gdb: xtensa: clean up xtensa_default_isa initialization
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55 #include <algorithm>
56
57
58 static unsigned int xtensa_debug_level = 0;
59
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
79
80
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
85
86
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96 #define TX_PS 0x20
97
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
113
114 #define XTENSA_ENTRY_LENGTH 3
115
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
122
123 static int
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125 {
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131 }
132
133 /* Convert a live A-register number to the corresponding AR-register
134 number. */
135 static int
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int arreg;
140
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
144
145 return arreg + tdep->ar_base;
146 }
147
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150 static int
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152 {
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
161 }
162
163 /* Read Xtensa register directly from the hardware. */
164 static unsigned long
165 xtensa_read_register (int regnum)
166 {
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171 }
172
173 /* Write Xtensa register directly to the hardware. */
174 static void
175 xtensa_write_register (int regnum, ULONGEST value)
176 {
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178 }
179
180 /* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191 static int
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
193 {
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
195 int winsize = 4;
196 int insn;
197 gdb_byte buf[4];
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
213 if (byte_order == BFD_ENDIAN_LITTLE)
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
222 }
223 return winsize;
224 }
225
226
227 /* REGISTER INFORMATION */
228
229 /* Find register by name. */
230 static int
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
232 {
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243 }
244
245 /* Returns the name of a register. */
246 static const char *
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
248 {
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
253
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256 }
257
258 /* Return the type of a register. Create a new type, if necessary. */
259
260 static struct type *
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
271
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
275
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
279 {
280 xtensa_register_t* reg = &tdep->regmap[regnum];
281
282 /* Set ctype for this register (only the first time). */
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
289 /* We always use the memory representation,
290 even if the register width is smaller. */
291 switch (size)
292 {
293 case 1:
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
295 break;
296
297 case 2:
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
299 break;
300
301 case 4:
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
303 break;
304
305 case 8:
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
307 break;
308
309 case 16:
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
311 break;
312
313 default:
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
320 char *name = xstrprintf ("int%d", size * 8);
321
322 tp = XNEW (struct ctype_cache);
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
325 tp->size = size;
326 tp->virtual_type
327 = arch_integer_type (gdbarch, size * 8, 1, name);
328 xfree (name);
329 }
330
331 reg->ctype = tp->virtual_type;
332 }
333 }
334 return reg->ctype;
335 }
336
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
338 return 0;
339 }
340
341
342 /* Return the 'local' register number for stubs, dwarf2, etc.
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
345
346 static int
347 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
348 {
349 int i;
350
351 if (regnum >= 0 && regnum < 16)
352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
353
354 for (i = 0;
355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
356 i++)
357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
358 return i;
359
360 return -1;
361 }
362
363
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
368
369 static void
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
372 {
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
445 }
446 }
447 }
448
449
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
452
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
456 {
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
477 if (r >= 0)
478 {
479 enum register_status status;
480 ULONGEST val;
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
539
540 return REG_VALID;
541 }
542
543
544 /* Read pseudo registers. */
545
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551 {
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
563 enum register_status status;
564
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 buf);
568 if (status != REG_VALID)
569 return status;
570 regnum = arreg_number (gdbarch, regnum,
571 extract_unsigned_integer (buf, 4, byte_order));
572 }
573
574 /* We can always read non-pseudo registers. */
575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
576 return regcache_raw_read (regcache, regnum, buffer);
577
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
580
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
587 return REG_VALID;
588 }
589 /* Pseudo registers. */
590 else if (regnum >= 0
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
593 {
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
597
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
605 return REG_VALID;
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
616 return REG_VALID;
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
623 return REG_VALID;
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
630
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
633 }
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637 }
638
639
640 /* Write pseudo registers. */
641
642 static void
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647 {
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
652
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
657 {
658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
659
660 regcache_raw_read (regcache,
661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
662 regnum = arreg_number (gdbarch, regnum,
663 extract_unsigned_integer (buf, 4, byte_order));
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
669 regcache_raw_write (regcache, regnum, buffer);
670
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
678 /* Pseudo registers. */
679 else if (regnum >= 0
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
682 {
683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
684 xtensa_register_type_t type = reg->type;
685 int flags = gdbarch_tdep (gdbarch)->target_flags;
686
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
694 xtensa_register_name (gdbarch, regnum));
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
721 xtensa_register_write_masked (regcache, reg, buffer);
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731 }
732
733 static struct reggroup *xtensa_ar_reggroup;
734 static struct reggroup *xtensa_user_reggroup;
735 static struct reggroup *xtensa_vectra_reggroup;
736 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
737
738 static void
739 xtensa_init_reggroups (void)
740 {
741 int i;
742 char cpname[] = "cp0";
743
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
747
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 {
750 cpname[2] = '0' + i;
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
752 }
753 }
754
755 static void
756 xtensa_add_reggroups (struct gdbarch *gdbarch)
757 {
758 int i;
759
760 /* Predefined groups. */
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
768
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
776 }
777
778 static int
779 xtensa_coprocessor_register_group (struct reggroup *group)
780 {
781 int i;
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
785 return i;
786
787 return -1;
788 }
789
790 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
793
794 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
796
797 static int
798 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
799 int regnum,
800 struct reggroup *group)
801 {
802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
805 int cp_number;
806
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
810 return 1;
811
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
814
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
816 return 0;
817 if (group == all_reggroup)
818 return 1;
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
831 if (group == restore_reggroup)
832 return (regnum < gdbarch_num_regs (gdbarch)
833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
834 cp_number = xtensa_coprocessor_register_group (group);
835 if (cp_number >= 0)
836 return rg & (xtRegisterGroupCP0 << cp_number);
837 else
838 return 1;
839 }
840
841
842 /* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
845
846 static void
847 xtensa_supply_gregset (const struct regset *regset,
848 struct regcache *rc,
849 int regnum,
850 const void *gregs,
851 size_t len)
852 {
853 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
854 struct gdbarch *gdbarch = get_regcache_arch (rc);
855 int i;
856
857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
858
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
865 (char *) &regs->windowbase);
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
868 (char *) &regs->windowstart);
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
871 (char *) &regs->lbeg);
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
874 (char *) &regs->lend);
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
877 (char *) &regs->lcount);
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
880 (char *) &regs->sar);
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
884 regcache_raw_supply (rc, regnum,
885 (char *) &regs->ar[regnum - gdbarch_tdep
886 (gdbarch)->ar_base]);
887 else if (regnum == -1)
888 {
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
891 (char *) &regs->ar[i]);
892 }
893 }
894
895
896 /* Xtensa register set. */
897
898 static struct regset
899 xtensa_gregset =
900 {
901 NULL,
902 xtensa_supply_gregset
903 };
904
905
906 /* Iterate over supported core file register note sections. */
907
908 static void
909 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
911 void *cb_data,
912 const struct regcache *regcache)
913 {
914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
915
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
917 NULL, cb_data);
918 }
919
920
921 /* Handling frames. */
922
923 /* Number of registers to save in case of Windowed ABI. */
924 #define XTENSA_NUM_SAVED_AREGS 12
925
926 /* Frame cache part for Windowed ABI. */
927 typedef struct xtensa_windowed_frame_cache
928 {
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
935
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
939 } xtensa_windowed_frame_cache_t;
940
941 /* Call0 ABI Definitions. */
942
943 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
944 analysis. */
945 #define C0_NREGS 16 /* Number of A-registers to track. */
946 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
947 #define C0_SP 1 /* Register used as SP. */
948 #define C0_FP 15 /* Register used as FP. */
949 #define C0_RA 0 /* Register used as return address. */
950 #define C0_ARGS 2 /* Register used as first arg/retval. */
951 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
952
953 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
954 A-register where the current content of the reg came from (in terms
955 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
956 mean that the orignal content of the register was saved to the stack.
957 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
958 know where SP will end up until the entire prologue has been analyzed. */
959
960 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
961 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
962 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
963
964 extern xtensa_isa xtensa_default_isa;
965
966 typedef struct xtensa_c0reg
967 {
968 int fr_reg; /* original register from which register content
969 is derived, or C0_CONST, or C0_INEXP. */
970 int fr_ofs; /* constant offset from reg, or immediate value. */
971 int to_stk; /* offset from original SP to register (4-byte aligned),
972 or C0_NOSTK if register has not been saved. */
973 } xtensa_c0reg_t;
974
975 /* Frame cache part for Call0 ABI. */
976 typedef struct xtensa_call0_frame_cache
977 {
978 int c0_frmsz; /* Stack frame size. */
979 int c0_hasfp; /* Current frame uses frame pointer. */
980 int fp_regnum; /* A-register used as FP. */
981 int c0_fp; /* Actual value of frame pointer. */
982 int c0_fpalign; /* Dinamic adjustment for the stack
983 pointer. It's an AND mask. Zero,
984 if alignment was not adjusted. */
985 int c0_old_sp; /* In case of dynamic adjustment, it is
986 a register holding unaligned sp.
