gdb, gdbserver: make stopped_pids global variables static
[deliverable/binutils-gdb.git] / gdbserver / linux-x86-low.cc
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "linux-low.h"
25 #include "i387-fp.h"
26 #include "x86-low.h"
27 #include "gdbsupport/x86-xstate.h"
28 #include "nat/gdb_ptrace.h"
29
30 #ifdef __x86_64__
31 #include "nat/amd64-linux-siginfo.h"
32 #endif
33
34 #include "gdb_proc_service.h"
35 /* Don't include elf/common.h if linux/elf.h got included by
36 gdb_proc_service.h. */
37 #ifndef ELFMAG0
38 #include "elf/common.h"
39 #endif
40
41 #include "gdbsupport/agent.h"
42 #include "tdesc.h"
43 #include "tracepoint.h"
44 #include "ax.h"
45 #include "nat/linux-nat.h"
46 #include "nat/x86-linux.h"
47 #include "nat/x86-linux-dregs.h"
48 #include "linux-x86-tdesc.h"
49
50 #ifdef __x86_64__
51 static struct target_desc *tdesc_amd64_linux_no_xml;
52 #endif
53 static struct target_desc *tdesc_i386_linux_no_xml;
54
55
56 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
57 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
58
59 /* Backward compatibility for gdb without XML support. */
60
61 static const char *xmltarget_i386_linux_no_xml = "@<target>\
62 <architecture>i386</architecture>\
63 <osabi>GNU/Linux</osabi>\
64 </target>";
65
66 #ifdef __x86_64__
67 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
68 <architecture>i386:x86-64</architecture>\
69 <osabi>GNU/Linux</osabi>\
70 </target>";
71 #endif
72
73 #include <sys/reg.h>
74 #include <sys/procfs.h>
75 #include <sys/uio.h>
76
77 #ifndef PTRACE_GET_THREAD_AREA
78 #define PTRACE_GET_THREAD_AREA 25
79 #endif
80
81 /* This definition comes from prctl.h, but some kernels may not have it. */
82 #ifndef PTRACE_ARCH_PRCTL
83 #define PTRACE_ARCH_PRCTL 30
84 #endif
85
86 /* The following definitions come from prctl.h, but may be absent
87 for certain configurations. */
88 #ifndef ARCH_GET_FS
89 #define ARCH_SET_GS 0x1001
90 #define ARCH_SET_FS 0x1002
91 #define ARCH_GET_FS 0x1003
92 #define ARCH_GET_GS 0x1004
93 #endif
94
95 /* Linux target op definitions for the x86 architecture.
96 This is initialized assuming an amd64 target.
97 'low_arch_setup' will correct it for i386 or amd64 targets. */
98
99 class x86_target : public linux_process_target
100 {
101 public:
102
103 const regs_info *get_regs_info () override;
104
105 const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override;
106
107 bool supports_z_point_type (char z_type) override;
108
109 void process_qsupported (gdb::array_view<const char * const> features) override;
110
111 bool supports_tracepoints () override;
112
113 bool supports_fast_tracepoints () override;
114
115 int install_fast_tracepoint_jump_pad
116 (CORE_ADDR tpoint, CORE_ADDR tpaddr, CORE_ADDR collector,
117 CORE_ADDR lockaddr, ULONGEST orig_size, CORE_ADDR *jump_entry,
118 CORE_ADDR *trampoline, ULONGEST *trampoline_size,
119 unsigned char *jjump_pad_insn, ULONGEST *jjump_pad_insn_size,
120 CORE_ADDR *adjusted_insn_addr, CORE_ADDR *adjusted_insn_addr_end,
121 char *err) override;
122
123 int get_min_fast_tracepoint_insn_len () override;
124
125 struct emit_ops *emit_ops () override;
126
127 int get_ipa_tdesc_idx () override;
128
129 protected:
130
131 void low_arch_setup () override;
132
133 bool low_cannot_fetch_register (int regno) override;
134
135 bool low_cannot_store_register (int regno) override;
136
137 bool low_supports_breakpoints () override;
138
139 CORE_ADDR low_get_pc (regcache *regcache) override;
140
141 void low_set_pc (regcache *regcache, CORE_ADDR newpc) override;
142
143 int low_decr_pc_after_break () override;
144
145 bool low_breakpoint_at (CORE_ADDR pc) override;
146
147 int low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
148 int size, raw_breakpoint *bp) override;
149
150 int low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
151 int size, raw_breakpoint *bp) override;
152
153 bool low_stopped_by_watchpoint () override;
154
155 CORE_ADDR low_stopped_data_address () override;
156
157 /* collect_ptrace_register/supply_ptrace_register are not needed in the
158 native i386 case (no registers smaller than an xfer unit), and are not
159 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
160
161 /* Need to fix up i386 siginfo if host is amd64. */
162 bool low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
163 int direction) override;
164
165 arch_process_info *low_new_process () override;
166
167 void low_delete_process (arch_process_info *info) override;
168
169 void low_new_thread (lwp_info *) override;
170
171 void low_delete_thread (arch_lwp_info *) override;
172
173 void low_new_fork (process_info *parent, process_info *child) override;
174
175 void low_prepare_to_resume (lwp_info *lwp) override;
176
177 int low_get_thread_area (int lwpid, CORE_ADDR *addrp) override;
178
179 bool low_supports_range_stepping () override;
180
181 bool low_supports_catch_syscall () override;
182
183 void low_get_syscall_trapinfo (regcache *regcache, int *sysno) override;
184
185 private:
186
187 /* Update all the target description of all processes; a new GDB
188 connected, and it may or not support xml target descriptions. */
189 void update_xmltarget ();
190 };
191
192 /* The singleton target ops object. */
193
194 static x86_target the_x86_target;
195
196 /* Per-process arch-specific data we want to keep. */
197
198 struct arch_process_info
199 {
200 struct x86_debug_reg_state debug_reg_state;
201 };
202
203 #ifdef __x86_64__
204
205 /* Mapping between the general-purpose registers in `struct user'
206 format and GDB's register array layout.
207 Note that the transfer layout uses 64-bit regs. */
208 static /*const*/ int i386_regmap[] =
209 {
210 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
211 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
212 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
213 DS * 8, ES * 8, FS * 8, GS * 8
214 };
215
216 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
217
218 /* So code below doesn't have to care, i386 or amd64. */
219 #define ORIG_EAX ORIG_RAX
220 #define REGSIZE 8
221
222 static const int x86_64_regmap[] =
223 {
224 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
225 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
226 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
227 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
228 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
229 DS * 8, ES * 8, FS * 8, GS * 8,
230 -1, -1, -1, -1, -1, -1, -1, -1,
231 -1, -1, -1, -1, -1, -1, -1, -1,
232 -1, -1, -1, -1, -1, -1, -1, -1,
233 -1,
234 -1, -1, -1, -1, -1, -1, -1, -1,
235 ORIG_RAX * 8,
236 21 * 8, 22 * 8,
237 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
238 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
239 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
240 -1, -1, -1, -1, -1, -1, -1, -1,
241 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
242 -1, -1, -1, -1, -1, -1, -1, -1,
243 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
244 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
245 -1, -1, -1, -1, -1, -1, -1, -1,
246 -1, -1, -1, -1, -1, -1, -1, -1,
247 -1, -1, -1, -1, -1, -1, -1, -1,
248 -1 /* pkru */
249 };
250
251 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
252 #define X86_64_USER_REGS (GS + 1)
253
254 #else /* ! __x86_64__ */
255
256 /* Mapping between the general-purpose registers in `struct user'
257 format and GDB's register array layout. */
258 static /*const*/ int i386_regmap[] =
259 {
260 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
261 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
262 EIP * 4, EFL * 4, CS * 4, SS * 4,
263 DS * 4, ES * 4, FS * 4, GS * 4
264 };
265
266 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
267
268 #define REGSIZE 4
269
270 #endif
271
272 #ifdef __x86_64__
273
274 /* Returns true if the current inferior belongs to a x86-64 process,
275 per the tdesc. */
276
277 static int
278 is_64bit_tdesc (void)
279 {
280 struct regcache *regcache = get_thread_regcache (current_thread, 0);
281
282 return register_size (regcache->tdesc, 0) == 8;
283 }
284
285 #endif
286
287 \f
288 /* Called by libthread_db. */
289
290 ps_err_e
291 ps_get_thread_area (struct ps_prochandle *ph,
292 lwpid_t lwpid, int idx, void **base)
293 {
294 #ifdef __x86_64__
295 int use_64bit = is_64bit_tdesc ();
296
297 if (use_64bit)
298 {
299 switch (idx)
300 {
301 case FS:
302 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
303 return PS_OK;
304 break;
305 case GS:
306 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
307 return PS_OK;
308 break;
309 default:
310 return PS_BADADDR;
311 }
312 return PS_ERR;
313 }
314 #endif
315
316 {
317 unsigned int desc[4];
318
319 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
320 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
321 return PS_ERR;
322
323 /* Ensure we properly extend the value to 64-bits for x86_64. */
324 *base = (void *) (uintptr_t) desc[1];
325 return PS_OK;
326 }
327 }
328
329 /* Get the thread area address. This is used to recognize which
330 thread is which when tracing with the in-process agent library. We
331 don't read anything from the address, and treat it as opaque; it's
332 the address itself that we assume is unique per-thread. */
333
334 int
335 x86_target::low_get_thread_area (int lwpid, CORE_ADDR *addr)
336 {
337 #ifdef __x86_64__
338 int use_64bit = is_64bit_tdesc ();
339
340 if (use_64bit)
341 {
342 void *base;
343 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
344 {
345 *addr = (CORE_ADDR) (uintptr_t) base;
346 return 0;
347 }
348
349 return -1;
350 }
351 #endif
352
353 {
354 struct lwp_info *lwp = find_lwp_pid (ptid_t (lwpid));
355 struct thread_info *thr = get_lwp_thread (lwp);
356 struct regcache *regcache = get_thread_regcache (thr, 1);
357 unsigned int desc[4];
358 ULONGEST gs = 0;
359 const int reg_thread_area = 3; /* bits to scale down register value. */
360 int idx;
361
362 collect_register_by_name (regcache, "gs", &gs);
363
364 idx = gs >> reg_thread_area;
365
366 if (ptrace (PTRACE_GET_THREAD_AREA,
367 lwpid_of (thr),
368 (void *) (long) idx, (unsigned long) &desc) < 0)
369 return -1;
370
371 *addr = desc[1];
372 return 0;
373 }
374 }
375
376
377 \f
378 bool
379 x86_target::low_cannot_store_register (int regno)
380 {
381 #ifdef __x86_64__
382 if (is_64bit_tdesc ())
383 return false;
384 #endif
385
386 return regno >= I386_NUM_REGS;
387 }
388
389 bool
390 x86_target::low_cannot_fetch_register (int regno)
391 {
392 #ifdef __x86_64__
393 if (is_64bit_tdesc ())
394 return false;
395 #endif
396
397 return regno >= I386_NUM_REGS;
398 }
399
400 static void
401 x86_fill_gregset (struct regcache *regcache, void *buf)
402 {
403 int i;
404
405 #ifdef __x86_64__
406 if (register_size (regcache->tdesc, 0) == 8)
407 {
408 for (i = 0; i < X86_64_NUM_REGS; i++)
409 if (x86_64_regmap[i] != -1)
410 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
411
412 return;
413 }
414
415 /* 32-bit inferior registers need to be zero-extended.
