Silence a few -Wmissing-prototypes warnings.
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "solib-svr4.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "elf/dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
44
45 #include "arch-utils.h"
46 #include "gdbarch.h"
47 #include "remote.h"
48 #include "serial.h"
49
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "gdb_assert.h"
53
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
57
58
59 static int xtensa_debug_level = 0;
60
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76
77
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
80
81
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
86
87
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93
94 /* ABI-independent macros. */
95 #define ARG_NOF(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi \
97 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
98 #define ARG_1ST(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
100 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
101 : (gdbarch_tdep (gdbarch)->a0_base + 6))
102
103 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
104 indicates that the instruction is an ENTRY instruction. */
105
106 #define XTENSA_IS_ENTRY(gdbarch, op1) \
107 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
108 ? ((op1) == 0x6c) : ((op1) == 0x36))
109
110 #define XTENSA_ENTRY_LENGTH 3
111
112 /* windowing_enabled() returns true, if windowing is enabled.
113 WOE must be set to 1; EXCM to 0.
114 Note: We assume that EXCM is always 0 for XEA1. */
115
116 #define PS_WOE (1<<18)
117 #define PS_EXC (1<<4)
118
119 /* Convert a live A-register number to the corresponding AR-register number. */
120 static int
121 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
122 {
123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
124 int arreg;
125
126 arreg = a_regnum - tdep->a0_base;
127 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
128 arreg &= tdep->num_aregs - 1;
129
130 return arreg + tdep->ar_base;
131 }
132
133 /* Convert a live AR-register number to the corresponding A-register order
134 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
135 static int
136 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int areg;
140
141 areg = ar_regnum - tdep->ar_base;
142 if (areg < 0 || areg >= tdep->num_aregs)
143 return -1;
144 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
145 return (areg > 15) ? -1 : areg;
146 }
147
148 static inline int
149 windowing_enabled (CORE_ADDR ps)
150 {
151 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
152 }
153
154 /* Return the window size of the previous call to the function from which we
155 have just returned.
156
157 This function is used to extract the return value after a called function
158 has returned to the caller. On Xtensa, the register that holds the return
159 value (from the perspective of the caller) depends on what call
160 instruction was used. For now, we are assuming that the call instruction
161 precedes the current address, so we simply analyze the call instruction.
162 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
163 method to call the inferior function. */
164
165 static int
166 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
167 {
168 int winsize = 4;
169 int insn;
170 gdb_byte buf[4];
171
172 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
173
174 /* Read the previous instruction (should be a call[x]{4|8|12}. */
175 read_memory (pc-3, buf, 3);
176 insn = extract_unsigned_integer (buf, 3);
177
178 /* Decode call instruction:
179 Little Endian
180 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
181 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
182 Big Endian
183 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
184 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
185
186 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
187 {
188 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
189 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
190 }
191 else
192 {
193 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
194 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
195 }
196 return winsize;
197 }
198
199
200 /* REGISTER INFORMATION */
201
202 /* Returns the name of a register. */
203 static const char *
204 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
205 {
206 /* Return the name stored in the register map. */
207 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
208 + gdbarch_num_pseudo_regs (gdbarch))
209 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
210
211 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
212 return 0;
213 }
214
215 /* Return the type of a register. Create a new type, if necessary. */
216
217 static struct ctype_cache
218 {
219 struct ctype_cache *next;
220 int size;
221 struct type *virtual_type;
222 } *type_entries = NULL;
223
224 static struct type *
225 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
226 {
227 /* Return signed integer for ARx and Ax registers. */
228 if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
229 && regnum < gdbarch_tdep (gdbarch)->ar_base
230 + gdbarch_tdep (gdbarch)->num_aregs)
231 || (regnum >= gdbarch_tdep (gdbarch)->a0_base
232 && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
233 return builtin_type (gdbarch)->builtin_int;
234
235 if (regnum == gdbarch_pc_regnum (gdbarch)
236 || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
237 return builtin_type (gdbarch)->builtin_data_ptr;
238
239 /* Return the stored type for all other registers. */
240 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
241 + gdbarch_num_pseudo_regs (gdbarch))
242 {
243 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
244
245 /* Set ctype for this register (only the first time). */
246
247 if (reg->ctype == 0)
248 {
249 struct ctype_cache *tp;
250 int size = reg->byte_size;
251
252 /* We always use the memory representation,
253 even if the register width is smaller. */
254 switch (size)
255 {
256 case 1:
257 reg->ctype = builtin_type_uint8;
258 break;
259
260 case 2:
261 reg->ctype = builtin_type_uint16;
262 break;
263
264 case 4:
265 reg->ctype = builtin_type_uint32;
266 break;
267
268 case 8:
269 reg->ctype = builtin_type_uint64;
270 break;
271
272 case 16:
273 reg->ctype = builtin_type_uint128;
274 break;
275
276 default:
277 for (tp = type_entries; tp != NULL; tp = tp->next)
278 if (tp->size == size)
279 break;
280
281 if (tp == NULL)
282 {
283 char *name = xmalloc (16);
284 tp = xmalloc (sizeof (struct ctype_cache));
285 tp->next = type_entries;
286 type_entries = tp;
287 tp->size = size;
288
289 sprintf (name, "int%d", size * 8);
290 tp->virtual_type = init_type (TYPE_CODE_INT, size,
291 TYPE_FLAG_UNSIGNED, name,
292 NULL);
293 }
294
295 reg->ctype = tp->virtual_type;
296 }
297 }
298 return reg->ctype;
299 }
300
301 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
302 return 0;
303 }
304
305
306 /* Return the 'local' register number for stubs, dwarf2, etc.
307 The debugging information enumerates registers starting from 0 for A0
308 to n for An. So, we only have to add the base number for A0. */
309
310 static int
311 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
312 {
313 int i;
314
315 if (regnum >= 0 && regnum < 16)
316 return gdbarch_tdep (gdbarch)->a0_base + regnum;
317
318 for (i = 0;
319 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
320 i++)
321 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
322 return i;
323
324 internal_error (__FILE__, __LINE__,
325 _("invalid dwarf/stabs register number %d"), regnum);
326 return 0;
327 }
328
329
330 /* Write the bits of a masked register to the various registers.
331 Only the masked areas of these registers are modified; the other
332 fields are untouched. The size of masked registers is always less
333 than or equal to 32 bits. */
334
335 static void
336 xtensa_register_write_masked (struct regcache *regcache,
337 xtensa_register_t *reg, const gdb_byte *buffer)
338 {
339 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
340 const xtensa_mask_t *mask = reg->mask;
341
342 int shift = 0; /* Shift for next mask (mod 32). */
343 int start, size; /* Start bit and size of current mask. */
344
345 unsigned int *ptr = value;
346 unsigned int regval, m, mem = 0;
347
348 int bytesize = reg->byte_size;
349 int bitsize = bytesize * 8;
350 int i, r;
351
352 DEBUGTRACE ("xtensa_register_write_masked ()\n");
353
354 /* Copy the masked register to host byte-order. */
355 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
356 for (i = 0; i < bytesize; i++)
357 {
358 mem >>= 8;
359 mem |= (buffer[bytesize - i - 1] << 24);
360 if ((i & 3) == 3)
361 *ptr++ = mem;
362 }
363 else
364 for (i = 0; i < bytesize; i++)
365 {
366 mem >>= 8;
367 mem |= (buffer[i] << 24);
368 if ((i & 3) == 3)
369 *ptr++ = mem;
370 }
371
372 /* We might have to shift the final value:
373 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
374 bytesize & 3 == x -> shift (4-x) * 8. */
375
376 *ptr = mem >> (((0 - bytesize) & 3) * 8);
377 ptr = value;
378 mem = *ptr;
379
380 /* Write the bits to the masked areas of the other registers. */
381 for (i = 0; i < mask->count; i++)
382 {
383 start = mask->mask[i].bit_start;
384 size = mask->mask[i].bit_size;
385 regval = mem >> shift;
386
387 if ((shift += size) > bitsize)
388 error (_("size of all masks is larger than the register"));
389
390 if (shift >= 32)
391 {
392 mem = *(++ptr);
393 shift -= 32;
394 bitsize -= 32;
395
396 if (shift > 0)
397 regval |= mem << (size - shift);
398 }
399
400 /* Make sure we have a valid register. */
401 r = mask->mask[i].reg_num;
402 if (r >= 0 && size > 0)
403 {
404 /* Don't overwrite the unmasked areas. */
405 ULONGEST old_val;
406 regcache_cooked_read_unsigned (regcache, r, &old_val);
407 m = 0xffffffff >> (32 - size) << start;
408 regval <<= start;
409 regval = (regval & m) | (old_val & ~m);
410 regcache_cooked_write_unsigned (regcache, r, regval);
411 }
412 }
413 }
414
415
416 /* Read a tie state or mapped registers. Read the masked areas
417 of the registers and assemble them into a single value. */
418
419 static void
420 xtensa_register_read_masked (struct regcache *regcache,
421 xtensa_register_t *reg, gdb_byte *buffer)
422 {
423 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
424 const xtensa_mask_t *mask = reg->mask;
425
426 int shift = 0;
427 int start, size;
428
429 unsigned int *ptr = value;
430 unsigned int regval, mem = 0;
431
432 int bytesize = reg->byte_size;
433 int bitsize = bytesize * 8;
434 int i;
435
436 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
437 reg->name == 0 ? "" : reg->name);
438
439 /* Assemble the register from the masked areas of other registers. */
440 for (i = 0; i < mask->count; i++)
441 {
442 int r = mask->mask[i].reg_num;
443 if (r >= 0)
444 {
445 ULONGEST val;
446 regcache_cooked_read_unsigned (regcache, r, &val);
447 regval = (unsigned int) val;
448 }
449 else
450 regval = 0;
451
452 start = mask->mask[i].bit_start;
453 size = mask->mask[i].bit_size;
454
455 regval >>= start;
456
457 if (size < 32)
458 regval &= (0xffffffff >> (32 - size));
459
460 mem |= regval << shift;
461
462 if ((shift += size) > bitsize)
463 error (_("size of all masks is larger than the register"));
464
465 if (shift >= 32)
466 {
467 *ptr++ = mem;
468 bitsize -= 32;
469 shift -= 32;
470
471 if (shift == 0)
472 mem = 0;
473 else
474 mem = regval >> (size - shift);
475 }
476 }
477
478 if (shift > 0)
479 *ptr = mem;
480
481 /* Copy value to target byte order. */
482 ptr = value;
483 mem = *ptr;
484
485 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
486 for (i = 0; i < bytesize; i++)
487 {
488 if ((i & 3) == 0)
489 mem = *ptr++;
490 buffer[bytesize - i - 1] = mem & 0xff;
491 mem >>= 8;
492 }
493 else
494 for (i = 0; i < bytesize; i++)
495 {
496 if ((i & 3) == 0)
497 mem = *ptr++;
498 buffer[i] = mem & 0xff;
499 mem >>= 8;
500 }
501 }
502
503
504 /* Read pseudo registers. */
505
506 static void
507 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
508 struct regcache *regcache,
509 int regnum,
510 gdb_byte *buffer)
511 {
512 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
513 regnum, xtensa_register_name (gdbarch, regnum));
514
515 if (regnum == gdbarch_num_regs (gdbarch)
516 + gdbarch_num_pseudo_regs (gdbarch) - 1)
517 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
518
519 /* Read aliases a0..a15, if this is a Windowed ABI. */
520 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
521 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
522 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
523 {
524 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
525
526 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
527 regnum = arreg_number (gdbarch, regnum,
528 extract_unsigned_integer (buf, 4));
529 }
530
531 /* We can always read non-pseudo registers. */
532 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
533 regcache_raw_read (regcache, regnum, buffer);
534
535
536 /* We have to find out how to deal with priveleged registers.
