* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "solib-svr4.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "elf/dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
44
45 #include "arch-utils.h"
46 #include "gdbarch.h"
47 #include "remote.h"
48 #include "serial.h"
49
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "gdb_assert.h"
53
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
57
58
59 static int xtensa_debug_level = 0;
60
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76
77
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
80
81
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
86
87
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93
94 /* ABI-independent macros. */
95 #define ARG_NOF(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi \
97 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
98 #define ARG_1ST(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
100 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
101 : (gdbarch_tdep (gdbarch)->a0_base + 6))
102
103 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
104 indicates that the instruction is an ENTRY instruction. */
105
106 #define XTENSA_IS_ENTRY(gdbarch, op1) \
107 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
108 ? ((op1) == 0x6c) : ((op1) == 0x36))
109
110 #define XTENSA_ENTRY_LENGTH 3
111
112 /* windowing_enabled() returns true, if windowing is enabled.
113 WOE must be set to 1; EXCM to 0.
114 Note: We assume that EXCM is always 0 for XEA1. */
115
116 #define PS_WOE (1<<18)
117 #define PS_EXC (1<<4)
118
119 /* Convert a live A-register number to the corresponding AR-register number. */
120 static int
121 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
122 {
123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
124 int arreg;
125
126 arreg = a_regnum - tdep->a0_base;
127 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
128 arreg &= tdep->num_aregs - 1;
129
130 return arreg + tdep->ar_base;
131 }
132
133 /* Convert a live AR-register number to the corresponding A-register order
134 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
135 static int
136 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int areg;
140
141 areg = ar_regnum - tdep->ar_base;
142 if (areg < 0 || areg >= tdep->num_aregs)
143 return -1;
144 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
145 return (areg > 15) ? -1 : areg;
146 }
147
148 static inline int
149 windowing_enabled (CORE_ADDR ps)
150 {
151 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
152 }
153
154 /* Return the window size of the previous call to the function from which we
155 have just returned.
156
157 This function is used to extract the return value after a called function
158 has returned to the caller. On Xtensa, the register that holds the return
159 value (from the perspective of the caller) depends on what call
160 instruction was used. For now, we are assuming that the call instruction
161 precedes the current address, so we simply analyze the call instruction.
162 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
163 method to call the inferior function. */
164
165 static int
166 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
167 {
168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
169 int winsize = 4;
170 int insn;
171 gdb_byte buf[4];
172
173 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
174
175 /* Read the previous instruction (should be a call[x]{4|8|12}. */
176 read_memory (pc-3, buf, 3);
177 insn = extract_unsigned_integer (buf, 3, byte_order);
178
179 /* Decode call instruction:
180 Little Endian
181 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
182 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
183 Big Endian
184 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
185 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
186
187 if (byte_order == BFD_ENDIAN_LITTLE)
188 {
189 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
190 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
191 }
192 else
193 {
194 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
195 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
196 }
197 return winsize;
198 }
199
200
201 /* REGISTER INFORMATION */
202
203 /* Returns the name of a register. */
204 static const char *
205 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
206 {
207 /* Return the name stored in the register map. */
208 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
209 + gdbarch_num_pseudo_regs (gdbarch))
210 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
211
212 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
213 return 0;
214 }
215
216 /* Return the type of a register. Create a new type, if necessary. */
217
218 static struct type *
219 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222
223 /* Return signed integer for ARx and Ax registers. */
224 if ((regnum >= tdep->ar_base
225 && regnum < tdep->ar_base + tdep->num_aregs)
226 || (regnum >= tdep->a0_base
227 && regnum < tdep->a0_base + 16))
228 return builtin_type (gdbarch)->builtin_int;
229
230 if (regnum == gdbarch_pc_regnum (gdbarch)
231 || regnum == tdep->a0_base + 1)
232 return builtin_type (gdbarch)->builtin_data_ptr;
233
234 /* Return the stored type for all other registers. */
235 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch))
237 {
238 xtensa_register_t* reg = &tdep->regmap[regnum];
239
240 /* Set ctype for this register (only the first time). */
241
242 if (reg->ctype == 0)
243 {
244 struct ctype_cache *tp;
245 int size = reg->byte_size;
246
247 /* We always use the memory representation,
248 even if the register width is smaller. */
249 switch (size)
250 {
251 case 1:
252 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
253 break;
254
255 case 2:
256 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
257 break;
258
259 case 4:
260 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
261 break;
262
263 case 8:
264 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
265 break;
266
267 case 16:
268 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
269 break;
270
271 default:
272 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
273 if (tp->size == size)
274 break;
275
276 if (tp == NULL)
277 {
278 char *name = xmalloc (16);
279 tp = xmalloc (sizeof (struct ctype_cache));
280 tp->next = tdep->type_entries;
281 tdep->type_entries = tp;
282 tp->size = size;
283
284 sprintf (name, "int%d", size * 8);
285 tp->virtual_type
286 = arch_integer_type (gdbarch, size * 8, 1, xstrdup (name));
287 }
288
289 reg->ctype = tp->virtual_type;
290 }
291 }
292 return reg->ctype;
293 }
294
295 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
296 return 0;
297 }
298
299
300 /* Return the 'local' register number for stubs, dwarf2, etc.
301 The debugging information enumerates registers starting from 0 for A0
302 to n for An. So, we only have to add the base number for A0. */
303
304 static int
305 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
306 {
307 int i;
308
309 if (regnum >= 0 && regnum < 16)
310 return gdbarch_tdep (gdbarch)->a0_base + regnum;
311
312 for (i = 0;
313 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
314 i++)
315 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
316 return i;
317
318 internal_error (__FILE__, __LINE__,
319 _("invalid dwarf/stabs register number %d"), regnum);
320 return 0;
321 }
322
323
324 /* Write the bits of a masked register to the various registers.
325 Only the masked areas of these registers are modified; the other
326 fields are untouched. The size of masked registers is always less
327 than or equal to 32 bits. */
328
329 static void
330 xtensa_register_write_masked (struct regcache *regcache,
331 xtensa_register_t *reg, const gdb_byte *buffer)
332 {
333 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
334 const xtensa_mask_t *mask = reg->mask;
335
336 int shift = 0; /* Shift for next mask (mod 32). */
337 int start, size; /* Start bit and size of current mask. */
338
339 unsigned int *ptr = value;
340 unsigned int regval, m, mem = 0;
341
342 int bytesize = reg->byte_size;
343 int bitsize = bytesize * 8;
344 int i, r;
345
346 DEBUGTRACE ("xtensa_register_write_masked ()\n");
347
348 /* Copy the masked register to host byte-order. */
349 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
350 for (i = 0; i < bytesize; i++)
351 {
352 mem >>= 8;
353 mem |= (buffer[bytesize - i - 1] << 24);
354 if ((i & 3) == 3)
355 *ptr++ = mem;
356 }
357 else
358 for (i = 0; i < bytesize; i++)
359 {
360 mem >>= 8;
361 mem |= (buffer[i] << 24);
362 if ((i & 3) == 3)
363 *ptr++ = mem;
364 }
365
366 /* We might have to shift the final value:
367 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
368 bytesize & 3 == x -> shift (4-x) * 8. */
369
370 *ptr = mem >> (((0 - bytesize) & 3) * 8);
371 ptr = value;
372 mem = *ptr;
373
374 /* Write the bits to the masked areas of the other registers. */
375 for (i = 0; i < mask->count; i++)
376 {
377 start = mask->mask[i].bit_start;
378 size = mask->mask[i].bit_size;
379 regval = mem >> shift;
380
381 if ((shift += size) > bitsize)
382 error (_("size of all masks is larger than the register"));
383
384 if (shift >= 32)
385 {
386 mem = *(++ptr);
387 shift -= 32;
388 bitsize -= 32;
389
390 if (shift > 0)
391 regval |= mem << (size - shift);
392 }
393
394 /* Make sure we have a valid register. */
395 r = mask->mask[i].reg_num;
396 if (r >= 0 && size > 0)
397 {
398 /* Don't overwrite the unmasked areas. */
399 ULONGEST old_val;
400 regcache_cooked_read_unsigned (regcache, r, &old_val);
401 m = 0xffffffff >> (32 - size) << start;
402 regval <<= start;
403 regval = (regval & m) | (old_val & ~m);
404 regcache_cooked_write_unsigned (regcache, r, regval);
405 }
406 }
407 }
408
409
410 /* Read a tie state or mapped registers. Read the masked areas
411 of the registers and assemble them into a single value. */
412
413 static void
414 xtensa_register_read_masked (struct regcache *regcache,
415 xtensa_register_t *reg, gdb_byte *buffer)
416 {
417 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
418 const xtensa_mask_t *mask = reg->mask;
419
420 int shift = 0;
421 int start, size;
422
423 unsigned int *ptr = value;
424 unsigned int regval, mem = 0;
425
426 int bytesize = reg->byte_size;
427 int bitsize = bytesize * 8;
428 int i;
429
430 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
431 reg->name == 0 ? "" : reg->name);
432
433 /* Assemble the register from the masked areas of other registers. */
434 for (i = 0; i < mask->count; i++)
435 {
436 int r = mask->mask[i].reg_num;
437 if (r >= 0)
438 {
439 ULONGEST val;
440 regcache_cooked_read_unsigned (regcache, r, &val);
441 regval = (unsigned int) val;
442 }
443 else
444 regval = 0;
445
446 start = mask->mask[i].bit_start;
447 size = mask->mask[i].bit_size;
448
449 regval >>= start;
450
451 if (size < 32)
452 regval &= (0xffffffff >> (32 - size));
453
454 mem |= regval << shift;
455
456 if ((shift += size) > bitsize)
457 error (_("size of all masks is larger than the register"));
458
459 if (shift >= 32)
460 {
461 *ptr++ = mem;
462 bitsize -= 32;
463 shift -= 32;
464
465 if (shift == 0)
466 mem = 0;
467 else
468 mem = regval >> (size - shift);
469 }
470 }
471
472 if (shift > 0)
473 *ptr = mem;
474
475 /* Copy value to target byte order. */
476 ptr = value;
477 mem = *ptr;
478
479 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
480 for (i = 0; i < bytesize; i++)
481 {
482 if ((i & 3) == 0)
483 mem = *ptr++;
484 buffer[bytesize - i - 1] = mem & 0xff;
485 mem >>= 8;
486 }
487 else
488 for (i = 0; i < bytesize; i++)
489 {
490 if ((i & 3) == 0)
491 mem = *ptr++;
492 buffer[i] = mem & 0xff;
493 mem >>= 8;
494 }
495 }
496
497
498 /* Read pseudo registers. */
499
500 static void
501 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
502 struct regcache *regcache,
503 int regnum,
504 gdb_byte *buffer)
505 {
506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
507
508 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
509 regnum, xtensa_register_name (gdbarch, regnum));
510
511 if (regnum == gdbarch_num_regs (gdbarch)
512 + gdbarch_num_pseudo_regs (gdbarch) - 1)
513 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
514
515 /* Read aliases a0..a15, if this is a Windowed ABI. */
516 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
517 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
518 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
519 {
520 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
521
522 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
523 regnum = arreg_number (gdbarch, regnum,
524 extract_unsigned_integer (buf, 4, byte_order));
525 }
526
527 /* We can always read non-pseudo registers. */
528 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
529 regcache_raw_read (regcache, regnum, buffer);
530
531
532 /* We have to find out how to deal with priveleged registers.