416 Callers would read uninitialized memory otherwise. */
417 memset (buf, 0x00, X86_64_USER_REGS * 8);
418 #endif
419
420 for (i = 0; i < I386_NUM_REGS; i++)
421 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
422
423 collect_register_by_name (regcache, "orig_eax",
424 ((char *) buf) + ORIG_EAX * REGSIZE);
425
426 #ifdef __x86_64__
427 /* Sign extend EAX value to avoid potential syscall restart
428 problems.
429
430 See amd64_linux_collect_native_gregset() in gdb/amd64-linux-nat.c
431 for a detailed explanation. */
432 if (register_size (regcache->tdesc, 0) == 4)
433 {
434 void *ptr = ((gdb_byte *) buf
435 + i386_regmap[find_regno (regcache->tdesc, "eax")]);
436
437 *(int64_t *) ptr = *(int32_t *) ptr;
438 }
439 #endif
440 }
441
442 static void
443 x86_store_gregset (struct regcache *regcache, const void *buf)
444 {
445 int i;
446
447 #ifdef __x86_64__
448 if (register_size (regcache->tdesc, 0) == 8)
449 {
450 for (i = 0; i < X86_64_NUM_REGS; i++)
451 if (x86_64_regmap[i] != -1)
452 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
453
454 return;
455 }
456 #endif
457
458 for (i = 0; i < I386_NUM_REGS; i++)
459 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
460
461 supply_register_by_name (regcache, "orig_eax",
462 ((char *) buf) + ORIG_EAX * REGSIZE);
463 }
464
465 static void
466 x86_fill_fpregset (struct regcache *regcache, void *buf)
467 {
468 #ifdef __x86_64__
469 i387_cache_to_fxsave (regcache, buf);
470 #else
471 i387_cache_to_fsave (regcache, buf);
472 #endif
473 }
474
475 static void
476 x86_store_fpregset (struct regcache *regcache, const void *buf)
477 {
478 #ifdef __x86_64__
479 i387_fxsave_to_cache (regcache, buf);
480 #else
481 i387_fsave_to_cache (regcache, buf);
482 #endif
483 }
484
485 #ifndef __x86_64__
486
487 static void
488 x86_fill_fpxregset (struct regcache *regcache, void *buf)
489 {
490 i387_cache_to_fxsave (regcache, buf);
491 }
492
493 static void
494 x86_store_fpxregset (struct regcache *regcache, const void *buf)
495 {
496 i387_fxsave_to_cache (regcache, buf);
497 }
498
499 #endif
500
501 static void
502 x86_fill_xstateregset (struct regcache *regcache, void *buf)
503 {
504 i387_cache_to_xsave (regcache, buf);
505 }
506
507 static void
508 x86_store_xstateregset (struct regcache *regcache, const void *buf)
509 {
510 i387_xsave_to_cache (regcache, buf);
511 }
512
513 /* ??? The non-biarch i386 case stores all the i387 regs twice.
514 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
515 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
516 doesn't work. IWBN to avoid the duplication in the case where it
517 does work. Maybe the arch_setup routine could check whether it works
518 and update the supported regsets accordingly. */
519
520 static struct regset_info x86_regsets[] =
521 {
522 #ifdef HAVE_PTRACE_GETREGS
523 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
524 GENERAL_REGS,
525 x86_fill_gregset, x86_store_gregset },
526 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
527 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
528 # ifndef __x86_64__
529 # ifdef HAVE_PTRACE_GETFPXREGS
530 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
531 EXTENDED_REGS,
532 x86_fill_fpxregset, x86_store_fpxregset },
533 # endif
534 # endif
535 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
536 FP_REGS,
537 x86_fill_fpregset, x86_store_fpregset },
538 #endif /* HAVE_PTRACE_GETREGS */
539 NULL_REGSET
540 };
541
542 bool
543 x86_target::low_supports_breakpoints ()
544 {
545 return true;
546 }
547
548 CORE_ADDR
549 x86_target::low_get_pc (regcache *regcache)
550 {
551 int use_64bit = register_size (regcache->tdesc, 0) == 8;
552
553 if (use_64bit)
554 {
555 uint64_t pc;
556
557 collect_register_by_name (regcache, "rip", &pc);
558 return (CORE_ADDR) pc;
559 }
560 else
561 {
562 uint32_t pc;
563
564 collect_register_by_name (regcache, "eip", &pc);
565 return (CORE_ADDR) pc;
566 }
567 }
568
569 void
570 x86_target::low_set_pc (regcache *regcache, CORE_ADDR pc)
571 {
572 int use_64bit = register_size (regcache->tdesc, 0) == 8;
573
574 if (use_64bit)
575 {
576 uint64_t newpc = pc;
577
578 supply_register_by_name (regcache, "rip", &newpc);
579 }
580 else
581 {
582 uint32_t newpc = pc;
583
584 supply_register_by_name (regcache, "eip", &newpc);
585 }
586 }
587
588 int
589 x86_target::low_decr_pc_after_break ()
590 {
591 return 1;
592 }
593
594 \f
595 static const gdb_byte x86_breakpoint[] = { 0xCC };
596 #define x86_breakpoint_len 1
597
598 bool
599 x86_target::low_breakpoint_at (CORE_ADDR pc)
600 {
601 unsigned char c;
602
603 read_memory (pc, &c, 1);
604 if (c == 0xCC)
605 return true;
606
607 return false;
608 }
609 \f
610 /* Low-level function vector. */
611 struct x86_dr_low_type x86_dr_low =
612 {
613 x86_linux_dr_set_control,
614 x86_linux_dr_set_addr,
615 x86_linux_dr_get_addr,
616 x86_linux_dr_get_status,
617 x86_linux_dr_get_control,
618 sizeof (void *),
619 };
620 \f
621 /* Breakpoint/Watchpoint support. */
622
623 bool
624 x86_target::supports_z_point_type (char z_type)
625 {
626 switch (z_type)
627 {
628 case Z_PACKET_SW_BP:
629 case Z_PACKET_HW_BP:
630 case Z_PACKET_WRITE_WP:
631 case Z_PACKET_ACCESS_WP:
632 return true;
633 default:
634 return false;
635 }
636 }
637
638 int
639 x86_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
640 int size, raw_breakpoint *bp)
641 {
642 struct process_info *proc = current_process ();
643
644 switch (type)
645 {
646 case raw_bkpt_type_hw:
647 case raw_bkpt_type_write_wp:
648 case raw_bkpt_type_access_wp:
649 {
650 enum target_hw_bp_type hw_type
651 = raw_bkpt_type_to_target_hw_bp_type (type);
652 struct x86_debug_reg_state *state
653 = &proc->priv->arch_private->debug_reg_state;
654
655 return x86_dr_insert_watchpoint (state, hw_type, addr, size);
656 }
657
658 default:
659 /* Unsupported. */
660 return 1;
661 }
662 }
663
664 int
665 x86_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
666 int size, raw_breakpoint *bp)
667 {
668 struct process_info *proc = current_process ();
669
670 switch (type)
671 {
672 case raw_bkpt_type_hw:
673 case raw_bkpt_type_write_wp:
674 case raw_bkpt_type_access_wp:
675 {
676 enum target_hw_bp_type hw_type
677 = raw_bkpt_type_to_target_hw_bp_type (type);
678 struct x86_debug_reg_state *state
679 = &proc->priv->arch_private->debug_reg_state;
680
681 return x86_dr_remove_watchpoint (state, hw_type, addr, size);
682 }
683 default:
684 /* Unsupported. */
685 return 1;
686 }
687 }
688
689 bool
690 x86_target::low_stopped_by_watchpoint ()
691 {
692 struct process_info *proc = current_process ();
693 return x86_dr_stopped_by_watchpoint (&proc->priv->arch_private->debug_reg_state);
694 }
695
696 CORE_ADDR
697 x86_target::low_stopped_data_address ()
698 {
699 struct process_info *proc = current_process ();
700 CORE_ADDR addr;
701 if (x86_dr_stopped_data_address (&proc->priv->arch_private->debug_reg_state,
702 &addr))
703 return addr;
704 return 0;
705 }
706 \f
707 /* Called when a new process is created. */
708
709 arch_process_info *
710 x86_target::low_new_process ()
711 {
712 struct arch_process_info *info = XCNEW (struct arch_process_info);
713
714 x86_low_init_dregs (&info->debug_reg_state);
715
716 return info;
717 }
718
719 /* Called when a process is being deleted. */
720
721 void
722 x86_target::low_delete_process (arch_process_info *info)
723 {
724 xfree (info);
725 }
726
727 void
728 x86_target::low_new_thread (lwp_info *lwp)
729 {
730 /* This comes from nat/. */
731 x86_linux_new_thread (lwp);
732 }
733
734 void
735 x86_target::low_delete_thread (arch_lwp_info *alwp)
736 {
737 /* This comes from nat/. */
738 x86_linux_delete_thread (alwp);
739 }
740
741 /* Target routine for new_fork. */
742
743 void
744 x86_target::low_new_fork (process_info *parent, process_info *child)
745 {
746 /* These are allocated by linux_add_process. */
747 gdb_assert (parent->priv != NULL
748 && parent->priv->arch_private != NULL);
749 gdb_assert (child->priv != NULL
750 && child->priv->arch_private != NULL);
751
752 /* Linux kernel before 2.6.33 commit
753 72f674d203cd230426437cdcf7dd6f681dad8b0d
754 will inherit hardware debug registers from parent
755 on fork/vfork/clone. Newer Linux kernels create such tasks with
756 zeroed debug registers.
757
758 GDB core assumes the child inherits the watchpoints/hw
759 breakpoints of the parent, and will remove them all from the
760 forked off process. Copy the debug registers mirrors into the
761 new process so that all breakpoints and watchpoints can be
762 removed together. The debug registers mirror will become zeroed
763 in the end before detaching the forked off process, thus making
764 this compatible with older Linux kernels too. */
765
766 *child->priv->arch_private = *parent->priv->arch_private;
767 }
768
769 void
770 x86_target::low_prepare_to_resume (lwp_info *lwp)
771 {
772 /* This comes from nat/. */
773 x86_linux_prepare_to_resume (lwp);
774 }
775
776 /* See nat/x86-dregs.h. */
777
778 struct x86_debug_reg_state *
779 x86_debug_reg_state (pid_t pid)
780 {
781 struct process_info *proc = find_process_pid (pid);
782
783 return &proc->priv->arch_private->debug_reg_state;
784 }
785 \f
786 /* When GDBSERVER is built as a 64-bit application on linux, the
787 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
788 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
789 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
790 conversion in-place ourselves. */
791
792 /* Convert a ptrace/host siginfo object, into/from the siginfo in the
793 layout of the inferiors' architecture. Returns true if any
794 conversion was done; false otherwise. If DIRECTION is 1, then copy
795 from INF to PTRACE. If DIRECTION is 0, copy from PTRACE to
796 INF. */
797
798 bool
799 x86_target::low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
800 {
801 #ifdef __x86_64__
802 unsigned int machine;
803 int tid = lwpid_of (current_thread);
804 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
805
806 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
807 if (!is_64bit_tdesc ())
808 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
809 FIXUP_32);
810 /* No fixup for native x32 GDB. */
811 else if (!is_elf64 && sizeof (void *) == 8)
812 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
813 FIXUP_X32);
814 #endif
815
816 return false;
817 }
818 \f
819 static int use_xml;
820
821 /* Format of XSAVE extended state is:
822 struct
823 {
824 fxsave_bytes[0..463]
825 sw_usable_bytes[464..511]
826 xstate_hdr_bytes[512..575]
827 avx_bytes[576..831]
828 future_state etc
829 };
830
831 Same memory layout will be used for the coredump NT_X86_XSTATE
832 representing the XSAVE extended state registers.
