Simple -Wshadow=local fixes
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
42
43 #include "arch-utils.h"
44 #include "gdbarch.h"
45 #include "remote.h"
46 #include "serial.h"
47
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
54 #include <algorithm>
55
56
57 static unsigned int xtensa_debug_level = 0;
58
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
78
79
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
84
85
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95 #define TX_PS 0x20
96
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
105
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
112
113 #define XTENSA_ENTRY_LENGTH 3
114
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
121
122 /* Big enough to hold the size of the largest register in bytes. */
123 #define XTENSA_MAX_REGISTER_SIZE 64
124
125 static int
126 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127 {
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 }
134
135 /* Convert a live A-register number to the corresponding AR-register
136 number. */
137 static int
138 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
139 {
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 int arreg;
142
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
146
147 return arreg + tdep->ar_base;
148 }
149
150 /* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152 static int
153 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
163 }
164
165 /* Read Xtensa register directly from the hardware. */
166 static unsigned long
167 xtensa_read_register (int regnum)
168 {
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173 }
174
175 /* Write Xtensa register directly to the hardware. */
176 static void
177 xtensa_write_register (int regnum, ULONGEST value)
178 {
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 }
181
182 /* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
186 has returned to the caller. On Xtensa, the register that holds the return
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193 static int
194 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
195 {
196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
197 int winsize = 4;
198 int insn;
199 gdb_byte buf[4];
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
205 insn = extract_unsigned_integer (buf, 3, byte_order);
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
215 if (byte_order == BFD_ENDIAN_LITTLE)
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
224 }
225 return winsize;
226 }
227
228
229 /* REGISTER INFORMATION */
230
231 /* Find register by name. */
232 static int
233 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
234 {
235 int i;
236
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
239 i++)
240
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
242 return i;
243
244 return -1;
245 }
246
247 /* Returns the name of a register. */
248 static const char *
249 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
250 {
251 /* Return the name stored in the register map. */
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
255
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 return 0;
258 }
259
260 /* Return the type of a register. Create a new type, if necessary. */
261
262 static struct type *
263 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266
267 /* Return signed integer for ARx and Ax registers. */
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
272 return builtin_type (gdbarch)->builtin_int;
273
274 if (regnum == gdbarch_pc_regnum (gdbarch)
275 || regnum == tdep->a0_base + 1)
276 return builtin_type (gdbarch)->builtin_data_ptr;
277
278 /* Return the stored type for all other registers. */
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
281 {
282 xtensa_register_t* reg = &tdep->regmap[regnum];
283
284 /* Set ctype for this register (only the first time). */
285
286 if (reg->ctype == 0)
287 {
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
290
291 /* We always use the memory representation,
292 even if the register width is smaller. */
293 switch (size)
294 {
295 case 1:
296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
297 break;
298
299 case 2:
300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
301 break;
302
303 case 4:
304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
305 break;
306
307 case 8:
308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
309 break;
310
311 case 16:
312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
313 break;
314
315 default:
316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
317 if (tp->size == size)
318 break;
319
320 if (tp == NULL)
321 {
322 std::string name = string_printf ("int%d", size * 8);
323
324 tp = XNEW (struct ctype_cache);
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
327 tp->size = size;
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, name.c_str ());
330 }
331
332 reg->ctype = tp->virtual_type;
333 }
334 }
335 return reg->ctype;
336 }
337
338 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
339 return 0;
340 }
341
342
343 /* Return the 'local' register number for stubs, dwarf2, etc.
344 The debugging information enumerates registers starting from 0 for A0
345 to n for An. So, we only have to add the base number for A0. */
346
347 static int
348 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
349 {
350 int i;
351
352 if (regnum >= 0 && regnum < 16)
353 return gdbarch_tdep (gdbarch)->a0_base + regnum;
354
355 for (i = 0;
356 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
357 i++)
358 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
359 return i;
360
361 return -1;
362 }
363
364
365 /* Write the bits of a masked register to the various registers.
366 Only the masked areas of these registers are modified; the other
367 fields are untouched. The size of masked registers is always less
368 than or equal to 32 bits. */
369
370 static void
371 xtensa_register_write_masked (struct regcache *regcache,
372 xtensa_register_t *reg, const gdb_byte *buffer)
373 {
374 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
375 const xtensa_mask_t *mask = reg->mask;
376
377 int shift = 0; /* Shift for next mask (mod 32). */
378 int start, size; /* Start bit and size of current mask. */
379
380 unsigned int *ptr = value;
381 unsigned int regval, m, mem = 0;
382
383 int bytesize = reg->byte_size;
384 int bitsize = bytesize * 8;
385 int i, r;
386
387 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388
389 /* Copy the masked register to host byte-order. */
390 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
391 for (i = 0; i < bytesize; i++)
392 {
393 mem >>= 8;
394 mem |= (buffer[bytesize - i - 1] << 24);
395 if ((i & 3) == 3)
396 *ptr++ = mem;
397 }
398 else
399 for (i = 0; i < bytesize; i++)
400 {
401 mem >>= 8;
402 mem |= (buffer[i] << 24);
403 if ((i & 3) == 3)
404 *ptr++ = mem;
405 }
406
407 /* We might have to shift the final value:
408 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
409 bytesize & 3 == x -> shift (4-x) * 8. */
410
411 *ptr = mem >> (((0 - bytesize) & 3) * 8);
412 ptr = value;
413 mem = *ptr;
414
415 /* Write the bits to the masked areas of the other registers. */
416 for (i = 0; i < mask->count; i++)
417 {
418 start = mask->mask[i].bit_start;
419 size = mask->mask[i].bit_size;
420 regval = mem >> shift;
421
422 if ((shift += size) > bitsize)
423 error (_("size of all masks is larger than the register"));
424
425 if (shift >= 32)
426 {
427 mem = *(++ptr);
428 shift -= 32;
429 bitsize -= 32;
430
431 if (shift > 0)
432 regval |= mem << (size - shift);
433 }
434
435 /* Make sure we have a valid register. */
436 r = mask->mask[i].reg_num;
437 if (r >= 0 && size > 0)
438 {
439 /* Don't overwrite the unmasked areas. */
440 ULONGEST old_val;
441 regcache_cooked_read_unsigned (regcache, r, &old_val);
442 m = 0xffffffff >> (32 - size) << start;
443 regval <<= start;
444 regval = (regval & m) | (old_val & ~m);
445 regcache_cooked_write_unsigned (regcache, r, regval);
446 }
447 }
448 }
449
450
451 /* Read a tie state or mapped registers. Read the masked areas
452 of the registers and assemble them into a single value. */
453
454 static enum register_status
455 xtensa_register_read_masked (readable_regcache *regcache,
456 xtensa_register_t *reg, gdb_byte *buffer)
457 {
458 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
459 const xtensa_mask_t *mask = reg->mask;
460
461 int shift = 0;
462 int start, size;
463
464 unsigned int *ptr = value;
465 unsigned int regval, mem = 0;
466
467 int bytesize = reg->byte_size;
468 int bitsize = bytesize * 8;
469 int i;
470
471 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
472 reg->name == 0 ? "" : reg->name);
473
474 /* Assemble the register from the masked areas of other registers. */
475 for (i = 0; i < mask->count; i++)
476 {
477 int r = mask->mask[i].reg_num;
478 if (r >= 0)
479 {
480 enum register_status status;
481 ULONGEST val;
482
483 status = regcache->cooked_read (r, &val);
484 if (status != REG_VALID)
485 return status;
486 regval = (unsigned int) val;
487 }
488 else
489 regval = 0;
490
491 start = mask->mask[i].bit_start;
492 size = mask->mask[i].bit_size;
493
494 regval >>= start;
495
496 if (size < 32)
497 regval &= (0xffffffff >> (32 - size));
498
499 mem |= regval << shift;
500
501 if ((shift += size) > bitsize)
502 error (_("size of all masks is larger than the register"));
503
504 if (shift >= 32)
505 {
506 *ptr++ = mem;
507 bitsize -= 32;
508 shift -= 32;
509
510 if (shift == 0)
511 mem = 0;
512 else
513 mem = regval >> (size - shift);
514 }
515 }
516
517 if (shift > 0)
518 *ptr = mem;
519
520 /* Copy value to target byte order. */
521 ptr = value;
522 mem = *ptr;
523
524 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
525 for (i = 0; i < bytesize; i++)
526 {
527 if ((i & 3) == 0)
528 mem = *ptr++;
529 buffer[bytesize - i - 1] = mem & 0xff;
530 mem >>= 8;
531 }
532 else
533 for (i = 0; i < bytesize; i++)
534 {
535 if ((i & 3) == 0)
536 mem = *ptr++;
537 buffer[i] = mem & 0xff;
538 mem >>= 8;
539 }
540
541 return REG_VALID;
542 }
543
544
545 /* Read pseudo registers. */
546
547 static enum register_status
548 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
549 readable_regcache *regcache,
550 int regnum,
551 gdb_byte *buffer)
552 {
553 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
554 regnum, xtensa_register_name (gdbarch, regnum));
555
556 /* Read aliases a0..a15, if this is a Windowed ABI. */
557 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
558 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
559 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
560 {
561 ULONGEST value;
562 enum register_status status;
563
564 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
565 &value);
566 if (status != REG_VALID)
567 return status;
568 regnum = arreg_number (gdbarch, regnum, value);
569 }
570
571 /* We can always read non-pseudo registers. */
572 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
573 return regcache->raw_read (regnum, buffer);
574
575 /* We have to find out how to deal with priveleged registers.
576 Let's treat them as pseudo-registers, but we cannot read/write them. */
577
578 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
579 || regnum < gdbarch_tdep (gdbarch)->a0_base)
580 {
581 buffer[0] = (gdb_byte)0;
582 buffer[1] = (gdb_byte)0;
583 buffer[2] = (gdb_byte)0;
584 buffer[3] = (gdb_byte)0;
585 return REG_VALID;
586 }
587 /* Pseudo registers. */
588 else if (regnum >= 0
589 && regnum < gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
593 xtensa_register_type_t type = reg->type;
594 int flags = gdbarch_tdep (gdbarch)->target_flags;
595
596 /* We cannot read Unknown or Unmapped registers. */
597 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
598 {
599 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
600 {
601 warning (_("cannot read register %s"),
602 xtensa_register_name (gdbarch, regnum));
603 return REG_VALID;
604 }
605 }
606
607 /* Some targets cannot read TIE register files. */
608 else if (type == xtRegisterTypeTieRegfile)
609 {
610 /* Use 'fetch' to get register? */
611 if (flags & xtTargetFlagsUseFetchStore)
612 {
613 warning (_("cannot read register"));
614 return REG_VALID;
615 }
616
617 /* On some targets (esp. simulators), we can always read the reg. */
618 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
619 {
620 warning (_("cannot read register"));
621 return REG_VALID;
622 }
623 }
624
625 /* We can always read mapped registers. */
626 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
627 return xtensa_register_read_masked (regcache, reg, buffer);
628
629 /* Assume that we can read the register. */
630 return regcache->raw_read (regnum, buffer);
631 }
632 else
633 internal_error (__FILE__, __LINE__,
634 _("invalid register number %d"), regnum);
635 }
636
637
638 /* Write pseudo registers. */
639
640 static void
641 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
642 struct regcache *regcache,
643 int regnum,
644 const gdb_byte *buffer)
645 {
646 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
647 regnum, xtensa_register_name (gdbarch, regnum));
648
649 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
650 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
651 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
652 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
653 {
654 ULONGEST value;
655 regcache_raw_read_unsigned (regcache,
656 gdbarch_tdep (gdbarch)->wb_regnum, &value);
657 regnum = arreg_number (gdbarch, regnum, value);
658 }
659
660 /* We can always write 'core' registers.
