Remove regcache_raw_supply
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
54 #include <algorithm>
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 /* Big enough to hold the size of the largest register in bytes. */
123 #define XTENSA_MAX_REGISTER_SIZE 64
124
125 static int
126 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127 {
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 }
134
135 /* Convert a live A-register number to the corresponding AR-register
136 number. */
137 static int
138 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
139 {
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 int arreg;
142
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
146
147 return arreg + tdep->ar_base;
148 }
149
150 /* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152 static int
153 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
163 }
164
165 /* Read Xtensa register directly from the hardware. */
166 static unsigned long
167 xtensa_read_register (int regnum)
168 {
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173 }
174
175 /* Write Xtensa register directly to the hardware. */
176 static void
177 xtensa_write_register (int regnum, ULONGEST value)
178 {
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 }
181
182 /* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
186 has returned to the caller. On Xtensa, the register that holds the return
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193 static int
194 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
195 {
196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
197 int winsize = 4;
198 int insn;
199 gdb_byte buf[4];
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
205 insn = extract_unsigned_integer (buf, 3, byte_order);
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
215 if (byte_order == BFD_ENDIAN_LITTLE)
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
224 }
225 return winsize;
226 }
227
228
229 /* REGISTER INFORMATION */
230
231 /* Find register by name. */
232 static int
233 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
234 {
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245 }
246
247 /* Returns the name of a register. */
248 static const char *
249 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
250 {
251 /* Return the name stored in the register map. */
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
255
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258 }
259
260 /* Return the type of a register. Create a new type, if necessary. */
261
262 static struct type *
263 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
267 /* Return signed integer for ARx and Ax registers. */
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
272 return builtin_type (gdbarch)->builtin_int;
273
274 if (regnum == gdbarch_pc_regnum (gdbarch)
275 || regnum == tdep->a0_base + 1)
276 return builtin_type (gdbarch)->builtin_data_ptr;
277
278 /* Return the stored type for all other registers. */
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
281 {
282 xtensa_register_t* reg = &tdep->regmap[regnum];
283
284 /* Set ctype for this register (only the first time). */
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
291 /* We always use the memory representation,
292 even if the register width is smaller. */
293 switch (size)
294 {
295 case 1:
296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
297 break;
298
299 case 2:
300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
301 break;
302
303 case 4:
304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
305 break;
306
307 case 8:
308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
309 break;
310
311 case 16:
312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
313 break;
314
315 default:
316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
322 char *name = xstrprintf ("int%d", size * 8);
323
324 tp = XNEW (struct ctype_cache);
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
327 tp->size = size;
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, name);
330 xfree (name);
331 }
332
333 reg->ctype = tp->virtual_type;
334 }
335 }
336 return reg->ctype;
337 }
338
339 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
340 return 0;
341 }
342
343
344 /* Return the 'local' register number for stubs, dwarf2, etc.
345 The debugging information enumerates registers starting from 0 for A0
346 to n for An. So, we only have to add the base number for A0. */
347
348 static int
349 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
350 {
351 int i;
352
353 if (regnum >= 0 && regnum < 16)
354 return gdbarch_tdep (gdbarch)->a0_base + regnum;
355
356 for (i = 0;
357 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
358 i++)
359 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
360 return i;
361
362 return -1;
363 }
364
365
366 /* Write the bits of a masked register to the various registers.
367 Only the masked areas of these registers are modified; the other
368 fields are untouched. The size of masked registers is always less
369 than or equal to 32 bits. */
370
371 static void
372 xtensa_register_write_masked (struct regcache *regcache,
373 xtensa_register_t *reg, const gdb_byte *buffer)
374 {
375 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
376 const xtensa_mask_t *mask = reg->mask;
377
378 int shift = 0; /* Shift for next mask (mod 32). */
379 int start, size; /* Start bit and size of current mask. */
380
381 unsigned int *ptr = value;
382 unsigned int regval, m, mem = 0;
383
384 int bytesize = reg->byte_size;
385 int bitsize = bytesize * 8;
386 int i, r;
387
388 DEBUGTRACE ("xtensa_register_write_masked ()\n");
389
390 /* Copy the masked register to host byte-order. */
391 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
392 for (i = 0; i < bytesize; i++)
393 {
394 mem >>= 8;
395 mem |= (buffer[bytesize - i - 1] << 24);
396 if ((i & 3) == 3)
397 *ptr++ = mem;
398 }
399 else
400 for (i = 0; i < bytesize; i++)
401 {
402 mem >>= 8;
403 mem |= (buffer[i] << 24);
404 if ((i & 3) == 3)
405 *ptr++ = mem;
406 }
407
408 /* We might have to shift the final value:
409 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
410 bytesize & 3 == x -> shift (4-x) * 8. */
411
412 *ptr = mem >> (((0 - bytesize) & 3) * 8);
413 ptr = value;
414 mem = *ptr;
415
416 /* Write the bits to the masked areas of the other registers. */
417 for (i = 0; i < mask->count; i++)
418 {
419 start = mask->mask[i].bit_start;
420 size = mask->mask[i].bit_size;
421 regval = mem >> shift;
422
423 if ((shift += size) > bitsize)
424 error (_("size of all masks is larger than the register"));
425
426 if (shift >= 32)
427 {
428 mem = *(++ptr);
429 shift -= 32;
430 bitsize -= 32;
431
432 if (shift > 0)
433 regval |= mem << (size - shift);
434 }
435
436 /* Make sure we have a valid register. */
437 r = mask->mask[i].reg_num;
438 if (r >= 0 && size > 0)
439 {
440 /* Don't overwrite the unmasked areas. */
441 ULONGEST old_val;
442 regcache_cooked_read_unsigned (regcache, r, &old_val);
443 m = 0xffffffff >> (32 - size) << start;
444 regval <<= start;
445 regval = (regval & m) | (old_val & ~m);
446 regcache_cooked_write_unsigned (regcache, r, regval);
447 }
448 }
449 }
450
451
452 /* Read a tie state or mapped registers. Read the masked areas
453 of the registers and assemble them into a single value. */
454
455 static enum register_status
456 xtensa_register_read_masked (readable_regcache *regcache,
457 xtensa_register_t *reg, gdb_byte *buffer)
458 {
459 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
460 const xtensa_mask_t *mask = reg->mask;
461
462 int shift = 0;
463 int start, size;
464
465 unsigned int *ptr = value;
466 unsigned int regval, mem = 0;
467
468 int bytesize = reg->byte_size;
469 int bitsize = bytesize * 8;
470 int i;
471
472 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
473 reg->name == 0 ? "" : reg->name);
474
475 /* Assemble the register from the masked areas of other registers. */
476 for (i = 0; i < mask->count; i++)
477 {
478 int r = mask->mask[i].reg_num;
479 if (r >= 0)
480 {
481 enum register_status status;
482 ULONGEST val;
483
484 status = regcache->cooked_read (r, &val);
485 if (status != REG_VALID)
486 return status;
487 regval = (unsigned int) val;
488 }
489 else
490 regval = 0;
491
492 start = mask->mask[i].bit_start;
493 size = mask->mask[i].bit_size;
494
495 regval >>= start;
496
497 if (size < 32)
498 regval &= (0xffffffff >> (32 - size));
499
500 mem |= regval << shift;
501
502 if ((shift += size) > bitsize)
503 error (_("size of all masks is larger than the register"));
504
505 if (shift >= 32)
506 {
507 *ptr++ = mem;
508 bitsize -= 32;
509 shift -= 32;
510
511 if (shift == 0)
512 mem = 0;
513 else
514 mem = regval >> (size - shift);
515 }
516 }
517
518 if (shift > 0)
519 *ptr = mem;
520
521 /* Copy value to target byte order. */
522 ptr = value;
523 mem = *ptr;
524
525 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
526 for (i = 0; i < bytesize; i++)
527 {
528 if ((i & 3) == 0)
529 mem = *ptr++;
530 buffer[bytesize - i - 1] = mem & 0xff;
531 mem >>= 8;
532 }
533 else
534 for (i = 0; i < bytesize; i++)
535 {
536 if ((i & 3) == 0)
537 mem = *ptr++;
538 buffer[i] = mem & 0xff;
539 mem >>= 8;
540 }
541
542 return REG_VALID;
543 }
544
545
546 /* Read pseudo registers. */
547
548 static enum register_status
549 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
550 readable_regcache *regcache,
551 int regnum,
552 gdb_byte *buffer)
553 {
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 ULONGEST value;
563 enum register_status status;
564
565 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
566 &value);
567 if (status != REG_VALID)
568 return status;
569 regnum = arreg_number (gdbarch, regnum, value);
570 }
571
572 /* We can always read non-pseudo registers. */
573 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
574 return regcache->raw_read (regnum, buffer);
575
576 /* We have to find out how to deal with priveleged registers.
577 Let's treat them as pseudo-registers, but we cannot read/write them. */
578
579 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
580 || regnum < gdbarch_tdep (gdbarch)->a0_base)
581 {
582 buffer[0] = (gdb_byte)0;
583 buffer[1] = (gdb_byte)0;
584 buffer[2] = (gdb_byte)0;
585 buffer[3] = (gdb_byte)0;
586 return REG_VALID;
587 }
588 /* Pseudo registers. */
589 else if (regnum >= 0
590 && regnum < gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
592 {
593 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
594 xtensa_register_type_t type = reg->type;
595 int flags = gdbarch_tdep (gdbarch)->target_flags;
596
597 /* We cannot read Unknown or Unmapped registers. */
598 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
599 {
600 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
601 {
602 warning (_("cannot read register %s"),
603 xtensa_register_name (gdbarch, regnum));
604 return REG_VALID;
605 }
606 }
607
608 /* Some targets cannot read TIE register files. */
609 else if (type == xtRegisterTypeTieRegfile)
610 {
611 /* Use 'fetch' to get register? */
612 if (flags & xtTargetFlagsUseFetchStore)
613 {
614 warning (_("cannot read register"));
615 return REG_VALID;
616 }
617
618 /* On some targets (esp. simulators), we can always read the reg. */
619 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
620 {
621 warning (_("cannot read register"));
622 return REG_VALID;
623 }
624 }
625
626 /* We can always read mapped registers. */
627 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
628 return xtensa_register_read_masked (regcache, reg, buffer);
629
630 /* Assume that we can read the register. */
631 return regcache->raw_read (regnum, buffer);
632 }
633 else
634 internal_error (__FILE__, __LINE__,
635 _("invalid register number %d"), regnum);
636 }
637
638
639 /* Write pseudo registers. */
640
641 static void
642 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
643 struct regcache *regcache,
644 int regnum,
645 const gdb_byte *buffer)
646 {
647 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
648 regnum, xtensa_register_name (gdbarch, regnum));
649
650 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
651 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
652 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
653 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
654 {
655 ULONGEST value;
656 regcache_raw_read_unsigned (regcache,
657 gdbarch_tdep (gdbarch)->wb_regnum, &value);
658 regnum = arreg_number (gdbarch, regnum, value);
659 }
660
661 /* We can always write 'core' registers.
662 Note: We might have converted Ax->ARy. */
663 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
664 regcache->raw_write (regnum, buffer);
665
666 /* We have to find out how to deal with priveleged registers.