833
834 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
835 extended state mask, which is the same as the extended control register
836 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
837 together with the mask saved in the xstate_hdr_bytes to determine what
838 states the processor/OS supports and what state, used or initialized,
839 the process/thread is in. */
840 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
841
842 /* Does the current host support the GETFPXREGS request? The header
843 file may or may not define it, and even if it is defined, the
844 kernel will return EIO if it's running on a pre-SSE processor. */
845 int have_ptrace_getfpxregs =
846 #ifdef HAVE_PTRACE_GETFPXREGS
847 -1
848 #else
849 0
850 #endif
851 ;
852
853 /* Get Linux/x86 target description from running target. */
854
855 static const struct target_desc *
856 x86_linux_read_description (void)
857 {
858 unsigned int machine;
859 int is_elf64;
860 int xcr0_features;
861 int tid;
862 static uint64_t xcr0;
863 struct regset_info *regset;
864
865 tid = lwpid_of (current_thread);
866
867 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
868
869 if (sizeof (void *) == 4)
870 {
871 if (is_elf64 > 0)
872 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
873 #ifndef __x86_64__
874 else if (machine == EM_X86_64)
875 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
876 #endif
877 }
878
879 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
880 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
881 {
882 elf_fpxregset_t fpxregs;
883
884 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
885 {
886 have_ptrace_getfpxregs = 0;
887 have_ptrace_getregset = 0;
888 return i386_linux_read_description (X86_XSTATE_X87);
889 }
890 else
891 have_ptrace_getfpxregs = 1;
892 }
893 #endif
894
895 if (!use_xml)
896 {
897 x86_xcr0 = X86_XSTATE_SSE_MASK;
898
899 /* Don't use XML. */
900 #ifdef __x86_64__
901 if (machine == EM_X86_64)
902 return tdesc_amd64_linux_no_xml;
903 else
904 #endif
905 return tdesc_i386_linux_no_xml;
906 }
907
908 if (have_ptrace_getregset == -1)
909 {
910 uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))];
911 struct iovec iov;
912
913 iov.iov_base = xstateregs;
914 iov.iov_len = sizeof (xstateregs);
915
916 /* Check if PTRACE_GETREGSET works. */
917 if (ptrace (PTRACE_GETREGSET, tid,
918 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
919 have_ptrace_getregset = 0;
920 else
921 {
922 have_ptrace_getregset = 1;
923
924 /* Get XCR0 from XSAVE extended state. */
925 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
926 / sizeof (uint64_t))];
927
928 /* Use PTRACE_GETREGSET if it is available. */
929 for (regset = x86_regsets;
930 regset->fill_function != NULL; regset++)
931 if (regset->get_request == PTRACE_GETREGSET)
932 regset->size = X86_XSTATE_SIZE (xcr0);
933 else if (regset->type != GENERAL_REGS)
934 regset->size = 0;
935 }
936 }
937
938 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
939 xcr0_features = (have_ptrace_getregset
940 && (xcr0 & X86_XSTATE_ALL_MASK));
941
942 if (xcr0_features)
943 x86_xcr0 = xcr0;
944
945 if (machine == EM_X86_64)
946 {
947 #ifdef __x86_64__
948 const target_desc *tdesc = NULL;
949
950 if (xcr0_features)
951 {
952 tdesc = amd64_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK,
953 !is_elf64);
954 }
955
956 if (tdesc == NULL)
957 tdesc = amd64_linux_read_description (X86_XSTATE_SSE_MASK, !is_elf64);
958 return tdesc;
959 #endif
960 }
961 else
962 {
963 const target_desc *tdesc = NULL;
964
965 if (xcr0_features)
966 tdesc = i386_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK);
967
968 if (tdesc == NULL)
969 tdesc = i386_linux_read_description (X86_XSTATE_SSE);
970
971 return tdesc;
972 }
973
974 gdb_assert_not_reached ("failed to return tdesc");
975 }
976
977 /* Update all the target description of all processes; a new GDB
978 connected, and it may or not support xml target descriptions. */
979
980 void
981 x86_target::update_xmltarget ()
982 {
983 struct thread_info *saved_thread = current_thread;
984
985 /* Before changing the register cache's internal layout, flush the
986 contents of the current valid caches back to the threads, and
987 release the current regcache objects. */
988 regcache_release ();
989
990 for_each_process ([this] (process_info *proc) {
991 int pid = proc->pid;
992
993 /* Look up any thread of this process. */
994 current_thread = find_any_thread_of_pid (pid);
995
996 low_arch_setup ();
997 });
998
999 current_thread = saved_thread;
1000 }
1001
1002 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
1003 PTRACE_GETREGSET. */
1004
1005 void
1006 x86_target::process_qsupported (gdb::array_view<const char * const> features)
1007 {
1008 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
1009 with "i386" in qSupported query, it supports x86 XML target
1010 descriptions. */
1011 use_xml = 0;
1012
1013 for (const char *feature : features)
1014 {
1015 if (startswith (feature, "xmlRegisters="))
1016 {
1017 char *copy = xstrdup (feature + 13);
1018
1019 char *saveptr;
1020 for (char *p = strtok_r (copy, ",", &saveptr);
1021 p != NULL;
1022 p = strtok_r (NULL, ",", &saveptr))
1023 {
1024 if (strcmp (p, "i386") == 0)
1025 {
1026 use_xml = 1;
1027 break;
1028 }
1029 }
1030
1031 free (copy);
1032 }
1033 }
1034
1035 update_xmltarget ();
1036 }
1037
1038 /* Common for x86/x86-64. */
1039
1040 static struct regsets_info x86_regsets_info =
1041 {
1042 x86_regsets, /* regsets */
1043 0, /* num_regsets */
1044 NULL, /* disabled_regsets */
1045 };
1046
1047 #ifdef __x86_64__
1048 static struct regs_info amd64_linux_regs_info =
1049 {
1050 NULL, /* regset_bitmap */
1051 NULL, /* usrregs_info */
1052 &x86_regsets_info
1053 };
1054 #endif
1055 static struct usrregs_info i386_linux_usrregs_info =
1056 {
1057 I386_NUM_REGS,
1058 i386_regmap,
1059 };
1060
1061 static struct regs_info i386_linux_regs_info =
1062 {
1063 NULL, /* regset_bitmap */
1064 &i386_linux_usrregs_info,
1065 &x86_regsets_info
1066 };
1067
1068 const regs_info *
1069 x86_target::get_regs_info ()
1070 {
1071 #ifdef __x86_64__
1072 if (is_64bit_tdesc ())
1073 return &amd64_linux_regs_info;
1074 else
1075 #endif
1076 return &i386_linux_regs_info;
1077 }
1078
1079 /* Initialize the target description for the architecture of the
1080 inferior. */
1081
1082 void
1083 x86_target::low_arch_setup ()
1084 {
1085 current_process ()->tdesc = x86_linux_read_description ();
1086 }
1087
1088 bool
1089 x86_target::low_supports_catch_syscall ()
1090 {
1091 return true;
1092 }
1093
1094 /* Fill *SYSNO and *SYSRET with the syscall nr trapped and the syscall return
1095 code. This should only be called if LWP got a SYSCALL_SIGTRAP. */
1096
1097 void
1098 x86_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
1099 {
1100 int use_64bit = register_size (regcache->tdesc, 0) == 8;
1101
1102 if (use_64bit)
1103 {
1104 long l_sysno;
1105
1106 collect_register_by_name (regcache, "orig_rax", &l_sysno);
1107 *sysno = (int) l_sysno;
1108 }
1109 else
1110 collect_register_by_name (regcache, "orig_eax", sysno);
1111 }
1112
1113 bool
1114 x86_target::supports_tracepoints ()
1115 {
1116 return true;
1117 }
1118
1119 static void
1120 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1121 {
1122 target_write_memory (*to, buf, len);
1123 *to += len;
1124 }
1125
1126 static int
1127 push_opcode (unsigned char *buf, const char *op)
1128 {
1129 unsigned char *buf_org = buf;
1130
1131 while (1)
1132 {
1133 char *endptr;
1134 unsigned long ul = strtoul (op, &endptr, 16);
1135
1136 if (endptr == op)
1137 break;
1138
1139 *buf++ = ul;
1140 op = endptr;
1141 }
1142
1143 return buf - buf_org;
1144 }
1145
1146 #ifdef __x86_64__
1147
1148 /* Build a jump pad that saves registers and calls a collection
1149 function. Writes a jump instruction to the jump pad to
1150 JJUMPAD_INSN. The caller is responsible to write it in at the
1151 tracepoint address. */
1152
1153 static int
1154 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1155 CORE_ADDR collector,
1156 CORE_ADDR lockaddr,
1157 ULONGEST orig_size,
1158 CORE_ADDR *jump_entry,
1159 CORE_ADDR *trampoline,
1160 ULONGEST *trampoline_size,
1161 unsigned char *jjump_pad_insn,
1162 ULONGEST *jjump_pad_insn_size,
1163 CORE_ADDR *adjusted_insn_addr,
1164 CORE_ADDR *adjusted_insn_addr_end,
1165 char *err)
1166 {
1167 unsigned char buf[40];
1168 int i, offset;
1169 int64_t loffset;
1170
1171 CORE_ADDR buildaddr = *jump_entry;
1172
1173 /* Build the jump pad. */
1174
1175 /* First, do tracepoint data collection. Save registers. */
1176 i = 0;
1177 /* Need to ensure stack pointer saved first. */
1178 buf[i++] = 0x54; /* push %rsp */
1179 buf[i++] = 0x55; /* push %rbp */
1180 buf[i++] = 0x57; /* push %rdi */
1181 buf[i++] = 0x56; /* push %rsi */
1182 buf[i++] = 0x52; /* push %rdx */
1183 buf[i++] = 0x51; /* push %rcx */
1184 buf[i++] = 0x53; /* push %rbx */
1185 buf[i++] = 0x50; /* push %rax */
1186 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1187 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1188 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1189 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1190 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1191 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1192 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1193 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1194 buf[i++] = 0x9c; /* pushfq */