987 C0_INEXP, when undefined. */
988 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
989 stack offset. C0_NOSTK otherwise. */
990
991 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
992 } xtensa_call0_frame_cache_t;
993
994 typedef struct xtensa_frame_cache
995 {
996 CORE_ADDR base; /* Stack pointer of this frame. */
997 CORE_ADDR pc; /* PC of this frame at the function entry point. */
998 CORE_ADDR ra; /* The raw return address of this frame. */
999 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1000 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1001 int call0; /* It's a call0 framework (else windowed). */
1002 union
1003 {
1004 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1005 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1006 };
1007 } xtensa_frame_cache_t;
1008
1009
1010 static struct xtensa_frame_cache *
1011 xtensa_alloc_frame_cache (int windowed)
1012 {
1013 xtensa_frame_cache_t *cache;
1014 int i;
1015
1016 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1017
1018 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1019
1020 cache->base = 0;
1021 cache->pc = 0;
1022 cache->ra = 0;
1023 cache->ps = 0;
1024 cache->prev_sp = 0;
1025 cache->call0 = !windowed;
1026 if (cache->call0)
1027 {
1028 cache->c0.c0_frmsz = -1;
1029 cache->c0.c0_hasfp = 0;
1030 cache->c0.fp_regnum = -1;
1031 cache->c0.c0_fp = -1;
1032 cache->c0.c0_fpalign = 0;
1033 cache->c0.c0_old_sp = C0_INEXP;
1034 cache->c0.c0_sp_ofs = C0_NOSTK;
1035
1036 for (i = 0; i < C0_NREGS; i++)
1037 {
1038 cache->c0.c0_rt[i].fr_reg = i;
1039 cache->c0.c0_rt[i].fr_ofs = 0;
1040 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1041 }
1042 }
1043 else
1044 {
1045 cache->wd.wb = 0;
1046 cache->wd.ws = 0;
1047 cache->wd.callsize = -1;
1048
1049 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1050 cache->wd.aregs[i] = -1;
1051 }
1052 return cache;
1053 }
1054
1055
1056 static CORE_ADDR
1057 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1058 {
1059 return address & ~15;
1060 }
1061
1062
1063 static CORE_ADDR
1064 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065 {
1066 gdb_byte buf[8];
1067 CORE_ADDR pc;
1068
1069 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1070 host_address_to_string (next_frame));
1071
1072 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1073 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1074
1075 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1076
1077 return pc;
1078 }
1079
1080
1081 static struct frame_id
1082 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1083 {
1084 CORE_ADDR pc, fp;
1085
1086 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1087
1088 pc = get_frame_pc (this_frame);
1089 fp = get_frame_register_unsigned
1090 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1091
1092 /* Make dummy frame ID unique by adding a constant. */
1093 return frame_id_build (fp + SP_ALIGNMENT, pc);
1094 }
1095
1096 /* Returns true, if instruction to execute next is unique to Xtensa Window
1097 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1098
1099 static int
1100 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1101 {
1102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1103 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1104 unsigned int code;
1105
1106 if (byte_order == BFD_ENDIAN_BIG)
1107 {
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0xf000ff00;
1110 if ((code == 0x00009000) || (code == 0x00009400))
1111 return 1;
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0xffffff00;
1114 return ((code == 0x00430000) || (code == 0x00530000));
1115 }
1116 else
1117 {
1118 /* Check, if this is L32E or S32E. */
1119 code = insn & 0x00ff000f;
1120 if ((code == 0x090000) || (code == 0x490000))
1121 return 1;
1122 /* Check, if this is RFWU or RFWO. */
1123 code = insn & 0x00ffffff;
1124 return ((code == 0x00003400) || (code == 0x00003500));
1125 }
1126 }
1127
1128 /* Returns the best guess about which register is a frame pointer
1129 for the function containing CURRENT_PC. */
1130
1131 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1132 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1133
1134 static unsigned int
1135 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1136 {
1137 #define RETURN_FP goto done
1138
1139 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1140 CORE_ADDR start_addr;
1141 xtensa_isa isa;
1142 xtensa_insnbuf ins, slot;
1143 gdb_byte ibuf[XTENSA_ISA_BSZ];
1144 CORE_ADDR ia, bt, ba;
1145 xtensa_format ifmt;
1146 int ilen, islots, is;
1147 xtensa_opcode opc;
1148 const char *opcname;
1149
1150 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1151 if (start_addr == 0)
1152 return fp_regnum;
1153
1154 isa = xtensa_default_isa;
1155 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1156 ins = xtensa_insnbuf_alloc (isa);
1157 slot = xtensa_insnbuf_alloc (isa);
1158 ba = 0;
1159
1160 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1161 {
1162 if (ia + xtensa_isa_maxlength (isa) > bt)
1163 {
1164 ba = ia;
1165 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1166 ? ba + XTENSA_ISA_BSZ : current_pc;
1167 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1168 RETURN_FP;
1169 }
1170
1171 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1172 ifmt = xtensa_format_decode (isa, ins);
1173 if (ifmt == XTENSA_UNDEFINED)
1174 RETURN_FP;
1175 ilen = xtensa_format_length (isa, ifmt);
1176 if (ilen == XTENSA_UNDEFINED)
1177 RETURN_FP;
1178 islots = xtensa_format_num_slots (isa, ifmt);
1179 if (islots == XTENSA_UNDEFINED)
1180 RETURN_FP;
1181
1182 for (is = 0; is < islots; ++is)
1183 {
1184 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1185 RETURN_FP;
1186
1187 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1188 if (opc == XTENSA_UNDEFINED)
1189 RETURN_FP;
1190
1191 opcname = xtensa_opcode_name (isa, opc);
1192
1193 if (strcasecmp (opcname, "mov.n") == 0
1194 || strcasecmp (opcname, "or") == 0)
1195 {
1196 unsigned int register_operand;
1197
1198 /* Possible candidate for setting frame pointer
1199 from A1. This is what we are looking for. */
1200
1201 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1202 is, slot, &register_operand) != 0)
1203 RETURN_FP;
1204 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1205 RETURN_FP;
1206 if (register_operand == 1) /* Mov{.n} FP A1. */
1207 {
1208 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1209 &register_operand) != 0)
1210 RETURN_FP;
1211 if (xtensa_operand_decode (isa, opc, 0,
1212 &register_operand) != 0)
1213 RETURN_FP;
1214
1215 fp_regnum
1216 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1217 RETURN_FP;
1218 }
1219 }
1220
1221 if (
1222 /* We have problems decoding the memory. */
1223 opcname == NULL
1224 || strcasecmp (opcname, "ill") == 0
1225 || strcasecmp (opcname, "ill.n") == 0
1226 /* Hit planted breakpoint. */
1227 || strcasecmp (opcname, "break") == 0
1228 || strcasecmp (opcname, "break.n") == 0
1229 /* Flow control instructions finish prologue. */
1230 || xtensa_opcode_is_branch (isa, opc) > 0
1231 || xtensa_opcode_is_jump (isa, opc) > 0
1232 || xtensa_opcode_is_loop (isa, opc) > 0
1233 || xtensa_opcode_is_call (isa, opc) > 0
1234 || strcasecmp (opcname, "simcall") == 0
1235 || strcasecmp (opcname, "syscall") == 0)
1236 /* Can not continue analysis. */
1237 RETURN_FP;
1238 }
1239 }
1240 done:
1241 xtensa_insnbuf_free(isa, slot);
1242 xtensa_insnbuf_free(isa, ins);
1243 return fp_regnum;
1244 }
1245
1246 /* The key values to identify the frame using "cache" are
1247
1248 cache->base = SP (or best guess about FP) of this frame;
1249 cache->pc = entry-PC (entry point of the frame function);
1250 cache->prev_sp = SP of the previous frame. */
1251
1252 static void
1253 call0_frame_cache (struct frame_info *this_frame,
1254 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1255
1256 static void
1257 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1258 xtensa_frame_cache_t *cache,
1259 CORE_ADDR pc);
1260
1261 static struct xtensa_frame_cache *
1262 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1263 {
1264 xtensa_frame_cache_t *cache;
1265 CORE_ADDR ra, wb, ws, pc, sp, ps;
1266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1268 unsigned int fp_regnum;
1269 int windowed, ps_regnum;
1270
1271 if (*this_cache)
1272 return (struct xtensa_frame_cache *) *this_cache;
1273
1274 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1275 ps_regnum = gdbarch_ps_regnum (gdbarch);
1276 ps = (ps_regnum >= 0
1277 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1278
1279 windowed = windowing_enabled (gdbarch, ps);
1280
1281 /* Get pristine xtensa-frame. */
1282 cache = xtensa_alloc_frame_cache (windowed);
1283 *this_cache = cache;
1284
1285 if (windowed)
1286 {
1287 LONGEST op1;
1288
1289 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1290 wb = get_frame_register_unsigned (this_frame,
1291 gdbarch_tdep (gdbarch)->wb_regnum);
1292 ws = get_frame_register_unsigned (this_frame,
1293 gdbarch_tdep (gdbarch)->ws_regnum);
1294
1295 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1296 && XTENSA_IS_ENTRY (gdbarch, op1))
1297 {
1298 int callinc = CALLINC (ps);
1299 ra = get_frame_register_unsigned
1300 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1301
1302 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1303 cache->wd.callsize = 0;
1304 cache->wd.wb = wb;
1305 cache->wd.ws = ws;
1306 cache->prev_sp = get_frame_register_unsigned
1307 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1308
1309 /* This only can be the outermost frame since we are
1310 just about to execute ENTRY. SP hasn't been set yet.
1311 We can assume any frame size, because it does not
1312 matter, and, let's fake frame base in cache. */
1313 cache->base = cache->prev_sp - 16;
1314
1315 cache->pc = pc;
1316 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1317 cache->ps = (ps & ~PS_CALLINC_MASK)
1318 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1319
1320 return cache;
1321 }
1322 else
1323 {
1324 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1325 ra = get_frame_register_unsigned (this_frame,
1326 gdbarch_tdep (gdbarch)->a0_base);
1327 cache->wd.callsize = WINSIZE (ra);
1328 cache->wd.wb = (wb - cache->wd.callsize / 4)
1329 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1330 cache->wd.ws = ws & ~(1 << wb);
1331
1332 cache->pc = get_frame_func (this_frame);
1333 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1334 cache->ps = (ps & ~PS_CALLINC_MASK)
1335 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1336 }
1337
1338 if (cache->wd.ws == 0)
1339 {
1340 int i;
1341
1342 /* Set A0...A3. */
1343 sp = get_frame_register_unsigned
1344 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1345
1346 for (i = 0; i < 4; i++, sp += 4)
1347 {
1348 cache->wd.aregs[i] = sp;
1349 }
1350
1351 if (cache->wd.callsize > 4)
1352 {
1353 /* Set A4...A7/A11. */
1354 /* Get the SP of the frame previous to the previous one.
