gdbserver/linux-low: turn 'fetch_register' into a method
[deliverable/binutils-gdb.git] / gdbserver / linux-x86-low.cc
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "linux-low.h"
25 #include "i387-fp.h"
26 #include "x86-low.h"
27 #include "gdbsupport/x86-xstate.h"
28 #include "nat/gdb_ptrace.h"
29
30 #ifdef __x86_64__
31 #include "nat/amd64-linux-siginfo.h"
32 #endif
33
34 #include "gdb_proc_service.h"
35 /* Don't include elf/common.h if linux/elf.h got included by
36 gdb_proc_service.h. */
37 #ifndef ELFMAG0
38 #include "elf/common.h"
39 #endif
40
41 #include "gdbsupport/agent.h"
42 #include "tdesc.h"
43 #include "tracepoint.h"
44 #include "ax.h"
45 #include "nat/linux-nat.h"
46 #include "nat/x86-linux.h"
47 #include "nat/x86-linux-dregs.h"
48 #include "linux-x86-tdesc.h"
49
50 #ifdef __x86_64__
51 static struct target_desc *tdesc_amd64_linux_no_xml;
52 #endif
53 static struct target_desc *tdesc_i386_linux_no_xml;
54
55
56 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
57 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
58
59 /* Backward compatibility for gdb without XML support. */
60
61 static const char *xmltarget_i386_linux_no_xml = "@<target>\
62 <architecture>i386</architecture>\
63 <osabi>GNU/Linux</osabi>\
64 </target>";
65
66 #ifdef __x86_64__
67 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
68 <architecture>i386:x86-64</architecture>\
69 <osabi>GNU/Linux</osabi>\
70 </target>";
71 #endif
72
73 #include <sys/reg.h>
74 #include <sys/procfs.h>
75 #include <sys/uio.h>
76
77 #ifndef PTRACE_GET_THREAD_AREA
78 #define PTRACE_GET_THREAD_AREA 25
79 #endif
80
81 /* This definition comes from prctl.h, but some kernels may not have it. */
82 #ifndef PTRACE_ARCH_PRCTL
83 #define PTRACE_ARCH_PRCTL 30
84 #endif
85
86 /* The following definitions come from prctl.h, but may be absent
87 for certain configurations. */
88 #ifndef ARCH_GET_FS
89 #define ARCH_SET_GS 0x1001
90 #define ARCH_SET_FS 0x1002
91 #define ARCH_GET_FS 0x1003
92 #define ARCH_GET_GS 0x1004
93 #endif
94
95 /* Linux target op definitions for the x86 architecture.
96 This is initialized assuming an amd64 target.
97 'low_arch_setup' will correct it for i386 or amd64 targets. */
98
99 class x86_target : public linux_process_target
100 {
101 public:
102
103 /* Update all the target description of all processes; a new GDB
104 connected, and it may or not support xml target descriptions. */
105 void update_xmltarget ();
106
107 const regs_info *get_regs_info () override;
108
109 protected:
110
111 void low_arch_setup () override;
112
113 bool low_cannot_fetch_register (int regno) override;
114
115 bool low_cannot_store_register (int regno) override;
116 };
117
118 /* The singleton target ops object. */
119
120 static x86_target the_x86_target;
121
122 /* Per-process arch-specific data we want to keep. */
123
124 struct arch_process_info
125 {
126 struct x86_debug_reg_state debug_reg_state;
127 };
128
129 #ifdef __x86_64__
130
131 /* Mapping between the general-purpose registers in `struct user'
132 format and GDB's register array layout.
133 Note that the transfer layout uses 64-bit regs. */
134 static /*const*/ int i386_regmap[] =
135 {
136 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
137 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
138 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
139 DS * 8, ES * 8, FS * 8, GS * 8
140 };
141
142 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
143
144 /* So code below doesn't have to care, i386 or amd64. */
145 #define ORIG_EAX ORIG_RAX
146 #define REGSIZE 8
147
148 static const int x86_64_regmap[] =
149 {
150 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
151 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
152 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
153 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
154 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
155 DS * 8, ES * 8, FS * 8, GS * 8,
156 -1, -1, -1, -1, -1, -1, -1, -1,
157 -1, -1, -1, -1, -1, -1, -1, -1,
158 -1, -1, -1, -1, -1, -1, -1, -1,
159 -1,
160 -1, -1, -1, -1, -1, -1, -1, -1,
161 ORIG_RAX * 8,
162 #ifdef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
163 21 * 8, 22 * 8,
164 #else
165 -1, -1,
166 #endif
167 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
168 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
169 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
170 -1, -1, -1, -1, -1, -1, -1, -1,
171 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
172 -1, -1, -1, -1, -1, -1, -1, -1,
173 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
174 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
175 -1, -1, -1, -1, -1, -1, -1, -1,
176 -1, -1, -1, -1, -1, -1, -1, -1,
177 -1, -1, -1, -1, -1, -1, -1, -1,
178 -1 /* pkru */
179 };
180
181 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
182 #define X86_64_USER_REGS (GS + 1)
183
184 #else /* ! __x86_64__ */
185
186 /* Mapping between the general-purpose registers in `struct user'
187 format and GDB's register array layout. */
188 static /*const*/ int i386_regmap[] =
189 {
190 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
191 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
192 EIP * 4, EFL * 4, CS * 4, SS * 4,
193 DS * 4, ES * 4, FS * 4, GS * 4
194 };
195
196 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
197
198 #define REGSIZE 4
199
200 #endif
201
202 #ifdef __x86_64__
203
204 /* Returns true if the current inferior belongs to a x86-64 process,
205 per the tdesc. */
206
207 static int
208 is_64bit_tdesc (void)
209 {
210 struct regcache *regcache = get_thread_regcache (current_thread, 0);
211
212 return register_size (regcache->tdesc, 0) == 8;
213 }
214
215 #endif
216
217 \f
218 /* Called by libthread_db. */
219
220 ps_err_e
221 ps_get_thread_area (struct ps_prochandle *ph,
222 lwpid_t lwpid, int idx, void **base)
223 {
224 #ifdef __x86_64__
225 int use_64bit = is_64bit_tdesc ();
226
227 if (use_64bit)
228 {
229 switch (idx)
230 {
231 case FS:
232 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
233 return PS_OK;
234 break;
235 case GS:
236 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
237 return PS_OK;
238 break;
239 default:
240 return PS_BADADDR;
241 }
242 return PS_ERR;
243 }
244 #endif
245
246 {
247 unsigned int desc[4];
248
249 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
250 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
251 return PS_ERR;
252
253 /* Ensure we properly extend the value to 64-bits for x86_64. */
254 *base = (void *) (uintptr_t) desc[1];
255 return PS_OK;
256 }
257 }
258
259 /* Get the thread area address. This is used to recognize which
260 thread is which when tracing with the in-process agent library. We
261 don't read anything from the address, and treat it as opaque; it's
262 the address itself that we assume is unique per-thread. */
263
264 static int
265 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
266 {
267 #ifdef __x86_64__
268 int use_64bit = is_64bit_tdesc ();
269
270 if (use_64bit)
271 {
272 void *base;
273 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
274 {
275 *addr = (CORE_ADDR) (uintptr_t) base;
276 return 0;
277 }
278
279 return -1;
280 }
281 #endif
282
283 {
284 struct lwp_info *lwp = find_lwp_pid (ptid_t (lwpid));
285 struct thread_info *thr = get_lwp_thread (lwp);
286 struct regcache *regcache = get_thread_regcache (thr, 1);
287 unsigned int desc[4];
288 ULONGEST gs = 0;
289 const int reg_thread_area = 3; /* bits to scale down register value. */
290 int idx;
291
292 collect_register_by_name (regcache, "gs", &gs);
293
294 idx = gs >> reg_thread_area;
295
296 if (ptrace (PTRACE_GET_THREAD_AREA,
297 lwpid_of (thr),
298 (void *) (long) idx, (unsigned long) &desc) < 0)
299 return -1;
300
301 *addr = desc[1];
302 return 0;
303 }
304 }
305
306
307 \f
308 bool
309 x86_target::low_cannot_store_register (int regno)
310 {
311 #ifdef __x86_64__
312 if (is_64bit_tdesc ())
313 return false;
314 #endif
315
316 return regno >= I386_NUM_REGS;
317 }
318
319 bool
320 x86_target::low_cannot_fetch_register (int regno)
321 {
322 #ifdef __x86_64__
323 if (is_64bit_tdesc ())
324 return false;
325 #endif
326
327 return regno >= I386_NUM_REGS;
328 }
329
330 static void
331 x86_fill_gregset (struct regcache *regcache, void *buf)
332 {
333 int i;
334
335 #ifdef __x86_64__
336 if (register_size (regcache->tdesc, 0) == 8)
337 {
338 for (i = 0; i < X86_64_NUM_REGS; i++)
339 if (x86_64_regmap[i] != -1)
340 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
341
342 #ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
343 {
344 unsigned long base;
345 int lwpid = lwpid_of (current_thread);
346
347 collect_register_by_name (regcache, "fs_base", &base);
348 ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_SET_FS);
349
350 collect_register_by_name (regcache, "gs_base", &base);
351 ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_SET_GS);
352 }
353 #endif
354
355 return;
356 }
357
358 /* 32-bit inferior registers need to be zero-extended.
359 Callers would read uninitialized memory otherwise. */
360 memset (buf, 0x00, X86_64_USER_REGS * 8);
361 #endif
362
363 for (i = 0; i < I386_NUM_REGS; i++)
364 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
365
366 collect_register_by_name (regcache, "orig_eax",
367 ((char *) buf) + ORIG_EAX * REGSIZE);
368
369 #ifdef __x86_64__
370 /* Sign extend EAX value to avoid potential syscall restart
371 problems.
372
373 See amd64_linux_collect_native_gregset() in gdb/amd64-linux-nat.c
374 for a detailed explanation. */
375 if (register_size (regcache->tdesc, 0) == 4)
376 {
377 void *ptr = ((gdb_byte *) buf
378 + i386_regmap[find_regno (regcache->tdesc, "eax")]);
379
380 *(int64_t *) ptr = *(int32_t *) ptr;
381 }
382 #endif
383 }
384
385 static void
386 x86_store_gregset (struct regcache *regcache, const void *buf)
387 {
388 int i;
389
390 #ifdef __x86_64__
391 if (register_size (regcache->tdesc, 0) == 8)
392 {
393 for (i = 0; i < X86_64_NUM_REGS; i++)
394 if (x86_64_regmap[i] != -1)
395 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
396
397 #ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
398 {
399 unsigned long base;
400 int lwpid = lwpid_of (current_thread);
401
402 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
403 supply_register_by_name (regcache, "fs_base", &base);
404
405 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_GS) == 0)
406 supply_register_by_name (regcache, "gs_base", &base);
407 }
408 #endif
409 return;
410 }
411 #endif
412
413 for (i = 0; i < I386_NUM_REGS; i++)
414 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
415
416 supply_register_by_name (regcache, "orig_eax",
417 ((char *) buf) + ORIG_EAX * REGSIZE);
418 }
419
420 static void
421 x86_fill_fpregset (struct regcache *regcache, void *buf)
422 {
423 #ifdef __x86_64__
424 i387_cache_to_fxsave (regcache, buf);
425 #else
426 i387_cache_to_fsave (regcache, buf);
427 #endif
428 }
429
430 static void
431 x86_store_fpregset (struct regcache *regcache, const void *buf)
432 {
433 #ifdef __x86_64__
434 i387_fxsave_to_cache (regcache, buf);
435 #else
436 i387_fsave_to_cache (regcache, buf);
437 #endif
438 }
439
440 #ifndef __x86_64__
441
442 static void
443 x86_fill_fpxregset (struct regcache *regcache, void *buf)
444 {
445 i387_cache_to_fxsave (regcache, buf);
446 }
447
448 static void
449 x86_store_fpxregset (struct regcache *regcache, const void *buf)
450 {
451 i387_fxsave_to_cache (regcache, buf);
452 }
453
454 #endif
455
456 static void
457 x86_fill_xstateregset (struct regcache *regcache, void *buf)
458 {
459 i387_cache_to_xsave (regcache, buf);
460 }
461
462 static void
463 x86_store_xstateregset (struct regcache *regcache, const void *buf)
464 {
465 i387_xsave_to_cache (regcache, buf);
466 }
467
468 /* ??? The non-biarch i386 case stores all the i387 regs twice.