1195 buf[i++] = 0x48; /* movabs <addr>,%rdi */
1196 buf[i++] = 0xbf;
1197 memcpy (buf + i, &tpaddr, 8);
1198 i += 8;
1199 buf[i++] = 0x57; /* push %rdi */
1200 append_insns (&buildaddr, i, buf);
1201
1202 /* Stack space for the collecting_t object. */
1203 i = 0;
1204 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1205 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1206 memcpy (buf + i, &tpoint, 8);
1207 i += 8;
1208 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1209 i += push_opcode (&buf[i],
1210 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1211 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1212 append_insns (&buildaddr, i, buf);
1213
1214 /* spin-lock. */
1215 i = 0;
1216 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1217 memcpy (&buf[i], (void *) &lockaddr, 8);
1218 i += 8;
1219 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1220 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1221 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1222 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1223 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1224 append_insns (&buildaddr, i, buf);
1225
1226 /* Set up the gdb_collect call. */
1227 /* At this point, (stack pointer + 0x18) is the base of our saved
1228 register block. */
1229
1230 i = 0;
1231 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1232 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1233
1234 /* tpoint address may be 64-bit wide. */
1235 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1236 memcpy (buf + i, &tpoint, 8);
1237 i += 8;
1238 append_insns (&buildaddr, i, buf);
1239
1240 /* The collector function being in the shared library, may be
1241 >31-bits away off the jump pad. */
1242 i = 0;
1243 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1244 memcpy (buf + i, &collector, 8);
1245 i += 8;
1246 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1247 append_insns (&buildaddr, i, buf);
1248
1249 /* Clear the spin-lock. */
1250 i = 0;
1251 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1252 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1253 memcpy (buf + i, &lockaddr, 8);
1254 i += 8;
1255 append_insns (&buildaddr, i, buf);
1256
1257 /* Remove stack that had been used for the collect_t object. */
1258 i = 0;
1259 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1260 append_insns (&buildaddr, i, buf);
1261
1262 /* Restore register state. */
1263 i = 0;
1264 buf[i++] = 0x48; /* add $0x8,%rsp */
1265 buf[i++] = 0x83;
1266 buf[i++] = 0xc4;
1267 buf[i++] = 0x08;
1268 buf[i++] = 0x9d; /* popfq */
1269 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1270 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1271 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1272 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1273 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1274 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1275 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1276 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1277 buf[i++] = 0x58; /* pop %rax */
1278 buf[i++] = 0x5b; /* pop %rbx */
1279 buf[i++] = 0x59; /* pop %rcx */
1280 buf[i++] = 0x5a; /* pop %rdx */
1281 buf[i++] = 0x5e; /* pop %rsi */
1282 buf[i++] = 0x5f; /* pop %rdi */
1283 buf[i++] = 0x5d; /* pop %rbp */
1284 buf[i++] = 0x5c; /* pop %rsp */
1285 append_insns (&buildaddr, i, buf);
1286
1287 /* Now, adjust the original instruction to execute in the jump
1288 pad. */
1289 *adjusted_insn_addr = buildaddr;
1290 relocate_instruction (&buildaddr, tpaddr);
1291 *adjusted_insn_addr_end = buildaddr;
1292
1293 /* Finally, write a jump back to the program. */
1294
1295 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1296 if (loffset > INT_MAX || loffset < INT_MIN)
1297 {
1298 sprintf (err,
1299 "E.Jump back from jump pad too far from tracepoint "
1300 "(offset 0x%" PRIx64 " > int32).", loffset);
1301 return 1;
1302 }
1303
1304 offset = (int) loffset;
1305 memcpy (buf, jump_insn, sizeof (jump_insn));
1306 memcpy (buf + 1, &offset, 4);
1307 append_insns (&buildaddr, sizeof (jump_insn), buf);
1308
1309 /* The jump pad is now built. Wire in a jump to our jump pad. This
1310 is always done last (by our caller actually), so that we can
1311 install fast tracepoints with threads running. This relies on
1312 the agent's atomic write support. */
1313 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1314 if (loffset > INT_MAX || loffset < INT_MIN)
1315 {
1316 sprintf (err,
1317 "E.Jump pad too far from tracepoint "
1318 "(offset 0x%" PRIx64 " > int32).", loffset);
1319 return 1;
1320 }
1321
1322 offset = (int) loffset;
1323
1324 memcpy (buf, jump_insn, sizeof (jump_insn));
1325 memcpy (buf + 1, &offset, 4);
1326 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1327 *jjump_pad_insn_size = sizeof (jump_insn);
1328
1329 /* Return the end address of our pad. */
1330 *jump_entry = buildaddr;
1331
1332 return 0;
1333 }
1334
1335 #endif /* __x86_64__ */
1336
1337 /* Build a jump pad that saves registers and calls a collection
1338 function. Writes a jump instruction to the jump pad to
1339 JJUMPAD_INSN. The caller is responsible to write it in at the
1340 tracepoint address. */
1341
1342 static int
1343 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1344 CORE_ADDR collector,
1345 CORE_ADDR lockaddr,
1346 ULONGEST orig_size,
1347 CORE_ADDR *jump_entry,
1348 CORE_ADDR *trampoline,
1349 ULONGEST *trampoline_size,
1350 unsigned char *jjump_pad_insn,
1351 ULONGEST *jjump_pad_insn_size,
1352 CORE_ADDR *adjusted_insn_addr,
1353 CORE_ADDR *adjusted_insn_addr_end,
1354 char *err)
1355 {
1356 unsigned char buf[0x100];
1357 int i, offset;
1358 CORE_ADDR buildaddr = *jump_entry;
1359
1360 /* Build the jump pad. */
1361
1362 /* First, do tracepoint data collection. Save registers. */
1363 i = 0;
1364 buf[i++] = 0x60; /* pushad */
1365 buf[i++] = 0x68; /* push tpaddr aka $pc */
1366 *((int *)(buf + i)) = (int) tpaddr;
1367 i += 4;
1368 buf[i++] = 0x9c; /* pushf */
1369 buf[i++] = 0x1e; /* push %ds */
1370 buf[i++] = 0x06; /* push %es */
1371 buf[i++] = 0x0f; /* push %fs */
1372 buf[i++] = 0xa0;
1373 buf[i++] = 0x0f; /* push %gs */
1374 buf[i++] = 0xa8;
1375 buf[i++] = 0x16; /* push %ss */
1376 buf[i++] = 0x0e; /* push %cs */
1377 append_insns (&buildaddr, i, buf);
1378
1379 /* Stack space for the collecting_t object. */
1380 i = 0;
1381 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1382
1383 /* Build the object. */
1384 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1385 memcpy (buf + i, &tpoint, 4);
1386 i += 4;
1387 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1388
1389 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1390 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1391 append_insns (&buildaddr, i, buf);
1392
1393 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1394 If we cared for it, this could be using xchg alternatively. */
1395
1396 i = 0;
1397 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1398 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1399 %esp,<lockaddr> */
1400 memcpy (&buf[i], (void *) &lockaddr, 4);
1401 i += 4;
1402 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1403 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1404 append_insns (&buildaddr, i, buf);
1405
1406
1407 /* Set up arguments to the gdb_collect call. */
1408 i = 0;
1409 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1410 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1411 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1412 append_insns (&buildaddr, i, buf);
1413
1414 i = 0;
1415 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1416 append_insns (&buildaddr, i, buf);
1417
1418 i = 0;
1419 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1420 memcpy (&buf[i], (void *) &tpoint, 4);
1421 i += 4;
1422 append_insns (&buildaddr, i, buf);
1423
1424 buf[0] = 0xe8; /* call <reladdr> */
1425 offset = collector - (buildaddr + sizeof (jump_insn));
1426 memcpy (buf + 1, &offset, 4);
1427 append_insns (&buildaddr, 5, buf);
1428 /* Clean up after the call. */
1429 buf[0] = 0x83; /* add $0x8,%esp */
1430 buf[1] = 0xc4;
1431 buf[2] = 0x08;
1432 append_insns (&buildaddr, 3, buf);
1433
1434
1435 /* Clear the spin-lock. This would need the LOCK prefix on older
1436 broken archs. */
1437 i = 0;
1438 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1439 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1440 memcpy (buf + i, &lockaddr, 4);
1441 i += 4;
1442 append_insns (&buildaddr, i, buf);
1443
1444
1445 /* Remove stack that had been used for the collect_t object. */
1446 i = 0;
1447 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1448 append_insns (&buildaddr, i, buf);
1449
1450 i = 0;
1451 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1452 buf[i++] = 0xc4;
1453 buf[i++] = 0x04;
1454 buf[i++] = 0x17; /* pop %ss */
1455 buf[i++] = 0x0f; /* pop %gs */
1456 buf[i++] = 0xa9;
1457 buf[i++] = 0x0f; /* pop %fs */