667 Let's treat them as pseudo-registers, but we cannot read/write them. */
668
669 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
670 {
671 return;
672 }
673 /* Pseudo registers. */
674 else if (regnum >= 0
675 && regnum < gdbarch_num_regs (gdbarch)
676 + gdbarch_num_pseudo_regs (gdbarch))
677 {
678 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
679 xtensa_register_type_t type = reg->type;
680 int flags = gdbarch_tdep (gdbarch)->target_flags;
681
682 /* On most targets, we cannot write registers
683 of type "Unknown" or "Unmapped". */
684 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
685 {
686 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
687 {
688 warning (_("cannot write register %s"),
689 xtensa_register_name (gdbarch, regnum));
690 return;
691 }
692 }
693
694 /* Some targets cannot read TIE register files. */
695 else if (type == xtRegisterTypeTieRegfile)
696 {
697 /* Use 'store' to get register? */
698 if (flags & xtTargetFlagsUseFetchStore)
699 {
700 warning (_("cannot write register"));
701 return;
702 }
703
704 /* On some targets (esp. simulators), we can always write
705 the register. */
706 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
707 {
708 warning (_("cannot write register"));
709 return;
710 }
711 }
712
713 /* We can always write mapped registers. */
714 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
715 {
716 xtensa_register_write_masked (regcache, reg, buffer);
717 return;
718 }
719
720 /* Assume that we can write the register. */
721 regcache->raw_write (regnum, buffer);
722 }
723 else
724 internal_error (__FILE__, __LINE__,
725 _("invalid register number %d"), regnum);
726 }
727
728 static struct reggroup *xtensa_ar_reggroup;
729 static struct reggroup *xtensa_user_reggroup;
730 static struct reggroup *xtensa_vectra_reggroup;
731 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
732
733 static void
734 xtensa_init_reggroups (void)
735 {
736 int i;
737
738 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
739 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
740 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
741
742 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
743 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
744 }
745
746 static void
747 xtensa_add_reggroups (struct gdbarch *gdbarch)
748 {
749 int i;
750
751 /* Predefined groups. */
752 reggroup_add (gdbarch, all_reggroup);
753 reggroup_add (gdbarch, save_reggroup);
754 reggroup_add (gdbarch, restore_reggroup);
755 reggroup_add (gdbarch, system_reggroup);
756 reggroup_add (gdbarch, vector_reggroup);
757 reggroup_add (gdbarch, general_reggroup);
758 reggroup_add (gdbarch, float_reggroup);
759
760 /* Xtensa-specific groups. */
761 reggroup_add (gdbarch, xtensa_ar_reggroup);
762 reggroup_add (gdbarch, xtensa_user_reggroup);
763 reggroup_add (gdbarch, xtensa_vectra_reggroup);
764
765 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
766 reggroup_add (gdbarch, xtensa_cp[i]);
767 }
768
769 static int
770 xtensa_coprocessor_register_group (struct reggroup *group)
771 {
772 int i;
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 if (group == xtensa_cp[i])
776 return i;
777
778 return -1;
779 }
780
781 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
782 | XTENSA_REGISTER_FLAGS_WRITABLE \
783 | XTENSA_REGISTER_FLAGS_VOLATILE)
784
785 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
786 | XTENSA_REGISTER_FLAGS_WRITABLE)
787
788 static int
789 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
790 int regnum,
791 struct reggroup *group)
792 {
793 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
794 xtensa_register_type_t type = reg->type;
795 xtensa_register_group_t rg = reg->group;
796 int cp_number;
797
798 if (group == save_reggroup)
799 /* Every single register should be included into the list of registers
800 to be watched for changes while using -data-list-changed-registers. */
801 return 1;
802
803 /* First, skip registers that are not visible to this target
804 (unknown and unmapped registers when not using ISS). */
805
806 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
807 return 0;
808 if (group == all_reggroup)
809 return 1;
810 if (group == xtensa_ar_reggroup)
811 return rg & xtRegisterGroupAddrReg;
812 if (group == xtensa_user_reggroup)
813 return rg & xtRegisterGroupUser;
814 if (group == float_reggroup)
815 return rg & xtRegisterGroupFloat;
816 if (group == general_reggroup)
817 return rg & xtRegisterGroupGeneral;
818 if (group == system_reggroup)
819 return rg & xtRegisterGroupState;
820 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
821 return rg & xtRegisterGroupVectra;
822 if (group == restore_reggroup)
823 return (regnum < gdbarch_num_regs (gdbarch)
824 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
825 cp_number = xtensa_coprocessor_register_group (group);
826 if (cp_number >= 0)
827 return rg & (xtRegisterGroupCP0 << cp_number);
828 else
829 return 1;
830 }
831
832
833 /* Supply register REGNUM from the buffer specified by GREGS and LEN
834 in the general-purpose register set REGSET to register cache
835 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
836
837 static void
838 xtensa_supply_gregset (const struct regset *regset,
839 struct regcache *rc,
840 int regnum,
841 const void *gregs,
842 size_t len)
843 {
844 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
845 struct gdbarch *gdbarch = rc->arch ();
846 int i;
847
848 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
849
850 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
851 rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
852 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
853 rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
854 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
855 rc->raw_supply (gdbarch_tdep (gdbarch)->wb_regnum,
856 (char *) &regs->windowbase);
857 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
858 rc->raw_supply (gdbarch_tdep (gdbarch)->ws_regnum,
859 (char *) &regs->windowstart);
860 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
861 rc->raw_supply (gdbarch_tdep (gdbarch)->lbeg_regnum,
862 (char *) &regs->lbeg);
863 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
864 rc->raw_supply (gdbarch_tdep (gdbarch)->lend_regnum,
865 (char *) &regs->lend);
866 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
867 rc->raw_supply (gdbarch_tdep (gdbarch)->lcount_regnum,
868 (char *) &regs->lcount);
869 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
870 rc->raw_supply (gdbarch_tdep (gdbarch)->sar_regnum,
871 (char *) &regs->sar);
872 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
873 && regnum < gdbarch_tdep (gdbarch)->ar_base
874 + gdbarch_tdep (gdbarch)->num_aregs)
875 rc->raw_supply
876 (regnum, (char *) &regs->ar[regnum - gdbarch_tdep (gdbarch)->ar_base]);
877 else if (regnum == -1)
878 {
879 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
880 rc->raw_supply (gdbarch_tdep (gdbarch)->ar_base + i,
881 (char *) &regs->ar[i]);
882 }
883 }
884
885
886 /* Xtensa register set. */
887
888 static struct regset
889 xtensa_gregset =
890 {
891 NULL,
892 xtensa_supply_gregset
893 };
894
895
896 /* Iterate over supported core file register note sections. */
897
898 static void
899 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
900 iterate_over_regset_sections_cb *cb,
901 void *cb_data,
902 const struct regcache *regcache)
903 {
904 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
905
906 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
907 NULL, cb_data);
908 }
909
910
911 /* Handling frames. */
912
913 /* Number of registers to save in case of Windowed ABI. */
914 #define XTENSA_NUM_SAVED_AREGS 12
915
916 /* Frame cache part for Windowed ABI. */
917 typedef struct xtensa_windowed_frame_cache
918 {
919 int wb; /* WINDOWBASE of the previous frame. */
920 int callsize; /* Call size of this frame. */
921 int ws; /* WINDOWSTART of the previous frame. It keeps track of
922 life windows only. If there is no bit set for the
923 window, that means it had been already spilled
924 because of window overflow. */
925
926 /* Addresses of spilled A-registers.
927 AREGS[i] == -1, if corresponding AR is alive. */
928 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
929 } xtensa_windowed_frame_cache_t;
930
931 /* Call0 ABI Definitions. */
932
933 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
934 analysis. */
935 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
936 #define C0_SP 1 /* Register used as SP. */
937 #define C0_FP 15 /* Register used as FP. */
938 #define C0_RA 0 /* Register used as return address. */
939 #define C0_ARGS 2 /* Register used as first arg/retval. */
940 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
941
942 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
943 A-register where the current content of the reg came from (in terms
944 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
945 mean that the orignal content of the register was saved to the stack.
946 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
947 know where SP will end up until the entire prologue has been analyzed. */
948
949 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
950 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
951 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
952
953 extern xtensa_isa xtensa_default_isa;
954
955 typedef struct xtensa_c0reg
956 {
957 int fr_reg; /* original register from which register content
958 is derived, or C0_CONST, or C0_INEXP. */
959 int fr_ofs; /* constant offset from reg, or immediate value. */
960 int to_stk; /* offset from original SP to register (4-byte aligned),
961 or C0_NOSTK if register has not been saved. */
962 } xtensa_c0reg_t;
963
964 /* Frame cache part for Call0 ABI. */
965 typedef struct xtensa_call0_frame_cache
966 {
967 int c0_frmsz; /* Stack frame size. */
968 int c0_hasfp; /* Current frame uses frame pointer. */
969 int fp_regnum; /* A-register used as FP. */
970 int c0_fp; /* Actual value of frame pointer. */
971 int c0_fpalign; /* Dinamic adjustment for the stack
972 pointer. It's an AND mask. Zero,
973 if alignment was not adjusted. */
974 int c0_old_sp; /* In case of dynamic adjustment, it is
975 a register holding unaligned sp.
