i = 0; i < mask->count; i++)
376 {
377 start = mask->mask[i].bit_start;
378 size = mask->mask[i].bit_size;
379 regval = mem >> shift;
380
381 if ((shift += size) > bitsize)
382 error (_("size of all masks is larger than the register"));
383
384 if (shift >= 32)
385 {
386 mem = *(++ptr);
387 shift -= 32;
388 bitsize -= 32;
389
390 if (shift > 0)
391 regval |= mem << (size - shift);
392 }
393
394 /* Make sure we have a valid register. */
395 r = mask->mask[i].reg_num;
396 if (r >= 0 && size > 0)
397 {
398 /* Don't overwrite the unmasked areas. */
399 ULONGEST old_val;
400 regcache_cooked_read_unsigned (regcache, r, &old_val);
401 m = 0xffffffff >> (32 - size) << start;
402 regval <<= start;
403 regval = (regval & m) | (old_val & ~m);
404 regcache_cooked_write_unsigned (regcache, r, regval);
405 }
406 }
407 }
408
409
410 /* Read a tie state or mapped registers. Read the masked areas
411 of the registers and assemble them into a single value. */
412
413 static void
414 xtensa_register_read_masked (struct regcache *regcache,
415 xtensa_register_t *reg, gdb_byte *buffer)
416 {
417 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
418 const xtensa_mask_t *mask = reg->mask;
419
420 int shift = 0;
421 int start, size;
422
423 unsigned int *ptr = value;
424 unsigned int regval, mem = 0;
425
426 int bytesize = reg->byte_size;
427 int bitsize = bytesize * 8;
428 int i;
429
430 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
431 reg->name == 0 ? "" : reg->name);
432
433 /* Assemble the register from the masked areas of other registers. */
434 for (i = 0; i < mask->count; i++)
435 {
436 int r = mask->mask[i].reg_num;
437 if (r >= 0)
438 {
439 ULONGEST val;
440 regcache_cooked_read_unsigned (regcache, r, &val);
441 regval = (unsigned int) val;
442 }
443 else
444 regval = 0;
445
446 start = mask->mask[i].bit_start;
447 size = mask->mask[i].bit_size;
448
449 regval >>= start;
450
451 if (size < 32)
452 regval &= (0xffffffff >> (32 - size));
453
454 mem |= regval << shift;
455
456 if ((shift += size) > bitsize)
457 error (_("size of all masks is larger than the register"));
458
459 if (shift >= 32)
460 {
461 *ptr++ = mem;
462 bitsize -= 32;
463 shift -= 32;
464
465 if (shift == 0)
466 mem = 0;
467 else
468 mem = regval >> (size - shift);
469 }
470 }
471
472 if (shift > 0)
473 *ptr = mem;
474
475 /* Copy value to target byte order. */
476 ptr = value;
477 mem = *ptr;
478
479 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
480 for (i = 0; i < bytesize; i++)
481 {
482 if ((i & 3) == 0)
483 mem = *ptr++;
484 buffer[bytesize - i - 1] = mem & 0xff;
485 mem >>= 8;
486 }
487 else
488 for (i = 0; i < bytesize; i++)
489 {
490 if ((i & 3) == 0)
491 mem = *ptr++;
492 buffer[i] = mem & 0xff;
493 mem >>= 8;
494 }
495 }
496
497
498 /* Read pseudo registers. */
499
500 static void
501 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
502 struct regcache *regcache,
503 int regnum,
504 gdb_byte *buffer)
505 {
506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
507
508 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
509 regnum, xtensa_register_name (gdbarch, regnum));
510
511 if (regnum == gdbarch_num_regs (gdbarch)
512 + gdbarch_num_pseudo_regs (gdbarch) - 1)
513 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
514
515 /* Read aliases a0..a15, if this is a Windowed ABI. */
516 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
517 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
518 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
519 {
520 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
521
522 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
523 regnum = arreg_number (gdbarch, regnum,
524 extract_unsigned_integer (buf, 4, byte_order));
525 }
526
527 /* We can always read non-pseudo registers. */
528 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
529 regcache_raw_read (regcache, regnum, buffer);
530
531
532 /* We have to find out how to deal with priveleged registers.
533 Let's treat them as pseudo-registers, but we cannot read/write them. */
534
535 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
536 {
537 buffer[0] = (gdb_byte)0;
538 buffer[1] = (gdb_byte)0;
539 buffer[2] = (gdb_byte)0;
540 buffer[3] = (gdb_byte)0;
541 }
542 /* Pseudo registers. */
543 else if (regnum >= 0
544 && regnum < gdbarch_num_regs (gdbarch)
545 + gdbarch_num_pseudo_regs (gdbarch))
546 {
547 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
548 xtensa_register_type_t type = reg->type;
549 int flags = gdbarch_tdep (gdbarch)->target_flags;
550
551 /* We cannot read Unknown or Unmapped registers. */
552 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
553 {
554 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
555 {
556 warning (_("cannot read register %s"),
557 xtensa_register_name (gdbarch, regnum));
558 return;
559 }
560 }
561
562 /* Some targets cannot read TIE register files. */
563 else if (type == xtRegisterTypeTieRegfile)
564 {
565 /* Use 'fetch' to get register? */
566 if (flags & xtTargetFlagsUseFetchStore)
567 {
568 warning (_("cannot read register"));
569 return;
570 }
571
572 /* On some targets (esp. simulators), we can always read the reg. */
573 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
574 {
575 warning (_("cannot read register"));
576 return;
577 }
578 }
579
580 /* We can always read mapped registers. */
581 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
582 {
583 xtensa_register_read_masked (regcache, reg, buffer);
584 return;
585 }
586
587 /* Assume that we can read the register. */
588 regcache_raw_read (regcache, regnum, buffer);
589 }
590 else
591 internal_error (__FILE__, __LINE__,
592 _("invalid register number %d"), regnum);
593 }
594
595
596 /* Write pseudo registers. */
597
598 static void
599 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
600 struct regcache *regcache,
601 int regnum,
602 const gdb_byte *buffer)
603 {
604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
605
606 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
607 regnum, xtensa_register_name (gdbarch, regnum));
608
609 if (regnum == gdbarch_num_regs (gdbarch)
610 + gdbarch_num_pseudo_regs (gdbarch) -1)
611 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
612
613 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
614 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
615 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
616 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
617 {
618 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
619 unsigned int wb;
620
621 regcache_raw_read (regcache,
622 gdbarch_tdep (gdbarch)->wb_regnum, buf);
623 regnum = arreg_number (gdbarch, regnum,
624 extract_unsigned_integer (buf, 4, byte_order));
625 }
626
627 /* We can always write 'core' registers.
628 Note: We might have converted Ax->ARy. */
629 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
630 regcache_raw_write (regcache, regnum, buffer);
631
632 /* We have to find out how to deal with priveleged registers.