537 Let's treat them as pseudo-registers, but we cannot read/write them. */
538
539 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
540 {
541 buffer[0] = (gdb_byte)0;
542 buffer[1] = (gdb_byte)0;
543 buffer[2] = (gdb_byte)0;
544 buffer[3] = (gdb_byte)0;
545 }
546 /* Pseudo registers. */
547 else if (regnum >= 0
548 && regnum < gdbarch_num_regs (gdbarch)
549 + gdbarch_num_pseudo_regs (gdbarch))
550 {
551 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
552 xtensa_register_type_t type = reg->type;
553 int flags = gdbarch_tdep (gdbarch)->target_flags;
554
555 /* We cannot read Unknown or Unmapped registers. */
556 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
557 {
558 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
559 {
560 warning (_("cannot read register %s"),
561 xtensa_register_name (gdbarch, regnum));
562 return;
563 }
564 }
565
566 /* Some targets cannot read TIE register files. */
567 else if (type == xtRegisterTypeTieRegfile)
568 {
569 /* Use 'fetch' to get register? */
570 if (flags & xtTargetFlagsUseFetchStore)
571 {
572 warning (_("cannot read register"));
573 return;
574 }
575
576 /* On some targets (esp. simulators), we can always read the reg. */
577 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
578 {
579 warning (_("cannot read register"));
580 return;
581 }
582 }
583
584 /* We can always read mapped registers. */
585 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
586 {
587 xtensa_register_read_masked (regcache, reg, buffer);
588 return;
589 }
590
591 /* Assume that we can read the register. */
592 regcache_raw_read (regcache, regnum, buffer);
593 }
594 else
595 internal_error (__FILE__, __LINE__,
596 _("invalid register number %d"), regnum);
597 }
598
599
600 /* Write pseudo registers. */
601
602 static void
603 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
604 struct regcache *regcache,
605 int regnum,
606 const gdb_byte *buffer)
607 {
608 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
609 regnum, xtensa_register_name (gdbarch, regnum));
610
611 if (regnum == gdbarch_num_regs (gdbarch)
612 + gdbarch_num_pseudo_regs (gdbarch) -1)
613 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
614
615 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
616 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
617 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
618 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
619 {
620 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
621 unsigned int wb;
622
623 regcache_raw_read (regcache,
624 gdbarch_tdep (gdbarch)->wb_regnum, buf);
625 regnum = arreg_number (gdbarch, regnum,
626 extract_unsigned_integer (buf, 4));
627 }
628
629 /* We can always write 'core' registers.
630 Note: We might have converted Ax->ARy. */
631 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
632 regcache_raw_write (regcache, regnum, buffer);
633
634 /* We have to find out how to deal with priveleged registers.
635 Let's treat them as pseudo-registers, but we cannot read/write them. */
636
637 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
638 {
639 return;
640 }
641 /* Pseudo registers. */
642 else if (regnum >= 0
643 && regnum < gdbarch_num_regs (gdbarch)
644 + gdbarch_num_pseudo_regs (gdbarch))
645 {
646 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
647 xtensa_register_type_t type = reg->type;
648 int flags = gdbarch_tdep (gdbarch)->target_flags;
649
650 /* On most targets, we cannot write registers
651 of type "Unknown" or "Unmapped". */
652 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
653 {
654 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
655 {
656 warning (_("cannot write register %s"),
657 xtensa_register_name (gdbarch, regnum));
658 return;
659 }
660 }
661
662 /* Some targets cannot read TIE register files. */
663 else if (type == xtRegisterTypeTieRegfile)
664 {
665 /* Use 'store' to get register? */
666 if (flags & xtTargetFlagsUseFetchStore)
667 {
668 warning (_("cannot write register"));
669 return;
670 }
671
672 /* On some targets (esp. simulators), we can always write
673 the register. */
674 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
675 {
676 warning (_("cannot write register"));
677 return;
678 }
679 }
680
681 /* We can always write mapped registers. */
682 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
683 {
684 xtensa_register_write_masked (regcache, reg, buffer);
685 return;
686 }
687
688 /* Assume that we can write the register. */
689 regcache_raw_write (regcache, regnum, buffer);
690 }
691 else
692 internal_error (__FILE__, __LINE__,
693 _("invalid register number %d"), regnum);
694 }
695
696 static struct reggroup *xtensa_ar_reggroup;
697 static struct reggroup *xtensa_user_reggroup;
698 static struct reggroup *xtensa_vectra_reggroup;
699 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
700
701 static void
702 xtensa_init_reggroups (void)
703 {
704 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
705 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
706 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
707
708 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
709 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
710 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
711 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
712 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
713 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
714 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
715 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
716 }
717
718 static void
719 xtensa_add_reggroups (struct gdbarch *gdbarch)
720 {
721 int i;
722
723 /* Predefined groups. */
724 reggroup_add (gdbarch, all_reggroup);
725 reggroup_add (gdbarch, save_reggroup);
726 reggroup_add (gdbarch, restore_reggroup);
727 reggroup_add (gdbarch, system_reggroup);
728 reggroup_add (gdbarch, vector_reggroup);
729 reggroup_add (gdbarch, general_reggroup);
730 reggroup_add (gdbarch, float_reggroup);
731
732 /* Xtensa-specific groups. */
733 reggroup_add (gdbarch, xtensa_ar_reggroup);
734 reggroup_add (gdbarch, xtensa_user_reggroup);
735 reggroup_add (gdbarch, xtensa_vectra_reggroup);
736
737 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
738 reggroup_add (gdbarch, xtensa_cp[i]);
739 }
740
741 static int
742 xtensa_coprocessor_register_group (struct reggroup *group)
743 {
744 int i;
745
746 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
747 if (group == xtensa_cp[i])
748 return i;
749
750 return -1;
751 }
752
753 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
754 | XTENSA_REGISTER_FLAGS_WRITABLE \
755 | XTENSA_REGISTER_FLAGS_VOLATILE)
756
757 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
758 | XTENSA_REGISTER_FLAGS_WRITABLE)
759
760 static int
761 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
762 int regnum,
763 struct reggroup *group)
764 {
765 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
766 xtensa_register_type_t type = reg->type;
767 xtensa_register_group_t rg = reg->group;
768 int cp_number;
769
770 /* First, skip registers that are not visible to this target
771 (unknown and unmapped registers when not using ISS). */
772
773 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
774 return 0;
775 if (group == all_reggroup)
776 return 1;
777 if (group == xtensa_ar_reggroup)
778 return rg & xtRegisterGroupAddrReg;
779 if (group == xtensa_user_reggroup)
780 return rg & xtRegisterGroupUser;
781 if (group == float_reggroup)
782 return rg & xtRegisterGroupFloat;
783 if (group == general_reggroup)
784 return rg & xtRegisterGroupGeneral;
785 if (group == float_reggroup)
786 return rg & xtRegisterGroupFloat;
787 if (group == system_reggroup)
788 return rg & xtRegisterGroupState;
789 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
790 return rg & xtRegisterGroupVectra;
791 if (group == save_reggroup || group == restore_reggroup)
792 return (regnum < gdbarch_num_regs (gdbarch)
793 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
794 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
795 return rg & (xtRegisterGroupCP0 << cp_number);
796 else
797 return 1;
798 }
799
800
801 /* Supply register REGNUM from the buffer specified by GREGS and LEN
802 in the general-purpose register set REGSET to register cache
803 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
804
805 static void
806 xtensa_supply_gregset (const struct regset *regset,
807 struct regcache *rc,
808 int regnum,
809 const void *gregs,
810 size_t len)
811 {
812 const xtensa_elf_gregset_t *regs = gregs;
813 struct gdbarch *gdbarch = get_regcache_arch (rc);
814 int i;
815
816 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
817
818 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
819 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
820 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
821 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
822 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
823 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
824 (char *) &regs->windowbase);
825 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
826 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
827 (char *) &regs->windowstart);
828 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
829 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
830 (char *) &regs->lbeg);
831 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
832 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
833 (char *) &regs->lend);
834 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
835 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
836 (char *) &regs->lcount);
837 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
838 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
839 (char *) &regs->sar);
840 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
841 && regnum < gdbarch_tdep (gdbarch)->ar_base
842 + gdbarch_tdep (gdbarch)->num_aregs)
843 regcache_raw_supply (rc, regnum,
844 (char *) &regs->ar[regnum - gdbarch_tdep
845 (gdbarch)->ar_base]);
846 else if (regnum == -1)
847 {
848 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
849 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
850 (char *) &regs->ar[i]);
851 }
852 }
853
854
855 /* Xtensa register set. */
856
857 static struct regset
858 xtensa_gregset =
859 {
860 NULL,
861 xtensa_supply_gregset
862 };
863
864
865 /* Return the appropriate register set for the core
866 section identified by SECT_NAME and SECT_SIZE. */
867
868 static const struct regset *
869 xtensa_regset_from_core_section (struct gdbarch *core_arch,
870 const char *sect_name,
871 size_t sect_size)
872 {
873 DEBUGTRACE ("xtensa_regset_from_core_section "
874 "(..., sect_name==\"%s\", sect_size==%x) \n",
875 sect_name, (unsigned int) sect_size);
876
877 if (strcmp (sect_name, ".reg") == 0
878 && sect_size >= sizeof(xtensa_elf_gregset_t))
879 return &xtensa_gregset;
880
881 return NULL;
882 }
883
884
885 /* Handling frames. */
886
887 /* Number of registers to save in case of Windowed ABI. */
888 #define XTENSA_NUM_SAVED_AREGS 12
889
890 /* Frame cache part for Windowed ABI. */
891 typedef struct xtensa_windowed_frame_cache
892 {
893 int wb; /* WINDOWBASE of the previous frame. */
894 int callsize; /* Call size of this frame. */
895 int ws; /* WINDOWSTART of the previous frame. It keeps track of
896 life windows only. If there is no bit set for the
897 window, that means it had been already spilled
898 because of window overflow. */
899
900 /* Spilled A-registers from the previous frame.
