gdbserver/linux-low: turn 'supports_hardware_single_step' into a method
[deliverable/binutils-gdb.git] / gdbserver / linux-low.cc
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
48 #include <inttypes.h>
49 #include "gdbsupport/common-inferior.h"
50 #include "nat/fork-inferior.h"
51 #include "gdbsupport/environ.h"
52 #include "gdbsupport/gdb-sigmask.h"
53 #include "gdbsupport/scoped_restore.h"
54 #ifndef ELFMAG0
55 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
59 #include <elf.h>
60 #endif
61 #include "nat/linux-namespaces.h"
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 #ifndef AT_HWCAP2
75 #define AT_HWCAP2 26
76 #endif
77
78 /* Some targets did not define these ptrace constants from the start,
79 so gdbserver defines them locally here. In the future, these may
80 be removed after they are added to asm/ptrace.h. */
81 #if !(defined(PT_TEXT_ADDR) \
82 || defined(PT_DATA_ADDR) \
83 || defined(PT_TEXT_END_ADDR))
84 #if defined(__mcoldfire__)
85 /* These are still undefined in 3.10 kernels. */
86 #define PT_TEXT_ADDR 49*4
87 #define PT_DATA_ADDR 50*4
88 #define PT_TEXT_END_ADDR 51*4
89 /* BFIN already defines these since at least 2.6.32 kernels. */
90 #elif defined(BFIN)
91 #define PT_TEXT_ADDR 220
92 #define PT_TEXT_END_ADDR 224
93 #define PT_DATA_ADDR 228
94 /* These are still undefined in 3.10 kernels. */
95 #elif defined(__TMS320C6X__)
96 #define PT_TEXT_ADDR (0x10000*4)
97 #define PT_DATA_ADDR (0x10004*4)
98 #define PT_TEXT_END_ADDR (0x10008*4)
99 #endif
100 #endif
101
102 #if (defined(__UCLIBC__) \
103 && defined(HAS_NOMMU) \
104 && defined(PT_TEXT_ADDR) \
105 && defined(PT_DATA_ADDR) \
106 && defined(PT_TEXT_END_ADDR))
107 #define SUPPORTS_READ_OFFSETS
108 #endif
109
110 #ifdef HAVE_LINUX_BTRACE
111 # include "nat/linux-btrace.h"
112 # include "gdbsupport/btrace-common.h"
113 #endif
114
115 #ifndef HAVE_ELF32_AUXV_T
116 /* Copied from glibc's elf.h. */
117 typedef struct
118 {
119 uint32_t a_type; /* Entry type */
120 union
121 {
122 uint32_t a_val; /* Integer value */
123 /* We use to have pointer elements added here. We cannot do that,
124 though, since it does not work when using 32-bit definitions
125 on 64-bit platforms and vice versa. */
126 } a_un;
127 } Elf32_auxv_t;
128 #endif
129
130 #ifndef HAVE_ELF64_AUXV_T
131 /* Copied from glibc's elf.h. */
132 typedef struct
133 {
134 uint64_t a_type; /* Entry type */
135 union
136 {
137 uint64_t a_val; /* Integer value */
138 /* We use to have pointer elements added here. We cannot do that,
139 though, since it does not work when using 32-bit definitions
140 on 64-bit platforms and vice versa. */
141 } a_un;
142 } Elf64_auxv_t;
143 #endif
144
145 /* Does the current host support PTRACE_GETREGSET? */
146 int have_ptrace_getregset = -1;
147
148 /* LWP accessors. */
149
150 /* See nat/linux-nat.h. */
151
152 ptid_t
153 ptid_of_lwp (struct lwp_info *lwp)
154 {
155 return ptid_of (get_lwp_thread (lwp));
156 }
157
158 /* See nat/linux-nat.h. */
159
160 void
161 lwp_set_arch_private_info (struct lwp_info *lwp,
162 struct arch_lwp_info *info)
163 {
164 lwp->arch_private = info;
165 }
166
167 /* See nat/linux-nat.h. */
168
169 struct arch_lwp_info *
170 lwp_arch_private_info (struct lwp_info *lwp)
171 {
172 return lwp->arch_private;
173 }
174
175 /* See nat/linux-nat.h. */
176
177 int
178 lwp_is_stopped (struct lwp_info *lwp)
179 {
180 return lwp->stopped;
181 }
182
183 /* See nat/linux-nat.h. */
184
185 enum target_stop_reason
186 lwp_stop_reason (struct lwp_info *lwp)
187 {
188 return lwp->stop_reason;
189 }
190
191 /* See nat/linux-nat.h. */
192
193 int
194 lwp_is_stepping (struct lwp_info *lwp)
195 {
196 return lwp->stepping;
197 }
198
199 /* A list of all unknown processes which receive stop signals. Some
200 other process will presumably claim each of these as forked
201 children momentarily. */
202
203 struct simple_pid_list
204 {
205 /* The process ID. */
206 int pid;
207
208 /* The status as reported by waitpid. */
209 int status;
210
211 /* Next in chain. */
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Trivial list manipulation functions to keep track of a list of new
217 stopped processes. */
218
219 static void
220 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
221 {
222 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
223
224 new_pid->pid = pid;
225 new_pid->status = status;
226 new_pid->next = *listp;
227 *listp = new_pid;
228 }
229
230 static int
231 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
232 {
233 struct simple_pid_list **p;
234
235 for (p = listp; *p != NULL; p = &(*p)->next)
236 if ((*p)->pid == pid)
237 {
238 struct simple_pid_list *next = (*p)->next;
239
240 *statusp = (*p)->status;
241 xfree (*p);
242 *p = next;
243 return 1;
244 }
245 return 0;
246 }
247
248 enum stopping_threads_kind
249 {
250 /* Not stopping threads presently. */
251 NOT_STOPPING_THREADS,
252
253 /* Stopping threads. */
254 STOPPING_THREADS,
255
256 /* Stopping and suspending threads. */
257 STOPPING_AND_SUSPENDING_THREADS
258 };
259
260 /* This is set while stop_all_lwps is in effect. */
261 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
262
263 /* FIXME make into a target method? */
264 int using_threads = 1;
265
266 /* True if we're presently stabilizing threads (moving them out of
267 jump pads). */
268 static int stabilizing_threads;
269
270 static void unsuspend_all_lwps (struct lwp_info *except);
271 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
272 static int lwp_is_marked_dead (struct lwp_info *lwp);
273 static int kill_lwp (unsigned long lwpid, int signo);
274 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
275 static int linux_low_ptrace_options (int attached);
276 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
277
278 /* When the event-loop is doing a step-over, this points at the thread
279 being stepped. */
280 ptid_t step_over_bkpt;
281
282 bool
283 linux_process_target::low_supports_breakpoints ()
284 {
285 return false;
286 }
287
288 CORE_ADDR
289 linux_process_target::low_get_pc (regcache *regcache)
290 {
291 return 0;
292 }
293
294 void
295 linux_process_target::low_set_pc (regcache *regcache, CORE_ADDR newpc)
296 {
297 gdb_assert_not_reached ("linux target op low_set_pc is not implemented");
298 }
299
300 std::vector<CORE_ADDR>
301 linux_process_target::low_get_next_pcs (regcache *regcache)
302 {
303 gdb_assert_not_reached ("linux target op low_get_next_pcs is not "
304 "implemented");
305 }
306
307 int
308 linux_process_target::low_decr_pc_after_break ()
309 {
310 return 0;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338
339 /* Return non-zero if HEADER is a 64-bit ELF file. */
340
341 static int
342 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
343 {
344 if (header->e_ident[EI_MAG0] == ELFMAG0
345 && header->e_ident[EI_MAG1] == ELFMAG1
346 && header->e_ident[EI_MAG2] == ELFMAG2
347 && header->e_ident[EI_MAG3] == ELFMAG3)
348 {
349 *machine = header->e_machine;
350 return header->e_ident[EI_CLASS] == ELFCLASS64;
351
352 }
353 *machine = EM_NONE;
354 return -1;
355 }
356
357 /* Return non-zero if FILE is a 64-bit ELF file,
358 zero if the file is not a 64-bit ELF file,
359 and -1 if the file is not accessible or doesn't exist. */
360
361 static int
362 elf_64_file_p (const char *file, unsigned int *machine)
363 {
364 Elf64_Ehdr header;
365 int fd;
366
367 fd = open (file, O_RDONLY);
368 if (fd < 0)
369 return -1;
370
371 if (read (fd, &header, sizeof (header)) != sizeof (header))
372 {
373 close (fd);
374 return 0;
375 }
376 close (fd);
377
378 return elf_64_header_p (&header, machine);
379 }
380
381 /* Accepts an integer PID; Returns true if the executable PID is
382 running is a 64-bit ELF file.. */
383
384 int
385 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
386 {
387 char file[PATH_MAX];
388
389 sprintf (file, "/proc/%d/exe", pid);
390 return elf_64_file_p (file, machine);
391 }
392
393 void
394 linux_process_target::delete_lwp (lwp_info *lwp)
395 {
396 struct thread_info *thr = get_lwp_thread (lwp);
397
398 if (debug_threads)
399 debug_printf ("deleting %ld\n", lwpid_of (thr));
400
401 remove_thread (thr);
402
403 low_delete_thread (lwp->arch_private);
404
405 free (lwp);
406 }
407
408 void
409 linux_process_target::low_delete_thread (arch_lwp_info *info)
410 {
411 /* Default implementation should be overridden if architecture-specific
412 info is being used. */
413 gdb_assert (info == nullptr);
414 }
415
416 process_info *
417 linux_process_target::add_linux_process (int pid, int attached)
418 {
419 struct process_info *proc;
420
421 proc = add_process (pid, attached);
422 proc->priv = XCNEW (struct process_info_private);
423
424 proc->priv->arch_private = low_new_process ();
425
426 return proc;
427 }
428
429 arch_process_info *
430 linux_process_target::low_new_process ()
431 {
432 return nullptr;
433 }
434
435 void
436 linux_process_target::low_delete_process (arch_process_info *info)
437 {
438 /* Default implementation must be overridden if architecture-specific
439 info exists. */
440 gdb_assert (info == nullptr);
441 }
442
443 void
444 linux_process_target::low_new_fork (process_info *parent, process_info *child)
445 {
446 /* Nop. */
447 }
448
449 void
450 linux_process_target::arch_setup_thread (thread_info *thread)
451 {
452 struct thread_info *saved_thread;
453
454 saved_thread = current_thread;
455 current_thread = thread;
456
457 low_arch_setup ();
458
459 current_thread = saved_thread;
460 }
461
462 int
463 linux_process_target::handle_extended_wait (lwp_info **orig_event_lwp,
464 int wstat)
465 {
466 client_state &cs = get_client_state ();
467 struct lwp_info *event_lwp = *orig_event_lwp;
468 int event = linux_ptrace_get_extended_event (wstat);
469 struct thread_info *event_thr = get_lwp_thread (event_lwp);
470 struct lwp_info *new_lwp;
471
472 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
473
474 /* All extended events we currently use are mid-syscall. Only
475 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
476 you have to be using PTRACE_SEIZE to get that. */
477 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
478
479 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
480 || (event == PTRACE_EVENT_CLONE))
481 {
482 ptid_t ptid;
483 unsigned long new_pid;
484 int ret, status;
485
486 /* Get the pid of the new lwp. */
487 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
488 &new_pid);
489
490 /* If we haven't already seen the new PID stop, wait for it now. */
491 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
492 {
493 /* The new child has a pending SIGSTOP. We can't affect it until it
494 hits the SIGSTOP, but we're already attached. */
495
496 ret = my_waitpid (new_pid, &status, __WALL);
497
498 if (ret == -1)
499 perror_with_name ("waiting for new child");
500 else if (ret != new_pid)
501 warning ("wait returned unexpected PID %d", ret);
502 else if (!WIFSTOPPED (status))
503 warning ("wait returned unexpected status 0x%x", status);
504 }
505
506 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
507 {
508 struct process_info *parent_proc;
509 struct process_info *child_proc;
510 struct lwp_info *child_lwp;
511 struct thread_info *child_thr;
512 struct target_desc *tdesc;
513
514 ptid = ptid_t (new_pid, new_pid, 0);
515
516 if (debug_threads)
517 {
518 debug_printf ("HEW: Got fork event from LWP %ld, "
519 "new child is %d\n",
520 ptid_of (event_thr).lwp (),
521 ptid.pid ());
522 }
523
524 /* Add the new process to the tables and clone the breakpoint
525 lists of the parent. We need to do this even if the new process
526 will be detached, since we will need the process object and the
527 breakpoints to remove any breakpoints from memory when we
528 detach, and the client side will access registers. */
529 child_proc = add_linux_process (new_pid, 0);
530 gdb_assert (child_proc != NULL);
531 child_lwp = add_lwp (ptid);
532 gdb_assert (child_lwp != NULL);
533 child_lwp->stopped = 1;
534 child_lwp->must_set_ptrace_flags = 1;
535 child_lwp->status_pending_p = 0;
536 child_thr = get_lwp_thread (child_lwp);
537 child_thr->last_resume_kind = resume_stop;
538 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
539
540 /* If we're suspending all threads, leave this one suspended
541 too. If the fork/clone parent is stepping over a breakpoint,
542 all other threads have been suspended already. Leave the
543 child suspended too. */
544 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
545 || event_lwp->bp_reinsert != 0)
546 {
547 if (debug_threads)
548 debug_printf ("HEW: leaving child suspended\n");
549 child_lwp->suspended = 1;
550 }
551
552 parent_proc = get_thread_process (event_thr);
553 child_proc->attached = parent_proc->attached;
554
555 if (event_lwp->bp_reinsert != 0
556 && supports_software_single_step ()
557 && event == PTRACE_EVENT_VFORK)
558 {
559 /* If we leave single-step breakpoints there, child will
560 hit it, so uninsert single-step breakpoints from parent
561 (and child). Once vfork child is done, reinsert
562 them back to parent. */
563 uninsert_single_step_breakpoints (event_thr);
564 }
565
566 clone_all_breakpoints (child_thr, event_thr);
567
568 tdesc = allocate_target_description ();
569 copy_target_description (tdesc, parent_proc->tdesc);
570 child_proc->tdesc = tdesc;
571
572 /* Clone arch-specific process data. */
573 low_new_fork (parent_proc, child_proc);
574
575 /* Save fork info in the parent thread. */
576 if (event == PTRACE_EVENT_FORK)
577 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
578 else if (event == PTRACE_EVENT_VFORK)
579 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
580
581 event_lwp->waitstatus.value.related_pid = ptid;
582
583 /* The status_pending field contains bits denoting the
584 extended event, so when the pending event is handled,
585 the handler will look at lwp->waitstatus. */
586 event_lwp->status_pending_p = 1;
587 event_lwp->status_pending = wstat;
588
589 /* Link the threads until the parent event is passed on to
590 higher layers. */
591 event_lwp->fork_relative = child_lwp;
592 child_lwp->fork_relative = event_lwp;
593
594 /* If the parent thread is doing step-over with single-step
595 breakpoints, the list of single-step breakpoints are cloned
596 from the parent's. Remove them from the child process.
597 In case of vfork, we'll reinsert them back once vforked
598 child is done. */
599 if (event_lwp->bp_reinsert != 0
600 && supports_software_single_step ())
601 {
602 /* The child process is forked and stopped, so it is safe
603 to access its memory without stopping all other threads
604 from other processes. */
605 delete_single_step_breakpoints (child_thr);
606
607 gdb_assert (has_single_step_breakpoints (event_thr));
608 gdb_assert (!has_single_step_breakpoints (child_thr));
609 }
610
611 /* Report the event. */
612 return 0;
613 }
614
615 if (debug_threads)
616 debug_printf ("HEW: Got clone event "
617 "from LWP %ld, new child is LWP %ld\n",
618 lwpid_of (event_thr), new_pid);
619
620 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
621 new_lwp = add_lwp (ptid);
622
623 /* Either we're going to immediately resume the new thread
624 or leave it stopped. resume_one_lwp is a nop if it
625 thinks the thread is currently running, so set this first
626 before calling resume_one_lwp. */
627 new_lwp->stopped = 1;
628
629 /* If we're suspending all threads, leave this one suspended
630 too. If the fork/clone parent is stepping over a breakpoint,
631 all other threads have been suspended already. Leave the
632 child suspended too. */
633 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
634 || event_lwp->bp_reinsert != 0)
635 new_lwp->suspended = 1;
636
637 /* Normally we will get the pending SIGSTOP. But in some cases
638 we might get another signal delivered to the group first.
639 If we do get another signal, be sure not to lose it. */
640 if (WSTOPSIG (status) != SIGSTOP)
641 {
642 new_lwp->stop_expected = 1;
643 new_lwp->status_pending_p = 1;
644 new_lwp->status_pending = status;
645 }
646 else if (cs.report_thread_events)
647 {
648 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
649 new_lwp->status_pending_p = 1;
650 new_lwp->status_pending = status;
651 }
652
653 #ifdef USE_THREAD_DB
654 thread_db_notice_clone (event_thr, ptid);
655 #endif
656
657 /* Don't report the event. */
658 return 1;
659 }
660 else if (event == PTRACE_EVENT_VFORK_DONE)
661 {
662 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
663
664 if (event_lwp->bp_reinsert != 0 && supports_software_single_step ())
665 {
666 reinsert_single_step_breakpoints (event_thr);
667
668 gdb_assert (has_single_step_breakpoints (event_thr));
669 }
670
671 /* Report the event. */
672 return 0;
673 }
674 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
675 {
676 struct process_info *proc;
677 std::vector<int> syscalls_to_catch;
678 ptid_t event_ptid;
679 pid_t event_pid;
680
681 if (debug_threads)
682 {
683 debug_printf ("HEW: Got exec event from LWP %ld\n",
684 lwpid_of (event_thr));
685 }
686
687 /* Get the event ptid. */
688 event_ptid = ptid_of (event_thr);
689 event_pid = event_ptid.pid ();
690
691 /* Save the syscall list from the execing process. */
692 proc = get_thread_process (event_thr);
693 syscalls_to_catch = std::move (proc->syscalls_to_catch);
694
695 /* Delete the execing process and all its threads. */
696 mourn (proc);
697 current_thread = NULL;
698
699 /* Create a new process/lwp/thread. */
700 proc = add_linux_process (event_pid, 0);
701 event_lwp = add_lwp (event_ptid);
702 event_thr = get_lwp_thread (event_lwp);
703 gdb_assert (current_thread == event_thr);
704 arch_setup_thread (event_thr);
705
706 /* Set the event status. */
707 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
708 event_lwp->waitstatus.value.execd_pathname
709 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
710
711 /* Mark the exec status as pending. */
712 event_lwp->stopped = 1;
713 event_lwp->status_pending_p = 1;
714 event_lwp->status_pending = wstat;
715 event_thr->last_resume_kind = resume_continue;
716 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
717
718 /* Update syscall state in the new lwp, effectively mid-syscall too. */
719 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
720
721 /* Restore the list to catch. Don't rely on the client, which is free
722 to avoid sending a new list when the architecture doesn't change.
723 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
724 proc->syscalls_to_catch = std::move (syscalls_to_catch);
725
726 /* Report the event. */
727 *orig_event_lwp = event_lwp;
728 return 0;
729 }
730
731 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
732 }
733
734 CORE_ADDR
735 linux_process_target::get_pc (lwp_info *lwp)
736 {
737 struct thread_info *saved_thread;
738 struct regcache *regcache;
739 CORE_ADDR pc;
740
741 if (!low_supports_breakpoints ())
742 return 0;
743
744 saved_thread = current_thread;
745 current_thread = get_lwp_thread (lwp);
746
747 regcache = get_thread_regcache (current_thread, 1);
748 pc = low_get_pc (regcache);
749
750 if (debug_threads)
751 debug_printf ("pc is 0x%lx\n", (long) pc);
752
753 current_thread = saved_thread;
754 return pc;
755 }
756
757 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
758 Fill *SYSNO with the syscall nr trapped. */
759
760 static void
761 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
762 {
763 struct thread_info *saved_thread;
764 struct regcache *regcache;
765
766 if (the_low_target.get_syscall_trapinfo == NULL)
767 {
768 /* If we cannot get the syscall trapinfo, report an unknown
769 system call number. */
770 *sysno = UNKNOWN_SYSCALL;
771 return;
772 }
773
774 saved_thread = current_thread;
775 current_thread = get_lwp_thread (lwp);
776
777 regcache = get_thread_regcache (current_thread, 1);
778 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
779
780 if (debug_threads)
781 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
782
783 current_thread = saved_thread;
784 }
785
786 bool
787 linux_process_target::save_stop_reason (lwp_info *lwp)
788 {
789 CORE_ADDR pc;
790 CORE_ADDR sw_breakpoint_pc;
791 struct thread_info *saved_thread;
792 #if USE_SIGTRAP_SIGINFO
793 siginfo_t siginfo;
794 #endif
795
796 if (!low_supports_breakpoints ())
797 return false;
798
799 pc = get_pc (lwp);
800 sw_breakpoint_pc = pc - low_decr_pc_after_break ();
801
802 /* breakpoint_at reads from the current thread. */
803 saved_thread = current_thread;
804 current_thread = get_lwp_thread (lwp);
805
806 #if USE_SIGTRAP_SIGINFO
807 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
808 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
809 {
810 if (siginfo.si_signo == SIGTRAP)
811 {
812 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
813 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
814 {
815 /* The si_code is ambiguous on this arch -- check debug
816 registers. */
817 if (!check_stopped_by_watchpoint (lwp))
818 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
819 }
820 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
821 {
822 /* If we determine the LWP stopped for a SW breakpoint,
823 trust it. Particularly don't check watchpoint
824 registers, because at least on s390, we'd find
825 stopped-by-watchpoint as long as there's a watchpoint
826 set. */
827 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
828 }
829 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
830 {
831 /* This can indicate either a hardware breakpoint or
832 hardware watchpoint. Check debug registers. */
833 if (!check_stopped_by_watchpoint (lwp))
834 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
835 }
836 else if (siginfo.si_code == TRAP_TRACE)
837 {
838 /* We may have single stepped an instruction that
839 triggered a watchpoint. In that case, on some
840 architectures (such as x86), instead of TRAP_HWBKPT,
841 si_code indicates TRAP_TRACE, and we need to check
842 the debug registers separately. */
843 if (!check_stopped_by_watchpoint (lwp))
844 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
845 }
846 }
847 }
848 #else
849 /* We may have just stepped a breakpoint instruction. E.g., in
850 non-stop mode, GDB first tells the thread A to step a range, and
851 then the user inserts a breakpoint inside the range. In that
852 case we need to report the breakpoint PC. */
853 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
854 && low_breakpoint_at (sw_breakpoint_pc))
855 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
856
857 if (hardware_breakpoint_inserted_here (pc))
858 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
859
860 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
861 check_stopped_by_watchpoint (lwp);
862 #endif
863
864 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
865 {
866 if (debug_threads)
867 {
868 struct thread_info *thr = get_lwp_thread (lwp);
869
870 debug_printf ("CSBB: %s stopped by software breakpoint\n",
871 target_pid_to_str (ptid_of (thr)));
872 }
873
874 /* Back up the PC if necessary. */
875 if (pc != sw_breakpoint_pc)
876 {
877 struct regcache *regcache
878 = get_thread_regcache (current_thread, 1);
879 low_set_pc (regcache, sw_breakpoint_pc);
880 }
881
882 /* Update this so we record the correct stop PC below. */
883 pc = sw_breakpoint_pc;
884 }
885 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
886 {
887 if (debug_threads)
888 {
889 struct thread_info *thr = get_lwp_thread (lwp);
890
891 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
892 target_pid_to_str (ptid_of (thr)));
893 }
894 }
895 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
896 {
897 if (debug_threads)
898 {
899 struct thread_info *thr = get_lwp_thread (lwp);
900
901 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
902 target_pid_to_str (ptid_of (thr)));
903 }
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by trace\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915
916 lwp->stop_pc = pc;
917 current_thread = saved_thread;
918 return true;
919 }
920
921 lwp_info *
922 linux_process_target::add_lwp (ptid_t ptid)
923 {
924 struct lwp_info *lwp;
925
926 lwp = XCNEW (struct lwp_info);
927
928 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
929
930 lwp->thread = add_thread (ptid, lwp);
931
932 low_new_thread (lwp);
933
934 return lwp;
935 }
936
937 void
938 linux_process_target::low_new_thread (lwp_info *info)
939 {
940 /* Nop. */
941 }
942
943 /* Callback to be used when calling fork_inferior, responsible for
944 actually initiating the tracing of the inferior. */
945
946 static void
947 linux_ptrace_fun ()
948 {
949 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
950 (PTRACE_TYPE_ARG4) 0) < 0)
951 trace_start_error_with_name ("ptrace");
952
953 if (setpgid (0, 0) < 0)
954 trace_start_error_with_name ("setpgid");
955
956 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
957 stdout to stderr so that inferior i/o doesn't corrupt the connection.
958 Also, redirect stdin to /dev/null. */
959 if (remote_connection_is_stdio ())
960 {
961 if (close (0) < 0)
962 trace_start_error_with_name ("close");
963 if (open ("/dev/null", O_RDONLY) < 0)
964 trace_start_error_with_name ("open");
965 if (dup2 (2, 1) < 0)
966 trace_start_error_with_name ("dup2");
967 if (write (2, "stdin/stdout redirected\n",
968 sizeof ("stdin/stdout redirected\n") - 1) < 0)
969 {
970 /* Errors ignored. */;
971 }
972 }
973 }
974
975 /* Start an inferior process and returns its pid.