661 Note: We might have converted Ax->ARy. */
662 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
663 regcache->raw_write (regnum, buffer);
664
665 /* We have to find out how to deal with priveleged registers.
666 Let's treat them as pseudo-registers, but we cannot read/write them. */
667
668 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
669 {
670 return;
671 }
672 /* Pseudo registers. */
673 else if (regnum >= 0
674 && regnum < gdbarch_num_regs (gdbarch)
675 + gdbarch_num_pseudo_regs (gdbarch))
676 {
677 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
678 xtensa_register_type_t type = reg->type;
679 int flags = gdbarch_tdep (gdbarch)->target_flags;
680
681 /* On most targets, we cannot write registers
682 of type "Unknown" or "Unmapped". */
683 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
684 {
685 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
686 {
687 warning (_("cannot write register %s"),
688 xtensa_register_name (gdbarch, regnum));
689 return;
690 }
691 }
692
693 /* Some targets cannot read TIE register files. */
694 else if (type == xtRegisterTypeTieRegfile)
695 {
696 /* Use 'store' to get register? */
697 if (flags & xtTargetFlagsUseFetchStore)
698 {
699 warning (_("cannot write register"));
700 return;
701 }
702
703 /* On some targets (esp. simulators), we can always write
704 the register. */
705 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
706 {
707 warning (_("cannot write register"));
708 return;
709 }
710 }
711
712 /* We can always write mapped registers. */
713 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
714 {
715 xtensa_register_write_masked (regcache, reg, buffer);
716 return;
717 }
718
719 /* Assume that we can write the register. */
720 regcache->raw_write (regnum, buffer);
721 }
722 else
723 internal_error (__FILE__, __LINE__,
724 _("invalid register number %d"), regnum);
725 }
726
727 static struct reggroup *xtensa_ar_reggroup;
728 static struct reggroup *xtensa_user_reggroup;
729 static struct reggroup *xtensa_vectra_reggroup;
730 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
731
732 static void
733 xtensa_init_reggroups (void)
734 {
735 int i;
736
737 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
738 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
739 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
740
741 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
742 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
743 }
744
745 static void
746 xtensa_add_reggroups (struct gdbarch *gdbarch)
747 {
748 int i;
749
750 /* Predefined groups. */
751 reggroup_add (gdbarch, all_reggroup);
752 reggroup_add (gdbarch, save_reggroup);
753 reggroup_add (gdbarch, restore_reggroup);
754 reggroup_add (gdbarch, system_reggroup);
755 reggroup_add (gdbarch, vector_reggroup);
756 reggroup_add (gdbarch, general_reggroup);
757 reggroup_add (gdbarch, float_reggroup);
758
759 /* Xtensa-specific groups. */
760 reggroup_add (gdbarch, xtensa_ar_reggroup);
761 reggroup_add (gdbarch, xtensa_user_reggroup);
762 reggroup_add (gdbarch, xtensa_vectra_reggroup);
763
764 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
765 reggroup_add (gdbarch, xtensa_cp[i]);
766 }
767
768 static int
769 xtensa_coprocessor_register_group (struct reggroup *group)
770 {
771 int i;
772
773 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
774 if (group == xtensa_cp[i])
775 return i;
776
777 return -1;
778 }
779
780 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
781 | XTENSA_REGISTER_FLAGS_WRITABLE \
782 | XTENSA_REGISTER_FLAGS_VOLATILE)
783
784 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
785 | XTENSA_REGISTER_FLAGS_WRITABLE)
786
787 static int
788 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
789 int regnum,
790 struct reggroup *group)
791 {
792 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
793 xtensa_register_type_t type = reg->type;
794 xtensa_register_group_t rg = reg->group;
795 int cp_number;
796
797 if (group == save_reggroup)
798 /* Every single register should be included into the list of registers
799 to be watched for changes while using -data-list-changed-registers. */
800 return 1;
801
802 /* First, skip registers that are not visible to this target
803 (unknown and unmapped registers when not using ISS). */
804
805 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
806 return 0;
807 if (group == all_reggroup)
808 return 1;
809 if (group == xtensa_ar_reggroup)
810 return rg & xtRegisterGroupAddrReg;
811 if (group == xtensa_user_reggroup)
812 return rg & xtRegisterGroupUser;
813 if (group == float_reggroup)
814 return rg & xtRegisterGroupFloat;
815 if (group == general_reggroup)
816 return rg & xtRegisterGroupGeneral;
817 if (group == system_reggroup)
818 return rg & xtRegisterGroupState;
819 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
820 return rg & xtRegisterGroupVectra;
821 if (group == restore_reggroup)
822 return (regnum < gdbarch_num_regs (gdbarch)
823 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
824 cp_number = xtensa_coprocessor_register_group (group);
825 if (cp_number >= 0)
826 return rg & (xtRegisterGroupCP0 << cp_number);
827 else
828 return 1;
829 }
830
831
832 /* Supply register REGNUM from the buffer specified by GREGS and LEN
833 in the general-purpose register set REGSET to register cache
834 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
835
836 static void
837 xtensa_supply_gregset (const struct regset *regset,
838 struct regcache *rc,
839 int regnum,
840 const void *gregs,
841 size_t len)
842 {
843 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
844 struct gdbarch *gdbarch = rc->arch ();
845 int i;
846
847 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
848
849 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
850 rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
851 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
852 rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
853 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
854 rc->raw_supply (gdbarch_tdep (gdbarch)->wb_regnum,
855 (char *) &regs->windowbase);
856 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
857 rc->raw_supply (gdbarch_tdep (gdbarch)->ws_regnum,
858 (char *) &regs->windowstart);
859 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
860 rc->raw_supply (gdbarch_tdep (gdbarch)->lbeg_regnum,
861 (char *) &regs->lbeg);
862 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
863 rc->raw_supply (gdbarch_tdep (gdbarch)->lend_regnum,
864 (char *) &regs->lend);
865 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
866 rc->raw_supply (gdbarch_tdep (gdbarch)->lcount_regnum,
867 (char *) &regs->lcount);
868 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
869 rc->raw_supply (gdbarch_tdep (gdbarch)->sar_regnum,
870 (char *) &regs->sar);
871 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
872 && regnum < gdbarch_tdep (gdbarch)->ar_base
873 + gdbarch_tdep (gdbarch)->num_aregs)
874 rc->raw_supply
875 (regnum, (char *) &regs->ar[regnum - gdbarch_tdep (gdbarch)->ar_base]);
876 else if (regnum == -1)
877 {
878 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
879 rc->raw_supply (gdbarch_tdep (gdbarch)->ar_base + i,
880 (char *) &regs->ar[i]);
881 }
882 }
883
884
885 /* Xtensa register set. */
886
887 static struct regset
888 xtensa_gregset =
889 {
890 NULL,
891 xtensa_supply_gregset
892 };
893
894
895 /* Iterate over supported core file register note sections. */
896
897 static void
898 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
899 iterate_over_regset_sections_cb *cb,
900 void *cb_data,
901 const struct regcache *regcache)
902 {
903 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
904
905 cb (".reg", sizeof (xtensa_elf_gregset_t), sizeof (xtensa_elf_gregset_t),
906 &xtensa_gregset, NULL, cb_data);
907 }
908
909
910 /* Handling frames. */
911
912 /* Number of registers to save in case of Windowed ABI. */
913 #define XTENSA_NUM_SAVED_AREGS 12
914
915 /* Frame cache part for Windowed ABI. */
916 typedef struct xtensa_windowed_frame_cache
917 {
918 int wb; /* WINDOWBASE of the previous frame. */
919 int callsize; /* Call size of this frame. */
920 int ws; /* WINDOWSTART of the previous frame. It keeps track of
921 life windows only. If there is no bit set for the
922 window, that means it had been already spilled
923 because of window overflow. */
924
925 /* Addresses of spilled A-registers.
926 AREGS[i] == -1, if corresponding AR is alive. */
927 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
928 } xtensa_windowed_frame_cache_t;
929
930 /* Call0 ABI Definitions. */
931
932 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
933 analysis. */
934 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
935 #define C0_SP 1 /* Register used as SP. */
936 #define C0_FP 15 /* Register used as FP. */
937 #define C0_RA 0 /* Register used as return address. */
938 #define C0_ARGS 2 /* Register used as first arg/retval. */
939 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
940
941 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
942 A-register where the current content of the reg came from (in terms
943 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
944 mean that the orignal content of the register was saved to the stack.
945 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
946 know where SP will end up until the entire prologue has been analyzed. */
947
948 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
949 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
950 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
951
952 extern xtensa_isa xtensa_default_isa;
953
954 typedef struct xtensa_c0reg
955 {
956 int fr_reg; /* original register from which register content
957 is derived, or C0_CONST, or C0_INEXP. */
958 int fr_ofs; /* constant offset from reg, or immediate value. */
959 int to_stk; /* offset from original SP to register (4-byte aligned),
960 or C0_NOSTK if register has not been saved. */
961 } xtensa_c0reg_t;
962
963 /* Frame cache part for Call0 ABI. */
964 typedef struct xtensa_call0_frame_cache
965 {
966 int c0_frmsz; /* Stack frame size. */
967 int c0_hasfp; /* Current frame uses frame pointer. */
968 int fp_regnum; /* A-register used as FP. */
969 int c0_fp; /* Actual value of frame pointer. */
970 int c0_fpalign; /* Dinamic adjustment for the stack
971 pointer. It's an AND mask. Zero,
972 if alignment was not adjusted. */
973 int c0_old_sp; /* In case of dynamic adjustment, it is
974 a register holding unaligned sp.