901 AREGS[i] == -1, if corresponding AR is alive. */
902 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
903 } xtensa_windowed_frame_cache_t;
904
905 /* Call0 ABI Definitions. */
906
907 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
908 #define C0_NREGS 16 /* Number of A-registers to track. */
909 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
910 #define C0_SP 1 /* Register used as SP. */
911 #define C0_FP 15 /* Register used as FP. */
912 #define C0_RA 0 /* Register used as return address. */
913 #define C0_ARGS 2 /* Register used as first arg/retval. */
914 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
915
916 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
917 A-register where the current content of the reg came from (in terms
918 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
919 mean that the orignal content of the register was saved to the stack.
920 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
921 know where SP will end up until the entire prologue has been analyzed. */
922
923 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
924 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
925 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
926
927 extern xtensa_isa xtensa_default_isa;
928
929 typedef struct xtensa_c0reg
930 {
931 int fr_reg; /* original register from which register content
932 is derived, or C0_CONST, or C0_INEXP. */
933 int fr_ofs; /* constant offset from reg, or immediate value. */
934 int to_stk; /* offset from original SP to register (4-byte aligned),
935 or C0_NOSTK if register has not been saved. */
936 } xtensa_c0reg_t;
937
938
939 /* Frame cache part for Call0 ABI. */
940 typedef struct xtensa_call0_frame_cache
941 {
942 int c0_frmsz; /* Stack frame size. */
943 int c0_hasfp; /* Current frame uses frame pointer. */
944 int fp_regnum; /* A-register used as FP. */
945 int c0_fp; /* Actual value of frame pointer. */
946 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
947 } xtensa_call0_frame_cache_t;
948
949 typedef struct xtensa_frame_cache
950 {
951 CORE_ADDR base; /* Stack pointer of this frame. */
952 CORE_ADDR pc; /* PC at the entry point to the function. */
953 CORE_ADDR ra; /* The raw return address (without CALLINC). */
954 CORE_ADDR ps; /* The PS register of this frame. */
955 CORE_ADDR prev_sp; /* Stack Pointer of the previous frame. */
956 int call0; /* It's a call0 framework (else windowed). */
957 union
958 {
959 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
960 xtensa_call0_frame_cache_t c0; /* call0 == true. */
961 };
962 } xtensa_frame_cache_t;
963
964
965 static struct xtensa_frame_cache *
966 xtensa_alloc_frame_cache (int windowed)
967 {
968 xtensa_frame_cache_t *cache;
969 int i;
970
971 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
972
973 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
974
975 cache->base = 0;
976 cache->pc = 0;
977 cache->ra = 0;
978 cache->ps = 0;
979 cache->prev_sp = 0;
980 cache->call0 = !windowed;
981 if (cache->call0)
982 {
983 cache->c0.c0_frmsz = -1;
984 cache->c0.c0_hasfp = 0;
985 cache->c0.fp_regnum = -1;
986 cache->c0.c0_fp = -1;
987
988 for (i = 0; i < C0_NREGS; i++)
989 {
990 cache->c0.c0_rt[i].fr_reg = i;
991 cache->c0.c0_rt[i].fr_ofs = 0;
992 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
993 }
994 }
995 else
996 {
997 cache->wd.wb = 0;
998 cache->wd.ws = 0;
999 cache->wd.callsize = -1;
1000
1001 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1002 cache->wd.aregs[i] = -1;
1003 }
1004 return cache;
1005 }
1006
1007
1008 static CORE_ADDR
1009 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1010 {
1011 return address & ~15;
1012 }
1013
1014
1015 static CORE_ADDR
1016 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1017 {
1018 gdb_byte buf[8];
1019 CORE_ADDR pc;
1020
1021 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
1022
1023 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1024 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1025
1026 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1027
1028 return pc;
1029 }
1030
1031
1032 static struct frame_id
1033 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1034 {
1035 CORE_ADDR pc, fp;
1036
1037 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1038
1039 pc = get_frame_pc (this_frame);
1040 fp = get_frame_register_unsigned
1041 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1042
1043 /* Make dummy frame ID unique by adding a constant. */
1044 return frame_id_build (fp + SP_ALIGNMENT, pc);
1045 }
1046
1047 /* Returns the best guess about which register is a frame pointer
1048 for the function containing CURRENT_PC. */
1049
1050 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1051
1052 static unsigned int
1053 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1054 {
1055 #define RETURN_FP goto done
1056
1057 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1058 CORE_ADDR start_addr;
1059 xtensa_isa isa;
1060 xtensa_insnbuf ins, slot;
1061 char ibuf[XTENSA_ISA_BSZ];
1062 CORE_ADDR ia, bt, ba;
1063 xtensa_format ifmt;
1064 int ilen, islots, is;
1065 xtensa_opcode opc;
1066 const char *opcname;
1067
1068 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1069 if (start_addr == 0)
1070 return fp_regnum;
1071
1072 if (!xtensa_default_isa)
1073 xtensa_default_isa = xtensa_isa_init (0, 0);
1074 isa = xtensa_default_isa;
1075 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1076 ins = xtensa_insnbuf_alloc (isa);
1077 slot = xtensa_insnbuf_alloc (isa);
1078 ba = 0;
1079
1080 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1081 {
1082 if (ia + xtensa_isa_maxlength (isa) > bt)
1083 {
1084 ba = ia;
1085 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1086 ? ba + XTENSA_ISA_BSZ : current_pc;
1087 read_memory (ba, ibuf, bt - ba);
1088 }
1089
1090 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1091 ifmt = xtensa_format_decode (isa, ins);
1092 if (ifmt == XTENSA_UNDEFINED)
1093 RETURN_FP;
1094 ilen = xtensa_format_length (isa, ifmt);
1095 if (ilen == XTENSA_UNDEFINED)
1096 RETURN_FP;
1097 islots = xtensa_format_num_slots (isa, ifmt);
1098 if (islots == XTENSA_UNDEFINED)
1099 RETURN_FP;
1100
1101 for (is = 0; is < islots; ++is)
1102 {
1103 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1104 RETURN_FP;
1105
1106 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1107 if (opc == XTENSA_UNDEFINED)
1108 RETURN_FP;
1109
1110 opcname = xtensa_opcode_name (isa, opc);
1111
1112 if (strcasecmp (opcname, "mov.n") == 0
1113 || strcasecmp (opcname, "or") == 0)
1114 {
1115 unsigned int register_operand;
1116
1117 /* Possible candidate for setting frame pointer
1118 from A1. This is what we are looking for. */
1119
1120 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1121 is, slot, &register_operand) != 0)
1122 RETURN_FP;
1123 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1124 RETURN_FP;
1125 if (register_operand == 1) /* Mov{.n} FP A1. */
1126 {
1127 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1128 &register_operand) != 0)
1129 RETURN_FP;
1130 if (xtensa_operand_decode (isa, opc, 0,
1131 &register_operand) != 0)
1132 RETURN_FP;
1133
1134 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1135 RETURN_FP;
1136 }
1137 }
1138
1139 if (
1140 /* We have problems decoding the memory. */
1141 opcname == NULL
1142 || strcasecmp (opcname, "ill") == 0
1143 || strcasecmp (opcname, "ill.n") == 0
1144 /* Hit planted breakpoint. */
1145 || strcasecmp (opcname, "break") == 0
1146 || strcasecmp (opcname, "break.n") == 0
1147 /* Flow control instructions finish prologue. */
1148 || xtensa_opcode_is_branch (isa, opc) > 0
1149 || xtensa_opcode_is_jump (isa, opc) > 0
1150 || xtensa_opcode_is_loop (isa, opc) > 0
1151 || xtensa_opcode_is_call (isa, opc) > 0
1152 || strcasecmp (opcname, "simcall") == 0
1153 || strcasecmp (opcname, "syscall") == 0)
1154 /* Can not continue analysis. */
1155 RETURN_FP;
1156 }
1157 }
1158 done:
1159 xtensa_insnbuf_free(isa, slot);
1160 xtensa_insnbuf_free(isa, ins);
1161 return fp_regnum;
1162 }
1163
1164 /* The key values to identify the frame using "cache" are
1165
1166 cache->base = SP (or best guess about FP) of this frame;
1167 cache->pc = entry-PC (entry point of the frame function);
1168 cache->prev_sp = SP of the previous frame.