1458 buf[i++] = 0xa1;
1459 buf[i++] = 0x07; /* pop %es */
1460 buf[i++] = 0x1f; /* pop %ds */
1461 buf[i++] = 0x9d; /* popf */
1462 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1463 buf[i++] = 0xc4;
1464 buf[i++] = 0x04;
1465 buf[i++] = 0x61; /* popad */
1466 append_insns (&buildaddr, i, buf);
1467
1468 /* Now, adjust the original instruction to execute in the jump
1469 pad. */
1470 *adjusted_insn_addr = buildaddr;
1471 relocate_instruction (&buildaddr, tpaddr);
1472 *adjusted_insn_addr_end = buildaddr;
1473
1474 /* Write the jump back to the program. */
1475 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1476 memcpy (buf, jump_insn, sizeof (jump_insn));
1477 memcpy (buf + 1, &offset, 4);
1478 append_insns (&buildaddr, sizeof (jump_insn), buf);
1479
1480 /* The jump pad is now built. Wire in a jump to our jump pad. This
1481 is always done last (by our caller actually), so that we can
1482 install fast tracepoints with threads running. This relies on
1483 the agent's atomic write support. */
1484 if (orig_size == 4)
1485 {
1486 /* Create a trampoline. */
1487 *trampoline_size = sizeof (jump_insn);
1488 if (!claim_trampoline_space (*trampoline_size, trampoline))
1489 {
1490 /* No trampoline space available. */
1491 strcpy (err,
1492 "E.Cannot allocate trampoline space needed for fast "
1493 "tracepoints on 4-byte instructions.");
1494 return 1;
1495 }
1496
1497 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1498 memcpy (buf, jump_insn, sizeof (jump_insn));
1499 memcpy (buf + 1, &offset, 4);
1500 target_write_memory (*trampoline, buf, sizeof (jump_insn));
1501
1502 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1503 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1504 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1505 memcpy (buf + 2, &offset, 2);
1506 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1507 *jjump_pad_insn_size = sizeof (small_jump_insn);
1508 }
1509 else
1510 {
1511 /* Else use a 32-bit relative jump instruction. */
1512 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1513 memcpy (buf, jump_insn, sizeof (jump_insn));
1514 memcpy (buf + 1, &offset, 4);
1515 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1516 *jjump_pad_insn_size = sizeof (jump_insn);
1517 }
1518
1519 /* Return the end address of our pad. */
1520 *jump_entry = buildaddr;
1521
1522 return 0;
1523 }
1524
1525 bool
1526 x86_target::supports_fast_tracepoints ()
1527 {
1528 return true;
1529 }
1530
1531 int
1532 x86_target::install_fast_tracepoint_jump_pad (CORE_ADDR tpoint,
1533 CORE_ADDR tpaddr,
1534 CORE_ADDR collector,
1535 CORE_ADDR lockaddr,
1536 ULONGEST orig_size,
1537 CORE_ADDR *jump_entry,
1538 CORE_ADDR *trampoline,
1539 ULONGEST *trampoline_size,
1540 unsigned char *jjump_pad_insn,
1541 ULONGEST *jjump_pad_insn_size,
1542 CORE_ADDR *adjusted_insn_addr,
1543 CORE_ADDR *adjusted_insn_addr_end,
1544 char *err)
1545 {
1546 #ifdef __x86_64__
1547 if (is_64bit_tdesc ())
1548 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1549 collector, lockaddr,
1550 orig_size, jump_entry,
1551 trampoline, trampoline_size,
1552 jjump_pad_insn,
1553 jjump_pad_insn_size,
1554 adjusted_insn_addr,
1555 adjusted_insn_addr_end,
1556 err);
1557 #endif
1558
1559 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1560 collector, lockaddr,
1561 orig_size, jump_entry,
1562 trampoline, trampoline_size,
1563 jjump_pad_insn,
1564 jjump_pad_insn_size,
1565 adjusted_insn_addr,
1566 adjusted_insn_addr_end,
1567 err);
1568 }
1569
1570 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
1571 architectures. */
1572
1573 int
1574 x86_target::get_min_fast_tracepoint_insn_len ()
1575 {
1576 static int warned_about_fast_tracepoints = 0;
1577
1578 #ifdef __x86_64__
1579 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
1580 used for fast tracepoints. */
1581 if (is_64bit_tdesc ())
1582 return 5;
1583 #endif
1584
1585 if (agent_loaded_p ())
1586 {
1587 char errbuf[IPA_BUFSIZ];
1588
1589 errbuf[0] = '\0';
1590
1591 /* On x86, if trampolines are available, then 4-byte jump instructions
1592 with a 2-byte offset may be used, otherwise 5-byte jump instructions
1593 with a 4-byte offset are used instead. */
1594 if (have_fast_tracepoint_trampoline_buffer (errbuf))
1595 return 4;
1596 else
1597 {
1598 /* GDB has no channel to explain to user why a shorter fast
1599 tracepoint is not possible, but at least make GDBserver
1600 mention that something has gone awry. */
1601 if (!warned_about_fast_tracepoints)
1602 {
1603 warning ("4-byte fast tracepoints not available; %s", errbuf);
1604 warned_about_fast_tracepoints = 1;
1605 }
1606 return 5;
1607 }
1608 }
1609 else
1610 {
1611 /* Indicate that the minimum length is currently unknown since the IPA
1612 has not loaded yet. */
1613 return 0;
1614 }
1615 }
1616
1617 static void
1618 add_insns (unsigned char *start, int len)
1619 {
1620 CORE_ADDR buildaddr = current_insn_ptr;
1621
1622 if (debug_threads)
1623 debug_printf ("Adding %d bytes of insn at %s\n",
1624 len, paddress (buildaddr));
1625
1626 append_insns (&buildaddr, len, start);
1627 current_insn_ptr = buildaddr;
1628 }
1629
1630 /* Our general strategy for emitting code is to avoid specifying raw
1631 bytes whenever possible, and instead copy a block of inline asm
1632 that is embedded in the function. This is a little messy, because
1633 we need to keep the compiler from discarding what looks like dead
1634 code, plus suppress various warnings. */
1635
1636 #define EMIT_ASM(NAME, INSNS) \
1637 do \
1638 { \
1639 extern unsigned char start_ ## NAME, end_ ## NAME; \
1640 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1641 __asm__ ("jmp end_" #NAME "\n" \
1642 "\t" "start_" #NAME ":" \
1643 "\t" INSNS "\n" \
1644 "\t" "end_" #NAME ":"); \
1645 } while (0)
1646
1647 #ifdef __x86_64__
1648
1649 #define EMIT_ASM32(NAME,INSNS) \
1650 do \
1651 { \
1652 extern unsigned char start_ ## NAME, end_ ## NAME; \
1653 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1654 __asm__ (".code32\n" \
1655 "\t" "jmp end_" #NAME "\n" \
1656 "\t" "start_" #NAME ":\n" \
1657 "\t" INSNS "\n" \
1658 "\t" "end_" #NAME ":\n" \
1659 ".code64\n"); \
1660 } while (0)
1661
1662 #else
1663
1664 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
1665
1666 #endif
1667
1668 #ifdef __x86_64__
1669
1670 static void
1671 amd64_emit_prologue (void)
1672 {
1673 EMIT_ASM (amd64_prologue,
1674 "pushq %rbp\n\t"
1675 "movq %rsp,%rbp\n\t"
1676 "sub $0x20,%rsp\n\t"
1677 "movq %rdi,-8(%rbp)\n\t"
1678 "movq %rsi,-16(%rbp)");
1679 }
1680
1681
1682 static void
1683 amd64_emit_epilogue (void)
1684 {
1685 EMIT_ASM (amd64_epilogue,
1686 "movq -16(%rbp),%rdi\n\t"
1687 "movq %rax,(%rdi)\n\t"
1688 "xor %rax,%rax\n\t"
1689 "leave\n\t"
1690 "ret");
1691 }
1692
1693 static void
1694 amd64_emit_add (void)
1695 {
1696 EMIT_ASM (amd64_add,
1697 "add (%rsp),%rax\n\t"
1698 "lea 0x8(%rsp),%rsp");
1699 }
1700
1701 static void
1702 amd64_emit_sub (void)
1703 {
1704 EMIT_ASM (amd64_sub,
1705 "sub %rax,(%rsp)\n\t"
1706 "pop %rax");
1707 }
1708
1709 static void
1710 amd64_emit_mul (void)
1711 {
1712 emit_error = 1;
1713 }
1714
1715 static void
1716 amd64_emit_lsh (void)
1717 {
1718 emit_error = 1;
1719 }
1720
1721 static void
1722 amd64_emit_rsh_signed (void)
1723 {
1724 emit_error = 1;
1725 }
1726
1727 static void
1728 amd64_emit_rsh_unsigned (void)
1729 {
1730 emit_error = 1;
1731 }
1732
1733 static void
1734 amd64_emit_ext (int arg)
1735 {
1736 switch (arg)
1737 {
1738 case 8:
1739 EMIT_ASM (amd64_ext_8,
1740 "cbtw\n\t"
1741 "cwtl\n\t"
1742 "cltq");
1743 break;
1744 case 16:
1745 EMIT_ASM (amd64_ext_16,
1746 "cwtl\n\t"
1747 "cltq");
1748 break;
1749 case 32:
1750 EMIT_ASM (amd64_ext_32,
1751 "cltq");
1752 break;
1753 default:
1754 emit_error = 1;
1755 }
1756 }
1757
1758 static void
1759 amd64_emit_log_not (void)
1760 {
1761 EMIT_ASM (amd64_log_not,
1762 "test %rax,%rax\n\t"
1763 "sete %cl\n\t"
1764 "movzbq %cl,%rax");
1765 }
1766
1767 static void
1768 amd64_emit_bit_and (void)
1769 {
1770 EMIT_ASM (amd64_and,
1771 "and (%rsp),%rax\n\t"
1772 "lea 0x8(%rsp),%rsp");
1773 }
1774
1775 static void
1776 amd64_emit_bit_or (void)
1777 {
1778 EMIT_ASM (amd64_or,
1779 "or (%rsp),%rax\n\t"
1780 "lea 0x8(%rsp),%rsp");
1781 }
1782
1783 static void
1784 amd64_emit_bit_xor (void)
1785 {
1786 EMIT_ASM (amd64_xor,
1787 "xor (%rsp),%rax\n\t"
1788 "lea 0x8(%rsp),%rsp");
1789 }
1790
1791 static void
1792 amd64_emit_bit_not (void)
1793 {
1794 EMIT_ASM (amd64_bit_not,
1795 "xorq $0xffffffffffffffff,%rax");
1796 }
1797
1798 static void
1799 amd64_emit_equal (void)
1800 {
1801 EMIT_ASM (amd64_equal,
1802 "cmp %rax,(%rsp)\n\t"
1803 "je .Lamd64_equal_true\n\t"
1804 "xor %rax,%rax\n\t"
1805 "jmp .Lamd64_equal_end\n\t"
1806 ".Lamd64_equal_true:\n\t"
1807 "mov $0x1,%rax\n\t"
1808 ".Lamd64_equal_end:\n\t"
1809 "lea 0x8(%rsp),%rsp");
1810 }
1811
1812 static void
1813 amd64_emit_less_signed (void)
1814 {
1815 EMIT_ASM (amd64_less_signed,
1816 "cmp %rax,(%rsp)\n\t"
1817 "jl .Lamd64_less_signed_true\n\t"
1818 "xor %rax,%rax\n\t"
1819 "jmp .Lamd64_less_signed_end\n\t"
1820 ".Lamd64_less_signed_true:\n\t"
1821 "mov $1,%rax\n\t"
1822 ".Lamd64_less_signed_end:\n\t"
1823 "lea 0x8(%rsp),%rsp");
1824 }
1825