975 C0_INEXP, when undefined. */
976 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
977 stack offset. C0_NOSTK otherwise. */
978
979 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
980 } xtensa_call0_frame_cache_t;
981
982 typedef struct xtensa_frame_cache
983 {
984 CORE_ADDR base; /* Stack pointer of this frame. */
985 CORE_ADDR pc; /* PC of this frame at the function entry point. */
986 CORE_ADDR ra; /* The raw return address of this frame. */
987 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
988 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
989 int call0; /* It's a call0 framework (else windowed). */
990 union
991 {
992 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
993 xtensa_call0_frame_cache_t c0; /* call0 == true. */
994 };
995 } xtensa_frame_cache_t;
996
997
998 static struct xtensa_frame_cache *
999 xtensa_alloc_frame_cache (int windowed)
1000 {
1001 xtensa_frame_cache_t *cache;
1002 int i;
1003
1004 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1005
1006 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1007
1008 cache->base = 0;
1009 cache->pc = 0;
1010 cache->ra = 0;
1011 cache->ps = 0;
1012 cache->prev_sp = 0;
1013 cache->call0 = !windowed;
1014 if (cache->call0)
1015 {
1016 cache->c0.c0_frmsz = -1;
1017 cache->c0.c0_hasfp = 0;
1018 cache->c0.fp_regnum = -1;
1019 cache->c0.c0_fp = -1;
1020 cache->c0.c0_fpalign = 0;
1021 cache->c0.c0_old_sp = C0_INEXP;
1022 cache->c0.c0_sp_ofs = C0_NOSTK;
1023
1024 for (i = 0; i < C0_NREGS; i++)
1025 {
1026 cache->c0.c0_rt[i].fr_reg = i;
1027 cache->c0.c0_rt[i].fr_ofs = 0;
1028 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1029 }
1030 }
1031 else
1032 {
1033 cache->wd.wb = 0;
1034 cache->wd.ws = 0;
1035 cache->wd.callsize = -1;
1036
1037 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1038 cache->wd.aregs[i] = -1;
1039 }
1040 return cache;
1041 }
1042
1043
1044 static CORE_ADDR
1045 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1046 {
1047 return address & ~15;
1048 }
1049
1050
1051 static CORE_ADDR
1052 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1053 {
1054 gdb_byte buf[8];
1055 CORE_ADDR pc;
1056
1057 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1058 host_address_to_string (next_frame));
1059
1060 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1061 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1062
1063 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1064
1065 return pc;
1066 }
1067
1068
1069 static struct frame_id
1070 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1071 {
1072 CORE_ADDR pc, fp;
1073
1074 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1075
1076 pc = get_frame_pc (this_frame);
1077 fp = get_frame_register_unsigned
1078 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1079
1080 /* Make dummy frame ID unique by adding a constant. */
1081 return frame_id_build (fp + SP_ALIGNMENT, pc);
1082 }
1083
1084 /* Returns true, if instruction to execute next is unique to Xtensa Window
1085 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1086
1087 static int
1088 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1089 {
1090 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1091 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1092 unsigned int code;
1093
1094 if (byte_order == BFD_ENDIAN_BIG)
1095 {
1096 /* Check, if this is L32E or S32E. */
1097 code = insn & 0xf000ff00;
1098 if ((code == 0x00009000) || (code == 0x00009400))
1099 return 1;
1100 /* Check, if this is RFWU or RFWO. */
1101 code = insn & 0xffffff00;
1102 return ((code == 0x00430000) || (code == 0x00530000));
1103 }
1104 else
1105 {
1106 /* Check, if this is L32E or S32E. */
1107 code = insn & 0x00ff000f;
1108 if ((code == 0x090000) || (code == 0x490000))
1109 return 1;
1110 /* Check, if this is RFWU or RFWO. */
1111 code = insn & 0x00ffffff;
1112 return ((code == 0x00003400) || (code == 0x00003500));
1113 }
1114 }
1115
1116 /* Returns the best guess about which register is a frame pointer
1117 for the function containing CURRENT_PC. */
1118
1119 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1120 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1121
1122 static unsigned int
1123 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1124 {
1125 #define RETURN_FP goto done
1126
1127 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1128 CORE_ADDR start_addr;
1129 xtensa_isa isa;
1130 xtensa_insnbuf ins, slot;
1131 gdb_byte ibuf[XTENSA_ISA_BSZ];
1132 CORE_ADDR ia, bt, ba;
1133 xtensa_format ifmt;
1134 int ilen, islots, is;
1135 xtensa_opcode opc;
1136 const char *opcname;
1137
1138 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1139 if (start_addr == 0)
1140 return fp_regnum;
1141
1142 isa = xtensa_default_isa;
1143 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1144 ins = xtensa_insnbuf_alloc (isa);
1145 slot = xtensa_insnbuf_alloc (isa);
1146 ba = 0;
1147
1148 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1149 {
1150 if (ia + xtensa_isa_maxlength (isa) > bt)
1151 {
1152 ba = ia;
1153 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1154 ? ba + XTENSA_ISA_BSZ : current_pc;
1155 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1156 RETURN_FP;
1157 }
1158
1159 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1160 ifmt = xtensa_format_decode (isa, ins);
1161 if (ifmt == XTENSA_UNDEFINED)
1162 RETURN_FP;
1163 ilen = xtensa_format_length (isa, ifmt);
1164 if (ilen == XTENSA_UNDEFINED)
1165 RETURN_FP;
1166 islots = xtensa_format_num_slots (isa, ifmt);
1167 if (islots == XTENSA_UNDEFINED)
1168 RETURN_FP;
1169
1170 for (is = 0; is < islots; ++is)
1171 {
1172 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1173 RETURN_FP;
1174
1175 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1176 if (opc == XTENSA_UNDEFINED)
1177 RETURN_FP;
1178
1179 opcname = xtensa_opcode_name (isa, opc);
1180
1181 if (strcasecmp (opcname, "mov.n") == 0
1182 || strcasecmp (opcname, "or") == 0)
1183 {
1184 unsigned int register_operand;
1185
1186 /* Possible candidate for setting frame pointer
1187 from A1. This is what we are looking for. */
1188
1189 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1190 is, slot, &register_operand) != 0)
1191 RETURN_FP;
1192 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1193 RETURN_FP;
1194 if (register_operand == 1) /* Mov{.n} FP A1. */
1195 {
1196 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1197 &register_operand) != 0)
1198 RETURN_FP;
1199 if (xtensa_operand_decode (isa, opc, 0,
1200 &register_operand) != 0)
1201 RETURN_FP;
1202
1203 fp_regnum
1204 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1205 RETURN_FP;
1206 }
1207 }
1208
1209 if (
1210 /* We have problems decoding the memory. */
1211 opcname == NULL
1212 || strcasecmp (opcname, "ill") == 0
1213 || strcasecmp (opcname, "ill.n") == 0
1214 /* Hit planted breakpoint. */
1215 || strcasecmp (opcname, "break") == 0
1216 || strcasecmp (opcname, "break.n") == 0
1217 /* Flow control instructions finish prologue. */
1218 || xtensa_opcode_is_branch (isa, opc) > 0
1219 || xtensa_opcode_is_jump (isa, opc) > 0
1220 || xtensa_opcode_is_loop (isa, opc) > 0
1221 || xtensa_opcode_is_call (isa, opc) > 0
1222 || strcasecmp (opcname, "simcall") == 0
1223 || strcasecmp (opcname, "syscall") == 0)
1224 /* Can not continue analysis. */
1225 RETURN_FP;
1226 }
1227 }
1228 done:
1229 xtensa_insnbuf_free(isa, slot);
1230 xtensa_insnbuf_free(isa, ins);
1231 return fp_regnum;
1232 }
1233
1234 /* The key values to identify the frame using "cache" are
1235
1236 cache->base = SP (or best guess about FP) of this frame;
1237 cache->pc = entry-PC (entry point of the frame function);
1238 cache->prev_sp = SP of the previous frame. */
1239
1240 static void
1241 call0_frame_cache (struct frame_info *this_frame,
1242 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1243
1244 static void
1245 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1246 xtensa_frame_cache_t *cache,
1247 CORE_ADDR pc);
1248
1249 static struct xtensa_frame_cache *
1250 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1251 {
1252 xtensa_frame_cache_t *cache;
1253 CORE_ADDR ra, wb, ws, pc, sp, ps;
1254 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1256 unsigned int fp_regnum;
1257 int windowed, ps_regnum;
1258
1259 if (*this_cache)
1260 return (struct xtensa_frame_cache *) *this_cache;
1261
1262 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1263 ps_regnum = gdbarch_ps_regnum (gdbarch);
1264 ps = (ps_regnum >= 0
1265 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1266
1267 windowed = windowing_enabled (gdbarch, ps);
1268
1269 /* Get pristine xtensa-frame. */
1270 cache = xtensa_alloc_frame_cache (windowed);
1271 *this_cache = cache;
1272
1273 if (windowed)
1274 {
1275 LONGEST op1;
1276
1277 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1278 wb = get_frame_register_unsigned (this_frame,
1279 gdbarch_tdep (gdbarch)->wb_regnum);
1280 ws = get_frame_register_unsigned (this_frame,
1281 gdbarch_tdep (gdbarch)->ws_regnum);
1282
1283 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1284 && XTENSA_IS_ENTRY (gdbarch, op1))
1285 {
1286 int callinc = CALLINC (ps);
1287 ra = get_frame_register_unsigned
1288 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1289
1290 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1291 cache->wd.callsize = 0;
1292 cache->wd.wb = wb;
1293 cache->wd.ws = ws;
1294 cache->prev_sp = get_frame_register_unsigned
1295 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1296
1297 /* This only can be the outermost frame since we are
1298 just about to execute ENTRY. SP hasn't been set yet.
1299 We can assume any frame size, because it does not
1300 matter, and, let's fake frame base in cache. */
1301 cache->base = cache->prev_sp - 16;
1302
1303 cache->pc = pc;
1304 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1305 cache->ps = (ps & ~PS_CALLINC_MASK)
1306 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1307
1308 return cache;
1309 }
1310 else
1311 {
1312 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1313 ra = get_frame_register_unsigned (this_frame,
1314 gdbarch_tdep (gdbarch)->a0_base);
1315 cache->wd.callsize = WINSIZE (ra);
1316 cache->wd.wb = (wb - cache->wd.callsize / 4)
1317 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1318 cache->wd.ws = ws & ~(1 << wb);
1319
1320 cache->pc = get_frame_func (this_frame);
1321 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1322 cache->ps = (ps & ~PS_CALLINC_MASK)
1323 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1324 }
1325
1326 if (cache->wd.ws == 0)
1327 {
1328 int i;
1329
1330 /* Set A0...A3. */
1331 sp = get_frame_register_unsigned
1332 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1333
1334 for (i = 0; i < 4; i++, sp += 4)
1335 {
1336 cache->wd.aregs[i] = sp;
1337 }
1338
1339 if (cache->wd.callsize > 4)
1340 {
1341 /* Set A4...A7/A11. */
1342 /* Get the SP of the frame previous to the previous one.
1343 To achieve this, we have to dereference SP twice. */
1344 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1345 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1346 sp -= cache->wd.callsize * 4;
1347
1348 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1349 {
1350 cache->wd.aregs[i] = sp;
1351 }
1352 }
1353 }
1354
1355 if ((cache->prev_sp == 0) && ( ra != 0 ))
1356 /* If RA is equal to 0 this frame is an outermost frame. Leave
1357 cache->prev_sp unchanged marking the boundary of the frame stack. */
1358 {
1359 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1360 {
1361 /* Register window overflow already happened.
1362 We can read caller's SP from the proper spill loction. */
1363 sp = get_frame_register_unsigned
1364 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1365 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1366 }
1367 else
1368 {
1369 /* Read caller's frame SP directly from the previous window. */
1370 int regnum = arreg_number
1371 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1372 cache->wd.wb);
1373
1374 cache->prev_sp = xtensa_read_register (regnum);
1375 }
1376 }
1377 }
1378 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1379 {
1380 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1381
1382 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1383 /* Everything was set already, including cache->base. */
1384 return cache;
1385 }
1386 else /* Call0 framework. */
1387 {
1388 call0_frame_cache (this_frame, cache, pc);
1389 fp_regnum = cache->c0.fp_regnum;
1390 }
1391
1392 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1393
1394 return cache;
1395 }
1396
1397 static int xtensa_session_once_reported = 1;
1398
1399 /* Report a problem with prologue analysis while doing backtracing.