976 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
977 are its arguments. */
978
979 int
980 linux_process_target::create_inferior (const char *program,
981 const std::vector<char *> &program_args)
982 {
983 client_state &cs = get_client_state ();
984 struct lwp_info *new_lwp;
985 int pid;
986 ptid_t ptid;
987
988 {
989 maybe_disable_address_space_randomization restore_personality
990 (cs.disable_randomization);
991 std::string str_program_args = stringify_argv (program_args);
992
993 pid = fork_inferior (program,
994 str_program_args.c_str (),
995 get_environ ()->envp (), linux_ptrace_fun,
996 NULL, NULL, NULL, NULL);
997 }
998
999 add_linux_process (pid, 0);
1000
1001 ptid = ptid_t (pid, pid, 0);
1002 new_lwp = add_lwp (ptid);
1003 new_lwp->must_set_ptrace_flags = 1;
1004
1005 post_fork_inferior (pid, program);
1006
1007 return pid;
1008 }
1009
1010 /* Implement the post_create_inferior target_ops method. */
1011
1012 void
1013 linux_process_target::post_create_inferior ()
1014 {
1015 struct lwp_info *lwp = get_thread_lwp (current_thread);
1016
1017 low_arch_setup ();
1018
1019 if (lwp->must_set_ptrace_flags)
1020 {
1021 struct process_info *proc = current_process ();
1022 int options = linux_low_ptrace_options (proc->attached);
1023
1024 linux_enable_event_reporting (lwpid_of (current_thread), options);
1025 lwp->must_set_ptrace_flags = 0;
1026 }
1027 }
1028
1029 int
1030 linux_process_target::attach_lwp (ptid_t ptid)
1031 {
1032 struct lwp_info *new_lwp;
1033 int lwpid = ptid.lwp ();
1034
1035 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1036 != 0)
1037 return errno;
1038
1039 new_lwp = add_lwp (ptid);
1040
1041 /* We need to wait for SIGSTOP before being able to make the next
1042 ptrace call on this LWP. */
1043 new_lwp->must_set_ptrace_flags = 1;
1044
1045 if (linux_proc_pid_is_stopped (lwpid))
1046 {
1047 if (debug_threads)
1048 debug_printf ("Attached to a stopped process\n");
1049
1050 /* The process is definitely stopped. It is in a job control
1051 stop, unless the kernel predates the TASK_STOPPED /
1052 TASK_TRACED distinction, in which case it might be in a
1053 ptrace stop. Make sure it is in a ptrace stop; from there we
1054 can kill it, signal it, et cetera.
1055
1056 First make sure there is a pending SIGSTOP. Since we are
1057 already attached, the process can not transition from stopped
1058 to running without a PTRACE_CONT; so we know this signal will
1059 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1060 probably already in the queue (unless this kernel is old
1061 enough to use TASK_STOPPED for ptrace stops); but since
1062 SIGSTOP is not an RT signal, it can only be queued once. */
1063 kill_lwp (lwpid, SIGSTOP);
1064
1065 /* Finally, resume the stopped process. This will deliver the
1066 SIGSTOP (or a higher priority signal, just like normal
1067 PTRACE_ATTACH), which we'll catch later on. */
1068 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1069 }
1070
1071 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1072 brings it to a halt.
1073
1074 There are several cases to consider here:
1075
1076 1) gdbserver has already attached to the process and is being notified
1077 of a new thread that is being created.
1078 In this case we should ignore that SIGSTOP and resume the
1079 process. This is handled below by setting stop_expected = 1,
1080 and the fact that add_thread sets last_resume_kind ==
1081 resume_continue.
1082
1083 2) This is the first thread (the process thread), and we're attaching
1084 to it via attach_inferior.
1085 In this case we want the process thread to stop.
1086 This is handled by having linux_attach set last_resume_kind ==
1087 resume_stop after we return.
1088
1089 If the pid we are attaching to is also the tgid, we attach to and
1090 stop all the existing threads. Otherwise, we attach to pid and
1091 ignore any other threads in the same group as this pid.
1092
1093 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1094 existing threads.
1095 In this case we want the thread to stop.
1096 FIXME: This case is currently not properly handled.
1097 We should wait for the SIGSTOP but don't. Things work apparently
1098 because enough time passes between when we ptrace (ATTACH) and when
1099 gdb makes the next ptrace call on the thread.
1100
1101 On the other hand, if we are currently trying to stop all threads, we
1102 should treat the new thread as if we had sent it a SIGSTOP. This works
1103 because we are guaranteed that the add_lwp call above added us to the
1104 end of the list, and so the new thread has not yet reached
1105 wait_for_sigstop (but will). */
1106 new_lwp->stop_expected = 1;
1107
1108 return 0;
1109 }
1110
1111 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1112 already attached. Returns true if a new LWP is found, false
1113 otherwise. */
1114
1115 static int
1116 attach_proc_task_lwp_callback (ptid_t ptid)
1117 {
1118 /* Is this a new thread? */
1119 if (find_thread_ptid (ptid) == NULL)
1120 {
1121 int lwpid = ptid.lwp ();
1122 int err;
1123
1124 if (debug_threads)
1125 debug_printf ("Found new lwp %d\n", lwpid);
1126
1127 err = the_linux_target->attach_lwp (ptid);
1128
1129 /* Be quiet if we simply raced with the thread exiting. EPERM
1130 is returned if the thread's task still exists, and is marked
1131 as exited or zombie, as well as other conditions, so in that
1132 case, confirm the status in /proc/PID/status. */
1133 if (err == ESRCH
1134 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1135 {
1136 if (debug_threads)
1137 {
1138 debug_printf ("Cannot attach to lwp %d: "
1139 "thread is gone (%d: %s)\n",
1140 lwpid, err, safe_strerror (err));
1141 }
1142 }
1143 else if (err != 0)
1144 {
1145 std::string reason
1146 = linux_ptrace_attach_fail_reason_string (ptid, err);
1147
1148 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1149 }
1150
1151 return 1;
1152 }
1153 return 0;
1154 }
1155
1156 static void async_file_mark (void);
1157
1158 /* Attach to PID. If PID is the tgid, attach to it and all
1159 of its threads. */
1160
1161 int
1162 linux_process_target::attach (unsigned long pid)
1163 {
1164 struct process_info *proc;
1165 struct thread_info *initial_thread;
1166 ptid_t ptid = ptid_t (pid, pid, 0);
1167 int err;
1168
1169 proc = add_linux_process (pid, 1);
1170
1171 /* Attach to PID. We will check for other threads
1172 soon. */
1173 err = attach_lwp (ptid);
1174 if (err != 0)
1175 {
1176 remove_process (proc);
1177
1178 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1179 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1180 }
1181
1182 /* Don't ignore the initial SIGSTOP if we just attached to this
1183 process. It will be collected by wait shortly. */
1184 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1185 initial_thread->last_resume_kind = resume_stop;
1186
1187 /* We must attach to every LWP. If /proc is mounted, use that to
1188 find them now. On the one hand, the inferior may be using raw
1189 clone instead of using pthreads. On the other hand, even if it
1190 is using pthreads, GDB may not be connected yet (thread_db needs
1191 to do symbol lookups, through qSymbol). Also, thread_db walks
1192 structures in the inferior's address space to find the list of
1193 threads/LWPs, and those structures may well be corrupted. Note
1194 that once thread_db is loaded, we'll still use it to list threads
1195 and associate pthread info with each LWP. */
1196 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1197
1198 /* GDB will shortly read the xml target description for this
1199 process, to figure out the process' architecture. But the target
1200 description is only filled in when the first process/thread in
1201 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1202 that now, otherwise, if GDB is fast enough, it could read the
1203 target description _before_ that initial stop. */
1204 if (non_stop)
1205 {
1206 struct lwp_info *lwp;
1207 int wstat, lwpid;
1208 ptid_t pid_ptid = ptid_t (pid);
1209
1210 lwpid = wait_for_event_filtered (pid_ptid, pid_ptid, &wstat, __WALL);
1211 gdb_assert (lwpid > 0);
1212
1213 lwp = find_lwp_pid (ptid_t (lwpid));
1214
1215 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1216 {
1217 lwp->status_pending_p = 1;
1218 lwp->status_pending = wstat;
1219 }
1220
1221 initial_thread->last_resume_kind = resume_continue;
1222
1223 async_file_mark ();
1224
1225 gdb_assert (proc->tdesc != NULL);
1226 }
1227
1228 return 0;
1229 }
1230
1231 static int
1232 last_thread_of_process_p (int pid)
1233 {
1234 bool seen_one = false;
1235
1236 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1237 {
1238 if (!seen_one)
1239 {
1240 /* This is the first thread of this process we see. */
1241 seen_one = true;
1242 return false;
1243 }
1244 else
1245 {
1246 /* This is the second thread of this process we see. */
1247 return true;
1248 }
1249 });
1250
1251 return thread == NULL;
1252 }
1253
1254 /* Kill LWP. */
1255
1256 static void
1257 linux_kill_one_lwp (struct lwp_info *lwp)
1258 {
1259 struct thread_info *thr = get_lwp_thread (lwp);
1260 int pid = lwpid_of (thr);
1261
1262 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1263 there is no signal context, and ptrace(PTRACE_KILL) (or
1264 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1265 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1266 alternative is to kill with SIGKILL. We only need one SIGKILL
1267 per process, not one for each thread. But since we still support
1268 support debugging programs using raw clone without CLONE_THREAD,
1269 we send one for each thread. For years, we used PTRACE_KILL
1270 only, so we're being a bit paranoid about some old kernels where
1271 PTRACE_KILL might work better (dubious if there are any such, but
1272 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1273 second, and so we're fine everywhere. */
1274
1275 errno = 0;
1276 kill_lwp (pid, SIGKILL);
1277 if (debug_threads)
1278 {
1279 int save_errno = errno;
1280
1281 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1282 target_pid_to_str (ptid_of (thr)),
1283 save_errno ? safe_strerror (save_errno) : "OK");
1284 }
1285
1286 errno = 0;
1287 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1288 if (debug_threads)
1289 {
1290 int save_errno = errno;
1291
1292 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1293 target_pid_to_str (ptid_of (thr)),
1294 save_errno ? safe_strerror (save_errno) : "OK");
1295 }
1296 }
1297
1298 /* Kill LWP and wait for it to die. */
1299
1300 static void
1301 kill_wait_lwp (struct lwp_info *lwp)
1302 {
1303 struct thread_info *thr = get_lwp_thread (lwp);
1304 int pid = ptid_of (thr).pid ();
1305 int lwpid = ptid_of (thr).lwp ();
1306 int wstat;
1307 int res;
1308
1309 if (debug_threads)
1310 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1311
1312 do
1313 {
1314 linux_kill_one_lwp (lwp);
1315
1316 /* Make sure it died. Notes:
1317
1318 - The loop is most likely unnecessary.
1319
1320 - We don't use wait_for_event as that could delete lwps
1321 while we're iterating over them. We're not interested in
1322 any pending status at this point, only in making sure all
1323 wait status on the kernel side are collected until the
1324 process is reaped.
1325
1326 - We don't use __WALL here as the __WALL emulation relies on
1327 SIGCHLD, and killing a stopped process doesn't generate
1328 one, nor an exit status.
1329 */
1330 res = my_waitpid (lwpid, &wstat, 0);
1331 if (res == -1 && errno == ECHILD)
1332 res = my_waitpid (lwpid, &wstat, __WCLONE);
1333 } while (res > 0 && WIFSTOPPED (wstat));
1334
1335 /* Even if it was stopped, the child may have already disappeared.
1336 E.g., if it was killed by SIGKILL. */
1337 if (res < 0 && errno != ECHILD)
1338 perror_with_name ("kill_wait_lwp");
1339 }
1340
1341 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1342 except the leader. */
1343
1344 static void
1345 kill_one_lwp_callback (thread_info *thread, int pid)
1346 {
1347 struct lwp_info *lwp = get_thread_lwp (thread);
1348
1349 /* We avoid killing the first thread here, because of a Linux kernel (at
1350 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1351 the children get a chance to be reaped, it will remain a zombie
1352 forever. */
1353
1354 if (lwpid_of (thread) == pid)
1355 {
1356 if (debug_threads)
1357 debug_printf ("lkop: is last of process %s\n",
1358 target_pid_to_str (thread->id));
1359 return;
1360 }
1361
1362 kill_wait_lwp (lwp);
1363 }
1364
1365 int
1366 linux_process_target::kill (process_info *process)
1367 {
1368 int pid = process->pid;
1369
1370 /* If we're killing a running inferior, make sure it is stopped
1371 first, as PTRACE_KILL will not work otherwise. */
1372 stop_all_lwps (0, NULL);
1373
1374 for_each_thread (pid, [&] (thread_info *thread)
1375 {
1376 kill_one_lwp_callback (thread, pid);
1377 });
1378
1379 /* See the comment in linux_kill_one_lwp. We did not kill the first
1380 thread in the list, so do so now. */
1381 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1382
1383 if (lwp == NULL)
1384 {
1385 if (debug_threads)
1386 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1387 pid);
1388 }
1389 else
1390 kill_wait_lwp (lwp);
1391
1392 mourn (process);
1393
1394 /* Since we presently can only stop all lwps of all processes, we
1395 need to unstop lwps of other processes. */
1396 unstop_all_lwps (0, NULL);
1397 return 0;
1398 }
1399
1400 /* Get pending signal of THREAD, for detaching purposes. This is the
1401 signal the thread last stopped for, which we need to deliver to the
1402 thread when detaching, otherwise, it'd be suppressed/lost. */
1403
1404 static int
1405 get_detach_signal (struct thread_info *thread)
1406 {
1407 client_state &cs = get_client_state ();
1408 enum gdb_signal signo = GDB_SIGNAL_0;
1409 int status;
1410 struct lwp_info *lp = get_thread_lwp (thread);
1411
1412 if (lp->status_pending_p)
1413 status = lp->status_pending;
1414 else
1415 {
1416 /* If the thread had been suspended by gdbserver, and it stopped
1417 cleanly, then it'll have stopped with SIGSTOP. But we don't
1418 want to deliver that SIGSTOP. */
1419 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1420 || thread->last_status.value.sig == GDB_SIGNAL_0)
1421 return 0;
1422
1423 /* Otherwise, we may need to deliver the signal we
1424 intercepted. */
1425 status = lp->last_status;
1426 }
1427
1428 if (!WIFSTOPPED (status))
1429 {
1430 if (debug_threads)
1431 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1432 target_pid_to_str (ptid_of (thread)));
1433 return 0;
1434 }
1435
1436 /* Extended wait statuses aren't real SIGTRAPs. */
1437 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1438 {
1439 if (debug_threads)
1440 debug_printf ("GPS: lwp %s had stopped with extended "
1441 "status: no pending signal\n",
1442 target_pid_to_str (ptid_of (thread)));
1443 return 0;
1444 }
1445
1446 signo = gdb_signal_from_host (WSTOPSIG (status));
1447
1448 if (cs.program_signals_p && !cs.program_signals[signo])
1449 {
1450 if (debug_threads)
1451 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1452 target_pid_to_str (ptid_of (thread)),
1453 gdb_signal_to_string (signo));
1454 return 0;
1455 }
1456 else if (!cs.program_signals_p
1457 /* If we have no way to know which signals GDB does not
1458 want to have passed to the program, assume
1459 SIGTRAP/SIGINT, which is GDB's default. */
1460 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1461 {
1462 if (debug_threads)
1463 debug_printf ("GPS: lwp %s had signal %s, "
1464 "but we don't know if we should pass it. "
1465 "Default to not.\n",
1466 target_pid_to_str (ptid_of (thread)),
1467 gdb_signal_to_string (signo));
1468 return 0;
1469 }
1470 else
1471 {
1472 if (debug_threads)
1473 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1474 target_pid_to_str (ptid_of (thread)),
1475 gdb_signal_to_string (signo));
1476
1477 return WSTOPSIG (status);
1478 }
1479 }
1480
1481 void
1482 linux_process_target::detach_one_lwp (lwp_info *lwp)
1483 {
1484 struct thread_info *thread = get_lwp_thread (lwp);
1485 int sig;
1486 int lwpid;
1487
1488 /* If there is a pending SIGSTOP, get rid of it. */
1489 if (lwp->stop_expected)
1490 {
1491 if (debug_threads)
1492 debug_printf ("Sending SIGCONT to %s\n",
1493 target_pid_to_str (ptid_of (thread)));
1494
1495 kill_lwp (lwpid_of (thread), SIGCONT);
1496 lwp->stop_expected = 0;
1497 }
1498
1499 /* Pass on any pending signal for this thread. */
1500 sig = get_detach_signal (thread);
1501
1502 /* Preparing to resume may try to write registers, and fail if the
1503 lwp is zombie. If that happens, ignore the error. We'll handle
1504 it below, when detach fails with ESRCH. */
1505 try
1506 {
1507 /* Flush any pending changes to the process's registers. */
1508 regcache_invalidate_thread (thread);
1509
1510 /* Finally, let it resume. */
1511 low_prepare_to_resume (lwp);
1512 }
1513 catch (const gdb_exception_error &ex)
1514 {
1515 if (!check_ptrace_stopped_lwp_gone (lwp))
1516 throw;
1517 }
1518
1519 lwpid = lwpid_of (thread);
1520 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1521 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1522 {
1523 int save_errno = errno;
1524
1525 /* We know the thread exists, so ESRCH must mean the lwp is
1526 zombie. This can happen if one of the already-detached
1527 threads exits the whole thread group. In that case we're
1528 still attached, and must reap the lwp. */
1529 if (save_errno == ESRCH)
1530 {
1531 int ret, status;
1532
1533 ret = my_waitpid (lwpid, &status, __WALL);
1534 if (ret == -1)
1535 {
1536 warning (_("Couldn't reap LWP %d while detaching: %s"),
1537 lwpid, safe_strerror (errno));
1538 }
1539 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1540 {
1541 warning (_("Reaping LWP %d while detaching "
1542 "returned unexpected status 0x%x"),
1543 lwpid, status);
1544 }
1545 }
1546 else
1547 {
1548 error (_("Can't detach %s: %s"),
1549 target_pid_to_str (ptid_of (thread)),
1550 safe_strerror (save_errno));
1551 }
1552 }
1553 else if (debug_threads)
1554 {
1555 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1556 target_pid_to_str (ptid_of (thread)),
1557 strsignal (sig));
1558 }
1559
1560 delete_lwp (lwp);
1561 }
1562
1563 int
1564 linux_process_target::detach (process_info *process)
1565 {
1566 struct lwp_info *main_lwp;
1567
1568 /* As there's a step over already in progress, let it finish first,
1569 otherwise nesting a stabilize_threads operation on top gets real
1570 messy. */
1571 complete_ongoing_step_over ();
1572
1573 /* Stop all threads before detaching. First, ptrace requires that
1574 the thread is stopped to successfully detach. Second, thread_db
1575 may need to uninstall thread event breakpoints from memory, which
1576 only works with a stopped process anyway. */
1577 stop_all_lwps (0, NULL);
1578
1579 #ifdef USE_THREAD_DB
1580 thread_db_detach (process);
1581 #endif
1582
1583 /* Stabilize threads (move out of jump pads). */
1584 target_stabilize_threads ();
1585
1586 /* Detach from the clone lwps first. If the thread group exits just
1587 while we're detaching, we must reap the clone lwps before we're
1588 able to reap the leader. */
1589 for_each_thread (process->pid, [this] (thread_info *thread)
1590 {
1591 /* We don't actually detach from the thread group leader just yet.
1592 If the thread group exits, we must reap the zombie clone lwps
1593 before we're able to reap the leader. */
1594 if (thread->id.pid () == thread->id.lwp ())
1595 return;
1596
1597 lwp_info *lwp = get_thread_lwp (thread);
1598 detach_one_lwp (lwp);
1599 });
1600
1601 main_lwp = find_lwp_pid (ptid_t (process->pid));
1602 detach_one_lwp (main_lwp);
1603
1604 mourn (process);
1605
1606 /* Since we presently can only stop all lwps of all processes, we
1607 need to unstop lwps of other processes. */
1608 unstop_all_lwps (0, NULL);
1609 return 0;
1610 }
1611
1612 /* Remove all LWPs that belong to process PROC from the lwp list. */
1613
1614 void
1615 linux_process_target::mourn (process_info *process)
1616 {
1617 struct process_info_private *priv;
1618
1619 #ifdef USE_THREAD_DB
1620 thread_db_mourn (process);
1621 #endif
1622
1623 for_each_thread (process->pid, [this] (thread_info *thread)
1624 {
1625 delete_lwp (get_thread_lwp (thread));
1626 });
1627
1628 /* Freeing all private data. */
1629 priv = process->priv;
1630 low_delete_process (priv->arch_private);
1631 free (priv);
1632 process->priv = NULL;
1633
1634 remove_process (process);
1635 }
1636
1637 void
1638 linux_process_target::join (int pid)
1639 {
1640 int status, ret;
1641
1642 do {
1643 ret = my_waitpid (pid, &status, 0);
1644 if (WIFEXITED (status) || WIFSIGNALED (status))
1645 break;
1646 } while (ret != -1 || errno != ECHILD);
1647 }
1648
1649 /* Return true if the given thread is still alive. */
1650
1651 bool
1652 linux_process_target::thread_alive (ptid_t ptid)
1653 {
1654 struct lwp_info *lwp = find_lwp_pid (ptid);
1655
1656 /* We assume we always know if a thread exits. If a whole process
1657 exited but we still haven't been able to report it to GDB, we'll
1658 hold on to the last lwp of the dead process. */
1659 if (lwp != NULL)
1660 return !lwp_is_marked_dead (lwp);
1661 else
1662 return 0;
1663 }
1664
1665 bool
1666 linux_process_target::thread_still_has_status_pending (thread_info *thread)
1667 {
1668 struct lwp_info *lp = get_thread_lwp (thread);
1669
1670 if (!lp->status_pending_p)
1671 return 0;
1672
1673 if (thread->last_resume_kind != resume_stop
1674 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1675 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1676 {
1677 struct thread_info *saved_thread;
1678 CORE_ADDR pc;
1679 int discard = 0;
1680
1681 gdb_assert (lp->last_status != 0);
1682
1683 pc = get_pc (lp);
1684
1685 saved_thread = current_thread;
1686 current_thread = thread;
1687
1688 if (pc != lp->stop_pc)
1689 {
1690 if (debug_threads)
1691 debug_printf ("PC of %ld changed\n",
1692 lwpid_of (thread));
1693 discard = 1;
1694 }
1695
1696 #if !USE_SIGTRAP_SIGINFO
1697 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1698 && !low_breakpoint_at (pc))
1699 {
1700 if (debug_threads)
1701 debug_printf ("previous SW breakpoint of %ld gone\n",
1702 lwpid_of (thread));
1703 discard = 1;
1704 }
1705 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1706 && !hardware_breakpoint_inserted_here (pc))
1707 {
1708 if (debug_threads)
1709 debug_printf ("previous HW breakpoint of %ld gone\n",
1710 lwpid_of (thread));
1711 discard = 1;
1712 }
1713 #endif
1714
1715 current_thread = saved_thread;
1716
1717 if (discard)
1718 {
1719 if (debug_threads)
1720 debug_printf ("discarding pending breakpoint status\n");
1721 lp->status_pending_p = 0;
1722 return 0;
1723 }
1724 }
1725
1726 return 1;
1727 }
1728
1729 /* Returns true if LWP is resumed from the client's perspective. */
1730
1731 static int
1732 lwp_resumed (struct lwp_info *lwp)
1733 {
1734 struct thread_info *thread = get_lwp_thread (lwp);
1735
1736 if (thread->last_resume_kind != resume_stop)
1737 return 1;
1738
1739 /* Did gdb send us a `vCont;t', but we haven't reported the
1740 corresponding stop to gdb yet? If so, the thread is still
1741 resumed/running from gdb's perspective. */
1742 if (thread->last_resume_kind == resume_stop
1743 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1744 return 1;
1745
1746 return 0;
1747 }
1748
1749 bool
1750 linux_process_target::status_pending_p_callback (thread_info *thread,
1751 ptid_t ptid)
1752 {
1753 struct lwp_info *lp = get_thread_lwp (thread);
1754
1755 /* Check if we're only interested in events from a specific process
1756 or a specific LWP. */
1757 if (!thread->id.matches (ptid))
1758 return 0;
1759
1760 if (!lwp_resumed (lp))
1761 return 0;
1762
1763 if (lp->status_pending_p
1764 && !thread_still_has_status_pending (thread))
1765 {
1766 resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1767 return 0;
1768 }
1769
1770 return lp->status_pending_p;
1771 }
1772
1773 struct lwp_info *
1774 find_lwp_pid (ptid_t ptid)
1775 {
1776 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1777 {
1778 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1779 return thr_arg->id.lwp () == lwp;
1780 });
1781
1782 if (thread == NULL)
1783 return NULL;
1784
1785 return get_thread_lwp (thread);
1786 }
1787
1788 /* Return the number of known LWPs in the tgid given by PID. */
1789
1790 static int
1791 num_lwps (int pid)
1792 {
1793 int count = 0;
1794
1795 for_each_thread (pid, [&] (thread_info *thread)
1796 {
1797 count++;
1798 });
1799
1800 return count;
1801 }
1802
1803 /* See nat/linux-nat.h. */
1804
1805 struct lwp_info *
1806 iterate_over_lwps (ptid_t filter,
1807 gdb::function_view<iterate_over_lwps_ftype> callback)
1808 {
1809 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1810 {
1811 lwp_info *lwp = get_thread_lwp (thr_arg);
1812
1813 return callback (lwp);
1814 });
1815
1816 if (thread == NULL)
1817 return NULL;
1818
1819 return get_thread_lwp (thread);
1820 }
1821
1822 void
1823 linux_process_target::check_zombie_leaders ()
1824 {
1825 for_each_process ([this] (process_info *proc) {
1826 pid_t leader_pid = pid_of (proc);
1827 struct lwp_info *leader_lp;
1828
1829 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1830
1831 if (debug_threads)
1832 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1833 "num_lwps=%d, zombie=%d\n",
1834 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1835 linux_proc_pid_is_zombie (leader_pid));
1836
1837 if (leader_lp != NULL && !leader_lp->stopped
1838 /* Check if there are other threads in the group, as we may
1839 have raced with the inferior simply exiting. */
1840 && !last_thread_of_process_p (leader_pid)
1841 && linux_proc_pid_is_zombie (leader_pid))
1842 {
1843 /* A leader zombie can mean one of two things:
1844
1845 - It exited, and there's an exit status pending
1846 available, or only the leader exited (not the whole
1847 program). In the latter case, we can't waitpid the
1848 leader's exit status until all other threads are gone.
1849
1850 - There are 3 or more threads in the group, and a thread
1851 other than the leader exec'd. On an exec, the Linux
1852 kernel destroys all other threads (except the execing
1853 one) in the thread group, and resets the execing thread's
1854 tid to the tgid. No exit notification is sent for the
1855 execing thread -- from the ptracer's perspective, it
1856 appears as though the execing thread just vanishes.
