PR gold/12934
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
110 //
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
151 // Factory methods to create instruction templates in different formats.
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
210
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
440
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457 };
458
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
511 {
512 if (symbol != NULL)
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
516 }
517 else
518 {
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 //
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
989
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072 private:
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146 public:
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1151 { }
1152
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1174
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221 {
1222 *poutput = offset;
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251 public:
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
1332
1333 bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342 public:
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1382 const Task* task);
1383
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
1442 // Return address alignment of EXIDX input section.
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1476 bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1495 { }
1496
1497 ~Arm_relobj()
1498 { delete this->attributes_section_data_; }
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1503 {
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511 {
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686 private:
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1693
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1698
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1724 void
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766 public:
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1771 { }
1772
1773 ~Arm_dynobj()
1774 { delete this->attributes_section_data_; }
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097 default:
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2100 }
2101 }
2102 }
2103 };
2104
2105 // Utilities for manipulating integers of up to 32-bits
2106
2107 namespace utils
2108 {
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2114 {
2115 gold_assert(no_bits >= 0 && no_bits <= 32);
2116 if (no_bits == 32)
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119 bits &= mask;
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123 }
2124
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2127 static inline bool
2128 has_overflow(uint32_t bits)
2129 {
2130 gold_assert(no_bits >= 0 && no_bits <= 32);
2131 if (no_bits == 32)
2132 return false;
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2137 }
2138
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2144 static inline bool
2145 has_signed_unsigned_overflow(uint32_t bits)
2146 {
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2148 if (no_bits == 32)
2149 return false;
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2154 }
2155
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2162 };
2163
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2166 {
2167 public:
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169 Reloc_section;
2170
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
2174 Target_arm()
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180 may_use_blx_(false), should_force_pic_veneer_(false),
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2183 { }
2184
2185 // Whether we can use BLX.
2186 bool
2187 may_use_blx() const
2188 { return this->may_use_blx_; }
2189
2190 // Set use-BLX flag.
2191 void
2192 set_may_use_blx(bool value)
2193 { this->may_use_blx_ = value; }
2194
2195 // Whether we force PCI branch veneers.
2196 bool
2197 should_force_pic_veneer() const
2198 { return this->should_force_pic_veneer_; }
2199
2200 // Set PIC veneer flag.
2201 void
2202 set_should_force_pic_veneer(bool value)
2203 { this->should_force_pic_veneer_ = value; }
2204
2205 // Whether we use THUMB-2 instructions.
2206 bool
2207 using_thumb2() const
2208 {
2209 Object_attribute* attr =
2210 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2211 int arch = attr->int_value();
2212 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2213 }
2214
2215 // Whether we use THUMB/THUMB-2 instructions only.
2216 bool
2217 using_thumb_only() const
2218 {
2219 Object_attribute* attr =
2220 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2221
2222 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2223 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2224 return true;
2225 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2226 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2227 return false;
2228 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2229 return attr->int_value() == 'M';
2230 }
2231
2232 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2233 bool
2234 may_use_arm_nop() const
2235 {
2236 Object_attribute* attr =
2237 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2238 int arch = attr->int_value();
2239 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2240 || arch == elfcpp::TAG_CPU_ARCH_V6K
2241 || arch == elfcpp::TAG_CPU_ARCH_V7
2242 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2243 }
2244
2245 // Whether we have THUMB-2 NOP.W instruction.
2246 bool
2247 may_use_thumb2_nop() const
2248 {
2249 Object_attribute* attr =
2250 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2251 int arch = attr->int_value();
2252 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2253 || arch == elfcpp::TAG_CPU_ARCH_V7
2254 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2255 }
2256
2257 // Process the relocations to determine unreferenced sections for
2258 // garbage collection.
2259 void
2260 gc_process_relocs(Symbol_table* symtab,
2261 Layout* layout,
2262 Sized_relobj_file<32, big_endian>* object,
2263 unsigned int data_shndx,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 size_t local_symbol_count,
2270 const unsigned char* plocal_symbols);
2271
2272 // Scan the relocations to look for symbol adjustments.