469 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
470 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
471 doesn't work. IWBN to avoid the duplication in the case where it
472 does work. Maybe the arch_setup routine could check whether it works
473 and update the supported regsets accordingly. */
474
475 static struct regset_info x86_regsets[] =
476 {
477 #ifdef HAVE_PTRACE_GETREGS
478 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
479 GENERAL_REGS,
480 x86_fill_gregset, x86_store_gregset },
481 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
482 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
483 # ifndef __x86_64__
484 # ifdef HAVE_PTRACE_GETFPXREGS
485 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
486 EXTENDED_REGS,
487 x86_fill_fpxregset, x86_store_fpxregset },
488 # endif
489 # endif
490 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
491 FP_REGS,
492 x86_fill_fpregset, x86_store_fpregset },
493 #endif /* HAVE_PTRACE_GETREGS */
494 NULL_REGSET
495 };
496
497 static CORE_ADDR
498 x86_get_pc (struct regcache *regcache)
499 {
500 int use_64bit = register_size (regcache->tdesc, 0) == 8;
501
502 if (use_64bit)
503 {
504 uint64_t pc;
505
506 collect_register_by_name (regcache, "rip", &pc);
507 return (CORE_ADDR) pc;
508 }
509 else
510 {
511 uint32_t pc;
512
513 collect_register_by_name (regcache, "eip", &pc);
514 return (CORE_ADDR) pc;
515 }
516 }
517
518 static void
519 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
520 {
521 int use_64bit = register_size (regcache->tdesc, 0) == 8;
522
523 if (use_64bit)
524 {
525 uint64_t newpc = pc;
526
527 supply_register_by_name (regcache, "rip", &newpc);
528 }
529 else
530 {
531 uint32_t newpc = pc;
532
533 supply_register_by_name (regcache, "eip", &newpc);
534 }
535 }
536 \f
537 static const gdb_byte x86_breakpoint[] = { 0xCC };
538 #define x86_breakpoint_len 1
539
540 static int
541 x86_breakpoint_at (CORE_ADDR pc)
542 {
543 unsigned char c;
544
545 the_target->read_memory (pc, &c, 1);
546 if (c == 0xCC)
547 return 1;
548
549 return 0;
550 }
551 \f
552 /* Low-level function vector. */
553 struct x86_dr_low_type x86_dr_low =
554 {
555 x86_linux_dr_set_control,
556 x86_linux_dr_set_addr,
557 x86_linux_dr_get_addr,
558 x86_linux_dr_get_status,
559 x86_linux_dr_get_control,
560 sizeof (void *),
561 };
562 \f
563 /* Breakpoint/Watchpoint support. */
564
565 static int
566 x86_supports_z_point_type (char z_type)
567 {
568 switch (z_type)
569 {
570 case Z_PACKET_SW_BP:
571 case Z_PACKET_HW_BP:
572 case Z_PACKET_WRITE_WP:
573 case Z_PACKET_ACCESS_WP:
574 return 1;
575 default:
576 return 0;
577 }
578 }
579
580 static int
581 x86_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
582 int size, struct raw_breakpoint *bp)
583 {
584 struct process_info *proc = current_process ();
585
586 switch (type)
587 {
588 case raw_bkpt_type_hw:
589 case raw_bkpt_type_write_wp:
590 case raw_bkpt_type_access_wp:
591 {
592 enum target_hw_bp_type hw_type
593 = raw_bkpt_type_to_target_hw_bp_type (type);
594 struct x86_debug_reg_state *state
595 = &proc->priv->arch_private->debug_reg_state;
596
597 return x86_dr_insert_watchpoint (state, hw_type, addr, size);
598 }
599
600 default:
601 /* Unsupported. */
602 return 1;
603 }
604 }
605
606 static int
607 x86_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
608 int size, struct raw_breakpoint *bp)
609 {
610 struct process_info *proc = current_process ();
611
612 switch (type)
613 {
614 case raw_bkpt_type_hw:
615 case raw_bkpt_type_write_wp:
616 case raw_bkpt_type_access_wp:
617 {
618 enum target_hw_bp_type hw_type
619 = raw_bkpt_type_to_target_hw_bp_type (type);
620 struct x86_debug_reg_state *state
621 = &proc->priv->arch_private->debug_reg_state;
622
623 return x86_dr_remove_watchpoint (state, hw_type, addr, size);
624 }
625 default:
626 /* Unsupported. */
627 return 1;
628 }
629 }
630
631 static int
632 x86_stopped_by_watchpoint (void)
633 {
634 struct process_info *proc = current_process ();
635 return x86_dr_stopped_by_watchpoint (&proc->priv->arch_private->debug_reg_state);
636 }
637
638 static CORE_ADDR
639 x86_stopped_data_address (void)
640 {
641 struct process_info *proc = current_process ();
642 CORE_ADDR addr;
643 if (x86_dr_stopped_data_address (&proc->priv->arch_private->debug_reg_state,
644 &addr))
645 return addr;
646 return 0;
647 }
648 \f
649 /* Called when a new process is created. */
650
651 static struct arch_process_info *
652 x86_linux_new_process (void)
653 {
654 struct arch_process_info *info = XCNEW (struct arch_process_info);
655
656 x86_low_init_dregs (&info->debug_reg_state);
657
658 return info;
659 }
660
661 /* Called when a process is being deleted. */
662
663 static void
664 x86_linux_delete_process (struct arch_process_info *info)
665 {
666 xfree (info);
667 }
668
669 /* Target routine for linux_new_fork. */
670
671 static void
672 x86_linux_new_fork (struct process_info *parent, struct process_info *child)
673 {
674 /* These are allocated by linux_add_process. */
675 gdb_assert (parent->priv != NULL
676 && parent->priv->arch_private != NULL);
677 gdb_assert (child->priv != NULL
678 && child->priv->arch_private != NULL);
679
680 /* Linux kernel before 2.6.33 commit
681 72f674d203cd230426437cdcf7dd6f681dad8b0d
682 will inherit hardware debug registers from parent
683 on fork/vfork/clone. Newer Linux kernels create such tasks with
684 zeroed debug registers.
685
686 GDB core assumes the child inherits the watchpoints/hw
687 breakpoints of the parent, and will remove them all from the
688 forked off process. Copy the debug registers mirrors into the
689 new process so that all breakpoints and watchpoints can be
690 removed together. The debug registers mirror will become zeroed
691 in the end before detaching the forked off process, thus making
692 this compatible with older Linux kernels too. */
693
694 *child->priv->arch_private = *parent->priv->arch_private;
695 }
696
697 /* See nat/x86-dregs.h. */
698
699 struct x86_debug_reg_state *
700 x86_debug_reg_state (pid_t pid)
701 {
702 struct process_info *proc = find_process_pid (pid);
703
704 return &proc->priv->arch_private->debug_reg_state;
705 }
706 \f
707 /* When GDBSERVER is built as a 64-bit application on linux, the
708 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
709 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
710 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
711 conversion in-place ourselves. */
712
713 /* Convert a ptrace/host siginfo object, into/from the siginfo in the
714 layout of the inferiors' architecture. Returns true if any
715 conversion was done; false otherwise. If DIRECTION is 1, then copy
716 from INF to PTRACE. If DIRECTION is 0, copy from PTRACE to
717 INF. */
718
719 static int
720 x86_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
721 {
722 #ifdef __x86_64__
723 unsigned int machine;
724 int tid = lwpid_of (current_thread);
725 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
726
727 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
728 if (!is_64bit_tdesc ())
729 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
730 FIXUP_32);
731 /* No fixup for native x32 GDB. */
732 else if (!is_elf64 && sizeof (void *) == 8)
733 return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
734 FIXUP_X32);
735 #endif
736
737 return 0;
738 }
739 \f
740 static int use_xml;
741
742 /* Format of XSAVE extended state is:
743 struct
744 {
745 fxsave_bytes[0..463]
746 sw_usable_bytes[464..511]
747 xstate_hdr_bytes[512..575]
748 avx_bytes[576..831]
749 future_state etc
750 };
751
752 Same memory layout will be used for the coredump NT_X86_XSTATE
753 representing the XSAVE extended state registers.