633 Let's treat them as pseudo-registers, but we cannot read/write them. */
634
635 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
636 {
637 return;
638 }
639 /* Pseudo registers. */
640 else if (regnum >= 0
641 && regnum < gdbarch_num_regs (gdbarch)
642 + gdbarch_num_pseudo_regs (gdbarch))
643 {
644 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
645 xtensa_register_type_t type = reg->type;
646 int flags = gdbarch_tdep (gdbarch)->target_flags;
647
648 /* On most targets, we cannot write registers
649 of type "Unknown" or "Unmapped". */
650 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
651 {
652 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
653 {
654 warning (_("cannot write register %s"),
655 xtensa_register_name (gdbarch, regnum));
656 return;
657 }
658 }
659
660 /* Some targets cannot read TIE register files. */
661 else if (type == xtRegisterTypeTieRegfile)
662 {
663 /* Use 'store' to get register? */
664 if (flags & xtTargetFlagsUseFetchStore)
665 {
666 warning (_("cannot write register"));
667 return;
668 }
669
670 /* On some targets (esp. simulators), we can always write
671 the register. */
672 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
673 {
674 warning (_("cannot write register"));
675 return;
676 }
677 }
678
679 /* We can always write mapped registers. */
680 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
681 {
682 xtensa_register_write_masked (regcache, reg, buffer);
683 return;
684 }
685
686 /* Assume that we can write the register. */
687 regcache_raw_write (regcache, regnum, buffer);
688 }
689 else
690 internal_error (__FILE__, __LINE__,
691 _("invalid register number %d"), regnum);
692 }
693
694 static struct reggroup *xtensa_ar_reggroup;
695 static struct reggroup *xtensa_user_reggroup;
696 static struct reggroup *xtensa_vectra_reggroup;
697 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
698
699 static void
700 xtensa_init_reggroups (void)
701 {
702 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
703 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
704 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
705
706 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
707 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
708 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
709 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
710 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
711 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
712 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
713 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
714 }
715
716 static void
717 xtensa_add_reggroups (struct gdbarch *gdbarch)
718 {
719 int i;
720
721 /* Predefined groups. */
722 reggroup_add (gdbarch, all_reggroup);
723 reggroup_add (gdbarch, save_reggroup);
724 reggroup_add (gdbarch, restore_reggroup);
725 reggroup_add (gdbarch, system_reggroup);
726 reggroup_add (gdbarch, vector_reggroup);
727 reggroup_add (gdbarch, general_reggroup);
728 reggroup_add (gdbarch, float_reggroup);
729
730 /* Xtensa-specific groups. */
731 reggroup_add (gdbarch, xtensa_ar_reggroup);
732 reggroup_add (gdbarch, xtensa_user_reggroup);
733 reggroup_add (gdbarch, xtensa_vectra_reggroup);
734
735 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
736 reggroup_add (gdbarch, xtensa_cp[i]);
737 }
738
739 static int
740 xtensa_coprocessor_register_group (struct reggroup *group)
741 {
742 int i;
743
744 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
745 if (group == xtensa_cp[i])
746 return i;
747
748 return -1;
749 }
750
751 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
752 | XTENSA_REGISTER_FLAGS_WRITABLE \
753 | XTENSA_REGISTER_FLAGS_VOLATILE)
754
755 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
756 | XTENSA_REGISTER_FLAGS_WRITABLE)
757
758 static int
759 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
760 int regnum,
761 struct reggroup *group)
762 {
763 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
764 xtensa_register_type_t type = reg->type;
765 xtensa_register_group_t rg = reg->group;
766 int cp_number;
767
768 /* First, skip registers that are not visible to this target
769 (unknown and unmapped registers when not using ISS). */
770
771 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
772 return 0;
773 if (group == all_reggroup)
774 return 1;
775 if (group == xtensa_ar_reggroup)
776 return rg & xtRegisterGroupAddrReg;
777 if (group == xtensa_user_reggroup)
778 return rg & xtRegisterGroupUser;
779 if (group == float_reggroup)
780 return rg & xtRegisterGroupFloat;
781 if (group == general_reggroup)
782 return rg & xtRegisterGroupGeneral;
783 if (group == float_reggroup)
784 return rg & xtRegisterGroupFloat;
785 if (group == system_reggroup)
786 return rg & xtRegisterGroupState;
787 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
788 return rg & xtRegisterGroupVectra;
789 if (group == save_reggroup || group == restore_reggroup)
790 return (regnum < gdbarch_num_regs (gdbarch)
791 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
792 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
793 return rg & (xtRegisterGroupCP0 << cp_number);
794 else
795 return 1;
796 }
797
798
799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
800 in the general-purpose register set REGSET to register cache
801 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
802
803 static void
804 xtensa_supply_gregset (const struct regset *regset,
805 struct regcache *rc,
806 int regnum,
807 const void *gregs,
808 size_t len)
809 {
810 const xtensa_elf_gregset_t *regs = gregs;
811 struct gdbarch *gdbarch = get_regcache_arch (rc);
812 int i;
813
814 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
815
816 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
817 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
818 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
819 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
820 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
821 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
822 (char *) &regs->windowbase);
823 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
824 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
825 (char *) &regs->windowstart);
826 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
827 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
828 (char *) &regs->lbeg);
829 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
830 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
831 (char *) &regs->lend);
832 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
833 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
834 (char *) &regs->lcount);
835 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
836 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
837 (char *) &regs->sar);
838 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
839 && regnum < gdbarch_tdep (gdbarch)->ar_base
840 + gdbarch_tdep (gdbarch)->num_aregs)
841 regcache_raw_supply (rc, regnum,
842 (char *) &regs->ar[regnum - gdbarch_tdep
843 (gdbarch)->ar_base]);
844 else if (regnum == -1)
845 {
846 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
847 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
848 (char *) &regs->ar[i]);
849 }
850 }
851
852
853 /* Xtensa register set. */
854
855 static struct regset
856 xtensa_gregset =
857 {
858 NULL,
859 xtensa_supply_gregset
860 };
861
862
863 /* Return the appropriate register set for the core
864 section identified by SECT_NAME and SECT_SIZE. */
865
866 static const struct regset *
867 xtensa_regset_from_core_section (struct gdbarch *core_arch,
868 const char *sect_name,
869 size_t sect_size)
870 {
871 DEBUGTRACE ("xtensa_regset_from_core_section "
872 "(..., sect_name==\"%s\", sect_size==%x) \n",
873 sect_name, (unsigned int) sect_size);
874
875 if (strcmp (sect_name, ".reg") == 0
876 && sect_size >= sizeof(xtensa_elf_gregset_t))
877 return &xtensa_gregset;
878
879 return NULL;
880 }
881
882
883 /* Handling frames. */
884
885 /* Number of registers to save in case of Windowed ABI. */
886 #define XTENSA_NUM_SAVED_AREGS 12
887
888 /* Frame cache part for Windowed ABI. */
889 typedef struct xtensa_windowed_frame_cache
890 {
891 int wb; /* WINDOWBASE of the previous frame. */
892 int callsize; /* Call size of this frame. */
893 int ws; /* WINDOWSTART of the previous frame. It keeps track of
894 life windows only. If there is no bit set for the
895 window, that means it had been already spilled
896 because of window overflow. */
897
898 /* Spilled A-registers from the previous frame.
899 AREGS[i] == -1, if corresponding AR is alive. */
900 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
901 } xtensa_windowed_frame_cache_t;
902
903 /* Call0 ABI Definitions. */
904
905 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
906 #define C0_NREGS 16 /* Number of A-registers to track. */
907 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
908 #define C0_SP 1 /* Register used as SP. */
909 #define C0_FP 15 /* Register used as FP. */
910 #define C0_RA 0 /* Register used as return address. */
911 #define C0_ARGS 2 /* Register used as first arg/retval. */
912 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
913
914 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
915 A-register where the current content of the reg came from (in terms
916 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
917 mean that the orignal content of the register was saved to the stack.
918 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
919 know where SP will end up until the entire prologue has been analyzed. */
920
921 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
922 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
923 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
924
925 extern xtensa_isa xtensa_default_isa;
926
927 typedef struct xtensa_c0reg
928 {
929 int fr_reg; /* original register from which register content
930 is derived, or C0_CONST, or C0_INEXP. */
931 int fr_ofs; /* constant offset from reg, or immediate value. */
932 int to_stk; /* offset from original SP to register (4-byte aligned),
933 or C0_NOSTK if register has not been saved. */
934 } xtensa_c0reg_t;
935
936
937 /* Frame cache part for Call0 ABI. */
938 typedef struct xtensa_call0_frame_cache
939 {
940 int c0_frmsz; /* Stack frame size. */