976 C0_INEXP, when undefined. */
977 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
978 stack offset. C0_NOSTK otherwise. */
979
980 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
981 } xtensa_call0_frame_cache_t;
982
983 typedef struct xtensa_frame_cache
984 {
985 CORE_ADDR base; /* Stack pointer of this frame. */
986 CORE_ADDR pc; /* PC of this frame at the function entry point. */
987 CORE_ADDR ra; /* The raw return address of this frame. */
988 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
989 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
990 int call0; /* It's a call0 framework (else windowed). */
991 union
992 {
993 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
994 xtensa_call0_frame_cache_t c0; /* call0 == true. */
995 };
996 } xtensa_frame_cache_t;
997
998
999 static struct xtensa_frame_cache *
1000 xtensa_alloc_frame_cache (int windowed)
1001 {
1002 xtensa_frame_cache_t *cache;
1003 int i;
1004
1005 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1006
1007 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1008
1009 cache->base = 0;
1010 cache->pc = 0;
1011 cache->ra = 0;
1012 cache->ps = 0;
1013 cache->prev_sp = 0;
1014 cache->call0 = !windowed;
1015 if (cache->call0)
1016 {
1017 cache->c0.c0_frmsz = -1;
1018 cache->c0.c0_hasfp = 0;
1019 cache->c0.fp_regnum = -1;
1020 cache->c0.c0_fp = -1;
1021 cache->c0.c0_fpalign = 0;
1022 cache->c0.c0_old_sp = C0_INEXP;
1023 cache->c0.c0_sp_ofs = C0_NOSTK;
1024
1025 for (i = 0; i < C0_NREGS; i++)
1026 {
1027 cache->c0.c0_rt[i].fr_reg = i;
1028 cache->c0.c0_rt[i].fr_ofs = 0;
1029 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1030 }
1031 }
1032 else
1033 {
1034 cache->wd.wb = 0;
1035 cache->wd.ws = 0;
1036 cache->wd.callsize = -1;
1037
1038 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1039 cache->wd.aregs[i] = -1;
1040 }
1041 return cache;
1042 }
1043
1044
1045 static CORE_ADDR
1046 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1047 {
1048 return address & ~15;
1049 }
1050
1051
1052 static CORE_ADDR
1053 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1054 {
1055 gdb_byte buf[8];
1056 CORE_ADDR pc;
1057
1058 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1059 host_address_to_string (next_frame));
1060
1061 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1062 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1063
1064 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1065
1066 return pc;
1067 }
1068
1069
1070 static struct frame_id
1071 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1072 {
1073 CORE_ADDR pc, fp;
1074
1075 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1076
1077 pc = get_frame_pc (this_frame);
1078 fp = get_frame_register_unsigned
1079 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1080
1081 /* Make dummy frame ID unique by adding a constant. */
1082 return frame_id_build (fp + SP_ALIGNMENT, pc);
1083 }
1084
1085 /* Returns true, if instruction to execute next is unique to Xtensa Window
1086 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1087
1088 static int
1089 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1090 {
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1093 unsigned int code;
1094
1095 if (byte_order == BFD_ENDIAN_BIG)
1096 {
1097 /* Check, if this is L32E or S32E. */
1098 code = insn & 0xf000ff00;
1099 if ((code == 0x00009000) || (code == 0x00009400))
1100 return 1;
1101 /* Check, if this is RFWU or RFWO. */
1102 code = insn & 0xffffff00;
1103 return ((code == 0x00430000) || (code == 0x00530000));
1104 }
1105 else
1106 {
1107 /* Check, if this is L32E or S32E. */
1108 code = insn & 0x00ff000f;
1109 if ((code == 0x090000) || (code == 0x490000))
1110 return 1;
1111 /* Check, if this is RFWU or RFWO. */
1112 code = insn & 0x00ffffff;
1113 return ((code == 0x00003400) || (code == 0x00003500));
1114 }
1115 }
1116
1117 /* Returns the best guess about which register is a frame pointer
1118 for the function containing CURRENT_PC. */
1119
1120 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1121 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1122
1123 static unsigned int
1124 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1125 {
1126 #define RETURN_FP goto done
1127
1128 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1129 CORE_ADDR start_addr;
1130 xtensa_isa isa;
1131 xtensa_insnbuf ins, slot;
1132 gdb_byte ibuf[XTENSA_ISA_BSZ];
1133 CORE_ADDR ia, bt, ba;
1134 xtensa_format ifmt;
1135 int ilen, islots, is;
1136 xtensa_opcode opc;
1137 const char *opcname;
1138
1139 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1140 if (start_addr == 0)
1141 return fp_regnum;
1142
1143 isa = xtensa_default_isa;
1144 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1145 ins = xtensa_insnbuf_alloc (isa);
1146 slot = xtensa_insnbuf_alloc (isa);
1147 ba = 0;
1148
1149 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1150 {
1151 if (ia + xtensa_isa_maxlength (isa) > bt)
1152 {
1153 ba = ia;
1154 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1155 ? ba + XTENSA_ISA_BSZ : current_pc;
1156 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1157 RETURN_FP;
1158 }
1159
1160 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1161 ifmt = xtensa_format_decode (isa, ins);
1162 if (ifmt == XTENSA_UNDEFINED)
1163 RETURN_FP;
1164 ilen = xtensa_format_length (isa, ifmt);
1165 if (ilen == XTENSA_UNDEFINED)
1166 RETURN_FP;
1167 islots = xtensa_format_num_slots (isa, ifmt);
1168 if (islots == XTENSA_UNDEFINED)
1169 RETURN_FP;
1170
1171 for (is = 0; is < islots; ++is)
1172 {
1173 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1174 RETURN_FP;
1175
1176 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1177 if (opc == XTENSA_UNDEFINED)
1178 RETURN_FP;
1179
1180 opcname = xtensa_opcode_name (isa, opc);
1181
1182 if (strcasecmp (opcname, "mov.n") == 0
1183 || strcasecmp (opcname, "or") == 0)
1184 {
1185 unsigned int register_operand;
1186
1187 /* Possible candidate for setting frame pointer
1188 from A1. This is what we are looking for. */
1189
1190 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1191 is, slot, &register_operand) != 0)
1192 RETURN_FP;
1193 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1194 RETURN_FP;
1195 if (register_operand == 1) /* Mov{.n} FP A1. */
1196 {
1197 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1198 &register_operand) != 0)
1199 RETURN_FP;
1200 if (xtensa_operand_decode (isa, opc, 0,
1201 &register_operand) != 0)
1202 RETURN_FP;
1203
1204 fp_regnum
1205 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1206 RETURN_FP;
1207 }
1208 }
1209
1210 if (
1211 /* We have problems decoding the memory. */
1212 opcname == NULL
1213 || strcasecmp (opcname, "ill") == 0
1214 || strcasecmp (opcname, "ill.n") == 0
1215 /* Hit planted breakpoint. */
1216 || strcasecmp (opcname, "break") == 0
1217 || strcasecmp (opcname, "break.n") == 0
1218 /* Flow control instructions finish prologue. */
1219 || xtensa_opcode_is_branch (isa, opc) > 0
1220 || xtensa_opcode_is_jump (isa, opc) > 0
1221 || xtensa_opcode_is_loop (isa, opc) > 0
1222 || xtensa_opcode_is_call (isa, opc) > 0
1223 || strcasecmp (opcname, "simcall") == 0
1224 || strcasecmp (opcname, "syscall") == 0)
1225 /* Can not continue analysis. */
1226 RETURN_FP;
1227 }
1228 }
1229 done:
1230 xtensa_insnbuf_free(isa, slot);
1231 xtensa_insnbuf_free(isa, ins);
1232 return fp_regnum;
1233 }
1234
1235 /* The key values to identify the frame using "cache" are
1236
1237 cache->base = SP (or best guess about FP) of this frame;
1238 cache->pc = entry-PC (entry point of the frame function);
1239 cache->prev_sp = SP of the previous frame. */
1240
1241 static void
1242 call0_frame_cache (struct frame_info *this_frame,
1243 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1244
1245 static void
1246 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1247 xtensa_frame_cache_t *cache,
1248 CORE_ADDR pc);
1249
1250 static struct xtensa_frame_cache *
1251 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1252 {
1253 xtensa_frame_cache_t *cache;
1254 CORE_ADDR ra, wb, ws, pc, sp, ps;
1255 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 unsigned int fp_regnum;
1258 int windowed, ps_regnum;
1259
1260 if (*this_cache)
1261 return (struct xtensa_frame_cache *) *this_cache;
1262
1263 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1264 ps_regnum = gdbarch_ps_regnum (gdbarch);
1265 ps = (ps_regnum >= 0
1266 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1267
1268 windowed = windowing_enabled (gdbarch, ps);
1269
1270 /* Get pristine xtensa-frame. */
1271 cache = xtensa_alloc_frame_cache (windowed);
1272 *this_cache = cache;
1273
1274 if (windowed)
1275 {
1276 LONGEST op1;
1277
1278 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1279 wb = get_frame_register_unsigned (this_frame,
1280 gdbarch_tdep (gdbarch)->wb_regnum);
1281 ws = get_frame_register_unsigned (this_frame,
1282 gdbarch_tdep (gdbarch)->ws_regnum);
1283
1284 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1285 && XTENSA_IS_ENTRY (gdbarch, op1))
1286 {
1287 int callinc = CALLINC (ps);
1288 ra = get_frame_register_unsigned
1289 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1290
1291 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1292 cache->wd.callsize = 0;
1293 cache->wd.wb = wb;
1294 cache->wd.ws = ws;
1295 cache->prev_sp = get_frame_register_unsigned
1296 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1297
1298 /* This only can be the outermost frame since we are
1299 just about to execute ENTRY. SP hasn't been set yet.
1300 We can assume any frame size, because it does not
1301 matter, and, let's fake frame base in cache. */
1302 cache->base = cache->prev_sp - 16;
1303
1304 cache->pc = pc;
1305 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1306 cache->ps = (ps & ~PS_CALLINC_MASK)
1307 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1308
1309 return cache;
1310 }
1311 else
1312 {
1313 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1314 ra = get_frame_register_unsigned (this_frame,
1315 gdbarch_tdep (gdbarch)->a0_base);
1316 cache->wd.callsize = WINSIZE (ra);
1317 cache->wd.wb = (wb - cache->wd.callsize / 4)
1318 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1319 cache->wd.ws = ws & ~(1 << wb);
1320
1321 cache->pc = get_frame_func (this_frame);
1322 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1323 cache->ps = (ps & ~PS_CALLINC_MASK)
1324 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1325 }
1326
1327 if (cache->wd.ws == 0)
1328 {
1329 int i;
1330
1331 /* Set A0...A3. */
1332 sp = get_frame_register_unsigned
1333 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1334
1335 for (i = 0; i < 4; i++, sp += 4)
1336 {
1337 cache->wd.aregs[i] = sp;
1338 }
1339
1340 if (cache->wd.callsize > 4)
1341 {
1342 /* Set A4...A7/A11. */
1343 /* Get the SP of the frame previous to the previous one.
1344 To achieve this, we have to dereference SP twice. */
1345 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1346 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1347 sp -= cache->wd.callsize * 4;
1348
1349 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1350 {
1351 cache->wd.aregs[i] = sp;
1352 }
1353 }
1354 }
1355
1356 if ((cache->prev_sp == 0) && ( ra != 0 ))
1357 /* If RA is equal to 0 this frame is an outermost frame. Leave
1358 cache->prev_sp unchanged marking the boundary of the frame stack. */
1359 {
1360 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1361 {
1362 /* Register window overflow already happened.
1363 We can read caller's SP from the proper spill loction. */
1364 sp = get_frame_register_unsigned
1365 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1366 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1367 }
1368 else
1369 {
1370 /* Read caller's frame SP directly from the previous window. */
1371 int regnum = arreg_number
1372 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1373 cache->wd.wb);
1374
1375 cache->prev_sp = xtensa_read_register (regnum);
1376 }
1377 }
1378 }
1379 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1380 {
1381 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1382
1383 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1384 /* Everything was set already, including cache->base. */
1385 return cache;
1386 }
1387 else /* Call0 framework. */
1388 {
1389 call0_frame_cache (this_frame, cache, pc);
1390 fp_regnum = cache->c0.fp_regnum;
1391 }
1392
1393 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1394
1395 return cache;
1396 }
1397
1398 static int xtensa_session_once_reported = 1;
1399
1400 /* Report a problem with prologue analysis while doing backtracing.