1400 But, do it only once to avoid annoyng repeated messages. */
1401
1402 static void
1403 warning_once (void)
1404 {
1405 if (xtensa_session_once_reported == 0)
1406 warning (_("\
1407 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1408 This message will not be repeated in this session.\n"));
1409
1410 xtensa_session_once_reported = 1;
1411 }
1412
1413
1414 static void
1415 xtensa_frame_this_id (struct frame_info *this_frame,
1416 void **this_cache,
1417 struct frame_id *this_id)
1418 {
1419 struct xtensa_frame_cache *cache =
1420 xtensa_frame_cache (this_frame, this_cache);
1421
1422 if (cache->prev_sp == 0)
1423 return;
1424
1425 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1426 }
1427
1428 static struct value *
1429 xtensa_frame_prev_register (struct frame_info *this_frame,
1430 void **this_cache,
1431 int regnum)
1432 {
1433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1434 struct xtensa_frame_cache *cache;
1435 ULONGEST saved_reg = 0;
1436 int done = 1;
1437
1438 if (*this_cache == NULL)
1439 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1440 cache = (struct xtensa_frame_cache *) *this_cache;
1441
1442 if (regnum ==gdbarch_pc_regnum (gdbarch))
1443 saved_reg = cache->ra;
1444 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1445 saved_reg = cache->prev_sp;
1446 else if (!cache->call0)
1447 {
1448 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1449 saved_reg = cache->wd.ws;
1450 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1451 saved_reg = cache->wd.wb;
1452 else if (regnum == gdbarch_ps_regnum (gdbarch))
1453 saved_reg = cache->ps;
1454 else
1455 done = 0;
1456 }
1457 else
1458 done = 0;
1459
1460 if (done)
1461 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1462
1463 if (!cache->call0) /* Windowed ABI. */
1464 {
1465 /* Convert A-register numbers to AR-register numbers,
1466 if we deal with A-register. */
1467 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1468 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1469 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1470
1471 /* Check, if we deal with AR-register saved on stack. */
1472 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1473 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1474 + gdbarch_tdep (gdbarch)->num_aregs))
1475 {
1476 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1477
1478 if (areg >= 0
1479 && areg < XTENSA_NUM_SAVED_AREGS
1480 && cache->wd.aregs[areg] != -1)
1481 return frame_unwind_got_memory (this_frame, regnum,
1482 cache->wd.aregs[areg]);
1483 }
1484 }
1485 else /* Call0 ABI. */
1486 {
1487 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1488 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1489 + C0_NREGS))
1490 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1491
1492 if (reg < C0_NREGS)
1493 {
1494 CORE_ADDR spe;
1495 int stkofs;
1496
1497 /* If register was saved in the prologue, retrieve it. */
1498 stkofs = cache->c0.c0_rt[reg].to_stk;
1499 if (stkofs != C0_NOSTK)
1500 {
1501 /* Determine SP on entry based on FP. */
1502 spe = cache->c0.c0_fp
1503 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1504
1505 return frame_unwind_got_memory (this_frame, regnum,
1506 spe + stkofs);
1507 }
1508 }
1509 }
1510
1511 /* All other registers have been either saved to
1512 the stack or are still alive in the processor. */
1513
1514 return frame_unwind_got_register (this_frame, regnum, regnum);
1515 }
1516
1517
1518 static const struct frame_unwind
1519 xtensa_unwind =
1520 {
1521 NORMAL_FRAME,
1522 default_frame_unwind_stop_reason,
1523 xtensa_frame_this_id,
1524 xtensa_frame_prev_register,
1525 NULL,
1526 default_frame_sniffer
1527 };
1528
1529 static CORE_ADDR
1530 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1531 {
1532 struct xtensa_frame_cache *cache =
1533 xtensa_frame_cache (this_frame, this_cache);
1534
1535 return cache->base;
1536 }
1537
1538 static const struct frame_base
1539 xtensa_frame_base =
1540 {
1541 &xtensa_unwind,
1542 xtensa_frame_base_address,
1543 xtensa_frame_base_address,
1544 xtensa_frame_base_address
1545 };
1546
1547
1548 static void
1549 xtensa_extract_return_value (struct type *type,
1550 struct regcache *regcache,
1551 void *dst)
1552 {
1553 struct gdbarch *gdbarch = regcache->arch ();
1554 bfd_byte *valbuf = (bfd_byte *) dst;
1555 int len = TYPE_LENGTH (type);
1556 ULONGEST pc, wb;
1557 int callsize, areg;
1558 int offset = 0;
1559
1560 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1561
1562 gdb_assert(len > 0);
1563
1564 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1565 {
1566 /* First, we have to find the caller window in the register file. */
1567 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1568 callsize = extract_call_winsize (gdbarch, pc);
1569
1570 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1571 if (len > (callsize > 8 ? 8 : 16))
1572 internal_error (__FILE__, __LINE__,
1573 _("cannot extract return value of %d bytes long"),
1574 len);
1575
1576 /* Get the register offset of the return
1577 register (A2) in the caller window. */
1578 regcache_raw_read_unsigned
1579 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1580 areg = arreg_number (gdbarch,
1581 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1582 }
1583 else
1584 {
1585 /* No windowing hardware - Call0 ABI. */
1586 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1587 }
1588
1589 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1590
1591 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1592 offset = 4 - len;
1593
1594 for (; len > 0; len -= 4, areg++, valbuf += 4)
1595 {
1596 if (len < 4)
1597 regcache->raw_read_part (areg, offset, len, valbuf);
1598 else
1599 regcache->raw_read (areg, valbuf);
1600 }
1601 }
1602
1603
1604 static void
1605 xtensa_store_return_value (struct type *type,
1606 struct regcache *regcache,
1607 const void *dst)
1608 {
1609 struct gdbarch *gdbarch = regcache->arch ();
1610 const bfd_byte *valbuf = (const bfd_byte *) dst;
1611 unsigned int areg;
1612 ULONGEST pc, wb;
1613 int callsize;
1614 int len = TYPE_LENGTH (type);
1615 int offset = 0;
1616
1617 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1618
1619 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1620 {
1621 regcache_raw_read_unsigned
1622 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1623 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1624 callsize = extract_call_winsize (gdbarch, pc);
1625
1626 if (len > (callsize > 8 ? 8 : 16))
1627 internal_error (__FILE__, __LINE__,
1628 _("unimplemented for this length: %d"),
1629 TYPE_LENGTH (type));
1630 areg = arreg_number (gdbarch,
1631 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1632
1633 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1634 callsize, (int) wb);
1635 }
1636 else
1637 {
1638 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1639 }
1640
1641 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1642 offset = 4 - len;
1643
1644 for (; len > 0; len -= 4, areg++, valbuf += 4)
1645 {
1646 if (len < 4)
1647 regcache->raw_write_part (areg, offset, len, valbuf);
1648 else
1649 regcache->raw_write (areg, valbuf);
1650 }
1651 }
1652
1653
1654 static enum return_value_convention
1655 xtensa_return_value (struct gdbarch *gdbarch,
1656 struct value *function,
1657 struct type *valtype,
1658 struct regcache *regcache,
1659 gdb_byte *readbuf,
1660 const gdb_byte *writebuf)
1661 {
1662 /* Structures up to 16 bytes are returned in registers. */
1663
1664 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1665 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1666 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1667 && TYPE_LENGTH (valtype) > 16);
1668
1669 if (struct_return)
1670 return RETURN_VALUE_STRUCT_CONVENTION;
1671
1672 DEBUGTRACE ("xtensa_return_value(...)\n");
1673
1674 if (writebuf != NULL)
1675 {
1676 xtensa_store_return_value (valtype, regcache, writebuf);
1677 }
1678
1679 if (readbuf != NULL)
1680 {
1681 gdb_assert (!struct_return);
1682 xtensa_extract_return_value (valtype, regcache, readbuf);
1683 }
1684 return RETURN_VALUE_REGISTER_CONVENTION;
1685 }
1686
1687
1688 /* DUMMY FRAME */
1689
1690 static CORE_ADDR
1691 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1692 struct value *function,
1693 struct regcache *regcache,
1694 CORE_ADDR bp_addr,
1695 int nargs,
1696 struct value **args,
1697 CORE_ADDR sp,
1698 int struct_return,
1699 CORE_ADDR struct_addr)
1700 {
1701 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1702 int size, onstack_size;
1703 gdb_byte *buf = (gdb_byte *) alloca (16);
1704 CORE_ADDR ra, ps;
1705 struct argument_info
1706 {
1707 const bfd_byte *contents;
1708 int length;
1709 int onstack; /* onstack == 0 => in reg */
1710 int align; /* alignment */
1711 union
1712 {
1713 int offset; /* stack offset if on stack. */
1714 int regno; /* regno if in register. */
1715 } u;
1716 };
1717
1718 struct argument_info *arg_info =
1719 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1720
1721 CORE_ADDR osp = sp;
1722
1723 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1724
1725 if (xtensa_debug_level > 3)
1726 {
1727 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1728 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1729 "struct_addr=0x%x\n",
1730 (int) sp, (int) struct_return, (int) struct_addr);
1731
1732 for (int i = 0; i < nargs; i++)
1733 {
1734 struct value *arg = args[i];
1735 struct type *arg_type = check_typedef (value_type (arg));
1736 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1737 host_address_to_string (arg),
1738 TYPE_LENGTH (arg_type));
1739 switch (TYPE_CODE (arg_type))
1740 {
1741 case TYPE_CODE_INT:
1742 fprintf_unfiltered (gdb_stdlog, "int");
1743 break;
1744 case TYPE_CODE_STRUCT:
1745 fprintf_unfiltered (gdb_stdlog, "struct");
1746 break;
1747 default:
1748 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1749 break;
1750 }
1751 fprintf_unfiltered (gdb_stdlog, " %s\n",
1752 host_address_to_string (value_contents (arg)));
1753 }
1754 }
1755
1756 /* First loop: collect information.
1757 Cast into type_long. (This shouldn't happen often for C because
1758 GDB already does this earlier.) It's possible that GDB could
1759 do it all the time but it's harmless to leave this code here. */
1760
1761 size = 0;
1762 onstack_size = 0;
1763
1764 if (struct_return)
1765 size = REGISTER_SIZE;
1766
1767 for (int i = 0; i < nargs; i++)
1768 {
1769 struct argument_info *info = &arg_info[i];
1770 struct value *arg = args[i];
1771 struct type *arg_type = check_typedef (value_type (arg));
1772
1773 switch (TYPE_CODE (arg_type))
1774 {
1775 case TYPE_CODE_INT:
1776 case TYPE_CODE_BOOL:
1777 case TYPE_CODE_CHAR:
1778 case TYPE_CODE_RANGE:
1779 case TYPE_CODE_ENUM:
1780
1781 /* Cast argument to long if necessary as the mask does it too. */
1782 if (TYPE_LENGTH (arg_type)
1783 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1784 {
1785 arg_type = builtin_type (gdbarch)->builtin_long;
1786 arg = value_cast (arg_type, arg);
1787 }
1788 /* Aligment is equal to the type length for the basic types. */
1789 info->align = TYPE_LENGTH (arg_type);
1790 break;
1791
1792 case TYPE_CODE_FLT:
1793
1794 /* Align doubles correctly. */
1795 if (TYPE_LENGTH (arg_type)
1796 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1797 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1798 else
1799 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1800 break;
1801
1802 case TYPE_CODE_STRUCT:
1803 default:
1804 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1805 break;
1806 }
1807 info->length = TYPE_LENGTH (arg_type);
1808 info->contents = value_contents (arg);
1809
1810 /* Align size and onstack_size. */
1811 size = (size + info->align - 1) & ~(info->align - 1);
1812 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1813
1814 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1815 {
1816 info->onstack = 1;
1817 info->u.offset = onstack_size;
1818 onstack_size += info->length;
1819 }
1820 else
1821 {
1822 info->onstack = 0;
1823 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1824 }
1825 size += info->length;
1826 }
1827
1828 /* Adjust the stack pointer and align it. */
1829 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1830
1831 /* Simulate MOVSP, if Windowed ABI. */
1832 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1833 && (sp != osp))
1834 {
1835 read_memory (osp - 16, buf, 16);
1836 write_memory (sp - 16, buf, 16);
1837 }
1838
1839 /* Second Loop: Load arguments. */
1840
1841 if (struct_return)
1842 {
1843 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1844 regcache->cooked_write (ARG_1ST (gdbarch), buf);
1845 }
1846
1847 for (int i = 0; i < nargs; i++)
1848 {
1849 struct argument_info *info = &arg_info[i];
1850
1851 if (info->onstack)
1852 {
1853 int n = info->length;
1854 CORE_ADDR offset = sp + info->u.offset;
1855
1856 /* Odd-sized structs are aligned to the lower side of a memory
1857 word in big-endian mode and require a shift. This only
1858 applies for structures smaller than one word. */
1859
1860 if (n < REGISTER_SIZE
1861 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1862 offset += (REGISTER_SIZE - n);
1863
1864 write_memory (offset, info->contents, info->length);
1865
1866 }
1867 else
1868 {
1869 int n = info->length;
1870 const bfd_byte *cp = info->contents;
1871 int r = info->u.regno;
1872
1873 /* Odd-sized structs are aligned to the lower side of registers in
1874 big-endian mode and require a shift. The odd-sized leftover will
1875 be at the end. Note that this is only true for structures smaller
1876 than REGISTER_SIZE; for larger odd-sized structures the excess
1877 will be left-aligned in the register on both endiannesses. */
1878
1879 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1880 {
1881 ULONGEST v;
1882 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1883 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1884
1885 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1886 regcache->cooked_write (r, buf);
1887
1888 cp += REGISTER_SIZE;
1889 n -= REGISTER_SIZE;
1890 r++;
1891 }
1892 else
1893 while (n > 0)
1894 {
1895 regcache->cooked_write (r, cp);
1896
1897 cp += REGISTER_SIZE;
1898 n -= REGISTER_SIZE;
1899 r++;
1900 }
1901 }
1902 }
1903
1904 /* Set the return address of dummy frame to the dummy address.