1857 Until we reap all other threads except the leader and the
1858 execing thread, the leader will be zombie, and the
1859 execing thread will be in `D (disc sleep)'. As soon as
1860 all other threads are reaped, the execing thread changes
1861 it's tid to the tgid, and the previous (zombie) leader
1862 vanishes, giving place to the "new" leader. We could try
1863 distinguishing the exit and exec cases, by waiting once
1864 more, and seeing if something comes out, but it doesn't
1865 sound useful. The previous leader _does_ go away, and
1866 we'll re-add the new one once we see the exec event
1867 (which is just the same as what would happen if the
1868 previous leader did exit voluntarily before some other
1869 thread execs). */
1870
1871 if (debug_threads)
1872 debug_printf ("CZL: Thread group leader %d zombie "
1873 "(it exited, or another thread execd).\n",
1874 leader_pid);
1875
1876 delete_lwp (leader_lp);
1877 }
1878 });
1879 }
1880
1881 /* Callback for `find_thread'. Returns the first LWP that is not
1882 stopped. */
1883
1884 static bool
1885 not_stopped_callback (thread_info *thread, ptid_t filter)
1886 {
1887 if (!thread->id.matches (filter))
1888 return false;
1889
1890 lwp_info *lwp = get_thread_lwp (thread);
1891
1892 return !lwp->stopped;
1893 }
1894
1895 /* Increment LWP's suspend count. */
1896
1897 static void
1898 lwp_suspended_inc (struct lwp_info *lwp)
1899 {
1900 lwp->suspended++;
1901
1902 if (debug_threads && lwp->suspended > 4)
1903 {
1904 struct thread_info *thread = get_lwp_thread (lwp);
1905
1906 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1907 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1908 }
1909 }
1910
1911 /* Decrement LWP's suspend count. */
1912
1913 static void
1914 lwp_suspended_decr (struct lwp_info *lwp)
1915 {
1916 lwp->suspended--;
1917
1918 if (lwp->suspended < 0)
1919 {
1920 struct thread_info *thread = get_lwp_thread (lwp);
1921
1922 internal_error (__FILE__, __LINE__,
1923 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1924 lwp->suspended);
1925 }
1926 }
1927
1928 /* This function should only be called if the LWP got a SIGTRAP.
1929
1930 Handle any tracepoint steps or hits. Return true if a tracepoint
1931 event was handled, 0 otherwise. */
1932
1933 static int
1934 handle_tracepoints (struct lwp_info *lwp)
1935 {
1936 struct thread_info *tinfo = get_lwp_thread (lwp);
1937 int tpoint_related_event = 0;
1938
1939 gdb_assert (lwp->suspended == 0);
1940
1941 /* If this tracepoint hit causes a tracing stop, we'll immediately
1942 uninsert tracepoints. To do this, we temporarily pause all
1943 threads, unpatch away, and then unpause threads. We need to make
1944 sure the unpausing doesn't resume LWP too. */
1945 lwp_suspended_inc (lwp);
1946
1947 /* And we need to be sure that any all-threads-stopping doesn't try
1948 to move threads out of the jump pads, as it could deadlock the
1949 inferior (LWP could be in the jump pad, maybe even holding the
1950 lock.) */
1951
1952 /* Do any necessary step collect actions. */
1953 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1954
1955 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1956
1957 /* See if we just hit a tracepoint and do its main collect
1958 actions. */
1959 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1960
1961 lwp_suspended_decr (lwp);
1962
1963 gdb_assert (lwp->suspended == 0);
1964 gdb_assert (!stabilizing_threads
1965 || (lwp->collecting_fast_tracepoint
1966 != fast_tpoint_collect_result::not_collecting));
1967
1968 if (tpoint_related_event)
1969 {
1970 if (debug_threads)
1971 debug_printf ("got a tracepoint event\n");
1972 return 1;
1973 }
1974
1975 return 0;
1976 }
1977
1978 fast_tpoint_collect_result
1979 linux_process_target::linux_fast_tracepoint_collecting
1980 (lwp_info *lwp, fast_tpoint_collect_status *status)
1981 {
1982 CORE_ADDR thread_area;
1983 struct thread_info *thread = get_lwp_thread (lwp);
1984
1985 /* Get the thread area address. This is used to recognize which
1986 thread is which when tracing with the in-process agent library.
1987 We don't read anything from the address, and treat it as opaque;
1988 it's the address itself that we assume is unique per-thread. */
1989 if (low_get_thread_area (lwpid_of (thread), &thread_area) == -1)
1990 return fast_tpoint_collect_result::not_collecting;
1991
1992 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1993 }
1994
1995 int
1996 linux_process_target::low_get_thread_area (int lwpid, CORE_ADDR *addrp)
1997 {
1998 return -1;
1999 }
2000
2001 bool
2002 linux_process_target::maybe_move_out_of_jump_pad (lwp_info *lwp, int *wstat)
2003 {
2004 struct thread_info *saved_thread;
2005
2006 saved_thread = current_thread;
2007 current_thread = get_lwp_thread (lwp);
2008
2009 if ((wstat == NULL
2010 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2011 && supports_fast_tracepoints ()
2012 && agent_loaded_p ())
2013 {
2014 struct fast_tpoint_collect_status status;
2015
2016 if (debug_threads)
2017 debug_printf ("Checking whether LWP %ld needs to move out of the "
2018 "jump pad.\n",
2019 lwpid_of (current_thread));
2020
2021 fast_tpoint_collect_result r
2022 = linux_fast_tracepoint_collecting (lwp, &status);
2023
2024 if (wstat == NULL
2025 || (WSTOPSIG (*wstat) != SIGILL
2026 && WSTOPSIG (*wstat) != SIGFPE
2027 && WSTOPSIG (*wstat) != SIGSEGV
2028 && WSTOPSIG (*wstat) != SIGBUS))
2029 {
2030 lwp->collecting_fast_tracepoint = r;
2031
2032 if (r != fast_tpoint_collect_result::not_collecting)
2033 {
2034 if (r == fast_tpoint_collect_result::before_insn
2035 && lwp->exit_jump_pad_bkpt == NULL)
2036 {
2037 /* Haven't executed the original instruction yet.
2038 Set breakpoint there, and wait till it's hit,
2039 then single-step until exiting the jump pad. */
2040 lwp->exit_jump_pad_bkpt
2041 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2042 }
2043
2044 if (debug_threads)
2045 debug_printf ("Checking whether LWP %ld needs to move out of "
2046 "the jump pad...it does\n",
2047 lwpid_of (current_thread));
2048 current_thread = saved_thread;
2049
2050 return true;
2051 }
2052 }
2053 else
2054 {
2055 /* If we get a synchronous signal while collecting, *and*
2056 while executing the (relocated) original instruction,
2057 reset the PC to point at the tpoint address, before
2058 reporting to GDB. Otherwise, it's an IPA lib bug: just
2059 report the signal to GDB, and pray for the best. */
2060
2061 lwp->collecting_fast_tracepoint
2062 = fast_tpoint_collect_result::not_collecting;
2063
2064 if (r != fast_tpoint_collect_result::not_collecting
2065 && (status.adjusted_insn_addr <= lwp->stop_pc
2066 && lwp->stop_pc < status.adjusted_insn_addr_end))
2067 {
2068 siginfo_t info;
2069 struct regcache *regcache;
2070
2071 /* The si_addr on a few signals references the address
2072 of the faulting instruction. Adjust that as
2073 well. */
2074 if ((WSTOPSIG (*wstat) == SIGILL
2075 || WSTOPSIG (*wstat) == SIGFPE
2076 || WSTOPSIG (*wstat) == SIGBUS
2077 || WSTOPSIG (*wstat) == SIGSEGV)
2078 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2079 (PTRACE_TYPE_ARG3) 0, &info) == 0
2080 /* Final check just to make sure we don't clobber
2081 the siginfo of non-kernel-sent signals. */
2082 && (uintptr_t) info.si_addr == lwp->stop_pc)
2083 {
2084 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2085 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2086 (PTRACE_TYPE_ARG3) 0, &info);
2087 }
2088
2089 regcache = get_thread_regcache (current_thread, 1);
2090 low_set_pc (regcache, status.tpoint_addr);
2091 lwp->stop_pc = status.tpoint_addr;
2092
2093 /* Cancel any fast tracepoint lock this thread was
2094 holding. */
2095 force_unlock_trace_buffer ();
2096 }
2097
2098 if (lwp->exit_jump_pad_bkpt != NULL)
2099 {
2100 if (debug_threads)
2101 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2102 "stopping all threads momentarily.\n");
2103
2104 stop_all_lwps (1, lwp);
2105
2106 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2107 lwp->exit_jump_pad_bkpt = NULL;
2108
2109 unstop_all_lwps (1, lwp);
2110
2111 gdb_assert (lwp->suspended >= 0);
2112 }
2113 }
2114 }
2115
2116 if (debug_threads)
2117 debug_printf ("Checking whether LWP %ld needs to move out of the "
2118 "jump pad...no\n",
2119 lwpid_of (current_thread));
2120
2121 current_thread = saved_thread;
2122 return false;
2123 }
2124
2125 /* Enqueue one signal in the "signals to report later when out of the
2126 jump pad" list. */
2127
2128 static void
2129 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2130 {
2131 struct pending_signals *p_sig;
2132 struct thread_info *thread = get_lwp_thread (lwp);
2133
2134 if (debug_threads)
2135 debug_printf ("Deferring signal %d for LWP %ld.\n",
2136 WSTOPSIG (*wstat), lwpid_of (thread));
2137
2138 if (debug_threads)
2139 {
2140 struct pending_signals *sig;
2141
2142 for (sig = lwp->pending_signals_to_report;
2143 sig != NULL;
2144 sig = sig->prev)
2145 debug_printf (" Already queued %d\n",
2146 sig->signal);
2147
2148 debug_printf (" (no more currently queued signals)\n");
2149 }
2150
2151 /* Don't enqueue non-RT signals if they are already in the deferred
2152 queue. (SIGSTOP being the easiest signal to see ending up here
2153 twice) */
2154 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2155 {
2156 struct pending_signals *sig;
2157
2158 for (sig = lwp->pending_signals_to_report;
2159 sig != NULL;
2160 sig = sig->prev)
2161 {
2162 if (sig->signal == WSTOPSIG (*wstat))
2163 {
2164 if (debug_threads)
2165 debug_printf ("Not requeuing already queued non-RT signal %d"
2166 " for LWP %ld\n",
2167 sig->signal,
2168 lwpid_of (thread));
2169 return;
2170 }
2171 }
2172 }
2173
2174 p_sig = XCNEW (struct pending_signals);
2175 p_sig->prev = lwp->pending_signals_to_report;
2176 p_sig->signal = WSTOPSIG (*wstat);
2177
2178 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2179 &p_sig->info);
2180
2181 lwp->pending_signals_to_report = p_sig;
2182 }
2183
2184 /* Dequeue one signal from the "signals to report later when out of
2185 the jump pad" list. */
2186
2187 static int
2188 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2189 {
2190 struct thread_info *thread = get_lwp_thread (lwp);
2191
2192 if (lwp->pending_signals_to_report != NULL)
2193 {
2194 struct pending_signals **p_sig;
2195
2196 p_sig = &lwp->pending_signals_to_report;
2197 while ((*p_sig)->prev != NULL)
2198 p_sig = &(*p_sig)->prev;
2199
2200 *wstat = W_STOPCODE ((*p_sig)->signal);
2201 if ((*p_sig)->info.si_signo != 0)
2202 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2203 &(*p_sig)->info);
2204 free (*p_sig);
2205 *p_sig = NULL;
2206
2207 if (debug_threads)
2208 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2209 WSTOPSIG (*wstat), lwpid_of (thread));
2210
2211 if (debug_threads)
2212 {
2213 struct pending_signals *sig;
2214
2215 for (sig = lwp->pending_signals_to_report;
2216 sig != NULL;
2217 sig = sig->prev)
2218 debug_printf (" Still queued %d\n",
2219 sig->signal);
2220
2221 debug_printf (" (no more queued signals)\n");
2222 }
2223
2224 return 1;
2225 }
2226
2227 return 0;
2228 }
2229
2230 bool
2231 linux_process_target::check_stopped_by_watchpoint (lwp_info *child)
2232 {
2233 struct thread_info *saved_thread = current_thread;
2234 current_thread = get_lwp_thread (child);
2235
2236 if (low_stopped_by_watchpoint ())
2237 {
2238 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2239 child->stopped_data_address = low_stopped_data_address ();
2240 }
2241
2242 current_thread = saved_thread;
2243
2244 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2245 }
2246
2247 bool
2248 linux_process_target::low_stopped_by_watchpoint ()
2249 {
2250 return false;
2251 }
2252
2253 CORE_ADDR
2254 linux_process_target::low_stopped_data_address ()
2255 {
2256 return 0;
2257 }
2258
2259 /* Return the ptrace options that we want to try to enable. */
2260
2261 static int
2262 linux_low_ptrace_options (int attached)
2263 {
2264 client_state &cs = get_client_state ();
2265 int options = 0;
2266
2267 if (!attached)
2268 options |= PTRACE_O_EXITKILL;
2269
2270 if (cs.report_fork_events)
2271 options |= PTRACE_O_TRACEFORK;
2272
2273 if (cs.report_vfork_events)
2274 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2275
2276 if (cs.report_exec_events)
2277 options |= PTRACE_O_TRACEEXEC;
2278
2279 options |= PTRACE_O_TRACESYSGOOD;
2280
2281 return options;
2282 }
2283
2284 lwp_info *
2285 linux_process_target::filter_event (int lwpid, int wstat)
2286 {
2287 client_state &cs = get_client_state ();
2288 struct lwp_info *child;
2289 struct thread_info *thread;
2290 int have_stop_pc = 0;
2291
2292 child = find_lwp_pid (ptid_t (lwpid));
2293
2294 /* Check for stop events reported by a process we didn't already
2295 know about - anything not already in our LWP list.
2296
2297 If we're expecting to receive stopped processes after
2298 fork, vfork, and clone events, then we'll just add the
2299 new one to our list and go back to waiting for the event
2300 to be reported - the stopped process might be returned
2301 from waitpid before or after the event is.
2302
2303 But note the case of a non-leader thread exec'ing after the
2304 leader having exited, and gone from our lists (because
2305 check_zombie_leaders deleted it). The non-leader thread
2306 changes its tid to the tgid. */
2307
2308 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2309 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2310 {
2311 ptid_t child_ptid;
2312
2313 /* A multi-thread exec after we had seen the leader exiting. */
2314 if (debug_threads)
2315 {
2316 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2317 "after exec.\n", lwpid);
2318 }
2319
2320 child_ptid = ptid_t (lwpid, lwpid, 0);
2321 child = add_lwp (child_ptid);
2322 child->stopped = 1;
2323 current_thread = child->thread;
2324 }
2325
2326 /* If we didn't find a process, one of two things presumably happened:
2327 - A process we started and then detached from has exited. Ignore it.
2328 - A process we are controlling has forked and the new child's stop
2329 was reported to us by the kernel. Save its PID. */
2330 if (child == NULL && WIFSTOPPED (wstat))
2331 {
2332 add_to_pid_list (&stopped_pids, lwpid, wstat);
2333 return NULL;
2334 }
2335 else if (child == NULL)
2336 return NULL;
2337
2338 thread = get_lwp_thread (child);
2339
2340 child->stopped = 1;
2341
2342 child->last_status = wstat;
2343
2344 /* Check if the thread has exited. */
2345 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2346 {
2347 if (debug_threads)
2348 debug_printf ("LLFE: %d exited.\n", lwpid);
2349
2350 if (finish_step_over (child))
2351 {
2352 /* Unsuspend all other LWPs, and set them back running again. */
2353 unsuspend_all_lwps (child);
2354 }
2355
2356 /* If there is at least one more LWP, then the exit signal was
2357 not the end of the debugged application and should be
2358 ignored, unless GDB wants to hear about thread exits. */
2359 if (cs.report_thread_events
2360 || last_thread_of_process_p (pid_of (thread)))
2361 {
2362 /* Since events are serialized to GDB core, and we can't
2363 report this one right now. Leave the status pending for
2364 the next time we're able to report it. */
2365 mark_lwp_dead (child, wstat);
2366 return child;
2367 }
2368 else
2369 {
2370 delete_lwp (child);
2371 return NULL;
2372 }
2373 }
2374
2375 gdb_assert (WIFSTOPPED (wstat));
2376
2377 if (WIFSTOPPED (wstat))
2378 {
2379 struct process_info *proc;
2380
2381 /* Architecture-specific setup after inferior is running. */
2382 proc = find_process_pid (pid_of (thread));
2383 if (proc->tdesc == NULL)
2384 {
2385 if (proc->attached)
2386 {
2387 /* This needs to happen after we have attached to the
2388 inferior and it is stopped for the first time, but
2389 before we access any inferior registers. */
2390 arch_setup_thread (thread);
2391 }
2392 else
2393 {
2394 /* The process is started, but GDBserver will do
2395 architecture-specific setup after the program stops at
2396 the first instruction. */
2397 child->status_pending_p = 1;
2398 child->status_pending = wstat;
2399 return child;
2400 }
2401 }
2402 }
2403
2404 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2405 {
2406 struct process_info *proc = find_process_pid (pid_of (thread));
2407 int options = linux_low_ptrace_options (proc->attached);
2408
2409 linux_enable_event_reporting (lwpid, options);
2410 child->must_set_ptrace_flags = 0;
2411 }
2412
2413 /* Always update syscall_state, even if it will be filtered later. */
2414 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2415 {
2416 child->syscall_state
2417 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2418 ? TARGET_WAITKIND_SYSCALL_RETURN
2419 : TARGET_WAITKIND_SYSCALL_ENTRY);
2420 }
2421 else
2422 {
2423 /* Almost all other ptrace-stops are known to be outside of system
2424 calls, with further exceptions in handle_extended_wait. */
2425 child->syscall_state = TARGET_WAITKIND_IGNORE;
2426 }
2427
2428 /* Be careful to not overwrite stop_pc until save_stop_reason is
2429 called. */
2430 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2431 && linux_is_extended_waitstatus (wstat))
2432 {
2433 child->stop_pc = get_pc (child);
2434 if (handle_extended_wait (&child, wstat))
2435 {
2436 /* The event has been handled, so just return without
2437 reporting it. */
2438 return NULL;
2439 }
2440 }
2441
2442 if (linux_wstatus_maybe_breakpoint (wstat))
2443 {
2444 if (save_stop_reason (child))
2445 have_stop_pc = 1;
2446 }
2447
2448 if (!have_stop_pc)
2449 child->stop_pc = get_pc (child);
2450
2451 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2452 && child->stop_expected)
2453 {
2454 if (debug_threads)
2455 debug_printf ("Expected stop.\n");
2456 child->stop_expected = 0;
2457
2458 if (thread->last_resume_kind == resume_stop)
2459 {
2460 /* We want to report the stop to the core. Treat the
2461 SIGSTOP as a normal event. */
2462 if (debug_threads)
2463 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2464 target_pid_to_str (ptid_of (thread)));
2465 }
2466 else if (stopping_threads != NOT_STOPPING_THREADS)
2467 {
2468 /* Stopping threads. We don't want this SIGSTOP to end up
2469 pending. */
2470 if (debug_threads)
2471 debug_printf ("LLW: SIGSTOP caught for %s "
2472 "while stopping threads.\n",
2473 target_pid_to_str (ptid_of (thread)));
2474 return NULL;
2475 }
2476 else
2477 {
2478 /* This is a delayed SIGSTOP. Filter out the event. */
2479 if (debug_threads)
2480 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2481 child->stepping ? "step" : "continue",
2482 target_pid_to_str (ptid_of (thread)));
2483
2484 resume_one_lwp (child, child->stepping, 0, NULL);
2485 return NULL;
2486 }
2487 }
2488
2489 child->status_pending_p = 1;
2490 child->status_pending = wstat;
2491 return child;
2492 }
2493
2494 bool
2495 linux_process_target::maybe_hw_step (thread_info *thread)
2496 {
2497 if (supports_hardware_single_step ())
2498 return true;
2499 else
2500 {
2501 /* GDBserver must insert single-step breakpoint for software
2502 single step. */
2503 gdb_assert (has_single_step_breakpoints (thread));
2504 return false;
2505 }
2506 }
2507
2508 void
2509 linux_process_target::resume_stopped_resumed_lwps (thread_info *thread)
2510 {
2511 struct lwp_info *lp = get_thread_lwp (thread);
2512
2513 if (lp->stopped
2514 && !lp->suspended
2515 && !lp->status_pending_p
2516 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2517 {
2518 int step = 0;
2519
2520 if (thread->last_resume_kind == resume_step)
2521 step = maybe_hw_step (thread);
2522
2523 if (debug_threads)
2524 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2525 target_pid_to_str (ptid_of (thread)),
2526 paddress (lp->stop_pc),
2527 step);
2528
2529 resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2530 }
2531 }
2532
2533 int
2534 linux_process_target::wait_for_event_filtered (ptid_t wait_ptid,
2535 ptid_t filter_ptid,
2536 int *wstatp, int options)
2537 {
2538 struct thread_info *event_thread;
2539 struct lwp_info *event_child, *requested_child;
2540 sigset_t block_mask, prev_mask;
2541
2542 retry:
2543 /* N.B. event_thread points to the thread_info struct that contains
2544 event_child. Keep them in sync. */
2545 event_thread = NULL;
2546 event_child = NULL;
2547 requested_child = NULL;
2548
2549 /* Check for a lwp with a pending status. */
2550
2551 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2552 {
2553 event_thread = find_thread_in_random ([&] (thread_info *thread)
2554 {
2555 return status_pending_p_callback (thread, filter_ptid);
2556 });
2557
2558 if (event_thread != NULL)
2559 event_child = get_thread_lwp (event_thread);
2560 if (debug_threads && event_thread)
2561 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2562 }
2563 else if (filter_ptid != null_ptid)
2564 {
2565 requested_child = find_lwp_pid (filter_ptid);
2566
2567 if (stopping_threads == NOT_STOPPING_THREADS
2568 && requested_child->status_pending_p
2569 && (requested_child->collecting_fast_tracepoint
2570 != fast_tpoint_collect_result::not_collecting))
2571 {
2572 enqueue_one_deferred_signal (requested_child,
2573 &requested_child->status_pending);
2574 requested_child->status_pending_p = 0;
2575 requested_child->status_pending = 0;
2576 resume_one_lwp (requested_child, 0, 0, NULL);
2577 }
2578
2579 if (requested_child->suspended
2580 && requested_child->status_pending_p)
2581 {
2582 internal_error (__FILE__, __LINE__,
2583 "requesting an event out of a"
2584 " suspended child?");
2585 }
2586
2587 if (requested_child->status_pending_p)
2588 {
2589 event_child = requested_child;
2590 event_thread = get_lwp_thread (event_child);
2591 }
2592 }
2593
2594 if (event_child != NULL)
2595 {
2596 if (debug_threads)
2597 debug_printf ("Got an event from pending child %ld (%04x)\n",
2598 lwpid_of (event_thread), event_child->status_pending);
2599 *wstatp = event_child->status_pending;
2600 event_child->status_pending_p = 0;
2601 event_child->status_pending = 0;
2602 current_thread = event_thread;
2603 return lwpid_of (event_thread);
2604 }
2605
2606 /* But if we don't find a pending event, we'll have to wait.
2607
2608 We only enter this loop if no process has a pending wait status.
2609 Thus any action taken in response to a wait status inside this
2610 loop is responding as soon as we detect the status, not after any
2611 pending events. */
2612
2613 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2614 all signals while here. */
2615 sigfillset (&block_mask);
2616 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2617
2618 /* Always pull all events out of the kernel. We'll randomly select
2619 an event LWP out of all that have events, to prevent
2620 starvation. */
2621 while (event_child == NULL)
2622 {
2623 pid_t ret = 0;
2624
2625 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2626 quirks:
2627
2628 - If the thread group leader exits while other threads in the
2629 thread group still exist, waitpid(TGID, ...) hangs. That
2630 waitpid won't return an exit status until the other threads
2631 in the group are reaped.
2632
2633 - When a non-leader thread execs, that thread just vanishes
2634 without reporting an exit (so we'd hang if we waited for it
2635 explicitly in that case). The exec event is reported to
2636 the TGID pid. */
2637 errno = 0;
2638 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2639
2640 if (debug_threads)
2641 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2642 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2643
2644 if (ret > 0)
2645 {
2646 if (debug_threads)
2647 {
2648 debug_printf ("LLW: waitpid %ld received %s\n",
2649 (long) ret, status_to_str (*wstatp));
2650 }
2651
2652 /* Filter all events. IOW, leave all events pending. We'll
2653 randomly select an event LWP out of all that have events
2654 below. */
2655 filter_event (ret, *wstatp);
2656 /* Retry until nothing comes out of waitpid. A single
2657 SIGCHLD can indicate more than one child stopped. */
2658 continue;
2659 }
2660
2661 /* Now that we've pulled all events out of the kernel, resume
2662 LWPs that don't have an interesting event to report. */
2663 if (stopping_threads == NOT_STOPPING_THREADS)
2664 for_each_thread ([this] (thread_info *thread)
2665 {
2666 resume_stopped_resumed_lwps (thread);
2667 });
2668
2669 /* ... and find an LWP with a status to report to the core, if
2670 any. */
2671 event_thread = find_thread_in_random ([&] (thread_info *thread)
2672 {
2673 return status_pending_p_callback (thread, filter_ptid);
2674 });
2675
2676 if (event_thread != NULL)
2677 {
2678 event_child = get_thread_lwp (event_thread);
2679 *wstatp = event_child->status_pending;
2680 event_child->status_pending_p = 0;
2681 event_child->status_pending = 0;
2682 break;
2683 }
2684
2685 /* Check for zombie thread group leaders. Those can't be reaped
2686 until all other threads in the thread group are. */
2687 check_zombie_leaders ();
2688
2689 auto not_stopped = [&] (thread_info *thread)
2690 {
2691 return not_stopped_callback (thread, wait_ptid);
2692 };
2693
2694 /* If there are no resumed children left in the set of LWPs we
2695 want to wait for, bail. We can't just block in
2696 waitpid/sigsuspend, because lwps might have been left stopped
2697 in trace-stop state, and we'd be stuck forever waiting for
2698 their status to change (which would only happen if we resumed
2699 them). Even if WNOHANG is set, this return code is preferred
2700 over 0 (below), as it is more detailed. */
2701 if (find_thread (not_stopped) == NULL)
2702 {
2703 if (debug_threads)
2704 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2705 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2706 return -1;
2707 }
2708
2709 /* No interesting event to report to the caller. */
2710 if ((options & WNOHANG))
2711 {
2712 if (debug_threads)
2713 debug_printf ("WNOHANG set, no event found\n");
2714
2715 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2716 return 0;
2717 }
2718
2719 /* Block until we get an event reported with SIGCHLD. */
2720 if (debug_threads)
2721 debug_printf ("sigsuspend'ing\n");
2722
2723 sigsuspend (&prev_mask);
2724 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2725 goto retry;
2726 }
2727
2728 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2729
2730 current_thread = event_thread;
2731
2732 return lwpid_of (event_thread);
2733 }
2734
2735 int
2736 linux_process_target::wait_for_event (ptid_t ptid, int *wstatp, int options)
2737 {
2738 return wait_for_event_filtered (ptid, ptid, wstatp, options);
2739 }
2740
2741 /* Select one LWP out of those that have events pending. */
2742
2743 static void
2744 select_event_lwp (struct lwp_info **orig_lp)
2745 {
2746 struct thread_info *event_thread = NULL;
2747
2748 /* In all-stop, give preference to the LWP that is being
2749 single-stepped. There will be at most one, and it's the LWP that
2750 the core is most interested in. If we didn't do this, then we'd
2751 have to handle pending step SIGTRAPs somehow in case the core
2752 later continues the previously-stepped thread, otherwise we'd
2753 report the pending SIGTRAP, and the core, not having stepped the
2754 thread, wouldn't understand what the trap was for, and therefore
2755 would report it to the user as a random signal. */
2756 if (!non_stop)
2757 {
2758 event_thread = find_thread ([] (thread_info *thread)
2759 {
2760 lwp_info *lp = get_thread_lwp (thread);
2761
2762 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2763 && thread->last_resume_kind == resume_step
2764 && lp->status_pending_p);
2765 });
2766
2767 if (event_thread != NULL)
2768 {
2769 if (debug_threads)
2770 debug_printf ("SEL: Select single-step %s\n",
2771 target_pid_to_str (ptid_of (event_thread)));
2772 }
2773 }
2774 if (event_thread == NULL)
2775 {
2776 /* No single-stepping LWP. Select one at random, out of those
2777 which have had events. */
2778
2779 event_thread = find_thread_in_random ([&] (thread_info *thread)
2780 {
2781 lwp_info *lp = get_thread_lwp (thread);
2782
2783 /* Only resumed LWPs that have an event pending. */
2784 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2785 && lp->status_pending_p);
2786 });
2787 }
2788
2789 if (event_thread != NULL)
2790 {
2791 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2792
2793 /* Switch the event LWP. */
2794 *orig_lp = event_lp;
2795 }
2796 }
2797
2798 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2799 NULL. */
2800
2801 static void
2802 unsuspend_all_lwps (struct lwp_info *except)
2803 {
2804 for_each_thread ([&] (thread_info *thread)
2805 {
2806 lwp_info *lwp = get_thread_lwp (thread);
2807
2808 if (lwp != except)
2809 lwp_suspended_decr (lwp);
2810 });
2811 }
2812
2813 static bool lwp_running (thread_info *thread);
2814
2815 /* Stabilize threads (move out of jump pads).