2273 void
2274 scan_relocs(Symbol_table* symtab,
2275 Layout* layout,
2276 Sized_relobj_file<32, big_endian>* object,
2277 unsigned int data_shndx,
2278 unsigned int sh_type,
2279 const unsigned char* prelocs,
2280 size_t reloc_count,
2281 Output_section* output_section,
2282 bool needs_special_offset_handling,
2283 size_t local_symbol_count,
2284 const unsigned char* plocal_symbols);
2285
2286 // Finalize the sections.
2287 void
2288 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2289
2290 // Return the value to use for a dynamic symbol which requires special
2291 // treatment.
2292 uint64_t
2293 do_dynsym_value(const Symbol*) const;
2294
2295 // Relocate a section.
2296 void
2297 relocate_section(const Relocate_info<32, big_endian>*,
2298 unsigned int sh_type,
2299 const unsigned char* prelocs,
2300 size_t reloc_count,
2301 Output_section* output_section,
2302 bool needs_special_offset_handling,
2303 unsigned char* view,
2304 Arm_address view_address,
2305 section_size_type view_size,
2306 const Reloc_symbol_changes*);
2307
2308 // Scan the relocs during a relocatable link.
2309 void
2310 scan_relocatable_relocs(Symbol_table* symtab,
2311 Layout* layout,
2312 Sized_relobj_file<32, big_endian>* object,
2313 unsigned int data_shndx,
2314 unsigned int sh_type,
2315 const unsigned char* prelocs,
2316 size_t reloc_count,
2317 Output_section* output_section,
2318 bool needs_special_offset_handling,
2319 size_t local_symbol_count,
2320 const unsigned char* plocal_symbols,
2321 Relocatable_relocs*);
2322
2323 // Relocate a section during a relocatable link.
2324 void
2325 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2326 unsigned int sh_type,
2327 const unsigned char* prelocs,
2328 size_t reloc_count,
2329 Output_section* output_section,
2330 off_t offset_in_output_section,
2331 const Relocatable_relocs*,
2332 unsigned char* view,
2333 Arm_address view_address,
2334 section_size_type view_size,
2335 unsigned char* reloc_view,
2336 section_size_type reloc_view_size);
2337
2338 // Perform target-specific processing in a relocatable link. This is
2339 // only used if we use the relocation strategy RELOC_SPECIAL.
2340 void
2341 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2342 unsigned int sh_type,
2343 const unsigned char* preloc_in,
2344 size_t relnum,
2345 Output_section* output_section,
2346 off_t offset_in_output_section,
2347 unsigned char* view,
2348 typename elfcpp::Elf_types<32>::Elf_Addr
2349 view_address,
2350 section_size_type view_size,
2351 unsigned char* preloc_out);
2352
2353 // Return whether SYM is defined by the ABI.
2354 bool
2355 do_is_defined_by_abi(Symbol* sym) const
2356 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2357
2358 // Return whether there is a GOT section.
2359 bool
2360 has_got_section() const
2361 { return this->got_ != NULL; }
2362
2363 // Return the size of the GOT section.
2364 section_size_type
2365 got_size() const
2366 {
2367 gold_assert(this->got_ != NULL);
2368 return this->got_->data_size();
2369 }
2370
2371 // Return the number of entries in the GOT.
2372 unsigned int
2373 got_entry_count() const
2374 {
2375 if (!this->has_got_section())
2376 return 0;
2377 return this->got_size() / 4;
2378 }
2379
2380 // Return the number of entries in the PLT.
2381 unsigned int
2382 plt_entry_count() const;
2383
2384 // Return the offset of the first non-reserved PLT entry.
2385 unsigned int
2386 first_plt_entry_offset() const;
2387
2388 // Return the size of each PLT entry.
2389 unsigned int
2390 plt_entry_size() const;
2391
2392 // Map platform-specific reloc types
2393 static unsigned int
2394 get_real_reloc_type(unsigned int r_type);
2395
2396 //
2397 // Methods to support stub-generations.