941 int c0_hasfp; /* Current frame uses frame pointer. */
942 int fp_regnum; /* A-register used as FP. */
943 int c0_fp; /* Actual value of frame pointer. */
944 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
945 } xtensa_call0_frame_cache_t;
946
947 typedef struct xtensa_frame_cache
948 {
949 CORE_ADDR base; /* Stack pointer of this frame. */
950 CORE_ADDR pc; /* PC at the entry point to the function. */
951 CORE_ADDR ra; /* The raw return address (without CALLINC). */
952 CORE_ADDR ps; /* The PS register of this frame. */
953 CORE_ADDR prev_sp; /* Stack Pointer of the previous frame. */
954 int call0; /* It's a call0 framework (else windowed). */
955 union
956 {
957 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
958 xtensa_call0_frame_cache_t c0; /* call0 == true. */
959 };
960 } xtensa_frame_cache_t;
961
962
963 static struct xtensa_frame_cache *
964 xtensa_alloc_frame_cache (int windowed)
965 {
966 xtensa_frame_cache_t *cache;
967 int i;
968
969 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
970
971 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
972
973 cache->base = 0;
974 cache->pc = 0;
975 cache->ra = 0;
976 cache->ps = 0;
977 cache->prev_sp = 0;
978 cache->call0 = !windowed;
979 if (cache->call0)
980 {
981 cache->c0.c0_frmsz = -1;
982 cache->c0.c0_hasfp = 0;
983 cache->c0.fp_regnum = -1;
984 cache->c0.c0_fp = -1;
985
986 for (i = 0; i < C0_NREGS; i++)
987 {
988 cache->c0.c0_rt[i].fr_reg = i;
989 cache->c0.c0_rt[i].fr_ofs = 0;
990 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
991 }
992 }
993 else
994 {
995 cache->wd.wb = 0;
996 cache->wd.ws = 0;
997 cache->wd.callsize = -1;
998
999 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1000 cache->wd.aregs[i] = -1;
1001 }
1002 return cache;
1003 }
1004
1005
1006 static CORE_ADDR
1007 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1008 {
1009 return address & ~15;
1010 }
1011
1012
1013 static CORE_ADDR
1014 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1015 {
1016 gdb_byte buf[8];
1017 CORE_ADDR pc;
1018
1019 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1020 host_address_to_string (next_frame));
1021
1022 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1023 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1024
1025 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1026
1027 return pc;
1028 }
1029
1030
1031 static struct frame_id
1032 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1033 {
1034 CORE_ADDR pc, fp;
1035
1036 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1037
1038 pc = get_frame_pc (this_frame);
1039 fp = get_frame_register_unsigned
1040 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1041
1042 /* Make dummy frame ID unique by adding a constant. */
1043 return frame_id_build (fp + SP_ALIGNMENT, pc);
1044 }
1045
1046 /* Returns the best guess about which register is a frame pointer
1047 for the function containing CURRENT_PC. */
1048
1049 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1050 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1051
1052 static unsigned int
1053 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1054 {
1055 #define RETURN_FP goto done
1056
1057 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1058 CORE_ADDR start_addr;
1059 xtensa_isa isa;
1060 xtensa_insnbuf ins, slot;
1061 char ibuf[XTENSA_ISA_BSZ];
1062 CORE_ADDR ia, bt, ba;
1063 xtensa_format ifmt;
1064 int ilen, islots, is;
1065 xtensa_opcode opc;
1066 const char *opcname;
1067
1068 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1069 if (start_addr == 0)
1070 return fp_regnum;
1071
1072 if (!xtensa_default_isa)
1073 xtensa_default_isa = xtensa_isa_init (0, 0);
1074 isa = xtensa_default_isa;
1075 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1076 ins = xtensa_insnbuf_alloc (isa);
1077 slot = xtensa_insnbuf_alloc (isa);
1078 ba = 0;
1079
1080 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1081 {
1082 if (ia + xtensa_isa_maxlength (isa) > bt)
1083 {
1084 ba = ia;
1085 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1086 ? ba + XTENSA_ISA_BSZ : current_pc;
1087 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1088 RETURN_FP;
1089 }
1090
1091 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1092 ifmt = xtensa_format_decode (isa, ins);
1093 if (ifmt == XTENSA_UNDEFINED)
1094 RETURN_FP;
1095 ilen = xtensa_format_length (isa, ifmt);
1096 if (ilen == XTENSA_UNDEFINED)
1097 RETURN_FP;
1098 islots = xtensa_format_num_slots (isa, ifmt);
1099 if (islots == XTENSA_UNDEFINED)
1100 RETURN_FP;
1101
1102 for (is = 0; is < islots; ++is)
1103 {
1104 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1105 RETURN_FP;
1106
1107 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1108 if (opc == XTENSA_UNDEFINED)
1109 RETURN_FP;
1110
1111 opcname = xtensa_opcode_name (isa, opc);
1112
1113 if (strcasecmp (opcname, "mov.n") == 0
1114 || strcasecmp (opcname, "or") == 0)
1115 {
1116 unsigned int register_operand;
1117
1118 /* Possible candidate for setting frame pointer
1119 from A1. This is what we are looking for. */
1120
1121 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1122 is, slot, &register_operand) != 0)
1123 RETURN_FP;
1124 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1125 RETURN_FP;
1126 if (register_operand == 1) /* Mov{.n} FP A1. */
1127 {
1128 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1129 &register_operand) != 0)
1130 RETURN_FP;
1131 if (xtensa_operand_decode (isa, opc, 0,
1132 &register_operand) != 0)
1133 RETURN_FP;
1134
1135 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1136 RETURN_FP;
1137 }
1138 }
1139
1140 if (
1141 /* We have problems decoding the memory. */
1142 opcname == NULL
1143 || strcasecmp (opcname, "ill") == 0
1144 || strcasecmp (opcname, "ill.n") == 0
1145 /* Hit planted breakpoint. */
1146 || strcasecmp (opcname, "break") == 0
1147 || strcasecmp (opcname, "break.n") == 0
1148 /* Flow control instructions finish prologue. */
1149 || xtensa_opcode_is_branch (isa, opc) > 0
1150 || xtensa_opcode_is_jump (isa, opc) > 0
1151 || xtensa_opcode_is_loop (isa, opc) > 0
1152 || xtensa_opcode_is_call (isa, opc) > 0
1153 || strcasecmp (opcname, "simcall") == 0
1154 || strcasecmp (opcname, "syscall") == 0)
1155 /* Can not continue analysis. */
1156 RETURN_FP;
1157 }
1158 }
1159 done:
1160 xtensa_insnbuf_free(isa, slot);
1161 xtensa_insnbuf_free(isa, ins);
1162 return fp_regnum;
1163 }
1164
1165 /* The key values to identify the frame using "cache" are
1166
1167 cache->base = SP (or best guess about FP) of this frame;
1168 cache->pc = entry-PC (entry point of the frame function);
1169 cache->prev_sp = SP of the previous frame.
1170 */
1171
1172 static void
1173 call0_frame_cache (struct frame_info *this_frame,
1174 xtensa_frame_cache_t *cache,
1175 CORE_ADDR pc, CORE_ADDR litbase);
1176
1177 static struct xtensa_frame_cache *
1178 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1179 {
1180 xtensa_frame_cache_t *cache;
1181 CORE_ADDR ra, wb, ws, pc, sp, ps;
1182 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1184 unsigned int fp_regnum;
1185 char op1;
1186 int windowed;
1187
1188 if (*this_cache)
1189 return *this_cache;
1190
1191 ps = get_frame_register_unsigned (this_frame, gdbarch_ps_regnum (gdbarch));
1192 windowed = windowing_enabled (ps);
1193
1194 /* Get pristine xtensa-frame. */
1195 cache = xtensa_alloc_frame_cache (windowed);
1196 *this_cache = cache;
1197
1198 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1199
1200 if (windowed)
1201 {
1202 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1203 wb = get_frame_register_unsigned (this_frame,
1204 gdbarch_tdep (gdbarch)->wb_regnum);
1205 ws = get_frame_register_unsigned (this_frame,
1206 gdbarch_tdep (gdbarch)->ws_regnum);
1207
1208 op1 = read_memory_integer (pc, 1, byte_order);
1209 if (XTENSA_IS_ENTRY (gdbarch, op1))
1210 {
1211 int callinc = CALLINC (ps);
1212 ra = get_frame_register_unsigned
1213 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1214
1215 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1216 cache->wd.callsize = 0;
1217 cache->wd.wb = wb;
1218 cache->wd.ws = ws;
1219 cache->prev_sp = get_frame_register_unsigned
1220 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1221
1222 /* This only can be the outermost frame since we are
1223 just about to execute ENTRY. SP hasn't been set yet.
1224 We can assume any frame size, because it does not
1225 matter, and, let's fake frame base in cache. */
1226 cache->base = cache->prev_sp + 16;
1227
1228 cache->pc = pc;
1229 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1230 cache->ps = (ps & ~PS_CALLINC_MASK)
1231 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1232
1233 return cache;
1234 }
1235 else
1236 {
1237 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1238 ra = get_frame_register_unsigned (this_frame,
1239 gdbarch_tdep (gdbarch)->a0_base);
1240 cache->wd.callsize = WINSIZE (ra);
1241 cache->wd.wb = (wb - cache->wd.callsize / 4)
1242 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1243 cache->wd.ws = ws & ~(1 << wb);
1244
1245 cache->pc = get_frame_func (this_frame);
1246 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1247 cache->ps = (ps & ~PS_CALLINC_MASK)
1248 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1249 }
1250
1251 if (cache->wd.ws == 0)
1252 {
1253 int i;
1254
1255 /* Set A0...A3. */
1256 sp = get_frame_register_unsigned
1257 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1258
1259 for (i = 0; i < 4; i++, sp += 4)
1260 {
1261 cache->wd.aregs[i] = sp;
1262 }
1263
1264 if (cache->wd.callsize > 4)
1265 {
1266 /* Set A4...A7/A11. */
1267 /* Get the SP of the frame previous to the previous one.
1268 To achieve this, we have to dereference SP twice. */
1269 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1270 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1271 sp -= cache->wd.callsize * 4;
1272
1273 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1274 {
1275 cache->wd.aregs[i] = sp;
1276 }
1277 }
1278 }
1279
1280 if ((cache->prev_sp == 0) && ( ra != 0 ))
1281 /* If RA is equal to 0 this frame is an outermost frame. Leave
1282 cache->prev_sp unchanged marking the boundary of the frame stack. */
1283 {
1284 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1285 {
1286 /* Register window overflow already happened.