1905 The return address for the current function (in A0) is
1906 saved in the dummy frame, so we can savely overwrite A0 here. */
1907
1908 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1909 {
1910 ULONGEST val;
1911
1912 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1913 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1914 ps = (unsigned long) val & ~0x00030000;
1915 regcache_cooked_write_unsigned
1916 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1917 regcache_cooked_write_unsigned (regcache,
1918 gdbarch_ps_regnum (gdbarch),
1919 ps | 0x00010000);
1920
1921 /* All the registers have been saved. After executing
1922 dummy call, they all will be restored. So it's safe
1923 to modify WINDOWSTART register to make it look like there
1924 is only one register window corresponding to WINDOWEBASE. */
1925
1926 regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum, buf);
1927 regcache_cooked_write_unsigned
1928 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1929 1 << extract_unsigned_integer (buf, 4, byte_order));
1930 }
1931 else
1932 {
1933 /* Simulate CALL0: write RA into A0 register. */
1934 regcache_cooked_write_unsigned
1935 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1936 }
1937
1938 /* Set new stack pointer and return it. */
1939 regcache_cooked_write_unsigned (regcache,
1940 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1941 /* Make dummy frame ID unique by adding a constant. */
1942 return sp + SP_ALIGNMENT;
1943 }
1944
1945 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1946
1947 static int
1948 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1949 {
1950 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1951 return 2;
1952 else
1953 return 4;
1954 }
1955
1956 /* Return a breakpoint for the current location of PC. We always use
1957 the density version if we have density instructions (regardless of the
1958 current instruction at PC), and use regular instructions otherwise. */
1959
1960 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1961 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1962 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1963 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1964
1965 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1966
1967 static const gdb_byte *
1968 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1969 {
1970 *size = kind;
1971
1972 if (kind == 4)
1973 {
1974 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1975 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1976
1977 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1978 return big_breakpoint;
1979 else
1980 return little_breakpoint;
1981 }
1982 else
1983 {
1984 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1985 static unsigned char density_little_breakpoint[]
1986 = DENSITY_LITTLE_BREAKPOINT;
1987
1988 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1989 return density_big_breakpoint;
1990 else
1991 return density_little_breakpoint;
1992 }
1993 }
1994
1995 /* Call0 ABI support routines. */
1996
1997 /* Return true, if PC points to "ret" or "ret.n". */
1998
1999 static int
2000 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2001 {
2002 #define RETURN_RET goto done
2003 xtensa_isa isa;
2004 xtensa_insnbuf ins, slot;
2005 gdb_byte ibuf[XTENSA_ISA_BSZ];
2006 CORE_ADDR ia, bt, ba;
2007 xtensa_format ifmt;
2008 int ilen, islots, is;
2009 xtensa_opcode opc;
2010 const char *opcname;
2011 int found_ret = 0;
2012
2013 isa = xtensa_default_isa;
2014 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2015 ins = xtensa_insnbuf_alloc (isa);
2016 slot = xtensa_insnbuf_alloc (isa);
2017 ba = 0;
2018
2019 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2020 {
2021 if (ia + xtensa_isa_maxlength (isa) > bt)
2022 {
2023 ba = ia;
2024 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2025 ? ba + XTENSA_ISA_BSZ : finish_pc;
2026 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2027 RETURN_RET;
2028 }
2029
2030 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2031 ifmt = xtensa_format_decode (isa, ins);
2032 if (ifmt == XTENSA_UNDEFINED)
2033 RETURN_RET;
2034 ilen = xtensa_format_length (isa, ifmt);
2035 if (ilen == XTENSA_UNDEFINED)
2036 RETURN_RET;
2037 islots = xtensa_format_num_slots (isa, ifmt);
2038 if (islots == XTENSA_UNDEFINED)
2039 RETURN_RET;
2040
2041 for (is = 0; is < islots; ++is)
2042 {
2043 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2044 RETURN_RET;
2045
2046 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2047 if (opc == XTENSA_UNDEFINED)
2048 RETURN_RET;
2049
2050 opcname = xtensa_opcode_name (isa, opc);
2051
2052 if ((strcasecmp (opcname, "ret.n") == 0)
2053 || (strcasecmp (opcname, "ret") == 0))
2054 {
2055 found_ret = 1;
2056 RETURN_RET;
2057 }
2058 }
2059 }
2060 done:
2061 xtensa_insnbuf_free(isa, slot);
2062 xtensa_insnbuf_free(isa, ins);
2063 return found_ret;
2064 }
2065
2066 /* Call0 opcode class. Opcodes are preclassified according to what they
2067 mean for Call0 prologue analysis, and their number of significant operands.
2068 The purpose of this is to simplify prologue analysis by separating
2069 instruction decoding (libisa) from the semantics of prologue analysis. */
2070
2071 typedef enum
2072 {
2073 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2074 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2075 c0opc_flow, /* Flow control insn. */
2076 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2077 c0opc_break, /* Debugger software breakpoints. */
2078 c0opc_add, /* Adding two registers. */
2079 c0opc_addi, /* Adding a register and an immediate. */
2080 c0opc_and, /* Bitwise "and"-ing two registers. */
2081 c0opc_sub, /* Subtracting a register from a register. */
2082 c0opc_mov, /* Moving a register to a register. */
2083 c0opc_movi, /* Moving an immediate to a register. */
2084 c0opc_l32r, /* Loading a literal. */
2085 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2086 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2087 c0opc_l32e, /* L32E instruction. */
2088 c0opc_s32e, /* S32E instruction. */
2089 c0opc_rfwo, /* RFWO instruction. */
2090 c0opc_rfwu, /* RFWU instruction. */
2091 c0opc_NrOf /* Number of opcode classifications. */
2092 } xtensa_insn_kind;
2093
2094 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2095
2096 static int
2097 rwx_special_register (const char *opcname)
2098 {
2099 char ch = *opcname++;
2100
2101 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2102 return 0;
2103 if (*opcname++ != 's')
2104 return 0;
2105 if (*opcname++ != 'r')
2106 return 0;
2107 if (*opcname++ != '.')
2108 return 0;
2109
2110 return 1;
2111 }
2112
2113 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2114
2115 static xtensa_insn_kind
2116 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2117 {
2118 const char *opcname;
2119 xtensa_insn_kind opclass = c0opc_uninteresting;
2120
2121 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2122
2123 /* Get opcode name and handle special classifications. */
2124
2125 opcname = xtensa_opcode_name (isa, opc);
2126
2127 if (opcname == NULL
2128 || strcasecmp (opcname, "ill") == 0
2129 || strcasecmp (opcname, "ill.n") == 0)
2130 opclass = c0opc_illegal;
2131 else if (strcasecmp (opcname, "break") == 0
2132 || strcasecmp (opcname, "break.n") == 0)
2133 opclass = c0opc_break;
2134 else if (strcasecmp (opcname, "entry") == 0)
2135 opclass = c0opc_entry;
2136 else if (strcasecmp (opcname, "rfwo") == 0)
2137 opclass = c0opc_rfwo;
2138 else if (strcasecmp (opcname, "rfwu") == 0)
2139 opclass = c0opc_rfwu;
2140 else if (xtensa_opcode_is_branch (isa, opc) > 0
2141 || xtensa_opcode_is_jump (isa, opc) > 0
2142 || xtensa_opcode_is_loop (isa, opc) > 0
2143 || xtensa_opcode_is_call (isa, opc) > 0
2144 || strcasecmp (opcname, "simcall") == 0
2145 || strcasecmp (opcname, "syscall") == 0)
2146 opclass = c0opc_flow;
2147
2148 /* Also, classify specific opcodes that need to be tracked. */
2149 else if (strcasecmp (opcname, "add") == 0
2150 || strcasecmp (opcname, "add.n") == 0)
2151 opclass = c0opc_add;
2152 else if (strcasecmp (opcname, "and") == 0)
2153 opclass = c0opc_and;
2154 else if (strcasecmp (opcname, "addi") == 0
2155 || strcasecmp (opcname, "addi.n") == 0
2156 || strcasecmp (opcname, "addmi") == 0)
2157 opclass = c0opc_addi;
2158 else if (strcasecmp (opcname, "sub") == 0)
2159 opclass = c0opc_sub;
2160 else if (strcasecmp (opcname, "mov.n") == 0
2161 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2162 opclass = c0opc_mov;
2163 else if (strcasecmp (opcname, "movi") == 0
2164 || strcasecmp (opcname, "movi.n") == 0)
2165 opclass = c0opc_movi;
2166 else if (strcasecmp (opcname, "l32r") == 0)
2167 opclass = c0opc_l32r;
2168 else if (strcasecmp (opcname, "s32i") == 0
2169 || strcasecmp (opcname, "s32i.n") == 0)
2170 opclass = c0opc_s32i;
2171 else if (strcasecmp (opcname, "l32e") == 0)
2172 opclass = c0opc_l32e;
2173 else if (strcasecmp (opcname, "s32e") == 0)
2174 opclass = c0opc_s32e;
2175 else if (rwx_special_register (opcname))
2176 opclass = c0opc_rwxsr;
2177
2178 return opclass;
2179 }
2180
2181 /* Tracks register movement/mutation for a given operation, which may
2182 be within a bundle. Updates the destination register tracking info
2183 accordingly. The pc is needed only for pc-relative load instructions
2184 (eg. l32r). The SP register number is needed to identify stores to
2185 the stack frame. Returns 0, if analysis was succesfull, non-zero
2186 otherwise. */
2187
2188 static int
2189 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2190 xtensa_insn_kind opclass, int nods, unsigned odv[],
2191 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2192 {
2193 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2194 unsigned litbase, litaddr, litval;
2195
2196 switch (opclass)
2197 {
2198 case c0opc_addi:
2199 /* 3 operands: dst, src, imm. */
2200 gdb_assert (nods == 3);
2201 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2202 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2203 break;
2204 case c0opc_add:
2205 /* 3 operands: dst, src1, src2. */
2206 gdb_assert (nods == 3);
2207 if (src[odv[1]].fr_reg == C0_CONST)
2208 {
2209 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2210 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2211 }
2212 else if (src[odv[2]].fr_reg == C0_CONST)
2213 {
2214 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2215 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2216 }
2217 else dst[odv[0]].fr_reg = C0_INEXP;
2218 break;
2219 case c0opc_and:
2220 /* 3 operands: dst, src1, src2. */
2221 gdb_assert (nods == 3);
2222 if (cache->c0.c0_fpalign == 0)
2223 {
2224 /* Handle dynamic stack alignment. */
2225 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2226 {
2227 if (src[odv[2]].fr_reg == C0_CONST)
2228 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2229 break;
2230 }
2231 else if ((src[odv[0]].fr_reg == spreg)
2232 && (src[odv[2]].fr_reg == spreg))
2233 {
2234 if (src[odv[1]].fr_reg == C0_CONST)
2235 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2236 break;
2237 }
2238 /* else fall through. */
2239 }
2240 if (src[odv[1]].fr_reg == C0_CONST)
2241 {
2242 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2243 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2244 }
2245 else if (src[odv[2]].fr_reg == C0_CONST)
2246 {
2247 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2248 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2249 }
2250 else dst[odv[0]].fr_reg = C0_INEXP;
2251 break;
2252 case c0opc_sub:
2253 /* 3 operands: dst, src1, src2. */
2254 gdb_assert (nods == 3);
2255 if (src[odv[2]].fr_reg == C0_CONST)
2256 {
2257 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2258 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2259 }
2260 else dst[odv[0]].fr_reg = C0_INEXP;
2261 break;
2262 case c0opc_mov:
2263 /* 2 operands: dst, src [, src]. */
2264 gdb_assert (nods == 2);
2265 /* First, check if it's a special case of saving unaligned SP
2266 to a spare register in case of dynamic stack adjustment.