533 Let's treat them as pseudo-registers, but we cannot read/write them. */
534
535 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
536 {
537 buffer[0] = (gdb_byte)0;
538 buffer[1] = (gdb_byte)0;
539 buffer[2] = (gdb_byte)0;
540 buffer[3] = (gdb_byte)0;
541 }
542 /* Pseudo registers. */
543 else if (regnum >= 0
544 && regnum < gdbarch_num_regs (gdbarch)
545 + gdbarch_num_pseudo_regs (gdbarch))
546 {
547 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
548 xtensa_register_type_t type = reg->type;
549 int flags = gdbarch_tdep (gdbarch)->target_flags;
550
551 /* We cannot read Unknown or Unmapped registers. */
552 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
553 {
554 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
555 {
556 warning (_("cannot read register %s"),
557 xtensa_register_name (gdbarch, regnum));
558 return;
559 }
560 }
561
562 /* Some targets cannot read TIE register files. */
563 else if (type == xtRegisterTypeTieRegfile)
564 {
565 /* Use 'fetch' to get register? */
566 if (flags & xtTargetFlagsUseFetchStore)
567 {
568 warning (_("cannot read register"));
569 return;
570 }
571
572 /* On some targets (esp. simulators), we can always read the reg. */
573 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
574 {
575 warning (_("cannot read register"));
576 return;
577 }
578 }
579
580 /* We can always read mapped registers. */
581 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
582 {
583 xtensa_register_read_masked (regcache, reg, buffer);
584 return;
585 }
586
587 /* Assume that we can read the register. */
588 regcache_raw_read (regcache, regnum, buffer);
589 }
590 else
591 internal_error (__FILE__, __LINE__,
592 _("invalid register number %d"), regnum);
593 }
594
595
596 /* Write pseudo registers. */
597
598 static void
599 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
600 struct regcache *regcache,
601 int regnum,
602 const gdb_byte *buffer)
603 {
604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
605
606 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
607 regnum, xtensa_register_name (gdbarch, regnum));
608
609 if (regnum == gdbarch_num_regs (gdbarch)
610 + gdbarch_num_pseudo_regs (gdbarch) -1)
611 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
612
613 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
614 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
615 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
616 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
617 {
618 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
619 unsigned int wb;
620
621 regcache_raw_read (regcache,
622 gdbarch_tdep (gdbarch)->wb_regnum, buf);
623 regnum = arreg_number (gdbarch, regnum,
624 extract_unsigned_integer (buf, 4, byte_order));
625 }
626
627 /* We can always write 'core' registers.
628 Note: We might have converted Ax->ARy. */
629 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
630 regcache_raw_write (regcache, regnum, buffer);
631
632 /* We have to find out how to deal with priveleged registers.
633 Let's treat them as pseudo-registers, but we cannot read/write them. */
634
635 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
636 {
637 return;
638 }
639 /* Pseudo registers. */
640 else if (regnum >= 0
641 && regnum < gdbarch_num_regs (gdbarch)
642 + gdbarch_num_pseudo_regs (gdbarch))
643 {
644 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
645 xtensa_register_type_t type = reg->type;
646 int flags = gdbarch_tdep (gdbarch)->target_flags;
647
648 /* On most targets, we cannot write registers
649 of type "Unknown" or "Unmapped". */
650 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
651 {
652 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
653 {
654 warning (_("cannot write register %s"),
655 xtensa_register_name (gdbarch, regnum));
656 return;
657 }
658 }
659
660 /* Some targets cannot read TIE register files. */
661 else if (type == xtRegisterTypeTieRegfile)
662 {
663 /* Use 'store' to get register? */
664 if (flags & xtTargetFlagsUseFetchStore)
665 {
666 warning (_("cannot write register"));
667 return;
668 }
669
670 /* On some targets (esp. simulators), we can always write
671 the register. */
672 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
673 {
674 warning (_("cannot write register"));
675 return;
676 }
677 }
678
679 /* We can always write mapped registers. */
680 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
681 {
682 xtensa_register_write_masked (regcache, reg, buffer);
683 return;
684 }
685
686 /* Assume that we can write the register. */
687 regcache_raw_write (regcache, regnum, buffer);
688 }
689 else
690 internal_error (__FILE__, __LINE__,
691 _("invalid register number %d"), regnum);
692 }
693
694 static struct reggroup *xtensa_ar_reggroup;
695 static struct reggroup *xtensa_user_reggroup;
696 static struct reggroup *xtensa_vectra_reggroup;
697 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
698
699 static void
700 xtensa_init_reggroups (void)
701 {
702 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
703 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
704 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
705
706 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
707 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
708 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
709 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
710 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
711 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
712 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
713 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
714 }
715
716 static void
717 xtensa_add_reggroups (struct gdbarch *gdbarch)
718 {
719 int i;
720
721 /* Predefined groups. */
722 reggroup_add (gdbarch, all_reggroup);
723 reggroup_add (gdbarch, save_reggroup);
724 reggroup_add (gdbarch, restore_reggroup);
725 reggroup_add (gdbarch, system_reggroup);
726 reggroup_add (gdbarch, vector_reggroup);
727 reggroup_add (gdbarch, general_reggroup);
728 reggroup_add (gdbarch, float_reggroup);
729
730 /* Xtensa-specific groups. */
731 reggroup_add (gdbarch, xtensa_ar_reggroup);
732 reggroup_add (gdbarch, xtensa_user_reggroup);
733 reggroup_add (gdbarch, xtensa_vectra_reggroup);
734
735 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
736 reggroup_add (gdbarch, xtensa_cp[i]);
737 }
738
739 static int
740 xtensa_coprocessor_register_group (struct reggroup *group)
741 {
742 int i;
743
744 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
745 if (group == xtensa_cp[i])
746 return i;
747
748 return -1;
749 }
750
751 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
752 | XTENSA_REGISTER_FLAGS_WRITABLE \
753 | XTENSA_REGISTER_FLAGS_VOLATILE)
754
755 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
756 | XTENSA_REGISTER_FLAGS_WRITABLE)
757
758 static int
759 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
760 int regnum,
761 struct reggroup *group)
762 {
763 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
764 xtensa_register_type_t type = reg->type;
765 xtensa_register_group_t rg = reg->group;
766 int cp_number;
767
768 /* First, skip registers that are not visible to this target
769 (unknown and unmapped registers when not using ISS). */
770
771 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
772 return 0;
773 if (group == all_reggroup)
774 return 1;
775 if (group == xtensa_ar_reggroup)
776 return rg & xtRegisterGroupAddrReg;
777 if (group == xtensa_user_reggroup)
778 return rg & xtRegisterGroupUser;
779 if (group == float_reggroup)
780 return rg & xtRegisterGroupFloat;
781 if (group == general_reggroup)
782 return rg & xtRegisterGroupGeneral;
783 if (group == float_reggroup)
784 return rg & xtRegisterGroupFloat;
785 if (group == system_reggroup)
786 return rg & xtRegisterGroupState;
787 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
788 return rg & xtRegisterGroupVectra;
789 if (group == save_reggroup || group == restore_reggroup)
790 return (regnum < gdbarch_num_regs (gdbarch)
791 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
792 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
793 return rg & (xtRegisterGroupCP0 << cp_number);
794 else
795 return 1;
796 }
797
798
799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
800 in the general-purpose register set REGSET to register cache
801 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
802
803 static void
804 xtensa_supply_gregset (const struct regset *regset,
805 struct regcache *rc,
806 int regnum,
807 const void *gregs,
808 size_t len)
809 {
810 const xtensa_elf_gregset_t *regs = gregs;
811 struct gdbarch *gdbarch = get_regcache_arch (rc);
812 int i;
813
814 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
815
816 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
817 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
818 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
819 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
820 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
821 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
822 (char *) &regs->windowbase);
823 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
824 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
825 (char *) &regs->windowstart);
826 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
827 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
828 (char *) &regs->lbeg);
829 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
830 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
831 (char *) &regs->lend);
832 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
833 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
834 (char *) &regs->lcount);
835 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
836 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
837 (char *) &regs->sar);
838 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
839 && regnum < gdbarch_tdep (gdbarch)->ar_base
840 + gdbarch_tdep (gdbarch)->num_aregs)
841 regcache_raw_supply (rc, regnum,
842 (char *) &regs->ar[regnum - gdbarch_tdep
843 (gdbarch)->ar_base]);
844 else if (regnum == -1)
845 {
846 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
847 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
848 (char *) &regs->ar[i]);
849 }
850 }
851
852
853 /* Xtensa register set. */
854
855 static struct regset
856 xtensa_gregset =
857 {
858 NULL,
859 xtensa_supply_gregset
860 };
861
862
863 /* Return the appropriate register set for the core
864 section identified by SECT_NAME and SECT_SIZE. */
865
866 static const struct regset *
867 xtensa_regset_from_core_section (struct gdbarch *core_arch,
868 const char *sect_name,
869 size_t sect_size)
870 {
871 DEBUGTRACE ("xtensa_regset_from_core_section "
872 "(..., sect_name==\"%s\", sect_size==%x) \n",
873 sect_name, (unsigned int) sect_size);
874
875 if (strcmp (sect_name, ".reg") == 0
876 && sect_size >= sizeof(xtensa_elf_gregset_t))
877 return &xtensa_gregset;
878
879 return NULL;
880 }
881
882
883 /* Handling frames. */
884
885 /* Number of registers to save in case of Windowed ABI. */
886 #define XTENSA_NUM_SAVED_AREGS 12
887
888 /* Frame cache part for Windowed ABI. */
889 typedef struct xtensa_windowed_frame_cache
890 {
891 int wb; /* WINDOWBASE of the previous frame. */
892 int callsize; /* Call size of this frame. */
893 int ws; /* WINDOWSTART of the previous frame. It keeps track of
894 life windows only. If there is no bit set for the
895 window, that means it had been already spilled
896 because of window overflow. */
897
898 /* Spilled A-registers from the previous frame.