1287 We can read caller's SP from the proper spill loction. */
1288 sp = get_frame_register_unsigned
1289 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1290 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1291 }
1292 else
1293 {
1294 /* Read caller's frame SP directly from the previous window. */
1295 int regnum = arreg_number
1296 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1297 cache->wd.wb);
1298
1299 cache->prev_sp = get_frame_register_unsigned (this_frame, regnum);
1300 }
1301 }
1302 }
1303 else /* Call0 framework. */
1304 {
1305 unsigned int litbase_regnum = gdbarch_tdep (gdbarch)->litbase_regnum;
1306 CORE_ADDR litbase = (litbase_regnum == -1)
1307 ? 0 : get_frame_register_unsigned (this_frame, litbase_regnum);
1308
1309 call0_frame_cache (this_frame, cache, pc, litbase);
1310 fp_regnum = cache->c0.fp_regnum;
1311 }
1312
1313 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1314
1315 return cache;
1316 }
1317
1318 static void
1319 xtensa_frame_this_id (struct frame_info *this_frame,
1320 void **this_cache,
1321 struct frame_id *this_id)
1322 {
1323 struct xtensa_frame_cache *cache =
1324 xtensa_frame_cache (this_frame, this_cache);
1325
1326 if (cache->prev_sp == 0)
1327 return;
1328
1329 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1330 }
1331
1332 static struct value *
1333 xtensa_frame_prev_register (struct frame_info *this_frame,
1334 void **this_cache,
1335 int regnum)
1336 {
1337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1338 struct xtensa_frame_cache *cache;
1339 ULONGEST saved_reg = 0;
1340 int done = 1;
1341
1342 if (*this_cache == NULL)
1343 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1344 cache = *this_cache;
1345
1346 if (regnum ==gdbarch_pc_regnum (gdbarch))
1347 saved_reg = cache->ra;
1348 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1349 saved_reg = cache->prev_sp;
1350 else if (!cache->call0)
1351 {
1352 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1353 saved_reg = cache->wd.ws;
1354 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1355 saved_reg = cache->wd.wb;
1356 else if (regnum == gdbarch_ps_regnum (gdbarch))
1357 saved_reg = cache->ps;
1358 else
1359 done = 0;
1360 }
1361 else
1362 done = 0;
1363
1364 if (done)
1365 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1366
1367 if (!cache->call0) /* Windowed ABI. */
1368 {
1369 /* Convert A-register numbers to AR-register numbers,
1370 if we deal with A-register. */
1371 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1372 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1373 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1374
1375 /* Check, if we deal with AR-register saved on stack. */
1376 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1377 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1378 + gdbarch_tdep (gdbarch)->num_aregs))
1379 {
1380 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1381
1382 if (areg >= 0
1383 && areg < XTENSA_NUM_SAVED_AREGS
1384 && cache->wd.aregs[areg] != -1)
1385 return frame_unwind_got_memory (this_frame, regnum,
1386 cache->wd.aregs[areg]);
1387 }
1388 }
1389 else /* Call0 ABI. */
1390 {
1391 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1392 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1393 + C0_NREGS))
1394 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1395
1396 if (reg < C0_NREGS)
1397 {
1398 CORE_ADDR spe;
1399 int stkofs;
1400
1401 /* If register was saved in the prologue, retrieve it. */
1402 stkofs = cache->c0.c0_rt[reg].to_stk;
1403 if (stkofs != C0_NOSTK)
1404 {
1405 /* Determine SP on entry based on FP. */
1406 spe = cache->c0.c0_fp
1407 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1408
1409 return frame_unwind_got_memory (this_frame, regnum, spe + stkofs);
1410 }
1411 }
1412 }
1413
1414 /* All other registers have been either saved to
1415 the stack or are still alive in the processor. */
1416
1417 return frame_unwind_got_register (this_frame, regnum, regnum);
1418 }
1419
1420
1421 static const struct frame_unwind
1422 xtensa_unwind =
1423 {
1424 NORMAL_FRAME,
1425 xtensa_frame_this_id,
1426 xtensa_frame_prev_register,
1427 NULL,
1428 default_frame_sniffer
1429 };
1430
1431 static CORE_ADDR
1432 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1433 {
1434 struct xtensa_frame_cache *cache =
1435 xtensa_frame_cache (this_frame, this_cache);
1436
1437 return cache->base;
1438 }
1439
1440 static const struct frame_base
1441 xtensa_frame_base =
1442 {
1443 &xtensa_unwind,
1444 xtensa_frame_base_address,
1445 xtensa_frame_base_address,
1446 xtensa_frame_base_address
1447 };
1448
1449
1450 static void
1451 xtensa_extract_return_value (struct type *type,
1452 struct regcache *regcache,
1453 void *dst)
1454 {
1455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1456 bfd_byte *valbuf = dst;
1457 int len = TYPE_LENGTH (type);
1458 ULONGEST pc, wb;
1459 int callsize, areg;
1460 int offset = 0;
1461
1462 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1463
1464 gdb_assert(len > 0);
1465
1466 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1467 {
1468 /* First, we have to find the caller window in the register file. */
1469 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1470 callsize = extract_call_winsize (gdbarch, pc);
1471
1472 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1473 if (len > (callsize > 8 ? 8 : 16))
1474 internal_error (__FILE__, __LINE__,
1475 _("cannot extract return value of %d bytes long"), len);
1476
1477 /* Get the register offset of the return
1478 register (A2) in the caller window. */
1479 regcache_raw_read_unsigned
1480 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1481 areg = arreg_number (gdbarch,
1482 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1483 }
1484 else
1485 {
1486 /* No windowing hardware - Call0 ABI. */
1487 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1488 }
1489
1490 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1491
1492 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1493 offset = 4 - len;
1494
1495 for (; len > 0; len -= 4, areg++, valbuf += 4)
1496 {
1497 if (len < 4)
1498 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1499 else
1500 regcache_raw_read (regcache, areg, valbuf);
1501 }
1502 }
1503
1504
1505 static void
1506 xtensa_store_return_value (struct type *type,
1507 struct regcache *regcache,
1508 const void *dst)
1509 {
1510 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1511 const bfd_byte *valbuf = dst;
1512 unsigned int areg;
1513 ULONGEST pc, wb;
1514 int callsize;
1515 int len = TYPE_LENGTH (type);
1516 int offset = 0;
1517
1518 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1519
1520 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1521 {
1522 regcache_raw_read_unsigned
1523 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1524 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1525 callsize = extract_call_winsize (gdbarch, pc);
1526
1527 if (len > (callsize > 8 ? 8 : 16))
1528 internal_error (__FILE__, __LINE__,
1529 _("unimplemented for this length: %d"),
1530 TYPE_LENGTH (type));
1531 areg = arreg_number (gdbarch,
1532 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1533
1534 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1535 callsize, (int) wb);
1536 }
1537 else
1538 {
1539 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1540 }
1541
1542 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1543 offset = 4 - len;
1544
1545 for (; len > 0; len -= 4, areg++, valbuf += 4)
1546 {
1547 if (len < 4)
1548 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1549 else
1550 regcache_raw_write (regcache, areg, valbuf);
1551 }
1552 }
1553
1554
1555 static enum return_value_convention
1556 xtensa_return_value (struct gdbarch *gdbarch,
1557 struct type *func_type,
1558 struct type *valtype,
1559 struct regcache *regcache,
1560 gdb_byte *readbuf,
1561 const gdb_byte *writebuf)
1562 {
1563 /* Structures up to 16 bytes are returned in registers. */
1564
1565 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1566 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1567 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1568 && TYPE_LENGTH (valtype) > 16);
1569
1570 if (struct_return)
1571 return RETURN_VALUE_STRUCT_CONVENTION;
1572
1573 DEBUGTRACE ("xtensa_return_value(...)\n");
1574
1575 if (writebuf != NULL)
1576 {
1577 xtensa_store_return_value (valtype, regcache, writebuf);
1578 }
1579
1580 if (readbuf != NULL)
1581 {
1582 gdb_assert (!struct_return);
1583 xtensa_extract_return_value (valtype, regcache, readbuf);
1584 }
1585 return RETURN_VALUE_REGISTER_CONVENTION;
1586 }
1587
1588
1589 /* DUMMY FRAME */
1590
1591 static CORE_ADDR
1592 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1593 struct value *function,
1594 struct regcache *regcache,
1595 CORE_ADDR bp_addr,
1596 int nargs,
1597 struct value **args,
1598 CORE_ADDR sp,
1599 int struct_return,
1600 CORE_ADDR struct_addr)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 int i;
1604 int size, onstack_size;
1605 gdb_byte *buf = (gdb_byte *) alloca (16);
1606 CORE_ADDR ra, ps;
1607 struct argument_info
1608 {
1609 const bfd_byte *contents;
1610 int length;
1611 int onstack; /* onstack == 0 => in reg */
1612 int align; /* alignment */
1613 union
1614 {
1615 int offset; /* stack offset if on stack */
1616 int regno; /* regno if in register */
1617 } u;
1618 };
1619
1620 struct argument_info *arg_info =
1621 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1622
1623 CORE_ADDR osp = sp;
1624
1625 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1626
1627 if (xtensa_debug_level > 3)
1628 {
1629 int i;
1630 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1631 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1632 "struct_addr=0x%x\n",
1633 (int) sp, (int) struct_return, (int) struct_addr);
1634
1635 for (i = 0; i < nargs; i++)
1636 {
1637 struct value *arg = args[i];
1638 struct type *arg_type = check_typedef (value_type (arg));
1639 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1640 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1641 switch (TYPE_CODE (arg_type))
1642 {
1643 case TYPE_CODE_INT:
1644 fprintf_unfiltered (gdb_stdlog, "int");
1645 break;
1646 case TYPE_CODE_STRUCT:
1647 fprintf_unfiltered (gdb_stdlog, "struct");
1648 break;
1649 default:
1650 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1651 break;
1652 }
1653 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1654 (unsigned long) value_contents (arg));
1655 }
1656 }
1657
1658 /* First loop: collect information.