1826 static void
1827 amd64_emit_less_unsigned (void)
1828 {
1829 EMIT_ASM (amd64_less_unsigned,
1830 "cmp %rax,(%rsp)\n\t"
1831 "jb .Lamd64_less_unsigned_true\n\t"
1832 "xor %rax,%rax\n\t"
1833 "jmp .Lamd64_less_unsigned_end\n\t"
1834 ".Lamd64_less_unsigned_true:\n\t"
1835 "mov $1,%rax\n\t"
1836 ".Lamd64_less_unsigned_end:\n\t"
1837 "lea 0x8(%rsp),%rsp");
1838 }
1839
1840 static void
1841 amd64_emit_ref (int size)
1842 {
1843 switch (size)
1844 {
1845 case 1:
1846 EMIT_ASM (amd64_ref1,
1847 "movb (%rax),%al");
1848 break;
1849 case 2:
1850 EMIT_ASM (amd64_ref2,
1851 "movw (%rax),%ax");
1852 break;
1853 case 4:
1854 EMIT_ASM (amd64_ref4,
1855 "movl (%rax),%eax");
1856 break;
1857 case 8:
1858 EMIT_ASM (amd64_ref8,
1859 "movq (%rax),%rax");
1860 break;
1861 }
1862 }
1863
1864 static void
1865 amd64_emit_if_goto (int *offset_p, int *size_p)
1866 {
1867 EMIT_ASM (amd64_if_goto,
1868 "mov %rax,%rcx\n\t"
1869 "pop %rax\n\t"
1870 "cmp $0,%rcx\n\t"
1871 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
1872 if (offset_p)
1873 *offset_p = 10;
1874 if (size_p)
1875 *size_p = 4;
1876 }
1877
1878 static void
1879 amd64_emit_goto (int *offset_p, int *size_p)
1880 {
1881 EMIT_ASM (amd64_goto,
1882 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
1883 if (offset_p)
1884 *offset_p = 1;
1885 if (size_p)
1886 *size_p = 4;
1887 }
1888
1889 static void
1890 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
1891 {
1892 int diff = (to - (from + size));
1893 unsigned char buf[sizeof (int)];
1894
1895 if (size != 4)
1896 {
1897 emit_error = 1;
1898 return;
1899 }
1900
1901 memcpy (buf, &diff, sizeof (int));
1902 target_write_memory (from, buf, sizeof (int));
1903 }
1904
1905 static void
1906 amd64_emit_const (LONGEST num)
1907 {
1908 unsigned char buf[16];
1909 int i;
1910 CORE_ADDR buildaddr = current_insn_ptr;
1911
1912 i = 0;
1913 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
1914 memcpy (&buf[i], &num, sizeof (num));
1915 i += 8;
1916 append_insns (&buildaddr, i, buf);
1917 current_insn_ptr = buildaddr;
1918 }
1919
1920 static void
1921 amd64_emit_call (CORE_ADDR fn)
1922 {
1923 unsigned char buf[16];
1924 int i;
1925 CORE_ADDR buildaddr;
1926 LONGEST offset64;
1927
1928 /* The destination function being in the shared library, may be
1929 >31-bits away off the compiled code pad. */
1930
1931 buildaddr = current_insn_ptr;
1932
1933 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
1934
1935 i = 0;
1936
1937 if (offset64 > INT_MAX || offset64 < INT_MIN)
1938 {
1939 /* Offset is too large for a call. Use callq, but that requires
1940 a register, so avoid it if possible. Use r10, since it is
1941 call-clobbered, we don't have to push/pop it. */
1942 buf[i++] = 0x48; /* mov $fn,%r10 */
1943 buf[i++] = 0xba;
1944 memcpy (buf + i, &fn, 8);
1945 i += 8;
1946 buf[i++] = 0xff; /* callq *%r10 */
1947 buf[i++] = 0xd2;
1948 }
1949 else
1950 {
1951 int offset32 = offset64; /* we know we can't overflow here. */
1952
1953 buf[i++] = 0xe8; /* call <reladdr> */
1954 memcpy (buf + i, &offset32, 4);
1955 i += 4;
1956 }
1957
1958 append_insns (&buildaddr, i, buf);
1959 current_insn_ptr = buildaddr;
1960 }
1961
1962 static void
1963 amd64_emit_reg (int reg)
1964 {
1965 unsigned char buf[16];
1966 int i;
1967 CORE_ADDR buildaddr;
1968
1969 /* Assume raw_regs is still in %rdi. */
1970 buildaddr = current_insn_ptr;
1971 i = 0;
1972 buf[i++] = 0xbe; /* mov $<n>,%esi */
1973 memcpy (&buf[i], &reg, sizeof (reg));
1974 i += 4;
1975 append_insns (&buildaddr, i, buf);
1976 current_insn_ptr = buildaddr;
1977 amd64_emit_call (get_raw_reg_func_addr ());
1978 }
1979
1980 static void
1981 amd64_emit_pop (void)
1982 {
1983 EMIT_ASM (amd64_pop,
1984 "pop %rax");
1985 }
1986
1987 static void
1988 amd64_emit_stack_flush (void)
1989 {
1990 EMIT_ASM (amd64_stack_flush,
1991 "push %rax");
1992 }
1993
1994 static void
1995 amd64_emit_zero_ext (int arg)
1996 {
1997 switch (arg)
1998 {
1999 case 8:
2000 EMIT_ASM (amd64_zero_ext_8,
2001 "and $0xff,%rax");
2002 break;
2003 case 16:
2004 EMIT_ASM (amd64_zero_ext_16,
2005 "and $0xffff,%rax");
2006 break;
2007 case 32:
2008 EMIT_ASM (amd64_zero_ext_32,
2009 "mov $0xffffffff,%rcx\n\t"
2010 "and %rcx,%rax");
2011 break;
2012 default:
2013 emit_error = 1;
2014 }
2015 }
2016
2017 static void
2018 amd64_emit_swap (void)
2019 {
2020 EMIT_ASM (amd64_swap,
2021 "mov %rax,%rcx\n\t"
2022 "pop %rax\n\t"
2023 "push %rcx");
2024 }
2025
2026 static void
2027 amd64_emit_stack_adjust (int n)
2028 {
2029 unsigned char buf[16];
2030 int i;
2031 CORE_ADDR buildaddr = current_insn_ptr;
2032
2033 i = 0;
2034 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
2035 buf[i++] = 0x8d;
2036 buf[i++] = 0x64;
2037 buf[i++] = 0x24;
2038 /* This only handles adjustments up to 16, but we don't expect any more. */
2039 buf[i++] = n * 8;
2040 append_insns (&buildaddr, i, buf);
2041 current_insn_ptr = buildaddr;
2042 }
2043
2044 /* FN's prototype is `LONGEST(*fn)(int)'. */
2045
2046 static void
2047 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
2048 {
2049 unsigned char buf[16];
2050 int i;
2051 CORE_ADDR buildaddr;
2052
2053 buildaddr = current_insn_ptr;
2054 i = 0;
2055 buf[i++] = 0xbf; /* movl $<n>,%edi */
2056 memcpy (&buf[i], &arg1, sizeof (arg1));
2057 i += 4;
2058 append_insns (&buildaddr, i, buf);
2059 current_insn_ptr = buildaddr;
2060 amd64_emit_call (fn);
2061 }
2062
2063 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2064
2065 static void
2066 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
2067 {
2068 unsigned char buf[16];
2069 int i;
2070 CORE_ADDR buildaddr;
2071
2072 buildaddr = current_insn_ptr;
2073 i = 0;
2074 buf[i++] = 0xbf; /* movl $<n>,%edi */
2075 memcpy (&buf[i], &arg1, sizeof (arg1));
2076 i += 4;
2077 append_insns (&buildaddr, i, buf);
2078 current_insn_ptr = buildaddr;
2079 EMIT_ASM (amd64_void_call_2_a,
2080 /* Save away a copy of the stack top. */
2081 "push %rax\n\t"
2082 /* Also pass top as the second argument. */
2083 "mov %rax,%rsi");
2084 amd64_emit_call (fn);
2085 EMIT_ASM (amd64_void_call_2_b,
2086 /* Restore the stack top, %rax may have been trashed. */
2087 "pop %rax");
2088 }
2089
2090 static void
2091 amd64_emit_eq_goto (int *offset_p, int *size_p)
2092 {
2093 EMIT_ASM (amd64_eq,
2094 "cmp %rax,(%rsp)\n\t"
2095 "jne .Lamd64_eq_fallthru\n\t"
2096 "lea 0x8(%rsp),%rsp\n\t"
2097 "pop %rax\n\t"
2098 /* jmp, but don't trust the assembler to choose the right jump */
2099 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2100 ".Lamd64_eq_fallthru:\n\t"
2101 "lea 0x8(%rsp),%rsp\n\t"
2102 "pop %rax");
2103
2104 if (offset_p)
2105 *offset_p = 13;
2106 if (size_p)
2107 *size_p = 4;
2108 }
2109
2110 static void
2111 amd64_emit_ne_goto (int *offset_p, int *size_p)
2112 {
2113 EMIT_ASM (amd64_ne,
2114 "cmp %rax,(%rsp)\n\t"
2115 "je .Lamd64_ne_fallthru\n\t"
2116 "lea 0x8(%rsp),%rsp\n\t"
2117 "pop %rax\n\t"
2118 /* jmp, but don't trust the assembler to choose the right jump */
2119 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2120 ".Lamd64_ne_fallthru:\n\t"
2121 "lea 0x8(%rsp),%rsp\n\t"
2122 "pop %rax");
2123
2124 if (offset_p)
2125 *offset_p = 13;
2126 if (size_p)
2127 *size_p = 4;
2128 }
2129
2130 static void
2131 amd64_emit_lt_goto (int *offset_p, int *size_p)
2132 {
2133 EMIT_ASM (amd64_lt,
2134 "cmp %rax,(%rsp)\n\t"
2135 "jnl .Lamd64_lt_fallthru\n\t"
2136 "lea 0x8(%rsp),%rsp\n\t"
2137 "pop %rax\n\t"
2138 /* jmp, but don't trust the assembler to choose the right jump */
2139 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2140 ".Lamd64_lt_fallthru:\n\t"
2141 "lea 0x8(%rsp),%rsp\n\t"
2142 "pop %rax");
2143
2144 if (offset_p)
2145 *offset_p = 13;
2146 if (size_p)
2147 *size_p = 4;
2148 }
2149
2150 static void
2151 amd64_emit_le_goto (int *offset_p, int *size_p)
2152 {
2153 EMIT_ASM (amd64_le,
2154 "cmp %rax,(%rsp)\n\t"
2155 "jnle .Lamd64_le_fallthru\n\t"
2156 "lea 0x8(%rsp),%rsp\n\t"
2157 "pop %rax\n\t"
2158 /* jmp, but don't trust the assembler to choose the right jump */
2159 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2160 ".Lamd64_le_fallthru:\n\t"
2161 "lea 0x8(%rsp),%rsp\n\t"
2162 "pop %rax");
2163
2164 if (offset_p)
2165 *offset_p = 13;
2166 if (size_p)
2167 *size_p = 4;
2168 }
2169
2170 static void
2171 amd64_emit_gt_goto (int *offset_p, int *size_p)
2172 {
2173 EMIT_ASM (amd64_gt,
2174 "cmp %rax,(%rsp)\n\t"
2175 "jng .Lamd64_gt_fallthru\n\t"
2176 "lea 0x8(%rsp),%rsp\n\t"
2177 "pop %rax\n\t"
2178 /* jmp, but don't trust the assembler to choose the right jump */
2179 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2180 ".Lamd64_gt_fallthru:\n\t"
2181 "lea 0x8(%rsp),%rsp\n\t"
2182 "pop %rax");
2183
2184 if (offset_p)
2185 *offset_p = 13;
2186 if (size_p)
2187 *size_p = 4;
2188 }
2189
2190 static void
2191 amd64_emit_ge_goto (int *offset_p, int *size_p)
2192 {
2193 EMIT_ASM (amd64_ge,
2194 "cmp %rax,(%rsp)\n\t"
2195 "jnge .Lamd64_ge_fallthru\n\t"
2196 ".Lamd64_ge_jump:\n\t"
2197 "lea 0x8(%rsp),%rsp\n\t"
2198 "pop %rax\n\t"
2199 /* jmp, but don't trust the assembler to choose the right jump */
2200 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2201 ".Lamd64_ge_fallthru:\n\t"
2202 "lea 0x8(%rsp),%rsp\n\t"
2203 "pop %rax");
2204
2205 if (offset_p)
2206 *offset_p = 13;