899 AREGS[i] == -1, if corresponding AR is alive. */
900 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
901 } xtensa_windowed_frame_cache_t;
902
903 /* Call0 ABI Definitions. */
904
905 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
906 #define C0_NREGS 16 /* Number of A-registers to track. */
907 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
908 #define C0_SP 1 /* Register used as SP. */
909 #define C0_FP 15 /* Register used as FP. */
910 #define C0_RA 0 /* Register used as return address. */
911 #define C0_ARGS 2 /* Register used as first arg/retval. */
912 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
913
914 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
915 A-register where the current content of the reg came from (in terms
916 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
917 mean that the orignal content of the register was saved to the stack.
918 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
919 know where SP will end up until the entire prologue has been analyzed. */
920
921 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
922 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
923 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
924
925 extern xtensa_isa xtensa_default_isa;
926
927 typedef struct xtensa_c0reg
928 {
929 int fr_reg; /* original register from which register content
930 is derived, or C0_CONST, or C0_INEXP. */
931 int fr_ofs; /* constant offset from reg, or immediate value. */
932 int to_stk; /* offset from original SP to register (4-byte aligned),
933 or C0_NOSTK if register has not been saved. */
934 } xtensa_c0reg_t;
935
936
937 /* Frame cache part for Call0 ABI. */
938 typedef struct xtensa_call0_frame_cache
939 {
940 int c0_frmsz; /* Stack frame size. */
941 int c0_hasfp; /* Current frame uses frame pointer. */
942 int fp_regnum; /* A-register used as FP. */
943 int c0_fp; /* Actual value of frame pointer. */
944 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
945 } xtensa_call0_frame_cache_t;
946
947 typedef struct xtensa_frame_cache
948 {
949 CORE_ADDR base; /* Stack pointer of this frame. */
950 CORE_ADDR pc; /* PC at the entry point to the function. */
951 CORE_ADDR ra; /* The raw return address (without CALLINC). */
952 CORE_ADDR ps; /* The PS register of this frame. */
953 CORE_ADDR prev_sp; /* Stack Pointer of the previous frame. */
954 int call0; /* It's a call0 framework (else windowed). */
955 union
956 {
957 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
958 xtensa_call0_frame_cache_t c0; /* call0 == true. */
959 };
960 } xtensa_frame_cache_t;
961
962
963 static struct xtensa_frame_cache *
964 xtensa_alloc_frame_cache (int windowed)
965 {
966 xtensa_frame_cache_t *cache;
967 int i;
968
969 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
970
971 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
972
973 cache->base = 0;
974 cache->pc = 0;
975 cache->ra = 0;
976 cache->ps = 0;
977 cache->prev_sp = 0;
978 cache->call0 = !windowed;
979 if (cache->call0)
980 {
981 cache->c0.c0_frmsz = -1;
982 cache->c0.c0_hasfp = 0;
983 cache->c0.fp_regnum = -1;
984 cache->c0.c0_fp = -1;
985
986 for (i = 0; i < C0_NREGS; i++)
987 {
988 cache->c0.c0_rt[i].fr_reg = i;
989 cache->c0.c0_rt[i].fr_ofs = 0;
990 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
991 }
992 }
993 else
994 {
995 cache->wd.wb = 0;
996 cache->wd.ws = 0;
997 cache->wd.callsize = -1;
998
999 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1000 cache->wd.aregs[i] = -1;
1001 }
1002 return cache;
1003 }
1004
1005
1006 static CORE_ADDR
1007 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1008 {
1009 return address & ~15;
1010 }
1011
1012
1013 static CORE_ADDR
1014 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1015 {
1016 gdb_byte buf[8];
1017 CORE_ADDR pc;
1018
1019 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1020 host_address_to_string (next_frame));
1021
1022 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1023 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1024
1025 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1026
1027 return pc;
1028 }
1029
1030
1031 static struct frame_id
1032 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1033 {
1034 CORE_ADDR pc, fp;
1035
1036 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1037
1038 pc = get_frame_pc (this_frame);
1039 fp = get_frame_register_unsigned
1040 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1041
1042 /* Make dummy frame ID unique by adding a constant. */
1043 return frame_id_build (fp + SP_ALIGNMENT, pc);
1044 }
1045
1046 /* Returns the best guess about which register is a frame pointer
1047 for the function containing CURRENT_PC. */
1048
1049 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1050
1051 static unsigned int
1052 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1053 {
1054 #define RETURN_FP goto done
1055
1056 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1057 CORE_ADDR start_addr;
1058 xtensa_isa isa;
1059 xtensa_insnbuf ins, slot;
1060 char ibuf[XTENSA_ISA_BSZ];
1061 CORE_ADDR ia, bt, ba;
1062 xtensa_format ifmt;
1063 int ilen, islots, is;
1064 xtensa_opcode opc;
1065 const char *opcname;
1066
1067 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1068 if (start_addr == 0)
1069 return fp_regnum;
1070
1071 if (!xtensa_default_isa)
1072 xtensa_default_isa = xtensa_isa_init (0, 0);
1073 isa = xtensa_default_isa;
1074 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1075 ins = xtensa_insnbuf_alloc (isa);
1076 slot = xtensa_insnbuf_alloc (isa);
1077 ba = 0;
1078
1079 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1080 {
1081 if (ia + xtensa_isa_maxlength (isa) > bt)
1082 {
1083 ba = ia;
1084 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1085 ? ba + XTENSA_ISA_BSZ : current_pc;
1086 read_memory (ba, ibuf, bt - ba);
1087 }
1088
1089 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1090 ifmt = xtensa_format_decode (isa, ins);
1091 if (ifmt == XTENSA_UNDEFINED)
1092 RETURN_FP;
1093 ilen = xtensa_format_length (isa, ifmt);
1094 if (ilen == XTENSA_UNDEFINED)
1095 RETURN_FP;
1096 islots = xtensa_format_num_slots (isa, ifmt);
1097 if (islots == XTENSA_UNDEFINED)
1098 RETURN_FP;
1099
1100 for (is = 0; is < islots; ++is)
1101 {
1102 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1103 RETURN_FP;
1104
1105 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1106 if (opc == XTENSA_UNDEFINED)
1107 RETURN_FP;
1108
1109 opcname = xtensa_opcode_name (isa, opc);
1110
1111 if (strcasecmp (opcname, "mov.n") == 0
1112 || strcasecmp (opcname, "or") == 0)
1113 {
1114 unsigned int register_operand;
1115
1116 /* Possible candidate for setting frame pointer
1117 from A1. This is what we are looking for. */
1118
1119 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1120 is, slot, &register_operand) != 0)
1121 RETURN_FP;
1122 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1123 RETURN_FP;
1124 if (register_operand == 1) /* Mov{.n} FP A1. */
1125 {
1126 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1127 &register_operand) != 0)
1128 RETURN_FP;
1129 if (xtensa_operand_decode (isa, opc, 0,
1130 &register_operand) != 0)
1131 RETURN_FP;
1132
1133 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1134 RETURN_FP;
1135 }
1136 }
1137
1138 if (
1139 /* We have problems decoding the memory. */
1140 opcname == NULL
1141 || strcasecmp (opcname, "ill") == 0
1142 || strcasecmp (opcname, "ill.n") == 0
1143 /* Hit planted breakpoint. */
1144 || strcasecmp (opcname, "break") == 0
1145 || strcasecmp (opcname, "break.n") == 0
1146 /* Flow control instructions finish prologue. */
1147 || xtensa_opcode_is_branch (isa, opc) > 0
1148 || xtensa_opcode_is_jump (isa, opc) > 0
1149 || xtensa_opcode_is_loop (isa, opc) > 0
1150 || xtensa_opcode_is_call (isa, opc) > 0
1151 || strcasecmp (opcname, "simcall") == 0
1152 || strcasecmp (opcname, "syscall") == 0)
1153 /* Can not continue analysis. */
1154 RETURN_FP;
1155 }
1156 }
1157 done:
1158 xtensa_insnbuf_free(isa, slot);
1159 xtensa_insnbuf_free(isa, ins);
1160 return fp_regnum;
1161 }
1162
1163 /* The key values to identify the frame using "cache" are
1164
1165 cache->base = SP (or best guess about FP) of this frame;
1166 cache->pc = entry-PC (entry point of the frame function);
1167 cache->prev_sp = SP of the previous frame.