1659 Cast into type_long. (This shouldn't happen often for C because
1660 GDB already does this earlier.) It's possible that GDB could
1661 do it all the time but it's harmless to leave this code here. */
1662
1663 size = 0;
1664 onstack_size = 0;
1665 i = 0;
1666
1667 if (struct_return)
1668 size = REGISTER_SIZE;
1669
1670 for (i = 0; i < nargs; i++)
1671 {
1672 struct argument_info *info = &arg_info[i];
1673 struct value *arg = args[i];
1674 struct type *arg_type = check_typedef (value_type (arg));
1675
1676 switch (TYPE_CODE (arg_type))
1677 {
1678 case TYPE_CODE_INT:
1679 case TYPE_CODE_BOOL:
1680 case TYPE_CODE_CHAR:
1681 case TYPE_CODE_RANGE:
1682 case TYPE_CODE_ENUM:
1683
1684 /* Cast argument to long if necessary as the mask does it too. */
1685 if (TYPE_LENGTH (arg_type)
1686 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1687 {
1688 arg_type = builtin_type (gdbarch)->builtin_long;
1689 arg = value_cast (arg_type, arg);
1690 }
1691 /* Aligment is equal to the type length for the basic types. */
1692 info->align = TYPE_LENGTH (arg_type);
1693 break;
1694
1695 case TYPE_CODE_FLT:
1696
1697 /* Align doubles correctly. */
1698 if (TYPE_LENGTH (arg_type)
1699 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1700 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1701 else
1702 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1703 break;
1704
1705 case TYPE_CODE_STRUCT:
1706 default:
1707 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1708 break;
1709 }
1710 info->length = TYPE_LENGTH (arg_type);
1711 info->contents = value_contents (arg);
1712
1713 /* Align size and onstack_size. */
1714 size = (size + info->align - 1) & ~(info->align - 1);
1715 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1716
1717 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1718 {
1719 info->onstack = 1;
1720 info->u.offset = onstack_size;
1721 onstack_size += info->length;
1722 }
1723 else
1724 {
1725 info->onstack = 0;
1726 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1727 }
1728 size += info->length;
1729 }
1730
1731 /* Adjust the stack pointer and align it. */
1732 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1733
1734 /* Simulate MOVSP, if Windowed ABI. */
1735 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1736 && (sp != osp))
1737 {
1738 read_memory (osp - 16, buf, 16);
1739 write_memory (sp - 16, buf, 16);
1740 }
1741
1742 /* Second Loop: Load arguments. */
1743
1744 if (struct_return)
1745 {
1746 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1747 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1748 }
1749
1750 for (i = 0; i < nargs; i++)
1751 {
1752 struct argument_info *info = &arg_info[i];
1753
1754 if (info->onstack)
1755 {
1756 int n = info->length;
1757 CORE_ADDR offset = sp + info->u.offset;
1758
1759 /* Odd-sized structs are aligned to the lower side of a memory
1760 word in big-endian mode and require a shift. This only
1761 applies for structures smaller than one word. */
1762
1763 if (n < REGISTER_SIZE
1764 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1765 offset += (REGISTER_SIZE - n);
1766
1767 write_memory (offset, info->contents, info->length);
1768
1769 }
1770 else
1771 {
1772 int n = info->length;
1773 const bfd_byte *cp = info->contents;
1774 int r = info->u.regno;
1775
1776 /* Odd-sized structs are aligned to the lower side of registers in
1777 big-endian mode and require a shift. The odd-sized leftover will
1778 be at the end. Note that this is only true for structures smaller
1779 than REGISTER_SIZE; for larger odd-sized structures the excess
1780 will be left-aligned in the register on both endiannesses. */
1781
1782 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1783 {
1784 ULONGEST v;
1785 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1786 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1787
1788 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1789 regcache_cooked_write (regcache, r, buf);
1790
1791 cp += REGISTER_SIZE;
1792 n -= REGISTER_SIZE;
1793 r++;
1794 }
1795 else
1796 while (n > 0)
1797 {
1798 regcache_cooked_write (regcache, r, cp);
1799
1800 cp += REGISTER_SIZE;
1801 n -= REGISTER_SIZE;
1802 r++;
1803 }
1804 }
1805 }
1806
1807 /* Set the return address of dummy frame to the dummy address.
1808 The return address for the current function (in A0) is
1809 saved in the dummy frame, so we can savely overwrite A0 here. */
1810
1811 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1812 {
1813 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1814 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1815 ps = extract_unsigned_integer (buf, 4, byte_order) & ~0x00030000;
1816 regcache_cooked_write_unsigned
1817 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1818 regcache_cooked_write_unsigned (regcache,
1819 gdbarch_ps_regnum (gdbarch),
1820 ps | 0x00010000);
1821
1822 /* All the registers have been saved. After executing
1823 dummy call, they all will be restored. So it's safe
1824 to modify WINDOWSTART register to make it look like there
1825 is only one register window corresponding to WINDOWEBASE. */
1826
1827 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1828 regcache_cooked_write_unsigned
1829 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1830 1 << extract_unsigned_integer (buf, 4, byte_order));
1831 }
1832 else
1833 {
1834 /* Simulate CALL0: write RA into A0 register. */
1835 regcache_cooked_write_unsigned
1836 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1837 }
1838
1839 /* Set new stack pointer and return it. */
1840 regcache_cooked_write_unsigned (regcache,
1841 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1842 /* Make dummy frame ID unique by adding a constant. */
1843 return sp + SP_ALIGNMENT;
1844 }
1845
1846
1847 /* Return a breakpoint for the current location of PC. We always use
1848 the density version if we have density instructions (regardless of the
1849 current instruction at PC), and use regular instructions otherwise. */
1850
1851 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1852 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1853 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1854 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1855
1856 static const unsigned char *
1857 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1858 int *lenptr)
1859 {
1860 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1861 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1862 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1863 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1864
1865 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1866
1867 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1868 {
1869 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1870 {
1871 *lenptr = sizeof (density_big_breakpoint);
1872 return density_big_breakpoint;
1873 }
1874 else
1875 {
1876 *lenptr = sizeof (density_little_breakpoint);
1877 return density_little_breakpoint;
1878 }
1879 }
1880 else
1881 {
1882 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1883 {
1884 *lenptr = sizeof (big_breakpoint);
1885 return big_breakpoint;
1886 }
1887 else
1888 {
1889 *lenptr = sizeof (little_breakpoint);
1890 return little_breakpoint;
1891 }
1892 }
1893 }
1894
1895 /* Call0 ABI support routines. */
1896
1897 /* Call0 opcode class. Opcodes are preclassified according to what they
1898 mean for Call0 prologue analysis, and their number of significant operands.