1355 To achieve this, we have to dereference SP twice. */
1356 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1357 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1358 sp -= cache->wd.callsize * 4;
1359
1360 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1361 {
1362 cache->wd.aregs[i] = sp;
1363 }
1364 }
1365 }
1366
1367 if ((cache->prev_sp == 0) && ( ra != 0 ))
1368 /* If RA is equal to 0 this frame is an outermost frame. Leave
1369 cache->prev_sp unchanged marking the boundary of the frame stack. */
1370 {
1371 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1372 {
1373 /* Register window overflow already happened.
1374 We can read caller's SP from the proper spill loction. */
1375 sp = get_frame_register_unsigned
1376 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1377 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1378 }
1379 else
1380 {
1381 /* Read caller's frame SP directly from the previous window. */
1382 int regnum = arreg_number
1383 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1384 cache->wd.wb);
1385
1386 cache->prev_sp = xtensa_read_register (regnum);
1387 }
1388 }
1389 }
1390 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1391 {
1392 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1393
1394 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1395 /* Everything was set already, including cache->base. */
1396 return cache;
1397 }
1398 else /* Call0 framework. */
1399 {
1400 call0_frame_cache (this_frame, cache, pc);
1401 fp_regnum = cache->c0.fp_regnum;
1402 }
1403
1404 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1405
1406 return cache;
1407 }
1408
1409 static int xtensa_session_once_reported = 1;
1410
1411 /* Report a problem with prologue analysis while doing backtracing.
1412 But, do it only once to avoid annoyng repeated messages. */
1413
1414 static void
1415 warning_once (void)
1416 {
1417 if (xtensa_session_once_reported == 0)
1418 warning (_("\
1419 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1420 This message will not be repeated in this session.\n"));
1421
1422 xtensa_session_once_reported = 1;
1423 }
1424
1425
1426 static void
1427 xtensa_frame_this_id (struct frame_info *this_frame,
1428 void **this_cache,
1429 struct frame_id *this_id)
1430 {
1431 struct xtensa_frame_cache *cache =
1432 xtensa_frame_cache (this_frame, this_cache);
1433
1434 if (cache->prev_sp == 0)
1435 return;
1436
1437 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1438 }
1439
1440 static struct value *
1441 xtensa_frame_prev_register (struct frame_info *this_frame,
1442 void **this_cache,
1443 int regnum)
1444 {
1445 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1446 struct xtensa_frame_cache *cache;
1447 ULONGEST saved_reg = 0;
1448 int done = 1;
1449
1450 if (*this_cache == NULL)
1451 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1452 cache = (struct xtensa_frame_cache *) *this_cache;
1453
1454 if (regnum ==gdbarch_pc_regnum (gdbarch))
1455 saved_reg = cache->ra;
1456 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1457 saved_reg = cache->prev_sp;
1458 else if (!cache->call0)
1459 {
1460 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1461 saved_reg = cache->wd.ws;
1462 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1463 saved_reg = cache->wd.wb;
1464 else if (regnum == gdbarch_ps_regnum (gdbarch))
1465 saved_reg = cache->ps;
1466 else
1467 done = 0;
1468 }
1469 else
1470 done = 0;
1471
1472 if (done)
1473 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1474
1475 if (!cache->call0) /* Windowed ABI. */
1476 {
1477 /* Convert A-register numbers to AR-register numbers,
1478 if we deal with A-register. */
1479 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1480 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1481 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1482
1483 /* Check, if we deal with AR-register saved on stack. */
1484 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1485 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1486 + gdbarch_tdep (gdbarch)->num_aregs))
1487 {
1488 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1489
1490 if (areg >= 0
1491 && areg < XTENSA_NUM_SAVED_AREGS
1492 && cache->wd.aregs[areg] != -1)
1493 return frame_unwind_got_memory (this_frame, regnum,
1494 cache->wd.aregs[areg]);
1495 }
1496 }
1497 else /* Call0 ABI. */
1498 {
1499 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1500 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1501 + C0_NREGS))
1502 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1503
1504 if (reg < C0_NREGS)
1505 {
1506 CORE_ADDR spe;
1507 int stkofs;
1508
1509 /* If register was saved in the prologue, retrieve it. */
1510 stkofs = cache->c0.c0_rt[reg].to_stk;
1511 if (stkofs != C0_NOSTK)
1512 {
1513 /* Determine SP on entry based on FP. */
1514 spe = cache->c0.c0_fp
1515 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1516
1517 return frame_unwind_got_memory (this_frame, regnum,
1518 spe + stkofs);
1519 }
1520 }
1521 }
1522
1523 /* All other registers have been either saved to
1524 the stack or are still alive in the processor. */
1525
1526 return frame_unwind_got_register (this_frame, regnum, regnum);
1527 }
1528
1529
1530 static const struct frame_unwind
1531 xtensa_unwind =
1532 {
1533 NORMAL_FRAME,
1534 default_frame_unwind_stop_reason,
1535 xtensa_frame_this_id,
1536 xtensa_frame_prev_register,
1537 NULL,
1538 default_frame_sniffer
1539 };
1540
1541 static CORE_ADDR
1542 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1543 {
1544 struct xtensa_frame_cache *cache =
1545 xtensa_frame_cache (this_frame, this_cache);
1546
1547 return cache->base;
1548 }
1549
1550 static const struct frame_base
1551 xtensa_frame_base =
1552 {
1553 &xtensa_unwind,
1554 xtensa_frame_base_address,
1555 xtensa_frame_base_address,
1556 xtensa_frame_base_address
1557 };
1558
1559
1560 static void
1561 xtensa_extract_return_value (struct type *type,
1562 struct regcache *regcache,
1563 void *dst)
1564 {
1565 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1566 bfd_byte *valbuf = (bfd_byte *) dst;
1567 int len = TYPE_LENGTH (type);
1568 ULONGEST pc, wb;
1569 int callsize, areg;
1570 int offset = 0;
1571
1572 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1573
1574 gdb_assert(len > 0);
1575
1576 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1577 {
1578 /* First, we have to find the caller window in the register file. */
1579 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1580 callsize = extract_call_winsize (gdbarch, pc);
1581
1582 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1583 if (len > (callsize > 8 ? 8 : 16))
1584 internal_error (__FILE__, __LINE__,
1585 _("cannot extract return value of %d bytes long"),
1586 len);
1587
1588 /* Get the register offset of the return
1589 register (A2) in the caller window. */
1590 regcache_raw_read_unsigned
1591 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1592 areg = arreg_number (gdbarch,
1593 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1594 }
1595 else
1596 {
1597 /* No windowing hardware - Call0 ABI. */
1598 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1599 }
1600
1601 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1602
1603 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1604 offset = 4 - len;
1605
1606 for (; len > 0; len -= 4, areg++, valbuf += 4)
1607 {
1608 if (len < 4)
1609 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1610 else
1611 regcache_raw_read (regcache, areg, valbuf);
1612 }
1613 }
1614
1615
1616 static void
1617 xtensa_store_return_value (struct type *type,
1618 struct regcache *regcache,
1619 const void *dst)
1620 {
1621 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1622 const bfd_byte *valbuf = (const bfd_byte *) dst;
1623 unsigned int areg;
1624 ULONGEST pc, wb;
1625 int callsize;
1626 int len = TYPE_LENGTH (type);
1627 int offset = 0;
1628
1629 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1630
1631 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1632 {
1633 regcache_raw_read_unsigned
1634 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1635 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1636 callsize = extract_call_winsize (gdbarch, pc);
1637
1638 if (len > (callsize > 8 ? 8 : 16))
1639 internal_error (__FILE__, __LINE__,
1640 _("unimplemented for this length: %d"),
1641 TYPE_LENGTH (type));
1642 areg = arreg_number (gdbarch,
1643 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1644
1645 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1646 callsize, (int) wb);
1647 }
1648 else
1649 {
1650 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1651 }
1652
1653 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1654 offset = 4 - len;
1655
1656 for (; len > 0; len -= 4, areg++, valbuf += 4)
1657 {
1658 if (len < 4)
1659 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1660 else
1661 regcache_raw_write (regcache, areg, valbuf);
1662 }
1663 }
1664
1665
1666 static enum return_value_convention
1667 xtensa_return_value (struct gdbarch *gdbarch,
1668 struct value *function,
1669 struct type *valtype,
1670 struct regcache *regcache,
1671 gdb_byte *readbuf,
1672 const gdb_byte *writebuf)
1673 {
1674 /* Structures up to 16 bytes are returned in registers. */
1675
1676 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1677 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1678 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1679 && TYPE_LENGTH (valtype) > 16);
1680
1681 if (struct_return)
1682 return RETURN_VALUE_STRUCT_CONVENTION;
1683
1684 DEBUGTRACE ("xtensa_return_value(...)\n");
1685
1686 if (writebuf != NULL)
1687 {
1688 xtensa_store_return_value (valtype, regcache, writebuf);
1689 }
1690
1691 if (readbuf != NULL)
1692 {
1693 gdb_assert (!struct_return);
1694 xtensa_extract_return_value (valtype, regcache, readbuf);
1695 }
1696 return RETURN_VALUE_REGISTER_CONVENTION;
1697 }
1698
1699
1700 /* DUMMY FRAME */
1701
1702 static CORE_ADDR
1703 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1704 struct value *function,
1705 struct regcache *regcache,
1706 CORE_ADDR bp_addr,
1707 int nargs,
1708 struct value **args,
1709 CORE_ADDR sp,
1710 int struct_return,
1711 CORE_ADDR struct_addr)
1712 {
1713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1714 int i;
1715 int size, onstack_size;
1716 gdb_byte *buf = (gdb_byte *) alloca (16);
1717 CORE_ADDR ra, ps;
1718 struct argument_info
1719 {
1720 const bfd_byte *contents;
1721 int length;
1722 int onstack; /* onstack == 0 => in reg */
1723 int align; /* alignment */
1724 union
1725 {
1726 int offset; /* stack offset if on stack. */
1727 int regno; /* regno if in register. */
1728 } u;
1729 };
1730
1731 struct argument_info *arg_info =
1732 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1733
1734 CORE_ADDR osp = sp;
1735
1736 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1737
1738 if (xtensa_debug_level > 3)
1739 {
1740 int i;
1741 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1742 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1743 "struct_addr=0x%x\n",
1744 (int) sp, (int) struct_return, (int) struct_addr);
1745
1746 for (i = 0; i < nargs; i++)
1747 {
1748 struct value *arg = args[i];
1749 struct type *arg_type = check_typedef (value_type (arg));
1750 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1751 host_address_to_string (arg),
1752 TYPE_LENGTH (arg_type));
1753 switch (TYPE_CODE (arg_type))
1754 {
1755 case TYPE_CODE_INT:
1756 fprintf_unfiltered (gdb_stdlog, "int");
1757 break;
1758 case TYPE_CODE_STRUCT:
1759 fprintf_unfiltered (gdb_stdlog, "struct");
1760 break;
1761 default:
1762 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1763 break;
1764 }
1765 fprintf_unfiltered (gdb_stdlog, " %s\n",
1766 host_address_to_string (value_contents (arg)));
1767 }
1768 }
1769
1770 /* First loop: collect information.