1168 */
1169
1170 static void
1171 call0_frame_cache (struct frame_info *this_frame,
1172 xtensa_frame_cache_t *cache,
1173 CORE_ADDR pc, CORE_ADDR litbase);
1174
1175 static struct xtensa_frame_cache *
1176 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1177 {
1178 xtensa_frame_cache_t *cache;
1179 CORE_ADDR ra, wb, ws, pc, sp, ps;
1180 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1181 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1182 unsigned int fp_regnum;
1183 char op1;
1184 int windowed;
1185
1186 if (*this_cache)
1187 return *this_cache;
1188
1189 ps = get_frame_register_unsigned (this_frame, gdbarch_ps_regnum (gdbarch));
1190 windowed = windowing_enabled (ps);
1191
1192 /* Get pristine xtensa-frame. */
1193 cache = xtensa_alloc_frame_cache (windowed);
1194 *this_cache = cache;
1195
1196 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1197
1198 if (windowed)
1199 {
1200 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1201 wb = get_frame_register_unsigned (this_frame,
1202 gdbarch_tdep (gdbarch)->wb_regnum);
1203 ws = get_frame_register_unsigned (this_frame,
1204 gdbarch_tdep (gdbarch)->ws_regnum);
1205
1206 op1 = read_memory_integer (pc, 1, byte_order);
1207 if (XTENSA_IS_ENTRY (gdbarch, op1))
1208 {
1209 int callinc = CALLINC (ps);
1210 ra = get_frame_register_unsigned
1211 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1212
1213 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1214 cache->wd.callsize = 0;
1215 cache->wd.wb = wb;
1216 cache->wd.ws = ws;
1217 cache->prev_sp = get_frame_register_unsigned
1218 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1219
1220 /* This only can be the outermost frame since we are
1221 just about to execute ENTRY. SP hasn't been set yet.
1222 We can assume any frame size, because it does not
1223 matter, and, let's fake frame base in cache. */
1224 cache->base = cache->prev_sp + 16;
1225
1226 cache->pc = pc;
1227 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1228 cache->ps = (ps & ~PS_CALLINC_MASK)
1229 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1230
1231 return cache;
1232 }
1233 else
1234 {
1235 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1236 ra = get_frame_register_unsigned (this_frame,
1237 gdbarch_tdep (gdbarch)->a0_base);
1238 cache->wd.callsize = WINSIZE (ra);
1239 cache->wd.wb = (wb - cache->wd.callsize / 4)
1240 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1241 cache->wd.ws = ws & ~(1 << wb);
1242
1243 cache->pc = get_frame_func (this_frame);
1244 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1245 cache->ps = (ps & ~PS_CALLINC_MASK)
1246 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1247 }
1248
1249 if (cache->wd.ws == 0)
1250 {
1251 int i;
1252
1253 /* Set A0...A3. */
1254 sp = get_frame_register_unsigned
1255 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1256
1257 for (i = 0; i < 4; i++, sp += 4)
1258 {
1259 cache->wd.aregs[i] = sp;
1260 }
1261
1262 if (cache->wd.callsize > 4)
1263 {
1264 /* Set A4...A7/A11. */
1265 /* Get the SP of the frame previous to the previous one.
1266 To achieve this, we have to dereference SP twice. */
1267 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1268 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1269 sp -= cache->wd.callsize * 4;
1270
1271 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1272 {
1273 cache->wd.aregs[i] = sp;
1274 }
1275 }
1276 }
1277
1278 if ((cache->prev_sp == 0) && ( ra != 0 ))
1279 /* If RA is equal to 0 this frame is an outermost frame. Leave
1280 cache->prev_sp unchanged marking the boundary of the frame stack. */
1281 {
1282 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1283 {
1284 /* Register window overflow already happened.
1285 We can read caller's SP from the proper spill loction. */
1286 sp = get_frame_register_unsigned
1287 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1288 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1289 }
1290 else
1291 {
1292 /* Read caller's frame SP directly from the previous window. */
1293 int regnum = arreg_number
1294 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1295 cache->wd.wb);
1296
1297 cache->prev_sp = get_frame_register_unsigned (this_frame, regnum);
1298 }
1299 }
1300 }
1301 else /* Call0 framework. */
1302 {
1303 unsigned int litbase_regnum = gdbarch_tdep (gdbarch)->litbase_regnum;
1304 CORE_ADDR litbase = (litbase_regnum == -1)
1305 ? 0 : get_frame_register_unsigned (this_frame, litbase_regnum);
1306
1307 call0_frame_cache (this_frame, cache, pc, litbase);
1308 fp_regnum = cache->c0.fp_regnum;
1309 }
1310
1311 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1312
1313 return cache;
1314 }
1315
1316 static void
1317 xtensa_frame_this_id (struct frame_info *this_frame,
1318 void **this_cache,
1319 struct frame_id *this_id)
1320 {
1321 struct xtensa_frame_cache *cache =
1322 xtensa_frame_cache (this_frame, this_cache);
1323
1324 if (cache->prev_sp == 0)
1325 return;
1326
1327 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1328 }
1329
1330 static struct value *
1331 xtensa_frame_prev_register (struct frame_info *this_frame,
1332 void **this_cache,
1333 int regnum)
1334 {
1335 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1336 struct xtensa_frame_cache *cache;
1337 ULONGEST saved_reg = 0;
1338 int done = 1;
1339
1340 if (*this_cache == NULL)
1341 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1342 cache = *this_cache;
1343
1344 if (regnum ==gdbarch_pc_regnum (gdbarch))
1345 saved_reg = cache->ra;
1346 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1347 saved_reg = cache->prev_sp;
1348 else if (!cache->call0)
1349 {
1350 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1351 saved_reg = cache->wd.ws;
1352 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1353 saved_reg = cache->wd.wb;
1354 else if (regnum == gdbarch_ps_regnum (gdbarch))
1355 saved_reg = cache->ps;
1356 else
1357 done = 0;
1358 }
1359 else
1360 done = 0;
1361
1362 if (done)
1363 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1364
1365 if (!cache->call0) /* Windowed ABI. */
1366 {
1367 /* Convert A-register numbers to AR-register numbers,
1368 if we deal with A-register. */
1369 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1370 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1371 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1372
1373 /* Check, if we deal with AR-register saved on stack. */
1374 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1375 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1376 + gdbarch_tdep (gdbarch)->num_aregs))
1377 {
1378 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1379
1380 if (areg >= 0
1381 && areg < XTENSA_NUM_SAVED_AREGS
1382 && cache->wd.aregs[areg] != -1)
1383 return frame_unwind_got_memory (this_frame, regnum,
1384 cache->wd.aregs[areg]);
1385 }
1386 }
1387 else /* Call0 ABI. */
1388 {
1389 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1390 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1391 + C0_NREGS))
1392 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1393
1394 if (reg < C0_NREGS)
1395 {
1396 CORE_ADDR spe;
1397 int stkofs;
1398
1399 /* If register was saved in the prologue, retrieve it. */
1400 stkofs = cache->c0.c0_rt[reg].to_stk;
1401 if (stkofs != C0_NOSTK)
1402 {
1403 /* Determine SP on entry based on FP. */
1404 spe = cache->c0.c0_fp
1405 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1406
1407 return frame_unwind_got_memory (this_frame, regnum, spe + stkofs);
1408 }
1409 }
1410 }
1411
1412 /* All other registers have been either saved to
1413 the stack or are still alive in the processor. */
1414
1415 return frame_unwind_got_register (this_frame, regnum, regnum);
1416 }
1417
1418
1419 static const struct frame_unwind
1420 xtensa_unwind =
1421 {
1422 NORMAL_FRAME,
1423 xtensa_frame_this_id,
1424 xtensa_frame_prev_register,
1425 NULL,
1426 default_frame_sniffer
1427 };
1428
1429 static CORE_ADDR
1430 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1431 {
1432 struct xtensa_frame_cache *cache =
1433 xtensa_frame_cache (this_frame, this_cache);
1434
1435 return cache->base;
1436 }
1437
1438 static const struct frame_base
1439 xtensa_frame_base =
1440 {
1441 &xtensa_unwind,
1442 xtensa_frame_base_address,
1443 xtensa_frame_base_address,
1444 xtensa_frame_base_address
1445 };
1446
1447
1448 static void
1449 xtensa_extract_return_value (struct type *type,
1450 struct regcache *regcache,
1451 void *dst)
1452 {
1453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1454 bfd_byte *valbuf = dst;
1455 int len = TYPE_LENGTH (type);
1456 ULONGEST pc, wb;
1457 int callsize, areg;
1458 int offset = 0;
1459
1460 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1461
1462 gdb_assert(len > 0);
1463
1464 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1465 {
1466 /* First, we have to find the caller window in the register file. */
1467 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1468 callsize = extract_call_winsize (gdbarch, pc);
1469
1470 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1471 if (len > (callsize > 8 ? 8 : 16))
1472 internal_error (__FILE__, __LINE__,
1473 _("cannot extract return value of %d bytes long"), len);
1474
1475 /* Get the register offset of the return
1476 register (A2) in the caller window. */