754
755 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
756 extended state mask, which is the same as the extended control register
757 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
758 together with the mask saved in the xstate_hdr_bytes to determine what
759 states the processor/OS supports and what state, used or initialized,
760 the process/thread is in. */
761 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
762
763 /* Does the current host support the GETFPXREGS request? The header
764 file may or may not define it, and even if it is defined, the
765 kernel will return EIO if it's running on a pre-SSE processor. */
766 int have_ptrace_getfpxregs =
767 #ifdef HAVE_PTRACE_GETFPXREGS
768 -1
769 #else
770 0
771 #endif
772 ;
773
774 /* Get Linux/x86 target description from running target. */
775
776 static const struct target_desc *
777 x86_linux_read_description (void)
778 {
779 unsigned int machine;
780 int is_elf64;
781 int xcr0_features;
782 int tid;
783 static uint64_t xcr0;
784 struct regset_info *regset;
785
786 tid = lwpid_of (current_thread);
787
788 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
789
790 if (sizeof (void *) == 4)
791 {
792 if (is_elf64 > 0)
793 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
794 #ifndef __x86_64__
795 else if (machine == EM_X86_64)
796 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
797 #endif
798 }
799
800 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
801 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
802 {
803 elf_fpxregset_t fpxregs;
804
805 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
806 {
807 have_ptrace_getfpxregs = 0;
808 have_ptrace_getregset = 0;
809 return i386_linux_read_description (X86_XSTATE_X87);
810 }
811 else
812 have_ptrace_getfpxregs = 1;
813 }
814 #endif
815
816 if (!use_xml)
817 {
818 x86_xcr0 = X86_XSTATE_SSE_MASK;
819
820 /* Don't use XML. */
821 #ifdef __x86_64__
822 if (machine == EM_X86_64)
823 return tdesc_amd64_linux_no_xml;
824 else
825 #endif
826 return tdesc_i386_linux_no_xml;
827 }
828
829 if (have_ptrace_getregset == -1)
830 {
831 uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))];
832 struct iovec iov;
833
834 iov.iov_base = xstateregs;
835 iov.iov_len = sizeof (xstateregs);
836
837 /* Check if PTRACE_GETREGSET works. */
838 if (ptrace (PTRACE_GETREGSET, tid,
839 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
840 have_ptrace_getregset = 0;
841 else
842 {
843 have_ptrace_getregset = 1;
844
845 /* Get XCR0 from XSAVE extended state. */
846 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
847 / sizeof (uint64_t))];
848
849 /* Use PTRACE_GETREGSET if it is available. */
850 for (regset = x86_regsets;
851 regset->fill_function != NULL; regset++)
852 if (regset->get_request == PTRACE_GETREGSET)
853 regset->size = X86_XSTATE_SIZE (xcr0);
854 else if (regset->type != GENERAL_REGS)
855 regset->size = 0;
856 }
857 }
858
859 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
860 xcr0_features = (have_ptrace_getregset
861 && (xcr0 & X86_XSTATE_ALL_MASK));
862
863 if (xcr0_features)
864 x86_xcr0 = xcr0;
865
866 if (machine == EM_X86_64)
867 {
868 #ifdef __x86_64__
869 const target_desc *tdesc = NULL;
870
871 if (xcr0_features)
872 {
873 tdesc = amd64_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK,
874 !is_elf64);
875 }
876
877 if (tdesc == NULL)
878 tdesc = amd64_linux_read_description (X86_XSTATE_SSE_MASK, !is_elf64);
879 return tdesc;
880 #endif
881 }
882 else
883 {
884 const target_desc *tdesc = NULL;
885
886 if (xcr0_features)
887 tdesc = i386_linux_read_description (xcr0 & X86_XSTATE_ALL_MASK);
888
889 if (tdesc == NULL)
890 tdesc = i386_linux_read_description (X86_XSTATE_SSE);
891
892 return tdesc;
893 }
894
895 gdb_assert_not_reached ("failed to return tdesc");
896 }
897
898 /* Update all the target description of all processes; a new GDB
899 connected, and it may or not support xml target descriptions. */
900
901 void
902 x86_target::update_xmltarget ()
903 {
904 struct thread_info *saved_thread = current_thread;
905
906 /* Before changing the register cache's internal layout, flush the
907 contents of the current valid caches back to the threads, and
908 release the current regcache objects. */
909 regcache_release ();
910
911 for_each_process ([this] (process_info *proc) {
912 int pid = proc->pid;
913
914 /* Look up any thread of this process. */
915 current_thread = find_any_thread_of_pid (pid);
916
917 low_arch_setup ();
918 });
919
920 current_thread = saved_thread;
921 }
922
923 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
924 PTRACE_GETREGSET. */
925
926 static void
927 x86_linux_process_qsupported (char **features, int count)
928 {
929 int i;
930
931 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
932 with "i386" in qSupported query, it supports x86 XML target
933 descriptions. */
934 use_xml = 0;
935 for (i = 0; i < count; i++)
936 {
937 const char *feature = features[i];
938
939 if (startswith (feature, "xmlRegisters="))
940 {
941 char *copy = xstrdup (feature + 13);
942
943 char *saveptr;
944 for (char *p = strtok_r (copy, ",", &saveptr);
945 p != NULL;
946 p = strtok_r (NULL, ",", &saveptr))
947 {
948 if (strcmp (p, "i386") == 0)
949 {
950 use_xml = 1;
951 break;
952 }
953 }
954
955 free (copy);
956 }
957 }
958 the_x86_target.update_xmltarget ();
959 }
960
961 /* Common for x86/x86-64. */
962
963 static struct regsets_info x86_regsets_info =
964 {
965 x86_regsets, /* regsets */
966 0, /* num_regsets */
967 NULL, /* disabled_regsets */
968 };
969
970 #ifdef __x86_64__
971 static struct regs_info amd64_linux_regs_info =
972 {
973 NULL, /* regset_bitmap */
974 NULL, /* usrregs_info */
975 &x86_regsets_info
976 };
977 #endif
978 static struct usrregs_info i386_linux_usrregs_info =
979 {
980 I386_NUM_REGS,
981 i386_regmap,
982 };
983
984 static struct regs_info i386_linux_regs_info =
985 {
986 NULL, /* regset_bitmap */
987 &i386_linux_usrregs_info,
988 &x86_regsets_info
989 };
990
991 const regs_info *
992 x86_target::get_regs_info ()
993 {
994 #ifdef __x86_64__
995 if (is_64bit_tdesc ())
996 return &amd64_linux_regs_info;
997 else
998 #endif
999 return &i386_linux_regs_info;
1000 }
1001
1002 /* Initialize the target description for the architecture of the
1003 inferior. */
1004
1005 void
1006 x86_target::low_arch_setup ()
1007 {
1008 current_process ()->tdesc = x86_linux_read_description ();
1009 }
1010
1011 /* Fill *SYSNO and *SYSRET with the syscall nr trapped and the syscall return
1012 code. This should only be called if LWP got a SYSCALL_SIGTRAP. */
1013
1014 static void
1015 x86_get_syscall_trapinfo (struct regcache *regcache, int *sysno)
1016 {
1017 int use_64bit = register_size (regcache->tdesc, 0) == 8;
1018
1019 if (use_64bit)
1020 {
1021 long l_sysno;
1022
1023 collect_register_by_name (regcache, "orig_rax", &l_sysno);
1024 *sysno = (int) l_sysno;
1025 }
1026 else
1027 collect_register_by_name (regcache, "orig_eax", sysno);
1028 }
1029
1030 static int
1031 x86_supports_tracepoints (void)
1032 {
1033 return 1;
1034 }
1035
1036 static void
1037 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1038 {
1039 target_write_memory (*to, buf, len);
1040 *to += len;
1041 }
1042
1043 static int
1044 push_opcode (unsigned char *buf, const char *op)
1045 {
1046 unsigned char *buf_org = buf;
1047
1048 while (1)
1049 {
1050 char *endptr;
1051 unsigned long ul = strtoul (op, &endptr, 16);
1052
1053 if (endptr == op)
1054 break;
1055
1056 *buf++ = ul;
1057 op = endptr;
1058 }
1059
1060 return buf - buf_org;
1061 }
1062
1063 #ifdef __x86_64__
1064
1065 /* Build a jump pad that saves registers and calls a collection
1066 function. Writes a jump instruction to the jump pad to
1067 JJUMPAD_INSN. The caller is responsible to write it in at the
1068 tracepoint address. */
1069
1070 static int
1071 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1072 CORE_ADDR collector,
1073 CORE_ADDR lockaddr,
1074 ULONGEST orig_size,
1075 CORE_ADDR *jump_entry,
1076 CORE_ADDR *trampoline,
1077 ULONGEST *trampoline_size,
1078 unsigned char *jjump_pad_insn,
1079 ULONGEST *jjump_pad_insn_size,
1080 CORE_ADDR *adjusted_insn_addr,
1081 CORE_ADDR *adjusted_insn_addr_end,
1082 char *err)
1083 {
1084 unsigned char buf[40];
1085 int i, offset;
1086 int64_t loffset;
1087
1088 CORE_ADDR buildaddr = *jump_entry;
1089
1090 /* Build the jump pad. */
1091
1092 /* First, do tracepoint data collection. Save registers. */
1093 i = 0;
1094 /* Need to ensure stack pointer saved first. */
1095 buf[i++] = 0x54; /* push %rsp */
1096 buf[i++] = 0x55; /* push %rbp */
1097 buf[i++] = 0x57; /* push %rdi */
1098 buf[i++] = 0x56; /* push %rsi */
1099 buf[i++] = 0x52; /* push %rdx */
1100 buf[i++] = 0x51; /* push %rcx */
1101 buf[i++] = 0x53; /* push %rbx */
1102 buf[i++] = 0x50; /* push %rax */
1103 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1104 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1105 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1106 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1107 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1108 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1109 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1110 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1111 buf[i++] = 0x9c; /* pushfq */
1112 buf[i++] = 0x48; /* movabs <addr>,%rdi */
1113 buf[i++] = 0xbf;
1114 memcpy (buf + i, &tpaddr, 8);
1115 i += 8;