1771 Cast into type_long. (This shouldn't happen often for C because
1772 GDB already does this earlier.) It's possible that GDB could
1773 do it all the time but it's harmless to leave this code here. */
1774
1775 size = 0;
1776 onstack_size = 0;
1777 i = 0;
1778
1779 if (struct_return)
1780 size = REGISTER_SIZE;
1781
1782 for (i = 0; i < nargs; i++)
1783 {
1784 struct argument_info *info = &arg_info[i];
1785 struct value *arg = args[i];
1786 struct type *arg_type = check_typedef (value_type (arg));
1787
1788 switch (TYPE_CODE (arg_type))
1789 {
1790 case TYPE_CODE_INT:
1791 case TYPE_CODE_BOOL:
1792 case TYPE_CODE_CHAR:
1793 case TYPE_CODE_RANGE:
1794 case TYPE_CODE_ENUM:
1795
1796 /* Cast argument to long if necessary as the mask does it too. */
1797 if (TYPE_LENGTH (arg_type)
1798 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1799 {
1800 arg_type = builtin_type (gdbarch)->builtin_long;
1801 arg = value_cast (arg_type, arg);
1802 }
1803 /* Aligment is equal to the type length for the basic types. */
1804 info->align = TYPE_LENGTH (arg_type);
1805 break;
1806
1807 case TYPE_CODE_FLT:
1808
1809 /* Align doubles correctly. */
1810 if (TYPE_LENGTH (arg_type)
1811 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1812 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1813 else
1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1815 break;
1816
1817 case TYPE_CODE_STRUCT:
1818 default:
1819 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1820 break;
1821 }
1822 info->length = TYPE_LENGTH (arg_type);
1823 info->contents = value_contents (arg);
1824
1825 /* Align size and onstack_size. */
1826 size = (size + info->align - 1) & ~(info->align - 1);
1827 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1828
1829 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1830 {
1831 info->onstack = 1;
1832 info->u.offset = onstack_size;
1833 onstack_size += info->length;
1834 }
1835 else
1836 {
1837 info->onstack = 0;
1838 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1839 }
1840 size += info->length;
1841 }
1842
1843 /* Adjust the stack pointer and align it. */
1844 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1845
1846 /* Simulate MOVSP, if Windowed ABI. */
1847 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1848 && (sp != osp))
1849 {
1850 read_memory (osp - 16, buf, 16);
1851 write_memory (sp - 16, buf, 16);
1852 }
1853
1854 /* Second Loop: Load arguments. */
1855
1856 if (struct_return)
1857 {
1858 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1859 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1860 }
1861
1862 for (i = 0; i < nargs; i++)
1863 {
1864 struct argument_info *info = &arg_info[i];
1865
1866 if (info->onstack)
1867 {
1868 int n = info->length;
1869 CORE_ADDR offset = sp + info->u.offset;
1870
1871 /* Odd-sized structs are aligned to the lower side of a memory
1872 word in big-endian mode and require a shift. This only
1873 applies for structures smaller than one word. */
1874
1875 if (n < REGISTER_SIZE
1876 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1877 offset += (REGISTER_SIZE - n);
1878
1879 write_memory (offset, info->contents, info->length);
1880
1881 }
1882 else
1883 {
1884 int n = info->length;
1885 const bfd_byte *cp = info->contents;
1886 int r = info->u.regno;
1887
1888 /* Odd-sized structs are aligned to the lower side of registers in
1889 big-endian mode and require a shift. The odd-sized leftover will
1890 be at the end. Note that this is only true for structures smaller
1891 than REGISTER_SIZE; for larger odd-sized structures the excess
1892 will be left-aligned in the register on both endiannesses. */
1893
1894 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1895 {
1896 ULONGEST v;
1897 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1898 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1899
1900 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1901 regcache_cooked_write (regcache, r, buf);
1902
1903 cp += REGISTER_SIZE;
1904 n -= REGISTER_SIZE;
1905 r++;
1906 }
1907 else
1908 while (n > 0)
1909 {
1910 regcache_cooked_write (regcache, r, cp);
1911
1912 cp += REGISTER_SIZE;
1913 n -= REGISTER_SIZE;
1914 r++;
1915 }
1916 }
1917 }
1918
1919 /* Set the return address of dummy frame to the dummy address.
1920 The return address for the current function (in A0) is
1921 saved in the dummy frame, so we can savely overwrite A0 here. */
1922
1923 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1924 {
1925 ULONGEST val;
1926
1927 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1928 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1929 ps = (unsigned long) val & ~0x00030000;
1930 regcache_cooked_write_unsigned
1931 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1932 regcache_cooked_write_unsigned (regcache,
1933 gdbarch_ps_regnum (gdbarch),
1934 ps | 0x00010000);
1935
1936 /* All the registers have been saved. After executing
1937 dummy call, they all will be restored. So it's safe
1938 to modify WINDOWSTART register to make it look like there
1939 is only one register window corresponding to WINDOWEBASE. */
1940
1941 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1942 regcache_cooked_write_unsigned
1943 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1944 1 << extract_unsigned_integer (buf, 4, byte_order));
1945 }
1946 else
1947 {
1948 /* Simulate CALL0: write RA into A0 register. */
1949 regcache_cooked_write_unsigned
1950 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1951 }
1952
1953 /* Set new stack pointer and return it. */
1954 regcache_cooked_write_unsigned (regcache,
1955 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1956 /* Make dummy frame ID unique by adding a constant. */
1957 return sp + SP_ALIGNMENT;
1958 }
1959
1960 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1961
1962 static int
1963 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1964 {
1965 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1966 return 2;
1967 else
1968 return 4;
1969 }
1970
1971 /* Return a breakpoint for the current location of PC. We always use
1972 the density version if we have density instructions (regardless of the
1973 current instruction at PC), and use regular instructions otherwise. */
1974
1975 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1976 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1977 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1978 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1979
1980 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1981
1982 static const gdb_byte *
1983 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1984 {
1985 *size = kind;
1986
1987 if (kind == 4)
1988 {
1989 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1990 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1991
1992 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1993 return big_breakpoint;
1994 else
1995 return little_breakpoint;
1996 }
1997 else
1998 {
1999 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
2000 static unsigned char density_little_breakpoint[]
2001 = DENSITY_LITTLE_BREAKPOINT;
2002
2003 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2004 return density_big_breakpoint;
2005 else
2006 return density_little_breakpoint;
2007 }
2008 }
2009
2010 /* Call0 ABI support routines. */
2011
2012 /* Return true, if PC points to "ret" or "ret.n". */
2013
2014 static int
2015 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2016 {
2017 #define RETURN_RET goto done
2018 xtensa_isa isa;
2019 xtensa_insnbuf ins, slot;
2020 gdb_byte ibuf[XTENSA_ISA_BSZ];
2021 CORE_ADDR ia, bt, ba;
2022 xtensa_format ifmt;
2023 int ilen, islots, is;
2024 xtensa_opcode opc;
2025 const char *opcname;
2026 int found_ret = 0;
2027
2028 isa = xtensa_default_isa;
2029 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2030 ins = xtensa_insnbuf_alloc (isa);
2031 slot = xtensa_insnbuf_alloc (isa);
2032 ba = 0;
2033
2034 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2035 {
2036 if (ia + xtensa_isa_maxlength (isa) > bt)
2037 {
2038 ba = ia;
2039 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2040 ? ba + XTENSA_ISA_BSZ : finish_pc;
2041 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2042 RETURN_RET;
2043 }
2044
2045 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2046 ifmt = xtensa_format_decode (isa, ins);
2047 if (ifmt == XTENSA_UNDEFINED)
2048 RETURN_RET;
2049 ilen = xtensa_format_length (isa, ifmt);
2050 if (ilen == XTENSA_UNDEFINED)
2051 RETURN_RET;
2052 islots = xtensa_format_num_slots (isa, ifmt);
2053 if (islots == XTENSA_UNDEFINED)
2054 RETURN_RET;
2055
2056 for (is = 0; is < islots; ++is)
2057 {
2058 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2059 RETURN_RET;
2060
2061 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2062 if (opc == XTENSA_UNDEFINED)
2063 RETURN_RET;
2064
2065 opcname = xtensa_opcode_name (isa, opc);
2066
2067 if ((strcasecmp (opcname, "ret.n") == 0)
2068 || (strcasecmp (opcname, "ret") == 0))
2069 {
2070 found_ret = 1;
2071 RETURN_RET;
2072 }
2073 }
2074 }
2075 done:
2076 xtensa_insnbuf_free(isa, slot);
2077 xtensa_insnbuf_free(isa, ins);
2078 return found_ret;
2079 }
2080
2081 /* Call0 opcode class. Opcodes are preclassified according to what they
2082 mean for Call0 prologue analysis, and their number of significant operands.