2398 //
2399
2400 // Return the stub factory
2401 const Stub_factory&
2402 stub_factory() const
2403 { return this->stub_factory_; }
2404
2405 // Make a new Arm_input_section object.
2406 Arm_input_section<big_endian>*
2407 new_arm_input_section(Relobj*, unsigned int);
2408
2409 // Find the Arm_input_section object corresponding to the SHNDX-th input
2410 // section of RELOBJ.
2411 Arm_input_section<big_endian>*
2412 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2413
2414 // Make a new Stub_table
2415 Stub_table<big_endian>*
2416 new_stub_table(Arm_input_section<big_endian>*);
2417
2418 // Scan a section for stub generation.
2419 void
2420 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2421 const unsigned char*, size_t, Output_section*,
2422 bool, const unsigned char*, Arm_address,
2423 section_size_type);
2424
2425 // Relocate a stub.
2426 void
2427 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2428 Output_section*, unsigned char*, Arm_address,
2429 section_size_type);
2430
2431 // Get the default ARM target.
2432 static Target_arm<big_endian>*
2433 default_target()
2434 {
2435 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2436 && parameters->target().is_big_endian() == big_endian);
2437 return static_cast<Target_arm<big_endian>*>(
2438 parameters->sized_target<32, big_endian>());
2439 }
2440
2441 // Whether NAME belongs to a mapping symbol.
2442 static bool
2443 is_mapping_symbol_name(const char* name)
2444 {
2445 return (name
2446 && name[0] == '$'
2447 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2448 && (name[2] == '\0' || name[2] == '.'));
2449 }
2450
2451 // Whether we work around the Cortex-A8 erratum.
2452 bool
2453 fix_cortex_a8() const
2454 { return this->fix_cortex_a8_; }
2455
2456 // Whether we merge exidx entries in debuginfo.
2457 bool
2458 merge_exidx_entries() const
2459 { return parameters->options().merge_exidx_entries(); }
2460
2461 // Whether we fix R_ARM_V4BX relocation.
2462 // 0 - do not fix
2463 // 1 - replace with MOV instruction (armv4 target)
2464 // 2 - make interworking veneer (>= armv4t targets only)
2465 General_options::Fix_v4bx
2466 fix_v4bx() const
2467 { return parameters->options().fix_v4bx(); }
2468
2469 // Scan a span of THUMB code section for Cortex-A8 erratum.
2470 void
2471 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2472 section_size_type, section_size_type,
2473 const unsigned char*, Arm_address);
2474
2475 // Apply Cortex-A8 workaround to a branch.
2476 void
2477 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2478 unsigned char*, Arm_address);
2479
2480 protected:
2481 // Make an ELF object.
2482 Object*
2483 do_make_elf_object(const std::string&, Input_file*, off_t,
2484 const elfcpp::Ehdr<32, big_endian>& ehdr);
2485
2486 Object*
2487 do_make_elf_object(const std::string&, Input_file*, off_t,
2488 const elfcpp::Ehdr<32, !big_endian>&)
2489 { gold_unreachable(); }
2490
2491 Object*
2492 do_make_elf_object(const std::string&, Input_file*, off_t,
2493 const elfcpp::Ehdr<64, false>&)
2494 { gold_unreachable(); }
2495
2496 Object*
2497 do_make_elf_object(const std::string&, Input_file*, off_t,
2498 const elfcpp::Ehdr<64, true>&)
2499 { gold_unreachable(); }
2500
2501 // Make an output section.
2502 Output_section*
2503 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2504 elfcpp::Elf_Xword flags)
2505 { return new Arm_output_section<big_endian>(name, type, flags); }
2506
2507 void
2508 do_adjust_elf_header(unsigned char* view, int len) const;
2509
2510 // We only need to generate stubs, and hence perform relaxation if we are
2511 // not doing relocatable linking.
2512 bool
2513 do_may_relax() const
2514 { return !parameters->options().relocatable(); }
2515
2516 bool
2517 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2518
2519 // Determine whether an object attribute tag takes an integer, a
2520 // string or both.