1899 The purpose of this is to simplify prologue analysis by separating
1900 instruction decoding (libisa) from the semantics of prologue analysis. */
1901
1902 typedef enum {
1903 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1904 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1905 c0opc_flow, /* Flow control insn. */
1906 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1907 c0opc_break, /* Debugger software breakpoints. */
1908 c0opc_add, /* Adding two registers. */
1909 c0opc_addi, /* Adding a register and an immediate. */
1910 c0opc_sub, /* Subtracting a register from a register. */
1911 c0opc_mov, /* Moving a register to a register. */
1912 c0opc_movi, /* Moving an immediate to a register. */
1913 c0opc_l32r, /* Loading a literal. */
1914 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1915 c0opc_NrOf /* Number of opcode classifications. */
1916 } xtensa_insn_kind;
1917
1918
1919 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1920
1921 static xtensa_insn_kind
1922 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1923 {
1924 const char *opcname;
1925 xtensa_insn_kind opclass = c0opc_uninteresting;
1926
1927 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1928
1929 /* Get opcode name and handle special classifications. */
1930
1931 opcname = xtensa_opcode_name (isa, opc);
1932
1933 if (opcname == NULL
1934 || strcasecmp (opcname, "ill") == 0
1935 || strcasecmp (opcname, "ill.n") == 0)
1936 opclass = c0opc_illegal;
1937 else if (strcasecmp (opcname, "break") == 0
1938 || strcasecmp (opcname, "break.n") == 0)
1939 opclass = c0opc_break;
1940 else if (strcasecmp (opcname, "entry") == 0)
1941 opclass = c0opc_entry;
1942 else if (xtensa_opcode_is_branch (isa, opc) > 0
1943 || xtensa_opcode_is_jump (isa, opc) > 0
1944 || xtensa_opcode_is_loop (isa, opc) > 0
1945 || xtensa_opcode_is_call (isa, opc) > 0
1946 || strcasecmp (opcname, "simcall") == 0
1947 || strcasecmp (opcname, "syscall") == 0)
1948 opclass = c0opc_flow;
1949
1950 /* Also, classify specific opcodes that need to be tracked. */
1951 else if (strcasecmp (opcname, "add") == 0
1952 || strcasecmp (opcname, "add.n") == 0)
1953 opclass = c0opc_add;
1954 else if (strcasecmp (opcname, "addi") == 0
1955 || strcasecmp (opcname, "addi.n") == 0
1956 || strcasecmp (opcname, "addmi") == 0)
1957 opclass = c0opc_addi;
1958 else if (strcasecmp (opcname, "sub") == 0)
1959 opclass = c0opc_sub;
1960 else if (strcasecmp (opcname, "mov.n") == 0
1961 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1962 opclass = c0opc_mov;
1963 else if (strcasecmp (opcname, "movi") == 0
1964 || strcasecmp (opcname, "movi.n") == 0)
1965 opclass = c0opc_movi;
1966 else if (strcasecmp (opcname, "l32r") == 0)
1967 opclass = c0opc_l32r;
1968 else if (strcasecmp (opcname, "s32i") == 0
1969 || strcasecmp (opcname, "s32i.n") == 0)
1970 opclass = c0opc_s32i;
1971
1972 return opclass;
1973 }
1974
1975 /* Tracks register movement/mutation for a given operation, which may
1976 be within a bundle. Updates the destination register tracking info
1977 accordingly. The pc is needed only for pc-relative load instructions
1978 (eg. l32r). The SP register number is needed to identify stores to
1979 the stack frame. */
1980
1981 static void
1982 call0_track_op (struct gdbarch *gdbarch,
1983 xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1984 xtensa_insn_kind opclass, int nods, unsigned odv[],
1985 CORE_ADDR pc, CORE_ADDR litbase, int spreg)
1986 {
1987 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1988 unsigned litaddr, litval;
1989
1990 switch (opclass)
1991 {
1992 case c0opc_addi:
1993 /* 3 operands: dst, src, imm. */
1994 gdb_assert (nods == 3);
1995 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1996 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1997 break;
1998 case c0opc_add:
1999 /* 3 operands: dst, src1, src2. */
2000 gdb_assert (nods == 3);
2001 if (src[odv[1]].fr_reg == C0_CONST)
2002 {
2003 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2004 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2005 }
2006 else if (src[odv[2]].fr_reg == C0_CONST)
2007 {
2008 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2009 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2010 }
2011 else dst[odv[0]].fr_reg = C0_INEXP;
2012 break;
2013 case c0opc_sub:
2014 /* 3 operands: dst, src1, src2. */
2015 gdb_assert (nods == 3);
2016 if (src[odv[2]].fr_reg == C0_CONST)
2017 {
2018 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2019 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2020 }
2021 else dst[odv[0]].fr_reg = C0_INEXP;
2022 break;
2023 case c0opc_mov:
2024 /* 2 operands: dst, src [, src]. */
2025 gdb_assert (nods == 2);
2026 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2027 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2028 break;
2029 case c0opc_movi:
2030 /* 2 operands: dst, imm. */
2031 gdb_assert (nods == 2);
2032 dst[odv[0]].fr_reg = C0_CONST;
2033 dst[odv[0]].fr_ofs = odv[1];
2034 break;
2035 case c0opc_l32r:
2036 /* 2 operands: dst, literal offset. */
2037 gdb_assert (nods == 2);
2038 litaddr = litbase & 1
2039 ? (litbase & ~1) + (signed)odv[1]
2040 : (pc + 3 + (signed)odv[1]) & ~3;
2041 litval = read_memory_integer (litaddr, 4, byte_order);
2042 dst[odv[0]].fr_reg = C0_CONST;
2043 dst[odv[0]].fr_ofs = litval;
2044 break;
2045 case c0opc_s32i:
2046 /* 3 operands: value, base, offset. */
2047 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2048 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2049 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2050 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2051 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2052 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2053 {
2054 /* ISA encoding guarantees alignment. But, check it anyway. */
2055 gdb_assert ((odv[2] & 3) == 0);
2056 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2057 }
2058 break;
2059 default:
2060 gdb_assert (0);
2061 }
2062 }
2063
2064 /* Analyze prologue of the function at start address to determine if it uses
2065 the Call0 ABI, and if so track register moves and linear modifications
2066 in the prologue up to the PC or just beyond the prologue, whichever is first.
2067 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2068 The prologue may overlap non-prologue instructions but is guaranteed to end
2069 by the first flow-control instruction (jump, branch, call or return).
2070 Since an optimized function may move information around and change the
2071 stack frame arbitrarily during the prologue, the information is guaranteed
2072 valid only at the point in the function indicated by the PC.
2073 May be used to skip the prologue or identify the ABI, w/o tracking.
2074
2075 Returns: Address of first instruction after prologue, or PC (whichever
2076 is first), or 0, if decoding failed (in libisa).
2077 Input args:
2078 start Start address of function/prologue.
2079 pc Program counter to stop at. Use 0 to continue to end of prologue.
2080 If 0, avoids infinite run-on in corrupt code memory by bounding
2081 the scan to the end of the function if that can be determined.
2082 nregs Number of general registers to track (size of rt[] array).
2083 InOut args:
2084 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2085 If NULL, registers are not tracked.
2086 Output args:
2087 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2088 (more accurately, non-zero until 'entry' insn is encountered).
2089
2090 Note that these may produce useful results even if decoding fails
2091 because they begin with default assumptions that analysis may change. */
2092
2093 static CORE_ADDR
2094 call0_analyze_prologue (struct gdbarch *gdbarch,
2095 CORE_ADDR start, CORE_ADDR pc, CORE_ADDR litbase,
2096 int nregs, xtensa_c0reg_t rt[], int *call0)
2097 {
2098 CORE_ADDR ia; /* Current insn address in prologue. */
2099 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2100 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2101 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2102 xtensa_isa isa; /* libisa ISA handle. */
2103 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2104 xtensa_format ifmt; /* libisa instruction format. */
2105 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2106 xtensa_opcode opc; /* Opcode in current slot. */
2107 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2108 int nods; /* Opcode number of operands. */
2109 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2110 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2111 int j; /* General loop counter. */
2112 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2113 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2114 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2115
2116 struct symtab_and_line prologue_sal;
2117
2118 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2119 (int)start, (int)pc);
2120
2121 /* Try to limit the scan to the end of the function if a non-zero pc
2122 arg was not supplied to avoid probing beyond the end of valid memory.