1477 regcache_raw_read_unsigned
1478 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1479 areg = arreg_number (gdbarch,
1480 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1481 }
1482 else
1483 {
1484 /* No windowing hardware - Call0 ABI. */
1485 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1486 }
1487
1488 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1489
1490 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1491 offset = 4 - len;
1492
1493 for (; len > 0; len -= 4, areg++, valbuf += 4)
1494 {
1495 if (len < 4)
1496 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1497 else
1498 regcache_raw_read (regcache, areg, valbuf);
1499 }
1500 }
1501
1502
1503 static void
1504 xtensa_store_return_value (struct type *type,
1505 struct regcache *regcache,
1506 const void *dst)
1507 {
1508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1509 const bfd_byte *valbuf = dst;
1510 unsigned int areg;
1511 ULONGEST pc, wb;
1512 int callsize;
1513 int len = TYPE_LENGTH (type);
1514 int offset = 0;
1515
1516 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1517
1518 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1519 {
1520 regcache_raw_read_unsigned
1521 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1522 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1523 callsize = extract_call_winsize (gdbarch, pc);
1524
1525 if (len > (callsize > 8 ? 8 : 16))
1526 internal_error (__FILE__, __LINE__,
1527 _("unimplemented for this length: %d"),
1528 TYPE_LENGTH (type));
1529 areg = arreg_number (gdbarch,
1530 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1531
1532 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1533 callsize, (int) wb);
1534 }
1535 else
1536 {
1537 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1538 }
1539
1540 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1541 offset = 4 - len;
1542
1543 for (; len > 0; len -= 4, areg++, valbuf += 4)
1544 {
1545 if (len < 4)
1546 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1547 else
1548 regcache_raw_write (regcache, areg, valbuf);
1549 }
1550 }
1551
1552
1553 static enum return_value_convention
1554 xtensa_return_value (struct gdbarch *gdbarch,
1555 struct type *func_type,
1556 struct type *valtype,
1557 struct regcache *regcache,
1558 gdb_byte *readbuf,
1559 const gdb_byte *writebuf)
1560 {
1561 /* Structures up to 16 bytes are returned in registers. */
1562
1563 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1564 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1565 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1566 && TYPE_LENGTH (valtype) > 16);
1567
1568 if (struct_return)
1569 return RETURN_VALUE_STRUCT_CONVENTION;
1570
1571 DEBUGTRACE ("xtensa_return_value(...)\n");
1572
1573 if (writebuf != NULL)
1574 {
1575 xtensa_store_return_value (valtype, regcache, writebuf);
1576 }
1577
1578 if (readbuf != NULL)
1579 {
1580 gdb_assert (!struct_return);
1581 xtensa_extract_return_value (valtype, regcache, readbuf);
1582 }
1583 return RETURN_VALUE_REGISTER_CONVENTION;
1584 }
1585
1586
1587 /* DUMMY FRAME */
1588
1589 static CORE_ADDR
1590 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1591 struct value *function,
1592 struct regcache *regcache,
1593 CORE_ADDR bp_addr,
1594 int nargs,
1595 struct value **args,
1596 CORE_ADDR sp,
1597 int struct_return,
1598 CORE_ADDR struct_addr)
1599 {
1600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1601 int i;
1602 int size, onstack_size;
1603 gdb_byte *buf = (gdb_byte *) alloca (16);
1604 CORE_ADDR ra, ps;
1605 struct argument_info
1606 {
1607 const bfd_byte *contents;
1608 int length;
1609 int onstack; /* onstack == 0 => in reg */
1610 int align; /* alignment */
1611 union
1612 {
1613 int offset; /* stack offset if on stack */
1614 int regno; /* regno if in register */
1615 } u;
1616 };
1617
1618 struct argument_info *arg_info =
1619 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1620
1621 CORE_ADDR osp = sp;
1622
1623 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1624
1625 if (xtensa_debug_level > 3)
1626 {
1627 int i;
1628 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1629 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1630 "struct_addr=0x%x\n",
1631 (int) sp, (int) struct_return, (int) struct_addr);
1632
1633 for (i = 0; i < nargs; i++)
1634 {
1635 struct value *arg = args[i];
1636 struct type *arg_type = check_typedef (value_type (arg));
1637 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1638 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1639 switch (TYPE_CODE (arg_type))
1640 {
1641 case TYPE_CODE_INT:
1642 fprintf_unfiltered (gdb_stdlog, "int");
1643 break;
1644 case TYPE_CODE_STRUCT:
1645 fprintf_unfiltered (gdb_stdlog, "struct");
1646 break;
1647 default:
1648 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1649 break;
1650 }
1651 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1652 (unsigned long) value_contents (arg));
1653 }
1654 }
1655
1656 /* First loop: collect information.
1657 Cast into type_long. (This shouldn't happen often for C because
1658 GDB already does this earlier.) It's possible that GDB could
1659 do it all the time but it's harmless to leave this code here. */
1660
1661 size = 0;
1662 onstack_size = 0;
1663 i = 0;
1664
1665 if (struct_return)
1666 size = REGISTER_SIZE;
1667
1668 for (i = 0; i < nargs; i++)
1669 {
1670 struct argument_info *info = &arg_info[i];
1671 struct value *arg = args[i];
1672 struct type *arg_type = check_typedef (value_type (arg));
1673
1674 switch (TYPE_CODE (arg_type))
1675 {
1676 case TYPE_CODE_INT:
1677 case TYPE_CODE_BOOL:
1678 case TYPE_CODE_CHAR:
1679 case TYPE_CODE_RANGE:
1680 case TYPE_CODE_ENUM:
1681
1682 /* Cast argument to long if necessary as the mask does it too. */
1683 if (TYPE_LENGTH (arg_type)
1684 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1685 {
1686 arg_type = builtin_type (gdbarch)->builtin_long;
1687 arg = value_cast (arg_type, arg);
1688 }
1689 /* Aligment is equal to the type length for the basic types. */
1690 info->align = TYPE_LENGTH (arg_type);
1691 break;
1692
1693 case TYPE_CODE_FLT:
1694
1695 /* Align doubles correctly. */
1696 if (TYPE_LENGTH (arg_type)
1697 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1698 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1699 else
1700 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1701 break;
1702
1703 case TYPE_CODE_STRUCT:
1704 default:
1705 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1706 break;
1707 }
1708 info->length = TYPE_LENGTH (arg_type);
1709 info->contents = value_contents (arg);
1710
1711 /* Align size and onstack_size. */
1712 size = (size + info->align - 1) & ~(info->align - 1);
1713 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1714
1715 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1716 {
1717 info->onstack = 1;
1718 info->u.offset = onstack_size;
1719 onstack_size += info->length;
1720 }
1721 else
1722 {
1723 info->onstack = 0;
1724 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1725 }
1726 size += info->length;
1727 }
1728
1729 /* Adjust the stack pointer and align it. */
1730 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1731
1732 /* Simulate MOVSP, if Windowed ABI. */
1733 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1734 && (sp != osp))
1735 {
1736 read_memory (osp - 16, buf, 16);
1737 write_memory (sp - 16, buf, 16);
1738 }
1739
1740 /* Second Loop: Load arguments. */
1741
1742 if (struct_return)
1743 {
1744 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1745 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1746 }
1747
1748 for (i = 0; i < nargs; i++)
1749 {
1750 struct argument_info *info = &arg_info[i];
1751
1752 if (info->onstack)
1753 {
1754 int n = info->length;
1755 CORE_ADDR offset = sp + info->u.offset;
1756
1757 /* Odd-sized structs are aligned to the lower side of a memory
1758 word in big-endian mode and require a shift. This only
1759 applies for structures smaller than one word. */
1760
1761 if (n < REGISTER_SIZE
1762 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1763 offset += (REGISTER_SIZE - n);
1764
1765 write_memory (offset, info->contents, info->length);
1766
1767 }
1768 else
1769 {
1770 int n = info->length;
1771 const bfd_byte *cp = info->contents;
1772 int r = info->u.regno;
1773
1774 /* Odd-sized structs are aligned to the lower side of registers in
1775 big-endian mode and require a shift. The odd-sized leftover will
1776 be at the end. Note that this is only true for structures smaller
1777 than REGISTER_SIZE; for larger odd-sized structures the excess
1778 will be left-aligned in the register on both endiannesses. */
1779
1780 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1781 {
1782 ULONGEST v;
1783 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1784 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1785
1786 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1787 regcache_cooked_write (regcache, r, buf);
1788
1789 cp += REGISTER_SIZE;
1790 n -= REGISTER_SIZE;
1791 r++;
1792 }
1793 else
1794 while (n > 0)
1795 {
1796 regcache_cooked_write (regcache, r, cp);
1797
1798 cp += REGISTER_SIZE;
1799 n -= REGISTER_SIZE;
1800 r++;
1801 }
1802 }
1803 }
1804
1805 /* Set the return address of dummy frame to the dummy address.