2521 int
2522 do_attribute_arg_type(int tag) const;
2523
2524 // Reorder tags during output.
2525 int
2526 do_attributes_order(int num) const;
2527
2528 // This is called when the target is selected as the default.
2529 void
2530 do_select_as_default_target()
2531 {
2532 // No locking is required since there should only be one default target.
2533 // We cannot have both the big-endian and little-endian ARM targets
2534 // as the default.
2535 gold_assert(arm_reloc_property_table == NULL);
2536 arm_reloc_property_table = new Arm_reloc_property_table();
2537 }
2538
2539 // Virtual function which is set to return true by a target if
2540 // it can use relocation types to determine if a function's
2541 // pointer is taken.
2542 virtual bool
2543 do_can_check_for_function_pointers() const
2544 { return true; }
2545
2546 // Whether a section called SECTION_NAME may have function pointers to
2547 // sections not eligible for safe ICF folding.
2548 virtual bool
2549 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2550 {
2551 return (!is_prefix_of(".ARM.exidx", section_name)
2552 && !is_prefix_of(".ARM.extab", section_name)
2553 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2554 }
2555
2556 private:
2557 // The class which scans relocations.
2558 class Scan
2559 {
2560 public:
2561 Scan()
2562 : issued_non_pic_error_(false)
2563 { }
2564
2565 static inline int
2566 get_reference_flags(unsigned int r_type);
2567
2568 inline void
2569 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2570 Sized_relobj_file<32, big_endian>* object,
2571 unsigned int data_shndx,
2572 Output_section* output_section,
2573 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574 const elfcpp::Sym<32, big_endian>& lsym);
2575
2576 inline void
2577 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2578 Sized_relobj_file<32, big_endian>* object,
2579 unsigned int data_shndx,
2580 Output_section* output_section,
2581 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2582 Symbol* gsym);
2583
2584 inline bool
2585 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2586 Sized_relobj_file<32, big_endian>* ,
2587 unsigned int ,
2588 Output_section* ,
2589 const elfcpp::Rel<32, big_endian>& ,
2590 unsigned int ,
2591 const elfcpp::Sym<32, big_endian>&);
2592
2593 inline bool
2594 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2595 Sized_relobj_file<32, big_endian>* ,
2596 unsigned int ,
2597 Output_section* ,
2598 const elfcpp::Rel<32, big_endian>& ,
2599 unsigned int , Symbol*);
2600
2601 private:
2602 static void
2603 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2604 unsigned int r_type);
2605
2606 static void
2607 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2608 unsigned int r_type, Symbol*);
2609
2610 void
2611 check_non_pic(Relobj*, unsigned int r_type);
2612
2613 // Almost identical to Symbol::needs_plt_entry except that it also
2614 // handles STT_ARM_TFUNC.
2615 static bool
2616 symbol_needs_plt_entry(const Symbol* sym)
2617 {
2618 // An undefined symbol from an executable does not need a PLT entry.
2619 if (sym->is_undefined() && !parameters->options().shared())
2620 return false;
2621
2622 return (!parameters->doing_static_link()
2623 && (sym->type() == elfcpp::STT_FUNC
2624 || sym->type() == elfcpp::STT_ARM_TFUNC)
2625 && (sym->is_from_dynobj()
2626 || sym->is_undefined()
2627 || sym->is_preemptible()));
2628 }
2629
2630 inline bool
2631 possible_function_pointer_reloc(unsigned int r_type);
2632
2633 // Whether we have issued an error about a non-PIC compilation.
2634 bool issued_non_pic_error_;
2635 };
2636
2637 // The class which implements relocation.
2638 class Relocate
2639 {
2640 public:
2641 Relocate()
2642 { }
2643
2644 ~Relocate()
2645 { }
2646
2647 // Return whether the static relocation needs to be applied.
2648 inline bool
2649 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2650 unsigned int r_type,
2651 bool is_32bit,
2652 Output_section* output_section);
2653
2654 // Do a relocation. Return false if the caller should not issue
2655 // any warnings about this relocation.