2816
2817 If a thread is midway collecting a fast tracepoint, we need to
2818 finish the collection and move it out of the jump pad before
2819 reporting the signal.
2820
2821 This avoids recursion while collecting (when a signal arrives
2822 midway, and the signal handler itself collects), which would trash
2823 the trace buffer. In case the user set a breakpoint in a signal
2824 handler, this avoids the backtrace showing the jump pad, etc..
2825 Most importantly, there are certain things we can't do safely if
2826 threads are stopped in a jump pad (or in its callee's). For
2827 example:
2828
2829 - starting a new trace run. A thread still collecting the
2830 previous run, could trash the trace buffer when resumed. The trace
2831 buffer control structures would have been reset but the thread had
2832 no way to tell. The thread could even midway memcpy'ing to the
2833 buffer, which would mean that when resumed, it would clobber the
2834 trace buffer that had been set for a new run.
2835
2836 - we can't rewrite/reuse the jump pads for new tracepoints
2837 safely. Say you do tstart while a thread is stopped midway while
2838 collecting. When the thread is later resumed, it finishes the
2839 collection, and returns to the jump pad, to execute the original
2840 instruction that was under the tracepoint jump at the time the
2841 older run had been started. If the jump pad had been rewritten
2842 since for something else in the new run, the thread would now
2843 execute the wrong / random instructions. */
2844
2845 void
2846 linux_process_target::stabilize_threads ()
2847 {
2848 thread_info *thread_stuck = find_thread ([this] (thread_info *thread)
2849 {
2850 return stuck_in_jump_pad (thread);
2851 });
2852
2853 if (thread_stuck != NULL)
2854 {
2855 if (debug_threads)
2856 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2857 lwpid_of (thread_stuck));
2858 return;
2859 }
2860
2861 thread_info *saved_thread = current_thread;
2862
2863 stabilizing_threads = 1;
2864
2865 /* Kick 'em all. */
2866 for_each_thread ([this] (thread_info *thread)
2867 {
2868 move_out_of_jump_pad (thread);
2869 });
2870
2871 /* Loop until all are stopped out of the jump pads. */
2872 while (find_thread (lwp_running) != NULL)
2873 {
2874 struct target_waitstatus ourstatus;
2875 struct lwp_info *lwp;
2876 int wstat;
2877
2878 /* Note that we go through the full wait even loop. While
2879 moving threads out of jump pad, we need to be able to step
2880 over internal breakpoints and such. */
2881 wait_1 (minus_one_ptid, &ourstatus, 0);
2882
2883 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2884 {
2885 lwp = get_thread_lwp (current_thread);
2886
2887 /* Lock it. */
2888 lwp_suspended_inc (lwp);
2889
2890 if (ourstatus.value.sig != GDB_SIGNAL_0
2891 || current_thread->last_resume_kind == resume_stop)
2892 {
2893 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2894 enqueue_one_deferred_signal (lwp, &wstat);
2895 }
2896 }
2897 }
2898
2899 unsuspend_all_lwps (NULL);
2900
2901 stabilizing_threads = 0;
2902
2903 current_thread = saved_thread;
2904
2905 if (debug_threads)
2906 {
2907 thread_stuck = find_thread ([this] (thread_info *thread)
2908 {
2909 return stuck_in_jump_pad (thread);
2910 });
2911
2912 if (thread_stuck != NULL)
2913 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2914 lwpid_of (thread_stuck));
2915 }
2916 }
2917
2918 /* Convenience function that is called when the kernel reports an
2919 event that is not passed out to GDB. */
2920
2921 static ptid_t
2922 ignore_event (struct target_waitstatus *ourstatus)
2923 {
2924 /* If we got an event, there may still be others, as a single
2925 SIGCHLD can indicate more than one child stopped. This forces
2926 another target_wait call. */
2927 async_file_mark ();
2928
2929 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2930 return null_ptid;
2931 }
2932
2933 ptid_t
2934 linux_process_target::filter_exit_event (lwp_info *event_child,
2935 target_waitstatus *ourstatus)
2936 {
2937 client_state &cs = get_client_state ();
2938 struct thread_info *thread = get_lwp_thread (event_child);
2939 ptid_t ptid = ptid_of (thread);
2940
2941 if (!last_thread_of_process_p (pid_of (thread)))
2942 {
2943 if (cs.report_thread_events)
2944 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2945 else
2946 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2947
2948 delete_lwp (event_child);
2949 }
2950 return ptid;
2951 }
2952
2953 /* Returns 1 if GDB is interested in any event_child syscalls. */
2954
2955 static int
2956 gdb_catching_syscalls_p (struct lwp_info *event_child)
2957 {
2958 struct thread_info *thread = get_lwp_thread (event_child);
2959 struct process_info *proc = get_thread_process (thread);
2960
2961 return !proc->syscalls_to_catch.empty ();
2962 }
2963
2964 /* Returns 1 if GDB is interested in the event_child syscall.
2965 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
2966
2967 static int
2968 gdb_catch_this_syscall_p (struct lwp_info *event_child)
2969 {
2970 int sysno;
2971 struct thread_info *thread = get_lwp_thread (event_child);
2972 struct process_info *proc = get_thread_process (thread);
2973
2974 if (proc->syscalls_to_catch.empty ())
2975 return 0;
2976
2977 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
2978 return 1;
2979
2980 get_syscall_trapinfo (event_child, &sysno);
2981
2982 for (int iter : proc->syscalls_to_catch)
2983 if (iter == sysno)
2984 return 1;
2985
2986 return 0;
2987 }
2988
2989 ptid_t
2990 linux_process_target::wait_1 (ptid_t ptid, target_waitstatus *ourstatus,
2991 int target_options)
2992 {
2993 client_state &cs = get_client_state ();
2994 int w;
2995 struct lwp_info *event_child;
2996 int options;
2997 int pid;
2998 int step_over_finished;
2999 int bp_explains_trap;
3000 int maybe_internal_trap;
3001 int report_to_gdb;
3002 int trace_event;
3003 int in_step_range;
3004 int any_resumed;
3005
3006 if (debug_threads)
3007 {
3008 debug_enter ();
3009 debug_printf ("wait_1: [%s]\n", target_pid_to_str (ptid));
3010 }
3011
3012 /* Translate generic target options into linux options. */
3013 options = __WALL;
3014 if (target_options & TARGET_WNOHANG)
3015 options |= WNOHANG;
3016
3017 bp_explains_trap = 0;
3018 trace_event = 0;
3019 in_step_range = 0;
3020 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3021
3022 auto status_pending_p_any = [&] (thread_info *thread)
3023 {
3024 return status_pending_p_callback (thread, minus_one_ptid);
3025 };
3026
3027 auto not_stopped = [&] (thread_info *thread)
3028 {
3029 return not_stopped_callback (thread, minus_one_ptid);
3030 };
3031
3032 /* Find a resumed LWP, if any. */
3033 if (find_thread (status_pending_p_any) != NULL)
3034 any_resumed = 1;
3035 else if (find_thread (not_stopped) != NULL)
3036 any_resumed = 1;
3037 else
3038 any_resumed = 0;
3039
3040 if (step_over_bkpt == null_ptid)
3041 pid = wait_for_event (ptid, &w, options);
3042 else
3043 {
3044 if (debug_threads)
3045 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3046 target_pid_to_str (step_over_bkpt));
3047 pid = wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3048 }
3049
3050 if (pid == 0 || (pid == -1 && !any_resumed))
3051 {
3052 gdb_assert (target_options & TARGET_WNOHANG);
3053
3054 if (debug_threads)
3055 {
3056 debug_printf ("wait_1 ret = null_ptid, "
3057 "TARGET_WAITKIND_IGNORE\n");
3058 debug_exit ();
3059 }
3060
3061 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3062 return null_ptid;
3063 }
3064 else if (pid == -1)
3065 {
3066 if (debug_threads)
3067 {
3068 debug_printf ("wait_1 ret = null_ptid, "
3069 "TARGET_WAITKIND_NO_RESUMED\n");
3070 debug_exit ();
3071 }
3072
3073 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3074 return null_ptid;
3075 }
3076
3077 event_child = get_thread_lwp (current_thread);
3078
3079 /* wait_for_event only returns an exit status for the last
3080 child of a process. Report it. */
3081 if (WIFEXITED (w) || WIFSIGNALED (w))
3082 {
3083 if (WIFEXITED (w))
3084 {
3085 ourstatus->kind = TARGET_WAITKIND_EXITED;
3086 ourstatus->value.integer = WEXITSTATUS (w);
3087
3088 if (debug_threads)
3089 {
3090 debug_printf ("wait_1 ret = %s, exited with "
3091 "retcode %d\n",
3092 target_pid_to_str (ptid_of (current_thread)),
3093 WEXITSTATUS (w));
3094 debug_exit ();
3095 }
3096 }
3097 else
3098 {
3099 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3100 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3101
3102 if (debug_threads)
3103 {
3104 debug_printf ("wait_1 ret = %s, terminated with "
3105 "signal %d\n",
3106 target_pid_to_str (ptid_of (current_thread)),
3107 WTERMSIG (w));
3108 debug_exit ();
3109 }
3110 }
3111
3112 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3113 return filter_exit_event (event_child, ourstatus);
3114
3115 return ptid_of (current_thread);
3116 }
3117
3118 /* If step-over executes a breakpoint instruction, in the case of a
3119 hardware single step it means a gdb/gdbserver breakpoint had been
3120 planted on top of a permanent breakpoint, in the case of a software
3121 single step it may just mean that gdbserver hit the reinsert breakpoint.
3122 The PC has been adjusted by save_stop_reason to point at
3123 the breakpoint address.
3124 So in the case of the hardware single step advance the PC manually
3125 past the breakpoint and in the case of software single step advance only
3126 if it's not the single_step_breakpoint we are hitting.
3127 This avoids that a program would keep trapping a permanent breakpoint
3128 forever. */
3129 if (step_over_bkpt != null_ptid
3130 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3131 && (event_child->stepping
3132 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3133 {
3134 int increment_pc = 0;
3135 int breakpoint_kind = 0;
3136 CORE_ADDR stop_pc = event_child->stop_pc;
3137
3138 breakpoint_kind = breakpoint_kind_from_current_state (&stop_pc);
3139 sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3140
3141 if (debug_threads)
3142 {
3143 debug_printf ("step-over for %s executed software breakpoint\n",
3144 target_pid_to_str (ptid_of (current_thread)));
3145 }
3146
3147 if (increment_pc != 0)
3148 {
3149 struct regcache *regcache
3150 = get_thread_regcache (current_thread, 1);
3151
3152 event_child->stop_pc += increment_pc;
3153 low_set_pc (regcache, event_child->stop_pc);
3154
3155 if (!low_breakpoint_at (event_child->stop_pc))
3156 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3157 }
3158 }
3159
3160 /* If this event was not handled before, and is not a SIGTRAP, we
3161 report it. SIGILL and SIGSEGV are also treated as traps in case
3162 a breakpoint is inserted at the current PC. If this target does
3163 not support internal breakpoints at all, we also report the
3164 SIGTRAP without further processing; it's of no concern to us. */
3165 maybe_internal_trap
3166 = (low_supports_breakpoints ()
3167 && (WSTOPSIG (w) == SIGTRAP
3168 || ((WSTOPSIG (w) == SIGILL
3169 || WSTOPSIG (w) == SIGSEGV)
3170 && low_breakpoint_at (event_child->stop_pc))));
3171
3172 if (maybe_internal_trap)
3173 {
3174 /* Handle anything that requires bookkeeping before deciding to
3175 report the event or continue waiting. */
3176
3177 /* First check if we can explain the SIGTRAP with an internal
3178 breakpoint, or if we should possibly report the event to GDB.
3179 Do this before anything that may remove or insert a
3180 breakpoint. */
3181 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3182
3183 /* We have a SIGTRAP, possibly a step-over dance has just
3184 finished. If so, tweak the state machine accordingly,
3185 reinsert breakpoints and delete any single-step
3186 breakpoints. */
3187 step_over_finished = finish_step_over (event_child);
3188
3189 /* Now invoke the callbacks of any internal breakpoints there. */
3190 check_breakpoints (event_child->stop_pc);
3191
3192 /* Handle tracepoint data collecting. This may overflow the
3193 trace buffer, and cause a tracing stop, removing
3194 breakpoints. */
3195 trace_event = handle_tracepoints (event_child);
3196
3197 if (bp_explains_trap)
3198 {
3199 if (debug_threads)
3200 debug_printf ("Hit a gdbserver breakpoint.\n");
3201 }
3202 }
3203 else
3204 {
3205 /* We have some other signal, possibly a step-over dance was in
3206 progress, and it should be cancelled too. */
3207 step_over_finished = finish_step_over (event_child);
3208 }
3209
3210 /* We have all the data we need. Either report the event to GDB, or
3211 resume threads and keep waiting for more. */
3212
3213 /* If we're collecting a fast tracepoint, finish the collection and
3214 move out of the jump pad before delivering a signal. See
3215 linux_stabilize_threads. */
3216
3217 if (WIFSTOPPED (w)
3218 && WSTOPSIG (w) != SIGTRAP
3219 && supports_fast_tracepoints ()
3220 && agent_loaded_p ())
3221 {
3222 if (debug_threads)
3223 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3224 "to defer or adjust it.\n",
3225 WSTOPSIG (w), lwpid_of (current_thread));
3226
3227 /* Allow debugging the jump pad itself. */
3228 if (current_thread->last_resume_kind != resume_step
3229 && maybe_move_out_of_jump_pad (event_child, &w))
3230 {
3231 enqueue_one_deferred_signal (event_child, &w);
3232
3233 if (debug_threads)
3234 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3235 WSTOPSIG (w), lwpid_of (current_thread));
3236
3237 resume_one_lwp (event_child, 0, 0, NULL);
3238
3239 if (debug_threads)
3240 debug_exit ();
3241 return ignore_event (ourstatus);
3242 }
3243 }
3244
3245 if (event_child->collecting_fast_tracepoint
3246 != fast_tpoint_collect_result::not_collecting)
3247 {
3248 if (debug_threads)
3249 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3250 "Check if we're already there.\n",
3251 lwpid_of (current_thread),
3252 (int) event_child->collecting_fast_tracepoint);
3253
3254 trace_event = 1;
3255
3256 event_child->collecting_fast_tracepoint
3257 = linux_fast_tracepoint_collecting (event_child, NULL);
3258
3259 if (event_child->collecting_fast_tracepoint
3260 != fast_tpoint_collect_result::before_insn)
3261 {
3262 /* No longer need this breakpoint. */
3263 if (event_child->exit_jump_pad_bkpt != NULL)
3264 {
3265 if (debug_threads)
3266 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3267 "stopping all threads momentarily.\n");
3268
3269 /* Other running threads could hit this breakpoint.
3270 We don't handle moribund locations like GDB does,
3271 instead we always pause all threads when removing
3272 breakpoints, so that any step-over or
3273 decr_pc_after_break adjustment is always taken
3274 care of while the breakpoint is still
3275 inserted. */
3276 stop_all_lwps (1, event_child);
3277
3278 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3279 event_child->exit_jump_pad_bkpt = NULL;
3280
3281 unstop_all_lwps (1, event_child);
3282
3283 gdb_assert (event_child->suspended >= 0);
3284 }
3285 }
3286
3287 if (event_child->collecting_fast_tracepoint
3288 == fast_tpoint_collect_result::not_collecting)
3289 {
3290 if (debug_threads)
3291 debug_printf ("fast tracepoint finished "
3292 "collecting successfully.\n");
3293
3294 /* We may have a deferred signal to report. */
3295 if (dequeue_one_deferred_signal (event_child, &w))
3296 {
3297 if (debug_threads)
3298 debug_printf ("dequeued one signal.\n");
3299 }
3300 else
3301 {
3302 if (debug_threads)
3303 debug_printf ("no deferred signals.\n");
3304
3305 if (stabilizing_threads)
3306 {
3307 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3308 ourstatus->value.sig = GDB_SIGNAL_0;
3309
3310 if (debug_threads)
3311 {
3312 debug_printf ("wait_1 ret = %s, stopped "
3313 "while stabilizing threads\n",
3314 target_pid_to_str (ptid_of (current_thread)));
3315 debug_exit ();
3316 }
3317
3318 return ptid_of (current_thread);
3319 }
3320 }
3321 }
3322 }
3323
3324 /* Check whether GDB would be interested in this event. */
3325
3326 /* Check if GDB is interested in this syscall. */
3327 if (WIFSTOPPED (w)
3328 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3329 && !gdb_catch_this_syscall_p (event_child))
3330 {
3331 if (debug_threads)
3332 {
3333 debug_printf ("Ignored syscall for LWP %ld.\n",
3334 lwpid_of (current_thread));
3335 }
3336
3337 resume_one_lwp (event_child, event_child->stepping, 0, NULL);
3338
3339 if (debug_threads)
3340 debug_exit ();
3341 return ignore_event (ourstatus);
3342 }
3343
3344 /* If GDB is not interested in this signal, don't stop other
3345 threads, and don't report it to GDB. Just resume the inferior
3346 right away. We do this for threading-related signals as well as
3347 any that GDB specifically requested we ignore. But never ignore
3348 SIGSTOP if we sent it ourselves, and do not ignore signals when
3349 stepping - they may require special handling to skip the signal
3350 handler. Also never ignore signals that could be caused by a
3351 breakpoint. */
3352 if (WIFSTOPPED (w)
3353 && current_thread->last_resume_kind != resume_step
3354 && (
3355 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3356 (current_process ()->priv->thread_db != NULL
3357 && (WSTOPSIG (w) == __SIGRTMIN
3358 || WSTOPSIG (w) == __SIGRTMIN + 1))
3359 ||
3360 #endif
3361 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3362 && !(WSTOPSIG (w) == SIGSTOP
3363 && current_thread->last_resume_kind == resume_stop)
3364 && !linux_wstatus_maybe_breakpoint (w))))
3365 {
3366 siginfo_t info, *info_p;
3367
3368 if (debug_threads)
3369 debug_printf ("Ignored signal %d for LWP %ld.\n",
3370 WSTOPSIG (w), lwpid_of (current_thread));
3371
3372 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3373 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3374 info_p = &info;
3375 else
3376 info_p = NULL;
3377
3378 if (step_over_finished)
3379 {
3380 /* We cancelled this thread's step-over above. We still
3381 need to unsuspend all other LWPs, and set them back
3382 running again while the signal handler runs. */
3383 unsuspend_all_lwps (event_child);
3384
3385 /* Enqueue the pending signal info so that proceed_all_lwps
3386 doesn't lose it. */
3387 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3388
3389 proceed_all_lwps ();
3390 }
3391 else
3392 {
3393 resume_one_lwp (event_child, event_child->stepping,
3394 WSTOPSIG (w), info_p);
3395 }
3396
3397 if (debug_threads)
3398 debug_exit ();
3399
3400 return ignore_event (ourstatus);
3401 }
3402
3403 /* Note that all addresses are always "out of the step range" when
3404 there's no range to begin with. */
3405 in_step_range = lwp_in_step_range (event_child);
3406
3407 /* If GDB wanted this thread to single step, and the thread is out
3408 of the step range, we always want to report the SIGTRAP, and let
3409 GDB handle it. Watchpoints should always be reported. So should
3410 signals we can't explain. A SIGTRAP we can't explain could be a
3411 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3412 do, we're be able to handle GDB breakpoints on top of internal
3413 breakpoints, by handling the internal breakpoint and still
3414 reporting the event to GDB. If we don't, we're out of luck, GDB
3415 won't see the breakpoint hit. If we see a single-step event but
3416 the thread should be continuing, don't pass the trap to gdb.
3417 That indicates that we had previously finished a single-step but
3418 left the single-step pending -- see
3419 complete_ongoing_step_over. */
3420 report_to_gdb = (!maybe_internal_trap
3421 || (current_thread->last_resume_kind == resume_step
3422 && !in_step_range)
3423 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3424 || (!in_step_range
3425 && !bp_explains_trap
3426 && !trace_event
3427 && !step_over_finished
3428 && !(current_thread->last_resume_kind == resume_continue
3429 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3430 || (gdb_breakpoint_here (event_child->stop_pc)
3431 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3432 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3433 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3434
3435 run_breakpoint_commands (event_child->stop_pc);
3436
3437 /* We found no reason GDB would want us to stop. We either hit one
3438 of our own breakpoints, or finished an internal step GDB
3439 shouldn't know about. */
3440 if (!report_to_gdb)
3441 {
3442 if (debug_threads)
3443 {
3444 if (bp_explains_trap)
3445 debug_printf ("Hit a gdbserver breakpoint.\n");
3446 if (step_over_finished)
3447 debug_printf ("Step-over finished.\n");
3448 if (trace_event)
3449 debug_printf ("Tracepoint event.\n");
3450 if (lwp_in_step_range (event_child))
3451 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3452 paddress (event_child->stop_pc),
3453 paddress (event_child->step_range_start),
3454 paddress (event_child->step_range_end));
3455 }
3456
3457 /* We're not reporting this breakpoint to GDB, so apply the
3458 decr_pc_after_break adjustment to the inferior's regcache
3459 ourselves. */
3460
3461 if (low_supports_breakpoints ())
3462 {
3463 struct regcache *regcache
3464 = get_thread_regcache (current_thread, 1);
3465 low_set_pc (regcache, event_child->stop_pc);
3466 }
3467
3468 if (step_over_finished)
3469 {
3470 /* If we have finished stepping over a breakpoint, we've
3471 stopped and suspended all LWPs momentarily except the
3472 stepping one. This is where we resume them all again.