2083 The purpose of this is to simplify prologue analysis by separating
2084 instruction decoding (libisa) from the semantics of prologue analysis. */
2085
2086 typedef enum
2087 {
2088 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2089 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2090 c0opc_flow, /* Flow control insn. */
2091 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2092 c0opc_break, /* Debugger software breakpoints. */
2093 c0opc_add, /* Adding two registers. */
2094 c0opc_addi, /* Adding a register and an immediate. */
2095 c0opc_and, /* Bitwise "and"-ing two registers. */
2096 c0opc_sub, /* Subtracting a register from a register. */
2097 c0opc_mov, /* Moving a register to a register. */
2098 c0opc_movi, /* Moving an immediate to a register. */
2099 c0opc_l32r, /* Loading a literal. */
2100 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2101 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2102 c0opc_l32e, /* L32E instruction. */
2103 c0opc_s32e, /* S32E instruction. */
2104 c0opc_rfwo, /* RFWO instruction. */
2105 c0opc_rfwu, /* RFWU instruction. */
2106 c0opc_NrOf /* Number of opcode classifications. */
2107 } xtensa_insn_kind;
2108
2109 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2110
2111 static int
2112 rwx_special_register (const char *opcname)
2113 {
2114 char ch = *opcname++;
2115
2116 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2117 return 0;
2118 if (*opcname++ != 's')
2119 return 0;
2120 if (*opcname++ != 'r')
2121 return 0;
2122 if (*opcname++ != '.')
2123 return 0;
2124
2125 return 1;
2126 }
2127
2128 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2129
2130 static xtensa_insn_kind
2131 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2132 {
2133 const char *opcname;
2134 xtensa_insn_kind opclass = c0opc_uninteresting;
2135
2136 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2137
2138 /* Get opcode name and handle special classifications. */
2139
2140 opcname = xtensa_opcode_name (isa, opc);
2141
2142 if (opcname == NULL
2143 || strcasecmp (opcname, "ill") == 0
2144 || strcasecmp (opcname, "ill.n") == 0)
2145 opclass = c0opc_illegal;
2146 else if (strcasecmp (opcname, "break") == 0
2147 || strcasecmp (opcname, "break.n") == 0)
2148 opclass = c0opc_break;
2149 else if (strcasecmp (opcname, "entry") == 0)
2150 opclass = c0opc_entry;
2151 else if (strcasecmp (opcname, "rfwo") == 0)
2152 opclass = c0opc_rfwo;
2153 else if (strcasecmp (opcname, "rfwu") == 0)
2154 opclass = c0opc_rfwu;
2155 else if (xtensa_opcode_is_branch (isa, opc) > 0
2156 || xtensa_opcode_is_jump (isa, opc) > 0
2157 || xtensa_opcode_is_loop (isa, opc) > 0
2158 || xtensa_opcode_is_call (isa, opc) > 0
2159 || strcasecmp (opcname, "simcall") == 0
2160 || strcasecmp (opcname, "syscall") == 0)
2161 opclass = c0opc_flow;
2162
2163 /* Also, classify specific opcodes that need to be tracked. */
2164 else if (strcasecmp (opcname, "add") == 0
2165 || strcasecmp (opcname, "add.n") == 0)
2166 opclass = c0opc_add;
2167 else if (strcasecmp (opcname, "and") == 0)
2168 opclass = c0opc_and;
2169 else if (strcasecmp (opcname, "addi") == 0
2170 || strcasecmp (opcname, "addi.n") == 0
2171 || strcasecmp (opcname, "addmi") == 0)
2172 opclass = c0opc_addi;
2173 else if (strcasecmp (opcname, "sub") == 0)
2174 opclass = c0opc_sub;
2175 else if (strcasecmp (opcname, "mov.n") == 0
2176 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2177 opclass = c0opc_mov;
2178 else if (strcasecmp (opcname, "movi") == 0
2179 || strcasecmp (opcname, "movi.n") == 0)
2180 opclass = c0opc_movi;
2181 else if (strcasecmp (opcname, "l32r") == 0)
2182 opclass = c0opc_l32r;
2183 else if (strcasecmp (opcname, "s32i") == 0
2184 || strcasecmp (opcname, "s32i.n") == 0)
2185 opclass = c0opc_s32i;
2186 else if (strcasecmp (opcname, "l32e") == 0)
2187 opclass = c0opc_l32e;
2188 else if (strcasecmp (opcname, "s32e") == 0)
2189 opclass = c0opc_s32e;
2190 else if (rwx_special_register (opcname))
2191 opclass = c0opc_rwxsr;
2192
2193 return opclass;
2194 }
2195
2196 /* Tracks register movement/mutation for a given operation, which may
2197 be within a bundle. Updates the destination register tracking info
2198 accordingly. The pc is needed only for pc-relative load instructions
2199 (eg. l32r). The SP register number is needed to identify stores to
2200 the stack frame. Returns 0, if analysis was succesfull, non-zero
2201 otherwise. */
2202
2203 static int
2204 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2205 xtensa_insn_kind opclass, int nods, unsigned odv[],
2206 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2207 {
2208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2209 unsigned litbase, litaddr, litval;
2210
2211 switch (opclass)
2212 {
2213 case c0opc_addi:
2214 /* 3 operands: dst, src, imm. */
2215 gdb_assert (nods == 3);
2216 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2217 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2218 break;
2219 case c0opc_add:
2220 /* 3 operands: dst, src1, src2. */
2221 gdb_assert (nods == 3);
2222 if (src[odv[1]].fr_reg == C0_CONST)
2223 {
2224 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2225 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2226 }
2227 else if (src[odv[2]].fr_reg == C0_CONST)
2228 {
2229 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2230 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2231 }
2232 else dst[odv[0]].fr_reg = C0_INEXP;
2233 break;
2234 case c0opc_and:
2235 /* 3 operands: dst, src1, src2. */
2236 gdb_assert (nods == 3);
2237 if (cache->c0.c0_fpalign == 0)
2238 {
2239 /* Handle dynamic stack alignment. */
2240 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2241 {
2242 if (src[odv[2]].fr_reg == C0_CONST)
2243 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2244 break;
2245 }
2246 else if ((src[odv[0]].fr_reg == spreg)
2247 && (src[odv[2]].fr_reg == spreg))
2248 {
2249 if (src[odv[1]].fr_reg == C0_CONST)
2250 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2251 break;
2252 }
2253 /* else fall through. */
2254 }
2255 if (src[odv[1]].fr_reg == C0_CONST)
2256 {
2257 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2258 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2259 }
2260 else if (src[odv[2]].fr_reg == C0_CONST)
2261 {
2262 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2264 }
2265 else dst[odv[0]].fr_reg = C0_INEXP;
2266 break;
2267 case c0opc_sub:
2268 /* 3 operands: dst, src1, src2. */
2269 gdb_assert (nods == 3);
2270 if (src[odv[2]].fr_reg == C0_CONST)
2271 {
2272 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2273 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2274 }
2275 else dst[odv[0]].fr_reg = C0_INEXP;
2276 break;
2277 case c0opc_mov:
2278 /* 2 operands: dst, src [, src]. */
2279 gdb_assert (nods == 2);
2280 /* First, check if it's a special case of saving unaligned SP
2281 to a spare register in case of dynamic stack adjustment.
2282 But, only do it one time. The second time could be initializing
2283 frame pointer. We don't want to overwrite the first one. */
2284 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2285 cache->c0.c0_old_sp = odv[0];
2286
2287 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2288 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2289 break;
2290 case c0opc_movi:
2291 /* 2 operands: dst, imm. */
2292 gdb_assert (nods == 2);
2293 dst[odv[0]].fr_reg = C0_CONST;
2294 dst[odv[0]].fr_ofs = odv[1];
2295 break;
2296 case c0opc_l32r:
2297 /* 2 operands: dst, literal offset. */
2298 gdb_assert (nods == 2);
2299 /* litbase = xtensa_get_litbase (pc); can be also used. */
2300 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2301 ? 0 : xtensa_read_register
2302 (gdbarch_tdep (gdbarch)->litbase_regnum);
2303 litaddr = litbase & 1
2304 ? (litbase & ~1) + (signed)odv[1]
2305 : (pc + 3 + (signed)odv[1]) & ~3;
2306 litval = read_memory_integer (litaddr, 4, byte_order);
2307 dst[odv[0]].fr_reg = C0_CONST;
2308 dst[odv[0]].fr_ofs = litval;
2309 break;
2310 case c0opc_s32i:
2311 /* 3 operands: value, base, offset. */
2312 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2313 /* First, check if it's a spill for saved unaligned SP,
2314 when dynamic stack adjustment was applied to this frame. */
2315 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2316 && (odv[1] == spreg) /* SP usage indicates spill. */
2317 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2318 cache->c0.c0_sp_ofs = odv[2];
2319
2320 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2321 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2322 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2323 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2324 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2325 {
2326 /* ISA encoding guarantees alignment. But, check it anyway. */
2327 gdb_assert ((odv[2] & 3) == 0);
2328 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2329 }
2330 break;
2331 /* If we end up inside Window Overflow / Underflow interrupt handler
2332 report an error because these handlers should have been handled
2333 already in a different way. */
2334 case c0opc_l32e:
2335 case c0opc_s32e:
2336 case c0opc_rfwo:
2337 case c0opc_rfwu:
2338 return 1;
2339 default:
2340 return 1;
2341 }
2342 return 0;
2343 }
2344
2345 /* Analyze prologue of the function at start address to determine if it uses
2346 the Call0 ABI, and if so track register moves and linear modifications
2347 in the prologue up to the PC or just beyond the prologue, whichever is
2348 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2349 prologue. The prologue may overlap non-prologue instructions but is
2350 guaranteed to end by the first flow-control instruction (jump, branch,
2351 call or return). Since an optimized function may move information around
2352 and change the stack frame arbitrarily during the prologue, the information
2353 is guaranteed valid only at the point in the function indicated by the PC.