1116 buf[i++] = 0x57; /* push %rdi */
1117 append_insns (&buildaddr, i, buf);
1118
1119 /* Stack space for the collecting_t object. */
1120 i = 0;
1121 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1122 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1123 memcpy (buf + i, &tpoint, 8);
1124 i += 8;
1125 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1126 i += push_opcode (&buf[i],
1127 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1128 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1129 append_insns (&buildaddr, i, buf);
1130
1131 /* spin-lock. */
1132 i = 0;
1133 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1134 memcpy (&buf[i], (void *) &lockaddr, 8);
1135 i += 8;
1136 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1137 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1138 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1139 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1140 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1141 append_insns (&buildaddr, i, buf);
1142
1143 /* Set up the gdb_collect call. */
1144 /* At this point, (stack pointer + 0x18) is the base of our saved
1145 register block. */
1146
1147 i = 0;
1148 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1149 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1150
1151 /* tpoint address may be 64-bit wide. */
1152 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1153 memcpy (buf + i, &tpoint, 8);
1154 i += 8;
1155 append_insns (&buildaddr, i, buf);
1156
1157 /* The collector function being in the shared library, may be
1158 >31-bits away off the jump pad. */
1159 i = 0;
1160 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1161 memcpy (buf + i, &collector, 8);
1162 i += 8;
1163 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1164 append_insns (&buildaddr, i, buf);
1165
1166 /* Clear the spin-lock. */
1167 i = 0;
1168 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1169 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1170 memcpy (buf + i, &lockaddr, 8);
1171 i += 8;
1172 append_insns (&buildaddr, i, buf);
1173
1174 /* Remove stack that had been used for the collect_t object. */
1175 i = 0;
1176 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1177 append_insns (&buildaddr, i, buf);
1178
1179 /* Restore register state. */
1180 i = 0;
1181 buf[i++] = 0x48; /* add $0x8,%rsp */
1182 buf[i++] = 0x83;
1183 buf[i++] = 0xc4;
1184 buf[i++] = 0x08;
1185 buf[i++] = 0x9d; /* popfq */
1186 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1187 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1188 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1189 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1190 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1191 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1192 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1193 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1194 buf[i++] = 0x58; /* pop %rax */
1195 buf[i++] = 0x5b; /* pop %rbx */
1196 buf[i++] = 0x59; /* pop %rcx */
1197 buf[i++] = 0x5a; /* pop %rdx */
1198 buf[i++] = 0x5e; /* pop %rsi */
1199 buf[i++] = 0x5f; /* pop %rdi */
1200 buf[i++] = 0x5d; /* pop %rbp */
1201 buf[i++] = 0x5c; /* pop %rsp */
1202 append_insns (&buildaddr, i, buf);
1203
1204 /* Now, adjust the original instruction to execute in the jump
1205 pad. */
1206 *adjusted_insn_addr = buildaddr;
1207 relocate_instruction (&buildaddr, tpaddr);
1208 *adjusted_insn_addr_end = buildaddr;
1209
1210 /* Finally, write a jump back to the program. */
1211
1212 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1213 if (loffset > INT_MAX || loffset < INT_MIN)
1214 {
1215 sprintf (err,
1216 "E.Jump back from jump pad too far from tracepoint "
1217 "(offset 0x%" PRIx64 " > int32).", loffset);
1218 return 1;
1219 }
1220
1221 offset = (int) loffset;
1222 memcpy (buf, jump_insn, sizeof (jump_insn));
1223 memcpy (buf + 1, &offset, 4);
1224 append_insns (&buildaddr, sizeof (jump_insn), buf);
1225
1226 /* The jump pad is now built. Wire in a jump to our jump pad. This
1227 is always done last (by our caller actually), so that we can
1228 install fast tracepoints with threads running. This relies on
1229 the agent's atomic write support. */
1230 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1231 if (loffset > INT_MAX || loffset < INT_MIN)
1232 {
1233 sprintf (err,
1234 "E.Jump pad too far from tracepoint "
1235 "(offset 0x%" PRIx64 " > int32).", loffset);
1236 return 1;
1237 }
1238
1239 offset = (int) loffset;
1240
1241 memcpy (buf, jump_insn, sizeof (jump_insn));
1242 memcpy (buf + 1, &offset, 4);
1243 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1244 *jjump_pad_insn_size = sizeof (jump_insn);
1245
1246 /* Return the end address of our pad. */
1247 *jump_entry = buildaddr;
1248
1249 return 0;
1250 }
1251
1252 #endif /* __x86_64__ */
1253
1254 /* Build a jump pad that saves registers and calls a collection
1255 function. Writes a jump instruction to the jump pad to
1256 JJUMPAD_INSN. The caller is responsible to write it in at the
1257 tracepoint address. */
1258
1259 static int
1260 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1261 CORE_ADDR collector,
1262 CORE_ADDR lockaddr,
1263 ULONGEST orig_size,
1264 CORE_ADDR *jump_entry,
1265 CORE_ADDR *trampoline,
1266 ULONGEST *trampoline_size,
1267 unsigned char *jjump_pad_insn,
1268 ULONGEST *jjump_pad_insn_size,
1269 CORE_ADDR *adjusted_insn_addr,
1270 CORE_ADDR *adjusted_insn_addr_end,
1271 char *err)
1272 {
1273 unsigned char buf[0x100];
1274 int i, offset;
1275 CORE_ADDR buildaddr = *jump_entry;
1276
1277 /* Build the jump pad. */
1278
1279 /* First, do tracepoint data collection. Save registers. */
1280 i = 0;
1281 buf[i++] = 0x60; /* pushad */
1282 buf[i++] = 0x68; /* push tpaddr aka $pc */
1283 *((int *)(buf + i)) = (int) tpaddr;
1284 i += 4;
1285 buf[i++] = 0x9c; /* pushf */
1286 buf[i++] = 0x1e; /* push %ds */
1287 buf[i++] = 0x06; /* push %es */
1288 buf[i++] = 0x0f; /* push %fs */
1289 buf[i++] = 0xa0;
1290 buf[i++] = 0x0f; /* push %gs */
1291 buf[i++] = 0xa8;
1292 buf[i++] = 0x16; /* push %ss */
1293 buf[i++] = 0x0e; /* push %cs */
1294 append_insns (&buildaddr, i, buf);
1295
1296 /* Stack space for the collecting_t object. */
1297 i = 0;
1298 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1299
1300 /* Build the object. */
1301 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1302 memcpy (buf + i, &tpoint, 4);
1303 i += 4;
1304 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1305
1306 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1307 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1308 append_insns (&buildaddr, i, buf);
1309
1310 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1311 If we cared for it, this could be using xchg alternatively. */
1312
1313 i = 0;
1314 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1315 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1316 %esp,<lockaddr> */
1317 memcpy (&buf[i], (void *) &lockaddr, 4);
1318 i += 4;
1319 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1320 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1321 append_insns (&buildaddr, i, buf);
1322
1323
1324 /* Set up arguments to the gdb_collect call. */
1325 i = 0;
1326 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1327 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1328 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1329 append_insns (&buildaddr, i, buf);
1330
1331 i = 0;
1332 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1333 append_insns (&buildaddr, i, buf);
1334
1335 i = 0;
1336 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1337 memcpy (&buf[i], (void *) &tpoint, 4);
1338 i += 4;
1339 append_insns (&buildaddr, i, buf);
1340
1341 buf[0] = 0xe8; /* call <reladdr> */
1342 offset = collector - (buildaddr + sizeof (jump_insn));
1343 memcpy (buf + 1, &offset, 4);
1344 append_insns (&buildaddr, 5, buf);
1345 /* Clean up after the call. */
1346 buf[0] = 0x83; /* add $0x8,%esp */
1347 buf[1] = 0xc4;
1348 buf[2] = 0x08;
1349 append_insns (&buildaddr, 3, buf);
1350
1351
1352 /* Clear the spin-lock. This would need the LOCK prefix on older
1353 broken archs. */
1354 i = 0;
1355 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1356 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1357 memcpy (buf + i, &lockaddr, 4);
1358 i += 4;
1359 append_insns (&buildaddr, i, buf);
1360
1361
1362 /* Remove stack that had been used for the collect_t object. */
1363 i = 0;
1364 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1365 append_insns (&buildaddr, i, buf);
1366
1367 i = 0;
1368 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1369 buf[i++] = 0xc4;
1370 buf[i++] = 0x04;
1371 buf[i++] = 0x17; /* pop %ss */
1372 buf[i++] = 0x0f; /* pop %gs */
1373 buf[i++] = 0xa9;
1374 buf[i++] = 0x0f; /* pop %fs */
1375 buf[i++] = 0xa1;
1376 buf[i++] = 0x07; /* pop %es */
1377 buf[i++] = 0x1f; /* pop %ds */
1378 buf[i++] = 0x9d; /* popf */
1379 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1380 buf[i++] = 0xc4;
1381 buf[i++] = 0x04;
1382 buf[i++] = 0x61; /* popad */
1383 append_insns (&buildaddr, i, buf);
1384
1385 /* Now, adjust the original instruction to execute in the jump
1386 pad. */
1387 *adjusted_insn_addr = buildaddr;
1388 relocate_instruction (&buildaddr, tpaddr);
1389 *adjusted_insn_addr_end = buildaddr;
1390
1391 /* Write the jump back to the program. */