3473 We're going to keep waiting, so use proceed, which
3474 handles stepping over the next breakpoint. */
3475 unsuspend_all_lwps (event_child);
3476 }
3477 else
3478 {
3479 /* Remove the single-step breakpoints if any. Note that
3480 there isn't single-step breakpoint if we finished stepping
3481 over. */
3482 if (supports_software_single_step ()
3483 && has_single_step_breakpoints (current_thread))
3484 {
3485 stop_all_lwps (0, event_child);
3486 delete_single_step_breakpoints (current_thread);
3487 unstop_all_lwps (0, event_child);
3488 }
3489 }
3490
3491 if (debug_threads)
3492 debug_printf ("proceeding all threads.\n");
3493 proceed_all_lwps ();
3494
3495 if (debug_threads)
3496 debug_exit ();
3497
3498 return ignore_event (ourstatus);
3499 }
3500
3501 if (debug_threads)
3502 {
3503 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3504 {
3505 std::string str
3506 = target_waitstatus_to_string (&event_child->waitstatus);
3507
3508 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3509 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3510 }
3511 if (current_thread->last_resume_kind == resume_step)
3512 {
3513 if (event_child->step_range_start == event_child->step_range_end)
3514 debug_printf ("GDB wanted to single-step, reporting event.\n");
3515 else if (!lwp_in_step_range (event_child))
3516 debug_printf ("Out of step range, reporting event.\n");
3517 }
3518 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3519 debug_printf ("Stopped by watchpoint.\n");
3520 else if (gdb_breakpoint_here (event_child->stop_pc))
3521 debug_printf ("Stopped by GDB breakpoint.\n");
3522 if (debug_threads)
3523 debug_printf ("Hit a non-gdbserver trap event.\n");
3524 }
3525
3526 /* Alright, we're going to report a stop. */
3527
3528 /* Remove single-step breakpoints. */
3529 if (supports_software_single_step ())
3530 {
3531 /* Remove single-step breakpoints or not. It it is true, stop all
3532 lwps, so that other threads won't hit the breakpoint in the
3533 staled memory. */
3534 int remove_single_step_breakpoints_p = 0;
3535
3536 if (non_stop)
3537 {
3538 remove_single_step_breakpoints_p
3539 = has_single_step_breakpoints (current_thread);
3540 }
3541 else
3542 {
3543 /* In all-stop, a stop reply cancels all previous resume
3544 requests. Delete all single-step breakpoints. */
3545
3546 find_thread ([&] (thread_info *thread) {
3547 if (has_single_step_breakpoints (thread))
3548 {
3549 remove_single_step_breakpoints_p = 1;
3550 return true;
3551 }
3552
3553 return false;
3554 });
3555 }
3556
3557 if (remove_single_step_breakpoints_p)
3558 {
3559 /* If we remove single-step breakpoints from memory, stop all lwps,
3560 so that other threads won't hit the breakpoint in the staled
3561 memory. */
3562 stop_all_lwps (0, event_child);
3563
3564 if (non_stop)
3565 {
3566 gdb_assert (has_single_step_breakpoints (current_thread));
3567 delete_single_step_breakpoints (current_thread);
3568 }
3569 else
3570 {
3571 for_each_thread ([] (thread_info *thread){
3572 if (has_single_step_breakpoints (thread))
3573 delete_single_step_breakpoints (thread);
3574 });
3575 }
3576
3577 unstop_all_lwps (0, event_child);
3578 }
3579 }
3580
3581 if (!stabilizing_threads)
3582 {
3583 /* In all-stop, stop all threads. */
3584 if (!non_stop)
3585 stop_all_lwps (0, NULL);
3586
3587 if (step_over_finished)
3588 {
3589 if (!non_stop)
3590 {
3591 /* If we were doing a step-over, all other threads but
3592 the stepping one had been paused in start_step_over,
3593 with their suspend counts incremented. We don't want
3594 to do a full unstop/unpause, because we're in
3595 all-stop mode (so we want threads stopped), but we
3596 still need to unsuspend the other threads, to
3597 decrement their `suspended' count back. */
3598 unsuspend_all_lwps (event_child);
3599 }
3600 else
3601 {
3602 /* If we just finished a step-over, then all threads had
3603 been momentarily paused. In all-stop, that's fine,
3604 we want threads stopped by now anyway. In non-stop,
3605 we need to re-resume threads that GDB wanted to be
3606 running. */
3607 unstop_all_lwps (1, event_child);
3608 }
3609 }
3610
3611 /* If we're not waiting for a specific LWP, choose an event LWP
3612 from among those that have had events. Giving equal priority
3613 to all LWPs that have had events helps prevent
3614 starvation. */
3615 if (ptid == minus_one_ptid)
3616 {
3617 event_child->status_pending_p = 1;
3618 event_child->status_pending = w;
3619
3620 select_event_lwp (&event_child);
3621
3622 /* current_thread and event_child must stay in sync. */
3623 current_thread = get_lwp_thread (event_child);
3624
3625 event_child->status_pending_p = 0;
3626 w = event_child->status_pending;
3627 }
3628
3629
3630 /* Stabilize threads (move out of jump pads). */
3631 if (!non_stop)
3632 target_stabilize_threads ();
3633 }
3634 else
3635 {
3636 /* If we just finished a step-over, then all threads had been
3637 momentarily paused. In all-stop, that's fine, we want
3638 threads stopped by now anyway. In non-stop, we need to
3639 re-resume threads that GDB wanted to be running. */
3640 if (step_over_finished)
3641 unstop_all_lwps (1, event_child);
3642 }
3643
3644 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3645 {
3646 /* If the reported event is an exit, fork, vfork or exec, let
3647 GDB know. */
3648
3649 /* Break the unreported fork relationship chain. */
3650 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3651 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3652 {
3653 event_child->fork_relative->fork_relative = NULL;
3654 event_child->fork_relative = NULL;
3655 }
3656
3657 *ourstatus = event_child->waitstatus;
3658 /* Clear the event lwp's waitstatus since we handled it already. */
3659 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3660 }
3661 else
3662 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3663
3664 /* Now that we've selected our final event LWP, un-adjust its PC if
3665 it was a software breakpoint, and the client doesn't know we can
3666 adjust the breakpoint ourselves. */
3667 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3668 && !cs.swbreak_feature)
3669 {
3670 int decr_pc = low_decr_pc_after_break ();
3671
3672 if (decr_pc != 0)
3673 {
3674 struct regcache *regcache
3675 = get_thread_regcache (current_thread, 1);
3676 low_set_pc (regcache, event_child->stop_pc + decr_pc);
3677 }
3678 }
3679
3680 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3681 {
3682 get_syscall_trapinfo (event_child,
3683 &ourstatus->value.syscall_number);
3684 ourstatus->kind = event_child->syscall_state;
3685 }
3686 else if (current_thread->last_resume_kind == resume_stop
3687 && WSTOPSIG (w) == SIGSTOP)
3688 {
3689 /* A thread that has been requested to stop by GDB with vCont;t,
3690 and it stopped cleanly, so report as SIG0. The use of
3691 SIGSTOP is an implementation detail. */
3692 ourstatus->value.sig = GDB_SIGNAL_0;
3693 }
3694 else if (current_thread->last_resume_kind == resume_stop
3695 && WSTOPSIG (w) != SIGSTOP)
3696 {
3697 /* A thread that has been requested to stop by GDB with vCont;t,
3698 but, it stopped for other reasons. */
3699 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3700 }
3701 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3702 {
3703 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3704 }
3705
3706 gdb_assert (step_over_bkpt == null_ptid);
3707
3708 if (debug_threads)
3709 {
3710 debug_printf ("wait_1 ret = %s, %d, %d\n",
3711 target_pid_to_str (ptid_of (current_thread)),
3712 ourstatus->kind, ourstatus->value.sig);
3713 debug_exit ();
3714 }
3715
3716 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3717 return filter_exit_event (event_child, ourstatus);
3718
3719 return ptid_of (current_thread);
3720 }
3721
3722 /* Get rid of any pending event in the pipe. */
3723 static void
3724 async_file_flush (void)
3725 {
3726 int ret;
3727 char buf;
3728
3729 do
3730 ret = read (linux_event_pipe[0], &buf, 1);
3731 while (ret >= 0 || (ret == -1 && errno == EINTR));
3732 }
3733
3734 /* Put something in the pipe, so the event loop wakes up. */
3735 static void
3736 async_file_mark (void)
3737 {
3738 int ret;
3739
3740 async_file_flush ();
3741
3742 do
3743 ret = write (linux_event_pipe[1], "+", 1);
3744 while (ret == 0 || (ret == -1 && errno == EINTR));
3745
3746 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3747 be awakened anyway. */
3748 }
3749
3750 ptid_t
3751 linux_process_target::wait (ptid_t ptid,
3752 target_waitstatus *ourstatus,
3753 int target_options)
3754 {
3755 ptid_t event_ptid;
3756
3757 /* Flush the async file first. */
3758 if (target_is_async_p ())
3759 async_file_flush ();
3760
3761 do
3762 {
3763 event_ptid = wait_1 (ptid, ourstatus, target_options);
3764 }
3765 while ((target_options & TARGET_WNOHANG) == 0
3766 && event_ptid == null_ptid
3767 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3768
3769 /* If at least one stop was reported, there may be more. A single
3770 SIGCHLD can signal more than one child stop. */
3771 if (target_is_async_p ()
3772 && (target_options & TARGET_WNOHANG) != 0
3773 && event_ptid != null_ptid)
3774 async_file_mark ();
3775
3776 return event_ptid;
3777 }
3778
3779 /* Send a signal to an LWP. */
3780
3781 static int
3782 kill_lwp (unsigned long lwpid, int signo)
3783 {
3784 int ret;
3785
3786 errno = 0;
3787 ret = syscall (__NR_tkill, lwpid, signo);
3788 if (errno == ENOSYS)
3789 {
3790 /* If tkill fails, then we are not using nptl threads, a
3791 configuration we no longer support. */
3792 perror_with_name (("tkill"));
3793 }
3794 return ret;
3795 }
3796
3797 void
3798 linux_stop_lwp (struct lwp_info *lwp)
3799 {
3800 send_sigstop (lwp);
3801 }
3802
3803 static void
3804 send_sigstop (struct lwp_info *lwp)
3805 {
3806 int pid;
3807
3808 pid = lwpid_of (get_lwp_thread (lwp));
3809
3810 /* If we already have a pending stop signal for this process, don't
3811 send another. */
3812 if (lwp->stop_expected)
3813 {
3814 if (debug_threads)
3815 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3816
3817 return;
3818 }
3819
3820 if (debug_threads)
3821 debug_printf ("Sending sigstop to lwp %d\n", pid);
3822
3823 lwp->stop_expected = 1;
3824 kill_lwp (pid, SIGSTOP);
3825 }
3826
3827 static void
3828 send_sigstop (thread_info *thread, lwp_info *except)
3829 {
3830 struct lwp_info *lwp = get_thread_lwp (thread);
3831
3832 /* Ignore EXCEPT. */
3833 if (lwp == except)
3834 return;
3835
3836 if (lwp->stopped)
3837 return;
3838
3839 send_sigstop (lwp);
3840 }
3841
3842 /* Increment the suspend count of an LWP, and stop it, if not stopped
3843 yet. */
3844 static void
3845 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3846 {
3847 struct lwp_info *lwp = get_thread_lwp (thread);
3848
3849 /* Ignore EXCEPT. */
3850 if (lwp == except)
3851 return;
3852
3853 lwp_suspended_inc (lwp);
3854
3855 send_sigstop (thread, except);
3856 }
3857
3858 static void
3859 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3860 {
3861 /* Store the exit status for later. */
3862 lwp->status_pending_p = 1;
3863 lwp->status_pending = wstat;
3864
3865 /* Store in waitstatus as well, as there's nothing else to process
3866 for this event. */
3867 if (WIFEXITED (wstat))
3868 {
3869 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3870 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3871 }
3872 else if (WIFSIGNALED (wstat))
3873 {
3874 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3875 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3876 }
3877
3878 /* Prevent trying to stop it. */
3879 lwp->stopped = 1;
3880
3881 /* No further stops are expected from a dead lwp. */
3882 lwp->stop_expected = 0;
3883 }
3884
3885 /* Return true if LWP has exited already, and has a pending exit event
3886 to report to GDB. */
3887
3888 static int
3889 lwp_is_marked_dead (struct lwp_info *lwp)
3890 {
3891 return (lwp->status_pending_p
3892 && (WIFEXITED (lwp->status_pending)
3893 || WIFSIGNALED (lwp->status_pending)));
3894 }
3895
3896 void
3897 linux_process_target::wait_for_sigstop ()
3898 {
3899 struct thread_info *saved_thread;
3900 ptid_t saved_tid;
3901 int wstat;
3902 int ret;
3903
3904 saved_thread = current_thread;
3905 if (saved_thread != NULL)
3906 saved_tid = saved_thread->id;
3907 else
3908 saved_tid = null_ptid; /* avoid bogus unused warning */
3909
3910 if (debug_threads)
3911 debug_printf ("wait_for_sigstop: pulling events\n");
3912
3913 /* Passing NULL_PTID as filter indicates we want all events to be
3914 left pending. Eventually this returns when there are no
3915 unwaited-for children left. */
3916 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat, __WALL);
3917 gdb_assert (ret == -1);
3918
3919 if (saved_thread == NULL || mythread_alive (saved_tid))
3920 current_thread = saved_thread;
3921 else
3922 {
3923 if (debug_threads)
3924 debug_printf ("Previously current thread died.\n");
3925
3926 /* We can't change the current inferior behind GDB's back,
3927 otherwise, a subsequent command may apply to the wrong
3928 process. */
3929 current_thread = NULL;
3930 }
3931 }
3932
3933 bool
3934 linux_process_target::stuck_in_jump_pad (thread_info *thread)
3935 {
3936 struct lwp_info *lwp = get_thread_lwp (thread);
3937
3938 if (lwp->suspended != 0)
3939 {
3940 internal_error (__FILE__, __LINE__,
3941 "LWP %ld is suspended, suspended=%d\n",
3942 lwpid_of (thread), lwp->suspended);
3943 }
3944 gdb_assert (lwp->stopped);
3945
3946 /* Allow debugging the jump pad, gdb_collect, etc.. */
3947 return (supports_fast_tracepoints ()
3948 && agent_loaded_p ()
3949 && (gdb_breakpoint_here (lwp->stop_pc)
3950 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3951 || thread->last_resume_kind == resume_step)
3952 && (linux_fast_tracepoint_collecting (lwp, NULL)
3953 != fast_tpoint_collect_result::not_collecting));
3954 }
3955
3956 void
3957 linux_process_target::move_out_of_jump_pad (thread_info *thread)
3958 {
3959 struct thread_info *saved_thread;
3960 struct lwp_info *lwp = get_thread_lwp (thread);
3961 int *wstat;
3962
3963 if (lwp->suspended != 0)
3964 {
3965 internal_error (__FILE__, __LINE__,
3966 "LWP %ld is suspended, suspended=%d\n",
3967 lwpid_of (thread), lwp->suspended);
3968 }
3969 gdb_assert (lwp->stopped);
3970
3971 /* For gdb_breakpoint_here. */
3972 saved_thread = current_thread;
3973 current_thread = thread;
3974
3975 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3976
3977 /* Allow debugging the jump pad, gdb_collect, etc. */
3978 if (!gdb_breakpoint_here (lwp->stop_pc)
3979 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3980 && thread->last_resume_kind != resume_step
3981 && maybe_move_out_of_jump_pad (lwp, wstat))
3982 {
3983 if (debug_threads)
3984 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3985 lwpid_of (thread));
3986
3987 if (wstat)
3988 {
3989 lwp->status_pending_p = 0;
3990 enqueue_one_deferred_signal (lwp, wstat);
3991
3992 if (debug_threads)
3993 debug_printf ("Signal %d for LWP %ld deferred "
3994 "(in jump pad)\n",
3995 WSTOPSIG (*wstat), lwpid_of (thread));
3996 }
3997
3998 resume_one_lwp (lwp, 0, 0, NULL);
3999 }
4000 else
4001 lwp_suspended_inc (lwp);
4002
4003 current_thread = saved_thread;
4004 }
4005
4006 static bool
4007 lwp_running (thread_info *thread)
4008 {
4009 struct lwp_info *lwp = get_thread_lwp (thread);
4010
4011 if (lwp_is_marked_dead (lwp))
4012 return false;
4013
4014 return !lwp->stopped;
4015 }
4016
4017 void
4018 linux_process_target::stop_all_lwps (int suspend, lwp_info *except)
4019 {
4020 /* Should not be called recursively. */
4021 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4022
4023 if (debug_threads)
4024 {
4025 debug_enter ();
4026 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4027 suspend ? "stop-and-suspend" : "stop",
4028 except != NULL
4029 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4030 : "none");
4031 }
4032
4033 stopping_threads = (suspend
4034 ? STOPPING_AND_SUSPENDING_THREADS
4035 : STOPPING_THREADS);
4036
4037 if (suspend)
4038 for_each_thread ([&] (thread_info *thread)
4039 {
4040 suspend_and_send_sigstop (thread, except);
4041 });
4042 else
4043 for_each_thread ([&] (thread_info *thread)
4044 {
4045 send_sigstop (thread, except);
4046 });
4047
4048 wait_for_sigstop ();
4049 stopping_threads = NOT_STOPPING_THREADS;
4050
4051 if (debug_threads)
4052 {
4053 debug_printf ("stop_all_lwps done, setting stopping_threads "
4054 "back to !stopping\n");
4055 debug_exit ();
4056 }
4057 }
4058
4059 /* Enqueue one signal in the chain of signals which need to be
4060 delivered to this process on next resume. */
4061
4062 static void
4063 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4064 {
4065 struct pending_signals *p_sig = XNEW (struct pending_signals);
4066
4067 p_sig->prev = lwp->pending_signals;
4068 p_sig->signal = signal;
4069 if (info == NULL)
4070 memset (&p_sig->info, 0, sizeof (siginfo_t));
4071 else
4072 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4073 lwp->pending_signals = p_sig;
4074 }
4075
4076 void
4077 linux_process_target::install_software_single_step_breakpoints (lwp_info *lwp)
4078 {
4079 struct thread_info *thread = get_lwp_thread (lwp);
4080 struct regcache *regcache = get_thread_regcache (thread, 1);
4081
4082 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4083
4084 current_thread = thread;
4085 std::vector<CORE_ADDR> next_pcs = low_get_next_pcs (regcache);
4086
4087 for (CORE_ADDR pc : next_pcs)
4088 set_single_step_breakpoint (pc, current_ptid);
4089 }
4090
4091 int
4092 linux_process_target::single_step (lwp_info* lwp)
4093 {
4094 int step = 0;
4095
4096 if (supports_hardware_single_step ())
4097 {
4098 step = 1;
4099 }
4100 else if (supports_software_single_step ())
4101 {
4102 install_software_single_step_breakpoints (lwp);
4103 step = 0;
4104 }
4105 else
4106 {
4107 if (debug_threads)
4108 debug_printf ("stepping is not implemented on this target");
4109 }
4110
4111 return step;
4112 }
4113
4114 /* The signal can be delivered to the inferior if we are not trying to
4115 finish a fast tracepoint collect. Since signal can be delivered in
4116 the step-over, the program may go to signal handler and trap again
4117 after return from the signal handler. We can live with the spurious
4118 double traps. */
4119
4120 static int
4121 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4122 {
4123 return (lwp->collecting_fast_tracepoint
4124 == fast_tpoint_collect_result::not_collecting);
4125 }
4126
4127 void
4128 linux_process_target::resume_one_lwp_throw (lwp_info *lwp, int step,
4129 int signal, siginfo_t *info)
4130 {
4131 struct thread_info *thread = get_lwp_thread (lwp);
4132 struct thread_info *saved_thread;
4133 int ptrace_request;
4134 struct process_info *proc = get_thread_process (thread);
4135
4136 /* Note that target description may not be initialised
4137 (proc->tdesc == NULL) at this point because the program hasn't
4138 stopped at the first instruction yet. It means GDBserver skips
4139 the extra traps from the wrapper program (see option --wrapper).
4140 Code in this function that requires register access should be
4141 guarded by proc->tdesc == NULL or something else. */
4142
4143 if (lwp->stopped == 0)
4144 return;
4145
4146 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4147
4148 fast_tpoint_collect_result fast_tp_collecting
4149 = lwp->collecting_fast_tracepoint;
4150
4151 gdb_assert (!stabilizing_threads
4152 || (fast_tp_collecting
4153 != fast_tpoint_collect_result::not_collecting));
4154
4155 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4156 user used the "jump" command, or "set $pc = foo"). */
4157 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4158 {
4159 /* Collecting 'while-stepping' actions doesn't make sense
4160 anymore. */
4161 release_while_stepping_state_list (thread);
4162 }
4163
4164 /* If we have pending signals or status, and a new signal, enqueue the
4165 signal. Also enqueue the signal if it can't be delivered to the
4166 inferior right now. */
4167 if (signal != 0
4168 && (lwp->status_pending_p
4169 || lwp->pending_signals != NULL
4170 || !lwp_signal_can_be_delivered (lwp)))
4171 {
4172 enqueue_pending_signal (lwp, signal, info);
4173
4174 /* Postpone any pending signal. It was enqueued above. */
4175 signal = 0;
4176 }
4177
4178 if (lwp->status_pending_p)
4179 {
4180 if (debug_threads)
4181 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4182 " has pending status\n",
4183 lwpid_of (thread), step ? "step" : "continue",
4184 lwp->stop_expected ? "expected" : "not expected");
4185 return;
4186 }
4187
4188 saved_thread = current_thread;
4189 current_thread = thread;
4190
4191 /* This bit needs some thinking about. If we get a signal that
4192 we must report while a single-step reinsert is still pending,
4193 we often end up resuming the thread. It might be better to
4194 (ew) allow a stack of pending events; then we could be sure that
4195 the reinsert happened right away and not lose any signals.
4196
4197 Making this stack would also shrink the window in which breakpoints are
4198 uninserted (see comment in linux_wait_for_lwp) but not enough for
4199 complete correctness, so it won't solve that problem. It may be
4200 worthwhile just to solve this one, however. */
4201 if (lwp->bp_reinsert != 0)
4202 {
4203 if (debug_threads)
4204 debug_printf (" pending reinsert at 0x%s\n",
4205 paddress (lwp->bp_reinsert));
4206
4207 if (supports_hardware_single_step ())
4208 {
4209 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4210 {
4211 if (step == 0)
4212 warning ("BAD - reinserting but not stepping.");
4213 if (lwp->suspended)
4214 warning ("BAD - reinserting and suspended(%d).",
4215 lwp->suspended);
4216 }
4217 }
4218
4219 step = maybe_hw_step (thread);
4220 }
4221
4222 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4223 {
4224 if (debug_threads)
4225 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4226 " (exit-jump-pad-bkpt)\n",
4227 lwpid_of (thread));
4228 }
4229 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4230 {
4231 if (debug_threads)
4232 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4233 " single-stepping\n",
4234 lwpid_of (thread));
4235
4236 if (supports_hardware_single_step ())
4237 step = 1;
4238 else
4239 {
4240 internal_error (__FILE__, __LINE__,
4241 "moving out of jump pad single-stepping"
4242 " not implemented on this target");
4243 }
4244 }
4245
4246 /* If we have while-stepping actions in this thread set it stepping.
4247 If we have a signal to deliver, it may or may not be set to
4248 SIG_IGN, we don't know. Assume so, and allow collecting
4249 while-stepping into a signal handler. A possible smart thing to
4250 do would be to set an internal breakpoint at the signal return
4251 address, continue, and carry on catching this while-stepping
4252 action only when that breakpoint is hit. A future
4253 enhancement. */
4254 if (thread->while_stepping != NULL)
4255 {
4256 if (debug_threads)
4257 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4258 lwpid_of (thread));
4259
4260 step = single_step (lwp);
4261 }
4262
4263 if (proc->tdesc != NULL && low_supports_breakpoints ())
4264 {
4265 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4266
4267 lwp->stop_pc = low_get_pc (regcache);
4268
4269 if (debug_threads)
4270 {
4271 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4272 (long) lwp->stop_pc);
4273 }
4274 }
4275
4276 /* If we have pending signals, consume one if it can be delivered to
4277 the inferior. */
4278 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4279 {
4280 struct pending_signals **p_sig;
4281
4282 p_sig = &lwp->pending_signals;
4283 while ((*p_sig)->prev != NULL)
4284 p_sig = &(*p_sig)->prev;
4285
4286 signal = (*p_sig)->signal;
4287 if ((*p_sig)->info.si_signo != 0)
4288 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4289 &(*p_sig)->info);
4290
4291 free (*p_sig);
4292 *p_sig = NULL;
4293 }
4294
4295 if (debug_threads)
4296 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4297 lwpid_of (thread), step ? "step" : "continue", signal,
4298 lwp->stop_expected ? "expected" : "not expected");
4299
4300 low_prepare_to_resume (lwp);
4301
4302 regcache_invalidate_thread (thread);
4303 errno = 0;
4304 lwp->stepping = step;
4305 if (step)
4306 ptrace_request = PTRACE_SINGLESTEP;
4307 else if (gdb_catching_syscalls_p (lwp))
4308 ptrace_request = PTRACE_SYSCALL;
4309 else
4310 ptrace_request = PTRACE_CONT;
4311 ptrace (ptrace_request,
4312 lwpid_of (thread),
4313 (PTRACE_TYPE_ARG3) 0,
4314 /* Coerce to a uintptr_t first to avoid potential gcc warning
4315 of coercing an 8 byte integer to a 4 byte pointer. */
4316 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4317
4318 current_thread = saved_thread;
4319 if (errno)
4320 perror_with_name ("resuming thread");
4321
4322 /* Successfully resumed. Clear state that no longer makes sense,
4323 and mark the LWP as running. Must not do this before resuming
4324 otherwise if that fails other code will be confused. E.g., we'd
4325 later try to stop the LWP and hang forever waiting for a stop
4326 status. Note that we must not throw after this is cleared,
4327 otherwise handle_zombie_lwp_error would get confused. */
4328 lwp->stopped = 0;
4329 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4330 }
4331
4332 void
4333 linux_process_target::low_prepare_to_resume (lwp_info *lwp)
4334 {
4335 /* Nop. */
4336 }
4337
4338 /* Called when we try to resume a stopped LWP and that errors out. If
4339 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4340 or about to become), discard the error, clear any pending status
4341 the LWP may have, and return true (we'll collect the exit status
4342 soon enough). Otherwise, return false. */
4343
4344 static int
4345 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4346 {
4347 struct thread_info *thread = get_lwp_thread (lp);
4348
4349 /* If we get an error after resuming the LWP successfully, we'd
4350 confuse !T state for the LWP being gone. */
4351 gdb_assert (lp->stopped);
4352
4353 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4354 because even if ptrace failed with ESRCH, the tracee may be "not
4355 yet fully dead", but already refusing ptrace requests. In that
4356 case the tracee has 'R (Running)' state for a little bit
4357 (observed in Linux 3.18). See also the note on ESRCH in the
4358 ptrace(2) man page. Instead, check whether the LWP has any state
4359 other than ptrace-stopped. */
4360
4361 /* Don't assume anything if /proc/PID/status can't be read. */
4362 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4363 {
4364 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4365 lp->status_pending_p = 0;
4366 return 1;
4367 }
4368 return 0;
4369 }
4370
4371 void
4372 linux_process_target::resume_one_lwp (lwp_info *lwp, int step, int signal,
4373 siginfo_t *info)
4374 {
4375 try
4376 {
4377 resume_one_lwp_throw (lwp, step, signal, info);
4378 }
4379 catch (const gdb_exception_error &ex)
4380 {
4381 if (!check_ptrace_stopped_lwp_gone (lwp))
4382 throw;
4383 }
4384 }
4385
4386 /* This function is called once per thread via for_each_thread.
4387 We look up which resume request applies to THREAD and mark it with a
4388 pointer to the appropriate resume request.
4389
4390 This algorithm is O(threads * resume elements), but resume elements
4391 is small (and will remain small at least until GDB supports thread
4392 suspension). */
4393
4394 static void
4395 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4396 {
4397 struct lwp_info *lwp = get_thread_lwp (thread);
4398
4399 for (int ndx = 0; ndx < n; ndx++)
4400 {
4401 ptid_t ptid = resume[ndx].thread;
4402 if (ptid == minus_one_ptid
4403 || ptid == thread->id
4404 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4405 of PID'. */
4406 || (ptid.pid () == pid_of (thread)
4407 && (ptid.is_pid ()
4408 || ptid.lwp () == -1)))
4409 {
4410 if (resume[ndx].kind == resume_stop
4411 && thread->last_resume_kind == resume_stop)
4412 {
4413 if (debug_threads)
4414 debug_printf ("already %s LWP %ld at GDB's request\n",
4415 (thread->last_status.kind
4416 == TARGET_WAITKIND_STOPPED)
4417 ? "stopped"
4418 : "stopping",
4419 lwpid_of (thread));
4420
4421 continue;
4422 }
4423
4424 /* Ignore (wildcard) resume requests for already-resumed
4425 threads. */
4426 if (resume[ndx].kind != resume_stop
4427 && thread->last_resume_kind != resume_stop)
4428 {
4429 if (debug_threads)
4430 debug_printf ("already %s LWP %ld at GDB's request\n",
4431 (thread->last_resume_kind
4432 == resume_step)
4433 ? "stepping"
4434 : "continuing",
4435 lwpid_of (thread));
4436 continue;
4437 }
4438
4439 /* Don't let wildcard resumes resume fork children that GDB
4440 does not yet know are new fork children. */
4441 if (lwp->fork_relative != NULL)
4442 {
4443 struct lwp_info *rel = lwp->fork_relative;
4444
4445 if (rel->status_pending_p
4446 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4447 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4448 {
4449 if (debug_threads)
4450 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4451 lwpid_of (thread));
4452 continue;
4453 }
4454 }
4455
4456 /* If the thread has a pending event that has already been
4457 reported to GDBserver core, but GDB has not pulled the
4458 event out of the vStopped queue yet, likewise, ignore the
4459 (wildcard) resume request. */
4460 if (in_queued_stop_replies (thread->id))
4461 {
4462 if (debug_threads)
4463 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4464 lwpid_of (thread));
4465 continue;
4466 }
4467
4468 lwp->resume = &resume[ndx];
4469 thread->last_resume_kind = lwp->resume->kind;
4470
4471 lwp->step_range_start = lwp->resume->step_range_start;
4472 lwp->step_range_end = lwp->resume->step_range_end;
4473
4474 /* If we had a deferred signal to report, dequeue one now.