1169 */
1170
1171 static void
1172 call0_frame_cache (struct frame_info *this_frame,
1173 xtensa_frame_cache_t *cache,
1174 CORE_ADDR pc, CORE_ADDR litbase);
1175
1176 static struct xtensa_frame_cache *
1177 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1178 {
1179 xtensa_frame_cache_t *cache;
1180 CORE_ADDR ra, wb, ws, pc, sp, ps;
1181 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1182 unsigned int fp_regnum;
1183 char op1;
1184 int windowed;
1185
1186 if (*this_cache)
1187 return *this_cache;
1188
1189 ps = get_frame_register_unsigned (this_frame, gdbarch_ps_regnum (gdbarch));
1190 windowed = windowing_enabled (ps);
1191
1192 /* Get pristine xtensa-frame. */
1193 cache = xtensa_alloc_frame_cache (windowed);
1194 *this_cache = cache;
1195
1196 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1197
1198 if (windowed)
1199 {
1200 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1201 wb = get_frame_register_unsigned (this_frame,
1202 gdbarch_tdep (gdbarch)->wb_regnum);
1203 ws = get_frame_register_unsigned (this_frame,
1204 gdbarch_tdep (gdbarch)->ws_regnum);
1205
1206 op1 = read_memory_integer (pc, 1);
1207 if (XTENSA_IS_ENTRY (gdbarch, op1))
1208 {
1209 int callinc = CALLINC (ps);
1210 ra = get_frame_register_unsigned
1211 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1212
1213 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1214 cache->wd.callsize = 0;
1215 cache->wd.wb = wb;
1216 cache->wd.ws = ws;
1217 cache->prev_sp = get_frame_register_unsigned
1218 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1219
1220 /* This only can be the outermost frame since we are
1221 just about to execute ENTRY. SP hasn't been set yet.
1222 We can assume any frame size, because it does not
1223 matter, and, let's fake frame base in cache. */
1224 cache->base = cache->prev_sp + 16;
1225
1226 cache->pc = pc;
1227 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1228 cache->ps = (ps & ~PS_CALLINC_MASK)
1229 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1230
1231 return cache;
1232 }
1233 else
1234 {
1235 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1236 ra = get_frame_register_unsigned (this_frame,
1237 gdbarch_tdep (gdbarch)->a0_base);
1238 cache->wd.callsize = WINSIZE (ra);
1239 cache->wd.wb = (wb - cache->wd.callsize / 4)
1240 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1241 cache->wd.ws = ws & ~(1 << wb);
1242
1243 cache->pc = get_frame_func (this_frame);
1244 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1245 cache->ps = (ps & ~PS_CALLINC_MASK)
1246 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1247 }
1248
1249 if (cache->wd.ws == 0)
1250 {
1251 int i;
1252
1253 /* Set A0...A3. */
1254 sp = get_frame_register_unsigned
1255 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1256
1257 for (i = 0; i < 4; i++, sp += 4)
1258 {
1259 cache->wd.aregs[i] = sp;
1260 }
1261
1262 if (cache->wd.callsize > 4)
1263 {
1264 /* Set A4...A7/A11. */
1265 /* Get the SP of the frame previous to the previous one.
1266 To achieve this, we have to dereference SP twice. */
1267 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1268 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1269 sp -= cache->wd.callsize * 4;
1270
1271 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1272 {
1273 cache->wd.aregs[i] = sp;
1274 }
1275 }
1276 }
1277
1278 if ((cache->prev_sp == 0) && ( ra != 0 ))
1279 /* If RA is equal to 0 this frame is an outermost frame. Leave
1280 cache->prev_sp unchanged marking the boundary of the frame stack. */
1281 {
1282 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1283 {
1284 /* Register window overflow already happened.
1285 We can read caller's SP from the proper spill loction. */
1286 sp = get_frame_register_unsigned
1287 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1288 cache->prev_sp = read_memory_integer (sp - 12, 4);
1289 }
1290 else
1291 {
1292 /* Read caller's frame SP directly from the previous window. */
1293 int regnum = arreg_number
1294 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1295 cache->wd.wb);
1296
1297 cache->prev_sp = get_frame_register_unsigned (this_frame, regnum);
1298 }
1299 }
1300 }
1301 else /* Call0 framework. */
1302 {
1303 unsigned int litbase_regnum = gdbarch_tdep (gdbarch)->litbase_regnum;
1304 CORE_ADDR litbase = (litbase_regnum == -1)
1305 ? 0 : get_frame_register_unsigned (this_frame, litbase_regnum);
1306
1307 call0_frame_cache (this_frame, cache, pc, litbase);
1308 fp_regnum = cache->c0.fp_regnum;
1309 }
1310
1311 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1312
1313 return cache;
1314 }
1315
1316 static void
1317 xtensa_frame_this_id (struct frame_info *this_frame,
1318 void **this_cache,
1319 struct frame_id *this_id)
1320 {
1321 struct xtensa_frame_cache *cache =
1322 xtensa_frame_cache (this_frame, this_cache);
1323
1324 if (cache->prev_sp == 0)
1325 return;
1326
1327 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1328 }
1329
1330 static struct value *
1331 xtensa_frame_prev_register (struct frame_info *this_frame,
1332 void **this_cache,
1333 int regnum)
1334 {
1335 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1336 struct xtensa_frame_cache *cache;
1337 ULONGEST saved_reg = 0;
1338 int done = 1;
1339
1340 if (*this_cache == NULL)
1341 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1342 cache = *this_cache;
1343
1344 if (regnum ==gdbarch_pc_regnum (gdbarch))
1345 saved_reg = cache->ra;
1346 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1347 saved_reg = cache->prev_sp;
1348 else if (!cache->call0)
1349 {
1350 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1351 saved_reg = cache->wd.ws;
1352 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1353 saved_reg = cache->wd.wb;
1354 else if (regnum == gdbarch_ps_regnum (gdbarch))
1355 saved_reg = cache->ps;
1356 else
1357 done = 0;
1358 }
1359 else
1360 done = 0;
1361
1362 if (done)
1363 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1364
1365 if (!cache->call0) /* Windowed ABI. */
1366 {
1367 /* Convert A-register numbers to AR-register numbers,
1368 if we deal with A-register. */
1369 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1370 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1371 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1372
1373 /* Check, if we deal with AR-register saved on stack. */
1374 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1375 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1376 + gdbarch_tdep (gdbarch)->num_aregs))
1377 {
1378 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1379
1380 if (areg >= 0
1381 && areg < XTENSA_NUM_SAVED_AREGS
1382 && cache->wd.aregs[areg] != -1)
1383 return frame_unwind_got_memory (this_frame, regnum,
1384 cache->wd.aregs[areg]);
1385 }
1386 }
1387 else /* Call0 ABI. */
1388 {
1389 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1390 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1391 + C0_NREGS))
1392 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1393
1394 if (reg < C0_NREGS)
1395 {
1396 CORE_ADDR spe;
1397 int stkofs;
1398
1399 /* If register was saved in the prologue, retrieve it. */
1400 stkofs = cache->c0.c0_rt[reg].to_stk;
1401 if (stkofs != C0_NOSTK)
1402 {
1403 /* Determine SP on entry based on FP. */
1404 spe = cache->c0.c0_fp
1405 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1406
1407 return frame_unwind_got_memory (this_frame, regnum, spe + stkofs);
1408 }
1409 }
1410 }
1411
1412 /* All other registers have been either saved to
1413 the stack or are still alive in the processor. */
1414
1415 return frame_unwind_got_register (this_frame, regnum, regnum);
1416 }
1417
1418
1419 static const struct frame_unwind
1420 xtensa_unwind =
1421 {
1422 NORMAL_FRAME,
1423 xtensa_frame_this_id,
1424 xtensa_frame_prev_register,
1425 NULL,
1426 default_frame_sniffer
1427 };
1428
1429 static CORE_ADDR
1430 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1431 {
1432 struct xtensa_frame_cache *cache =
1433 xtensa_frame_cache (this_frame, this_cache);
1434
1435 return cache->base;
1436 }
1437
1438 static const struct frame_base
1439 xtensa_frame_base =
1440 {
1441 &xtensa_unwind,
1442 xtensa_frame_base_address,
1443 xtensa_frame_base_address,
1444 xtensa_frame_base_address
1445 };
1446
1447
1448 static void
1449 xtensa_extract_return_value (struct type *type,
1450 struct regcache *regcache,
1451 void *dst)
1452 {
1453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1454 bfd_byte *valbuf = dst;
1455 int len = TYPE_LENGTH (type);
1456 ULONGEST pc, wb;
1457 int callsize, areg;
1458 int offset = 0;
1459
1460 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1461
1462 gdb_assert(len > 0);
1463
1464 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1465 {
1466 /* First, we have to find the caller window in the register file. */
1467 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1468 callsize = extract_call_winsize (gdbarch, pc);
1469
1470 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1471 if (len > (callsize > 8 ? 8 : 16))
1472 internal_error (__FILE__, __LINE__,
1473 _("cannot extract return value of %d bytes long"), len);
1474
1475 /* Get the register offset of the return
1476 register (A2) in the caller window. */