1392 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1393 memcpy (buf, jump_insn, sizeof (jump_insn));
1394 memcpy (buf + 1, &offset, 4);
1395 append_insns (&buildaddr, sizeof (jump_insn), buf);
1396
1397 /* The jump pad is now built. Wire in a jump to our jump pad. This
1398 is always done last (by our caller actually), so that we can
1399 install fast tracepoints with threads running. This relies on
1400 the agent's atomic write support. */
1401 if (orig_size == 4)
1402 {
1403 /* Create a trampoline. */
1404 *trampoline_size = sizeof (jump_insn);
1405 if (!claim_trampoline_space (*trampoline_size, trampoline))
1406 {
1407 /* No trampoline space available. */
1408 strcpy (err,
1409 "E.Cannot allocate trampoline space needed for fast "
1410 "tracepoints on 4-byte instructions.");
1411 return 1;
1412 }
1413
1414 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1415 memcpy (buf, jump_insn, sizeof (jump_insn));
1416 memcpy (buf + 1, &offset, 4);
1417 target_write_memory (*trampoline, buf, sizeof (jump_insn));
1418
1419 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1420 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1421 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1422 memcpy (buf + 2, &offset, 2);
1423 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1424 *jjump_pad_insn_size = sizeof (small_jump_insn);
1425 }
1426 else
1427 {
1428 /* Else use a 32-bit relative jump instruction. */
1429 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1430 memcpy (buf, jump_insn, sizeof (jump_insn));
1431 memcpy (buf + 1, &offset, 4);
1432 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1433 *jjump_pad_insn_size = sizeof (jump_insn);
1434 }
1435
1436 /* Return the end address of our pad. */
1437 *jump_entry = buildaddr;
1438
1439 return 0;
1440 }
1441
1442 static int
1443 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1444 CORE_ADDR collector,
1445 CORE_ADDR lockaddr,
1446 ULONGEST orig_size,
1447 CORE_ADDR *jump_entry,
1448 CORE_ADDR *trampoline,
1449 ULONGEST *trampoline_size,
1450 unsigned char *jjump_pad_insn,
1451 ULONGEST *jjump_pad_insn_size,
1452 CORE_ADDR *adjusted_insn_addr,
1453 CORE_ADDR *adjusted_insn_addr_end,
1454 char *err)
1455 {
1456 #ifdef __x86_64__
1457 if (is_64bit_tdesc ())
1458 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1459 collector, lockaddr,
1460 orig_size, jump_entry,
1461 trampoline, trampoline_size,
1462 jjump_pad_insn,
1463 jjump_pad_insn_size,
1464 adjusted_insn_addr,
1465 adjusted_insn_addr_end,
1466 err);
1467 #endif
1468
1469 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1470 collector, lockaddr,
1471 orig_size, jump_entry,
1472 trampoline, trampoline_size,
1473 jjump_pad_insn,
1474 jjump_pad_insn_size,
1475 adjusted_insn_addr,
1476 adjusted_insn_addr_end,
1477 err);
1478 }
1479
1480 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
1481 architectures. */
1482
1483 static int
1484 x86_get_min_fast_tracepoint_insn_len (void)
1485 {
1486 static int warned_about_fast_tracepoints = 0;
1487
1488 #ifdef __x86_64__
1489 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
1490 used for fast tracepoints. */
1491 if (is_64bit_tdesc ())
1492 return 5;
1493 #endif
1494
1495 if (agent_loaded_p ())
1496 {
1497 char errbuf[IPA_BUFSIZ];
1498
1499 errbuf[0] = '\0';
1500
1501 /* On x86, if trampolines are available, then 4-byte jump instructions
1502 with a 2-byte offset may be used, otherwise 5-byte jump instructions
1503 with a 4-byte offset are used instead. */
1504 if (have_fast_tracepoint_trampoline_buffer (errbuf))
1505 return 4;
1506 else
1507 {
1508 /* GDB has no channel to explain to user why a shorter fast
1509 tracepoint is not possible, but at least make GDBserver
1510 mention that something has gone awry. */
1511 if (!warned_about_fast_tracepoints)
1512 {
1513 warning ("4-byte fast tracepoints not available; %s", errbuf);
1514 warned_about_fast_tracepoints = 1;
1515 }
1516 return 5;
1517 }
1518 }
1519 else
1520 {
1521 /* Indicate that the minimum length is currently unknown since the IPA
1522 has not loaded yet. */
1523 return 0;
1524 }
1525 }
1526
1527 static void
1528 add_insns (unsigned char *start, int len)
1529 {
1530 CORE_ADDR buildaddr = current_insn_ptr;
1531
1532 if (debug_threads)
1533 debug_printf ("Adding %d bytes of insn at %s\n",
1534 len, paddress (buildaddr));
1535
1536 append_insns (&buildaddr, len, start);
1537 current_insn_ptr = buildaddr;
1538 }
1539
1540 /* Our general strategy for emitting code is to avoid specifying raw
1541 bytes whenever possible, and instead copy a block of inline asm
1542 that is embedded in the function. This is a little messy, because
1543 we need to keep the compiler from discarding what looks like dead
1544 code, plus suppress various warnings. */
1545
1546 #define EMIT_ASM(NAME, INSNS) \
1547 do \
1548 { \
1549 extern unsigned char start_ ## NAME, end_ ## NAME; \
1550 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1551 __asm__ ("jmp end_" #NAME "\n" \
1552 "\t" "start_" #NAME ":" \
1553 "\t" INSNS "\n" \
1554 "\t" "end_" #NAME ":"); \
1555 } while (0)
1556
1557 #ifdef __x86_64__
1558
1559 #define EMIT_ASM32(NAME,INSNS) \
1560 do \
1561 { \
1562 extern unsigned char start_ ## NAME, end_ ## NAME; \
1563 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1564 __asm__ (".code32\n" \
1565 "\t" "jmp end_" #NAME "\n" \
1566 "\t" "start_" #NAME ":\n" \
1567 "\t" INSNS "\n" \
1568 "\t" "end_" #NAME ":\n" \
1569 ".code64\n"); \
1570 } while (0)
1571
1572 #else
1573
1574 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
1575
1576 #endif
1577
1578 #ifdef __x86_64__
1579
1580 static void
1581 amd64_emit_prologue (void)
1582 {
1583 EMIT_ASM (amd64_prologue,
1584 "pushq %rbp\n\t"
1585 "movq %rsp,%rbp\n\t"
1586 "sub $0x20,%rsp\n\t"
1587 "movq %rdi,-8(%rbp)\n\t"
1588 "movq %rsi,-16(%rbp)");
1589 }
1590
1591
1592 static void
1593 amd64_emit_epilogue (void)
1594 {
1595 EMIT_ASM (amd64_epilogue,
1596 "movq -16(%rbp),%rdi\n\t"
1597 "movq %rax,(%rdi)\n\t"
1598 "xor %rax,%rax\n\t"
1599 "leave\n\t"
1600 "ret");
1601 }
1602
1603 static void
1604 amd64_emit_add (void)
1605 {
1606 EMIT_ASM (amd64_add,
1607 "add (%rsp),%rax\n\t"
1608 "lea 0x8(%rsp),%rsp");
1609 }
1610
1611 static void
1612 amd64_emit_sub (void)
1613 {
1614 EMIT_ASM (amd64_sub,
1615 "sub %rax,(%rsp)\n\t"
1616 "pop %rax");
1617 }
1618
1619 static void
1620 amd64_emit_mul (void)
1621 {
1622 emit_error = 1;
1623 }
1624
1625 static void
1626 amd64_emit_lsh (void)
1627 {
1628 emit_error = 1;
1629 }
1630
1631 static void
1632 amd64_emit_rsh_signed (void)
1633 {
1634 emit_error = 1;
1635 }
1636
1637 static void
1638 amd64_emit_rsh_unsigned (void)
1639 {
1640 emit_error = 1;
1641 }
1642
1643 static void
1644 amd64_emit_ext (int arg)
1645 {
1646 switch (arg)
1647 {
1648 case 8:
1649 EMIT_ASM (amd64_ext_8,
1650 "cbtw\n\t"
1651 "cwtl\n\t"
1652 "cltq");
1653 break;
1654 case 16:
1655 EMIT_ASM (amd64_ext_16,
1656 "cwtl\n\t"
1657 "cltq");
1658 break;
1659 case 32:
1660 EMIT_ASM (amd64_ext_32,
1661 "cltq");
1662 break;
1663 default:
1664 emit_error = 1;
1665 }
1666 }
1667
1668 static void
1669 amd64_emit_log_not (void)
1670 {
1671 EMIT_ASM (amd64_log_not,
1672 "test %rax,%rax\n\t"
1673 "sete %cl\n\t"
1674 "movzbq %cl,%rax");
1675 }
1676
1677 static void
1678 amd64_emit_bit_and (void)
1679 {
1680 EMIT_ASM (amd64_and,
1681 "and (%rsp),%rax\n\t"
1682 "lea 0x8(%rsp),%rsp");
1683 }
1684
1685 static void
1686 amd64_emit_bit_or (void)
1687 {
1688 EMIT_ASM (amd64_or,
1689 "or (%rsp),%rax\n\t"
1690 "lea 0x8(%rsp),%rsp");
1691 }
1692
1693 static void
1694 amd64_emit_bit_xor (void)
1695 {
1696 EMIT_ASM (amd64_xor,
1697 "xor (%rsp),%rax\n\t"
1698 "lea 0x8(%rsp),%rsp");
1699 }
1700
1701 static void
1702 amd64_emit_bit_not (void)
1703 {
1704 EMIT_ASM (amd64_bit_not,
1705 "xorq $0xffffffffffffffff,%rax");
1706 }
1707
1708 static void
1709 amd64_emit_equal (void)
1710 {
1711 EMIT_ASM (amd64_equal,
1712 "cmp %rax,(%rsp)\n\t"
1713 "je .Lamd64_equal_true\n\t"
1714 "xor %rax,%rax\n\t"
1715 "jmp .Lamd64_equal_end\n\t"
1716 ".Lamd64_equal_true:\n\t"
1717 "mov $0x1,%rax\n\t"
1718 ".Lamd64_equal_end:\n\t"
1719 "lea 0x8(%rsp),%rsp");
1720 }
1721
1722 static void
1723 amd64_emit_less_signed (void)
1724 {
1725 EMIT_ASM (amd64_less_signed,
1726 "cmp %rax,(%rsp)\n\t"
1727 "jl .Lamd64_less_signed_true\n\t"
1728 "xor %rax,%rax\n\t"
1729 "jmp .Lamd64_less_signed_end\n\t"
1730 ".Lamd64_less_signed_true:\n\t"
1731 "mov $1,%rax\n\t"
1732 ".Lamd64_less_signed_end:\n\t"
1733 "lea 0x8(%rsp),%rsp");
1734 }
1735
1736 static void
1737 amd64_emit_less_unsigned (void)
1738 {
1739 EMIT_ASM (amd64_less_unsigned,
1740 "cmp %rax,(%rsp)\n\t"
1741 "jb .Lamd64_less_unsigned_true\n\t"
1742 "xor %rax,%rax\n\t"
1743 "jmp .Lamd64_less_unsigned_end\n\t"
1744 ".Lamd64_less_unsigned_true:\n\t"
1745 "mov $1,%rax\n\t"
1746 ".Lamd64_less_unsigned_end:\n\t"
1747 "lea 0x8(%rsp),%rsp");
1748 }
1749
1750 static void
1751 amd64_emit_ref (int size)
1752 {
1753 switch (size)
1754 {
1755 case 1:
1756 EMIT_ASM (amd64_ref1,
1757 "movb (%rax),%al");
1758 break;
1759 case 2:
1760 EMIT_ASM (amd64_ref2,
1761 "movw (%rax),%ax");
1762 break;
1763 case 4:
1764 EMIT_ASM (amd64_ref4,
1765 "movl (%rax),%eax");
1766 break;
1767 case 8:
1768 EMIT_ASM (amd64_ref8,
1769 "movq (%rax),%rax");
1770 break;
1771 }
1772 }
1773
1774 static void
1775 amd64_emit_if_goto (int *offset_p, int *size_p)
1776 {
1777 EMIT_ASM (amd64_if_goto,
1778 "mov %rax,%rcx\n\t"