4475 This can happen if LWP gets more than one signal while
4476 trying to get out of a jump pad. */
4477 if (lwp->stopped
4478 && !lwp->status_pending_p
4479 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4480 {
4481 lwp->status_pending_p = 1;
4482
4483 if (debug_threads)
4484 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4485 "leaving status pending.\n",
4486 WSTOPSIG (lwp->status_pending),
4487 lwpid_of (thread));
4488 }
4489
4490 return;
4491 }
4492 }
4493
4494 /* No resume action for this thread. */
4495 lwp->resume = NULL;
4496 }
4497
4498 bool
4499 linux_process_target::resume_status_pending (thread_info *thread)
4500 {
4501 struct lwp_info *lwp = get_thread_lwp (thread);
4502
4503 /* LWPs which will not be resumed are not interesting, because
4504 we might not wait for them next time through linux_wait. */
4505 if (lwp->resume == NULL)
4506 return false;
4507
4508 return thread_still_has_status_pending (thread);
4509 }
4510
4511 bool
4512 linux_process_target::thread_needs_step_over (thread_info *thread)
4513 {
4514 struct lwp_info *lwp = get_thread_lwp (thread);
4515 struct thread_info *saved_thread;
4516 CORE_ADDR pc;
4517 struct process_info *proc = get_thread_process (thread);
4518
4519 /* GDBserver is skipping the extra traps from the wrapper program,
4520 don't have to do step over. */
4521 if (proc->tdesc == NULL)
4522 return false;
4523
4524 /* LWPs which will not be resumed are not interesting, because we
4525 might not wait for them next time through linux_wait. */
4526
4527 if (!lwp->stopped)
4528 {
4529 if (debug_threads)
4530 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4531 lwpid_of (thread));
4532 return false;
4533 }
4534
4535 if (thread->last_resume_kind == resume_stop)
4536 {
4537 if (debug_threads)
4538 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4539 " stopped\n",
4540 lwpid_of (thread));
4541 return false;
4542 }
4543
4544 gdb_assert (lwp->suspended >= 0);
4545
4546 if (lwp->suspended)
4547 {
4548 if (debug_threads)
4549 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4550 lwpid_of (thread));
4551 return false;
4552 }
4553
4554 if (lwp->status_pending_p)
4555 {
4556 if (debug_threads)
4557 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4558 " status.\n",
4559 lwpid_of (thread));
4560 return false;
4561 }
4562
4563 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4564 or we have. */
4565 pc = get_pc (lwp);
4566
4567 /* If the PC has changed since we stopped, then don't do anything,
4568 and let the breakpoint/tracepoint be hit. This happens if, for
4569 instance, GDB handled the decr_pc_after_break subtraction itself,
4570 GDB is OOL stepping this thread, or the user has issued a "jump"
4571 command, or poked thread's registers herself. */
4572 if (pc != lwp->stop_pc)
4573 {
4574 if (debug_threads)
4575 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4576 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4577 lwpid_of (thread),
4578 paddress (lwp->stop_pc), paddress (pc));
4579 return false;
4580 }
4581
4582 /* On software single step target, resume the inferior with signal
4583 rather than stepping over. */
4584 if (supports_software_single_step ()
4585 && lwp->pending_signals != NULL
4586 && lwp_signal_can_be_delivered (lwp))
4587 {
4588 if (debug_threads)
4589 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4590 " signals.\n",
4591 lwpid_of (thread));
4592
4593 return false;
4594 }
4595
4596 saved_thread = current_thread;
4597 current_thread = thread;
4598
4599 /* We can only step over breakpoints we know about. */
4600 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4601 {
4602 /* Don't step over a breakpoint that GDB expects to hit
4603 though. If the condition is being evaluated on the target's side
4604 and it evaluate to false, step over this breakpoint as well. */
4605 if (gdb_breakpoint_here (pc)
4606 && gdb_condition_true_at_breakpoint (pc)
4607 && gdb_no_commands_at_breakpoint (pc))
4608 {
4609 if (debug_threads)
4610 debug_printf ("Need step over [LWP %ld]? yes, but found"
4611 " GDB breakpoint at 0x%s; skipping step over\n",
4612 lwpid_of (thread), paddress (pc));
4613
4614 current_thread = saved_thread;
4615 return false;
4616 }
4617 else
4618 {
4619 if (debug_threads)
4620 debug_printf ("Need step over [LWP %ld]? yes, "
4621 "found breakpoint at 0x%s\n",
4622 lwpid_of (thread), paddress (pc));
4623
4624 /* We've found an lwp that needs stepping over --- return 1 so
4625 that find_thread stops looking. */
4626 current_thread = saved_thread;
4627
4628 return true;
4629 }
4630 }
4631
4632 current_thread = saved_thread;
4633
4634 if (debug_threads)
4635 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4636 " at 0x%s\n",
4637 lwpid_of (thread), paddress (pc));
4638
4639 return false;
4640 }
4641
4642 void
4643 linux_process_target::start_step_over (lwp_info *lwp)
4644 {
4645 struct thread_info *thread = get_lwp_thread (lwp);
4646 struct thread_info *saved_thread;
4647 CORE_ADDR pc;
4648 int step;
4649
4650 if (debug_threads)
4651 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4652 lwpid_of (thread));
4653
4654 stop_all_lwps (1, lwp);
4655
4656 if (lwp->suspended != 0)
4657 {
4658 internal_error (__FILE__, __LINE__,
4659 "LWP %ld suspended=%d\n", lwpid_of (thread),
4660 lwp->suspended);
4661 }
4662
4663 if (debug_threads)
4664 debug_printf ("Done stopping all threads for step-over.\n");
4665
4666 /* Note, we should always reach here with an already adjusted PC,
4667 either by GDB (if we're resuming due to GDB's request), or by our
4668 caller, if we just finished handling an internal breakpoint GDB
4669 shouldn't care about. */
4670 pc = get_pc (lwp);
4671
4672 saved_thread = current_thread;
4673 current_thread = thread;
4674
4675 lwp->bp_reinsert = pc;
4676 uninsert_breakpoints_at (pc);
4677 uninsert_fast_tracepoint_jumps_at (pc);
4678
4679 step = single_step (lwp);
4680
4681 current_thread = saved_thread;
4682
4683 resume_one_lwp (lwp, step, 0, NULL);
4684
4685 /* Require next event from this LWP. */
4686 step_over_bkpt = thread->id;
4687 }
4688
4689 bool
4690 linux_process_target::finish_step_over (lwp_info *lwp)
4691 {
4692 if (lwp->bp_reinsert != 0)
4693 {
4694 struct thread_info *saved_thread = current_thread;
4695
4696 if (debug_threads)
4697 debug_printf ("Finished step over.\n");
4698
4699 current_thread = get_lwp_thread (lwp);
4700
4701 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4702 may be no breakpoint to reinsert there by now. */
4703 reinsert_breakpoints_at (lwp->bp_reinsert);
4704 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4705
4706 lwp->bp_reinsert = 0;
4707
4708 /* Delete any single-step breakpoints. No longer needed. We
4709 don't have to worry about other threads hitting this trap,
4710 and later not being able to explain it, because we were
4711 stepping over a breakpoint, and we hold all threads but
4712 LWP stopped while doing that. */
4713 if (!supports_hardware_single_step ())
4714 {
4715 gdb_assert (has_single_step_breakpoints (current_thread));
4716 delete_single_step_breakpoints (current_thread);
4717 }
4718
4719 step_over_bkpt = null_ptid;
4720 current_thread = saved_thread;
4721 return true;
4722 }
4723 else
4724 return false;
4725 }
4726
4727 void
4728 linux_process_target::complete_ongoing_step_over ()
4729 {
4730 if (step_over_bkpt != null_ptid)
4731 {
4732 struct lwp_info *lwp;
4733 int wstat;
4734 int ret;
4735
4736 if (debug_threads)
4737 debug_printf ("detach: step over in progress, finish it first\n");
4738
4739 /* Passing NULL_PTID as filter indicates we want all events to
4740 be left pending. Eventually this returns when there are no
4741 unwaited-for children left. */
4742 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat,
4743 __WALL);
4744 gdb_assert (ret == -1);
4745
4746 lwp = find_lwp_pid (step_over_bkpt);
4747 if (lwp != NULL)
4748 finish_step_over (lwp);
4749 step_over_bkpt = null_ptid;
4750 unsuspend_all_lwps (lwp);
4751 }
4752 }
4753
4754 void
4755 linux_process_target::resume_one_thread (thread_info *thread,
4756 bool leave_all_stopped)
4757 {
4758 struct lwp_info *lwp = get_thread_lwp (thread);
4759 int leave_pending;
4760
4761 if (lwp->resume == NULL)
4762 return;
4763
4764 if (lwp->resume->kind == resume_stop)
4765 {
4766 if (debug_threads)
4767 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4768
4769 if (!lwp->stopped)
4770 {
4771 if (debug_threads)
4772 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4773
4774 /* Stop the thread, and wait for the event asynchronously,
4775 through the event loop. */
4776 send_sigstop (lwp);
4777 }
4778 else
4779 {
4780 if (debug_threads)
4781 debug_printf ("already stopped LWP %ld\n",
4782 lwpid_of (thread));
4783
4784 /* The LWP may have been stopped in an internal event that
4785 was not meant to be notified back to GDB (e.g., gdbserver
4786 breakpoint), so we should be reporting a stop event in
4787 this case too. */
4788
4789 /* If the thread already has a pending SIGSTOP, this is a
4790 no-op. Otherwise, something later will presumably resume
4791 the thread and this will cause it to cancel any pending
4792 operation, due to last_resume_kind == resume_stop. If
4793 the thread already has a pending status to report, we
4794 will still report it the next time we wait - see
4795 status_pending_p_callback. */
4796
4797 /* If we already have a pending signal to report, then
4798 there's no need to queue a SIGSTOP, as this means we're
4799 midway through moving the LWP out of the jumppad, and we
4800 will report the pending signal as soon as that is
4801 finished. */
4802 if (lwp->pending_signals_to_report == NULL)
4803 send_sigstop (lwp);
4804 }
4805
4806 /* For stop requests, we're done. */
4807 lwp->resume = NULL;
4808 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4809 return;
4810 }
4811
4812 /* If this thread which is about to be resumed has a pending status,
4813 then don't resume it - we can just report the pending status.
4814 Likewise if it is suspended, because e.g., another thread is
4815 stepping past a breakpoint. Make sure to queue any signals that
4816 would otherwise be sent. In all-stop mode, we do this decision
4817 based on if *any* thread has a pending status. If there's a
4818 thread that needs the step-over-breakpoint dance, then don't
4819 resume any other thread but that particular one. */
4820 leave_pending = (lwp->suspended
4821 || lwp->status_pending_p
4822 || leave_all_stopped);
4823
4824 /* If we have a new signal, enqueue the signal. */
4825 if (lwp->resume->sig != 0)
4826 {
4827 siginfo_t info, *info_p;
4828
4829 /* If this is the same signal we were previously stopped by,
4830 make sure to queue its siginfo. */
4831 if (WIFSTOPPED (lwp->last_status)
4832 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4833 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4834 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4835 info_p = &info;
4836 else
4837 info_p = NULL;
4838
4839 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4840 }
4841
4842 if (!leave_pending)
4843 {
4844 if (debug_threads)
4845 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4846
4847 proceed_one_lwp (thread, NULL);
4848 }
4849 else
4850 {
4851 if (debug_threads)
4852 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4853 }
4854
4855 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4856 lwp->resume = NULL;
4857 }
4858
4859 void
4860 linux_process_target::resume (thread_resume *resume_info, size_t n)
4861 {
4862 struct thread_info *need_step_over = NULL;
4863
4864 if (debug_threads)
4865 {
4866 debug_enter ();
4867 debug_printf ("linux_resume:\n");
4868 }
4869
4870 for_each_thread ([&] (thread_info *thread)
4871 {
4872 linux_set_resume_request (thread, resume_info, n);
4873 });
4874
4875 /* If there is a thread which would otherwise be resumed, which has
4876 a pending status, then don't resume any threads - we can just
4877 report the pending status. Make sure to queue any signals that
4878 would otherwise be sent. In non-stop mode, we'll apply this
4879 logic to each thread individually. We consume all pending events
4880 before considering to start a step-over (in all-stop). */
4881 bool any_pending = false;
4882 if (!non_stop)
4883 any_pending = find_thread ([this] (thread_info *thread)
4884 {
4885 return resume_status_pending (thread);
4886 }) != nullptr;
4887
4888 /* If there is a thread which would otherwise be resumed, which is
4889 stopped at a breakpoint that needs stepping over, then don't
4890 resume any threads - have it step over the breakpoint with all
4891 other threads stopped, then resume all threads again. Make sure
4892 to queue any signals that would otherwise be delivered or
4893 queued. */
4894 if (!any_pending && low_supports_breakpoints ())
4895 need_step_over = find_thread ([this] (thread_info *thread)
4896 {
4897 return thread_needs_step_over (thread);
4898 });
4899
4900 bool leave_all_stopped = (need_step_over != NULL || any_pending);
4901
4902 if (debug_threads)
4903 {
4904 if (need_step_over != NULL)
4905 debug_printf ("Not resuming all, need step over\n");
4906 else if (any_pending)
4907 debug_printf ("Not resuming, all-stop and found "
4908 "an LWP with pending status\n");
4909 else
4910 debug_printf ("Resuming, no pending status or step over needed\n");
4911 }
4912
4913 /* Even if we're leaving threads stopped, queue all signals we'd
4914 otherwise deliver. */
4915 for_each_thread ([&] (thread_info *thread)
4916 {
4917 resume_one_thread (thread, leave_all_stopped);
4918 });
4919
4920 if (need_step_over)
4921 start_step_over (get_thread_lwp (need_step_over));
4922
4923 if (debug_threads)
4924 {
4925 debug_printf ("linux_resume done\n");
4926 debug_exit ();
4927 }
4928
4929 /* We may have events that were pending that can/should be sent to
4930 the client now. Trigger a linux_wait call. */
4931 if (target_is_async_p ())
4932 async_file_mark ();
4933 }
4934
4935 void
4936 linux_process_target::proceed_one_lwp (thread_info *thread, lwp_info *except)
4937 {
4938 struct lwp_info *lwp = get_thread_lwp (thread);
4939 int step;
4940
4941 if (lwp == except)
4942 return;
4943
4944 if (debug_threads)
4945 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4946
4947 if (!lwp->stopped)
4948 {
4949 if (debug_threads)
4950 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4951 return;
4952 }
4953
4954 if (thread->last_resume_kind == resume_stop
4955 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4956 {
4957 if (debug_threads)
4958 debug_printf (" client wants LWP to remain %ld stopped\n",
4959 lwpid_of (thread));
4960 return;
4961 }
4962
4963 if (lwp->status_pending_p)
4964 {
4965 if (debug_threads)
4966 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4967 lwpid_of (thread));
4968 return;
4969 }
4970
4971 gdb_assert (lwp->suspended >= 0);
4972
4973 if (lwp->suspended)
4974 {
4975 if (debug_threads)
4976 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4977 return;
4978 }
4979
4980 if (thread->last_resume_kind == resume_stop
4981 && lwp->pending_signals_to_report == NULL
4982 && (lwp->collecting_fast_tracepoint
4983 == fast_tpoint_collect_result::not_collecting))
4984 {
4985 /* We haven't reported this LWP as stopped yet (otherwise, the
4986 last_status.kind check above would catch it, and we wouldn't
4987 reach here. This LWP may have been momentarily paused by a
4988 stop_all_lwps call while handling for example, another LWP's
4989 step-over. In that case, the pending expected SIGSTOP signal
4990 that was queued at vCont;t handling time will have already
4991 been consumed by wait_for_sigstop, and so we need to requeue
4992 another one here. Note that if the LWP already has a SIGSTOP
4993 pending, this is a no-op. */
4994
4995 if (debug_threads)
4996 debug_printf ("Client wants LWP %ld to stop. "
4997 "Making sure it has a SIGSTOP pending\n",
4998 lwpid_of (thread));
4999
5000 send_sigstop (lwp);
5001 }
5002
5003 if (thread->last_resume_kind == resume_step)
5004 {
5005 if (debug_threads)
5006 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5007 lwpid_of (thread));
5008
5009 /* If resume_step is requested by GDB, install single-step
5010 breakpoints when the thread is about to be actually resumed if
5011 the single-step breakpoints weren't removed. */
5012 if (supports_software_single_step ()
5013 && !has_single_step_breakpoints (thread))
5014 install_software_single_step_breakpoints (lwp);
5015
5016 step = maybe_hw_step (thread);
5017 }
5018 else if (lwp->bp_reinsert != 0)
5019 {
5020 if (debug_threads)
5021 debug_printf (" stepping LWP %ld, reinsert set\n",
5022 lwpid_of (thread));
5023
5024 step = maybe_hw_step (thread);
5025 }
5026 else
5027 step = 0;
5028
5029 resume_one_lwp (lwp, step, 0, NULL);
5030 }
5031
5032 void
5033 linux_process_target::unsuspend_and_proceed_one_lwp (thread_info *thread,
5034 lwp_info *except)
5035 {
5036 struct lwp_info *lwp = get_thread_lwp (thread);
5037
5038 if (lwp == except)
5039 return;
5040
5041 lwp_suspended_decr (lwp);
5042
5043 proceed_one_lwp (thread, except);
5044 }
5045
5046 void
5047 linux_process_target::proceed_all_lwps ()
5048 {
5049 struct thread_info *need_step_over;
5050
5051 /* If there is a thread which would otherwise be resumed, which is
5052 stopped at a breakpoint that needs stepping over, then don't
5053 resume any threads - have it step over the breakpoint with all
5054 other threads stopped, then resume all threads again. */
5055
5056 if (low_supports_breakpoints ())
5057 {
5058 need_step_over = find_thread ([this] (thread_info *thread)
5059 {
5060 return thread_needs_step_over (thread);
5061 });
5062
5063 if (need_step_over != NULL)
5064 {
5065 if (debug_threads)
5066 debug_printf ("proceed_all_lwps: found "
5067 "thread %ld needing a step-over\n",
5068 lwpid_of (need_step_over));
5069
5070 start_step_over (get_thread_lwp (need_step_over));
5071 return;
5072 }
5073 }
5074
5075 if (debug_threads)
5076 debug_printf ("Proceeding, no step-over needed\n");
5077
5078 for_each_thread ([this] (thread_info *thread)
5079 {
5080 proceed_one_lwp (thread, NULL);
5081 });
5082 }
5083
5084 void
5085 linux_process_target::unstop_all_lwps (int unsuspend, lwp_info *except)
5086 {
5087 if (debug_threads)
5088 {
5089 debug_enter ();
5090 if (except)
5091 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5092 lwpid_of (get_lwp_thread (except)));
5093 else
5094 debug_printf ("unstopping all lwps\n");
5095 }
5096
5097 if (unsuspend)
5098 for_each_thread ([&] (thread_info *thread)
5099 {
5100 unsuspend_and_proceed_one_lwp (thread, except);
5101 });
5102 else
5103 for_each_thread ([&] (thread_info *thread)
5104 {
5105 proceed_one_lwp (thread, except);
5106 });
5107
5108 if (debug_threads)
5109 {
5110 debug_printf ("unstop_all_lwps done\n");
5111 debug_exit ();
5112 }
5113 }
5114
5115
5116 #ifdef HAVE_LINUX_REGSETS
5117
5118 #define use_linux_regsets 1
5119
5120 /* Returns true if REGSET has been disabled. */
5121
5122 static int
5123 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5124 {
5125 return (info->disabled_regsets != NULL
5126 && info->disabled_regsets[regset - info->regsets]);
5127 }
5128
5129 /* Disable REGSET. */
5130
5131 static void
5132 disable_regset (struct regsets_info *info, struct regset_info *regset)
5133 {
5134 int dr_offset;
5135
5136 dr_offset = regset - info->regsets;
5137 if (info->disabled_regsets == NULL)
5138 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5139 info->disabled_regsets[dr_offset] = 1;
5140 }
5141
5142 static int
5143 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5144 struct regcache *regcache)
5145 {
5146 struct regset_info *regset;
5147 int saw_general_regs = 0;
5148 int pid;
5149 struct iovec iov;
5150
5151 pid = lwpid_of (current_thread);
5152 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5153 {
5154 void *buf, *data;
5155 int nt_type, res;
5156
5157 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5158 continue;
5159
5160 buf = xmalloc (regset->size);
5161
5162 nt_type = regset->nt_type;
5163 if (nt_type)
5164 {
5165 iov.iov_base = buf;
5166 iov.iov_len = regset->size;
5167 data = (void *) &iov;
5168 }
5169 else
5170 data = buf;
5171
5172 #ifndef __sparc__
5173 res = ptrace (regset->get_request, pid,
5174 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5175 #else
5176 res = ptrace (regset->get_request, pid, data, nt_type);
5177 #endif
5178 if (res < 0)
5179 {
5180 if (errno == EIO
5181 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5182 {
5183 /* If we get EIO on a regset, or an EINVAL and the regset is
5184 optional, do not try it again for this process mode. */
5185 disable_regset (regsets_info, regset);
5186 }
5187 else if (errno == ENODATA)
5188 {
5189 /* ENODATA may be returned if the regset is currently
5190 not "active". This can happen in normal operation,
5191 so suppress the warning in this case. */
5192 }
5193 else if (errno == ESRCH)
5194 {
5195 /* At this point, ESRCH should mean the process is
5196 already gone, in which case we simply ignore attempts
5197 to read its registers. */
5198 }
5199 else
5200 {
5201 char s[256];
5202 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5203 pid);
5204 perror (s);
5205 }
5206 }
5207 else
5208 {
5209 if (regset->type == GENERAL_REGS)
5210 saw_general_regs = 1;
5211 regset->store_function (regcache, buf);
5212 }
5213 free (buf);
5214 }
5215 if (saw_general_regs)
5216 return 0;
5217 else
5218 return 1;
5219 }
5220
5221 static int
5222 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5223 struct regcache *regcache)
5224 {
5225 struct regset_info *regset;
5226 int saw_general_regs = 0;
5227 int pid;
5228 struct iovec iov;
5229
5230 pid = lwpid_of (current_thread);
5231 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5232 {
5233 void *buf, *data;
5234 int nt_type, res;
5235
5236 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5237 || regset->fill_function == NULL)
5238 continue;
5239
5240 buf = xmalloc (regset->size);
5241
5242 /* First fill the buffer with the current register set contents,
5243 in case there are any items in the kernel's regset that are
5244 not in gdbserver's regcache. */
5245
5246 nt_type = regset->nt_type;
5247 if (nt_type)
5248 {
5249 iov.iov_base = buf;
5250 iov.iov_len = regset->size;
5251 data = (void *) &iov;
5252 }
5253 else
5254 data = buf;
5255
5256 #ifndef __sparc__
5257 res = ptrace (regset->get_request, pid,
5258 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5259 #else
5260 res = ptrace (regset->get_request, pid, data, nt_type);
5261 #endif
5262
5263 if (res == 0)
5264 {
5265 /* Then overlay our cached registers on that. */
5266 regset->fill_function (regcache, buf);
5267
5268 /* Only now do we write the register set. */
5269 #ifndef __sparc__
5270 res = ptrace (regset->set_request, pid,
5271 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5272 #else
5273 res = ptrace (regset->set_request, pid, data, nt_type);
5274 #endif
5275 }
5276
5277 if (res < 0)
5278 {
5279 if (errno == EIO
5280 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5281 {
5282 /* If we get EIO on a regset, or an EINVAL and the regset is
5283 optional, do not try it again for this process mode. */
5284 disable_regset (regsets_info, regset);
5285 }
5286 else if (errno == ESRCH)
5287 {
5288 /* At this point, ESRCH should mean the process is
5289 already gone, in which case we simply ignore attempts
5290 to change its registers. See also the related
5291 comment in resume_one_lwp. */
5292 free (buf);
5293 return 0;
5294 }
5295 else
5296 {
5297 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5298 }
5299 }
5300 else if (regset->type == GENERAL_REGS)
5301 saw_general_regs = 1;
5302 free (buf);
5303 }
5304 if (saw_general_regs)
5305 return 0;
5306 else
5307 return 1;
5308 }
5309
5310 #else /* !HAVE_LINUX_REGSETS */
5311
5312 #define use_linux_regsets 0
5313 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5314 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5315
5316 #endif
5317
5318 /* Return 1 if register REGNO is supported by one of the regset ptrace
5319 calls or 0 if it has to be transferred individually. */
5320
5321 static int
5322 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5323 {
5324 unsigned char mask = 1 << (regno % 8);
5325 size_t index = regno / 8;
5326
5327 return (use_linux_regsets
5328 && (regs_info->regset_bitmap == NULL
5329 || (regs_info->regset_bitmap[index] & mask) != 0));
5330 }
5331
5332 #ifdef HAVE_LINUX_USRREGS
5333
5334 static int
5335 register_addr (const struct usrregs_info *usrregs, int regnum)
5336 {
5337 int addr;
5338
5339 if (regnum < 0 || regnum >= usrregs->num_regs)
5340 error ("Invalid register number %d.", regnum);
5341
5342 addr = usrregs->regmap[regnum];
5343
5344 return addr;
5345 }
5346
5347
5348 void
5349 linux_process_target::fetch_register (const usrregs_info *usrregs,
5350 regcache *regcache, int regno)
5351 {
5352 CORE_ADDR regaddr;
5353 int i, size;
5354 char *buf;
5355 int pid;
5356
5357 if (regno >= usrregs->num_regs)
5358 return;
5359 if (low_cannot_fetch_register (regno))
5360 return;
5361
5362 regaddr = register_addr (usrregs, regno);
5363 if (regaddr == -1)
5364 return;
5365
5366 size = ((register_size (regcache->tdesc, regno)
5367 + sizeof (PTRACE_XFER_TYPE) - 1)
5368 & -sizeof (PTRACE_XFER_TYPE));
5369 buf = (char *) alloca (size);
5370
5371 pid = lwpid_of (current_thread);
5372 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5373 {
5374 errno = 0;
5375 *(PTRACE_XFER_TYPE *) (buf + i) =
5376 ptrace (PTRACE_PEEKUSER, pid,
5377 /* Coerce to a uintptr_t first to avoid potential gcc warning
5378 of coercing an 8 byte integer to a 4 byte pointer. */
5379 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5380 regaddr += sizeof (PTRACE_XFER_TYPE);
5381 if (errno != 0)
5382 {
5383 /* Mark register REGNO unavailable. */
5384 supply_register (regcache, regno, NULL);
5385 return;
5386 }
5387 }
5388
5389 low_supply_ptrace_register (regcache, regno, buf);
5390 }
5391
5392 void
5393 linux_process_target::store_register (const usrregs_info *usrregs,
5394 regcache *regcache, int regno)
5395 {
5396 CORE_ADDR regaddr;
5397 int i, size;
5398 char *buf;
5399 int pid;
5400
5401 if (regno >= usrregs->num_regs)
5402 return;
5403 if (low_cannot_store_register (regno))
5404 return;
5405
5406 regaddr = register_addr (usrregs, regno);
5407 if (regaddr == -1)
5408 return;
5409
5410 size = ((register_size (regcache->tdesc, regno)
5411 + sizeof (PTRACE_XFER_TYPE) - 1)
5412 & -sizeof (PTRACE_XFER_TYPE));
5413 buf = (char *) alloca (size);
5414 memset (buf, 0, size);
5415
5416 low_collect_ptrace_register (regcache, regno, buf);
5417
5418 pid = lwpid_of (current_thread);
5419 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5420 {
5421 errno = 0;
5422 ptrace (PTRACE_POKEUSER, pid,
5423 /* Coerce to a uintptr_t first to avoid potential gcc warning
5424 about coercing an 8 byte integer to a 4 byte pointer. */
5425 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5426 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5427 if (errno != 0)
5428 {
5429 /* At this point, ESRCH should mean the process is
5430 already gone, in which case we simply ignore attempts
5431 to change its registers. See also the related
5432 comment in resume_one_lwp. */
5433 if (errno == ESRCH)
5434 return;
5435
5436
5437 if (!low_cannot_store_register (regno))
5438 error ("writing register %d: %s", regno, safe_strerror (errno));
5439 }
5440 regaddr += sizeof (PTRACE_XFER_TYPE);
5441 }
5442 }
5443 #endif /* HAVE_LINUX_USRREGS */
5444
5445 void
5446 linux_process_target::low_collect_ptrace_register (regcache *regcache,
5447 int regno, char *buf)
5448 {
5449 collect_register (regcache, regno, buf);
5450 }
5451
5452 void
5453 linux_process_target::low_supply_ptrace_register (regcache *regcache,
5454 int regno, const char *buf)
5455 {
5456 supply_register (regcache, regno, buf);
5457 }
5458
5459 void
5460 linux_process_target::usr_fetch_inferior_registers (const regs_info *regs_info,
5461 regcache *regcache,
5462 int regno, int all)
5463 {
5464 #ifdef HAVE_LINUX_USRREGS
5465 struct usrregs_info *usr = regs_info->usrregs;
5466
5467 if (regno == -1)
5468 {
5469 for (regno = 0; regno < usr->num_regs; regno++)
5470 if (all || !linux_register_in_regsets (regs_info, regno))
5471 fetch_register (usr, regcache, regno);
5472 }
5473 else
5474 fetch_register (usr, regcache, regno);
5475 #endif
5476 }
5477
5478 void
5479 linux_process_target::usr_store_inferior_registers (const regs_info *regs_info,
5480 regcache *regcache,
5481 int regno, int all)
5482 {
5483 #ifdef HAVE_LINUX_USRREGS
5484 struct usrregs_info *usr = regs_info->usrregs;
5485
5486 if (regno == -1)
5487 {
5488 for (regno = 0; regno < usr->num_regs; regno++)
5489 if (all || !linux_register_in_regsets (regs_info, regno))
5490 store_register (usr, regcache, regno);