1401 But, do it only once to avoid annoyng repeated messages. */
1402
1403 static void
1404 warning_once (void)
1405 {
1406 if (xtensa_session_once_reported == 0)
1407 warning (_("\
1408 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1409 This message will not be repeated in this session.\n"));
1410
1411 xtensa_session_once_reported = 1;
1412 }
1413
1414
1415 static void
1416 xtensa_frame_this_id (struct frame_info *this_frame,
1417 void **this_cache,
1418 struct frame_id *this_id)
1419 {
1420 struct xtensa_frame_cache *cache =
1421 xtensa_frame_cache (this_frame, this_cache);
1422
1423 if (cache->prev_sp == 0)
1424 return;
1425
1426 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1427 }
1428
1429 static struct value *
1430 xtensa_frame_prev_register (struct frame_info *this_frame,
1431 void **this_cache,
1432 int regnum)
1433 {
1434 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1435 struct xtensa_frame_cache *cache;
1436 ULONGEST saved_reg = 0;
1437 int done = 1;
1438
1439 if (*this_cache == NULL)
1440 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1441 cache = (struct xtensa_frame_cache *) *this_cache;
1442
1443 if (regnum ==gdbarch_pc_regnum (gdbarch))
1444 saved_reg = cache->ra;
1445 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1446 saved_reg = cache->prev_sp;
1447 else if (!cache->call0)
1448 {
1449 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1450 saved_reg = cache->wd.ws;
1451 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1452 saved_reg = cache->wd.wb;
1453 else if (regnum == gdbarch_ps_regnum (gdbarch))
1454 saved_reg = cache->ps;
1455 else
1456 done = 0;
1457 }
1458 else
1459 done = 0;
1460
1461 if (done)
1462 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1463
1464 if (!cache->call0) /* Windowed ABI. */
1465 {
1466 /* Convert A-register numbers to AR-register numbers,
1467 if we deal with A-register. */
1468 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1469 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1470 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1471
1472 /* Check, if we deal with AR-register saved on stack. */
1473 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1474 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1475 + gdbarch_tdep (gdbarch)->num_aregs))
1476 {
1477 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1478
1479 if (areg >= 0
1480 && areg < XTENSA_NUM_SAVED_AREGS
1481 && cache->wd.aregs[areg] != -1)
1482 return frame_unwind_got_memory (this_frame, regnum,
1483 cache->wd.aregs[areg]);
1484 }
1485 }
1486 else /* Call0 ABI. */
1487 {
1488 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1489 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1490 + C0_NREGS))
1491 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1492
1493 if (reg < C0_NREGS)
1494 {
1495 CORE_ADDR spe;
1496 int stkofs;
1497
1498 /* If register was saved in the prologue, retrieve it. */
1499 stkofs = cache->c0.c0_rt[reg].to_stk;
1500 if (stkofs != C0_NOSTK)
1501 {
1502 /* Determine SP on entry based on FP. */
1503 spe = cache->c0.c0_fp
1504 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1505
1506 return frame_unwind_got_memory (this_frame, regnum,
1507 spe + stkofs);
1508 }
1509 }
1510 }
1511
1512 /* All other registers have been either saved to
1513 the stack or are still alive in the processor. */
1514
1515 return frame_unwind_got_register (this_frame, regnum, regnum);
1516 }
1517
1518
1519 static const struct frame_unwind
1520 xtensa_unwind =
1521 {
1522 NORMAL_FRAME,
1523 default_frame_unwind_stop_reason,
1524 xtensa_frame_this_id,
1525 xtensa_frame_prev_register,
1526 NULL,
1527 default_frame_sniffer
1528 };
1529
1530 static CORE_ADDR
1531 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1532 {
1533 struct xtensa_frame_cache *cache =
1534 xtensa_frame_cache (this_frame, this_cache);
1535
1536 return cache->base;
1537 }
1538
1539 static const struct frame_base
1540 xtensa_frame_base =
1541 {
1542 &xtensa_unwind,
1543 xtensa_frame_base_address,
1544 xtensa_frame_base_address,
1545 xtensa_frame_base_address
1546 };
1547
1548
1549 static void
1550 xtensa_extract_return_value (struct type *type,
1551 struct regcache *regcache,
1552 void *dst)
1553 {
1554 struct gdbarch *gdbarch = regcache->arch ();
1555 bfd_byte *valbuf = (bfd_byte *) dst;
1556 int len = TYPE_LENGTH (type);
1557 ULONGEST pc, wb;
1558 int callsize, areg;
1559 int offset = 0;
1560
1561 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1562
1563 gdb_assert(len > 0);
1564
1565 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1566 {
1567 /* First, we have to find the caller window in the register file. */
1568 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1569 callsize = extract_call_winsize (gdbarch, pc);
1570
1571 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1572 if (len > (callsize > 8 ? 8 : 16))
1573 internal_error (__FILE__, __LINE__,
1574 _("cannot extract return value of %d bytes long"),
1575 len);
1576
1577 /* Get the register offset of the return
1578 register (A2) in the caller window. */
1579 regcache_raw_read_unsigned
1580 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1581 areg = arreg_number (gdbarch,
1582 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1583 }
1584 else
1585 {
1586 /* No windowing hardware - Call0 ABI. */
1587 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1588 }
1589
1590 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1591
1592 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1593 offset = 4 - len;
1594
1595 for (; len > 0; len -= 4, areg++, valbuf += 4)
1596 {
1597 if (len < 4)
1598 regcache->raw_read_part (areg, offset, len, valbuf);
1599 else
1600 regcache->raw_read (areg, valbuf);
1601 }
1602 }
1603
1604
1605 static void
1606 xtensa_store_return_value (struct type *type,
1607 struct regcache *regcache,
1608 const void *dst)
1609 {
1610 struct gdbarch *gdbarch = regcache->arch ();
1611 const bfd_byte *valbuf = (const bfd_byte *) dst;
1612 unsigned int areg;
1613 ULONGEST pc, wb;
1614 int callsize;
1615 int len = TYPE_LENGTH (type);
1616 int offset = 0;
1617
1618 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1619
1620 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1621 {
1622 regcache_raw_read_unsigned
1623 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1624 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1625 callsize = extract_call_winsize (gdbarch, pc);
1626
1627 if (len > (callsize > 8 ? 8 : 16))
1628 internal_error (__FILE__, __LINE__,
1629 _("unimplemented for this length: %d"),
1630 TYPE_LENGTH (type));
1631 areg = arreg_number (gdbarch,
1632 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1633
1634 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1635 callsize, (int) wb);
1636 }
1637 else
1638 {
1639 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1640 }
1641
1642 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1643 offset = 4 - len;
1644
1645 for (; len > 0; len -= 4, areg++, valbuf += 4)
1646 {
1647 if (len < 4)
1648 regcache->raw_write_part (areg, offset, len, valbuf);
1649 else
1650 regcache->raw_write (areg, valbuf);
1651 }
1652 }
1653
1654
1655 static enum return_value_convention
1656 xtensa_return_value (struct gdbarch *gdbarch,
1657 struct value *function,
1658 struct type *valtype,
1659 struct regcache *regcache,
1660 gdb_byte *readbuf,
1661 const gdb_byte *writebuf)
1662 {
1663 /* Structures up to 16 bytes are returned in registers. */
1664
1665 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1666 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1667 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1668 && TYPE_LENGTH (valtype) > 16);
1669
1670 if (struct_return)
1671 return RETURN_VALUE_STRUCT_CONVENTION;
1672
1673 DEBUGTRACE ("xtensa_return_value(...)\n");
1674
1675 if (writebuf != NULL)
1676 {
1677 xtensa_store_return_value (valtype, regcache, writebuf);
1678 }
1679
1680 if (readbuf != NULL)
1681 {
1682 gdb_assert (!struct_return);
1683 xtensa_extract_return_value (valtype, regcache, readbuf);
1684 }
1685 return RETURN_VALUE_REGISTER_CONVENTION;
1686 }
1687
1688
1689 /* DUMMY FRAME */
1690
1691 static CORE_ADDR
1692 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1693 struct value *function,
1694 struct regcache *regcache,
1695 CORE_ADDR bp_addr,
1696 int nargs,
1697 struct value **args,
1698 CORE_ADDR sp,
1699 int struct_return,
1700 CORE_ADDR struct_addr)
1701 {
1702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1703 int i;
1704 int size, onstack_size;
1705 gdb_byte *buf = (gdb_byte *) alloca (16);
1706 CORE_ADDR ra, ps;
1707 struct argument_info
1708 {
1709 const bfd_byte *contents;
1710 int length;
1711 int onstack; /* onstack == 0 => in reg */
1712 int align; /* alignment */
1713 union
1714 {
1715 int offset; /* stack offset if on stack. */
1716 int regno; /* regno if in register. */
1717 } u;
1718 };
1719
1720 struct argument_info *arg_info =
1721 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1722
1723 CORE_ADDR osp = sp;
1724
1725 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1726
1727 if (xtensa_debug_level > 3)
1728 {
1729 int i;
1730 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1731 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1732 "struct_addr=0x%x\n",
1733 (int) sp, (int) struct_return, (int) struct_addr);
1734
1735 for (i = 0; i < nargs; i++)
1736 {
1737 struct value *arg = args[i];
1738 struct type *arg_type = check_typedef (value_type (arg));
1739 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1740 host_address_to_string (arg),
1741 TYPE_LENGTH (arg_type));
1742 switch (TYPE_CODE (arg_type))
1743 {
1744 case TYPE_CODE_INT:
1745 fprintf_unfiltered (gdb_stdlog, "int");
1746 break;
1747 case TYPE_CODE_STRUCT:
1748 fprintf_unfiltered (gdb_stdlog, "struct");
1749 break;
1750 default:
1751 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1752 break;
1753 }
1754 fprintf_unfiltered (gdb_stdlog, " %s\n",
1755 host_address_to_string (value_contents (arg)));
1756 }
1757 }
1758
1759 /* First loop: collect information.
1760 Cast into type_long. (This shouldn't happen often for C because
1761 GDB already does this earlier.) It's possible that GDB could
1762 do it all the time but it's harmless to leave this code here. */
1763
1764 size = 0;
1765 onstack_size = 0;
1766 i = 0;
1767
1768 if (struct_return)
1769 size = REGISTER_SIZE;
1770
1771 for (i = 0; i < nargs; i++)
1772 {
1773 struct argument_info *info = &arg_info[i];
1774 struct value *arg = args[i];
1775 struct type *arg_type = check_typedef (value_type (arg));
1776
1777 switch (TYPE_CODE (arg_type))
1778 {
1779 case TYPE_CODE_INT:
1780 case TYPE_CODE_BOOL:
1781 case TYPE_CODE_CHAR:
1782 case TYPE_CODE_RANGE:
1783 case TYPE_CODE_ENUM:
1784
1785 /* Cast argument to long if necessary as the mask does it too. */
1786 if (TYPE_LENGTH (arg_type)
1787 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1788 {
1789 arg_type = builtin_type (gdbarch)->builtin_long;
1790 arg = value_cast (arg_type, arg);
1791 }
1792 /* Aligment is equal to the type length for the basic types. */
1793 info->align = TYPE_LENGTH (arg_type);
1794 break;
1795
1796 case TYPE_CODE_FLT:
1797
1798 /* Align doubles correctly. */
1799 if (TYPE_LENGTH (arg_type)
1800 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1801 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1802 else
1803 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1804 break;
1805
1806 case TYPE_CODE_STRUCT:
1807 default:
1808 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1809 break;
1810 }
1811 info->length = TYPE_LENGTH (arg_type);
1812 info->contents = value_contents (arg);
1813
1814 /* Align size and onstack_size. */
1815 size = (size + info->align - 1) & ~(info->align - 1);
1816 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1817
1818 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1819 {
1820 info->onstack = 1;
1821 info->u.offset = onstack_size;
1822 onstack_size += info->length;
1823 }
1824 else
1825 {
1826 info->onstack = 0;
1827 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1828 }
1829 size += info->length;
1830 }
1831
1832 /* Adjust the stack pointer and align it. */
1833 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1834
1835 /* Simulate MOVSP, if Windowed ABI. */
1836 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1837 && (sp != osp))
1838 {
1839 read_memory (osp - 16, buf, 16);
1840 write_memory (sp - 16, buf, 16);
1841 }
1842
1843 /* Second Loop: Load arguments. */
1844
1845 if (struct_return)
1846 {
1847 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1848 regcache->cooked_write (ARG_1ST (gdbarch), buf);
1849 }
1850
1851 for (i = 0; i < nargs; i++)
1852 {
1853 struct argument_info *info = &arg_info[i];
1854
1855 if (info->onstack)
1856 {
1857 int n = info->length;
1858 CORE_ADDR offset = sp + info->u.offset;
1859
1860 /* Odd-sized structs are aligned to the lower side of a memory
1861 word in big-endian mode and require a shift. This only
1862 applies for structures smaller than one word. */
1863
1864 if (n < REGISTER_SIZE
1865 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1866 offset += (REGISTER_SIZE - n);
1867
1868 write_memory (offset, info->contents, info->length);
1869
1870 }
1871 else
1872 {
1873 int n = info->length;
1874 const bfd_byte *cp = info->contents;
1875 int r = info->u.regno;
1876
1877 /* Odd-sized structs are aligned to the lower side of registers in
1878 big-endian mode and require a shift. The odd-sized leftover will
1879 be at the end. Note that this is only true for structures smaller
1880 than REGISTER_SIZE; for larger odd-sized structures the excess
1881 will be left-aligned in the register on both endiannesses. */
1882
1883 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1884 {
1885 ULONGEST v;
1886 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1887 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1888
1889 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1890 regcache->cooked_write (r, buf);
1891
1892 cp += REGISTER_SIZE;
1893 n -= REGISTER_SIZE;
1894 r++;
1895 }
1896 else
1897 while (n > 0)
1898 {
1899 regcache->cooked_write (r, cp);
1900
1901 cp += REGISTER_SIZE;
1902 n -= REGISTER_SIZE;
1903 r++;
1904 }
1905 }
1906 }
1907
1908 /* Set the return address of dummy frame to the dummy address.