1779 "pop %rax\n\t"
1780 "cmp $0,%rcx\n\t"
1781 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
1782 if (offset_p)
1783 *offset_p = 10;
1784 if (size_p)
1785 *size_p = 4;
1786 }
1787
1788 static void
1789 amd64_emit_goto (int *offset_p, int *size_p)
1790 {
1791 EMIT_ASM (amd64_goto,
1792 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
1793 if (offset_p)
1794 *offset_p = 1;
1795 if (size_p)
1796 *size_p = 4;
1797 }
1798
1799 static void
1800 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
1801 {
1802 int diff = (to - (from + size));
1803 unsigned char buf[sizeof (int)];
1804
1805 if (size != 4)
1806 {
1807 emit_error = 1;
1808 return;
1809 }
1810
1811 memcpy (buf, &diff, sizeof (int));
1812 target_write_memory (from, buf, sizeof (int));
1813 }
1814
1815 static void
1816 amd64_emit_const (LONGEST num)
1817 {
1818 unsigned char buf[16];
1819 int i;
1820 CORE_ADDR buildaddr = current_insn_ptr;
1821
1822 i = 0;
1823 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
1824 memcpy (&buf[i], &num, sizeof (num));
1825 i += 8;
1826 append_insns (&buildaddr, i, buf);
1827 current_insn_ptr = buildaddr;
1828 }
1829
1830 static void
1831 amd64_emit_call (CORE_ADDR fn)
1832 {
1833 unsigned char buf[16];
1834 int i;
1835 CORE_ADDR buildaddr;
1836 LONGEST offset64;
1837
1838 /* The destination function being in the shared library, may be
1839 >31-bits away off the compiled code pad. */
1840
1841 buildaddr = current_insn_ptr;
1842
1843 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
1844
1845 i = 0;
1846
1847 if (offset64 > INT_MAX || offset64 < INT_MIN)
1848 {
1849 /* Offset is too large for a call. Use callq, but that requires
1850 a register, so avoid it if possible. Use r10, since it is
1851 call-clobbered, we don't have to push/pop it. */
1852 buf[i++] = 0x48; /* mov $fn,%r10 */
1853 buf[i++] = 0xba;
1854 memcpy (buf + i, &fn, 8);
1855 i += 8;
1856 buf[i++] = 0xff; /* callq *%r10 */
1857 buf[i++] = 0xd2;
1858 }
1859 else
1860 {
1861 int offset32 = offset64; /* we know we can't overflow here. */
1862
1863 buf[i++] = 0xe8; /* call <reladdr> */
1864 memcpy (buf + i, &offset32, 4);
1865 i += 4;
1866 }
1867
1868 append_insns (&buildaddr, i, buf);
1869 current_insn_ptr = buildaddr;
1870 }
1871
1872 static void
1873 amd64_emit_reg (int reg)
1874 {
1875 unsigned char buf[16];
1876 int i;
1877 CORE_ADDR buildaddr;
1878
1879 /* Assume raw_regs is still in %rdi. */
1880 buildaddr = current_insn_ptr;
1881 i = 0;
1882 buf[i++] = 0xbe; /* mov $<n>,%esi */
1883 memcpy (&buf[i], &reg, sizeof (reg));
1884 i += 4;
1885 append_insns (&buildaddr, i, buf);
1886 current_insn_ptr = buildaddr;
1887 amd64_emit_call (get_raw_reg_func_addr ());
1888 }
1889
1890 static void
1891 amd64_emit_pop (void)
1892 {
1893 EMIT_ASM (amd64_pop,
1894 "pop %rax");
1895 }
1896
1897 static void
1898 amd64_emit_stack_flush (void)
1899 {
1900 EMIT_ASM (amd64_stack_flush,
1901 "push %rax");
1902 }
1903
1904 static void
1905 amd64_emit_zero_ext (int arg)
1906 {
1907 switch (arg)
1908 {
1909 case 8:
1910 EMIT_ASM (amd64_zero_ext_8,
1911 "and $0xff,%rax");
1912 break;
1913 case 16:
1914 EMIT_ASM (amd64_zero_ext_16,
1915 "and $0xffff,%rax");
1916 break;
1917 case 32:
1918 EMIT_ASM (amd64_zero_ext_32,
1919 "mov $0xffffffff,%rcx\n\t"
1920 "and %rcx,%rax");
1921 break;
1922 default:
1923 emit_error = 1;
1924 }
1925 }
1926
1927 static void
1928 amd64_emit_swap (void)
1929 {
1930 EMIT_ASM (amd64_swap,
1931 "mov %rax,%rcx\n\t"
1932 "pop %rax\n\t"
1933 "push %rcx");
1934 }
1935
1936 static void
1937 amd64_emit_stack_adjust (int n)
1938 {
1939 unsigned char buf[16];
1940 int i;
1941 CORE_ADDR buildaddr = current_insn_ptr;
1942
1943 i = 0;
1944 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
1945 buf[i++] = 0x8d;
1946 buf[i++] = 0x64;
1947 buf[i++] = 0x24;
1948 /* This only handles adjustments up to 16, but we don't expect any more. */
1949 buf[i++] = n * 8;
1950 append_insns (&buildaddr, i, buf);
1951 current_insn_ptr = buildaddr;
1952 }
1953
1954 /* FN's prototype is `LONGEST(*fn)(int)'. */
1955
1956 static void
1957 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
1958 {
1959 unsigned char buf[16];
1960 int i;
1961 CORE_ADDR buildaddr;
1962
1963 buildaddr = current_insn_ptr;
1964 i = 0;
1965 buf[i++] = 0xbf; /* movl $<n>,%edi */
1966 memcpy (&buf[i], &arg1, sizeof (arg1));
1967 i += 4;
1968 append_insns (&buildaddr, i, buf);
1969 current_insn_ptr = buildaddr;
1970 amd64_emit_call (fn);
1971 }
1972
1973 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
1974
1975 static void
1976 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
1977 {
1978 unsigned char buf[16];
1979 int i;
1980 CORE_ADDR buildaddr;
1981
1982 buildaddr = current_insn_ptr;
1983 i = 0;
1984 buf[i++] = 0xbf; /* movl $<n>,%edi */
1985 memcpy (&buf[i], &arg1, sizeof (arg1));
1986 i += 4;
1987 append_insns (&buildaddr, i, buf);
1988 current_insn_ptr = buildaddr;
1989 EMIT_ASM (amd64_void_call_2_a,
1990 /* Save away a copy of the stack top. */
1991 "push %rax\n\t"
1992 /* Also pass top as the second argument. */
1993 "mov %rax,%rsi");
1994 amd64_emit_call (fn);
1995 EMIT_ASM (amd64_void_call_2_b,
1996 /* Restore the stack top, %rax may have been trashed. */
1997 "pop %rax");
1998 }
1999
2000 static void
2001 amd64_emit_eq_goto (int *offset_p, int *size_p)
2002 {
2003 EMIT_ASM (amd64_eq,
2004 "cmp %rax,(%rsp)\n\t"
2005 "jne .Lamd64_eq_fallthru\n\t"
2006 "lea 0x8(%rsp),%rsp\n\t"
2007 "pop %rax\n\t"
2008 /* jmp, but don't trust the assembler to choose the right jump */
2009 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2010 ".Lamd64_eq_fallthru:\n\t"
2011 "lea 0x8(%rsp),%rsp\n\t"
2012 "pop %rax");
2013
2014 if (offset_p)
2015 *offset_p = 13;
2016 if (size_p)
2017 *size_p = 4;
2018 }
2019
2020 static void
2021 amd64_emit_ne_goto (int *offset_p, int *size_p)
2022 {
2023 EMIT_ASM (amd64_ne,
2024 "cmp %rax,(%rsp)\n\t"
2025 "je .Lamd64_ne_fallthru\n\t"
2026 "lea 0x8(%rsp),%rsp\n\t"
2027 "pop %rax\n\t"
2028 /* jmp, but don't trust the assembler to choose the right jump */
2029 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2030 ".Lamd64_ne_fallthru:\n\t"
2031 "lea 0x8(%rsp),%rsp\n\t"
2032 "pop %rax");
2033
2034 if (offset_p)
2035 *offset_p = 13;
2036 if (size_p)
2037 *size_p = 4;
2038 }
2039
2040 static void
2041 amd64_emit_lt_goto (int *offset_p, int *size_p)
2042 {
2043 EMIT_ASM (amd64_lt,
2044 "cmp %rax,(%rsp)\n\t"
2045 "jnl .Lamd64_lt_fallthru\n\t"
2046 "lea 0x8(%rsp),%rsp\n\t"
2047 "pop %rax\n\t"
2048 /* jmp, but don't trust the assembler to choose the right jump */
2049 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2050 ".Lamd64_lt_fallthru:\n\t"
2051 "lea 0x8(%rsp),%rsp\n\t"
2052 "pop %rax");
2053
2054 if (offset_p)
2055 *offset_p = 13;
2056 if (size_p)
2057 *size_p = 4;
2058 }
2059
2060 static void
2061 amd64_emit_le_goto (int *offset_p, int *size_p)
2062 {
2063 EMIT_ASM (amd64_le,
2064 "cmp %rax,(%rsp)\n\t"
2065 "jnle .Lamd64_le_fallthru\n\t"
2066 "lea 0x8(%rsp),%rsp\n\t"
2067 "pop %rax\n\t"
2068 /* jmp, but don't trust the assembler to choose the right jump */
2069 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2070 ".Lamd64_le_fallthru:\n\t"
2071 "lea 0x8(%rsp),%rsp\n\t"
2072 "pop %rax");
2073
2074 if (offset_p)
2075 *offset_p = 13;
2076 if (size_p)
2077 *size_p = 4;
2078 }
2079
2080 static void
2081 amd64_emit_gt_goto (int *offset_p, int *size_p)
2082 {
2083 EMIT_ASM (amd64_gt,
2084 "cmp %rax,(%rsp)\n\t"
2085 "jng .Lamd64_gt_fallthru\n\t"
2086 "lea 0x8(%rsp),%rsp\n\t"
2087 "pop %rax\n\t"
2088 /* jmp, but don't trust the assembler to choose the right jump */
2089 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2090 ".Lamd64_gt_fallthru:\n\t"
2091 "lea 0x8(%rsp),%rsp\n\t"
2092 "pop %rax");
2093
2094 if (offset_p)
2095 *offset_p = 13;
2096 if (size_p)
2097 *size_p = 4;
2098 }
2099
2100 static void
2101 amd64_emit_ge_goto (int *offset_p, int *size_p)
2102 {
2103 EMIT_ASM (amd64_ge,
2104 "cmp %rax,(%rsp)\n\t"
2105 "jnge .Lamd64_ge_fallthru\n\t"
2106 ".Lamd64_ge_jump:\n\t"
2107 "lea 0x8(%rsp),%rsp\n\t"
2108 "pop %rax\n\t"
2109 /* jmp, but don't trust the assembler to choose the right jump */
2110 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2111 ".Lamd64_ge_fallthru:\n\t"
2112 "lea 0x8(%rsp),%rsp\n\t"
2113 "pop %rax");
2114
2115 if (offset_p)
2116 *offset_p = 13;
2117 if (size_p)
2118 *size_p = 4;
2119 }
2120
2121 struct emit_ops amd64_emit_ops =
2122 {
2123 amd64_emit_prologue,
2124 amd64_emit_epilogue,
2125 amd64_emit_add,
2126 amd64_emit_sub,
2127 amd64_emit_mul,
2128 amd64_emit_lsh,
2129 amd64_emit_rsh_signed,
2130 amd64_emit_rsh_unsigned,
2131 amd64_emit_ext,
2132 amd64_emit_log_not,
2133 amd64_emit_bit_and,
2134 amd64_emit_bit_or,
2135 amd64_emit_bit_xor,
2136 amd64_emit_bit_not,
2137 amd64_emit_equal,
2138 amd64_emit_less_signed,
2139 amd64_emit_less_unsigned,
2140 amd64_emit_ref,
2141 amd64_emit_if_goto,
2142 amd64_emit_goto,
2143 amd64_write_goto_address,
2144 amd64_emit_const,
2145 amd64_emit_call,
2146 amd64_emit_reg,
2147 amd64_emit_pop,
2148 amd64_emit_stack_flush,
2149 amd64_emit_zero_ext,
2150 amd64_emit_swap,
2151 amd64_emit_stack_adjust,
2152 amd64_emit_int_call_1,
2153 amd64_emit_void_call_2,
2154 amd64_emit_eq_goto,
2155 amd64_emit_ne_goto,
2156 amd64_emit_lt_goto,
2157 amd64_emit_le_goto,
2158 amd64_emit_gt_goto,
2159 amd64_emit_ge_goto
2160 };
2161
2162 #endif /* __x86_64__ */
2163
2164 static void
2165 i386_emit_prologue (void)