5491 }
5492 else
5493 store_register (usr, regcache, regno);
5494 #endif
5495 }
5496
5497 void
5498 linux_process_target::fetch_registers (regcache *regcache, int regno)
5499 {
5500 int use_regsets;
5501 int all = 0;
5502 const regs_info *regs_info = get_regs_info ();
5503
5504 if (regno == -1)
5505 {
5506 if (regs_info->usrregs != NULL)
5507 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5508 low_fetch_register (regcache, regno);
5509
5510 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5511 if (regs_info->usrregs != NULL)
5512 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5513 }
5514 else
5515 {
5516 if (low_fetch_register (regcache, regno))
5517 return;
5518
5519 use_regsets = linux_register_in_regsets (regs_info, regno);
5520 if (use_regsets)
5521 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5522 regcache);
5523 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5524 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5525 }
5526 }
5527
5528 void
5529 linux_process_target::store_registers (regcache *regcache, int regno)
5530 {
5531 int use_regsets;
5532 int all = 0;
5533 const regs_info *regs_info = get_regs_info ();
5534
5535 if (regno == -1)
5536 {
5537 all = regsets_store_inferior_registers (regs_info->regsets_info,
5538 regcache);
5539 if (regs_info->usrregs != NULL)
5540 usr_store_inferior_registers (regs_info, regcache, regno, all);
5541 }
5542 else
5543 {
5544 use_regsets = linux_register_in_regsets (regs_info, regno);
5545 if (use_regsets)
5546 all = regsets_store_inferior_registers (regs_info->regsets_info,
5547 regcache);
5548 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5549 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5550 }
5551 }
5552
5553 bool
5554 linux_process_target::low_fetch_register (regcache *regcache, int regno)
5555 {
5556 return false;
5557 }
5558
5559 /* A wrapper for the read_memory target op. */
5560
5561 static int
5562 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5563 {
5564 return the_target->read_memory (memaddr, myaddr, len);
5565 }
5566
5567 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5568 to debugger memory starting at MYADDR. */
5569
5570 int
5571 linux_process_target::read_memory (CORE_ADDR memaddr,
5572 unsigned char *myaddr, int len)
5573 {
5574 int pid = lwpid_of (current_thread);
5575 PTRACE_XFER_TYPE *buffer;
5576 CORE_ADDR addr;
5577 int count;
5578 char filename[64];
5579 int i;
5580 int ret;
5581 int fd;
5582
5583 /* Try using /proc. Don't bother for one word. */
5584 if (len >= 3 * sizeof (long))
5585 {
5586 int bytes;
5587
5588 /* We could keep this file open and cache it - possibly one per
5589 thread. That requires some juggling, but is even faster. */
5590 sprintf (filename, "/proc/%d/mem", pid);
5591 fd = open (filename, O_RDONLY | O_LARGEFILE);
5592 if (fd == -1)
5593 goto no_proc;
5594
5595 /* If pread64 is available, use it. It's faster if the kernel
5596 supports it (only one syscall), and it's 64-bit safe even on
5597 32-bit platforms (for instance, SPARC debugging a SPARC64
5598 application). */
5599 #ifdef HAVE_PREAD64
5600 bytes = pread64 (fd, myaddr, len, memaddr);
5601 #else
5602 bytes = -1;
5603 if (lseek (fd, memaddr, SEEK_SET) != -1)
5604 bytes = read (fd, myaddr, len);
5605 #endif
5606
5607 close (fd);
5608 if (bytes == len)
5609 return 0;
5610
5611 /* Some data was read, we'll try to get the rest with ptrace. */
5612 if (bytes > 0)
5613 {
5614 memaddr += bytes;
5615 myaddr += bytes;
5616 len -= bytes;
5617 }
5618 }
5619
5620 no_proc:
5621 /* Round starting address down to longword boundary. */
5622 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5623 /* Round ending address up; get number of longwords that makes. */
5624 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5625 / sizeof (PTRACE_XFER_TYPE));
5626 /* Allocate buffer of that many longwords. */
5627 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5628
5629 /* Read all the longwords */
5630 errno = 0;
5631 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5632 {
5633 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5634 about coercing an 8 byte integer to a 4 byte pointer. */
5635 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5636 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5637 (PTRACE_TYPE_ARG4) 0);
5638 if (errno)
5639 break;
5640 }
5641 ret = errno;
5642
5643 /* Copy appropriate bytes out of the buffer. */
5644 if (i > 0)
5645 {
5646 i *= sizeof (PTRACE_XFER_TYPE);
5647 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5648 memcpy (myaddr,
5649 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5650 i < len ? i : len);
5651 }
5652
5653 return ret;
5654 }
5655
5656 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5657 memory at MEMADDR. On failure (cannot write to the inferior)
5658 returns the value of errno. Always succeeds if LEN is zero. */
5659
5660 int
5661 linux_process_target::write_memory (CORE_ADDR memaddr,
5662 const unsigned char *myaddr, int len)
5663 {
5664 int i;
5665 /* Round starting address down to longword boundary. */
5666 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5667 /* Round ending address up; get number of longwords that makes. */
5668 int count
5669 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5670 / sizeof (PTRACE_XFER_TYPE);
5671
5672 /* Allocate buffer of that many longwords. */
5673 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5674
5675 int pid = lwpid_of (current_thread);
5676
5677 if (len == 0)
5678 {
5679 /* Zero length write always succeeds. */
5680 return 0;
5681 }
5682
5683 if (debug_threads)
5684 {
5685 /* Dump up to four bytes. */
5686 char str[4 * 2 + 1];
5687 char *p = str;
5688 int dump = len < 4 ? len : 4;
5689
5690 for (i = 0; i < dump; i++)
5691 {
5692 sprintf (p, "%02x", myaddr[i]);
5693 p += 2;
5694 }
5695 *p = '\0';
5696
5697 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5698 str, (long) memaddr, pid);
5699 }
5700
5701 /* Fill start and end extra bytes of buffer with existing memory data. */
5702
5703 errno = 0;
5704 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5705 about coercing an 8 byte integer to a 4 byte pointer. */
5706 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5707 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5708 (PTRACE_TYPE_ARG4) 0);
5709 if (errno)
5710 return errno;
5711
5712 if (count > 1)
5713 {
5714 errno = 0;
5715 buffer[count - 1]
5716 = ptrace (PTRACE_PEEKTEXT, pid,
5717 /* Coerce to a uintptr_t first to avoid potential gcc warning
5718 about coercing an 8 byte integer to a 4 byte pointer. */
5719 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5720 * sizeof (PTRACE_XFER_TYPE)),
5721 (PTRACE_TYPE_ARG4) 0);
5722 if (errno)
5723 return errno;
5724 }
5725
5726 /* Copy data to be written over corresponding part of buffer. */
5727
5728 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5729 myaddr, len);
5730
5731 /* Write the entire buffer. */
5732
5733 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5734 {
5735 errno = 0;
5736 ptrace (PTRACE_POKETEXT, pid,
5737 /* Coerce to a uintptr_t first to avoid potential gcc warning
5738 about coercing an 8 byte integer to a 4 byte pointer. */
5739 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5740 (PTRACE_TYPE_ARG4) buffer[i]);
5741 if (errno)
5742 return errno;
5743 }
5744
5745 return 0;
5746 }
5747
5748 void
5749 linux_process_target::look_up_symbols ()
5750 {
5751 #ifdef USE_THREAD_DB
5752 struct process_info *proc = current_process ();
5753
5754 if (proc->priv->thread_db != NULL)
5755 return;
5756
5757 thread_db_init ();
5758 #endif
5759 }
5760
5761 void
5762 linux_process_target::request_interrupt ()
5763 {
5764 /* Send a SIGINT to the process group. This acts just like the user
5765 typed a ^C on the controlling terminal. */
5766 ::kill (-signal_pid, SIGINT);
5767 }
5768
5769 bool
5770 linux_process_target::supports_read_auxv ()
5771 {
5772 return true;
5773 }
5774
5775 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5776 to debugger memory starting at MYADDR. */
5777
5778 int
5779 linux_process_target::read_auxv (CORE_ADDR offset, unsigned char *myaddr,
5780 unsigned int len)
5781 {
5782 char filename[PATH_MAX];
5783 int fd, n;
5784 int pid = lwpid_of (current_thread);
5785
5786 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5787
5788 fd = open (filename, O_RDONLY);
5789 if (fd < 0)
5790 return -1;
5791
5792 if (offset != (CORE_ADDR) 0
5793 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5794 n = -1;
5795 else
5796 n = read (fd, myaddr, len);
5797
5798 close (fd);
5799
5800 return n;
5801 }
5802
5803 int
5804 linux_process_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5805 int size, raw_breakpoint *bp)
5806 {
5807 if (type == raw_bkpt_type_sw)
5808 return insert_memory_breakpoint (bp);
5809 else
5810 return low_insert_point (type, addr, size, bp);
5811 }
5812
5813 int
5814 linux_process_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
5815 int size, raw_breakpoint *bp)
5816 {
5817 /* Unsupported (see target.h). */
5818 return 1;
5819 }
5820
5821 int
5822 linux_process_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5823 int size, raw_breakpoint *bp)
5824 {
5825 if (type == raw_bkpt_type_sw)
5826 return remove_memory_breakpoint (bp);
5827 else
5828 return low_remove_point (type, addr, size, bp);
5829 }
5830
5831 int
5832 linux_process_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
5833 int size, raw_breakpoint *bp)
5834 {
5835 /* Unsupported (see target.h). */
5836 return 1;
5837 }
5838
5839 /* Implement the stopped_by_sw_breakpoint target_ops
5840 method. */
5841
5842 bool
5843 linux_process_target::stopped_by_sw_breakpoint ()
5844 {
5845 struct lwp_info *lwp = get_thread_lwp (current_thread);
5846
5847 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5848 }
5849
5850 /* Implement the supports_stopped_by_sw_breakpoint target_ops
5851 method. */
5852
5853 bool
5854 linux_process_target::supports_stopped_by_sw_breakpoint ()
5855 {
5856 return USE_SIGTRAP_SIGINFO;
5857 }
5858
5859 /* Implement the stopped_by_hw_breakpoint target_ops
5860 method. */
5861
5862 bool
5863 linux_process_target::stopped_by_hw_breakpoint ()
5864 {
5865 struct lwp_info *lwp = get_thread_lwp (current_thread);
5866
5867 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5868 }
5869
5870 /* Implement the supports_stopped_by_hw_breakpoint target_ops
5871 method. */
5872
5873 bool
5874 linux_process_target::supports_stopped_by_hw_breakpoint ()
5875 {
5876 return USE_SIGTRAP_SIGINFO;
5877 }
5878
5879 /* Implement the supports_hardware_single_step target_ops method. */
5880
5881 bool
5882 linux_process_target::supports_hardware_single_step ()
5883 {
5884 return true;
5885 }
5886
5887 bool
5888 linux_process_target::stopped_by_watchpoint ()
5889 {
5890 struct lwp_info *lwp = get_thread_lwp (current_thread);
5891
5892 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5893 }
5894
5895 CORE_ADDR
5896 linux_process_target::stopped_data_address ()
5897 {
5898 struct lwp_info *lwp = get_thread_lwp (current_thread);
5899
5900 return lwp->stopped_data_address;
5901 }
5902
5903 /* This is only used for targets that define PT_TEXT_ADDR,
5904 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5905 the target has different ways of acquiring this information, like
5906 loadmaps. */
5907
5908 bool
5909 linux_process_target::supports_read_offsets ()
5910 {
5911 #ifdef SUPPORTS_READ_OFFSETS
5912 return true;
5913 #else
5914 return false;
5915 #endif
5916 }
5917
5918 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5919 to tell gdb about. */
5920
5921 int
5922 linux_process_target::read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5923 {
5924 #ifdef SUPPORTS_READ_OFFSETS
5925 unsigned long text, text_end, data;
5926 int pid = lwpid_of (current_thread);
5927
5928 errno = 0;
5929
5930 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5931 (PTRACE_TYPE_ARG4) 0);
5932 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5933 (PTRACE_TYPE_ARG4) 0);
5934 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5935 (PTRACE_TYPE_ARG4) 0);
5936
5937 if (errno == 0)
5938 {
5939 /* Both text and data offsets produced at compile-time (and so
5940 used by gdb) are relative to the beginning of the program,
5941 with the data segment immediately following the text segment.
5942 However, the actual runtime layout in memory may put the data
5943 somewhere else, so when we send gdb a data base-address, we
5944 use the real data base address and subtract the compile-time
5945 data base-address from it (which is just the length of the
5946 text segment). BSS immediately follows data in both
5947 cases. */
5948 *text_p = text;
5949 *data_p = data - (text_end - text);
5950
5951 return 1;
5952 }
5953 return 0;
5954 #else
5955 gdb_assert_not_reached ("target op read_offsets not supported");
5956 #endif
5957 }
5958
5959 bool
5960 linux_process_target::supports_get_tls_address ()
5961 {
5962 #ifdef USE_THREAD_DB
5963 return true;
5964 #else
5965 return false;
5966 #endif
5967 }
5968
5969 int
5970 linux_process_target::get_tls_address (thread_info *thread,
5971 CORE_ADDR offset,
5972 CORE_ADDR load_module,
5973 CORE_ADDR *address)
5974 {
5975 #ifdef USE_THREAD_DB
5976 return thread_db_get_tls_address (thread, offset, load_module, address);
5977 #else
5978 return -1;
5979 #endif
5980 }
5981
5982 bool
5983 linux_process_target::supports_qxfer_osdata ()
5984 {
5985 return true;
5986 }
5987
5988 int
5989 linux_process_target::qxfer_osdata (const char *annex,
5990 unsigned char *readbuf,
5991 unsigned const char *writebuf,
5992 CORE_ADDR offset, int len)
5993 {
5994 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5995 }
5996
5997 void
5998 linux_process_target::siginfo_fixup (siginfo_t *siginfo,
5999 gdb_byte *inf_siginfo, int direction)
6000 {
6001 bool done = low_siginfo_fixup (siginfo, inf_siginfo, direction);
6002
6003 /* If there was no callback, or the callback didn't do anything,
6004 then just do a straight memcpy. */
6005 if (!done)
6006 {
6007 if (direction == 1)
6008 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6009 else
6010 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6011 }
6012 }
6013
6014 bool
6015 linux_process_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
6016 int direction)
6017 {
6018 return false;
6019 }
6020
6021 bool
6022 linux_process_target::supports_qxfer_siginfo ()
6023 {
6024 return true;
6025 }
6026
6027 int
6028 linux_process_target::qxfer_siginfo (const char *annex,
6029 unsigned char *readbuf,
6030 unsigned const char *writebuf,
6031 CORE_ADDR offset, int len)
6032 {
6033 int pid;
6034 siginfo_t siginfo;
6035 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6036
6037 if (current_thread == NULL)
6038 return -1;
6039
6040 pid = lwpid_of (current_thread);
6041
6042 if (debug_threads)
6043 debug_printf ("%s siginfo for lwp %d.\n",
6044 readbuf != NULL ? "Reading" : "Writing",
6045 pid);
6046
6047 if (offset >= sizeof (siginfo))
6048 return -1;
6049
6050 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6051 return -1;
6052
6053 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6054 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6055 inferior with a 64-bit GDBSERVER should look the same as debugging it
6056 with a 32-bit GDBSERVER, we need to convert it. */
6057 siginfo_fixup (&siginfo, inf_siginfo, 0);
6058
6059 if (offset + len > sizeof (siginfo))
6060 len = sizeof (siginfo) - offset;
6061
6062 if (readbuf != NULL)
6063 memcpy (readbuf, inf_siginfo + offset, len);
6064 else
6065 {
6066 memcpy (inf_siginfo + offset, writebuf, len);
6067
6068 /* Convert back to ptrace layout before flushing it out. */
6069 siginfo_fixup (&siginfo, inf_siginfo, 1);
6070
6071 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6072 return -1;
6073 }
6074
6075 return len;
6076 }
6077
6078 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6079 so we notice when children change state; as the handler for the
6080 sigsuspend in my_waitpid. */
6081
6082 static void
6083 sigchld_handler (int signo)
6084 {
6085 int old_errno = errno;
6086
6087 if (debug_threads)
6088 {
6089 do
6090 {
6091 /* Use the async signal safe debug function. */
6092 if (debug_write ("sigchld_handler\n",
6093 sizeof ("sigchld_handler\n") - 1) < 0)
6094 break; /* just ignore */
6095 } while (0);
6096 }
6097
6098 if (target_is_async_p ())
6099 async_file_mark (); /* trigger a linux_wait */
6100
6101 errno = old_errno;
6102 }
6103
6104 bool
6105 linux_process_target::supports_non_stop ()
6106 {
6107 return true;
6108 }
6109
6110 bool
6111 linux_process_target::async (bool enable)
6112 {
6113 bool previous = target_is_async_p ();
6114
6115 if (debug_threads)
6116 debug_printf ("linux_async (%d), previous=%d\n",
6117 enable, previous);
6118
6119 if (previous != enable)
6120 {
6121 sigset_t mask;
6122 sigemptyset (&mask);
6123 sigaddset (&mask, SIGCHLD);
6124
6125 gdb_sigmask (SIG_BLOCK, &mask, NULL);
6126
6127 if (enable)
6128 {
6129 if (pipe (linux_event_pipe) == -1)
6130 {
6131 linux_event_pipe[0] = -1;
6132 linux_event_pipe[1] = -1;
6133 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6134
6135 warning ("creating event pipe failed.");
6136 return previous;
6137 }
6138
6139 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6140 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6141
6142 /* Register the event loop handler. */
6143 add_file_handler (linux_event_pipe[0],
6144 handle_target_event, NULL);
6145
6146 /* Always trigger a linux_wait. */
6147 async_file_mark ();
6148 }
6149 else
6150 {
6151 delete_file_handler (linux_event_pipe[0]);
6152
6153 close (linux_event_pipe[0]);
6154 close (linux_event_pipe[1]);
6155 linux_event_pipe[0] = -1;
6156 linux_event_pipe[1] = -1;
6157 }
6158
6159 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6160 }
6161
6162 return previous;
6163 }
6164
6165 int
6166 linux_process_target::start_non_stop (bool nonstop)
6167 {
6168 /* Register or unregister from event-loop accordingly. */
6169 target_async (nonstop);
6170
6171 if (target_is_async_p () != (nonstop != false))
6172 return -1;
6173
6174 return 0;
6175 }
6176
6177 bool
6178 linux_process_target::supports_multi_process ()
6179 {
6180 return true;
6181 }
6182
6183 /* Check if fork events are supported. */
6184
6185 bool
6186 linux_process_target::supports_fork_events ()
6187 {
6188 return linux_supports_tracefork ();
6189 }
6190
6191 /* Check if vfork events are supported. */
6192
6193 bool
6194 linux_process_target::supports_vfork_events ()
6195 {
6196 return linux_supports_tracefork ();
6197 }
6198
6199 /* Check if exec events are supported. */
6200
6201 bool
6202 linux_process_target::supports_exec_events ()
6203 {
6204 return linux_supports_traceexec ();
6205 }
6206
6207 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6208 ptrace flags for all inferiors. This is in case the new GDB connection
6209 doesn't support the same set of events that the previous one did. */
6210
6211 void
6212 linux_process_target::handle_new_gdb_connection ()
6213 {
6214 /* Request that all the lwps reset their ptrace options. */
6215 for_each_thread ([] (thread_info *thread)
6216 {
6217 struct lwp_info *lwp = get_thread_lwp (thread);
6218
6219 if (!lwp->stopped)
6220 {
6221 /* Stop the lwp so we can modify its ptrace options. */
6222 lwp->must_set_ptrace_flags = 1;
6223 linux_stop_lwp (lwp);
6224 }
6225 else
6226 {
6227 /* Already stopped; go ahead and set the ptrace options. */
6228 struct process_info *proc = find_process_pid (pid_of (thread));
6229 int options = linux_low_ptrace_options (proc->attached);
6230
6231 linux_enable_event_reporting (lwpid_of (thread), options);
6232 lwp->must_set_ptrace_flags = 0;
6233 }
6234 });
6235 }
6236
6237 int
6238 linux_process_target::handle_monitor_command (char *mon)
6239 {
6240 #ifdef USE_THREAD_DB
6241 return thread_db_handle_monitor_command (mon);
6242 #else
6243 return 0;
6244 #endif
6245 }
6246
6247 int
6248 linux_process_target::core_of_thread (ptid_t ptid)
6249 {
6250 return linux_common_core_of_thread (ptid);
6251 }
6252
6253 bool
6254 linux_process_target::supports_disable_randomization ()
6255 {
6256 #ifdef HAVE_PERSONALITY
6257 return true;
6258 #else
6259 return false;
6260 #endif
6261 }
6262
6263 bool
6264 linux_process_target::supports_agent ()
6265 {
6266 return true;
6267 }
6268
6269 bool
6270 linux_process_target::supports_range_stepping ()
6271 {
6272 if (supports_software_single_step ())
6273 return true;
6274
6275 return low_supports_range_stepping ();
6276 }
6277
6278 bool
6279 linux_process_target::low_supports_range_stepping ()
6280 {
6281 return false;
6282 }
6283
6284 bool
6285 linux_process_target::supports_pid_to_exec_file ()
6286 {
6287 return true;
6288 }
6289
6290 char *
6291 linux_process_target::pid_to_exec_file (int pid)
6292 {
6293 return linux_proc_pid_to_exec_file (pid);
6294 }
6295
6296 bool
6297 linux_process_target::supports_multifs ()
6298 {
6299 return true;
6300 }
6301
6302 int
6303 linux_process_target::multifs_open (int pid, const char *filename,
6304 int flags, mode_t mode)
6305 {
6306 return linux_mntns_open_cloexec (pid, filename, flags, mode);
6307 }
6308
6309 int
6310 linux_process_target::multifs_unlink (int pid, const char *filename)
6311 {
6312 return linux_mntns_unlink (pid, filename);
6313 }
6314
6315 ssize_t
6316 linux_process_target::multifs_readlink (int pid, const char *filename,
6317 char *buf, size_t bufsiz)
6318 {
6319 return linux_mntns_readlink (pid, filename, buf, bufsiz);
6320 }
6321
6322 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6323 struct target_loadseg
6324 {
6325 /* Core address to which the segment is mapped. */
6326 Elf32_Addr addr;
6327 /* VMA recorded in the program header. */
6328 Elf32_Addr p_vaddr;
6329 /* Size of this segment in memory. */
6330 Elf32_Word p_memsz;
6331 };
6332
6333 # if defined PT_GETDSBT
6334 struct target_loadmap
6335 {
6336 /* Protocol version number, must be zero. */
6337 Elf32_Word version;
6338 /* Pointer to the DSBT table, its size, and the DSBT index. */
6339 unsigned *dsbt_table;
6340 unsigned dsbt_size, dsbt_index;
6341 /* Number of segments in this map. */
6342 Elf32_Word nsegs;
6343 /* The actual memory map. */
6344 struct target_loadseg segs[/*nsegs*/];
6345 };
6346 # define LINUX_LOADMAP PT_GETDSBT
6347 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6348 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6349 # else
6350 struct target_loadmap
6351 {
6352 /* Protocol version number, must be zero. */
6353 Elf32_Half version;
6354 /* Number of segments in this map. */
6355 Elf32_Half nsegs;
6356 /* The actual memory map. */
6357 struct target_loadseg segs[/*nsegs*/];
6358 };
6359 # define LINUX_LOADMAP PTRACE_GETFDPIC
6360 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6361 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6362 # endif
6363
6364 bool
6365 linux_process_target::supports_read_loadmap ()
6366 {
6367 return true;
6368 }
6369
6370 int
6371 linux_process_target::read_loadmap (const char *annex, CORE_ADDR offset,
6372 unsigned char *myaddr, unsigned int len)
6373 {
6374 int pid = lwpid_of (current_thread);
6375 int addr = -1;
6376 struct target_loadmap *data = NULL;
6377 unsigned int actual_length, copy_length;
6378
6379 if (strcmp (annex, "exec") == 0)
6380 addr = (int) LINUX_LOADMAP_EXEC;
6381 else if (strcmp (annex, "interp") == 0)
6382 addr = (int) LINUX_LOADMAP_INTERP;
6383 else
6384 return -1;
6385
6386 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6387 return -1;
6388
6389 if (data == NULL)
6390 return -1;
6391
6392 actual_length = sizeof (struct target_loadmap)
6393 + sizeof (struct target_loadseg) * data->nsegs;
6394
6395 if (offset < 0 || offset > actual_length)
6396 return -1;
6397
6398 copy_length = actual_length - offset < len ? actual_length - offset : len;
6399 memcpy (myaddr, (char *) data + offset, copy_length);
6400 return copy_length;
6401 }
6402 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6403
6404 bool
6405 linux_process_target::supports_catch_syscall ()
6406 {
6407 return (the_low_target.get_syscall_trapinfo != NULL
6408 && linux_supports_tracesysgood ());
6409 }
6410
6411 int
6412 linux_process_target::get_ipa_tdesc_idx ()
6413 {
6414 if (the_low_target.get_ipa_tdesc_idx == NULL)
6415 return 0;
6416
6417 return (*the_low_target.get_ipa_tdesc_idx) ();
6418 }
6419
6420 CORE_ADDR
6421 linux_process_target::read_pc (regcache *regcache)
6422 {
6423 if (!low_supports_breakpoints ())
6424 return 0;
6425
6426 return low_get_pc (regcache);
6427 }
6428
6429 void
6430 linux_process_target::write_pc (regcache *regcache, CORE_ADDR pc)
6431 {
6432 gdb_assert (low_supports_breakpoints ());
6433
6434 low_set_pc (regcache, pc);
6435 }
6436
6437 bool
6438 linux_process_target::supports_thread_stopped ()
6439 {
6440 return true;
6441 }
6442
6443 bool
6444 linux_process_target::thread_stopped (thread_info *thread)
6445 {
6446 return get_thread_lwp (thread)->stopped;
6447 }
6448
6449 /* This exposes stop-all-threads functionality to other modules. */
6450
6451 void
6452 linux_process_target::pause_all (bool freeze)
6453 {
6454 stop_all_lwps (freeze, NULL);
6455 }
6456
6457 /* This exposes unstop-all-threads functionality to other gdbserver
6458 modules. */
6459
6460 void
6461 linux_process_target::unpause_all (bool unfreeze)
6462 {
6463 unstop_all_lwps (unfreeze, NULL);
6464 }
6465
6466 int
6467 linux_process_target::prepare_to_access_memory ()
6468 {
6469 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6470 running LWP. */
6471 if (non_stop)
6472 target_pause_all (true);
6473 return 0;
6474 }
6475
6476 void
6477 linux_process_target::done_accessing_memory ()
6478 {
6479 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6480 running LWP. */
6481 if (non_stop)
6482 target_unpause_all (true);
6483 }
6484
6485 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6486
6487 static int
6488 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6489 CORE_ADDR *phdr_memaddr, int *num_phdr)
6490 {
6491 char filename[PATH_MAX];
6492 int fd;
6493 const int auxv_size = is_elf64
6494 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6495 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6496
6497 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6498
6499 fd = open (filename, O_RDONLY);
6500 if (fd < 0)
6501 return 1;
6502
6503 *phdr_memaddr = 0;
6504 *num_phdr = 0;
6505 while (read (fd, buf, auxv_size) == auxv_size
6506 && (*phdr_memaddr == 0 || *num_phdr == 0))
6507 {
6508 if (is_elf64)
6509 {
6510 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6511
6512 switch (aux->a_type)
6513 {
6514 case AT_PHDR:
6515 *phdr_memaddr = aux->a_un.a_val;
6516 break;
6517 case AT_PHNUM:
6518 *num_phdr = aux->a_un.a_val;
6519 break;
6520 }
6521 }
6522 else
6523 {
6524 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6525
6526 switch (aux->a_type)
6527 {
6528 case AT_PHDR:
6529 *phdr_memaddr = aux->a_un.a_val;
6530 break;
6531 case AT_PHNUM:
6532 *num_phdr = aux->a_un.a_val;
6533 break;
6534 }
6535 }
6536 }
6537
6538 close (fd);
6539
6540 if (*phdr_memaddr == 0 || *num_phdr == 0)
6541 {
6542 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6543 "phdr_memaddr = %ld, phdr_num = %d",
6544 (long) *phdr_memaddr, *num_phdr);
6545 return 2;
6546 }
6547
6548 return 0;
6549 }
6550
6551 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6552
6553 static CORE_ADDR
6554 get_dynamic (const int pid, const int is_elf64)
6555 {
6556 CORE_ADDR phdr_memaddr, relocation;
6557 int num_phdr, i;
6558 unsigned char *phdr_buf;
6559 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6560
6561 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6562 return 0;
6563
6564 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6565 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6566
6567 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6568 return 0;
6569
6570 /* Compute relocation: it is expected to be 0 for "regular" executables,
6571 non-zero for PIE ones. */
6572 relocation = -1;
6573 for (i = 0; relocation == -1 && i < num_phdr; i++)
6574 if (is_elf64)
6575 {
6576 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6577
6578 if (p->p_type == PT_PHDR)
6579 relocation = phdr_memaddr - p->p_vaddr;
6580 }
6581 else
6582 {
6583 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6584
6585 if (p->p_type == PT_PHDR)
6586 relocation = phdr_memaddr - p->p_vaddr;
6587 }
6588
6589 if (relocation == -1)
6590 {
6591 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6592 any real world executables, including PIE executables, have always
6593 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6594 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6595 or present DT_DEBUG anyway (fpc binaries are statically linked).