2123 If memory is full of garbage that classifies as c0opc_uninteresting.
2124 If this fails (eg. if no symbols) pc ends up 0 as it was.
2125 Intialize the Call0 frame and register tracking info.
2126 Assume it's Call0 until an 'entry' instruction is encountered.
2127 Assume we may be in the prologue until we hit a flow control instr. */
2128
2129 rtmp = NULL;
2130 body_pc = UINT_MAX;
2131 end_pc = 0;
2132
2133 /* Find out, if we have an information about the prologue from DWARF. */
2134 prologue_sal = find_pc_line (start, 0);
2135 if (prologue_sal.line != 0) /* Found debug info. */
2136 body_pc = prologue_sal.end;
2137
2138 /* If we are going to analyze the prologue in general without knowing about
2139 the current PC, make the best assumtion for the end of the prologue. */
2140 if (pc == 0)
2141 {
2142 find_pc_partial_function (start, 0, NULL, &end_pc);
2143 body_pc = min (end_pc, body_pc);
2144 }
2145 else
2146 body_pc = min (pc, body_pc);
2147
2148 if (call0 != NULL)
2149 *call0 = 1;
2150
2151 if (rt != NULL)
2152 {
2153 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2154 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2155 }
2156 else nregs = 0;
2157
2158 if (!xtensa_default_isa)
2159 xtensa_default_isa = xtensa_isa_init (0, 0);
2160 isa = xtensa_default_isa;
2161 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2162 ins = xtensa_insnbuf_alloc (isa);
2163 slot = xtensa_insnbuf_alloc (isa);
2164
2165 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2166 {
2167 /* (Re)fill instruction buffer from memory if necessary, but do not
2168 read memory beyond PC to be sure we stay within text section
2169 (this protection only works if a non-zero pc is supplied). */
2170
2171 if (ia + xtensa_isa_maxlength (isa) > bt)
2172 {
2173 ba = ia;
2174 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2175 read_memory (ba, ibuf, bt - ba);
2176 /* If there is a memory reading error read_memory () will report it
2177 and then throw an exception, stopping command execution. */
2178 }
2179
2180 /* Decode format information. */
2181
2182 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2183 ifmt = xtensa_format_decode (isa, ins);
2184 if (ifmt == XTENSA_UNDEFINED)
2185 {
2186 fail = 1;
2187 goto done;
2188 }
2189 ilen = xtensa_format_length (isa, ifmt);
2190 if (ilen == XTENSA_UNDEFINED)
2191 {
2192 fail = 1;
2193 goto done;
2194 }
2195 islots = xtensa_format_num_slots (isa, ifmt);
2196 if (islots == XTENSA_UNDEFINED)
2197 {
2198 fail = 1;
2199 goto done;
2200 }
2201
2202 /* Analyze a bundle or a single instruction, using a snapshot of
2203 the register tracking info as input for the entire bundle so that
2204 register changes do not take effect within this bundle. */
2205
2206 for (j = 0; j < nregs; ++j)
2207 rtmp[j] = rt[j];
2208
2209 for (is = 0; is < islots; ++is)
2210 {
2211 /* Decode a slot and classify the opcode. */
2212
2213 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2214 if (fail)
2215 goto done;
2216
2217 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2218 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2219 (unsigned)ia, opc);
2220 if (opc == XTENSA_UNDEFINED)
2221 opclass = c0opc_illegal;
2222 else
2223 opclass = call0_classify_opcode (isa, opc);
2224
2225 /* Decide whether to track this opcode, ignore it, or bail out. */
2226
2227 switch (opclass)
2228 {
2229 case c0opc_illegal:
2230 case c0opc_break:
2231 fail = 1;
2232 goto done;
2233
2234 case c0opc_uninteresting:
2235 continue;
2236
2237 case c0opc_flow:
2238 goto done;
2239
2240 case c0opc_entry:
2241 if (call0 != NULL)
2242 *call0 = 0;
2243 ia += ilen; /* Skip over 'entry' insn. */
2244 goto done;
2245
2246 default:
2247 if (call0 != NULL)
2248 *call0 = 1;
2249 }
2250
2251 /* Only expected opcodes should get this far. */
2252 if (rt == NULL)
2253 continue;
2254
2255 /* Extract and decode the operands. */
2256 nods = xtensa_opcode_num_operands (isa, opc);
2257 if (nods == XTENSA_UNDEFINED)
2258 {
2259 fail = 1;
2260 goto done;
2261 }
2262
2263 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2264 {
2265 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2266 is, slot, &odv[j]);
2267 if (fail)
2268 goto done;
2269
2270 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2271 if (fail)
2272 goto done;
2273 }
2274
2275 /* Check operands to verify use of 'mov' assembler macro. */
2276 if (opclass == c0opc_mov && nods == 3)
2277 {
2278 if (odv[2] == odv[1])
2279 nods = 2;
2280 else
2281 {
2282 opclass = c0opc_uninteresting;
2283 continue;
2284 }
2285 }
2286
2287 /* Track register movement and modification for this operation. */
2288 call0_track_op (gdbarch, rt, rtmp, opclass,
2289 nods, odv, ia, litbase, 1);
2290 }
2291 }
2292 done:
2293 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2294 (unsigned)ia, fail ? "failed" : "succeeded");
2295 xtensa_insnbuf_free(isa, slot);
2296 xtensa_insnbuf_free(isa, ins);
2297 return fail ? XTENSA_ISA_BADPC : ia;
2298 }
2299
2300 /* Initialize frame cache for the current frame in CALL0 ABI. */
2301
2302 static void
2303 call0_frame_cache (struct frame_info *this_frame,
2304 xtensa_frame_cache_t *cache, CORE_ADDR pc, CORE_ADDR litbase)
2305 {
2306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2308 CORE_ADDR start_pc; /* The beginning of the function. */
2309 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2310 CORE_ADDR sp, fp, ra;
2311 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2312
2313 /* Find the beginning of the prologue of the function containing the PC
2314 and analyze it up to the PC or the end of the prologue. */
2315
2316 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2317 {
2318 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, litbase,
2319 C0_NREGS,
2320 &cache->c0.c0_rt[0],
2321 &cache->call0);
2322
2323 if (body_pc == XTENSA_ISA_BADPC)
2324 error (_("Xtensa-specific internal error: CALL0 prologue \
2325 analysis failed in this frame. GDB command execution stopped."));
2326 }
2327
2328 sp = get_frame_register_unsigned
2329 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2330 fp = sp; /* Assume FP == SP until proven otherwise. */
2331
2332 /* Get the frame information and FP (if used) at the current PC.
2333 If PC is in the prologue, the prologue analysis is more reliable
2334 than DWARF info. We don't not know for sure if PC is in the prologue,
2335 but we know no calls have yet taken place, so we can almost
2336 certainly rely on the prologue analysis. */
2337
2338 if (body_pc <= pc)
2339 {
2340 /* Prologue analysis was successful up to the PC.
2341 It includes the cases when PC == START_PC. */
2342 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2343 /* c0_hasfp == true means there is a frame pointer because
2344 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2345 was derived from SP. Otherwise, it would be C0_FP. */
2346 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2347 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2348 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2349 }
2350 else /* No data from the prologue analysis. */
2351 {
2352 c0_hasfp = 0;
2353 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2354 c0_frmsz = 0;
2355 start_pc = pc;
2356 }
2357
2358 prev_sp = fp + c0_frmsz;
2359
2360 /* Frame size from debug info or prologue tracking does not account for
2361 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2362 if (c0_hasfp)
2363 {
2364 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2365
2366 /* Recalculate previous SP. */
2367 prev_sp = fp + c0_frmsz;
2368 /* Update the stack frame size. */
2369 c0_frmsz += fp - sp;
2370 }
2371
2372 /* Get the return address (RA) from the stack if saved,
2373 or try to get it from a register. */
2374
2375 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2376 if (to_stk != C0_NOSTK)
2377 ra = (CORE_ADDR)
2378 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2379 4, byte_order);
2380
2381 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2382 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2383 {
2384 /* Special case for terminating backtrace at a function that wants to
2385 be seen as the outermost. Such a function will clear it's RA (A0)
2386 register to 0 in the prologue instead of saving its original value. */
2387 ra = 0;
2388 }
2389 else
2390 {
2391 /* RA was copied to another register or (before any function call) may
2392 still be in the original RA register. This is not always reliable:
2393 even in a leaf function, register tracking stops after prologue, and
2394 even in prologue, non-prologue instructions (not tracked) may overwrite
2395 RA or any register it was copied to. If likely in prologue or before
2396 any call, use retracking info and hope for the best (compiler should
2397 have saved RA in stack if not in a leaf function). If not in prologue,
2398 too bad. */
2399
2400 int i;
2401 for (i = 0;
2402 (i < C0_NREGS) &&
2403 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2404 ++i);
2405 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2406 i = C0_RA;
2407 if (i < C0_NREGS)
2408 {
2409 ra = get_frame_register_unsigned
2410 (this_frame,
2411 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2412 }
2413 else ra = 0;
2414 }
2415
2416 cache->pc = start_pc;
2417 cache->ra = ra;
2418 /* RA == 0 marks the outermost frame. Do not go past it. */
2419 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2420 cache->c0.fp_regnum = fp_regnum;
2421 cache->c0.c0_frmsz = c0_frmsz;
2422 cache->c0.c0_hasfp = c0_hasfp;
2423 cache->c0.c0_fp = fp;
2424 }
2425
2426
2427 /* Skip function prologue.
2428
2429 Return the pc of the first instruction after prologue. GDB calls this to
2430 find the address of the first line of the function or (if there is no line
2431 number information) to skip the prologue for planting breakpoints on
2432 function entries. Use debug info (if present) or prologue analysis to skip
2433 the prologue to achieve reliable debugging behavior. For windowed ABI,
2434 only the 'entry' instruction is skipped. It is not strictly necessary to
2435 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2436 backtrace at any point in the prologue, however certain potential hazards
2437 are avoided and a more "normal" debugging experience is ensured by
2438 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2439 For example, if we don't skip the prologue:
2440 - Some args may not yet have been saved to the stack where the debug
2441 info expects to find them (true anyway when only 'entry' is skipped);
2442 - Software breakpoints ('break' instrs) may not have been unplanted
2443 when the prologue analysis is done on initializing the frame cache,
2444 and breaks in the prologue will throw off the analysis.