1909 The return address for the current function (in A0) is
1910 saved in the dummy frame, so we can savely overwrite A0 here. */
1911
1912 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1913 {
1914 ULONGEST val;
1915
1916 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1917 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1918 ps = (unsigned long) val & ~0x00030000;
1919 regcache_cooked_write_unsigned
1920 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1921 regcache_cooked_write_unsigned (regcache,
1922 gdbarch_ps_regnum (gdbarch),
1923 ps | 0x00010000);
1924
1925 /* All the registers have been saved. After executing
1926 dummy call, they all will be restored. So it's safe
1927 to modify WINDOWSTART register to make it look like there
1928 is only one register window corresponding to WINDOWEBASE. */
1929
1930 regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum, buf);
1931 regcache_cooked_write_unsigned
1932 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1933 1 << extract_unsigned_integer (buf, 4, byte_order));
1934 }
1935 else
1936 {
1937 /* Simulate CALL0: write RA into A0 register. */
1938 regcache_cooked_write_unsigned
1939 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1940 }
1941
1942 /* Set new stack pointer and return it. */
1943 regcache_cooked_write_unsigned (regcache,
1944 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1945 /* Make dummy frame ID unique by adding a constant. */
1946 return sp + SP_ALIGNMENT;
1947 }
1948
1949 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1950
1951 static int
1952 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1953 {
1954 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1955 return 2;
1956 else
1957 return 4;
1958 }
1959
1960 /* Return a breakpoint for the current location of PC. We always use
1961 the density version if we have density instructions (regardless of the
1962 current instruction at PC), and use regular instructions otherwise. */
1963
1964 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1965 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1966 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1967 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1968
1969 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1970
1971 static const gdb_byte *
1972 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1973 {
1974 *size = kind;
1975
1976 if (kind == 4)
1977 {
1978 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1979 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1980
1981 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1982 return big_breakpoint;
1983 else
1984 return little_breakpoint;
1985 }
1986 else
1987 {
1988 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1989 static unsigned char density_little_breakpoint[]
1990 = DENSITY_LITTLE_BREAKPOINT;
1991
1992 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1993 return density_big_breakpoint;
1994 else
1995 return density_little_breakpoint;
1996 }
1997 }
1998
1999 /* Call0 ABI support routines. */
2000
2001 /* Return true, if PC points to "ret" or "ret.n". */
2002
2003 static int
2004 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2005 {
2006 #define RETURN_RET goto done
2007 xtensa_isa isa;
2008 xtensa_insnbuf ins, slot;
2009 gdb_byte ibuf[XTENSA_ISA_BSZ];
2010 CORE_ADDR ia, bt, ba;
2011 xtensa_format ifmt;
2012 int ilen, islots, is;
2013 xtensa_opcode opc;
2014 const char *opcname;
2015 int found_ret = 0;
2016
2017 isa = xtensa_default_isa;
2018 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2019 ins = xtensa_insnbuf_alloc (isa);
2020 slot = xtensa_insnbuf_alloc (isa);
2021 ba = 0;
2022
2023 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2024 {
2025 if (ia + xtensa_isa_maxlength (isa) > bt)
2026 {
2027 ba = ia;
2028 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2029 ? ba + XTENSA_ISA_BSZ : finish_pc;
2030 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2031 RETURN_RET;
2032 }
2033
2034 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2035 ifmt = xtensa_format_decode (isa, ins);
2036 if (ifmt == XTENSA_UNDEFINED)
2037 RETURN_RET;
2038 ilen = xtensa_format_length (isa, ifmt);
2039 if (ilen == XTENSA_UNDEFINED)
2040 RETURN_RET;
2041 islots = xtensa_format_num_slots (isa, ifmt);
2042 if (islots == XTENSA_UNDEFINED)
2043 RETURN_RET;
2044
2045 for (is = 0; is < islots; ++is)
2046 {
2047 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2048 RETURN_RET;
2049
2050 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2051 if (opc == XTENSA_UNDEFINED)
2052 RETURN_RET;
2053
2054 opcname = xtensa_opcode_name (isa, opc);
2055
2056 if ((strcasecmp (opcname, "ret.n") == 0)
2057 || (strcasecmp (opcname, "ret") == 0))
2058 {
2059 found_ret = 1;
2060 RETURN_RET;
2061 }
2062 }
2063 }
2064 done:
2065 xtensa_insnbuf_free(isa, slot);
2066 xtensa_insnbuf_free(isa, ins);
2067 return found_ret;
2068 }
2069
2070 /* Call0 opcode class. Opcodes are preclassified according to what they
2071 mean for Call0 prologue analysis, and their number of significant operands.
2072 The purpose of this is to simplify prologue analysis by separating
2073 instruction decoding (libisa) from the semantics of prologue analysis. */
2074
2075 typedef enum
2076 {
2077 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2078 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2079 c0opc_flow, /* Flow control insn. */
2080 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2081 c0opc_break, /* Debugger software breakpoints. */
2082 c0opc_add, /* Adding two registers. */
2083 c0opc_addi, /* Adding a register and an immediate. */
2084 c0opc_and, /* Bitwise "and"-ing two registers. */
2085 c0opc_sub, /* Subtracting a register from a register. */
2086 c0opc_mov, /* Moving a register to a register. */
2087 c0opc_movi, /* Moving an immediate to a register. */
2088 c0opc_l32r, /* Loading a literal. */
2089 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2090 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2091 c0opc_l32e, /* L32E instruction. */
2092 c0opc_s32e, /* S32E instruction. */
2093 c0opc_rfwo, /* RFWO instruction. */
2094 c0opc_rfwu, /* RFWU instruction. */
2095 c0opc_NrOf /* Number of opcode classifications. */
2096 } xtensa_insn_kind;
2097
2098 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2099
2100 static int
2101 rwx_special_register (const char *opcname)
2102 {
2103 char ch = *opcname++;
2104
2105 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2106 return 0;
2107 if (*opcname++ != 's')
2108 return 0;
2109 if (*opcname++ != 'r')
2110 return 0;
2111 if (*opcname++ != '.')
2112 return 0;
2113
2114 return 1;
2115 }
2116
2117 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2118
2119 static xtensa_insn_kind
2120 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2121 {
2122 const char *opcname;
2123 xtensa_insn_kind opclass = c0opc_uninteresting;
2124
2125 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2126
2127 /* Get opcode name and handle special classifications. */
2128
2129 opcname = xtensa_opcode_name (isa, opc);
2130
2131 if (opcname == NULL
2132 || strcasecmp (opcname, "ill") == 0
2133 || strcasecmp (opcname, "ill.n") == 0)
2134 opclass = c0opc_illegal;
2135 else if (strcasecmp (opcname, "break") == 0
2136 || strcasecmp (opcname, "break.n") == 0)
2137 opclass = c0opc_break;
2138 else if (strcasecmp (opcname, "entry") == 0)
2139 opclass = c0opc_entry;
2140 else if (strcasecmp (opcname, "rfwo") == 0)
2141 opclass = c0opc_rfwo;
2142 else if (strcasecmp (opcname, "rfwu") == 0)
2143 opclass = c0opc_rfwu;
2144 else if (xtensa_opcode_is_branch (isa, opc) > 0
2145 || xtensa_opcode_is_jump (isa, opc) > 0
2146 || xtensa_opcode_is_loop (isa, opc) > 0
2147 || xtensa_opcode_is_call (isa, opc) > 0
2148 || strcasecmp (opcname, "simcall") == 0
2149 || strcasecmp (opcname, "syscall") == 0)
2150 opclass = c0opc_flow;
2151
2152 /* Also, classify specific opcodes that need to be tracked. */
2153 else if (strcasecmp (opcname, "add") == 0
2154 || strcasecmp (opcname, "add.n") == 0)
2155 opclass = c0opc_add;
2156 else if (strcasecmp (opcname, "and") == 0)
2157 opclass = c0opc_and;
2158 else if (strcasecmp (opcname, "addi") == 0
2159 || strcasecmp (opcname, "addi.n") == 0
2160 || strcasecmp (opcname, "addmi") == 0)
2161 opclass = c0opc_addi;
2162 else if (strcasecmp (opcname, "sub") == 0)
2163 opclass = c0opc_sub;
2164 else if (strcasecmp (opcname, "mov.n") == 0
2165 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2166 opclass = c0opc_mov;
2167 else if (strcasecmp (opcname, "movi") == 0
2168 || strcasecmp (opcname, "movi.n") == 0)
2169 opclass = c0opc_movi;
2170 else if (strcasecmp (opcname, "l32r") == 0)
2171 opclass = c0opc_l32r;
2172 else if (strcasecmp (opcname, "s32i") == 0
2173 || strcasecmp (opcname, "s32i.n") == 0)
2174 opclass = c0opc_s32i;
2175 else if (strcasecmp (opcname, "l32e") == 0)
2176 opclass = c0opc_l32e;
2177 else if (strcasecmp (opcname, "s32e") == 0)
2178 opclass = c0opc_s32e;
2179 else if (rwx_special_register (opcname))
2180 opclass = c0opc_rwxsr;
2181
2182 return opclass;
2183 }
2184
2185 /* Tracks register movement/mutation for a given operation, which may
2186 be within a bundle. Updates the destination register tracking info
2187 accordingly. The pc is needed only for pc-relative load instructions
2188 (eg. l32r). The SP register number is needed to identify stores to
2189 the stack frame. Returns 0, if analysis was succesfull, non-zero
2190 otherwise. */
2191
2192 static int
2193 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2194 xtensa_insn_kind opclass, int nods, unsigned odv[],
2195 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2196 {
2197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2198 unsigned litbase, litaddr, litval;
2199
2200 switch (opclass)
2201 {
2202 case c0opc_addi:
2203 /* 3 operands: dst, src, imm. */
2204 gdb_assert (nods == 3);
2205 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2206 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2207 break;
2208 case c0opc_add:
2209 /* 3 operands: dst, src1, src2. */
2210 gdb_assert (nods == 3);
2211 if (src[odv[1]].fr_reg == C0_CONST)
2212 {
2213 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2214 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2215 }
2216 else if (src[odv[2]].fr_reg == C0_CONST)
2217 {
2218 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2219 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2220 }
2221 else dst[odv[0]].fr_reg = C0_INEXP;
2222 break;
2223 case c0opc_and:
2224 /* 3 operands: dst, src1, src2. */
2225 gdb_assert (nods == 3);
2226 if (cache->c0.c0_fpalign == 0)
2227 {
2228 /* Handle dynamic stack alignment. */
2229 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2230 {
2231 if (src[odv[2]].fr_reg == C0_CONST)
2232 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2233 break;
2234 }
2235 else if ((src[odv[0]].fr_reg == spreg)
2236 && (src[odv[2]].fr_reg == spreg))
2237 {
2238 if (src[odv[1]].fr_reg == C0_CONST)
2239 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2240 break;
2241 }
2242 /* else fall through. */
2243 }
2244 if (src[odv[1]].fr_reg == C0_CONST)
2245 {
2246 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2247 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2248 }
2249 else if (src[odv[2]].fr_reg == C0_CONST)
2250 {
2251 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2252 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2253 }
2254 else dst[odv[0]].fr_reg = C0_INEXP;
2255 break;
2256 case c0opc_sub:
2257 /* 3 operands: dst, src1, src2. */
2258 gdb_assert (nods == 3);
2259 if (src[odv[2]].fr_reg == C0_CONST)
2260 {
2261 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2262 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2263 }
2264 else dst[odv[0]].fr_reg = C0_INEXP;
2265 break;
2266 case c0opc_mov:
2267 /* 2 operands: dst, src [, src]. */
2268 gdb_assert (nods == 2);
2269 /* First, check if it's a special case of saving unaligned SP
2270 to a spare register in case of dynamic stack adjustment.