1806 The return address for the current function (in A0) is
1807 saved in the dummy frame, so we can savely overwrite A0 here. */
1808
1809 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1810 {
1811 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1812 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1813 ps = extract_unsigned_integer (buf, 4, byte_order) & ~0x00030000;
1814 regcache_cooked_write_unsigned
1815 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1816 regcache_cooked_write_unsigned (regcache,
1817 gdbarch_ps_regnum (gdbarch),
1818 ps | 0x00010000);
1819
1820 /* All the registers have been saved. After executing
1821 dummy call, they all will be restored. So it's safe
1822 to modify WINDOWSTART register to make it look like there
1823 is only one register window corresponding to WINDOWEBASE. */
1824
1825 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1826 regcache_cooked_write_unsigned
1827 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1828 1 << extract_unsigned_integer (buf, 4, byte_order));
1829 }
1830 else
1831 {
1832 /* Simulate CALL0: write RA into A0 register. */
1833 regcache_cooked_write_unsigned
1834 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1835 }
1836
1837 /* Set new stack pointer and return it. */
1838 regcache_cooked_write_unsigned (regcache,
1839 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1840 /* Make dummy frame ID unique by adding a constant. */
1841 return sp + SP_ALIGNMENT;
1842 }
1843
1844
1845 /* Return a breakpoint for the current location of PC. We always use
1846 the density version if we have density instructions (regardless of the
1847 current instruction at PC), and use regular instructions otherwise. */
1848
1849 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1850 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1851 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1852 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1853
1854 static const unsigned char *
1855 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1856 int *lenptr)
1857 {
1858 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1859 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1860 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1861 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1862
1863 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1864
1865 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1866 {
1867 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1868 {
1869 *lenptr = sizeof (density_big_breakpoint);
1870 return density_big_breakpoint;
1871 }
1872 else
1873 {
1874 *lenptr = sizeof (density_little_breakpoint);
1875 return density_little_breakpoint;
1876 }
1877 }
1878 else
1879 {
1880 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1881 {
1882 *lenptr = sizeof (big_breakpoint);
1883 return big_breakpoint;
1884 }
1885 else
1886 {
1887 *lenptr = sizeof (little_breakpoint);
1888 return little_breakpoint;
1889 }
1890 }
1891 }
1892
1893 /* Call0 ABI support routines. */
1894
1895 /* Call0 opcode class. Opcodes are preclassified according to what they
1896 mean for Call0 prologue analysis, and their number of significant operands.
1897 The purpose of this is to simplify prologue analysis by separating
1898 instruction decoding (libisa) from the semantics of prologue analysis. */
1899
1900 typedef enum {
1901 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1902 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1903 c0opc_flow, /* Flow control insn. */
1904 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1905 c0opc_break, /* Debugger software breakpoints. */
1906 c0opc_add, /* Adding two registers. */
1907 c0opc_addi, /* Adding a register and an immediate. */
1908 c0opc_sub, /* Subtracting a register from a register. */
1909 c0opc_mov, /* Moving a register to a register. */
1910 c0opc_movi, /* Moving an immediate to a register. */
1911 c0opc_l32r, /* Loading a literal. */
1912 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1913 c0opc_NrOf /* Number of opcode classifications. */
1914 } xtensa_insn_kind;
1915
1916
1917 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1918
1919 static xtensa_insn_kind
1920 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1921 {
1922 const char *opcname;
1923 xtensa_insn_kind opclass = c0opc_uninteresting;
1924
1925 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1926
1927 /* Get opcode name and handle special classifications. */
1928
1929 opcname = xtensa_opcode_name (isa, opc);
1930
1931 if (opcname == NULL
1932 || strcasecmp (opcname, "ill") == 0
1933 || strcasecmp (opcname, "ill.n") == 0)
1934 opclass = c0opc_illegal;
1935 else if (strcasecmp (opcname, "break") == 0
1936 || strcasecmp (opcname, "break.n") == 0)
1937 opclass = c0opc_break;
1938 else if (strcasecmp (opcname, "entry") == 0)
1939 opclass = c0opc_entry;
1940 else if (xtensa_opcode_is_branch (isa, opc) > 0
1941 || xtensa_opcode_is_jump (isa, opc) > 0
1942 || xtensa_opcode_is_loop (isa, opc) > 0
1943 || xtensa_opcode_is_call (isa, opc) > 0
1944 || strcasecmp (opcname, "simcall") == 0
1945 || strcasecmp (opcname, "syscall") == 0)
1946 opclass = c0opc_flow;
1947
1948 /* Also, classify specific opcodes that need to be tracked. */
1949 else if (strcasecmp (opcname, "add") == 0
1950 || strcasecmp (opcname, "add.n") == 0)
1951 opclass = c0opc_add;
1952 else if (strcasecmp (opcname, "addi") == 0
1953 || strcasecmp (opcname, "addi.n") == 0
1954 || strcasecmp (opcname, "addmi") == 0)
1955 opclass = c0opc_addi;
1956 else if (strcasecmp (opcname, "sub") == 0)
1957 opclass = c0opc_sub;
1958 else if (strcasecmp (opcname, "mov.n") == 0
1959 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1960 opclass = c0opc_mov;
1961 else if (strcasecmp (opcname, "movi") == 0
1962 || strcasecmp (opcname, "movi.n") == 0)
1963 opclass = c0opc_movi;
1964 else if (strcasecmp (opcname, "l32r") == 0)
1965 opclass = c0opc_l32r;
1966 else if (strcasecmp (opcname, "s32i") == 0
1967 || strcasecmp (opcname, "s32i.n") == 0)
1968 opclass = c0opc_s32i;
1969
1970 return opclass;
1971 }
1972
1973 /* Tracks register movement/mutation for a given operation, which may
1974 be within a bundle. Updates the destination register tracking info
1975 accordingly. The pc is needed only for pc-relative load instructions
1976 (eg. l32r). The SP register number is needed to identify stores to
1977 the stack frame. */
1978
1979 static void
1980 call0_track_op (struct gdbarch *gdbarch,
1981 xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1982 xtensa_insn_kind opclass, int nods, unsigned odv[],
1983 CORE_ADDR pc, CORE_ADDR litbase, int spreg)
1984 {
1985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1986 unsigned litaddr, litval;
1987
1988 switch (opclass)
1989 {
1990 case c0opc_addi:
1991 /* 3 operands: dst, src, imm. */
1992 gdb_assert (nods == 3);
1993 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1994 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1995 break;
1996 case c0opc_add:
1997 /* 3 operands: dst, src1, src2. */
1998 gdb_assert (nods == 3);
1999 if (src[odv[1]].fr_reg == C0_CONST)
2000 {
2001 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2002 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2003 }
2004 else if (src[odv[2]].fr_reg == C0_CONST)
2005 {
2006 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2007 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2008 }
2009 else dst[odv[0]].fr_reg = C0_INEXP;
2010 break;
2011 case c0opc_sub:
2012 /* 3 operands: dst, src1, src2. */
2013 gdb_assert (nods == 3);
2014 if (src[odv[2]].fr_reg == C0_CONST)
2015 {
2016 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2017 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2018 }
2019 else dst[odv[0]].fr_reg = C0_INEXP;
2020 break;
2021 case c0opc_mov:
2022 /* 2 operands: dst, src [, src]. */
2023 gdb_assert (nods == 2);
2024 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2025 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2026 break;
2027 case c0opc_movi:
2028 /* 2 operands: dst, imm. */
2029 gdb_assert (nods == 2);
2030 dst[odv[0]].fr_reg = C0_CONST;
2031 dst[odv[0]].fr_ofs = odv[1];
2032 break;
2033 case c0opc_l32r:
2034 /* 2 operands: dst, literal offset. */
2035 gdb_assert (nods == 2);
2036 litaddr = litbase & 1
2037 ? (litbase & ~1) + (signed)odv[1]
2038 : (pc + 3 + (signed)odv[1]) & ~3;
2039 litval = read_memory_integer (litaddr, 4, byte_order);
2040 dst[odv[0]].fr_reg = C0_CONST;
2041 dst[odv[0]].fr_ofs = litval;
2042 break;
2043 case c0opc_s32i:
2044 /* 3 operands: value, base, offset. */
2045 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2046 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2047 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2048 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2049 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2050 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2051 {
2052 /* ISA encoding guarantees alignment. But, check it anyway. */
2053 gdb_assert ((odv[2] & 3) == 0);
2054 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2055 }
2056 break;
2057 default:
2058 gdb_assert (0);
2059 }
2060 }
2061
2062 /* Analyze prologue of the function at start address to determine if it uses
2063 the Call0 ABI, and if so track register moves and linear modifications
2064 in the prologue up to the PC or just beyond the prologue, whichever is first.
2065 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2066 The prologue may overlap non-prologue instructions but is guaranteed to end
2067 by the first flow-control instruction (jump, branch, call or return).
2068 Since an optimized function may move information around and change the
2069 stack frame arbitrarily during the prologue, the information is guaranteed
2070 valid only at the point in the function indicated by the PC.
2071 May be used to skip the prologue or identify the ABI, w/o tracking.
2072
2073 Returns: Address of first instruction after prologue, or PC (whichever
2074 is first), or 0, if decoding failed (in libisa).
2075 Input args:
2076 start Start address of function/prologue.
2077 pc Program counter to stop at. Use 0 to continue to end of prologue.
2078 If 0, avoids infinite run-on in corrupt code memory by bounding
2079 the scan to the end of the function if that can be determined.
2080 nregs Number of general registers to track (size of rt[] array).
2081 InOut args:
2082 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2083 If NULL, registers are not tracked.
2084 Output args:
2085 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2086 (more accurately, non-zero until 'entry' insn is encountered).