1477 regcache_raw_read_unsigned
1478 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1479 areg = arreg_number (gdbarch,
1480 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1481 }
1482 else
1483 {
1484 /* No windowing hardware - Call0 ABI. */
1485 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1486 }
1487
1488 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1489
1490 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1491 offset = 4 - len;
1492
1493 for (; len > 0; len -= 4, areg++, valbuf += 4)
1494 {
1495 if (len < 4)
1496 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1497 else
1498 regcache_raw_read (regcache, areg, valbuf);
1499 }
1500 }
1501
1502
1503 static void
1504 xtensa_store_return_value (struct type *type,
1505 struct regcache *regcache,
1506 const void *dst)
1507 {
1508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1509 const bfd_byte *valbuf = dst;
1510 unsigned int areg;
1511 ULONGEST pc, wb;
1512 int callsize;
1513 int len = TYPE_LENGTH (type);
1514 int offset = 0;
1515
1516 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1517
1518 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1519 {
1520 regcache_raw_read_unsigned
1521 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1522 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1523 callsize = extract_call_winsize (gdbarch, pc);
1524
1525 if (len > (callsize > 8 ? 8 : 16))
1526 internal_error (__FILE__, __LINE__,
1527 _("unimplemented for this length: %d"),
1528 TYPE_LENGTH (type));
1529 areg = arreg_number (gdbarch,
1530 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1531
1532 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1533 callsize, (int) wb);
1534 }
1535 else
1536 {
1537 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1538 }
1539
1540 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1541 offset = 4 - len;
1542
1543 for (; len > 0; len -= 4, areg++, valbuf += 4)
1544 {
1545 if (len < 4)
1546 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1547 else
1548 regcache_raw_write (regcache, areg, valbuf);
1549 }
1550 }
1551
1552
1553 static enum return_value_convention
1554 xtensa_return_value (struct gdbarch *gdbarch,
1555 struct type *func_type,
1556 struct type *valtype,
1557 struct regcache *regcache,
1558 gdb_byte *readbuf,
1559 const gdb_byte *writebuf)
1560 {
1561 /* Structures up to 16 bytes are returned in registers. */
1562
1563 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1564 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1565 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1566 && TYPE_LENGTH (valtype) > 16);
1567
1568 if (struct_return)
1569 return RETURN_VALUE_STRUCT_CONVENTION;
1570
1571 DEBUGTRACE ("xtensa_return_value(...)\n");
1572
1573 if (writebuf != NULL)
1574 {
1575 xtensa_store_return_value (valtype, regcache, writebuf);
1576 }
1577
1578 if (readbuf != NULL)
1579 {
1580 gdb_assert (!struct_return);
1581 xtensa_extract_return_value (valtype, regcache, readbuf);
1582 }
1583 return RETURN_VALUE_REGISTER_CONVENTION;
1584 }
1585
1586
1587 /* DUMMY FRAME */
1588
1589 static CORE_ADDR
1590 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1591 struct value *function,
1592 struct regcache *regcache,
1593 CORE_ADDR bp_addr,
1594 int nargs,
1595 struct value **args,
1596 CORE_ADDR sp,
1597 int struct_return,
1598 CORE_ADDR struct_addr)
1599 {
1600 int i;
1601 int size, onstack_size;
1602 gdb_byte *buf = (gdb_byte *) alloca (16);
1603 CORE_ADDR ra, ps;
1604 struct argument_info
1605 {
1606 const bfd_byte *contents;
1607 int length;
1608 int onstack; /* onstack == 0 => in reg */
1609 int align; /* alignment */
1610 union
1611 {
1612 int offset; /* stack offset if on stack */
1613 int regno; /* regno if in register */
1614 } u;
1615 };
1616
1617 struct argument_info *arg_info =
1618 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1619
1620 CORE_ADDR osp = sp;
1621
1622 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1623
1624 if (xtensa_debug_level > 3)
1625 {
1626 int i;
1627 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1628 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1629 "struct_addr=0x%x\n",
1630 (int) sp, (int) struct_return, (int) struct_addr);
1631
1632 for (i = 0; i < nargs; i++)
1633 {
1634 struct value *arg = args[i];
1635 struct type *arg_type = check_typedef (value_type (arg));
1636 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1637 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1638 switch (TYPE_CODE (arg_type))
1639 {
1640 case TYPE_CODE_INT:
1641 fprintf_unfiltered (gdb_stdlog, "int");
1642 break;
1643 case TYPE_CODE_STRUCT:
1644 fprintf_unfiltered (gdb_stdlog, "struct");
1645 break;
1646 default:
1647 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1648 break;
1649 }
1650 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1651 (unsigned long) value_contents (arg));
1652 }
1653 }
1654
1655 /* First loop: collect information.
1656 Cast into type_long. (This shouldn't happen often for C because
1657 GDB already does this earlier.) It's possible that GDB could
1658 do it all the time but it's harmless to leave this code here. */
1659
1660 size = 0;
1661 onstack_size = 0;
1662 i = 0;
1663
1664 if (struct_return)
1665 size = REGISTER_SIZE;
1666
1667 for (i = 0; i < nargs; i++)
1668 {
1669 struct argument_info *info = &arg_info[i];
1670 struct value *arg = args[i];
1671 struct type *arg_type = check_typedef (value_type (arg));
1672
1673 switch (TYPE_CODE (arg_type))
1674 {
1675 case TYPE_CODE_INT:
1676 case TYPE_CODE_BOOL:
1677 case TYPE_CODE_CHAR:
1678 case TYPE_CODE_RANGE:
1679 case TYPE_CODE_ENUM:
1680
1681 /* Cast argument to long if necessary as the mask does it too. */
1682 if (TYPE_LENGTH (arg_type)
1683 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1684 {
1685 arg_type = builtin_type (gdbarch)->builtin_long;
1686 arg = value_cast (arg_type, arg);
1687 }
1688 /* Aligment is equal to the type length for the basic types. */
1689 info->align = TYPE_LENGTH (arg_type);
1690 break;
1691
1692 case TYPE_CODE_FLT:
1693
1694 /* Align doubles correctly. */
1695 if (TYPE_LENGTH (arg_type)
1696 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1697 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1698 else
1699 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1700 break;
1701
1702 case TYPE_CODE_STRUCT:
1703 default:
1704 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1705 break;
1706 }
1707 info->length = TYPE_LENGTH (arg_type);
1708 info->contents = value_contents (arg);
1709
1710 /* Align size and onstack_size. */
1711 size = (size + info->align - 1) & ~(info->align - 1);
1712 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1713
1714 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1715 {
1716 info->onstack = 1;
1717 info->u.offset = onstack_size;
1718 onstack_size += info->length;
1719 }
1720 else
1721 {
1722 info->onstack = 0;
1723 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1724 }
1725 size += info->length;
1726 }
1727
1728 /* Adjust the stack pointer and align it. */
1729 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1730
1731 /* Simulate MOVSP, if Windowed ABI. */
1732 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1733 && (sp != osp))
1734 {
1735 read_memory (osp - 16, buf, 16);
1736 write_memory (sp - 16, buf, 16);
1737 }
1738
1739 /* Second Loop: Load arguments. */
1740
1741 if (struct_return)
1742 {
1743 store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
1744 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1745 }
1746
1747 for (i = 0; i < nargs; i++)
1748 {
1749 struct argument_info *info = &arg_info[i];
1750
1751 if (info->onstack)
1752 {
1753 int n = info->length;
1754 CORE_ADDR offset = sp + info->u.offset;
1755
1756 /* Odd-sized structs are aligned to the lower side of a memory
1757 word in big-endian mode and require a shift. This only
1758 applies for structures smaller than one word. */
1759
1760 if (n < REGISTER_SIZE
1761 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1762 offset += (REGISTER_SIZE - n);
1763
1764 write_memory (offset, info->contents, info->length);
1765
1766 }
1767 else
1768 {
1769 int n = info->length;
1770 const bfd_byte *cp = info->contents;
1771 int r = info->u.regno;
1772
1773 /* Odd-sized structs are aligned to the lower side of registers in
1774 big-endian mode and require a shift. The odd-sized leftover will
1775 be at the end. Note that this is only true for structures smaller
1776 than REGISTER_SIZE; for larger odd-sized structures the excess
1777 will be left-aligned in the register on both endiannesses. */
1778
1779 if (n < REGISTER_SIZE
1780 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1781 {
1782 ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
1783 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1784
1785 store_unsigned_integer (buf, REGISTER_SIZE, v);
1786 regcache_cooked_write (regcache, r, buf);
1787
1788 cp += REGISTER_SIZE;
1789 n -= REGISTER_SIZE;
1790 r++;
1791 }
1792 else
1793 while (n > 0)
1794 {
1795 regcache_cooked_write (regcache, r, cp);
1796
1797 cp += REGISTER_SIZE;
1798 n -= REGISTER_SIZE;
1799 r++;
1800 }
1801 }
1802 }
1803
1804 /* Set the return address of dummy frame to the dummy address.