2354 May be used to skip the prologue or identify the ABI, w/o tracking.
2355
2356 Returns: Address of first instruction after prologue, or PC (whichever
2357 is first), or 0, if decoding failed (in libisa).
2358 Input args:
2359 start Start address of function/prologue.
2360 pc Program counter to stop at. Use 0 to continue to end of prologue.
2361 If 0, avoids infinite run-on in corrupt code memory by bounding
2362 the scan to the end of the function if that can be determined.
2363 nregs Number of general registers to track.
2364 InOut args:
2365 cache Xtensa frame cache.
2366
2367 Note that these may produce useful results even if decoding fails
2368 because they begin with default assumptions that analysis may change. */
2369
2370 static CORE_ADDR
2371 call0_analyze_prologue (struct gdbarch *gdbarch,
2372 CORE_ADDR start, CORE_ADDR pc,
2373 int nregs, xtensa_frame_cache_t *cache)
2374 {
2375 CORE_ADDR ia; /* Current insn address in prologue. */
2376 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2377 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2378 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2379 xtensa_isa isa; /* libisa ISA handle. */
2380 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2381 xtensa_format ifmt; /* libisa instruction format. */
2382 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2383 xtensa_opcode opc; /* Opcode in current slot. */
2384 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2385 int nods; /* Opcode number of operands. */
2386 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2387 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2388 int j; /* General loop counter. */
2389 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2390 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2391 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2392
2393 struct symtab_and_line prologue_sal;
2394
2395 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2396 (int)start, (int)pc);
2397
2398 /* Try to limit the scan to the end of the function if a non-zero pc
2399 arg was not supplied to avoid probing beyond the end of valid memory.
2400 If memory is full of garbage that classifies as c0opc_uninteresting.
2401 If this fails (eg. if no symbols) pc ends up 0 as it was.
2402 Initialize the Call0 frame and register tracking info.
2403 Assume it's Call0 until an 'entry' instruction is encountered.
2404 Assume we may be in the prologue until we hit a flow control instr. */
2405
2406 rtmp = NULL;
2407 body_pc = UINT_MAX;
2408 end_pc = 0;
2409
2410 /* Find out, if we have an information about the prologue from DWARF. */
2411 prologue_sal = find_pc_line (start, 0);
2412 if (prologue_sal.line != 0) /* Found debug info. */
2413 body_pc = prologue_sal.end;
2414
2415 /* If we are going to analyze the prologue in general without knowing about
2416 the current PC, make the best assumtion for the end of the prologue. */
2417 if (pc == 0)
2418 {
2419 find_pc_partial_function (start, 0, NULL, &end_pc);
2420 body_pc = std::min (end_pc, body_pc);
2421 }
2422 else
2423 body_pc = std::min (pc, body_pc);
2424
2425 cache->call0 = 1;
2426 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2427
2428 isa = xtensa_default_isa;
2429 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2430 ins = xtensa_insnbuf_alloc (isa);
2431 slot = xtensa_insnbuf_alloc (isa);
2432
2433 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2434 {
2435 /* (Re)fill instruction buffer from memory if necessary, but do not
2436 read memory beyond PC to be sure we stay within text section
2437 (this protection only works if a non-zero pc is supplied). */
2438
2439 if (ia + xtensa_isa_maxlength (isa) > bt)
2440 {
2441 ba = ia;
2442 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2443 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2444 error (_("Unable to read target memory ..."));
2445 }
2446
2447 /* Decode format information. */
2448
2449 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2450 ifmt = xtensa_format_decode (isa, ins);
2451 if (ifmt == XTENSA_UNDEFINED)
2452 {
2453 fail = 1;
2454 goto done;
2455 }
2456 ilen = xtensa_format_length (isa, ifmt);
2457 if (ilen == XTENSA_UNDEFINED)
2458 {
2459 fail = 1;
2460 goto done;
2461 }
2462 islots = xtensa_format_num_slots (isa, ifmt);
2463 if (islots == XTENSA_UNDEFINED)
2464 {
2465 fail = 1;
2466 goto done;
2467 }
2468
2469 /* Analyze a bundle or a single instruction, using a snapshot of
2470 the register tracking info as input for the entire bundle so that
2471 register changes do not take effect within this bundle. */
2472
2473 for (j = 0; j < nregs; ++j)
2474 rtmp[j] = cache->c0.c0_rt[j];
2475
2476 for (is = 0; is < islots; ++is)
2477 {
2478 /* Decode a slot and classify the opcode. */
2479
2480 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2481 if (fail)
2482 goto done;
2483
2484 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2485 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2486 (unsigned)ia, opc);
2487 if (opc == XTENSA_UNDEFINED)
2488 opclass = c0opc_illegal;
2489 else
2490 opclass = call0_classify_opcode (isa, opc);
2491
2492 /* Decide whether to track this opcode, ignore it, or bail out. */
2493
2494 switch (opclass)
2495 {
2496 case c0opc_illegal:
2497 case c0opc_break:
2498 fail = 1;
2499 goto done;
2500
2501 case c0opc_uninteresting:
2502 continue;
2503
2504 case c0opc_flow: /* Flow control instructions stop analysis. */
2505 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2506 goto done;
2507
2508 case c0opc_entry:
2509 cache->call0 = 0;
2510 ia += ilen; /* Skip over 'entry' insn. */
2511 goto done;
2512
2513 default:
2514 cache->call0 = 1;
2515 }
2516
2517 /* Only expected opcodes should get this far. */
2518
2519 /* Extract and decode the operands. */
2520 nods = xtensa_opcode_num_operands (isa, opc);
2521 if (nods == XTENSA_UNDEFINED)
2522 {
2523 fail = 1;
2524 goto done;
2525 }
2526
2527 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2528 {
2529 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2530 is, slot, &odv[j]);
2531 if (fail)
2532 goto done;
2533
2534 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2535 if (fail)
2536 goto done;
2537 }
2538
2539 /* Check operands to verify use of 'mov' assembler macro. */
2540 if (opclass == c0opc_mov && nods == 3)
2541 {
2542 if (odv[2] == odv[1])
2543 {
2544 nods = 2;
2545 if ((odv[0] == 1) && (odv[1] != 1))
2546 /* OR A1, An, An , where n != 1.
2547 This means we are inside epilogue already. */
2548 goto done;
2549 }
2550 else
2551 {
2552 opclass = c0opc_uninteresting;
2553 continue;
2554 }
2555 }
2556
2557 /* Track register movement and modification for this operation. */
2558 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2559 opclass, nods, odv, ia, 1, cache);
2560 if (fail)
2561 goto done;
2562 }
2563 }
2564 done:
2565 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2566 (unsigned)ia, fail ? "failed" : "succeeded");
2567 xtensa_insnbuf_free(isa, slot);
2568 xtensa_insnbuf_free(isa, ins);
2569 return fail ? XTENSA_ISA_BADPC : ia;
2570 }
2571
2572 /* Initialize frame cache for the current frame in CALL0 ABI. */
2573
2574 static void
2575 call0_frame_cache (struct frame_info *this_frame,
2576 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2577 {
2578 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2580 CORE_ADDR start_pc; /* The beginning of the function. */
2581 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2582 CORE_ADDR sp, fp, ra;
2583 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2584
2585 sp = get_frame_register_unsigned
2586 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2587 fp = sp; /* Assume FP == SP until proven otherwise. */
2588
2589 /* Find the beginning of the prologue of the function containing the PC
2590 and analyze it up to the PC or the end of the prologue. */
2591
2592 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2593 {
2594 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2595
2596 if (body_pc == XTENSA_ISA_BADPC)
2597 {
2598 warning_once ();
2599 ra = 0;
2600 goto finish_frame_analysis;
2601 }
2602 }
2603
2604 /* Get the frame information and FP (if used) at the current PC.
2605 If PC is in the prologue, the prologue analysis is more reliable
2606 than DWARF info. We don't not know for sure, if PC is in the prologue,
2607 but we do know no calls have yet taken place, so we can almost
2608 certainly rely on the prologue analysis. */
2609
2610 if (body_pc <= pc)
2611 {
2612 /* Prologue analysis was successful up to the PC.
2613 It includes the cases when PC == START_PC. */
2614 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2615 /* c0_hasfp == true means there is a frame pointer because
2616 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2617 was derived from SP. Otherwise, it would be C0_FP. */
2618 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2619 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2620 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2621 }
2622 else /* No data from the prologue analysis. */
2623 {
2624 c0_hasfp = 0;
2625 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2626 c0_frmsz = 0;
2627 start_pc = pc;
2628 }
2629
2630 if (cache->c0.c0_fpalign)
2631 {
2632 /* This frame has a special prologue with a dynamic stack adjustment
2633 to force an alignment, which is bigger than standard 16 bytes. */
2634
2635 CORE_ADDR unaligned_sp;
2636
2637 if (cache->c0.c0_old_sp == C0_INEXP)
2638 /* This can't be. Prologue code should be consistent.