2166 {
2167 EMIT_ASM32 (i386_prologue,
2168 "push %ebp\n\t"
2169 "mov %esp,%ebp\n\t"
2170 "push %ebx");
2171 /* At this point, the raw regs base address is at 8(%ebp), and the
2172 value pointer is at 12(%ebp). */
2173 }
2174
2175 static void
2176 i386_emit_epilogue (void)
2177 {
2178 EMIT_ASM32 (i386_epilogue,
2179 "mov 12(%ebp),%ecx\n\t"
2180 "mov %eax,(%ecx)\n\t"
2181 "mov %ebx,0x4(%ecx)\n\t"
2182 "xor %eax,%eax\n\t"
2183 "pop %ebx\n\t"
2184 "pop %ebp\n\t"
2185 "ret");
2186 }
2187
2188 static void
2189 i386_emit_add (void)
2190 {
2191 EMIT_ASM32 (i386_add,
2192 "add (%esp),%eax\n\t"
2193 "adc 0x4(%esp),%ebx\n\t"
2194 "lea 0x8(%esp),%esp");
2195 }
2196
2197 static void
2198 i386_emit_sub (void)
2199 {
2200 EMIT_ASM32 (i386_sub,
2201 "subl %eax,(%esp)\n\t"
2202 "sbbl %ebx,4(%esp)\n\t"
2203 "pop %eax\n\t"
2204 "pop %ebx\n\t");
2205 }
2206
2207 static void
2208 i386_emit_mul (void)
2209 {
2210 emit_error = 1;
2211 }
2212
2213 static void
2214 i386_emit_lsh (void)
2215 {
2216 emit_error = 1;
2217 }
2218
2219 static void
2220 i386_emit_rsh_signed (void)
2221 {
2222 emit_error = 1;
2223 }
2224
2225 static void
2226 i386_emit_rsh_unsigned (void)
2227 {
2228 emit_error = 1;
2229 }
2230
2231 static void
2232 i386_emit_ext (int arg)
2233 {
2234 switch (arg)
2235 {
2236 case 8:
2237 EMIT_ASM32 (i386_ext_8,
2238 "cbtw\n\t"
2239 "cwtl\n\t"
2240 "movl %eax,%ebx\n\t"
2241 "sarl $31,%ebx");
2242 break;
2243 case 16:
2244 EMIT_ASM32 (i386_ext_16,
2245 "cwtl\n\t"
2246 "movl %eax,%ebx\n\t"
2247 "sarl $31,%ebx");
2248 break;
2249 case 32:
2250 EMIT_ASM32 (i386_ext_32,
2251 "movl %eax,%ebx\n\t"
2252 "sarl $31,%ebx");
2253 break;
2254 default:
2255 emit_error = 1;
2256 }
2257 }
2258
2259 static void
2260 i386_emit_log_not (void)
2261 {
2262 EMIT_ASM32 (i386_log_not,
2263 "or %ebx,%eax\n\t"
2264 "test %eax,%eax\n\t"
2265 "sete %cl\n\t"
2266 "xor %ebx,%ebx\n\t"
2267 "movzbl %cl,%eax");
2268 }
2269
2270 static void
2271 i386_emit_bit_and (void)
2272 {
2273 EMIT_ASM32 (i386_and,
2274 "and (%esp),%eax\n\t"
2275 "and 0x4(%esp),%ebx\n\t"
2276 "lea 0x8(%esp),%esp");
2277 }
2278
2279 static void
2280 i386_emit_bit_or (void)
2281 {
2282 EMIT_ASM32 (i386_or,
2283 "or (%esp),%eax\n\t"
2284 "or 0x4(%esp),%ebx\n\t"
2285 "lea 0x8(%esp),%esp");
2286 }
2287
2288 static void
2289 i386_emit_bit_xor (void)
2290 {
2291 EMIT_ASM32 (i386_xor,
2292 "xor (%esp),%eax\n\t"
2293 "xor 0x4(%esp),%ebx\n\t"
2294 "lea 0x8(%esp),%esp");
2295 }
2296
2297 static void
2298 i386_emit_bit_not (void)
2299 {
2300 EMIT_ASM32 (i386_bit_not,
2301 "xor $0xffffffff,%eax\n\t"
2302 "xor $0xffffffff,%ebx\n\t");
2303 }
2304
2305 static void
2306 i386_emit_equal (void)
2307 {
2308 EMIT_ASM32 (i386_equal,
2309 "cmpl %ebx,4(%esp)\n\t"
2310 "jne .Li386_equal_false\n\t"
2311 "cmpl %eax,(%esp)\n\t"
2312 "je .Li386_equal_true\n\t"
2313 ".Li386_equal_false:\n\t"
2314 "xor %eax,%eax\n\t"
2315 "jmp .Li386_equal_end\n\t"
2316 ".Li386_equal_true:\n\t"
2317 "mov $1,%eax\n\t"
2318 ".Li386_equal_end:\n\t"
2319 "xor %ebx,%ebx\n\t"
2320 "lea 0x8(%esp),%esp");
2321 }
2322
2323 static void
2324 i386_emit_less_signed (void)
2325 {
2326 EMIT_ASM32 (i386_less_signed,
2327 "cmpl %ebx,4(%esp)\n\t"
2328 "jl .Li386_less_signed_true\n\t"
2329 "jne .Li386_less_signed_false\n\t"
2330 "cmpl %eax,(%esp)\n\t"
2331 "jl .Li386_less_signed_true\n\t"
2332 ".Li386_less_signed_false:\n\t"
2333 "xor %eax,%eax\n\t"
2334 "jmp .Li386_less_signed_end\n\t"
2335 ".Li386_less_signed_true:\n\t"
2336 "mov $1,%eax\n\t"
2337 ".Li386_less_signed_end:\n\t"
2338 "xor %ebx,%ebx\n\t"
2339 "lea 0x8(%esp),%esp");
2340 }
2341
2342 static void
2343 i386_emit_less_unsigned (void)
2344 {
2345 EMIT_ASM32 (i386_less_unsigned,
2346 "cmpl %ebx,4(%esp)\n\t"
2347 "jb .Li386_less_unsigned_true\n\t"
2348 "jne .Li386_less_unsigned_false\n\t"
2349 "cmpl %eax,(%esp)\n\t"
2350 "jb .Li386_less_unsigned_true\n\t"
2351 ".Li386_less_unsigned_false:\n\t"
2352 "xor %eax,%eax\n\t"
2353 "jmp .Li386_less_unsigned_end\n\t"
2354 ".Li386_less_unsigned_true:\n\t"
2355 "mov $1,%eax\n\t"
2356 ".Li386_less_unsigned_end:\n\t"
2357 "xor %ebx,%ebx\n\t"
2358 "lea 0x8(%esp),%esp");
2359 }
2360
2361 static void
2362 i386_emit_ref (int size)
2363 {
2364 switch (size)
2365 {
2366 case 1:
2367 EMIT_ASM32 (i386_ref1,
2368 "movb (%eax),%al");
2369 break;
2370 case 2:
2371 EMIT_ASM32 (i386_ref2,
2372 "movw (%eax),%ax");
2373 break;
2374 case 4:
2375 EMIT_ASM32 (i386_ref4,
2376 "movl (%eax),%eax");
2377 break;
2378 case 8:
2379 EMIT_ASM32 (i386_ref8,
2380 "movl 4(%eax),%ebx\n\t"
2381 "movl (%eax),%eax");
2382 break;
2383 }
2384 }
2385
2386 static void
2387 i386_emit_if_goto (int *offset_p, int *size_p)
2388 {
2389 EMIT_ASM32 (i386_if_goto,
2390 "mov %eax,%ecx\n\t"
2391 "or %ebx,%ecx\n\t"
2392 "pop %eax\n\t"
2393 "pop %ebx\n\t"
2394 "cmpl $0,%ecx\n\t"
2395 /* Don't trust the assembler to choose the right jump */
2396 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2397
2398 if (offset_p)
2399 *offset_p = 11; /* be sure that this matches the sequence above */
2400 if (size_p)
2401 *size_p = 4;
2402 }
2403
2404 static void
2405 i386_emit_goto (int *offset_p, int *size_p)
2406 {
2407 EMIT_ASM32 (i386_goto,
2408 /* Don't trust the assembler to choose the right jump */
2409 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2410 if (offset_p)
2411 *offset_p = 1;
2412 if (size_p)
2413 *size_p = 4;
2414 }
2415
2416 static void
2417 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2418 {
2419 int diff = (to - (from + size));
2420 unsigned char buf[sizeof (int)];
2421
2422 /* We're only doing 4-byte sizes at the moment. */
2423 if (size != 4)
2424 {
2425 emit_error = 1;
2426 return;
2427 }
2428
2429 memcpy (buf, &diff, sizeof (int));
2430 target_write_memory (from, buf, sizeof (int));
2431 }
2432
2433 static void
2434 i386_emit_const (LONGEST num)
2435 {
2436 unsigned char buf[16];
2437 int i, hi, lo;
2438 CORE_ADDR buildaddr = current_insn_ptr;
2439
2440 i = 0;
2441 buf[i++] = 0xb8; /* mov $<n>,%eax */
2442 lo = num & 0xffffffff;
2443 memcpy (&buf[i], &lo, sizeof (lo));
2444 i += 4;
2445 hi = ((num >> 32) & 0xffffffff);
2446 if (hi)
2447 {
2448 buf[i++] = 0xbb; /* mov $<n>,%ebx */
2449 memcpy (&buf[i], &hi, sizeof (hi));
2450 i += 4;
2451 }
2452 else
2453 {
2454 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
2455 }
2456 append_insns (&buildaddr, i, buf);
2457 current_insn_ptr = buildaddr;
2458 }
2459
2460 static void
2461 i386_emit_call (CORE_ADDR fn)
2462 {
2463 unsigned char buf[16];
2464 int i, offset;
2465 CORE_ADDR buildaddr;
2466
2467 buildaddr = current_insn_ptr;
2468 i = 0;
2469 buf[i++] = 0xe8; /* call <reladdr> */
2470 offset = ((int) fn) - (buildaddr + 5);
2471 memcpy (buf + 1, &offset, 4);
2472 append_insns (&buildaddr, 5, buf);
2473 current_insn_ptr = buildaddr;
2474 }
2475
2476 static void
2477 i386_emit_reg (int reg)
2478 {
2479 unsigned char buf[16];
2480 int i;
2481 CORE_ADDR buildaddr;
2482
2483 EMIT_ASM32 (i386_reg_a,
2484 "sub $0x8,%esp");
2485 buildaddr = current_insn_ptr;
2486 i = 0;
2487 buf[i++] = 0xb8; /* mov $<n>,%eax */
2488 memcpy (&buf[i], &reg, sizeof (reg));
2489 i += 4;
2490 append_insns (&buildaddr, i, buf);
2491 current_insn_ptr = buildaddr;
2492 EMIT_ASM32 (i386_reg_b,
2493 "mov %eax,4(%esp)\n\t"
2494 "mov 8(%ebp),%eax\n\t"
2495 "mov %eax,(%esp)");
2496 i386_emit_call (get_raw_reg_func_addr ());
2497 EMIT_ASM32 (i386_reg_c,
2498 "xor %ebx,%ebx\n\t"
2499 "lea 0x8(%esp),%esp");
2500 }
2501
2502 static void
2503 i386_emit_pop (void)
2504 {
2505 EMIT_ASM32 (i386_pop,
2506 "pop %eax\n\t"
2507 "pop %ebx");
2508 }
2509
2510 static void
2511 i386_emit_stack_flush (void)
2512 {
2513 EMIT_ASM32 (i386_stack_flush,
2514 "push %ebx\n\t"
2515 "push %eax");
2516 }
2517
2518 static void
2519 i386_emit_zero_ext (int arg)
2520 {
2521 switch (arg)
2522 {
2523 case 8:
2524 EMIT_ASM32 (i386_zero_ext_8,
2525 "and $0xff,%eax\n\t"
2526 "xor %ebx,%ebx");
2527 break;
2528 case 16:
2529 EMIT_ASM32 (i386_zero_ext_16,
2530 "and $0xffff,%eax\n\t"
2531 "xor %ebx,%ebx");
2532 break;
2533 case 32:
2534 EMIT_ASM32 (i386_zero_ext_32,
2535 "xor %ebx,%ebx");
2536 break;
2537 default:
2538 emit_error = 1;
2539 }
2540 }
2541
2542 static void
2543 i386_emit_swap (void)
2544 {
2545 EMIT_ASM32 (i386_swap,
2546 "mov %eax,%ecx\n\t"
2547 "mov %ebx,%edx\n\t"
2548 "pop %eax\n\t"
2549 "pop %ebx\n\t"
2550 "push %edx\n\t"
2551 "push %ecx");
2552 }
2553
2554 static void
2555 i386_emit_stack_adjust (int n)
2556 {
2557 unsigned char buf[16];
2558 int i;
2559 CORE_ADDR buildaddr = current_insn_ptr;
2560
2561 i = 0;
2562 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
2563 buf[i++] = 0x64;
2564 buf[i++] = 0x24;
2565 buf[i++] = n * 8;
2566 append_insns (&buildaddr, i, buf);
2567 current_insn_ptr = buildaddr;
2568 }
2569
2570 /* FN's prototype is `LONGEST(*fn)(int)'. */
2571
2572 static void
2573 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
2574 {
2575 unsigned char buf[16];
2576 int i;
2577 CORE_ADDR buildaddr;
2578
2579 EMIT_ASM32 (i386_int_call_1_a,
2580 /* Reserve a bit of stack space. */
2581 "sub $0x8,%esp");
2582 /* Put the one argument on the stack. */
2583 buildaddr = current_insn_ptr;
2584 i = 0;
2585 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2586 buf[i++] = 0x04;
2587 buf[i++] = 0x24;
2588 memcpy (&buf[i], &arg1, sizeof (arg1));
2589 i += 4;
2590 append_insns (&buildaddr, i, buf);
2591 current_insn_ptr = buildaddr;
2592 i386_emit_call (fn);
2593 EMIT_ASM32 (i386_int_call_1_c,