1805 The return address for the current function (in A0) is
1806 saved in the dummy frame, so we can savely overwrite A0 here. */
1807
1808 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1809 {
1810 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1811 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1812 ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
1813 regcache_cooked_write_unsigned
1814 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1815 regcache_cooked_write_unsigned (regcache,
1816 gdbarch_ps_regnum (gdbarch),
1817 ps | 0x00010000);
1818
1819 /* All the registers have been saved. After executing
1820 dummy call, they all will be restored. So it's safe
1821 to modify WINDOWSTART register to make it look like there
1822 is only one register window corresponding to WINDOWEBASE. */
1823
1824 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1825 regcache_cooked_write_unsigned (regcache,
1826 gdbarch_tdep (gdbarch)->ws_regnum,
1827 1 << extract_unsigned_integer (buf, 4));
1828 }
1829 else
1830 {
1831 /* Simulate CALL0: write RA into A0 register. */
1832 regcache_cooked_write_unsigned
1833 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1834 }
1835
1836 /* Set new stack pointer and return it. */
1837 regcache_cooked_write_unsigned (regcache,
1838 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1839 /* Make dummy frame ID unique by adding a constant. */
1840 return sp + SP_ALIGNMENT;
1841 }
1842
1843
1844 /* Return a breakpoint for the current location of PC. We always use
1845 the density version if we have density instructions (regardless of the
1846 current instruction at PC), and use regular instructions otherwise. */
1847
1848 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1849 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1850 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1851 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1852
1853 static const unsigned char *
1854 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1855 int *lenptr)
1856 {
1857 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1858 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1859 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1860 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1861
1862 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1863
1864 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1865 {
1866 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1867 {
1868 *lenptr = sizeof (density_big_breakpoint);
1869 return density_big_breakpoint;
1870 }
1871 else
1872 {
1873 *lenptr = sizeof (density_little_breakpoint);
1874 return density_little_breakpoint;
1875 }
1876 }
1877 else
1878 {
1879 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1880 {
1881 *lenptr = sizeof (big_breakpoint);
1882 return big_breakpoint;
1883 }
1884 else
1885 {
1886 *lenptr = sizeof (little_breakpoint);
1887 return little_breakpoint;
1888 }
1889 }
1890 }
1891
1892 /* Call0 ABI support routines. */
1893
1894 /* Call0 opcode class. Opcodes are preclassified according to what they
1895 mean for Call0 prologue analysis, and their number of significant operands.
1896 The purpose of this is to simplify prologue analysis by separating
1897 instruction decoding (libisa) from the semantics of prologue analysis. */
1898
1899 typedef enum {
1900 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1901 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1902 c0opc_flow, /* Flow control insn. */
1903 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1904 c0opc_break, /* Debugger software breakpoints. */
1905 c0opc_add, /* Adding two registers. */
1906 c0opc_addi, /* Adding a register and an immediate. */
1907 c0opc_sub, /* Subtracting a register from a register. */
1908 c0opc_mov, /* Moving a register to a register. */
1909 c0opc_movi, /* Moving an immediate to a register. */
1910 c0opc_l32r, /* Loading a literal. */
1911 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1912 c0opc_NrOf /* Number of opcode classifications. */
1913 } xtensa_insn_kind;
1914
1915
1916 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1917
1918 static xtensa_insn_kind
1919 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1920 {
1921 const char *opcname;
1922 xtensa_insn_kind opclass = c0opc_uninteresting;
1923
1924 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1925
1926 /* Get opcode name and handle special classifications. */
1927
1928 opcname = xtensa_opcode_name (isa, opc);
1929
1930 if (opcname == NULL
1931 || strcasecmp (opcname, "ill") == 0
1932 || strcasecmp (opcname, "ill.n") == 0)
1933 opclass = c0opc_illegal;
1934 else if (strcasecmp (opcname, "break") == 0
1935 || strcasecmp (opcname, "break.n") == 0)
1936 opclass = c0opc_break;
1937 else if (strcasecmp (opcname, "entry") == 0)
1938 opclass = c0opc_entry;
1939 else if (xtensa_opcode_is_branch (isa, opc) > 0
1940 || xtensa_opcode_is_jump (isa, opc) > 0
1941 || xtensa_opcode_is_loop (isa, opc) > 0
1942 || xtensa_opcode_is_call (isa, opc) > 0
1943 || strcasecmp (opcname, "simcall") == 0
1944 || strcasecmp (opcname, "syscall") == 0)
1945 opclass = c0opc_flow;
1946
1947 /* Also, classify specific opcodes that need to be tracked. */
1948 else if (strcasecmp (opcname, "add") == 0
1949 || strcasecmp (opcname, "add.n") == 0)
1950 opclass = c0opc_add;
1951 else if (strcasecmp (opcname, "addi") == 0
1952 || strcasecmp (opcname, "addi.n") == 0
1953 || strcasecmp (opcname, "addmi") == 0)
1954 opclass = c0opc_addi;
1955 else if (strcasecmp (opcname, "sub") == 0)
1956 opclass = c0opc_sub;
1957 else if (strcasecmp (opcname, "mov.n") == 0
1958 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1959 opclass = c0opc_mov;
1960 else if (strcasecmp (opcname, "movi") == 0
1961 || strcasecmp (opcname, "movi.n") == 0)
1962 opclass = c0opc_movi;
1963 else if (strcasecmp (opcname, "l32r") == 0)
1964 opclass = c0opc_l32r;
1965 else if (strcasecmp (opcname, "s32i") == 0
1966 || strcasecmp (opcname, "s32i.n") == 0)
1967 opclass = c0opc_s32i;
1968
1969 return opclass;
1970 }
1971
1972 /* Tracks register movement/mutation for a given operation, which may
1973 be within a bundle. Updates the destination register tracking info
1974 accordingly. The pc is needed only for pc-relative load instructions
1975 (eg. l32r). The SP register number is needed to identify stores to
1976 the stack frame. */
1977
1978 static void
1979 call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1980 xtensa_insn_kind opclass, int nods, unsigned odv[],
1981 CORE_ADDR pc, CORE_ADDR litbase, int spreg)
1982 {
1983 unsigned litaddr, litval;
1984
1985 switch (opclass)
1986 {
1987 case c0opc_addi:
1988 /* 3 operands: dst, src, imm. */
1989 gdb_assert (nods == 3);
1990 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1991 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1992 break;
1993 case c0opc_add:
1994 /* 3 operands: dst, src1, src2. */
1995 gdb_assert (nods == 3);
1996 if (src[odv[1]].fr_reg == C0_CONST)
1997 {
1998 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
1999 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2000 }
2001 else if (src[odv[2]].fr_reg == C0_CONST)
2002 {
2003 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2004 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2005 }
2006 else dst[odv[0]].fr_reg = C0_INEXP;
2007 break;
2008 case c0opc_sub:
2009 /* 3 operands: dst, src1, src2. */
2010 gdb_assert (nods == 3);
2011 if (src[odv[2]].fr_reg == C0_CONST)
2012 {
2013 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2014 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2015 }
2016 else dst[odv[0]].fr_reg = C0_INEXP;
2017 break;
2018 case c0opc_mov:
2019 /* 2 operands: dst, src [, src]. */
2020 gdb_assert (nods == 2);
2021 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2022 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2023 break;
2024 case c0opc_movi:
2025 /* 2 operands: dst, imm. */
2026 gdb_assert (nods == 2);
2027 dst[odv[0]].fr_reg = C0_CONST;
2028 dst[odv[0]].fr_ofs = odv[1];
2029 break;
2030 case c0opc_l32r:
2031 /* 2 operands: dst, literal offset. */
2032 gdb_assert (nods == 2);
2033 litaddr = litbase & 1
2034 ? (litbase & ~1) + (signed)odv[1]
2035 : (pc + 3 + (signed)odv[1]) & ~3;
2036 litval = read_memory_integer(litaddr, 4);
2037 dst[odv[0]].fr_reg = C0_CONST;
2038 dst[odv[0]].fr_ofs = litval;
2039 break;
2040 case c0opc_s32i:
2041 /* 3 operands: value, base, offset. */
2042 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2043 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2044 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2045 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2046 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2047 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2048 {
2049 /* ISA encoding guarantees alignment. But, check it anyway. */
2050 gdb_assert ((odv[2] & 3) == 0);
2051 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2052 }
2053 break;
2054 default:
2055 gdb_assert (0);
2056 }
2057 }
2058
2059 /* Analyze prologue of the function at start address to determine if it uses
2060 the Call0 ABI, and if so track register moves and linear modifications
2061 in the prologue up to the PC or just beyond the prologue, whichever is first.
2062 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2063 The prologue may overlap non-prologue instructions but is guaranteed to end
2064 by the first flow-control instruction (jump, branch, call or return).
2065 Since an optimized function may move information around and change the
2066 stack frame arbitrarily during the prologue, the information is guaranteed
2067 valid only at the point in the function indicated by the PC.
2068 May be used to skip the prologue or identify the ABI, w/o tracking.
2069
2070 Returns: Address of first instruction after prologue, or PC (whichever
2071 is first), or 0, if decoding failed (in libisa).
2072 Input args:
2073 start Start address of function/prologue.
2074 pc Program counter to stop at. Use 0 to continue to end of prologue.
2075 If 0, avoids infinite run-on in corrupt code memory by bounding
2076 the scan to the end of the function if that can be determined.
2077 nregs Number of general registers to track (size of rt[] array).
2078 InOut args:
2079 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2080 If NULL, registers are not tracked.
2081 Output args:
2082 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2083 (more accurately, non-zero until 'entry' insn is encountered).