6596
6597 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6598
6599 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6600
6601 return 0;
6602 }
6603
6604 for (i = 0; i < num_phdr; i++)
6605 {
6606 if (is_elf64)
6607 {
6608 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6609
6610 if (p->p_type == PT_DYNAMIC)
6611 return p->p_vaddr + relocation;
6612 }
6613 else
6614 {
6615 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6616
6617 if (p->p_type == PT_DYNAMIC)
6618 return p->p_vaddr + relocation;
6619 }
6620 }
6621
6622 return 0;
6623 }
6624
6625 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6626 can be 0 if the inferior does not yet have the library list initialized.
6627 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6628 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6629
6630 static CORE_ADDR
6631 get_r_debug (const int pid, const int is_elf64)
6632 {
6633 CORE_ADDR dynamic_memaddr;
6634 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6635 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6636 CORE_ADDR map = -1;
6637
6638 dynamic_memaddr = get_dynamic (pid, is_elf64);
6639 if (dynamic_memaddr == 0)
6640 return map;
6641
6642 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6643 {
6644 if (is_elf64)
6645 {
6646 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6647 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6648 union
6649 {
6650 Elf64_Xword map;
6651 unsigned char buf[sizeof (Elf64_Xword)];
6652 }
6653 rld_map;
6654 #endif
6655 #ifdef DT_MIPS_RLD_MAP
6656 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6657 {
6658 if (linux_read_memory (dyn->d_un.d_val,
6659 rld_map.buf, sizeof (rld_map.buf)) == 0)
6660 return rld_map.map;
6661 else
6662 break;
6663 }
6664 #endif /* DT_MIPS_RLD_MAP */
6665 #ifdef DT_MIPS_RLD_MAP_REL
6666 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6667 {
6668 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6669 rld_map.buf, sizeof (rld_map.buf)) == 0)
6670 return rld_map.map;
6671 else
6672 break;
6673 }
6674 #endif /* DT_MIPS_RLD_MAP_REL */
6675
6676 if (dyn->d_tag == DT_DEBUG && map == -1)
6677 map = dyn->d_un.d_val;
6678
6679 if (dyn->d_tag == DT_NULL)
6680 break;
6681 }
6682 else
6683 {
6684 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6685 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6686 union
6687 {
6688 Elf32_Word map;
6689 unsigned char buf[sizeof (Elf32_Word)];
6690 }
6691 rld_map;
6692 #endif
6693 #ifdef DT_MIPS_RLD_MAP
6694 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6695 {
6696 if (linux_read_memory (dyn->d_un.d_val,
6697 rld_map.buf, sizeof (rld_map.buf)) == 0)
6698 return rld_map.map;
6699 else
6700 break;
6701 }
6702 #endif /* DT_MIPS_RLD_MAP */
6703 #ifdef DT_MIPS_RLD_MAP_REL
6704 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6705 {
6706 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6707 rld_map.buf, sizeof (rld_map.buf)) == 0)
6708 return rld_map.map;
6709 else
6710 break;
6711 }
6712 #endif /* DT_MIPS_RLD_MAP_REL */
6713
6714 if (dyn->d_tag == DT_DEBUG && map == -1)
6715 map = dyn->d_un.d_val;
6716
6717 if (dyn->d_tag == DT_NULL)
6718 break;
6719 }
6720
6721 dynamic_memaddr += dyn_size;
6722 }
6723
6724 return map;
6725 }
6726
6727 /* Read one pointer from MEMADDR in the inferior. */
6728
6729 static int
6730 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6731 {
6732 int ret;
6733
6734 /* Go through a union so this works on either big or little endian
6735 hosts, when the inferior's pointer size is smaller than the size
6736 of CORE_ADDR. It is assumed the inferior's endianness is the
6737 same of the superior's. */
6738 union
6739 {
6740 CORE_ADDR core_addr;
6741 unsigned int ui;
6742 unsigned char uc;
6743 } addr;
6744
6745 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6746 if (ret == 0)
6747 {
6748 if (ptr_size == sizeof (CORE_ADDR))
6749 *ptr = addr.core_addr;
6750 else if (ptr_size == sizeof (unsigned int))
6751 *ptr = addr.ui;
6752 else
6753 gdb_assert_not_reached ("unhandled pointer size");
6754 }
6755 return ret;
6756 }
6757
6758 bool
6759 linux_process_target::supports_qxfer_libraries_svr4 ()
6760 {
6761 return true;
6762 }
6763
6764 struct link_map_offsets
6765 {
6766 /* Offset and size of r_debug.r_version. */
6767 int r_version_offset;
6768
6769 /* Offset and size of r_debug.r_map. */
6770 int r_map_offset;
6771
6772 /* Offset to l_addr field in struct link_map. */
6773 int l_addr_offset;
6774
6775 /* Offset to l_name field in struct link_map. */
6776 int l_name_offset;
6777
6778 /* Offset to l_ld field in struct link_map. */
6779 int l_ld_offset;
6780
6781 /* Offset to l_next field in struct link_map. */
6782 int l_next_offset;
6783
6784 /* Offset to l_prev field in struct link_map. */
6785 int l_prev_offset;
6786 };
6787
6788 /* Construct qXfer:libraries-svr4:read reply. */
6789
6790 int
6791 linux_process_target::qxfer_libraries_svr4 (const char *annex,
6792 unsigned char *readbuf,
6793 unsigned const char *writebuf,
6794 CORE_ADDR offset, int len)
6795 {
6796 struct process_info_private *const priv = current_process ()->priv;
6797 char filename[PATH_MAX];
6798 int pid, is_elf64;
6799
6800 static const struct link_map_offsets lmo_32bit_offsets =
6801 {
6802 0, /* r_version offset. */
6803 4, /* r_debug.r_map offset. */
6804 0, /* l_addr offset in link_map. */
6805 4, /* l_name offset in link_map. */
6806 8, /* l_ld offset in link_map. */
6807 12, /* l_next offset in link_map. */
6808 16 /* l_prev offset in link_map. */
6809 };
6810
6811 static const struct link_map_offsets lmo_64bit_offsets =
6812 {
6813 0, /* r_version offset. */
6814 8, /* r_debug.r_map offset. */
6815 0, /* l_addr offset in link_map. */
6816 8, /* l_name offset in link_map. */
6817 16, /* l_ld offset in link_map. */
6818 24, /* l_next offset in link_map. */
6819 32 /* l_prev offset in link_map. */
6820 };
6821 const struct link_map_offsets *lmo;
6822 unsigned int machine;
6823 int ptr_size;
6824 CORE_ADDR lm_addr = 0, lm_prev = 0;
6825 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6826 int header_done = 0;
6827
6828 if (writebuf != NULL)
6829 return -2;
6830 if (readbuf == NULL)
6831 return -1;
6832
6833 pid = lwpid_of (current_thread);
6834 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6835 is_elf64 = elf_64_file_p (filename, &machine);
6836 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6837 ptr_size = is_elf64 ? 8 : 4;
6838
6839 while (annex[0] != '\0')
6840 {
6841 const char *sep;
6842 CORE_ADDR *addrp;
6843 int name_len;
6844
6845 sep = strchr (annex, '=');
6846 if (sep == NULL)
6847 break;
6848
6849 name_len = sep - annex;
6850 if (name_len == 5 && startswith (annex, "start"))
6851 addrp = &lm_addr;
6852 else if (name_len == 4 && startswith (annex, "prev"))
6853 addrp = &lm_prev;
6854 else
6855 {
6856 annex = strchr (sep, ';');
6857 if (annex == NULL)
6858 break;
6859 annex++;
6860 continue;
6861 }
6862
6863 annex = decode_address_to_semicolon (addrp, sep + 1);
6864 }
6865
6866 if (lm_addr == 0)
6867 {
6868 int r_version = 0;
6869
6870 if (priv->r_debug == 0)
6871 priv->r_debug = get_r_debug (pid, is_elf64);
6872
6873 /* We failed to find DT_DEBUG. Such situation will not change
6874 for this inferior - do not retry it. Report it to GDB as
6875 E01, see for the reasons at the GDB solib-svr4.c side. */
6876 if (priv->r_debug == (CORE_ADDR) -1)
6877 return -1;
6878
6879 if (priv->r_debug != 0)
6880 {
6881 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6882 (unsigned char *) &r_version,
6883 sizeof (r_version)) != 0
6884 || r_version != 1)
6885 {
6886 warning ("unexpected r_debug version %d", r_version);
6887 }
6888 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6889 &lm_addr, ptr_size) != 0)
6890 {
6891 warning ("unable to read r_map from 0x%lx",
6892 (long) priv->r_debug + lmo->r_map_offset);
6893 }
6894 }
6895 }
6896
6897 std::string document = "<library-list-svr4 version=\"1.0\"";
6898
6899 while (lm_addr
6900 && read_one_ptr (lm_addr + lmo->l_name_offset,
6901 &l_name, ptr_size) == 0
6902 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6903 &l_addr, ptr_size) == 0
6904 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6905 &l_ld, ptr_size) == 0
6906 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6907 &l_prev, ptr_size) == 0
6908 && read_one_ptr (lm_addr + lmo->l_next_offset,
6909 &l_next, ptr_size) == 0)
6910 {
6911 unsigned char libname[PATH_MAX];
6912
6913 if (lm_prev != l_prev)
6914 {
6915 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6916 (long) lm_prev, (long) l_prev);
6917 break;
6918 }
6919
6920 /* Ignore the first entry even if it has valid name as the first entry
6921 corresponds to the main executable. The first entry should not be
6922 skipped if the dynamic loader was loaded late by a static executable
6923 (see solib-svr4.c parameter ignore_first). But in such case the main
6924 executable does not have PT_DYNAMIC present and this function already
6925 exited above due to failed get_r_debug. */
6926 if (lm_prev == 0)
6927 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6928 else
6929 {
6930 /* Not checking for error because reading may stop before
6931 we've got PATH_MAX worth of characters. */
6932 libname[0] = '\0';
6933 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6934 libname[sizeof (libname) - 1] = '\0';
6935 if (libname[0] != '\0')
6936 {
6937 if (!header_done)
6938 {
6939 /* Terminate `<library-list-svr4'. */
6940 document += '>';
6941 header_done = 1;
6942 }
6943
6944 string_appendf (document, "<library name=\"");
6945 xml_escape_text_append (&document, (char *) libname);
6946 string_appendf (document, "\" lm=\"0x%lx\" "
6947 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6948 (unsigned long) lm_addr, (unsigned long) l_addr,
6949 (unsigned long) l_ld);
6950 }
6951 }
6952
6953 lm_prev = lm_addr;
6954 lm_addr = l_next;
6955 }
6956
6957 if (!header_done)
6958 {
6959 /* Empty list; terminate `<library-list-svr4'. */
6960 document += "/>";
6961 }
6962 else
6963 document += "</library-list-svr4>";
6964
6965 int document_len = document.length ();
6966 if (offset < document_len)
6967 document_len -= offset;
6968 else
6969 document_len = 0;
6970 if (len > document_len)
6971 len = document_len;
6972
6973 memcpy (readbuf, document.data () + offset, len);
6974
6975 return len;
6976 }
6977
6978 #ifdef HAVE_LINUX_BTRACE
6979
6980 btrace_target_info *
6981 linux_process_target::enable_btrace (ptid_t ptid,
6982 const btrace_config *conf)
6983 {
6984 return linux_enable_btrace (ptid, conf);
6985 }
6986
6987 /* See to_disable_btrace target method. */
6988
6989 int
6990 linux_process_target::disable_btrace (btrace_target_info *tinfo)
6991 {
6992 enum btrace_error err;
6993
6994 err = linux_disable_btrace (tinfo);
6995 return (err == BTRACE_ERR_NONE ? 0 : -1);
6996 }
6997
6998 /* Encode an Intel Processor Trace configuration. */
6999
7000 static void
7001 linux_low_encode_pt_config (struct buffer *buffer,
7002 const struct btrace_data_pt_config *config)
7003 {
7004 buffer_grow_str (buffer, "<pt-config>\n");
7005
7006 switch (config->cpu.vendor)
7007 {
7008 case CV_INTEL:
7009 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7010 "model=\"%u\" stepping=\"%u\"/>\n",
7011 config->cpu.family, config->cpu.model,
7012 config->cpu.stepping);
7013 break;
7014
7015 default:
7016 break;
7017 }
7018
7019 buffer_grow_str (buffer, "</pt-config>\n");
7020 }
7021
7022 /* Encode a raw buffer. */
7023
7024 static void
7025 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7026 unsigned int size)
7027 {
7028 if (size == 0)
7029 return;
7030
7031 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7032 buffer_grow_str (buffer, "<raw>\n");
7033
7034 while (size-- > 0)
7035 {
7036 char elem[2];
7037
7038 elem[0] = tohex ((*data >> 4) & 0xf);
7039 elem[1] = tohex (*data++ & 0xf);
7040
7041 buffer_grow (buffer, elem, 2);
7042 }
7043
7044 buffer_grow_str (buffer, "</raw>\n");
7045 }
7046
7047 /* See to_read_btrace target method. */
7048
7049 int
7050 linux_process_target::read_btrace (btrace_target_info *tinfo,
7051 buffer *buffer,
7052 enum btrace_read_type type)
7053 {
7054 struct btrace_data btrace;
7055 enum btrace_error err;
7056
7057 err = linux_read_btrace (&btrace, tinfo, type);
7058 if (err != BTRACE_ERR_NONE)
7059 {
7060 if (err == BTRACE_ERR_OVERFLOW)
7061 buffer_grow_str0 (buffer, "E.Overflow.");
7062 else
7063 buffer_grow_str0 (buffer, "E.Generic Error.");
7064
7065 return -1;
7066 }
7067
7068 switch (btrace.format)
7069 {
7070 case BTRACE_FORMAT_NONE:
7071 buffer_grow_str0 (buffer, "E.No Trace.");
7072 return -1;
7073
7074 case BTRACE_FORMAT_BTS:
7075 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7076 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7077
7078 for (const btrace_block &block : *btrace.variant.bts.blocks)
7079 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7080 paddress (block.begin), paddress (block.end));
7081
7082 buffer_grow_str0 (buffer, "</btrace>\n");
7083 break;
7084
7085 case BTRACE_FORMAT_PT:
7086 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7087 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7088 buffer_grow_str (buffer, "<pt>\n");
7089
7090 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7091
7092 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7093 btrace.variant.pt.size);
7094
7095 buffer_grow_str (buffer, "</pt>\n");
7096 buffer_grow_str0 (buffer, "</btrace>\n");
7097 break;
7098
7099 default:
7100 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7101 return -1;
7102 }
7103
7104 return 0;
7105 }
7106
7107 /* See to_btrace_conf target method. */
7108
7109 int
7110 linux_process_target::read_btrace_conf (const btrace_target_info *tinfo,
7111 buffer *buffer)
7112 {
7113 const struct btrace_config *conf;
7114
7115 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7116 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7117
7118 conf = linux_btrace_conf (tinfo);
7119 if (conf != NULL)
7120 {
7121 switch (conf->format)
7122 {
7123 case BTRACE_FORMAT_NONE:
7124 break;
7125
7126 case BTRACE_FORMAT_BTS:
7127 buffer_xml_printf (buffer, "<bts");
7128 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7129 buffer_xml_printf (buffer, " />\n");
7130 break;
7131
7132 case BTRACE_FORMAT_PT:
7133 buffer_xml_printf (buffer, "<pt");
7134 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7135 buffer_xml_printf (buffer, "/>\n");
7136 break;
7137 }
7138 }
7139
7140 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7141 return 0;
7142 }
7143 #endif /* HAVE_LINUX_BTRACE */
7144
7145 /* See nat/linux-nat.h. */
7146
7147 ptid_t
7148 current_lwp_ptid (void)
7149 {
7150 return ptid_of (current_thread);
7151 }
7152
7153 const char *
7154 linux_process_target::thread_name (ptid_t thread)
7155 {
7156 return linux_proc_tid_get_name (thread);
7157 }
7158
7159 #if USE_THREAD_DB
7160 bool
7161 linux_process_target::thread_handle (ptid_t ptid, gdb_byte **handle,
7162 int *handle_len)
7163 {
7164 return thread_db_thread_handle (ptid, handle, handle_len);
7165 }
7166 #endif
7167
7168 /* Default implementation of linux_target_ops method "set_pc" for
7169 32-bit pc register which is literally named "pc". */
7170
7171 void
7172 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7173 {
7174 uint32_t newpc = pc;
7175
7176 supply_register_by_name (regcache, "pc", &newpc);
7177 }
7178
7179 /* Default implementation of linux_target_ops method "get_pc" for
7180 32-bit pc register which is literally named "pc". */
7181
7182 CORE_ADDR
7183 linux_get_pc_32bit (struct regcache *regcache)
7184 {
7185 uint32_t pc;
7186
7187 collect_register_by_name (regcache, "pc", &pc);
7188 if (debug_threads)
7189 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7190 return pc;
7191 }
7192
7193 /* Default implementation of linux_target_ops method "set_pc" for
7194 64-bit pc register which is literally named "pc". */
7195
7196 void
7197 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7198 {
7199 uint64_t newpc = pc;
7200
7201 supply_register_by_name (regcache, "pc", &newpc);
7202 }
7203
7204 /* Default implementation of linux_target_ops method "get_pc" for
7205 64-bit pc register which is literally named "pc". */
7206
7207 CORE_ADDR
7208 linux_get_pc_64bit (struct regcache *regcache)
7209 {
7210 uint64_t pc;
7211
7212 collect_register_by_name (regcache, "pc", &pc);
7213 if (debug_threads)
7214 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7215 return pc;
7216 }
7217
7218 /* See linux-low.h. */
7219
7220 int
7221 linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7222 {
7223 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7224 int offset = 0;
7225
7226 gdb_assert (wordsize == 4 || wordsize == 8);
7227
7228 while (the_target->read_auxv (offset, data, 2 * wordsize) == 2 * wordsize)
7229 {
7230 if (wordsize == 4)
7231 {
7232 uint32_t *data_p = (uint32_t *) data;
7233 if (data_p[0] == match)
7234 {
7235 *valp = data_p[1];
7236 return 1;
7237 }
7238 }
7239 else
7240 {
7241 uint64_t *data_p = (uint64_t *) data;
7242 if (data_p[0] == match)
7243 {
7244 *valp = data_p[1];
7245 return 1;
7246 }
7247 }
7248
7249 offset += 2 * wordsize;
7250 }
7251
7252 return 0;
7253 }
7254
7255 /* See linux-low.h. */
7256
7257 CORE_ADDR
7258 linux_get_hwcap (int wordsize)
7259 {
7260 CORE_ADDR hwcap = 0;
7261 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7262 return hwcap;
7263 }
7264
7265 /* See linux-low.h. */
7266
7267 CORE_ADDR
7268 linux_get_hwcap2 (int wordsize)
7269 {
7270 CORE_ADDR hwcap2 = 0;
7271 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7272 return hwcap2;
7273 }
7274
7275 #ifdef HAVE_LINUX_REGSETS
7276 void
7277 initialize_regsets_info (struct regsets_info *info)
7278 {
7279 for (info->num_regsets = 0;
7280 info->regsets[info->num_regsets].size >= 0;
7281 info->num_regsets++)
7282 ;
7283 }
7284 #endif
7285
7286 void
7287 initialize_low (void)
7288 {
7289 struct sigaction sigchld_action;
7290
7291 memset (&sigchld_action, 0, sizeof (sigchld_action));
7292 set_target_ops (the_linux_target);
7293
7294 linux_ptrace_init_warnings ();
7295 linux_proc_init_warnings ();
7296
7297 sigchld_action.sa_handler = sigchld_handler;
7298 sigemptyset (&sigchld_action.sa_mask);
7299 sigchld_action.sa_flags = SA_RESTART;
7300 sigaction (SIGCHLD, &sigchld_action, NULL);
7301
7302 initialize_low_arch ();
7303
7304 linux_check_ptrace_features ();
7305 }
This page took 0.275819 seconds and 5 git commands to generate.