2639 Unaligned stack pointer should be saved in a spare register. */
2640 {
2641 warning_once ();
2642 ra = 0;
2643 goto finish_frame_analysis;
2644 }
2645
2646 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2647 /* Saved unaligned value of SP is kept in a register. */
2648 unaligned_sp = get_frame_register_unsigned
2649 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2650 else
2651 /* Get the value from stack. */
2652 unaligned_sp = (CORE_ADDR)
2653 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2654
2655 prev_sp = unaligned_sp + c0_frmsz;
2656 }
2657 else
2658 prev_sp = fp + c0_frmsz;
2659
2660 /* Frame size from debug info or prologue tracking does not account for
2661 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2662 if (c0_hasfp)
2663 {
2664 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2665
2666 /* Update the stack frame size. */
2667 c0_frmsz += fp - sp;
2668 }
2669
2670 /* Get the return address (RA) from the stack if saved,
2671 or try to get it from a register. */
2672
2673 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2674 if (to_stk != C0_NOSTK)
2675 ra = (CORE_ADDR)
2676 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2677 4, byte_order);
2678
2679 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2680 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2681 {
2682 /* Special case for terminating backtrace at a function that wants to
2683 be seen as the outermost one. Such a function will clear it's RA (A0)
2684 register to 0 in the prologue instead of saving its original value. */
2685 ra = 0;
2686 }
2687 else
2688 {
2689 /* RA was copied to another register or (before any function call) may
2690 still be in the original RA register. This is not always reliable:
2691 even in a leaf function, register tracking stops after prologue, and
2692 even in prologue, non-prologue instructions (not tracked) may overwrite
2693 RA or any register it was copied to. If likely in prologue or before
2694 any call, use retracking info and hope for the best (compiler should
2695 have saved RA in stack if not in a leaf function). If not in prologue,
2696 too bad. */
2697
2698 int i;
2699 for (i = 0;
2700 (i < C0_NREGS)
2701 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2702 ++i);
2703 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2704 i = C0_RA;
2705 if (i < C0_NREGS)
2706 {
2707 ra = get_frame_register_unsigned
2708 (this_frame,
2709 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2710 }
2711 else ra = 0;
2712 }
2713
2714 finish_frame_analysis:
2715 cache->pc = start_pc;
2716 cache->ra = ra;
2717 /* RA == 0 marks the outermost frame. Do not go past it. */
2718 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2719 cache->c0.fp_regnum = fp_regnum;
2720 cache->c0.c0_frmsz = c0_frmsz;
2721 cache->c0.c0_hasfp = c0_hasfp;
2722 cache->c0.c0_fp = fp;
2723 }
2724
2725 static CORE_ADDR a0_saved;
2726 static CORE_ADDR a7_saved;
2727 static CORE_ADDR a11_saved;
2728 static int a0_was_saved;
2729 static int a7_was_saved;
2730 static int a11_was_saved;
2731
2732 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2733 static void
2734 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2735 {
2736 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2737 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2738 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2739 unsigned int spilled_value
2740 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2741
2742 if ((at == 0) && !a0_was_saved)
2743 {
2744 a0_saved = xtensa_read_register (atreg);
2745 a0_was_saved = 1;
2746 }
2747 else if ((at == 7) && !a7_was_saved)
2748 {
2749 a7_saved = xtensa_read_register (atreg);
2750 a7_was_saved = 1;
2751 }
2752 else if ((at == 11) && !a11_was_saved)
2753 {
2754 a11_saved = xtensa_read_register (atreg);
2755 a11_was_saved = 1;
2756 }
2757
2758 xtensa_write_register (atreg, spilled_value);
2759 }
2760
2761 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2762 static void
2763 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2764 {
2765 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2766 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2767 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2768 ULONGEST spilled_value = xtensa_read_register (atreg);
2769
2770 write_memory_unsigned_integer (addr, 4,
2771 gdbarch_byte_order (gdbarch),
2772 spilled_value);
2773 }
2774
2775 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2776
2777 typedef enum
2778 {
2779 xtWindowOverflow,
2780 xtWindowUnderflow,
2781 xtNoExceptionHandler
2782 } xtensa_exception_handler_t;
2783
2784 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2785 Return type of Xtensa Window Interrupt Handler on success. */
2786 static xtensa_exception_handler_t
2787 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2788 {
2789 xtensa_isa isa;
2790 xtensa_insnbuf ins, slot;
2791 gdb_byte ibuf[XTENSA_ISA_BSZ];
2792 CORE_ADDR ia, bt, ba;
2793 xtensa_format ifmt;
2794 int ilen, islots, is;
2795 xtensa_opcode opc;
2796 int insn_num = 0;
2797 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2798
2799 uint32_t at, as, offset;
2800
2801 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2802 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2803
2804 isa = xtensa_default_isa;
2805 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2806 ins = xtensa_insnbuf_alloc (isa);
2807 slot = xtensa_insnbuf_alloc (isa);
2808 ba = 0;
2809 ia = current_pc;
2810 bt = ia;
2811
2812 a0_was_saved = 0;
2813 a7_was_saved = 0;
2814 a11_was_saved = 0;
2815
2816 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2817 {
2818 if (ia + xtensa_isa_maxlength (isa) > bt)
2819 {
2820 ba = ia;
2821 bt = (ba + XTENSA_ISA_BSZ);
2822 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2823 return xtNoExceptionHandler;
2824 }
2825 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2826 ifmt = xtensa_format_decode (isa, ins);
2827 if (ifmt == XTENSA_UNDEFINED)
2828 return xtNoExceptionHandler;
2829 ilen = xtensa_format_length (isa, ifmt);
2830 if (ilen == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 islots = xtensa_format_num_slots (isa, ifmt);
2833 if (islots == XTENSA_UNDEFINED)
2834 return xtNoExceptionHandler;
2835 for (is = 0; is < islots; ++is)
2836 {
2837 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2838 return xtNoExceptionHandler;
2839 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2840 if (opc == XTENSA_UNDEFINED)
2841 return xtNoExceptionHandler;
2842 switch (call0_classify_opcode (isa, opc))
2843 {
2844 case c0opc_illegal:
2845 case c0opc_flow:
2846 case c0opc_entry:
2847 case c0opc_break:
2848 /* We expect none of them here. */
2849 return xtNoExceptionHandler;
2850 case c0opc_l32e:
2851 func = execute_l32e;
2852 break;
2853 case c0opc_s32e:
2854 func = execute_s32e;
2855 break;
2856 case c0opc_rfwo: /* RFWO. */
2857 /* Here, we return from WindowOverflow handler and,
2858 if we stopped at the very beginning, which means
2859 A0 was saved, we have to restore it now. */
2860 if (a0_was_saved)
2861 {
2862 int arreg = arreg_number (gdbarch,
2863 gdbarch_tdep (gdbarch)->a0_base,
2864 wb);
2865 xtensa_write_register (arreg, a0_saved);
2866 }
2867 return xtWindowOverflow;
2868 case c0opc_rfwu: /* RFWU. */
2869 /* Here, we return from WindowUnderflow handler.
2870 Let's see if either A7 or A11 has to be restored. */
2871 if (WindowUnderflow12)
2872 {
2873 if (a11_was_saved)
2874 {
2875 int arreg = arreg_number (gdbarch,
2876 gdbarch_tdep (gdbarch)->a0_base + 11,
2877 wb);
2878 xtensa_write_register (arreg, a11_saved);
2879 }
2880 }
2881 else if (a7_was_saved)
2882 {
2883 int arreg = arreg_number (gdbarch,
2884 gdbarch_tdep (gdbarch)->a0_base + 7,
2885 wb);
2886 xtensa_write_register (arreg, a7_saved);
2887 }
2888 return xtWindowUnderflow;
2889 default: /* Simply skip this insns. */
2890 continue;
2891 }
2892
2893 /* Decode arguments for L32E / S32E and simulate their execution. */
2894 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2897 return xtNoExceptionHandler;
2898 if (xtensa_operand_decode (isa, opc, 0, &at))
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 1, &as))
2903 return xtNoExceptionHandler;
2904 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2905 return xtNoExceptionHandler;
2906 if (xtensa_operand_decode (isa, opc, 2, &offset))
2907 return xtNoExceptionHandler;
2908
2909 (*func) (gdbarch, at, as, offset, wb);
2910 }
2911
2912 ia += ilen;
2913 }
2914 return xtNoExceptionHandler;
2915 }
2916
2917 /* Handle Window Overflow / Underflow exception frames. */
2918
2919 static void
2920 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2921 xtensa_frame_cache_t *cache,
2922 CORE_ADDR pc)
2923 {
2924 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2925 CORE_ADDR ps, wb, ws, ra;
2926 int epc1_regnum, i, regnum;
2927 xtensa_exception_handler_t eh_type;
2928
2929 /* Read PS, WB, and WS from the hardware. Note that PS register
2930 must be present, if Windowed ABI is supported. */
2931 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2932 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2933 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2934
2935 /* Execute all the remaining instructions from Window Interrupt Handler
2936 by simulating them on the remote protocol level. On return, set the
2937 type of Xtensa Window Interrupt Handler, or report an error. */
2938 eh_type = execute_code (gdbarch, pc, wb);
2939 if (eh_type == xtNoExceptionHandler)
2940 error (_("\
2941 Unable to decode Xtensa Window Interrupt Handler's code."));
2942
2943 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2944 cache->call0 = 0; /* It's Windowed ABI. */
2945
2946 /* All registers for the cached frame will be alive. */
2947 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2948 cache->wd.aregs[i] = -1;
2949
2950 if (eh_type == xtWindowOverflow)
2951 cache->wd.ws = ws ^ (1 << wb);
2952 else /* eh_type == xtWindowUnderflow. */
2953 cache->wd.ws = ws | (1 << wb);
2954
2955 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2956 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2957 cache->wd.wb);
2958 ra = xtensa_read_register (regnum);
2959 cache->wd.callsize = WINSIZE (ra);
2960 cache->prev_sp = xtensa_read_register (regnum + 1);
2961 /* Set regnum to a frame pointer of the frame being cached. */
2962 regnum = xtensa_scan_prologue (gdbarch, pc);
2963 regnum = arreg_number (gdbarch,
2964 gdbarch_tdep (gdbarch)->a0_base + regnum,
2965 cache->wd.wb);
2966 cache->base = get_frame_register_unsigned (this_frame, regnum);
2967
2968 /* Read PC of interrupted function from EPC1 register. */
2969 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2970 if (epc1_regnum < 0)
2971 error(_("Unable to read Xtensa register EPC1"));
2972 cache->ra = xtensa_read_register (epc1_regnum);
2973 cache->pc = get_frame_func (this_frame);
2974 }
2975
2976
2977 /* Skip function prologue.