2267 But, only do it one time. The second time could be initializing
2268 frame pointer. We don't want to overwrite the first one. */
2269 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2270 cache->c0.c0_old_sp = odv[0];
2271
2272 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2273 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2274 break;
2275 case c0opc_movi:
2276 /* 2 operands: dst, imm. */
2277 gdb_assert (nods == 2);
2278 dst[odv[0]].fr_reg = C0_CONST;
2279 dst[odv[0]].fr_ofs = odv[1];
2280 break;
2281 case c0opc_l32r:
2282 /* 2 operands: dst, literal offset. */
2283 gdb_assert (nods == 2);
2284 /* litbase = xtensa_get_litbase (pc); can be also used. */
2285 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2286 ? 0 : xtensa_read_register
2287 (gdbarch_tdep (gdbarch)->litbase_regnum);
2288 litaddr = litbase & 1
2289 ? (litbase & ~1) + (signed)odv[1]
2290 : (pc + 3 + (signed)odv[1]) & ~3;
2291 litval = read_memory_integer (litaddr, 4, byte_order);
2292 dst[odv[0]].fr_reg = C0_CONST;
2293 dst[odv[0]].fr_ofs = litval;
2294 break;
2295 case c0opc_s32i:
2296 /* 3 operands: value, base, offset. */
2297 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2298 /* First, check if it's a spill for saved unaligned SP,
2299 when dynamic stack adjustment was applied to this frame. */
2300 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2301 && (odv[1] == spreg) /* SP usage indicates spill. */
2302 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2303 cache->c0.c0_sp_ofs = odv[2];
2304
2305 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2306 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2307 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2308 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2309 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2310 {
2311 /* ISA encoding guarantees alignment. But, check it anyway. */
2312 gdb_assert ((odv[2] & 3) == 0);
2313 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2314 }
2315 break;
2316 /* If we end up inside Window Overflow / Underflow interrupt handler
2317 report an error because these handlers should have been handled
2318 already in a different way. */
2319 case c0opc_l32e:
2320 case c0opc_s32e:
2321 case c0opc_rfwo:
2322 case c0opc_rfwu:
2323 return 1;
2324 default:
2325 return 1;
2326 }
2327 return 0;
2328 }
2329
2330 /* Analyze prologue of the function at start address to determine if it uses
2331 the Call0 ABI, and if so track register moves and linear modifications
2332 in the prologue up to the PC or just beyond the prologue, whichever is
2333 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2334 prologue. The prologue may overlap non-prologue instructions but is
2335 guaranteed to end by the first flow-control instruction (jump, branch,
2336 call or return). Since an optimized function may move information around
2337 and change the stack frame arbitrarily during the prologue, the information
2338 is guaranteed valid only at the point in the function indicated by the PC.
2339 May be used to skip the prologue or identify the ABI, w/o tracking.
2340
2341 Returns: Address of first instruction after prologue, or PC (whichever
2342 is first), or 0, if decoding failed (in libisa).
2343 Input args:
2344 start Start address of function/prologue.
2345 pc Program counter to stop at. Use 0 to continue to end of prologue.
2346 If 0, avoids infinite run-on in corrupt code memory by bounding
2347 the scan to the end of the function if that can be determined.
2348 nregs Number of general registers to track.
2349 InOut args:
2350 cache Xtensa frame cache.
2351
2352 Note that these may produce useful results even if decoding fails
2353 because they begin with default assumptions that analysis may change. */
2354
2355 static CORE_ADDR
2356 call0_analyze_prologue (struct gdbarch *gdbarch,
2357 CORE_ADDR start, CORE_ADDR pc,
2358 int nregs, xtensa_frame_cache_t *cache)
2359 {
2360 CORE_ADDR ia; /* Current insn address in prologue. */
2361 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2362 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2363 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2364 xtensa_isa isa; /* libisa ISA handle. */
2365 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2366 xtensa_format ifmt; /* libisa instruction format. */
2367 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2368 xtensa_opcode opc; /* Opcode in current slot. */
2369 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2370 int nods; /* Opcode number of operands. */
2371 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2372 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2373 int j; /* General loop counter. */
2374 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2375 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2376 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2377
2378 struct symtab_and_line prologue_sal;
2379
2380 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2381 (int)start, (int)pc);
2382
2383 /* Try to limit the scan to the end of the function if a non-zero pc
2384 arg was not supplied to avoid probing beyond the end of valid memory.
2385 If memory is full of garbage that classifies as c0opc_uninteresting.
2386 If this fails (eg. if no symbols) pc ends up 0 as it was.
2387 Initialize the Call0 frame and register tracking info.
2388 Assume it's Call0 until an 'entry' instruction is encountered.
2389 Assume we may be in the prologue until we hit a flow control instr. */
2390
2391 rtmp = NULL;
2392 body_pc = UINT_MAX;
2393 end_pc = 0;
2394
2395 /* Find out, if we have an information about the prologue from DWARF. */
2396 prologue_sal = find_pc_line (start, 0);
2397 if (prologue_sal.line != 0) /* Found debug info. */
2398 body_pc = prologue_sal.end;
2399
2400 /* If we are going to analyze the prologue in general without knowing about
2401 the current PC, make the best assumtion for the end of the prologue. */
2402 if (pc == 0)
2403 {
2404 find_pc_partial_function (start, 0, NULL, &end_pc);
2405 body_pc = std::min (end_pc, body_pc);
2406 }
2407 else
2408 body_pc = std::min (pc, body_pc);
2409
2410 cache->call0 = 1;
2411 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2412
2413 isa = xtensa_default_isa;
2414 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2415 ins = xtensa_insnbuf_alloc (isa);
2416 slot = xtensa_insnbuf_alloc (isa);
2417
2418 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2419 {
2420 /* (Re)fill instruction buffer from memory if necessary, but do not
2421 read memory beyond PC to be sure we stay within text section
2422 (this protection only works if a non-zero pc is supplied). */
2423
2424 if (ia + xtensa_isa_maxlength (isa) > bt)
2425 {
2426 ba = ia;
2427 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2428 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2429 error (_("Unable to read target memory ..."));
2430 }
2431
2432 /* Decode format information. */
2433
2434 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2435 ifmt = xtensa_format_decode (isa, ins);
2436 if (ifmt == XTENSA_UNDEFINED)
2437 {
2438 fail = 1;
2439 goto done;
2440 }
2441 ilen = xtensa_format_length (isa, ifmt);
2442 if (ilen == XTENSA_UNDEFINED)
2443 {
2444 fail = 1;
2445 goto done;
2446 }
2447 islots = xtensa_format_num_slots (isa, ifmt);
2448 if (islots == XTENSA_UNDEFINED)
2449 {
2450 fail = 1;
2451 goto done;
2452 }
2453
2454 /* Analyze a bundle or a single instruction, using a snapshot of
2455 the register tracking info as input for the entire bundle so that
2456 register changes do not take effect within this bundle. */
2457
2458 for (j = 0; j < nregs; ++j)
2459 rtmp[j] = cache->c0.c0_rt[j];
2460
2461 for (is = 0; is < islots; ++is)
2462 {
2463 /* Decode a slot and classify the opcode. */
2464
2465 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2466 if (fail)
2467 goto done;
2468
2469 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2470 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2471 (unsigned)ia, opc);
2472 if (opc == XTENSA_UNDEFINED)
2473 opclass = c0opc_illegal;
2474 else
2475 opclass = call0_classify_opcode (isa, opc);
2476
2477 /* Decide whether to track this opcode, ignore it, or bail out. */
2478
2479 switch (opclass)
2480 {
2481 case c0opc_illegal:
2482 case c0opc_break:
2483 fail = 1;
2484 goto done;
2485
2486 case c0opc_uninteresting:
2487 continue;
2488
2489 case c0opc_flow: /* Flow control instructions stop analysis. */
2490 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2491 goto done;
2492
2493 case c0opc_entry:
2494 cache->call0 = 0;
2495 ia += ilen; /* Skip over 'entry' insn. */
2496 goto done;
2497
2498 default:
2499 cache->call0 = 1;
2500 }
2501
2502 /* Only expected opcodes should get this far. */
2503
2504 /* Extract and decode the operands. */
2505 nods = xtensa_opcode_num_operands (isa, opc);
2506 if (nods == XTENSA_UNDEFINED)
2507 {
2508 fail = 1;
2509 goto done;
2510 }
2511
2512 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2513 {
2514 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2515 is, slot, &odv[j]);
2516 if (fail)
2517 goto done;
2518
2519 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2520 if (fail)
2521 goto done;
2522 }
2523
2524 /* Check operands to verify use of 'mov' assembler macro. */
2525 if (opclass == c0opc_mov && nods == 3)
2526 {
2527 if (odv[2] == odv[1])
2528 {
2529 nods = 2;
2530 if ((odv[0] == 1) && (odv[1] != 1))
2531 /* OR A1, An, An , where n != 1.