2087
2088 Note that these may produce useful results even if decoding fails
2089 because they begin with default assumptions that analysis may change. */
2090
2091 static CORE_ADDR
2092 call0_analyze_prologue (struct gdbarch *gdbarch,
2093 CORE_ADDR start, CORE_ADDR pc, CORE_ADDR litbase,
2094 int nregs, xtensa_c0reg_t rt[], int *call0)
2095 {
2096 CORE_ADDR ia; /* Current insn address in prologue. */
2097 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2098 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2099 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2100 xtensa_isa isa; /* libisa ISA handle. */
2101 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2102 xtensa_format ifmt; /* libisa instruction format. */
2103 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2104 xtensa_opcode opc; /* Opcode in current slot. */
2105 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2106 int nods; /* Opcode number of operands. */
2107 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2108 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2109 int j; /* General loop counter. */
2110 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2111 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2112 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2113
2114 struct symtab_and_line prologue_sal;
2115
2116 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2117 (int)start, (int)pc);
2118
2119 /* Try to limit the scan to the end of the function if a non-zero pc
2120 arg was not supplied to avoid probing beyond the end of valid memory.
2121 If memory is full of garbage that classifies as c0opc_uninteresting.
2122 If this fails (eg. if no symbols) pc ends up 0 as it was.
2123 Intialize the Call0 frame and register tracking info.
2124 Assume it's Call0 until an 'entry' instruction is encountered.
2125 Assume we may be in the prologue until we hit a flow control instr. */
2126
2127 rtmp = NULL;
2128 body_pc = INT_MAX;
2129 end_pc = 0;
2130
2131 /* Find out, if we have an information about the prologue from DWARF. */
2132 prologue_sal = find_pc_line (start, 0);
2133 if (prologue_sal.line != 0) /* Found debug info. */
2134 body_pc = prologue_sal.end;
2135
2136 /* If we are going to analyze the prologue in general without knowing about
2137 the current PC, make the best assumtion for the end of the prologue. */
2138 if (pc == 0)
2139 {
2140 find_pc_partial_function (start, 0, NULL, &end_pc);
2141 body_pc = min (end_pc, body_pc);
2142 }
2143 else
2144 body_pc = min (pc, body_pc);
2145
2146 if (call0 != NULL)
2147 *call0 = 1;
2148
2149 if (rt != NULL)
2150 {
2151 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2152 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2153 }
2154 else nregs = 0;
2155
2156 if (!xtensa_default_isa)
2157 xtensa_default_isa = xtensa_isa_init (0, 0);
2158 isa = xtensa_default_isa;
2159 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2160 ins = xtensa_insnbuf_alloc (isa);
2161 slot = xtensa_insnbuf_alloc (isa);
2162
2163 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2164 {
2165 /* (Re)fill instruction buffer from memory if necessary, but do not
2166 read memory beyond PC to be sure we stay within text section
2167 (this protection only works if a non-zero pc is supplied). */
2168
2169 if (ia + xtensa_isa_maxlength (isa) > bt)
2170 {
2171 ba = ia;
2172 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2173 read_memory (ba, ibuf, bt - ba);
2174 }
2175
2176 /* Decode format information. */
2177
2178 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2179 ifmt = xtensa_format_decode (isa, ins);
2180 if (ifmt == XTENSA_UNDEFINED)
2181 {
2182 fail = 1;
2183 goto done;
2184 }
2185 ilen = xtensa_format_length (isa, ifmt);
2186 if (ilen == XTENSA_UNDEFINED)
2187 {
2188 fail = 1;
2189 goto done;
2190 }
2191 islots = xtensa_format_num_slots (isa, ifmt);
2192 if (islots == XTENSA_UNDEFINED)
2193 {
2194 fail = 1;
2195 goto done;
2196 }
2197
2198 /* Analyze a bundle or a single instruction, using a snapshot of
2199 the register tracking info as input for the entire bundle so that
2200 register changes do not take effect within this bundle. */
2201
2202 for (j = 0; j < nregs; ++j)
2203 rtmp[j] = rt[j];
2204
2205 for (is = 0; is < islots; ++is)
2206 {
2207 /* Decode a slot and classify the opcode. */
2208
2209 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2210 if (fail)
2211 goto done;
2212
2213 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2214 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2215 (unsigned)ia, opc);
2216 if (opc == XTENSA_UNDEFINED)
2217 opclass = c0opc_illegal;
2218 else
2219 opclass = call0_classify_opcode (isa, opc);
2220
2221 /* Decide whether to track this opcode, ignore it, or bail out. */
2222
2223 switch (opclass)
2224 {
2225 case c0opc_illegal:
2226 case c0opc_break:
2227 fail = 1;
2228 goto done;
2229
2230 case c0opc_uninteresting:
2231 continue;
2232
2233 case c0opc_flow:
2234 goto done;
2235
2236 case c0opc_entry:
2237 if (call0 != NULL)
2238 *call0 = 0;
2239 ia += ilen; /* Skip over 'entry' insn. */
2240 goto done;
2241
2242 default:
2243 if (call0 != NULL)
2244 *call0 = 1;
2245 }
2246
2247 /* Only expected opcodes should get this far. */
2248 if (rt == NULL)
2249 continue;
2250
2251 /* Extract and decode the operands. */
2252 nods = xtensa_opcode_num_operands (isa, opc);
2253 if (nods == XTENSA_UNDEFINED)
2254 {
2255 fail = 1;
2256 goto done;
2257 }
2258
2259 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2260 {
2261 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2262 is, slot, &odv[j]);
2263 if (fail)
2264 goto done;
2265
2266 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2267 if (fail)
2268 goto done;
2269 }
2270
2271 /* Check operands to verify use of 'mov' assembler macro. */
2272 if (opclass == c0opc_mov && nods == 3)
2273 {
2274 if (odv[2] == odv[1])
2275 nods = 2;
2276 else
2277 {
2278 opclass = c0opc_uninteresting;
2279 continue;
2280 }
2281 }
2282
2283 /* Track register movement and modification for this operation. */
2284 call0_track_op (gdbarch, rt, rtmp, opclass,
2285 nods, odv, ia, litbase, 1);
2286 }
2287 }
2288 done:
2289 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2290 (unsigned)ia, fail ? "failed" : "succeeded");
2291 xtensa_insnbuf_free(isa, slot);
2292 xtensa_insnbuf_free(isa, ins);
2293 return fail ? 0 : ia;
2294 }
2295
2296 /* Initialize frame cache for the current frame in CALL0 ABI. */
2297
2298 static void
2299 call0_frame_cache (struct frame_info *this_frame,
2300 xtensa_frame_cache_t *cache, CORE_ADDR pc, CORE_ADDR litbase)
2301 {
2302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2304 CORE_ADDR start_pc; /* The beginning of the function. */
2305 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2306 CORE_ADDR sp, fp, ra;
2307 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2308
2309 /* Find the beginning of the prologue of the function containing the PC
2310 and analyze it up to the PC or the end of the prologue. */
2311
2312 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2313 {
2314 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, litbase,
2315 C0_NREGS,
2316 &cache->c0.c0_rt[0],
2317 &cache->call0);
2318 }
2319
2320 sp = get_frame_register_unsigned
2321 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2322 fp = sp; /* Assume FP == SP until proven otherwise. */
2323
2324 /* Get the frame information and FP (if used) at the current PC.
2325 If PC is in the prologue, the prologue analysis is more reliable
2326 than DWARF info. We don't not know for sure if PC is in the prologue,
2327 but we know no calls have yet taken place, so we can almost
2328 certainly rely on the prologue analysis. */
2329
2330 if (body_pc <= pc)
2331 {
2332 /* Prologue analysis was successful up to the PC.
2333 It includes the cases when PC == START_PC. */
2334 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2335 /* c0_hasfp == true means there is a frame pointer because
2336 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2337 was derived from SP. Otherwise, it would be C0_FP. */
2338 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2339 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2340 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2341 }
2342 else /* No data from the prologue analysis. */
2343 {
2344 c0_hasfp = 0;
2345 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2346 c0_frmsz = 0;
2347 start_pc = pc;
2348 }
2349
2350 prev_sp = fp + c0_frmsz;
2351
2352 /* Frame size from debug info or prologue tracking does not account for
2353 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2354 if (c0_hasfp)
2355 {
2356 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2357
2358 /* Recalculate previous SP. */
2359 prev_sp = fp + c0_frmsz;
2360 /* Update the stack frame size. */
2361 c0_frmsz += fp - sp;
2362 }
2363
2364 /* Get the return address (RA) from the stack if saved,
2365 or try to get it from a register. */
2366
2367 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2368 if (to_stk != C0_NOSTK)
2369 ra = (CORE_ADDR)
2370 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2371 4, byte_order);
2372
2373 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2374 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2375 {
2376 /* Special case for terminating backtrace at a function that wants to
2377 be seen as the outermost. Such a function will clear it's RA (A0)
2378 register to 0 in the prologue instead of saving its original value. */
2379 ra = 0;
2380 }
2381 else
2382 {
2383 /* RA was copied to another register or (before any function call) may
2384 still be in the original RA register. This is not always reliable:
2385 even in a leaf function, register tracking stops after prologue, and
2386 even in prologue, non-prologue instructions (not tracked) may overwrite
2387 RA or any register it was copied to. If likely in prologue or before
2388 any call, use retracking info and hope for the best (compiler should
2389 have saved RA in stack if not in a leaf function). If not in prologue,
2390 too bad. */
2391
2392 int i;
2393 for (i = 0;
2394 (i < C0_NREGS) &&
2395 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2396 ++i);
2397 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2398 i = C0_RA;
2399 if (i < C0_NREGS)
2400 {
2401 ra = get_frame_register_unsigned
2402 (this_frame,
2403 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2404 }
2405 else ra = 0;
2406 }
2407
2408 cache->pc = start_pc;
2409 cache->ra = ra;
2410 /* RA == 0 marks the outermost frame. Do not go past it. */
2411 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2412 cache->c0.fp_regnum = fp_regnum;
2413 cache->c0.c0_frmsz = c0_frmsz;
2414 cache->c0.c0_hasfp = c0_hasfp;
2415 cache->c0.c0_fp = fp;
2416 }
2417
2418
2419 /* Skip function prologue.