2271 But, only do it one time. The second time could be initializing
2272 frame pointer. We don't want to overwrite the first one. */
2273 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2274 cache->c0.c0_old_sp = odv[0];
2275
2276 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2277 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2278 break;
2279 case c0opc_movi:
2280 /* 2 operands: dst, imm. */
2281 gdb_assert (nods == 2);
2282 dst[odv[0]].fr_reg = C0_CONST;
2283 dst[odv[0]].fr_ofs = odv[1];
2284 break;
2285 case c0opc_l32r:
2286 /* 2 operands: dst, literal offset. */
2287 gdb_assert (nods == 2);
2288 /* litbase = xtensa_get_litbase (pc); can be also used. */
2289 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2290 ? 0 : xtensa_read_register
2291 (gdbarch_tdep (gdbarch)->litbase_regnum);
2292 litaddr = litbase & 1
2293 ? (litbase & ~1) + (signed)odv[1]
2294 : (pc + 3 + (signed)odv[1]) & ~3;
2295 litval = read_memory_integer (litaddr, 4, byte_order);
2296 dst[odv[0]].fr_reg = C0_CONST;
2297 dst[odv[0]].fr_ofs = litval;
2298 break;
2299 case c0opc_s32i:
2300 /* 3 operands: value, base, offset. */
2301 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2302 /* First, check if it's a spill for saved unaligned SP,
2303 when dynamic stack adjustment was applied to this frame. */
2304 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2305 && (odv[1] == spreg) /* SP usage indicates spill. */
2306 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2307 cache->c0.c0_sp_ofs = odv[2];
2308
2309 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2310 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2311 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2312 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2313 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2314 {
2315 /* ISA encoding guarantees alignment. But, check it anyway. */
2316 gdb_assert ((odv[2] & 3) == 0);
2317 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2318 }
2319 break;
2320 /* If we end up inside Window Overflow / Underflow interrupt handler
2321 report an error because these handlers should have been handled
2322 already in a different way. */
2323 case c0opc_l32e:
2324 case c0opc_s32e:
2325 case c0opc_rfwo:
2326 case c0opc_rfwu:
2327 return 1;
2328 default:
2329 return 1;
2330 }
2331 return 0;
2332 }
2333
2334 /* Analyze prologue of the function at start address to determine if it uses
2335 the Call0 ABI, and if so track register moves and linear modifications
2336 in the prologue up to the PC or just beyond the prologue, whichever is
2337 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2338 prologue. The prologue may overlap non-prologue instructions but is
2339 guaranteed to end by the first flow-control instruction (jump, branch,
2340 call or return). Since an optimized function may move information around
2341 and change the stack frame arbitrarily during the prologue, the information
2342 is guaranteed valid only at the point in the function indicated by the PC.
2343 May be used to skip the prologue or identify the ABI, w/o tracking.
2344
2345 Returns: Address of first instruction after prologue, or PC (whichever
2346 is first), or 0, if decoding failed (in libisa).
2347 Input args:
2348 start Start address of function/prologue.
2349 pc Program counter to stop at. Use 0 to continue to end of prologue.
2350 If 0, avoids infinite run-on in corrupt code memory by bounding
2351 the scan to the end of the function if that can be determined.
2352 nregs Number of general registers to track.
2353 InOut args:
2354 cache Xtensa frame cache.
2355
2356 Note that these may produce useful results even if decoding fails
2357 because they begin with default assumptions that analysis may change. */
2358
2359 static CORE_ADDR
2360 call0_analyze_prologue (struct gdbarch *gdbarch,
2361 CORE_ADDR start, CORE_ADDR pc,
2362 int nregs, xtensa_frame_cache_t *cache)
2363 {
2364 CORE_ADDR ia; /* Current insn address in prologue. */
2365 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2366 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2367 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2368 xtensa_isa isa; /* libisa ISA handle. */
2369 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2370 xtensa_format ifmt; /* libisa instruction format. */
2371 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2372 xtensa_opcode opc; /* Opcode in current slot. */
2373 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2374 int nods; /* Opcode number of operands. */
2375 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2376 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2377 int j; /* General loop counter. */
2378 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2379 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2380 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2381
2382 struct symtab_and_line prologue_sal;
2383
2384 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2385 (int)start, (int)pc);
2386
2387 /* Try to limit the scan to the end of the function if a non-zero pc
2388 arg was not supplied to avoid probing beyond the end of valid memory.
2389 If memory is full of garbage that classifies as c0opc_uninteresting.
2390 If this fails (eg. if no symbols) pc ends up 0 as it was.
2391 Initialize the Call0 frame and register tracking info.
2392 Assume it's Call0 until an 'entry' instruction is encountered.
2393 Assume we may be in the prologue until we hit a flow control instr. */
2394
2395 rtmp = NULL;
2396 body_pc = UINT_MAX;
2397 end_pc = 0;
2398
2399 /* Find out, if we have an information about the prologue from DWARF. */
2400 prologue_sal = find_pc_line (start, 0);
2401 if (prologue_sal.line != 0) /* Found debug info. */
2402 body_pc = prologue_sal.end;
2403
2404 /* If we are going to analyze the prologue in general without knowing about
2405 the current PC, make the best assumtion for the end of the prologue. */
2406 if (pc == 0)
2407 {
2408 find_pc_partial_function (start, 0, NULL, &end_pc);
2409 body_pc = std::min (end_pc, body_pc);
2410 }
2411 else
2412 body_pc = std::min (pc, body_pc);
2413
2414 cache->call0 = 1;
2415 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2416
2417 isa = xtensa_default_isa;
2418 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2419 ins = xtensa_insnbuf_alloc (isa);
2420 slot = xtensa_insnbuf_alloc (isa);
2421
2422 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2423 {
2424 /* (Re)fill instruction buffer from memory if necessary, but do not
2425 read memory beyond PC to be sure we stay within text section
2426 (this protection only works if a non-zero pc is supplied). */
2427
2428 if (ia + xtensa_isa_maxlength (isa) > bt)
2429 {
2430 ba = ia;
2431 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2432 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2433 error (_("Unable to read target memory ..."));
2434 }
2435
2436 /* Decode format information. */
2437
2438 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2439 ifmt = xtensa_format_decode (isa, ins);
2440 if (ifmt == XTENSA_UNDEFINED)
2441 {
2442 fail = 1;
2443 goto done;
2444 }
2445 ilen = xtensa_format_length (isa, ifmt);
2446 if (ilen == XTENSA_UNDEFINED)
2447 {
2448 fail = 1;
2449 goto done;
2450 }
2451 islots = xtensa_format_num_slots (isa, ifmt);
2452 if (islots == XTENSA_UNDEFINED)
2453 {
2454 fail = 1;
2455 goto done;
2456 }
2457
2458 /* Analyze a bundle or a single instruction, using a snapshot of
2459 the register tracking info as input for the entire bundle so that
2460 register changes do not take effect within this bundle. */
2461
2462 for (j = 0; j < nregs; ++j)
2463 rtmp[j] = cache->c0.c0_rt[j];
2464
2465 for (is = 0; is < islots; ++is)
2466 {
2467 /* Decode a slot and classify the opcode. */
2468
2469 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2470 if (fail)
2471 goto done;
2472
2473 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2474 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2475 (unsigned)ia, opc);
2476 if (opc == XTENSA_UNDEFINED)
2477 opclass = c0opc_illegal;
2478 else
2479 opclass = call0_classify_opcode (isa, opc);
2480
2481 /* Decide whether to track this opcode, ignore it, or bail out. */
2482
2483 switch (opclass)
2484 {
2485 case c0opc_illegal:
2486 case c0opc_break:
2487 fail = 1;
2488 goto done;
2489
2490 case c0opc_uninteresting:
2491 continue;
2492
2493 case c0opc_flow: /* Flow control instructions stop analysis. */
2494 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2495 goto done;
2496
2497 case c0opc_entry:
2498 cache->call0 = 0;
2499 ia += ilen; /* Skip over 'entry' insn. */
2500 goto done;
2501
2502 default:
2503 cache->call0 = 1;
2504 }
2505
2506 /* Only expected opcodes should get this far. */
2507
2508 /* Extract and decode the operands. */
2509 nods = xtensa_opcode_num_operands (isa, opc);
2510 if (nods == XTENSA_UNDEFINED)
2511 {
2512 fail = 1;
2513 goto done;
2514 }
2515
2516 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2517 {
2518 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2519 is, slot, &odv[j]);
2520 if (fail)
2521 goto done;
2522
2523 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2524 if (fail)
2525 goto done;
2526 }
2527
2528 /* Check operands to verify use of 'mov' assembler macro. */
2529 if (opclass == c0opc_mov && nods == 3)
2530 {
2531 if (odv[2] == odv[1])
2532 {
2533 nods = 2;
2534 if ((odv[0] == 1) && (odv[1] != 1))
2535 /* OR A1, An, An , where n != 1.