2532 This means we are inside epilogue already. */
2533 goto done;
2534 }
2535 else
2536 {
2537 opclass = c0opc_uninteresting;
2538 continue;
2539 }
2540 }
2541
2542 /* Track register movement and modification for this operation. */
2543 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2544 opclass, nods, odv, ia, 1, cache);
2545 if (fail)
2546 goto done;
2547 }
2548 }
2549 done:
2550 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2551 (unsigned)ia, fail ? "failed" : "succeeded");
2552 xtensa_insnbuf_free(isa, slot);
2553 xtensa_insnbuf_free(isa, ins);
2554 return fail ? XTENSA_ISA_BADPC : ia;
2555 }
2556
2557 /* Initialize frame cache for the current frame in CALL0 ABI. */
2558
2559 static void
2560 call0_frame_cache (struct frame_info *this_frame,
2561 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2562 {
2563 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2564 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2565 CORE_ADDR start_pc; /* The beginning of the function. */
2566 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2567 CORE_ADDR sp, fp, ra;
2568 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2569
2570 sp = get_frame_register_unsigned
2571 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2572 fp = sp; /* Assume FP == SP until proven otherwise. */
2573
2574 /* Find the beginning of the prologue of the function containing the PC
2575 and analyze it up to the PC or the end of the prologue. */
2576
2577 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2578 {
2579 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2580
2581 if (body_pc == XTENSA_ISA_BADPC)
2582 {
2583 warning_once ();
2584 ra = 0;
2585 goto finish_frame_analysis;
2586 }
2587 }
2588
2589 /* Get the frame information and FP (if used) at the current PC.
2590 If PC is in the prologue, the prologue analysis is more reliable
2591 than DWARF info. We don't not know for sure, if PC is in the prologue,
2592 but we do know no calls have yet taken place, so we can almost
2593 certainly rely on the prologue analysis. */
2594
2595 if (body_pc <= pc)
2596 {
2597 /* Prologue analysis was successful up to the PC.
2598 It includes the cases when PC == START_PC. */
2599 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2600 /* c0_hasfp == true means there is a frame pointer because
2601 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2602 was derived from SP. Otherwise, it would be C0_FP. */
2603 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2604 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2605 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2606 }
2607 else /* No data from the prologue analysis. */
2608 {
2609 c0_hasfp = 0;
2610 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2611 c0_frmsz = 0;
2612 start_pc = pc;
2613 }
2614
2615 if (cache->c0.c0_fpalign)
2616 {
2617 /* This frame has a special prologue with a dynamic stack adjustment
2618 to force an alignment, which is bigger than standard 16 bytes. */
2619
2620 CORE_ADDR unaligned_sp;
2621
2622 if (cache->c0.c0_old_sp == C0_INEXP)
2623 /* This can't be. Prologue code should be consistent.
2624 Unaligned stack pointer should be saved in a spare register. */
2625 {
2626 warning_once ();
2627 ra = 0;
2628 goto finish_frame_analysis;
2629 }
2630
2631 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2632 /* Saved unaligned value of SP is kept in a register. */
2633 unaligned_sp = get_frame_register_unsigned
2634 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2635 else
2636 /* Get the value from stack. */
2637 unaligned_sp = (CORE_ADDR)
2638 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2639
2640 prev_sp = unaligned_sp + c0_frmsz;
2641 }
2642 else
2643 prev_sp = fp + c0_frmsz;
2644
2645 /* Frame size from debug info or prologue tracking does not account for
2646 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2647 if (c0_hasfp)
2648 {
2649 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2650
2651 /* Update the stack frame size. */
2652 c0_frmsz += fp - sp;
2653 }
2654
2655 /* Get the return address (RA) from the stack if saved,
2656 or try to get it from a register. */
2657
2658 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2659 if (to_stk != C0_NOSTK)
2660 ra = (CORE_ADDR)
2661 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2662 4, byte_order);
2663
2664 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2665 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2666 {
2667 /* Special case for terminating backtrace at a function that wants to
2668 be seen as the outermost one. Such a function will clear it's RA (A0)
2669 register to 0 in the prologue instead of saving its original value. */
2670 ra = 0;
2671 }
2672 else
2673 {
2674 /* RA was copied to another register or (before any function call) may
2675 still be in the original RA register. This is not always reliable:
2676 even in a leaf function, register tracking stops after prologue, and
2677 even in prologue, non-prologue instructions (not tracked) may overwrite
2678 RA or any register it was copied to. If likely in prologue or before
2679 any call, use retracking info and hope for the best (compiler should
2680 have saved RA in stack if not in a leaf function). If not in prologue,
2681 too bad. */
2682
2683 int i;
2684 for (i = 0;
2685 (i < C0_NREGS)
2686 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2687 ++i);
2688 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2689 i = C0_RA;
2690 if (i < C0_NREGS)
2691 {
2692 ra = get_frame_register_unsigned
2693 (this_frame,
2694 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2695 }
2696 else ra = 0;
2697 }
2698
2699 finish_frame_analysis:
2700 cache->pc = start_pc;
2701 cache->ra = ra;
2702 /* RA == 0 marks the outermost frame. Do not go past it. */
2703 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2704 cache->c0.fp_regnum = fp_regnum;
2705 cache->c0.c0_frmsz = c0_frmsz;
2706 cache->c0.c0_hasfp = c0_hasfp;
2707 cache->c0.c0_fp = fp;
2708 }
2709
2710 static CORE_ADDR a0_saved;
2711 static CORE_ADDR a7_saved;
2712 static CORE_ADDR a11_saved;
2713 static int a0_was_saved;
2714 static int a7_was_saved;
2715 static int a11_was_saved;
2716
2717 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2718 static void
2719 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2720 {
2721 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2722 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2723 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2724 unsigned int spilled_value
2725 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2726
2727 if ((at == 0) && !a0_was_saved)
2728 {
2729 a0_saved = xtensa_read_register (atreg);
2730 a0_was_saved = 1;
2731 }
2732 else if ((at == 7) && !a7_was_saved)
2733 {
2734 a7_saved = xtensa_read_register (atreg);
2735 a7_was_saved = 1;
2736 }
2737 else if ((at == 11) && !a11_was_saved)
2738 {
2739 a11_saved = xtensa_read_register (atreg);
2740 a11_was_saved = 1;
2741 }
2742
2743 xtensa_write_register (atreg, spilled_value);
2744 }
2745
2746 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2747 static void
2748 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2749 {
2750 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2751 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2752 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2753 ULONGEST spilled_value = xtensa_read_register (atreg);
2754
2755 write_memory_unsigned_integer (addr, 4,
2756 gdbarch_byte_order (gdbarch),
2757 spilled_value);
2758 }
2759
2760 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2761
2762 typedef enum
2763 {
2764 xtWindowOverflow,
2765 xtWindowUnderflow,
2766 xtNoExceptionHandler
2767 } xtensa_exception_handler_t;
2768
2769 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2770 Return type of Xtensa Window Interrupt Handler on success. */
2771 static xtensa_exception_handler_t
2772 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2773 {
2774 xtensa_isa isa;
2775 xtensa_insnbuf ins, slot;
2776 gdb_byte ibuf[XTENSA_ISA_BSZ];
2777 CORE_ADDR ia, bt, ba;
2778 xtensa_format ifmt;
2779 int ilen, islots, is;
2780 xtensa_opcode opc;
2781 int insn_num = 0;
2782 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2783
2784 uint32_t at, as, offset;
2785
2786 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2787 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2788
2789 isa = xtensa_default_isa;
2790 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2791 ins = xtensa_insnbuf_alloc (isa);
2792 slot = xtensa_insnbuf_alloc (isa);
2793 ba = 0;
2794 ia = current_pc;
2795 bt = ia;
2796
2797 a0_was_saved = 0;
2798 a7_was_saved = 0;
2799 a11_was_saved = 0;
2800
2801 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2802 {
2803 if (ia + xtensa_isa_maxlength (isa) > bt)
2804 {
2805 ba = ia;
2806 bt = (ba + XTENSA_ISA_BSZ);
2807 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2808 return xtNoExceptionHandler;
2809 }
2810 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2811 ifmt = xtensa_format_decode (isa, ins);
2812 if (ifmt == XTENSA_UNDEFINED)
2813 return xtNoExceptionHandler;
2814 ilen = xtensa_format_length (isa, ifmt);
2815 if (ilen == XTENSA_UNDEFINED)
2816 return xtNoExceptionHandler;
2817 islots = xtensa_format_num_slots (isa, ifmt);
2818 if (islots == XTENSA_UNDEFINED)
2819 return xtNoExceptionHandler;
2820 for (is = 0; is < islots; ++is)
2821 {
2822 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2823 return xtNoExceptionHandler;
2824 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2825 if (opc == XTENSA_UNDEFINED)
2826 return xtNoExceptionHandler;
2827 switch (call0_classify_opcode (isa, opc))
2828 {
2829 case c0opc_illegal:
2830 case c0opc_flow:
2831 case c0opc_entry:
2832 case c0opc_break:
2833 /* We expect none of them here. */
2834 return xtNoExceptionHandler;
2835 case c0opc_l32e:
2836 func = execute_l32e;
2837 break;
2838 case c0opc_s32e:
2839 func = execute_s32e;
2840 break;
2841 case c0opc_rfwo: /* RFWO. */
2842 /* Here, we return from WindowOverflow handler and,
2843 if we stopped at the very beginning, which means
2844 A0 was saved, we have to restore it now. */
2845 if (a0_was_saved)
2846 {
2847 int arreg = arreg_number (gdbarch,
2848 gdbarch_tdep (gdbarch)->a0_base,
2849 wb);
2850 xtensa_write_register (arreg, a0_saved);
2851 }
2852 return xtWindowOverflow;
2853 case c0opc_rfwu: /* RFWU. */
2854 /* Here, we return from WindowUnderflow handler.