2978
2979 Return the pc of the first instruction after prologue. GDB calls this to
2980 find the address of the first line of the function or (if there is no line
2981 number information) to skip the prologue for planting breakpoints on
2982 function entries. Use debug info (if present) or prologue analysis to skip
2983 the prologue to achieve reliable debugging behavior. For windowed ABI,
2984 only the 'entry' instruction is skipped. It is not strictly necessary to
2985 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2986 backtrace at any point in the prologue, however certain potential hazards
2987 are avoided and a more "normal" debugging experience is ensured by
2988 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2989 For example, if we don't skip the prologue:
2990 - Some args may not yet have been saved to the stack where the debug
2991 info expects to find them (true anyway when only 'entry' is skipped);
2992 - Software breakpoints ('break' instrs) may not have been unplanted
2993 when the prologue analysis is done on initializing the frame cache,
2994 and breaks in the prologue will throw off the analysis.
2995
2996 If we have debug info ( line-number info, in particular ) we simply skip
2997 the code associated with the first function line effectively skipping
2998 the prologue code. It works even in cases like
2999
3000 int main()
3001 { int local_var = 1;
3002 ....
3003 }
3004
3005 because, for this source code, both Xtensa compilers will generate two
3006 separate entries ( with the same line number ) in dwarf line-number
3007 section to make sure there is a boundary between the prologue code and
3008 the rest of the function.
3009
3010 If there is no debug info, we need to analyze the code. */
3011
3012 /* #define DONT_SKIP_PROLOGUE */
3013
3014 static CORE_ADDR
3015 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3016 {
3017 struct symtab_and_line prologue_sal;
3018 CORE_ADDR body_pc;
3019
3020 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3021
3022 #if DONT_SKIP_PROLOGUE
3023 return start_pc;
3024 #endif
3025
3026 /* Try to find first body line from debug info. */
3027
3028 prologue_sal = find_pc_line (start_pc, 0);
3029 if (prologue_sal.line != 0) /* Found debug info. */
3030 {
3031 /* In Call0, it is possible to have a function with only one instruction
3032 ('ret') resulting from a one-line optimized function that does nothing.
3033 In that case, prologue_sal.end may actually point to the start of the
3034 next function in the text section, causing a breakpoint to be set at
3035 the wrong place. Check, if the end address is within a different
3036 function, and if so return the start PC. We know we have symbol
3037 information. */
3038
3039 CORE_ADDR end_func;
3040
3041 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3042 && call0_ret (start_pc, prologue_sal.end))
3043 return start_pc;
3044
3045 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3046 if (end_func != start_pc)
3047 return start_pc;
3048
3049 return prologue_sal.end;
3050 }
3051
3052 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3053 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3054 xtensa_alloc_frame_cache (0));
3055 return body_pc != 0 ? body_pc : start_pc;
3056 }
3057
3058 /* Verify the current configuration. */
3059 static void
3060 xtensa_verify_config (struct gdbarch *gdbarch)
3061 {
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063 string_file log;
3064
3065 /* Verify that we got a reasonable number of AREGS. */
3066 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3067 log.printf (_("\
3068 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3069 tdep->num_aregs);
3070
3071 /* Verify that certain registers exist. */
3072
3073 if (tdep->pc_regnum == -1)
3074 log.printf (_("\n\tpc_regnum: No PC register"));
3075 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3076 log.printf (_("\n\tps_regnum: No PS register"));
3077
3078 if (tdep->isa_use_windowed_registers)
3079 {
3080 if (tdep->wb_regnum == -1)
3081 log.printf (_("\n\twb_regnum: No WB register"));
3082 if (tdep->ws_regnum == -1)
3083 log.printf (_("\n\tws_regnum: No WS register"));
3084 if (tdep->ar_base == -1)
3085 log.printf (_("\n\tar_base: No AR registers"));
3086 }
3087
3088 if (tdep->a0_base == -1)
3089 log.printf (_("\n\ta0_base: No Ax registers"));
3090
3091 if (!log.empty ())
3092 internal_error (__FILE__, __LINE__,
3093 _("the following are invalid: %s"), log.c_str ());
3094 }
3095
3096
3097 /* Derive specific register numbers from the array of registers. */
3098
3099 static void
3100 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3101 {
3102 xtensa_register_t* rmap;
3103 int n, max_size = 4;
3104
3105 tdep->num_regs = 0;
3106 tdep->num_nopriv_regs = 0;
3107
3108 /* Special registers 0..255 (core). */
3109 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3110
3111 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3112 {
3113 if (rmap->target_number == 0x0020)
3114 tdep->pc_regnum = n;
3115 else if (rmap->target_number == 0x0100)
3116 tdep->ar_base = n;
3117 else if (rmap->target_number == 0x0000)
3118 tdep->a0_base = n;
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3120 tdep->wb_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3122 tdep->ws_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3124 tdep->debugcause_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3126 tdep->exccause_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3128 tdep->excvaddr_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3130 tdep->lbeg_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3132 tdep->lend_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3134 tdep->lcount_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3136 tdep->sar_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3138 tdep->litbase_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3140 tdep->ps_regnum = n;
3141 #if 0
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3143 tdep->interrupt_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3145 tdep->interrupt2_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3147 tdep->cpenable_regnum = n;
3148 #endif
3149
3150 if (rmap->byte_size > max_size)
3151 max_size = rmap->byte_size;
3152 if (rmap->mask != 0 && tdep->num_regs == 0)
3153 tdep->num_regs = n;
3154 /* Find out out how to deal with priveleged registers.
3155
3156 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3157 && tdep->num_nopriv_regs == 0)
3158 tdep->num_nopriv_regs = n;
3159 */
3160 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3161 && tdep->num_regs == 0)
3162 tdep->num_regs = n;
3163 }
3164
3165 /* Number of pseudo registers. */
3166 tdep->num_pseudo_regs = n - tdep->num_regs;
3167
3168 /* Empirically determined maximum sizes. */
3169 tdep->max_register_raw_size = max_size;
3170 tdep->max_register_virtual_size = max_size;
3171 }
3172
3173 /* Module "constructor" function. */
3174
3175 extern struct gdbarch_tdep xtensa_tdep;
3176
3177 static struct gdbarch *
3178 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3179 {
3180 struct gdbarch_tdep *tdep;
3181 struct gdbarch *gdbarch;
3182
3183 DEBUGTRACE ("gdbarch_init()\n");
3184
3185 if (!xtensa_default_isa)
3186 xtensa_default_isa = xtensa_isa_init (0, 0);
3187
3188 /* We have to set the byte order before we call gdbarch_alloc. */
3189 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3190
3191 tdep = &xtensa_tdep;
3192 gdbarch = gdbarch_alloc (&info, tdep);
3193 xtensa_derive_tdep (tdep);
3194
3195 /* Verify our configuration. */
3196 xtensa_verify_config (gdbarch);
3197 xtensa_session_once_reported = 0;
3198
3199 /* Pseudo-Register read/write. */
3200 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3201 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3202
3203 /* Set target information. */
3204 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3205 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3206 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3207 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3208 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3209
3210 /* Renumber registers for known formats (stabs and dwarf2). */
3211 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3212 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3213
3214 /* We provide our own function to get register information. */
3215 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3216 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3217
3218 /* To call functions from GDB using dummy frame. */
3219 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3220
3221 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3222
3223 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3224
3225 /* Advance PC across any prologue instructions to reach "real" code. */
3226 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3227
3228 /* Stack grows downward. */
3229 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3230
3231 /* Set breakpoints. */
3232 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3233 xtensa_breakpoint_kind_from_pc);
3234 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3235 xtensa_sw_breakpoint_from_kind);
3236
3237 /* After breakpoint instruction or illegal instruction, pc still
3238 points at break instruction, so don't decrement. */
3239 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3240
3241 /* We don't skip args. */
3242 set_gdbarch_frame_args_skip (gdbarch, 0);
3243
3244 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3245
3246 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3247
3248 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3249
3250 /* Frame handling. */
3251 frame_base_set_default (gdbarch, &xtensa_frame_base);
3252 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3253 dwarf2_append_unwinders (gdbarch);
3254
3255 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3256
3257 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3258
3259 xtensa_add_reggroups (gdbarch);
3260 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3261
3262 set_gdbarch_iterate_over_regset_sections
3263 (gdbarch, xtensa_iterate_over_regset_sections);
3264
3265 set_solib_svr4_fetch_link_map_offsets
3266 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3267
3268 /* Hook in the ABI-specific overrides, if they have been registered. */
3269 gdbarch_init_osabi (info, gdbarch);
3270
3271 return gdbarch;
3272 }
3273
3274 static void
3275 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3276 {
3277 error (_("xtensa_dump_tdep(): not implemented"));
3278 }
3279
3280 /* Provide a prototype to silence -Wmissing-prototypes. */
3281 extern initialize_file_ftype _initialize_xtensa_tdep;
3282
3283 void
3284 _initialize_xtensa_tdep (void)
3285 {
3286 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3287 xtensa_init_reggroups ();
3288
3289 add_setshow_zuinteger_cmd ("xtensa",
3290 class_maintenance,
3291 &xtensa_debug_level,
3292 _("Set Xtensa debugging."),
3293 _("Show Xtensa debugging."), _("\
3294 When non-zero, Xtensa-specific debugging is enabled. \
3295 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3296 NULL,
3297 NULL,
3298 &setdebuglist, &showdebuglist);
3299 }
This page took 0.166522 seconds and 5 git commands to generate.