2656 inline bool
2657 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658 Output_section*, size_t relnum,
2659 const elfcpp::Rel<32, big_endian>&,
2660 unsigned int r_type, const Sized_symbol<32>*,
2661 const Symbol_value<32>*,
2662 unsigned char*, Arm_address,
2663 section_size_type);
2664
2665 // Return whether we want to pass flag NON_PIC_REF for this
2666 // reloc. This means the relocation type accesses a symbol not via
2667 // GOT or PLT.
2668 static inline bool
2669 reloc_is_non_pic(unsigned int r_type)
2670 {
2671 switch (r_type)
2672 {
2673 // These relocation types reference GOT or PLT entries explicitly.
2674 case elfcpp::R_ARM_GOT_BREL:
2675 case elfcpp::R_ARM_GOT_ABS:
2676 case elfcpp::R_ARM_GOT_PREL:
2677 case elfcpp::R_ARM_GOT_BREL12:
2678 case elfcpp::R_ARM_PLT32_ABS:
2679 case elfcpp::R_ARM_TLS_GD32:
2680 case elfcpp::R_ARM_TLS_LDM32:
2681 case elfcpp::R_ARM_TLS_IE32:
2682 case elfcpp::R_ARM_TLS_IE12GP:
2683
2684 // These relocate types may use PLT entries.
2685 case elfcpp::R_ARM_CALL:
2686 case elfcpp::R_ARM_THM_CALL:
2687 case elfcpp::R_ARM_JUMP24:
2688 case elfcpp::R_ARM_THM_JUMP24:
2689 case elfcpp::R_ARM_THM_JUMP19:
2690 case elfcpp::R_ARM_PLT32:
2691 case elfcpp::R_ARM_THM_XPC22:
2692 case elfcpp::R_ARM_PREL31:
2693 case elfcpp::R_ARM_SBREL31:
2694 return false;
2695
2696 default:
2697 return true;
2698 }
2699 }
2700
2701 private:
2702 // Do a TLS relocation.
2703 inline typename Arm_relocate_functions<big_endian>::Status
2704 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706 const Sized_symbol<32>*, const Symbol_value<32>*,
2707 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2708 section_size_type);
2709
2710 };
2711
2712 // A class which returns the size required for a relocation type,
2713 // used while scanning relocs during a relocatable link.
2714 class Relocatable_size_for_reloc
2715 {
2716 public:
2717 unsigned int
2718 get_size_for_reloc(unsigned int, Relobj*);
2719 };
2720
2721 // Adjust TLS relocation type based on the options and whether this
2722 // is a local symbol.
2723 static tls::Tls_optimization
2724 optimize_tls_reloc(bool is_final, int r_type);
2725
2726 // Get the GOT section, creating it if necessary.
2727 Arm_output_data_got<big_endian>*
2728 got_section(Symbol_table*, Layout*);
2729
2730 // Get the GOT PLT section.
2731 Output_data_space*
2732 got_plt_section() const
2733 {
2734 gold_assert(this->got_plt_ != NULL);
2735 return this->got_plt_;
2736 }
2737
2738 // Create a PLT entry for a global symbol.
2739 void
2740 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2741
2742 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2743 void
2744 define_tls_base_symbol(Symbol_table*, Layout*);
2745
2746 // Create a GOT entry for the TLS module index.
2747 unsigned int
2748 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2749 Sized_relobj_file<32, big_endian>* object);
2750
2751 // Get the PLT section.
2752 const Output_data_plt_arm<big_endian>*
2753 plt_section() const
2754 {
2755 gold_assert(this->plt_ != NULL);
2756 return this->plt_;
2757 }
2758
2759 // Get the dynamic reloc section, creating it if necessary.
2760 Reloc_section*
2761 rel_dyn_section(Layout*);
2762
2763 // Get the section to use for TLS_DESC relocations.
2764 Reloc_section*
2765 rel_tls_desc_section(Layout*) const;
2766
2767 // Return true if the symbol may need a COPY relocation.