2855 Let's see if either A7 or A11 has to be restored. */
2856 if (WindowUnderflow12)
2857 {
2858 if (a11_was_saved)
2859 {
2860 int arreg = arreg_number (gdbarch,
2861 gdbarch_tdep (gdbarch)->a0_base + 11,
2862 wb);
2863 xtensa_write_register (arreg, a11_saved);
2864 }
2865 }
2866 else if (a7_was_saved)
2867 {
2868 int arreg = arreg_number (gdbarch,
2869 gdbarch_tdep (gdbarch)->a0_base + 7,
2870 wb);
2871 xtensa_write_register (arreg, a7_saved);
2872 }
2873 return xtWindowUnderflow;
2874 default: /* Simply skip this insns. */
2875 continue;
2876 }
2877
2878 /* Decode arguments for L32E / S32E and simulate their execution. */
2879 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2880 return xtNoExceptionHandler;
2881 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2882 return xtNoExceptionHandler;
2883 if (xtensa_operand_decode (isa, opc, 0, &at))
2884 return xtNoExceptionHandler;
2885 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2886 return xtNoExceptionHandler;
2887 if (xtensa_operand_decode (isa, opc, 1, &as))
2888 return xtNoExceptionHandler;
2889 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2890 return xtNoExceptionHandler;
2891 if (xtensa_operand_decode (isa, opc, 2, &offset))
2892 return xtNoExceptionHandler;
2893
2894 (*func) (gdbarch, at, as, offset, wb);
2895 }
2896
2897 ia += ilen;
2898 }
2899 return xtNoExceptionHandler;
2900 }
2901
2902 /* Handle Window Overflow / Underflow exception frames. */
2903
2904 static void
2905 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2906 xtensa_frame_cache_t *cache,
2907 CORE_ADDR pc)
2908 {
2909 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2910 CORE_ADDR ps, wb, ws, ra;
2911 int epc1_regnum, i, regnum;
2912 xtensa_exception_handler_t eh_type;
2913
2914 /* Read PS, WB, and WS from the hardware. Note that PS register
2915 must be present, if Windowed ABI is supported. */
2916 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2917 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2918 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2919
2920 /* Execute all the remaining instructions from Window Interrupt Handler
2921 by simulating them on the remote protocol level. On return, set the
2922 type of Xtensa Window Interrupt Handler, or report an error. */
2923 eh_type = execute_code (gdbarch, pc, wb);
2924 if (eh_type == xtNoExceptionHandler)
2925 error (_("\
2926 Unable to decode Xtensa Window Interrupt Handler's code."));
2927
2928 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2929 cache->call0 = 0; /* It's Windowed ABI. */
2930
2931 /* All registers for the cached frame will be alive. */
2932 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2933 cache->wd.aregs[i] = -1;
2934
2935 if (eh_type == xtWindowOverflow)
2936 cache->wd.ws = ws ^ (1 << wb);
2937 else /* eh_type == xtWindowUnderflow. */
2938 cache->wd.ws = ws | (1 << wb);
2939
2940 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2941 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2942 cache->wd.wb);
2943 ra = xtensa_read_register (regnum);
2944 cache->wd.callsize = WINSIZE (ra);
2945 cache->prev_sp = xtensa_read_register (regnum + 1);
2946 /* Set regnum to a frame pointer of the frame being cached. */
2947 regnum = xtensa_scan_prologue (gdbarch, pc);
2948 regnum = arreg_number (gdbarch,
2949 gdbarch_tdep (gdbarch)->a0_base + regnum,
2950 cache->wd.wb);
2951 cache->base = get_frame_register_unsigned (this_frame, regnum);
2952
2953 /* Read PC of interrupted function from EPC1 register. */
2954 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2955 if (epc1_regnum < 0)
2956 error(_("Unable to read Xtensa register EPC1"));
2957 cache->ra = xtensa_read_register (epc1_regnum);
2958 cache->pc = get_frame_func (this_frame);
2959 }
2960
2961
2962 /* Skip function prologue.
2963
2964 Return the pc of the first instruction after prologue. GDB calls this to
2965 find the address of the first line of the function or (if there is no line
2966 number information) to skip the prologue for planting breakpoints on
2967 function entries. Use debug info (if present) or prologue analysis to skip
2968 the prologue to achieve reliable debugging behavior. For windowed ABI,
2969 only the 'entry' instruction is skipped. It is not strictly necessary to
2970 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2971 backtrace at any point in the prologue, however certain potential hazards
2972 are avoided and a more "normal" debugging experience is ensured by
2973 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2974 For example, if we don't skip the prologue:
2975 - Some args may not yet have been saved to the stack where the debug
2976 info expects to find them (true anyway when only 'entry' is skipped);
2977 - Software breakpoints ('break' instrs) may not have been unplanted
2978 when the prologue analysis is done on initializing the frame cache,
2979 and breaks in the prologue will throw off the analysis.
2980
2981 If we have debug info ( line-number info, in particular ) we simply skip
2982 the code associated with the first function line effectively skipping
2983 the prologue code. It works even in cases like
2984
2985 int main()
2986 { int local_var = 1;
2987 ....
2988 }
2989
2990 because, for this source code, both Xtensa compilers will generate two
2991 separate entries ( with the same line number ) in dwarf line-number
2992 section to make sure there is a boundary between the prologue code and
2993 the rest of the function.
2994
2995 If there is no debug info, we need to analyze the code. */
2996
2997 /* #define DONT_SKIP_PROLOGUE */
2998
2999 static CORE_ADDR
3000 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3001 {
3002 struct symtab_and_line prologue_sal;
3003 CORE_ADDR body_pc;
3004
3005 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3006
3007 #if DONT_SKIP_PROLOGUE
3008 return start_pc;
3009 #endif
3010
3011 /* Try to find first body line from debug info. */
3012
3013 prologue_sal = find_pc_line (start_pc, 0);
3014 if (prologue_sal.line != 0) /* Found debug info. */
3015 {
3016 /* In Call0, it is possible to have a function with only one instruction
3017 ('ret') resulting from a one-line optimized function that does nothing.
3018 In that case, prologue_sal.end may actually point to the start of the
3019 next function in the text section, causing a breakpoint to be set at
3020 the wrong place. Check, if the end address is within a different
3021 function, and if so return the start PC. We know we have symbol
3022 information. */
3023
3024 CORE_ADDR end_func;
3025
3026 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3027 && call0_ret (start_pc, prologue_sal.end))
3028 return start_pc;
3029
3030 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3031 if (end_func != start_pc)
3032 return start_pc;
3033
3034 return prologue_sal.end;
3035 }
3036
3037 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3038 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3039 xtensa_alloc_frame_cache (0));
3040 return body_pc != 0 ? body_pc : start_pc;
3041 }
3042
3043 /* Verify the current configuration. */
3044 static void
3045 xtensa_verify_config (struct gdbarch *gdbarch)
3046 {
3047 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3048 string_file log;
3049
3050 /* Verify that we got a reasonable number of AREGS. */
3051 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3052 log.printf (_("\
3053 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3054 tdep->num_aregs);
3055
3056 /* Verify that certain registers exist. */
3057
3058 if (tdep->pc_regnum == -1)
3059 log.printf (_("\n\tpc_regnum: No PC register"));
3060 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3061 log.printf (_("\n\tps_regnum: No PS register"));
3062
3063 if (tdep->isa_use_windowed_registers)
3064 {
3065 if (tdep->wb_regnum == -1)
3066 log.printf (_("\n\twb_regnum: No WB register"));
3067 if (tdep->ws_regnum == -1)
3068 log.printf (_("\n\tws_regnum: No WS register"));
3069 if (tdep->ar_base == -1)
3070 log.printf (_("\n\tar_base: No AR registers"));
3071 }
3072
3073 if (tdep->a0_base == -1)
3074 log.printf (_("\n\ta0_base: No Ax registers"));
3075
3076 if (!log.empty ())
3077 internal_error (__FILE__, __LINE__,
3078 _("the following are invalid: %s"), log.c_str ());
3079 }
3080
3081
3082 /* Derive specific register numbers from the array of registers. */
3083
3084 static void
3085 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3086 {
3087 xtensa_register_t* rmap;
3088 int n, max_size = 4;
3089
3090 tdep->num_regs = 0;
3091 tdep->num_nopriv_regs = 0;
3092
3093 /* Special registers 0..255 (core). */
3094 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3095 /* User registers 0..255. */
3096 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3097
3098 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3099 {
3100 if (rmap->target_number == 0x0020)
3101 tdep->pc_regnum = n;
3102 else if (rmap->target_number == 0x0100)
3103 tdep->ar_base = n;
3104 else if (rmap->target_number == 0x0000)
3105 tdep->a0_base = n;
3106 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3107 tdep->wb_regnum = n;
3108 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3109 tdep->ws_regnum = n;
3110 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3111 tdep->debugcause_regnum = n;
3112 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3113 tdep->exccause_regnum = n;
3114 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3115 tdep->excvaddr_regnum = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3117 tdep->lbeg_regnum = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3119 tdep->lend_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3121 tdep->lcount_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3123 tdep->sar_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3125 tdep->litbase_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3127 tdep->ps_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3129 tdep->threadptr_regnum = n;
3130 #if 0
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3132 tdep->interrupt_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3134 tdep->interrupt2_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3136 tdep->cpenable_regnum = n;
3137 #endif
3138
3139 if (rmap->byte_size > max_size)
3140 max_size = rmap->byte_size;
3141 if (rmap->mask != 0 && tdep->num_regs == 0)
3142 tdep->num_regs = n;
3143 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3144 && tdep->num_nopriv_regs == 0)
3145 tdep->num_nopriv_regs = n;
3146 }
3147 if (tdep->num_regs == 0)
3148 tdep->num_regs = tdep->num_nopriv_regs;
3149
3150 /* Number of pseudo registers. */
3151 tdep->num_pseudo_regs = n - tdep->num_regs;
3152
3153 /* Empirically determined maximum sizes. */
3154 tdep->max_register_raw_size = max_size;
3155 tdep->max_register_virtual_size = max_size;
3156 }
3157
3158 /* Module "constructor" function. */
3159
3160 extern struct gdbarch_tdep xtensa_tdep;
3161
3162 static struct gdbarch *
3163 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3164 {
3165 struct gdbarch_tdep *tdep;
3166 struct gdbarch *gdbarch;
3167
3168 DEBUGTRACE ("gdbarch_init()\n");
3169
3170 if (!xtensa_default_isa)
3171 xtensa_default_isa = xtensa_isa_init (0, 0);
3172
3173 /* We have to set the byte order before we call gdbarch_alloc. */
3174 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3175
3176 tdep = &xtensa_tdep;
3177 gdbarch = gdbarch_alloc (&info, tdep);
3178 xtensa_derive_tdep (tdep);
3179
3180 /* Verify our configuration. */
3181 xtensa_verify_config (gdbarch);
3182 xtensa_session_once_reported = 0;
3183
3184 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3185 set_gdbarch_wchar_signed (gdbarch, 0);
3186
3187 /* Pseudo-Register read/write. */
3188 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3189 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3190
3191 /* Set target information. */
3192 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3193 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3194 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3195 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3196 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3197
3198 /* Renumber registers for known formats (stabs and dwarf2). */
3199 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3200 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3201
3202 /* We provide our own function to get register information. */
3203 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3204 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3205
3206 /* To call functions from GDB using dummy frame. */
3207 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3208
3209 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3210
3211 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3212
3213 /* Advance PC across any prologue instructions to reach "real" code. */
3214 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3215
3216 /* Stack grows downward. */
3217 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3218
3219 /* Set breakpoints. */
3220 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3221 xtensa_breakpoint_kind_from_pc);
3222 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3223 xtensa_sw_breakpoint_from_kind);
3224
3225 /* After breakpoint instruction or illegal instruction, pc still
3226 points at break instruction, so don't decrement. */
3227 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3228
3229 /* We don't skip args. */
3230 set_gdbarch_frame_args_skip (gdbarch, 0);
3231
3232 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3233
3234 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3235
3236 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3237
3238 /* Frame handling. */
3239 frame_base_set_default (gdbarch, &xtensa_frame_base);
3240 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3241 dwarf2_append_unwinders (gdbarch);
3242
3243 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3244
3245 xtensa_add_reggroups (gdbarch);
3246 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3247
3248 set_gdbarch_iterate_over_regset_sections
3249 (gdbarch, xtensa_iterate_over_regset_sections);
3250
3251 set_solib_svr4_fetch_link_map_offsets
3252 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3253
3254 /* Hook in the ABI-specific overrides, if they have been registered. */
3255 gdbarch_init_osabi (info, gdbarch);
3256
3257 return gdbarch;
3258 }
3259
3260 static void
3261 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3262 {
3263 error (_("xtensa_dump_tdep(): not implemented"));
3264 }
3265
3266 void
3267 _initialize_xtensa_tdep (void)
3268 {
3269 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3270 xtensa_init_reggroups ();
3271
3272 add_setshow_zuinteger_cmd ("xtensa",
3273 class_maintenance,
3274 &xtensa_debug_level,
3275 _("Set Xtensa debugging."),
3276 _("Show Xtensa debugging."), _("\
3277 When non-zero, Xtensa-specific debugging is enabled. \
3278 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3279 NULL,
3280 NULL,
3281 &setdebuglist, &showdebuglist);
3282 }
This page took 0.095845 seconds and 5 git commands to generate.