2207 if (size_p)
2208 *size_p = 4;
2209 }
2210
2211 struct emit_ops amd64_emit_ops =
2212 {
2213 amd64_emit_prologue,
2214 amd64_emit_epilogue,
2215 amd64_emit_add,
2216 amd64_emit_sub,
2217 amd64_emit_mul,
2218 amd64_emit_lsh,
2219 amd64_emit_rsh_signed,
2220 amd64_emit_rsh_unsigned,
2221 amd64_emit_ext,
2222 amd64_emit_log_not,
2223 amd64_emit_bit_and,
2224 amd64_emit_bit_or,
2225 amd64_emit_bit_xor,
2226 amd64_emit_bit_not,
2227 amd64_emit_equal,
2228 amd64_emit_less_signed,
2229 amd64_emit_less_unsigned,
2230 amd64_emit_ref,
2231 amd64_emit_if_goto,
2232 amd64_emit_goto,
2233 amd64_write_goto_address,
2234 amd64_emit_const,
2235 amd64_emit_call,
2236 amd64_emit_reg,
2237 amd64_emit_pop,
2238 amd64_emit_stack_flush,
2239 amd64_emit_zero_ext,
2240 amd64_emit_swap,
2241 amd64_emit_stack_adjust,
2242 amd64_emit_int_call_1,
2243 amd64_emit_void_call_2,
2244 amd64_emit_eq_goto,
2245 amd64_emit_ne_goto,
2246 amd64_emit_lt_goto,
2247 amd64_emit_le_goto,
2248 amd64_emit_gt_goto,
2249 amd64_emit_ge_goto
2250 };
2251
2252 #endif /* __x86_64__ */
2253
2254 static void
2255 i386_emit_prologue (void)
2256 {
2257 EMIT_ASM32 (i386_prologue,
2258 "push %ebp\n\t"
2259 "mov %esp,%ebp\n\t"
2260 "push %ebx");
2261 /* At this point, the raw regs base address is at 8(%ebp), and the
2262 value pointer is at 12(%ebp). */
2263 }
2264
2265 static void
2266 i386_emit_epilogue (void)
2267 {
2268 EMIT_ASM32 (i386_epilogue,
2269 "mov 12(%ebp),%ecx\n\t"
2270 "mov %eax,(%ecx)\n\t"
2271 "mov %ebx,0x4(%ecx)\n\t"
2272 "xor %eax,%eax\n\t"
2273 "pop %ebx\n\t"
2274 "pop %ebp\n\t"
2275 "ret");
2276 }
2277
2278 static void
2279 i386_emit_add (void)
2280 {
2281 EMIT_ASM32 (i386_add,
2282 "add (%esp),%eax\n\t"
2283 "adc 0x4(%esp),%ebx\n\t"
2284 "lea 0x8(%esp),%esp");
2285 }
2286
2287 static void
2288 i386_emit_sub (void)
2289 {
2290 EMIT_ASM32 (i386_sub,
2291 "subl %eax,(%esp)\n\t"
2292 "sbbl %ebx,4(%esp)\n\t"
2293 "pop %eax\n\t"
2294 "pop %ebx\n\t");
2295 }
2296
2297 static void
2298 i386_emit_mul (void)
2299 {
2300 emit_error = 1;
2301 }
2302
2303 static void
2304 i386_emit_lsh (void)
2305 {
2306 emit_error = 1;
2307 }
2308
2309 static void
2310 i386_emit_rsh_signed (void)
2311 {
2312 emit_error = 1;
2313 }
2314
2315 static void
2316 i386_emit_rsh_unsigned (void)
2317 {
2318 emit_error = 1;
2319 }
2320
2321 static void
2322 i386_emit_ext (int arg)
2323 {
2324 switch (arg)
2325 {
2326 case 8:
2327 EMIT_ASM32 (i386_ext_8,
2328 "cbtw\n\t"
2329 "cwtl\n\t"
2330 "movl %eax,%ebx\n\t"
2331 "sarl $31,%ebx");
2332 break;
2333 case 16:
2334 EMIT_ASM32 (i386_ext_16,
2335 "cwtl\n\t"
2336 "movl %eax,%ebx\n\t"
2337 "sarl $31,%ebx");
2338 break;
2339 case 32:
2340 EMIT_ASM32 (i386_ext_32,
2341 "movl %eax,%ebx\n\t"
2342 "sarl $31,%ebx");
2343 break;
2344 default:
2345 emit_error = 1;
2346 }
2347 }
2348
2349 static void
2350 i386_emit_log_not (void)
2351 {
2352 EMIT_ASM32 (i386_log_not,
2353 "or %ebx,%eax\n\t"
2354 "test %eax,%eax\n\t"
2355 "sete %cl\n\t"
2356 "xor %ebx,%ebx\n\t"
2357 "movzbl %cl,%eax");
2358 }
2359
2360 static void
2361 i386_emit_bit_and (void)
2362 {
2363 EMIT_ASM32 (i386_and,
2364 "and (%esp),%eax\n\t"
2365 "and 0x4(%esp),%ebx\n\t"
2366 "lea 0x8(%esp),%esp");
2367 }
2368
2369 static void
2370 i386_emit_bit_or (void)
2371 {
2372 EMIT_ASM32 (i386_or,
2373 "or (%esp),%eax\n\t"
2374 "or 0x4(%esp),%ebx\n\t"
2375 "lea 0x8(%esp),%esp");
2376 }
2377
2378 static void
2379 i386_emit_bit_xor (void)
2380 {
2381 EMIT_ASM32 (i386_xor,
2382 "xor (%esp),%eax\n\t"
2383 "xor 0x4(%esp),%ebx\n\t"
2384 "lea 0x8(%esp),%esp");
2385 }
2386
2387 static void
2388 i386_emit_bit_not (void)
2389 {
2390 EMIT_ASM32 (i386_bit_not,
2391 "xor $0xffffffff,%eax\n\t"
2392 "xor $0xffffffff,%ebx\n\t");
2393 }
2394
2395 static void
2396 i386_emit_equal (void)
2397 {
2398 EMIT_ASM32 (i386_equal,
2399 "cmpl %ebx,4(%esp)\n\t"
2400 "jne .Li386_equal_false\n\t"
2401 "cmpl %eax,(%esp)\n\t"
2402 "je .Li386_equal_true\n\t"
2403 ".Li386_equal_false:\n\t"
2404 "xor %eax,%eax\n\t"
2405 "jmp .Li386_equal_end\n\t"
2406 ".Li386_equal_true:\n\t"
2407 "mov $1,%eax\n\t"
2408 ".Li386_equal_end:\n\t"
2409 "xor %ebx,%ebx\n\t"
2410 "lea 0x8(%esp),%esp");
2411 }
2412
2413 static void
2414 i386_emit_less_signed (void)
2415 {
2416 EMIT_ASM32 (i386_less_signed,
2417 "cmpl %ebx,4(%esp)\n\t"
2418 "jl .Li386_less_signed_true\n\t"
2419 "jne .Li386_less_signed_false\n\t"
2420 "cmpl %eax,(%esp)\n\t"
2421 "jl .Li386_less_signed_true\n\t"
2422 ".Li386_less_signed_false:\n\t"
2423 "xor %eax,%eax\n\t"
2424 "jmp .Li386_less_signed_end\n\t"
2425 ".Li386_less_signed_true:\n\t"
2426 "mov $1,%eax\n\t"
2427 ".Li386_less_signed_end:\n\t"
2428 "xor %ebx,%ebx\n\t"
2429 "lea 0x8(%esp),%esp");
2430 }
2431
2432 static void
2433 i386_emit_less_unsigned (void)
2434 {
2435 EMIT_ASM32 (i386_less_unsigned,
2436 "cmpl %ebx,4(%esp)\n\t"
2437 "jb .Li386_less_unsigned_true\n\t"
2438 "jne .Li386_less_unsigned_false\n\t"
2439 "cmpl %eax,(%esp)\n\t"
2440 "jb .Li386_less_unsigned_true\n\t"
2441 ".Li386_less_unsigned_false:\n\t"
2442 "xor %eax,%eax\n\t"
2443 "jmp .Li386_less_unsigned_end\n\t"
2444 ".Li386_less_unsigned_true:\n\t"
2445 "mov $1,%eax\n\t"
2446 ".Li386_less_unsigned_end:\n\t"
2447 "xor %ebx,%ebx\n\t"
2448 "lea 0x8(%esp),%esp");
2449 }
2450
2451 static void
2452 i386_emit_ref (int size)
2453 {
2454 switch (size)
2455 {
2456 case 1:
2457 EMIT_ASM32 (i386_ref1,
2458 "movb (%eax),%al");
2459 break;
2460 case 2:
2461 EMIT_ASM32 (i386_ref2,
2462 "movw (%eax),%ax");
2463 break;
2464 case 4:
2465 EMIT_ASM32 (i386_ref4,
2466 "movl (%eax),%eax");
2467 break;
2468 case 8:
2469 EMIT_ASM32 (i386_ref8,
2470 "movl 4(%eax),%ebx\n\t"
2471 "movl (%eax),%eax");
2472 break;
2473 }
2474 }
2475
2476 static void
2477 i386_emit_if_goto (int *offset_p, int *size_p)
2478 {
2479 EMIT_ASM32 (i386_if_goto,
2480 "mov %eax,%ecx\n\t"
2481 "or %ebx,%ecx\n\t"
2482 "pop %eax\n\t"
2483 "pop %ebx\n\t"
2484 "cmpl $0,%ecx\n\t"
2485 /* Don't trust the assembler to choose the right jump */
2486 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2487
2488 if (offset_p)
2489 *offset_p = 11; /* be sure that this matches the sequence above */
2490 if (size_p)
2491 *size_p = 4;
2492 }
2493
2494 static void
2495 i386_emit_goto (int *offset_p, int *size_p)
2496 {
2497 EMIT_ASM32 (i386_goto,
2498 /* Don't trust the assembler to choose the right jump */
2499 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2500 if (offset_p)
2501 *offset_p = 1;
2502 if (size_p)
2503 *size_p = 4;
2504 }
2505
2506 static void
2507 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2508 {
2509 int diff = (to - (from + size));
2510 unsigned char buf[sizeof (int)];
2511
2512 /* We're only doing 4-byte sizes at the moment. */
2513 if (size != 4)
2514 {
2515 emit_error = 1;
2516 return;
2517 }
2518
2519 memcpy (buf, &diff, sizeof (int));
2520 target_write_memory (from, buf, sizeof (int));
2521 }
2522
2523 static void
2524 i386_emit_const (LONGEST num)
2525 {
2526 unsigned char buf[16];
2527 int i, hi, lo;
2528 CORE_ADDR buildaddr = current_insn_ptr;
2529
2530 i = 0;
2531 buf[i++] = 0xb8; /* mov $<n>,%eax */
2532 lo = num & 0xffffffff;
2533 memcpy (&buf[i], &lo, sizeof (lo));
2534 i += 4;
2535 hi = ((num >> 32) & 0xffffffff);
2536 if (hi)
2537 {
2538 buf[i++] = 0xbb; /* mov $<n>,%ebx */
2539 memcpy (&buf[i], &hi, sizeof (hi));
2540 i += 4;
2541 }
2542 else
2543 {
2544 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
2545 }
2546 append_insns (&buildaddr, i, buf);
2547 current_insn_ptr = buildaddr;
2548 }
2549
2550 static void
2551 i386_emit_call (CORE_ADDR fn)
2552 {
2553 unsigned char buf[16];
2554 int i, offset;
2555 CORE_ADDR buildaddr;
2556
2557 buildaddr = current_insn_ptr;
2558 i = 0;
2559 buf[i++] = 0xe8; /* call <reladdr> */
2560 offset = ((int) fn) - (buildaddr + 5);
2561 memcpy (buf + 1, &offset, 4);
2562 append_insns (&buildaddr, 5, buf);
2563 current_insn_ptr = buildaddr;
2564 }
2565
2566 static void
2567 i386_emit_reg (int reg)
2568 {
2569 unsigned char buf[16];
2570 int i;
2571 CORE_ADDR buildaddr;
2572
2573 EMIT_ASM32 (i386_reg_a,
2574 "sub $0x8,%esp");
2575 buildaddr = current_insn_ptr;
2576 i = 0;
2577 buf[i++] = 0xb8; /* mov $<n>,%eax */
2578 memcpy (&buf[i], &reg, sizeof (reg));
2579 i += 4;
2580 append_insns (&buildaddr, i, buf);
2581 current_insn_ptr = buildaddr;
2582 EMIT_ASM32 (i386_reg_b,
2583 "mov %eax,4(%esp)\n\t"
2584 "mov 8(%ebp),%eax\n\t"
2585 "mov %eax,(%esp)");
2586 i386_emit_call (get_raw_reg_func_addr ());
2587 EMIT_ASM32 (i386_reg_c,
2588 "xor %ebx,%ebx\n\t"
2589 "lea 0x8(%esp),%esp");
2590 }
2591
2592 static void
2593 i386_emit_pop (void)
2594 {
2595 EMIT_ASM32 (i386_pop,
2596 "pop %eax\n\t"
2597 "pop %ebx");
2598 }
2599
2600 static void
2601 i386_emit_stack_flush (void)
2602 {
2603 EMIT_ASM32 (i386_stack_flush,
2604 "push %ebx\n\t"
2605 "push %eax");
2606 }
2607
2608 static void
2609 i386_emit_zero_ext (int arg)
2610 {
2611 switch (arg)
2612 {
2613 case 8:
2614 EMIT_ASM32 (i386_zero_ext_8,
2615 "and $0xff,%eax\n\t"
2616 "xor %ebx,%ebx");
2617 break;
2618 case 16:
2619 EMIT_ASM32 (i386_zero_ext_16,
2620 "and $0xffff,%eax\n\t"
2621 "xor %ebx,%ebx");
2622 break;
2623 case 32:
2624 EMIT_ASM32 (i386_zero_ext_32,
2625 "xor %ebx,%ebx");
2626 break;
2627 default:
2628 emit_error = 1;
2629 }
2630 }
2631
2632 static void
2633 i386_emit_swap (void)
2634 {
2635 EMIT_ASM32 (i386_swap,
2636 "mov %eax,%ecx\n\t"
2637 "mov %ebx,%edx\n\t"
2638 "pop %eax\n\t"
2639 "pop %ebx\n\t"
2640 "push %edx\n\t"
2641 "push %ecx");
2642 }
2643
2644 static void
2645 i386_emit_stack_adjust (int n)
2646 {
2647 unsigned char buf[16];
2648 int i;
2649 CORE_ADDR buildaddr = current_insn_ptr;
2650
2651 i = 0;
2652 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
2653 buf[i++] = 0x64;
2654 buf[i++] = 0x24;
2655 buf[i++] = n * 8;
2656 append_insns (&buildaddr, i, buf);
2657 current_insn_ptr = buildaddr;
2658 }
2659
2660 /* FN's prototype is `LONGEST(*fn)(int)'. */
2661
2662 static void
2663 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
2664 {
2665 unsigned char buf[16];
2666 int i;
2667 CORE_ADDR buildaddr;
2668
2669 EMIT_ASM32 (i386_int_call_1_a,
2670 /* Reserve a bit of stack space. */
2671 "sub $0x8,%esp");
2672 /* Put the one argument on the stack. */
2673 buildaddr = current_insn_ptr;
2674 i = 0;
2675 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2676 buf[i++] = 0x04;
2677 buf[i++] = 0x24;
2678 memcpy (&buf[i], &arg1, sizeof (arg1));
2679 i += 4;
2680 append_insns (&buildaddr, i, buf);
2681 current_insn_ptr = buildaddr;
2682 i386_emit_call (fn);
2683 EMIT_ASM32 (i386_int_call_1_c,
2684 "mov %edx,%ebx\n\t"
2685 "lea 0x8(%esp),%esp");
2686 }
2687
2688 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2689
2690 static void
2691 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
2692 {
2693 unsigned char buf[16];
2694 int i;
2695 CORE_ADDR buildaddr;
2696
2697 EMIT_ASM32 (i386_void_call_2_a,
2698 /* Preserve %eax only; we don't have to worry about %ebx. */
2699 "push %eax\n\t"
2700 /* Reserve a bit of stack space for arguments. */
2701 "sub $0x10,%esp\n\t"
2702 /* Copy "top" to the second argument position. (Note that
2703 we can't assume function won't scribble on its
2704 arguments, so don't try to restore from this.) */
2705 "mov %eax,4(%esp)\n\t"
2706 "mov %ebx,8(%esp)");
2707 /* Put the first argument on the stack. */
2708 buildaddr = current_insn_ptr;
2709 i = 0;
2710 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2711 buf[i++] = 0x04;
2712 buf[i++] = 0x24;
2713 memcpy (&buf[i], &arg1, sizeof (arg1));
2714 i += 4;
2715 append_insns (&buildaddr, i, buf);
2716 current_insn_ptr = buildaddr;
2717 i386_emit_call (fn);
2718 EMIT_ASM32 (i386_void_call_2_b,
2719 "lea 0x10(%esp),%esp\n\t"
2720 /* Restore original stack top. */
2721 "pop %eax");
2722 }
2723
2724
2725 static void
2726 i386_emit_eq_goto (int *offset_p, int *size_p)
2727 {
2728 EMIT_ASM32 (eq,
2729 /* Check low half first, more likely to be decider */
2730 "cmpl %eax,(%esp)\n\t"
2731 "jne .Leq_fallthru\n\t"
2732 "cmpl %ebx,4(%esp)\n\t"
2733 "jne .Leq_fallthru\n\t"
2734 "lea 0x8(%esp),%esp\n\t"
2735 "pop %eax\n\t"
2736 "pop %ebx\n\t"
2737 /* jmp, but don't trust the assembler to choose the right jump */
2738 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2739 ".Leq_fallthru:\n\t"
2740 "lea 0x8(%esp),%esp\n\t"
2741 "pop %eax\n\t"
2742 "pop %ebx");
2743
2744 if (offset_p)
2745 *offset_p = 18;
2746 if (size_p)
2747 *size_p = 4;
2748 }
2749
2750 static void
2751 i386_emit_ne_goto (int *offset_p, int *size_p)
2752 {
2753 EMIT_ASM32 (ne,
2754 /* Check low half first, more likely to be decider */
2755 "cmpl %eax,(%esp)\n\t"
2756 "jne .Lne_jump\n\t"
2757 "cmpl %ebx,4(%esp)\n\t"
2758 "je .Lne_fallthru\n\t"
2759 ".Lne_jump:\n\t"
2760 "lea 0x8(%esp),%esp\n\t"
2761 "pop %eax\n\t"
2762 "pop %ebx\n\t"
2763 /* jmp, but don't trust the assembler to choose the right jump */
2764 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2765 ".Lne_fallthru:\n\t"
2766 "lea 0x8(%esp),%esp\n\t"
2767 "pop %eax\n\t"
2768 "pop %ebx");
2769
2770 if (offset_p)
2771 *offset_p = 18;
2772 if (size_p)
2773 *size_p = 4;
2774 }
2775
2776 static void
2777 i386_emit_lt_goto (int *offset_p, int *size_p)
2778 {
2779 EMIT_ASM32 (lt,
2780 "cmpl %ebx,4(%esp)\n\t"
2781 "jl .Llt_jump\n\t"
2782 "jne .Llt_fallthru\n\t"
2783 "cmpl %eax,(%esp)\n\t"
2784 "jnl .Llt_fallthru\n\t"
2785 ".Llt_jump:\n\t"
2786 "lea 0x8(%esp),%esp\n\t"
2787 "pop %eax\n\t"
2788 "pop %ebx\n\t"
2789 /* jmp, but don't trust the assembler to choose the right jump */
2790 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2791 ".Llt_fallthru:\n\t"
2792 "lea 0x8(%esp),%esp\n\t"
2793 "pop %eax\n\t"
2794 "pop %ebx");
2795
2796 if (offset_p)
2797 *offset_p = 20;
2798 if (size_p)
2799 *size_p = 4;
2800 }
2801
2802 static void
2803 i386_emit_le_goto (int *offset_p, int *size_p)
2804 {
2805 EMIT_ASM32 (le,
2806 "cmpl %ebx,4(%esp)\n\t"
2807 "jle .Lle_jump\n\t"
2808 "jne .Lle_fallthru\n\t"
2809 "cmpl %eax,(%esp)\n\t"
2810 "jnle .Lle_fallthru\n\t"
2811 ".Lle_jump:\n\t"
2812 "lea 0x8(%esp),%esp\n\t"
2813 "pop %eax\n\t"
2814 "pop %ebx\n\t"
2815 /* jmp, but don't trust the assembler to choose the right jump */
2816 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2817 ".Lle_fallthru:\n\t"
2818 "lea 0x8(%esp),%esp\n\t"
2819 "pop %eax\n\t"
2820 "pop %ebx");
2821
2822 if (offset_p)
2823 *offset_p = 20;
2824 if (size_p)
2825 *size_p = 4;
2826 }
2827
2828 static void
2829 i386_emit_gt_goto (int *offset_p, int *size_p)
2830 {
2831 EMIT_ASM32 (gt,
2832 "cmpl %ebx,4(%esp)\n\t"
2833 "jg .Lgt_jump\n\t"
2834 "jne .Lgt_fallthru\n\t"
2835 "cmpl %eax,(%esp)\n\t"
2836 "jng .Lgt_fallthru\n\t"
2837 ".Lgt_jump:\n\t"
2838 "lea 0x8(%esp),%esp\n\t"
2839 "pop %eax\n\t"
2840 "pop %ebx\n\t"
2841 /* jmp, but don't trust the assembler to choose the right jump */
2842 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2843 ".Lgt_fallthru:\n\t"
2844 "lea 0x8(%esp),%esp\n\t"
2845 "pop %eax\n\t"
2846 "pop %ebx");
2847
2848 if (offset_p)
2849 *offset_p = 20;
2850 if (size_p)
2851 *size_p = 4;
2852 }
2853
2854 static void
2855 i386_emit_ge_goto (int *offset_p, int *size_p)
2856 {
2857 EMIT_ASM32 (ge,
2858 "cmpl %ebx,4(%esp)\n\t"
2859 "jge .Lge_jump\n\t"
2860 "jne .Lge_fallthru\n\t"
2861 "cmpl %eax,(%esp)\n\t"
2862 "jnge .Lge_fallthru\n\t"
2863 ".Lge_jump:\n\t"
2864 "lea 0x8(%esp),%esp\n\t"
2865 "pop %eax\n\t"
2866 "pop %ebx\n\t"
2867 /* jmp, but don't trust the assembler to choose the right jump */
2868 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2869 ".Lge_fallthru:\n\t"
2870 "lea 0x8(%esp),%esp\n\t"
2871 "pop %eax\n\t"
2872 "pop %ebx");
2873
2874 if (offset_p)
2875 *offset_p = 20;
2876 if (size_p)
2877 *size_p = 4;
2878 }
2879
2880 struct emit_ops i386_emit_ops =
2881 {
2882 i386_emit_prologue,
2883 i386_emit_epilogue,
2884 i386_emit_add,
2885 i386_emit_sub,
2886 i386_emit_mul,
2887 i386_emit_lsh,
2888 i386_emit_rsh_signed,
2889 i386_emit_rsh_unsigned,
2890 i386_emit_ext,
2891 i386_emit_log_not,
2892 i386_emit_bit_and,
2893 i386_emit_bit_or,
2894 i386_emit_bit_xor,
2895 i386_emit_bit_not,
2896 i386_emit_equal,
2897 i386_emit_less_signed,
2898 i386_emit_less_unsigned,
2899 i386_emit_ref,
2900 i386_emit_if_goto,
2901 i386_emit_goto,
2902 i386_write_goto_address,
2903 i386_emit_const,
2904 i386_emit_call,
2905 i386_emit_reg,
2906 i386_emit_pop,
2907 i386_emit_stack_flush,
2908 i386_emit_zero_ext,
2909 i386_emit_swap,
2910 i386_emit_stack_adjust,
2911 i386_emit_int_call_1,
2912 i386_emit_void_call_2,
2913 i386_emit_eq_goto,
2914 i386_emit_ne_goto,
2915 i386_emit_lt_goto,
2916 i386_emit_le_goto,
2917 i386_emit_gt_goto,
2918 i386_emit_ge_goto
2919 };
2920
2921
2922 emit_ops *
2923 x86_target::emit_ops ()
2924 {
2925 #ifdef __x86_64__
2926 if (is_64bit_tdesc ())
2927 return &amd64_emit_ops;
2928 else
2929 #endif
2930 return &i386_emit_ops;
2931 }
2932
2933 /* Implementation of target ops method "sw_breakpoint_from_kind". */
2934
2935 const gdb_byte *
2936 x86_target::sw_breakpoint_from_kind (int kind, int *size)
2937 {
2938 *size = x86_breakpoint_len;
2939 return x86_breakpoint;
2940 }
2941
2942 bool
2943 x86_target::low_supports_range_stepping ()
2944 {
2945 return true;
2946 }
2947
2948 int
2949 x86_target::get_ipa_tdesc_idx ()
2950 {
2951 struct regcache *regcache = get_thread_regcache (current_thread, 0);
2952 const struct target_desc *tdesc = regcache->tdesc;
2953
2954 #ifdef __x86_64__
2955 return amd64_get_ipa_tdesc_idx (tdesc);
2956 #endif
2957
2958 if (tdesc == tdesc_i386_linux_no_xml)
2959 return X86_TDESC_SSE;
2960
2961 return i386_get_ipa_tdesc_idx (tdesc);
2962 }
2963
2964 /* The linux target ops object. */
2965
2966 linux_process_target *the_linux_target = &the_x86_target;
2967
2968 void
2969 initialize_low_arch (void)
2970 {
2971 /* Initialize the Linux target descriptions. */
2972 #ifdef __x86_64__
2973 tdesc_amd64_linux_no_xml = allocate_target_description ();
2974 copy_target_description (tdesc_amd64_linux_no_xml,
2975 amd64_linux_read_description (X86_XSTATE_SSE_MASK,
2976 false));
2977 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
2978 #endif
2979
2980 tdesc_i386_linux_no_xml = allocate_target_description ();
2981 copy_target_description (tdesc_i386_linux_no_xml,
2982 i386_linux_read_description (X86_XSTATE_SSE_MASK));
2983 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
2984
2985 initialize_regsets_info (&x86_regsets_info);
2986 }
This page took 0.091511 seconds and 4 git commands to generate.