2768 // References from an executable object to non-function symbols
2769 // defined in a dynamic object may need a COPY relocation.
2770 bool
2771 may_need_copy_reloc(Symbol* gsym)
2772 {
2773 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774 && gsym->may_need_copy_reloc());
2775 }
2776
2777 // Add a potential copy relocation.
2778 void
2779 copy_reloc(Symbol_table* symtab, Layout* layout,
2780 Sized_relobj_file<32, big_endian>* object,
2781 unsigned int shndx, Output_section* output_section,
2782 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2783 {
2784 this->copy_relocs_.copy_reloc(symtab, layout,
2785 symtab->get_sized_symbol<32>(sym),
2786 object, shndx, output_section, reloc,
2787 this->rel_dyn_section(layout));
2788 }
2789
2790 // Whether two EABI versions are compatible.
2791 static bool
2792 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2793
2794 // Merge processor-specific flags from input object and those in the ELF
2795 // header of the output.
2796 void
2797 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2798
2799 // Get the secondary compatible architecture.
2800 static int
2801 get_secondary_compatible_arch(const Attributes_section_data*);
2802
2803 // Set the secondary compatible architecture.
2804 static void
2805 set_secondary_compatible_arch(Attributes_section_data*, int);
2806
2807 static int
2808 tag_cpu_arch_combine(const char*, int, int*, int, int);
2809
2810 // Helper to print AEABI enum tag value.
2811 static std::string
2812 aeabi_enum_name(unsigned int);
2813
2814 // Return string value for TAG_CPU_name.
2815 static std::string
2816 tag_cpu_name_value(unsigned int);
2817
2818 // Merge object attributes from input object and those in the output.
2819 void
2820 merge_object_attributes(const char*, const Attributes_section_data*);
2821
2822 // Helper to get an AEABI object attribute
2823 Object_attribute*
2824 get_aeabi_object_attribute(int tag) const
2825 {
2826 Attributes_section_data* pasd = this->attributes_section_data_;
2827 gold_assert(pasd != NULL);
2828 Object_attribute* attr =
2829 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830 gold_assert(attr != NULL);
2831 return attr;
2832 }
2833
2834 //
2835 // Methods to support stub-generations.
2836 //
2837
2838 // Group input sections for stub generation.
2839 void
2840 group_sections(Layout*, section_size_type, bool, const Task*);
2841
2842 // Scan a relocation for stub generation.
2843 void
2844 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845 const Sized_symbol<32>*, unsigned int,
2846 const Symbol_value<32>*,
2847 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2848
2849 // Scan a relocation section for stub.
2850 template<int sh_type>
2851 void
2852 scan_reloc_section_for_stubs(
2853 const Relocate_info<32, big_endian>* relinfo,
2854 const unsigned char* prelocs,
2855 size_t reloc_count,
2856 Output_section* output_section,
2857 bool needs_special_offset_handling,
2858 const unsigned char* view,
2859 elfcpp::Elf_types<32>::Elf_Addr view_address,
2860 section_size_type);
2861
2862 // Fix .ARM.exidx section coverage.
2863 void
2864 fix_exidx_coverage(Layout*, const Input_objects*,
2865 Arm_output_section<big_endian>*, Symbol_table*,
2866 const Task*);
2867
2868 // Functors for STL set.
2869 struct output_section_address_less_than
2870 {
2871 bool
2872 operator()(const Output_section* s1, const Output_section* s2) const
2873 { return s1->address() < s2->address(); }
2874 };
2875
2876 // Information about this specific target which we pass to the
2877 // general Target structure.
2878 static const Target::Target_info arm_info;
2879
2880 // The types of GOT entries needed for this platform.
2881 // These values are exposed to the ABI in an incremental link.
2882 // Do not renumber existing values without changing the version
2883 // number of the .gnu_incremental_inputs section.
2884 enum Got_type
2885 {
2886 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2887 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2888 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2889 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2890 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2891 };
2892
2893 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2894
2895 // Map input section to Arm_input_section.