2084
2085 Note that these may produce useful results even if decoding fails
2086 because they begin with default assumptions that analysis may change. */
2087
2088 static CORE_ADDR
2089 call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc, CORE_ADDR litbase,
2090 int nregs, xtensa_c0reg_t rt[], int *call0)
2091 {
2092 CORE_ADDR ia; /* Current insn address in prologue. */
2093 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2094 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2095 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2096 xtensa_isa isa; /* libisa ISA handle. */
2097 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2098 xtensa_format ifmt; /* libisa instruction format. */
2099 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2100 xtensa_opcode opc; /* Opcode in current slot. */
2101 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2102 int nods; /* Opcode number of operands. */
2103 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2104 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2105 int j; /* General loop counter. */
2106 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2107 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2108 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2109
2110 struct symtab_and_line prologue_sal;
2111
2112 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2113 (int)start, (int)pc);
2114
2115 /* Try to limit the scan to the end of the function if a non-zero pc
2116 arg was not supplied to avoid probing beyond the end of valid memory.
2117 If memory is full of garbage that classifies as c0opc_uninteresting.
2118 If this fails (eg. if no symbols) pc ends up 0 as it was.
2119 Intialize the Call0 frame and register tracking info.
2120 Assume it's Call0 until an 'entry' instruction is encountered.
2121 Assume we may be in the prologue until we hit a flow control instr. */
2122
2123 rtmp = NULL;
2124 body_pc = INT_MAX;
2125 end_pc = 0;
2126
2127 /* Find out, if we have an information about the prologue from DWARF. */
2128 prologue_sal = find_pc_line (start, 0);
2129 if (prologue_sal.line != 0) /* Found debug info. */
2130 body_pc = prologue_sal.end;
2131
2132 /* If we are going to analyze the prologue in general without knowing about
2133 the current PC, make the best assumtion for the end of the prologue. */
2134 if (pc == 0)
2135 {
2136 find_pc_partial_function (start, 0, NULL, &end_pc);
2137 body_pc = min (end_pc, body_pc);
2138 }
2139 else
2140 body_pc = min (pc, body_pc);
2141
2142 if (call0 != NULL)
2143 *call0 = 1;
2144
2145 if (rt != NULL)
2146 {
2147 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2148 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2149 }
2150 else nregs = 0;
2151
2152 if (!xtensa_default_isa)
2153 xtensa_default_isa = xtensa_isa_init (0, 0);
2154 isa = xtensa_default_isa;
2155 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2156 ins = xtensa_insnbuf_alloc (isa);
2157 slot = xtensa_insnbuf_alloc (isa);
2158
2159 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2160 {
2161 /* (Re)fill instruction buffer from memory if necessary, but do not
2162 read memory beyond PC to be sure we stay within text section
2163 (this protection only works if a non-zero pc is supplied). */
2164
2165 if (ia + xtensa_isa_maxlength (isa) > bt)
2166 {
2167 ba = ia;
2168 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2169 read_memory (ba, ibuf, bt - ba);
2170 }
2171
2172 /* Decode format information. */
2173
2174 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2175 ifmt = xtensa_format_decode (isa, ins);
2176 if (ifmt == XTENSA_UNDEFINED)
2177 {
2178 fail = 1;
2179 goto done;
2180 }
2181 ilen = xtensa_format_length (isa, ifmt);
2182 if (ilen == XTENSA_UNDEFINED)
2183 {
2184 fail = 1;
2185 goto done;
2186 }
2187 islots = xtensa_format_num_slots (isa, ifmt);
2188 if (islots == XTENSA_UNDEFINED)
2189 {
2190 fail = 1;
2191 goto done;
2192 }
2193
2194 /* Analyze a bundle or a single instruction, using a snapshot of
2195 the register tracking info as input for the entire bundle so that
2196 register changes do not take effect within this bundle. */
2197
2198 for (j = 0; j < nregs; ++j)
2199 rtmp[j] = rt[j];
2200
2201 for (is = 0; is < islots; ++is)
2202 {
2203 /* Decode a slot and classify the opcode. */
2204
2205 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2206 if (fail)
2207 goto done;
2208
2209 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2210 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2211 (unsigned)ia, opc);
2212 if (opc == XTENSA_UNDEFINED)
2213 opclass = c0opc_illegal;
2214 else
2215 opclass = call0_classify_opcode (isa, opc);
2216
2217 /* Decide whether to track this opcode, ignore it, or bail out. */
2218
2219 switch (opclass)
2220 {
2221 case c0opc_illegal:
2222 case c0opc_break:
2223 fail = 1;
2224 goto done;
2225
2226 case c0opc_uninteresting:
2227 continue;
2228
2229 case c0opc_flow:
2230 goto done;
2231
2232 case c0opc_entry:
2233 if (call0 != NULL)
2234 *call0 = 0;
2235 ia += ilen; /* Skip over 'entry' insn. */
2236 goto done;
2237
2238 default:
2239 if (call0 != NULL)
2240 *call0 = 1;
2241 }
2242
2243 /* Only expected opcodes should get this far. */
2244 if (rt == NULL)
2245 continue;
2246
2247 /* Extract and decode the operands. */
2248 nods = xtensa_opcode_num_operands (isa, opc);
2249 if (nods == XTENSA_UNDEFINED)
2250 {
2251 fail = 1;
2252 goto done;
2253 }
2254
2255 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2256 {
2257 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2258 is, slot, &odv[j]);
2259 if (fail)
2260 goto done;
2261
2262 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2263 if (fail)
2264 goto done;
2265 }
2266
2267 /* Check operands to verify use of 'mov' assembler macro. */
2268 if (opclass == c0opc_mov && nods == 3)
2269 {
2270 if (odv[2] == odv[1])
2271 nods = 2;
2272 else
2273 {
2274 opclass = c0opc_uninteresting;
2275 continue;
2276 }
2277 }
2278
2279 /* Track register movement and modification for this operation. */
2280 call0_track_op (rt, rtmp, opclass, nods, odv, ia, litbase, 1);
2281 }
2282 }
2283 done:
2284 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2285 (unsigned)ia, fail ? "failed" : "succeeded");
2286 xtensa_insnbuf_free(isa, slot);
2287 xtensa_insnbuf_free(isa, ins);
2288 return fail ? 0 : ia;
2289 }
2290
2291 /* Initialize frame cache for the current frame in CALL0 ABI. */
2292
2293 static void
2294 call0_frame_cache (struct frame_info *this_frame,
2295 xtensa_frame_cache_t *cache, CORE_ADDR pc, CORE_ADDR litbase)
2296 {
2297 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2298 CORE_ADDR start_pc; /* The beginning of the function. */
2299 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2300 CORE_ADDR sp, fp, ra;
2301 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2302
2303 /* Find the beginning of the prologue of the function containing the PC
2304 and analyze it up to the PC or the end of the prologue. */
2305
2306 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2307 {
2308 body_pc = call0_analyze_prologue (start_pc, pc, litbase, C0_NREGS,
2309 &cache->c0.c0_rt[0],
2310 &cache->call0);
2311 }
2312
2313 sp = get_frame_register_unsigned
2314 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2315 fp = sp; /* Assume FP == SP until proven otherwise. */
2316
2317 /* Get the frame information and FP (if used) at the current PC.
2318 If PC is in the prologue, the prologue analysis is more reliable
2319 than DWARF info. We don't not know for sure if PC is in the prologue,
2320 but we know no calls have yet taken place, so we can almost
2321 certainly rely on the prologue analysis. */
2322
2323 if (body_pc <= pc)
2324 {
2325 /* Prologue analysis was successful up to the PC.
2326 It includes the cases when PC == START_PC. */
2327 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2328 /* c0_hasfp == true means there is a frame pointer because
2329 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2330 was derived from SP. Otherwise, it would be C0_FP. */
2331 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2332 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2333 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2334 }
2335 else /* No data from the prologue analysis. */
2336 {
2337 c0_hasfp = 0;
2338 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2339 c0_frmsz = 0;
2340 start_pc = pc;
2341 }
2342
2343 prev_sp = fp + c0_frmsz;
2344
2345 /* Frame size from debug info or prologue tracking does not account for
2346 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2347 if (c0_hasfp)
2348 {
2349 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2350
2351 /* Recalculate previous SP. */
2352 prev_sp = fp + c0_frmsz;
2353 /* Update the stack frame size. */
2354 c0_frmsz += fp - sp;
2355 }
2356
2357 /* Get the return address (RA) from the stack if saved,
2358 or try to get it from a register. */
2359
2360 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2361 if (to_stk != C0_NOSTK)
2362 ra = (CORE_ADDR)
2363 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
2364
2365 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2366 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2367 {
2368 /* Special case for terminating backtrace at a function that wants to
2369 be seen as the outermost. Such a function will clear it's RA (A0)
2370 register to 0 in the prologue instead of saving its original value. */
2371 ra = 0;
2372 }
2373 else
2374 {
2375 /* RA was copied to another register or (before any function call) may
2376 still be in the original RA register. This is not always reliable:
2377 even in a leaf function, register tracking stops after prologue, and
2378 even in prologue, non-prologue instructions (not tracked) may overwrite
2379 RA or any register it was copied to. If likely in prologue or before
2380 any call, use retracking info and hope for the best (compiler should
2381 have saved RA in stack if not in a leaf function). If not in prologue,
2382 too bad. */
2383
2384 int i;
2385 for (i = 0;
2386 (i < C0_NREGS) &&
2387 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2388 ++i);
2389 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2390 i = C0_RA;
2391 if (i < C0_NREGS)
2392 {
2393 ra = get_frame_register_unsigned
2394 (this_frame,
2395 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2396 }
2397 else ra = 0;
2398 }
2399
2400 cache->pc = start_pc;
2401 cache->ra = ra;
2402 /* RA == 0 marks the outermost frame. Do not go past it. */
2403 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2404 cache->c0.fp_regnum = fp_regnum;
2405 cache->c0.c0_frmsz = c0_frmsz;
2406 cache->c0.c0_hasfp = c0_hasfp;
2407 cache->c0.c0_fp = fp;
2408 }
2409
2410
2411 /* Skip function prologue.