2536 This means we are inside epilogue already. */
2537 goto done;
2538 }
2539 else
2540 {
2541 opclass = c0opc_uninteresting;
2542 continue;
2543 }
2544 }
2545
2546 /* Track register movement and modification for this operation. */
2547 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2548 opclass, nods, odv, ia, 1, cache);
2549 if (fail)
2550 goto done;
2551 }
2552 }
2553 done:
2554 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2555 (unsigned)ia, fail ? "failed" : "succeeded");
2556 xtensa_insnbuf_free(isa, slot);
2557 xtensa_insnbuf_free(isa, ins);
2558 return fail ? XTENSA_ISA_BADPC : ia;
2559 }
2560
2561 /* Initialize frame cache for the current frame in CALL0 ABI. */
2562
2563 static void
2564 call0_frame_cache (struct frame_info *this_frame,
2565 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2566 {
2567 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2569 CORE_ADDR start_pc; /* The beginning of the function. */
2570 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2571 CORE_ADDR sp, fp, ra;
2572 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2573
2574 sp = get_frame_register_unsigned
2575 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2576 fp = sp; /* Assume FP == SP until proven otherwise. */
2577
2578 /* Find the beginning of the prologue of the function containing the PC
2579 and analyze it up to the PC or the end of the prologue. */
2580
2581 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2582 {
2583 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2584
2585 if (body_pc == XTENSA_ISA_BADPC)
2586 {
2587 warning_once ();
2588 ra = 0;
2589 goto finish_frame_analysis;
2590 }
2591 }
2592
2593 /* Get the frame information and FP (if used) at the current PC.
2594 If PC is in the prologue, the prologue analysis is more reliable
2595 than DWARF info. We don't not know for sure, if PC is in the prologue,
2596 but we do know no calls have yet taken place, so we can almost
2597 certainly rely on the prologue analysis. */
2598
2599 if (body_pc <= pc)
2600 {
2601 /* Prologue analysis was successful up to the PC.
2602 It includes the cases when PC == START_PC. */
2603 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2604 /* c0_hasfp == true means there is a frame pointer because
2605 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2606 was derived from SP. Otherwise, it would be C0_FP. */
2607 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2608 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2609 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2610 }
2611 else /* No data from the prologue analysis. */
2612 {
2613 c0_hasfp = 0;
2614 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2615 c0_frmsz = 0;
2616 start_pc = pc;
2617 }
2618
2619 if (cache->c0.c0_fpalign)
2620 {
2621 /* This frame has a special prologue with a dynamic stack adjustment
2622 to force an alignment, which is bigger than standard 16 bytes. */
2623
2624 CORE_ADDR unaligned_sp;
2625
2626 if (cache->c0.c0_old_sp == C0_INEXP)
2627 /* This can't be. Prologue code should be consistent.
2628 Unaligned stack pointer should be saved in a spare register. */
2629 {
2630 warning_once ();
2631 ra = 0;
2632 goto finish_frame_analysis;
2633 }
2634
2635 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2636 /* Saved unaligned value of SP is kept in a register. */
2637 unaligned_sp = get_frame_register_unsigned
2638 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2639 else
2640 /* Get the value from stack. */
2641 unaligned_sp = (CORE_ADDR)
2642 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2643
2644 prev_sp = unaligned_sp + c0_frmsz;
2645 }
2646 else
2647 prev_sp = fp + c0_frmsz;
2648
2649 /* Frame size from debug info or prologue tracking does not account for
2650 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2651 if (c0_hasfp)
2652 {
2653 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2654
2655 /* Update the stack frame size. */
2656 c0_frmsz += fp - sp;
2657 }
2658
2659 /* Get the return address (RA) from the stack if saved,
2660 or try to get it from a register. */
2661
2662 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2663 if (to_stk != C0_NOSTK)
2664 ra = (CORE_ADDR)
2665 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2666 4, byte_order);
2667
2668 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2669 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2670 {
2671 /* Special case for terminating backtrace at a function that wants to
2672 be seen as the outermost one. Such a function will clear it's RA (A0)
2673 register to 0 in the prologue instead of saving its original value. */
2674 ra = 0;
2675 }
2676 else
2677 {
2678 /* RA was copied to another register or (before any function call) may
2679 still be in the original RA register. This is not always reliable:
2680 even in a leaf function, register tracking stops after prologue, and
2681 even in prologue, non-prologue instructions (not tracked) may overwrite
2682 RA or any register it was copied to. If likely in prologue or before
2683 any call, use retracking info and hope for the best (compiler should
2684 have saved RA in stack if not in a leaf function). If not in prologue,
2685 too bad. */
2686
2687 int i;
2688 for (i = 0;
2689 (i < C0_NREGS)
2690 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2691 ++i);
2692 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2693 i = C0_RA;
2694 if (i < C0_NREGS)
2695 {
2696 ra = get_frame_register_unsigned
2697 (this_frame,
2698 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2699 }
2700 else ra = 0;
2701 }
2702
2703 finish_frame_analysis:
2704 cache->pc = start_pc;
2705 cache->ra = ra;
2706 /* RA == 0 marks the outermost frame. Do not go past it. */
2707 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2708 cache->c0.fp_regnum = fp_regnum;
2709 cache->c0.c0_frmsz = c0_frmsz;
2710 cache->c0.c0_hasfp = c0_hasfp;
2711 cache->c0.c0_fp = fp;
2712 }
2713
2714 static CORE_ADDR a0_saved;
2715 static CORE_ADDR a7_saved;
2716 static CORE_ADDR a11_saved;
2717 static int a0_was_saved;
2718 static int a7_was_saved;
2719 static int a11_was_saved;
2720
2721 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2722 static void
2723 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2724 {
2725 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2726 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2727 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2728 unsigned int spilled_value
2729 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2730
2731 if ((at == 0) && !a0_was_saved)
2732 {
2733 a0_saved = xtensa_read_register (atreg);
2734 a0_was_saved = 1;
2735 }
2736 else if ((at == 7) && !a7_was_saved)
2737 {
2738 a7_saved = xtensa_read_register (atreg);
2739 a7_was_saved = 1;
2740 }
2741 else if ((at == 11) && !a11_was_saved)
2742 {
2743 a11_saved = xtensa_read_register (atreg);
2744 a11_was_saved = 1;
2745 }
2746
2747 xtensa_write_register (atreg, spilled_value);
2748 }
2749
2750 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2751 static void
2752 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2753 {
2754 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2755 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2756 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2757 ULONGEST spilled_value = xtensa_read_register (atreg);
2758
2759 write_memory_unsigned_integer (addr, 4,
2760 gdbarch_byte_order (gdbarch),
2761 spilled_value);
2762 }
2763
2764 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2765
2766 typedef enum
2767 {
2768 xtWindowOverflow,
2769 xtWindowUnderflow,
2770 xtNoExceptionHandler
2771 } xtensa_exception_handler_t;
2772
2773 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2774 Return type of Xtensa Window Interrupt Handler on success. */
2775 static xtensa_exception_handler_t
2776 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2777 {
2778 xtensa_isa isa;
2779 xtensa_insnbuf ins, slot;
2780 gdb_byte ibuf[XTENSA_ISA_BSZ];
2781 CORE_ADDR ia, bt, ba;
2782 xtensa_format ifmt;
2783 int ilen, islots, is;
2784 xtensa_opcode opc;
2785 int insn_num = 0;
2786 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2787
2788 uint32_t at, as, offset;
2789
2790 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2791 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2792
2793 isa = xtensa_default_isa;
2794 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2795 ins = xtensa_insnbuf_alloc (isa);
2796 slot = xtensa_insnbuf_alloc (isa);
2797 ba = 0;
2798 ia = current_pc;
2799 bt = ia;
2800
2801 a0_was_saved = 0;
2802 a7_was_saved = 0;
2803 a11_was_saved = 0;
2804
2805 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2806 {
2807 if (ia + xtensa_isa_maxlength (isa) > bt)
2808 {
2809 ba = ia;
2810 bt = (ba + XTENSA_ISA_BSZ);
2811 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2812 return xtNoExceptionHandler;
2813 }
2814 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2815 ifmt = xtensa_format_decode (isa, ins);
2816 if (ifmt == XTENSA_UNDEFINED)
2817 return xtNoExceptionHandler;
2818 ilen = xtensa_format_length (isa, ifmt);
2819 if (ilen == XTENSA_UNDEFINED)
2820 return xtNoExceptionHandler;
2821 islots = xtensa_format_num_slots (isa, ifmt);
2822 if (islots == XTENSA_UNDEFINED)
2823 return xtNoExceptionHandler;
2824 for (is = 0; is < islots; ++is)
2825 {
2826 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2827 return xtNoExceptionHandler;
2828 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2829 if (opc == XTENSA_UNDEFINED)
2830 return xtNoExceptionHandler;
2831 switch (call0_classify_opcode (isa, opc))
2832 {
2833 case c0opc_illegal:
2834 case c0opc_flow:
2835 case c0opc_entry:
2836 case c0opc_break:
2837 /* We expect none of them here. */
2838 return xtNoExceptionHandler;
2839 case c0opc_l32e:
2840 func = execute_l32e;
2841 break;
2842 case c0opc_s32e:
2843 func = execute_s32e;
2844 break;
2845 case c0opc_rfwo: /* RFWO. */
2846 /* Here, we return from WindowOverflow handler and,
2847 if we stopped at the very beginning, which means
2848 A0 was saved, we have to restore it now. */
2849 if (a0_was_saved)
2850 {
2851 int arreg = arreg_number (gdbarch,
2852 gdbarch_tdep (gdbarch)->a0_base,
2853 wb);
2854 xtensa_write_register (arreg, a0_saved);
2855 }
2856 return xtWindowOverflow;
2857 case c0opc_rfwu: /* RFWU. */
2858 /* Here, we return from WindowUnderflow handler.
2859 Let's see if either A7 or A11 has to be restored. */
2860 if (WindowUnderflow12)
2861 {
2862 if (a11_was_saved)
2863 {
2864 int arreg = arreg_number (gdbarch,
2865 gdbarch_tdep (gdbarch)->a0_base + 11,
2866 wb);
2867 xtensa_write_register (arreg, a11_saved);
2868 }
2869 }
2870 else if (a7_was_saved)
2871 {
2872 int arreg = arreg_number (gdbarch,
2873 gdbarch_tdep (gdbarch)->a0_base + 7,
2874 wb);
2875 xtensa_write_register (arreg, a7_saved);
2876 }
2877 return xtWindowUnderflow;
2878 default: /* Simply skip this insns. */
2879 continue;
2880 }
2881
2882 /* Decode arguments for L32E / S32E and simulate their execution. */
2883 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2884 return xtNoExceptionHandler;
2885 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2886 return xtNoExceptionHandler;
2887 if (xtensa_operand_decode (isa, opc, 0, &at))
2888 return xtNoExceptionHandler;
2889 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2890 return xtNoExceptionHandler;
2891 if (xtensa_operand_decode (isa, opc, 1, &as))
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_decode (isa, opc, 2, &offset))
2896 return xtNoExceptionHandler;
2897
2898 (*func) (gdbarch, at, as, offset, wb);
2899 }
2900
2901 ia += ilen;
2902 }
2903 return xtNoExceptionHandler;
2904 }
2905
2906 /* Handle Window Overflow / Underflow exception frames. */
2907
2908 static void
2909 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2910 xtensa_frame_cache_t *cache,
2911 CORE_ADDR pc)
2912 {
2913 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2914 CORE_ADDR ps, wb, ws, ra;
2915 int epc1_regnum, i, regnum;
2916 xtensa_exception_handler_t eh_type;
2917
2918 /* Read PS, WB, and WS from the hardware. Note that PS register
2919 must be present, if Windowed ABI is supported. */
2920 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2921 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2922 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2923
2924 /* Execute all the remaining instructions from Window Interrupt Handler
2925 by simulating them on the remote protocol level. On return, set the
2926 type of Xtensa Window Interrupt Handler, or report an error. */
2927 eh_type = execute_code (gdbarch, pc, wb);
2928 if (eh_type == xtNoExceptionHandler)
2929 error (_("\
2930 Unable to decode Xtensa Window Interrupt Handler's code."));
2931
2932 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2933 cache->call0 = 0; /* It's Windowed ABI. */
2934
2935 /* All registers for the cached frame will be alive. */
2936 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2937 cache->wd.aregs[i] = -1;
2938
2939 if (eh_type == xtWindowOverflow)
2940 cache->wd.ws = ws ^ (1 << wb);
2941 else /* eh_type == xtWindowUnderflow. */
2942 cache->wd.ws = ws | (1 << wb);
2943
2944 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2945 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2946 cache->wd.wb);
2947 ra = xtensa_read_register (regnum);
2948 cache->wd.callsize = WINSIZE (ra);
2949 cache->prev_sp = xtensa_read_register (regnum + 1);
2950 /* Set regnum to a frame pointer of the frame being cached. */
2951 regnum = xtensa_scan_prologue (gdbarch, pc);
2952 regnum = arreg_number (gdbarch,
2953 gdbarch_tdep (gdbarch)->a0_base + regnum,
2954 cache->wd.wb);
2955 cache->base = get_frame_register_unsigned (this_frame, regnum);
2956
2957 /* Read PC of interrupted function from EPC1 register. */
2958 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2959 if (epc1_regnum < 0)
2960 error(_("Unable to read Xtensa register EPC1"));
2961 cache->ra = xtensa_read_register (epc1_regnum);
2962 cache->pc = get_frame_func (this_frame);
2963 }
2964
2965
2966 /* Skip function prologue.