2445
2446 If we have debug info ( line-number info, in particular ) we simply skip
2447 the code associated with the first function line effectively skipping
2448 the prologue code. It works even in cases like
2449
2450 int main()
2451 { int local_var = 1;
2452 ....
2453 }
2454
2455 because, for this source code, both Xtensa compilers will generate two
2456 separate entries ( with the same line number ) in dwarf line-number
2457 section to make sure there is a boundary between the prologue code and
2458 the rest of the function.
2459
2460 If there is no debug info, we need to analyze the code. */
2461
2462 /* #define DONT_SKIP_PROLOGUE */
2463
2464 static CORE_ADDR
2465 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2466 {
2467 struct symtab_and_line prologue_sal;
2468 CORE_ADDR body_pc;
2469
2470 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2471
2472 #if DONT_SKIP_PROLOGUE
2473 return start_pc;
2474 #endif
2475
2476 /* Try to find first body line from debug info. */
2477
2478 prologue_sal = find_pc_line (start_pc, 0);
2479 if (prologue_sal.line != 0) /* Found debug info. */
2480 {
2481 /* In Call0, it is possible to have a function with only one instruction
2482 ('ret') resulting from a 1-line optimized function that does nothing.
2483 In that case, prologue_sal.end may actually point to the start of the
2484 next function in the text section, causing a breakpoint to be set at
2485 the wrong place. Check if the end address is in a different function,
2486 and if so return the start PC. We know we have symbol info. */
2487
2488 CORE_ADDR end_func;
2489
2490 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2491 if (end_func != start_pc)
2492 return start_pc;
2493
2494 return prologue_sal.end;
2495 }
2496
2497 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2498 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0, 0, NULL, NULL);
2499 return body_pc != 0 ? body_pc : start_pc;
2500 }
2501
2502 /* Verify the current configuration. */
2503 static void
2504 xtensa_verify_config (struct gdbarch *gdbarch)
2505 {
2506 struct ui_file *log;
2507 struct cleanup *cleanups;
2508 struct gdbarch_tdep *tdep;
2509 long length;
2510 char *buf;
2511
2512 tdep = gdbarch_tdep (gdbarch);
2513 log = mem_fileopen ();
2514 cleanups = make_cleanup_ui_file_delete (log);
2515
2516 /* Verify that we got a reasonable number of AREGS. */
2517 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2518 fprintf_unfiltered (log, _("\
2519 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2520 tdep->num_aregs);
2521
2522 /* Verify that certain registers exist. */
2523
2524 if (tdep->pc_regnum == -1)
2525 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2526 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2527 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2528
2529 if (tdep->isa_use_windowed_registers)
2530 {
2531 if (tdep->wb_regnum == -1)
2532 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2533 if (tdep->ws_regnum == -1)
2534 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2535 if (tdep->ar_base == -1)
2536 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2537 }
2538
2539 if (tdep->a0_base == -1)
2540 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2541
2542 buf = ui_file_xstrdup (log, &length);
2543 make_cleanup (xfree, buf);
2544 if (length > 0)
2545 internal_error (__FILE__, __LINE__,
2546 _("the following are invalid: %s"), buf);
2547 do_cleanups (cleanups);
2548 }
2549
2550
2551 /* Derive specific register numbers from the array of registers. */
2552
2553 static void
2554 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
2555 {
2556 xtensa_register_t* rmap;
2557 int n, max_size = 4;
2558
2559 tdep->num_regs = 0;
2560 tdep->num_nopriv_regs = 0;
2561
2562 /* Special registers 0..255 (core). */
2563 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
2564
2565 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
2566 {
2567 if (rmap->target_number == 0x0020)
2568 tdep->pc_regnum = n;
2569 else if (rmap->target_number == 0x0100)
2570 tdep->ar_base = n;
2571 else if (rmap->target_number == 0x0000)
2572 tdep->a0_base = n;
2573 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
2574 tdep->wb_regnum = n;
2575 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
2576 tdep->ws_regnum = n;
2577 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
2578 tdep->debugcause_regnum = n;
2579 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
2580 tdep->exccause_regnum = n;
2581 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
2582 tdep->excvaddr_regnum = n;
2583 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
2584 tdep->lbeg_regnum = n;
2585 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
2586 tdep->lend_regnum = n;
2587 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
2588 tdep->lcount_regnum = n;
2589 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
2590 tdep->sar_regnum = n;
2591 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
2592 tdep->litbase_regnum = n;
2593 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
2594 tdep->ps_regnum = n;
2595 #if 0
2596 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
2597 tdep->interrupt_regnum = n;
2598 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
2599 tdep->interrupt2_regnum = n;
2600 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
2601 tdep->cpenable_regnum = n;
2602 #endif
2603
2604 if (rmap->byte_size > max_size)
2605 max_size = rmap->byte_size;
2606 if (rmap->mask != 0 && tdep->num_regs == 0)
2607 tdep->num_regs = n;
2608 /* Find out out how to deal with priveleged registers.
2609
2610 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2611 && tdep->num_nopriv_regs == 0)
2612 tdep->num_nopriv_regs = n;
2613 */
2614 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2615 && tdep->num_regs == 0)
2616 tdep->num_regs = n;
2617 }
2618
2619 /* Number of pseudo registers. */
2620 tdep->num_pseudo_regs = n - tdep->num_regs;
2621
2622 /* Empirically determined maximum sizes. */
2623 tdep->max_register_raw_size = max_size;
2624 tdep->max_register_virtual_size = max_size;
2625 }
2626
2627 /* Module "constructor" function. */
2628
2629 extern struct gdbarch_tdep xtensa_tdep;
2630
2631 static struct gdbarch *
2632 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2633 {
2634 struct gdbarch_tdep *tdep;
2635 struct gdbarch *gdbarch;
2636 struct xtensa_abi_handler *abi_handler;
2637
2638 DEBUGTRACE ("gdbarch_init()\n");
2639
2640 /* We have to set the byte order before we call gdbarch_alloc. */
2641 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
2642
2643 tdep = &xtensa_tdep;
2644 gdbarch = gdbarch_alloc (&info, tdep);
2645 xtensa_derive_tdep (tdep);
2646
2647 /* Verify our configuration. */
2648 xtensa_verify_config (gdbarch);
2649
2650 /* Pseudo-Register read/write. */
2651 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2652 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2653
2654 /* Set target information. */
2655 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2656 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2657 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2658 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2659 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2660
2661 /* Renumber registers for known formats (stabs and dwarf2). */
2662 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2663 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2664
2665 /* We provide our own function to get register information. */
2666 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2667 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2668
2669 /* To call functions from GDB using dummy frame */
2670 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2671
2672 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2673
2674 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2675
2676 /* Advance PC across any prologue instructions to reach "real" code. */
2677 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2678
2679 /* Stack grows downward. */
2680 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2681
2682 /* Set breakpoints. */
2683 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2684
2685 /* After breakpoint instruction or illegal instruction, pc still
2686 points at break instruction, so don't decrement. */
2687 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2688
2689 /* We don't skip args. */
2690 set_gdbarch_frame_args_skip (gdbarch, 0);
2691
2692 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2693
2694 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2695
2696 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
2697
2698 /* Frame handling. */
2699 frame_base_set_default (gdbarch, &xtensa_frame_base);
2700 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
2701 dwarf2_append_unwinders (gdbarch);
2702
2703 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2704
2705 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2706
2707 xtensa_add_reggroups (gdbarch);
2708 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2709
2710 set_gdbarch_regset_from_core_section (gdbarch,
2711 xtensa_regset_from_core_section);
2712
2713 set_solib_svr4_fetch_link_map_offsets
2714 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2715
2716 return gdbarch;
2717 }
2718
2719 static void
2720 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2721 {
2722 error (_("xtensa_dump_tdep(): not implemented"));
2723 }
2724
2725 /* Provide a prototype to silence -Wmissing-prototypes. */
2726 extern initialize_file_ftype _initialize_xtensa_tdep;
2727
2728 void
2729 _initialize_xtensa_tdep (void)
2730 {
2731 struct cmd_list_element *c;
2732
2733 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2734 xtensa_init_reggroups ();
2735
2736 add_setshow_zinteger_cmd ("xtensa",
2737 class_maintenance,
2738 &xtensa_debug_level, _("\
2739 Set Xtensa debugging."), _("\
2740 Show Xtensa debugging."), _("\
2741 When non-zero, Xtensa-specific debugging is enabled. \
2742 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2743 NULL,
2744 NULL,
2745 &setdebuglist, &showdebuglist);
2746 }
This page took 0.107386 seconds and 5 git commands to generate.