2594 "mov %edx,%ebx\n\t"
2595 "lea 0x8(%esp),%esp");
2596 }
2597
2598 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2599
2600 static void
2601 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
2602 {
2603 unsigned char buf[16];
2604 int i;
2605 CORE_ADDR buildaddr;
2606
2607 EMIT_ASM32 (i386_void_call_2_a,
2608 /* Preserve %eax only; we don't have to worry about %ebx. */
2609 "push %eax\n\t"
2610 /* Reserve a bit of stack space for arguments. */
2611 "sub $0x10,%esp\n\t"
2612 /* Copy "top" to the second argument position. (Note that
2613 we can't assume function won't scribble on its
2614 arguments, so don't try to restore from this.) */
2615 "mov %eax,4(%esp)\n\t"
2616 "mov %ebx,8(%esp)");
2617 /* Put the first argument on the stack. */
2618 buildaddr = current_insn_ptr;
2619 i = 0;
2620 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2621 buf[i++] = 0x04;
2622 buf[i++] = 0x24;
2623 memcpy (&buf[i], &arg1, sizeof (arg1));
2624 i += 4;
2625 append_insns (&buildaddr, i, buf);
2626 current_insn_ptr = buildaddr;
2627 i386_emit_call (fn);
2628 EMIT_ASM32 (i386_void_call_2_b,
2629 "lea 0x10(%esp),%esp\n\t"
2630 /* Restore original stack top. */
2631 "pop %eax");
2632 }
2633
2634
2635 static void
2636 i386_emit_eq_goto (int *offset_p, int *size_p)
2637 {
2638 EMIT_ASM32 (eq,
2639 /* Check low half first, more likely to be decider */
2640 "cmpl %eax,(%esp)\n\t"
2641 "jne .Leq_fallthru\n\t"
2642 "cmpl %ebx,4(%esp)\n\t"
2643 "jne .Leq_fallthru\n\t"
2644 "lea 0x8(%esp),%esp\n\t"
2645 "pop %eax\n\t"
2646 "pop %ebx\n\t"
2647 /* jmp, but don't trust the assembler to choose the right jump */
2648 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2649 ".Leq_fallthru:\n\t"
2650 "lea 0x8(%esp),%esp\n\t"
2651 "pop %eax\n\t"
2652 "pop %ebx");
2653
2654 if (offset_p)
2655 *offset_p = 18;
2656 if (size_p)
2657 *size_p = 4;
2658 }
2659
2660 static void
2661 i386_emit_ne_goto (int *offset_p, int *size_p)
2662 {
2663 EMIT_ASM32 (ne,
2664 /* Check low half first, more likely to be decider */
2665 "cmpl %eax,(%esp)\n\t"
2666 "jne .Lne_jump\n\t"
2667 "cmpl %ebx,4(%esp)\n\t"
2668 "je .Lne_fallthru\n\t"
2669 ".Lne_jump:\n\t"
2670 "lea 0x8(%esp),%esp\n\t"
2671 "pop %eax\n\t"
2672 "pop %ebx\n\t"
2673 /* jmp, but don't trust the assembler to choose the right jump */
2674 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2675 ".Lne_fallthru:\n\t"
2676 "lea 0x8(%esp),%esp\n\t"
2677 "pop %eax\n\t"
2678 "pop %ebx");
2679
2680 if (offset_p)
2681 *offset_p = 18;
2682 if (size_p)
2683 *size_p = 4;
2684 }
2685
2686 static void
2687 i386_emit_lt_goto (int *offset_p, int *size_p)
2688 {
2689 EMIT_ASM32 (lt,
2690 "cmpl %ebx,4(%esp)\n\t"
2691 "jl .Llt_jump\n\t"
2692 "jne .Llt_fallthru\n\t"
2693 "cmpl %eax,(%esp)\n\t"
2694 "jnl .Llt_fallthru\n\t"
2695 ".Llt_jump:\n\t"
2696 "lea 0x8(%esp),%esp\n\t"
2697 "pop %eax\n\t"
2698 "pop %ebx\n\t"
2699 /* jmp, but don't trust the assembler to choose the right jump */
2700 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2701 ".Llt_fallthru:\n\t"
2702 "lea 0x8(%esp),%esp\n\t"
2703 "pop %eax\n\t"
2704 "pop %ebx");
2705
2706 if (offset_p)
2707 *offset_p = 20;
2708 if (size_p)
2709 *size_p = 4;
2710 }
2711
2712 static void
2713 i386_emit_le_goto (int *offset_p, int *size_p)
2714 {
2715 EMIT_ASM32 (le,
2716 "cmpl %ebx,4(%esp)\n\t"
2717 "jle .Lle_jump\n\t"
2718 "jne .Lle_fallthru\n\t"
2719 "cmpl %eax,(%esp)\n\t"
2720 "jnle .Lle_fallthru\n\t"
2721 ".Lle_jump:\n\t"
2722 "lea 0x8(%esp),%esp\n\t"
2723 "pop %eax\n\t"
2724 "pop %ebx\n\t"
2725 /* jmp, but don't trust the assembler to choose the right jump */
2726 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2727 ".Lle_fallthru:\n\t"
2728 "lea 0x8(%esp),%esp\n\t"
2729 "pop %eax\n\t"
2730 "pop %ebx");
2731
2732 if (offset_p)
2733 *offset_p = 20;
2734 if (size_p)
2735 *size_p = 4;
2736 }
2737
2738 static void
2739 i386_emit_gt_goto (int *offset_p, int *size_p)
2740 {
2741 EMIT_ASM32 (gt,
2742 "cmpl %ebx,4(%esp)\n\t"
2743 "jg .Lgt_jump\n\t"
2744 "jne .Lgt_fallthru\n\t"
2745 "cmpl %eax,(%esp)\n\t"
2746 "jng .Lgt_fallthru\n\t"
2747 ".Lgt_jump:\n\t"
2748 "lea 0x8(%esp),%esp\n\t"
2749 "pop %eax\n\t"
2750 "pop %ebx\n\t"
2751 /* jmp, but don't trust the assembler to choose the right jump */
2752 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2753 ".Lgt_fallthru:\n\t"
2754 "lea 0x8(%esp),%esp\n\t"
2755 "pop %eax\n\t"
2756 "pop %ebx");
2757
2758 if (offset_p)
2759 *offset_p = 20;
2760 if (size_p)
2761 *size_p = 4;
2762 }
2763
2764 static void
2765 i386_emit_ge_goto (int *offset_p, int *size_p)
2766 {
2767 EMIT_ASM32 (ge,
2768 "cmpl %ebx,4(%esp)\n\t"
2769 "jge .Lge_jump\n\t"
2770 "jne .Lge_fallthru\n\t"
2771 "cmpl %eax,(%esp)\n\t"
2772 "jnge .Lge_fallthru\n\t"
2773 ".Lge_jump:\n\t"
2774 "lea 0x8(%esp),%esp\n\t"
2775 "pop %eax\n\t"
2776 "pop %ebx\n\t"
2777 /* jmp, but don't trust the assembler to choose the right jump */
2778 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2779 ".Lge_fallthru:\n\t"
2780 "lea 0x8(%esp),%esp\n\t"
2781 "pop %eax\n\t"
2782 "pop %ebx");
2783
2784 if (offset_p)
2785 *offset_p = 20;
2786 if (size_p)
2787 *size_p = 4;
2788 }
2789
2790 struct emit_ops i386_emit_ops =
2791 {
2792 i386_emit_prologue,
2793 i386_emit_epilogue,
2794 i386_emit_add,
2795 i386_emit_sub,
2796 i386_emit_mul,
2797 i386_emit_lsh,
2798 i386_emit_rsh_signed,
2799 i386_emit_rsh_unsigned,
2800 i386_emit_ext,
2801 i386_emit_log_not,
2802 i386_emit_bit_and,
2803 i386_emit_bit_or,
2804 i386_emit_bit_xor,
2805 i386_emit_bit_not,
2806 i386_emit_equal,
2807 i386_emit_less_signed,
2808 i386_emit_less_unsigned,
2809 i386_emit_ref,
2810 i386_emit_if_goto,
2811 i386_emit_goto,
2812 i386_write_goto_address,
2813 i386_emit_const,
2814 i386_emit_call,
2815 i386_emit_reg,
2816 i386_emit_pop,
2817 i386_emit_stack_flush,
2818 i386_emit_zero_ext,
2819 i386_emit_swap,
2820 i386_emit_stack_adjust,
2821 i386_emit_int_call_1,
2822 i386_emit_void_call_2,
2823 i386_emit_eq_goto,
2824 i386_emit_ne_goto,
2825 i386_emit_lt_goto,
2826 i386_emit_le_goto,
2827 i386_emit_gt_goto,
2828 i386_emit_ge_goto
2829 };
2830
2831
2832 static struct emit_ops *
2833 x86_emit_ops (void)
2834 {
2835 #ifdef __x86_64__
2836 if (is_64bit_tdesc ())
2837 return &amd64_emit_ops;
2838 else
2839 #endif
2840 return &i386_emit_ops;
2841 }
2842
2843 /* Implementation of linux_target_ops method "sw_breakpoint_from_kind". */
2844
2845 static const gdb_byte *
2846 x86_sw_breakpoint_from_kind (int kind, int *size)
2847 {
2848 *size = x86_breakpoint_len;
2849 return x86_breakpoint;
2850 }
2851
2852 static int
2853 x86_supports_range_stepping (void)
2854 {
2855 return 1;
2856 }
2857
2858 /* Implementation of linux_target_ops method "supports_hardware_single_step".
2859 */
2860
2861 static int
2862 x86_supports_hardware_single_step (void)
2863 {
2864 return 1;
2865 }
2866
2867 static int
2868 x86_get_ipa_tdesc_idx (void)
2869 {
2870 struct regcache *regcache = get_thread_regcache (current_thread, 0);
2871 const struct target_desc *tdesc = regcache->tdesc;
2872
2873 #ifdef __x86_64__
2874 return amd64_get_ipa_tdesc_idx (tdesc);
2875 #endif
2876
2877 if (tdesc == tdesc_i386_linux_no_xml)
2878 return X86_TDESC_SSE;
2879
2880 return i386_get_ipa_tdesc_idx (tdesc);
2881 }
2882
2883 /* This is initialized assuming an amd64 target.
2884 x86_arch_setup will correct it for i386 or amd64 targets. */
2885
2886 struct linux_target_ops the_low_target =
2887 {
2888 x86_get_pc,
2889 x86_set_pc,
2890 NULL, /* breakpoint_kind_from_pc */
2891 x86_sw_breakpoint_from_kind,
2892 NULL,
2893 1,
2894 x86_breakpoint_at,
2895 x86_supports_z_point_type,
2896 x86_insert_point,
2897 x86_remove_point,
2898 x86_stopped_by_watchpoint,
2899 x86_stopped_data_address,
2900 /* collect_ptrace_register/supply_ptrace_register are not needed in the
2901 native i386 case (no registers smaller than an xfer unit), and are not
2902 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
2903 NULL,
2904 NULL,
2905 /* need to fix up i386 siginfo if host is amd64 */
2906 x86_siginfo_fixup,
2907 x86_linux_new_process,
2908 x86_linux_delete_process,
2909 x86_linux_new_thread,
2910 x86_linux_delete_thread,
2911 x86_linux_new_fork,
2912 x86_linux_prepare_to_resume,
2913 x86_linux_process_qsupported,
2914 x86_supports_tracepoints,
2915 x86_get_thread_area,
2916 x86_install_fast_tracepoint_jump_pad,
2917 x86_emit_ops,
2918 x86_get_min_fast_tracepoint_insn_len,
2919 x86_supports_range_stepping,
2920 NULL, /* breakpoint_kind_from_current_state */
2921 x86_supports_hardware_single_step,
2922 x86_get_syscall_trapinfo,
2923 x86_get_ipa_tdesc_idx,
2924 };
2925
2926 /* The linux target ops object. */
2927
2928 linux_process_target *the_linux_target = &the_x86_target;
2929
2930 void
2931 initialize_low_arch (void)
2932 {
2933 /* Initialize the Linux target descriptions. */
2934 #ifdef __x86_64__
2935 tdesc_amd64_linux_no_xml = allocate_target_description ();
2936 copy_target_description (tdesc_amd64_linux_no_xml,
2937 amd64_linux_read_description (X86_XSTATE_SSE_MASK,
2938 false));
2939 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
2940 #endif
2941
2942 tdesc_i386_linux_no_xml = allocate_target_description ();
2943 copy_target_description (tdesc_i386_linux_no_xml,
2944 i386_linux_read_description (X86_XSTATE_SSE_MASK));
2945 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
2946
2947 initialize_regsets_info (&x86_regsets_info);
2948 }
This page took 0.089135 seconds and 5 git commands to generate.