2412
2413 Return the pc of the first instruction after prologue. GDB calls this to
2414 find the address of the first line of the function or (if there is no line
2415 number information) to skip the prologue for planting breakpoints on
2416 function entries. Use debug info (if present) or prologue analysis to skip
2417 the prologue to achieve reliable debugging behavior. For windowed ABI,
2418 only the 'entry' instruction is skipped. It is not strictly necessary to
2419 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2420 backtrace at any point in the prologue, however certain potential hazards
2421 are avoided and a more "normal" debugging experience is ensured by
2422 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2423 For example, if we don't skip the prologue:
2424 - Some args may not yet have been saved to the stack where the debug
2425 info expects to find them (true anyway when only 'entry' is skipped);
2426 - Software breakpoints ('break' instrs) may not have been unplanted
2427 when the prologue analysis is done on initializing the frame cache,
2428 and breaks in the prologue will throw off the analysis.
2429
2430 If we have debug info ( line-number info, in particular ) we simply skip
2431 the code associated with the first function line effectively skipping
2432 the prologue code. It works even in cases like
2433
2434 int main()
2435 { int local_var = 1;
2436 ....
2437 }
2438
2439 because, for this source code, both Xtensa compilers will generate two
2440 separate entries ( with the same line number ) in dwarf line-number
2441 section to make sure there is a boundary between the prologue code and
2442 the rest of the function.
2443
2444 If there is no debug info, we need to analyze the code. */
2445
2446 /* #define DONT_SKIP_PROLOGUE */
2447
2448 static CORE_ADDR
2449 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2450 {
2451 struct symtab_and_line prologue_sal;
2452 CORE_ADDR body_pc;
2453
2454 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2455
2456 #if DONT_SKIP_PROLOGUE
2457 return start_pc;
2458 #endif
2459
2460 /* Try to find first body line from debug info. */
2461
2462 prologue_sal = find_pc_line (start_pc, 0);
2463 if (prologue_sal.line != 0) /* Found debug info. */
2464 {
2465 /* In Call0, it is possible to have a function with only one instruction
2466 ('ret') resulting from a 1-line optimized function that does nothing.
2467 In that case, prologue_sal.end may actually point to the start of the
2468 next function in the text section, causing a breakpoint to be set at
2469 the wrong place. Check if the end address is in a different function,
2470 and if so return the start PC. We know we have symbol info. */
2471
2472 CORE_ADDR end_func;
2473
2474 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2475 if (end_func != start_pc)
2476 return start_pc;
2477
2478 return prologue_sal.end;
2479 }
2480
2481 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2482 body_pc = call0_analyze_prologue(start_pc, 0, 0, 0, NULL, NULL);
2483 return body_pc != 0 ? body_pc : start_pc;
2484 }
2485
2486 /* Verify the current configuration. */
2487 static void
2488 xtensa_verify_config (struct gdbarch *gdbarch)
2489 {
2490 struct ui_file *log;
2491 struct cleanup *cleanups;
2492 struct gdbarch_tdep *tdep;
2493 long dummy;
2494 char *buf;
2495
2496 tdep = gdbarch_tdep (gdbarch);
2497 log = mem_fileopen ();
2498 cleanups = make_cleanup_ui_file_delete (log);
2499
2500 /* Verify that we got a reasonable number of AREGS. */
2501 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2502 fprintf_unfiltered (log, _("\
2503 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2504 tdep->num_aregs);
2505
2506 /* Verify that certain registers exist. */
2507
2508 if (tdep->pc_regnum == -1)
2509 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2510 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2511 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2512
2513 if (tdep->isa_use_windowed_registers)
2514 {
2515 if (tdep->wb_regnum == -1)
2516 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2517 if (tdep->ws_regnum == -1)
2518 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2519 if (tdep->ar_base == -1)
2520 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2521 }
2522
2523 if (tdep->a0_base == -1)
2524 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2525
2526 buf = ui_file_xstrdup (log, &dummy);
2527 make_cleanup (xfree, buf);
2528 if (strlen (buf) > 0)
2529 internal_error (__FILE__, __LINE__,
2530 _("the following are invalid: %s"), buf);
2531 do_cleanups (cleanups);
2532 }
2533
2534
2535 /* Derive specific register numbers from the array of registers. */
2536
2537 static void
2538 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
2539 {
2540 xtensa_register_t* rmap;
2541 int n, max_size = 4;
2542
2543 tdep->num_regs = 0;
2544 tdep->num_nopriv_regs = 0;
2545
2546 /* Special registers 0..255 (core). */
2547 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
2548
2549 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
2550 {
2551 if (rmap->target_number == 0x0020)
2552 tdep->pc_regnum = n;
2553 else if (rmap->target_number == 0x0100)
2554 tdep->ar_base = n;
2555 else if (rmap->target_number == 0x0000)
2556 tdep->a0_base = n;
2557 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
2558 tdep->wb_regnum = n;
2559 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
2560 tdep->ws_regnum = n;
2561 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
2562 tdep->debugcause_regnum = n;
2563 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
2564 tdep->exccause_regnum = n;
2565 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
2566 tdep->excvaddr_regnum = n;
2567 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
2568 tdep->lbeg_regnum = n;
2569 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
2570 tdep->lend_regnum = n;
2571 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
2572 tdep->lcount_regnum = n;
2573 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
2574 tdep->sar_regnum = n;
2575 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
2576 tdep->litbase_regnum = n;
2577 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
2578 tdep->ps_regnum = n;
2579 #if 0
2580 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
2581 tdep->interrupt_regnum = n;
2582 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
2583 tdep->interrupt2_regnum = n;
2584 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
2585 tdep->cpenable_regnum = n;
2586 #endif
2587
2588 if (rmap->byte_size > max_size)
2589 max_size = rmap->byte_size;
2590 if (rmap->mask != 0 && tdep->num_regs == 0)
2591 tdep->num_regs = n;
2592 /* Find out out how to deal with priveleged registers.
2593
2594 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2595 && tdep->num_nopriv_regs == 0)
2596 tdep->num_nopriv_regs = n;
2597 */
2598 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2599 && tdep->num_regs == 0)
2600 tdep->num_regs = n;
2601 }
2602
2603 /* Number of pseudo registers. */
2604 tdep->num_pseudo_regs = n - tdep->num_regs;
2605
2606 /* Empirically determined maximum sizes. */
2607 tdep->max_register_raw_size = max_size;
2608 tdep->max_register_virtual_size = max_size;
2609 }
2610
2611 /* Module "constructor" function. */
2612
2613 extern struct gdbarch_tdep xtensa_tdep;
2614
2615 static struct gdbarch *
2616 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2617 {
2618 struct gdbarch_tdep *tdep;
2619 struct gdbarch *gdbarch;
2620 struct xtensa_abi_handler *abi_handler;
2621
2622 DEBUGTRACE ("gdbarch_init()\n");
2623
2624 /* We have to set the byte order before we call gdbarch_alloc. */
2625 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
2626
2627 tdep = &xtensa_tdep;
2628 gdbarch = gdbarch_alloc (&info, tdep);
2629 xtensa_derive_tdep (tdep);
2630
2631 /* Verify our configuration. */
2632 xtensa_verify_config (gdbarch);
2633
2634 /* Pseudo-Register read/write. */
2635 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2636 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2637
2638 /* Set target information. */
2639 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2640 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2641 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2642 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2643 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2644
2645 /* Renumber registers for known formats (stabs and dwarf2). */
2646 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2647 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2648
2649 /* We provide our own function to get register information. */
2650 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2651 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2652
2653 /* To call functions from GDB using dummy frame */
2654 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2655
2656 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2657
2658 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2659
2660 /* Advance PC across any prologue instructions to reach "real" code. */
2661 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2662
2663 /* Stack grows downward. */
2664 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2665
2666 /* Set breakpoints. */
2667 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2668
2669 /* After breakpoint instruction or illegal instruction, pc still
2670 points at break instruction, so don't decrement. */
2671 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2672
2673 /* We don't skip args. */
2674 set_gdbarch_frame_args_skip (gdbarch, 0);
2675
2676 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2677
2678 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2679
2680 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
2681
2682 /* Frame handling. */
2683 frame_base_set_default (gdbarch, &xtensa_frame_base);
2684 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
2685 dwarf2_append_unwinders (gdbarch);
2686
2687 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2688
2689 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2690
2691 xtensa_add_reggroups (gdbarch);
2692 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2693
2694 set_gdbarch_regset_from_core_section (gdbarch,
2695 xtensa_regset_from_core_section);
2696
2697 set_solib_svr4_fetch_link_map_offsets
2698 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2699
2700 return gdbarch;
2701 }
2702
2703 static void
2704 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2705 {
2706 error (_("xtensa_dump_tdep(): not implemented"));
2707 }
2708
2709 /* Provide a prototype to silence -Wmissing-prototypes. */
2710 extern initialize_file_ftype _initialize_xtensa_tdep;
2711
2712 void
2713 _initialize_xtensa_tdep (void)
2714 {
2715 struct cmd_list_element *c;
2716
2717 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2718 xtensa_init_reggroups ();
2719
2720 add_setshow_zinteger_cmd ("xtensa",
2721 class_maintenance,
2722 &xtensa_debug_level, _("\
2723 Set Xtensa debugging."), _("\
2724 Show Xtensa debugging."), _("\
2725 When non-zero, Xtensa-specific debugging is enabled. \
2726 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2727 NULL,
2728 NULL,
2729 &setdebuglist, &showdebuglist);
2730 }
This page took 0.175142 seconds and 5 git commands to generate.