2420
2421 Return the pc of the first instruction after prologue. GDB calls this to
2422 find the address of the first line of the function or (if there is no line
2423 number information) to skip the prologue for planting breakpoints on
2424 function entries. Use debug info (if present) or prologue analysis to skip
2425 the prologue to achieve reliable debugging behavior. For windowed ABI,
2426 only the 'entry' instruction is skipped. It is not strictly necessary to
2427 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2428 backtrace at any point in the prologue, however certain potential hazards
2429 are avoided and a more "normal" debugging experience is ensured by
2430 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2431 For example, if we don't skip the prologue:
2432 - Some args may not yet have been saved to the stack where the debug
2433 info expects to find them (true anyway when only 'entry' is skipped);
2434 - Software breakpoints ('break' instrs) may not have been unplanted
2435 when the prologue analysis is done on initializing the frame cache,
2436 and breaks in the prologue will throw off the analysis.
2437
2438 If we have debug info ( line-number info, in particular ) we simply skip
2439 the code associated with the first function line effectively skipping
2440 the prologue code. It works even in cases like
2441
2442 int main()
2443 { int local_var = 1;
2444 ....
2445 }
2446
2447 because, for this source code, both Xtensa compilers will generate two
2448 separate entries ( with the same line number ) in dwarf line-number
2449 section to make sure there is a boundary between the prologue code and
2450 the rest of the function.
2451
2452 If there is no debug info, we need to analyze the code. */
2453
2454 /* #define DONT_SKIP_PROLOGUE */
2455
2456 static CORE_ADDR
2457 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2458 {
2459 struct symtab_and_line prologue_sal;
2460 CORE_ADDR body_pc;
2461
2462 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2463
2464 #if DONT_SKIP_PROLOGUE
2465 return start_pc;
2466 #endif
2467
2468 /* Try to find first body line from debug info. */
2469
2470 prologue_sal = find_pc_line (start_pc, 0);
2471 if (prologue_sal.line != 0) /* Found debug info. */
2472 {
2473 /* In Call0, it is possible to have a function with only one instruction
2474 ('ret') resulting from a 1-line optimized function that does nothing.
2475 In that case, prologue_sal.end may actually point to the start of the
2476 next function in the text section, causing a breakpoint to be set at
2477 the wrong place. Check if the end address is in a different function,
2478 and if so return the start PC. We know we have symbol info. */
2479
2480 CORE_ADDR end_func;
2481
2482 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2483 if (end_func != start_pc)
2484 return start_pc;
2485
2486 return prologue_sal.end;
2487 }
2488
2489 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2490 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0, 0, NULL, NULL);
2491 return body_pc != 0 ? body_pc : start_pc;
2492 }
2493
2494 /* Verify the current configuration. */
2495 static void
2496 xtensa_verify_config (struct gdbarch *gdbarch)
2497 {
2498 struct ui_file *log;
2499 struct cleanup *cleanups;
2500 struct gdbarch_tdep *tdep;
2501 long dummy;
2502 char *buf;
2503
2504 tdep = gdbarch_tdep (gdbarch);
2505 log = mem_fileopen ();
2506 cleanups = make_cleanup_ui_file_delete (log);
2507
2508 /* Verify that we got a reasonable number of AREGS. */
2509 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2510 fprintf_unfiltered (log, _("\
2511 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2512 tdep->num_aregs);
2513
2514 /* Verify that certain registers exist. */
2515
2516 if (tdep->pc_regnum == -1)
2517 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2518 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2519 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2520
2521 if (tdep->isa_use_windowed_registers)
2522 {
2523 if (tdep->wb_regnum == -1)
2524 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2525 if (tdep->ws_regnum == -1)
2526 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2527 if (tdep->ar_base == -1)
2528 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2529 }
2530
2531 if (tdep->a0_base == -1)
2532 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2533
2534 buf = ui_file_xstrdup (log, &dummy);
2535 make_cleanup (xfree, buf);
2536 if (strlen (buf) > 0)
2537 internal_error (__FILE__, __LINE__,
2538 _("the following are invalid: %s"), buf);
2539 do_cleanups (cleanups);
2540 }
2541
2542
2543 /* Derive specific register numbers from the array of registers. */
2544
2545 static void
2546 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
2547 {
2548 xtensa_register_t* rmap;
2549 int n, max_size = 4;
2550
2551 tdep->num_regs = 0;
2552 tdep->num_nopriv_regs = 0;
2553
2554 /* Special registers 0..255 (core). */
2555 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
2556
2557 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
2558 {
2559 if (rmap->target_number == 0x0020)
2560 tdep->pc_regnum = n;
2561 else if (rmap->target_number == 0x0100)
2562 tdep->ar_base = n;
2563 else if (rmap->target_number == 0x0000)
2564 tdep->a0_base = n;
2565 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
2566 tdep->wb_regnum = n;
2567 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
2568 tdep->ws_regnum = n;
2569 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
2570 tdep->debugcause_regnum = n;
2571 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
2572 tdep->exccause_regnum = n;
2573 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
2574 tdep->excvaddr_regnum = n;
2575 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
2576 tdep->lbeg_regnum = n;
2577 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
2578 tdep->lend_regnum = n;
2579 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
2580 tdep->lcount_regnum = n;
2581 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
2582 tdep->sar_regnum = n;
2583 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
2584 tdep->litbase_regnum = n;
2585 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
2586 tdep->ps_regnum = n;
2587 #if 0
2588 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
2589 tdep->interrupt_regnum = n;
2590 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
2591 tdep->interrupt2_regnum = n;
2592 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
2593 tdep->cpenable_regnum = n;
2594 #endif
2595
2596 if (rmap->byte_size > max_size)
2597 max_size = rmap->byte_size;
2598 if (rmap->mask != 0 && tdep->num_regs == 0)
2599 tdep->num_regs = n;
2600 /* Find out out how to deal with priveleged registers.
2601
2602 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2603 && tdep->num_nopriv_regs == 0)
2604 tdep->num_nopriv_regs = n;
2605 */
2606 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2607 && tdep->num_regs == 0)
2608 tdep->num_regs = n;
2609 }
2610
2611 /* Number of pseudo registers. */
2612 tdep->num_pseudo_regs = n - tdep->num_regs;
2613
2614 /* Empirically determined maximum sizes. */
2615 tdep->max_register_raw_size = max_size;
2616 tdep->max_register_virtual_size = max_size;
2617 }
2618
2619 /* Module "constructor" function. */
2620
2621 extern struct gdbarch_tdep xtensa_tdep;
2622
2623 static struct gdbarch *
2624 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2625 {
2626 struct gdbarch_tdep *tdep;
2627 struct gdbarch *gdbarch;
2628 struct xtensa_abi_handler *abi_handler;
2629
2630 DEBUGTRACE ("gdbarch_init()\n");
2631
2632 /* We have to set the byte order before we call gdbarch_alloc. */
2633 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
2634
2635 tdep = &xtensa_tdep;
2636 gdbarch = gdbarch_alloc (&info, tdep);
2637 xtensa_derive_tdep (tdep);
2638
2639 /* Verify our configuration. */
2640 xtensa_verify_config (gdbarch);
2641
2642 /* Pseudo-Register read/write. */
2643 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2644 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2645
2646 /* Set target information. */
2647 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2648 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2649 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2650 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2651 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2652
2653 /* Renumber registers for known formats (stabs and dwarf2). */
2654 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2655 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2656
2657 /* We provide our own function to get register information. */
2658 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2659 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2660
2661 /* To call functions from GDB using dummy frame */
2662 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2663
2664 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2665
2666 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2667
2668 /* Advance PC across any prologue instructions to reach "real" code. */
2669 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2670
2671 /* Stack grows downward. */
2672 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2673
2674 /* Set breakpoints. */
2675 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2676
2677 /* After breakpoint instruction or illegal instruction, pc still
2678 points at break instruction, so don't decrement. */
2679 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2680
2681 /* We don't skip args. */
2682 set_gdbarch_frame_args_skip (gdbarch, 0);
2683
2684 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2685
2686 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2687
2688 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
2689
2690 /* Frame handling. */
2691 frame_base_set_default (gdbarch, &xtensa_frame_base);
2692 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
2693 dwarf2_append_unwinders (gdbarch);
2694
2695 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2696
2697 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2698
2699 xtensa_add_reggroups (gdbarch);
2700 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2701
2702 set_gdbarch_regset_from_core_section (gdbarch,
2703 xtensa_regset_from_core_section);
2704
2705 set_solib_svr4_fetch_link_map_offsets
2706 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2707
2708 return gdbarch;
2709 }
2710
2711 static void
2712 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2713 {
2714 error (_("xtensa_dump_tdep(): not implemented"));
2715 }
2716
2717 /* Provide a prototype to silence -Wmissing-prototypes. */
2718 extern initialize_file_ftype _initialize_xtensa_tdep;
2719
2720 void
2721 _initialize_xtensa_tdep (void)
2722 {
2723 struct cmd_list_element *c;
2724
2725 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2726 xtensa_init_reggroups ();
2727
2728 add_setshow_zinteger_cmd ("xtensa",
2729 class_maintenance,
2730 &xtensa_debug_level, _("\
2731 Set Xtensa debugging."), _("\
2732 Show Xtensa debugging."), _("\
2733 When non-zero, Xtensa-specific debugging is enabled. \
2734 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2735 NULL,
2736 NULL,
2737 &setdebuglist, &showdebuglist);
2738 }
This page took 0.112854 seconds and 5 git commands to generate.