2967
2968 Return the pc of the first instruction after prologue. GDB calls this to
2969 find the address of the first line of the function or (if there is no line
2970 number information) to skip the prologue for planting breakpoints on
2971 function entries. Use debug info (if present) or prologue analysis to skip
2972 the prologue to achieve reliable debugging behavior. For windowed ABI,
2973 only the 'entry' instruction is skipped. It is not strictly necessary to
2974 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2975 backtrace at any point in the prologue, however certain potential hazards
2976 are avoided and a more "normal" debugging experience is ensured by
2977 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2978 For example, if we don't skip the prologue:
2979 - Some args may not yet have been saved to the stack where the debug
2980 info expects to find them (true anyway when only 'entry' is skipped);
2981 - Software breakpoints ('break' instrs) may not have been unplanted
2982 when the prologue analysis is done on initializing the frame cache,
2983 and breaks in the prologue will throw off the analysis.
2984
2985 If we have debug info ( line-number info, in particular ) we simply skip
2986 the code associated with the first function line effectively skipping
2987 the prologue code. It works even in cases like
2988
2989 int main()
2990 { int local_var = 1;
2991 ....
2992 }
2993
2994 because, for this source code, both Xtensa compilers will generate two
2995 separate entries ( with the same line number ) in dwarf line-number
2996 section to make sure there is a boundary between the prologue code and
2997 the rest of the function.
2998
2999 If there is no debug info, we need to analyze the code. */
3000
3001 /* #define DONT_SKIP_PROLOGUE */
3002
3003 static CORE_ADDR
3004 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3005 {
3006 struct symtab_and_line prologue_sal;
3007 CORE_ADDR body_pc;
3008
3009 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3010
3011 #if DONT_SKIP_PROLOGUE
3012 return start_pc;
3013 #endif
3014
3015 /* Try to find first body line from debug info. */
3016
3017 prologue_sal = find_pc_line (start_pc, 0);
3018 if (prologue_sal.line != 0) /* Found debug info. */
3019 {
3020 /* In Call0, it is possible to have a function with only one instruction
3021 ('ret') resulting from a one-line optimized function that does nothing.
3022 In that case, prologue_sal.end may actually point to the start of the
3023 next function in the text section, causing a breakpoint to be set at
3024 the wrong place. Check, if the end address is within a different
3025 function, and if so return the start PC. We know we have symbol
3026 information. */
3027
3028 CORE_ADDR end_func;
3029
3030 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3031 && call0_ret (start_pc, prologue_sal.end))
3032 return start_pc;
3033
3034 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3035 if (end_func != start_pc)
3036 return start_pc;
3037
3038 return prologue_sal.end;
3039 }
3040
3041 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3042 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3043 xtensa_alloc_frame_cache (0));
3044 return body_pc != 0 ? body_pc : start_pc;
3045 }
3046
3047 /* Verify the current configuration. */
3048 static void
3049 xtensa_verify_config (struct gdbarch *gdbarch)
3050 {
3051 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3052 string_file log;
3053
3054 /* Verify that we got a reasonable number of AREGS. */
3055 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3056 log.printf (_("\
3057 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3058 tdep->num_aregs);
3059
3060 /* Verify that certain registers exist. */
3061
3062 if (tdep->pc_regnum == -1)
3063 log.printf (_("\n\tpc_regnum: No PC register"));
3064 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3065 log.printf (_("\n\tps_regnum: No PS register"));
3066
3067 if (tdep->isa_use_windowed_registers)
3068 {
3069 if (tdep->wb_regnum == -1)
3070 log.printf (_("\n\twb_regnum: No WB register"));
3071 if (tdep->ws_regnum == -1)
3072 log.printf (_("\n\tws_regnum: No WS register"));
3073 if (tdep->ar_base == -1)
3074 log.printf (_("\n\tar_base: No AR registers"));
3075 }
3076
3077 if (tdep->a0_base == -1)
3078 log.printf (_("\n\ta0_base: No Ax registers"));
3079
3080 if (!log.empty ())
3081 internal_error (__FILE__, __LINE__,
3082 _("the following are invalid: %s"), log.c_str ());
3083 }
3084
3085
3086 /* Derive specific register numbers from the array of registers. */
3087
3088 static void
3089 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3090 {
3091 xtensa_register_t* rmap;
3092 int n, max_size = 4;
3093
3094 tdep->num_regs = 0;
3095 tdep->num_nopriv_regs = 0;
3096
3097 /* Special registers 0..255 (core). */
3098 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3099 /* User registers 0..255. */
3100 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3101
3102 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3103 {
3104 if (rmap->target_number == 0x0020)
3105 tdep->pc_regnum = n;
3106 else if (rmap->target_number == 0x0100)
3107 tdep->ar_base = n;
3108 else if (rmap->target_number == 0x0000)
3109 tdep->a0_base = n;
3110 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3111 tdep->wb_regnum = n;
3112 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3113 tdep->ws_regnum = n;
3114 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3115 tdep->debugcause_regnum = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3117 tdep->exccause_regnum = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3119 tdep->excvaddr_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3121 tdep->lbeg_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3123 tdep->lend_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3125 tdep->lcount_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3127 tdep->sar_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3129 tdep->litbase_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3131 tdep->ps_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3133 tdep->threadptr_regnum = n;
3134 #if 0
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3136 tdep->interrupt_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3138 tdep->interrupt2_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3140 tdep->cpenable_regnum = n;
3141 #endif
3142
3143 if (rmap->byte_size > max_size)
3144 max_size = rmap->byte_size;
3145 if (rmap->mask != 0 && tdep->num_regs == 0)
3146 tdep->num_regs = n;
3147 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3148 && tdep->num_nopriv_regs == 0)
3149 tdep->num_nopriv_regs = n;
3150 }
3151 if (tdep->num_regs == 0)
3152 tdep->num_regs = tdep->num_nopriv_regs;
3153
3154 /* Number of pseudo registers. */
3155 tdep->num_pseudo_regs = n - tdep->num_regs;
3156
3157 /* Empirically determined maximum sizes. */
3158 tdep->max_register_raw_size = max_size;
3159 tdep->max_register_virtual_size = max_size;
3160 }
3161
3162 /* Module "constructor" function. */
3163
3164 extern struct gdbarch_tdep xtensa_tdep;
3165
3166 static struct gdbarch *
3167 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3168 {
3169 struct gdbarch_tdep *tdep;
3170 struct gdbarch *gdbarch;
3171
3172 DEBUGTRACE ("gdbarch_init()\n");
3173
3174 if (!xtensa_default_isa)
3175 xtensa_default_isa = xtensa_isa_init (0, 0);
3176
3177 /* We have to set the byte order before we call gdbarch_alloc. */
3178 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3179
3180 tdep = &xtensa_tdep;
3181 gdbarch = gdbarch_alloc (&info, tdep);
3182 xtensa_derive_tdep (tdep);
3183
3184 /* Verify our configuration. */
3185 xtensa_verify_config (gdbarch);
3186 xtensa_session_once_reported = 0;
3187
3188 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3189 set_gdbarch_wchar_signed (gdbarch, 0);
3190
3191 /* Pseudo-Register read/write. */
3192 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3193 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3194
3195 /* Set target information. */
3196 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3197 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3198 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3199 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3200 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3201
3202 /* Renumber registers for known formats (stabs and dwarf2). */
3203 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3204 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3205
3206 /* We provide our own function to get register information. */
3207 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3208 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3209
3210 /* To call functions from GDB using dummy frame. */
3211 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3212
3213 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3214
3215 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3216
3217 /* Advance PC across any prologue instructions to reach "real" code. */
3218 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3219
3220 /* Stack grows downward. */
3221 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3222
3223 /* Set breakpoints. */
3224 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3225 xtensa_breakpoint_kind_from_pc);
3226 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3227 xtensa_sw_breakpoint_from_kind);
3228
3229 /* After breakpoint instruction or illegal instruction, pc still
3230 points at break instruction, so don't decrement. */
3231 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3232
3233 /* We don't skip args. */
3234 set_gdbarch_frame_args_skip (gdbarch, 0);
3235
3236 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3237
3238 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3239
3240 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3241
3242 /* Frame handling. */
3243 frame_base_set_default (gdbarch, &xtensa_frame_base);
3244 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3245 dwarf2_append_unwinders (gdbarch);
3246
3247 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3248
3249 xtensa_add_reggroups (gdbarch);
3250 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3251
3252 set_gdbarch_iterate_over_regset_sections
3253 (gdbarch, xtensa_iterate_over_regset_sections);
3254
3255 set_solib_svr4_fetch_link_map_offsets
3256 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3257
3258 /* Hook in the ABI-specific overrides, if they have been registered. */
3259 gdbarch_init_osabi (info, gdbarch);
3260
3261 return gdbarch;
3262 }
3263
3264 static void
3265 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3266 {
3267 error (_("xtensa_dump_tdep(): not implemented"));
3268 }
3269
3270 void
3271 _initialize_xtensa_tdep (void)
3272 {
3273 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3274 xtensa_init_reggroups ();
3275
3276 add_setshow_zuinteger_cmd ("xtensa",
3277 class_maintenance,
3278 &xtensa_debug_level,
3279 _("Set Xtensa debugging."),
3280 _("Show Xtensa debugging."), _("\
3281 When non-zero, Xtensa-specific debugging is enabled. \
3282 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3283 NULL,
3284 NULL,
3285 &setdebuglist, &showdebuglist);
3286 }
This page took 0.100006 seconds and 5 git commands to generate.