2896 typedef Unordered_map<Section_id,
2897 Arm_input_section<big_endian>*,
2898 Section_id_hash>
2899 Arm_input_section_map;
2900
2901 // Map output addresses to relocs for Cortex-A8 erratum.
2902 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903 Cortex_a8_relocs_info;
2904
2905 // The GOT section.
2906 Arm_output_data_got<big_endian>* got_;
2907 // The PLT section.
2908 Output_data_plt_arm<big_endian>* plt_;
2909 // The GOT PLT section.
2910 Output_data_space* got_plt_;
2911 // The dynamic reloc section.
2912 Reloc_section* rel_dyn_;
2913 // Relocs saved to avoid a COPY reloc.
2914 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915 // Space for variables copied with a COPY reloc.
2916 Output_data_space* dynbss_;
2917 // Offset of the GOT entry for the TLS module index.
2918 unsigned int got_mod_index_offset_;
2919 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920 bool tls_base_symbol_defined_;
2921 // Vector of Stub_tables created.
2922 Stub_table_list stub_tables_;
2923 // Stub factory.
2924 const Stub_factory &stub_factory_;
2925 // Whether we can use BLX.
2926 bool may_use_blx_;
2927 // Whether we force PIC branch veneers.
2928 bool should_force_pic_veneer_;
2929 // Map for locating Arm_input_sections.
2930 Arm_input_section_map arm_input_section_map_;
2931 // Attributes section data in output.
2932 Attributes_section_data* attributes_section_data_;
2933 // Whether we want to fix code for Cortex-A8 erratum.
2934 bool fix_cortex_a8_;
2935 // Map addresses to relocs for Cortex-A8 erratum.
2936 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2937 };
2938
2939 template<bool big_endian>
2940 const Target::Target_info Target_arm<big_endian>::arm_info =
2941 {
2942 32, // size
2943 big_endian, // is_big_endian
2944 elfcpp::EM_ARM, // machine_code
2945 false, // has_make_symbol
2946 false, // has_resolve
2947 false, // has_code_fill
2948 true, // is_default_stack_executable
2949 false, // can_icf_inline_merge_sections
2950 '\0', // wrap_char
2951 "/usr/lib/libc.so.1", // dynamic_linker
2952 0x8000, // default_text_segment_address
2953 0x1000, // abi_pagesize (overridable by -z max-page-size)
2954 0x1000, // common_pagesize (overridable by -z common-page-size)
2955 elfcpp::SHN_UNDEF, // small_common_shndx
2956 elfcpp::SHN_UNDEF, // large_common_shndx
2957 0, // small_common_section_flags
2958 0, // large_common_section_flags
2959 ".ARM.attributes", // attributes_section
2960 "aeabi" // attributes_vendor
2961 };
2962
2963 // Arm relocate functions class
2964 //
2965
2966 template<bool big_endian>
2967 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2968 {
2969 public:
2970 typedef enum
2971 {
2972 STATUS_OKAY, // No error during relocation.
2973 STATUS_OVERFLOW, // Relocation overflow.
2974 STATUS_BAD_RELOC // Relocation cannot be applied.
2975 } Status;
2976
2977 private:
2978 typedef Relocate_functions<32, big_endian> Base;
2979 typedef Arm_relocate_functions<big_endian> This;
2980
2981 // Encoding of imm16 argument for movt and movw ARM instructions
2982 // from ARM ARM:
2983 //
2984 // imm16 := imm4 | imm12
2985 //
2986 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2987 // +-------+---------------+-------+-------+-----------------------+
2988 // | | |imm4 | |imm12 |
2989 // +-------+---------------+-------+-------+-----------------------+
2990
2991 // Extract the relocation addend from VAL based on the ARM
2992 // instruction encoding described above.
2993 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2994 extract_arm_movw_movt_addend(
2995 typename elfcpp::Swap<32, big_endian>::Valtype val)
2996 {
2997 // According to the Elf ABI for ARM Architecture the immediate
2998 // field is sign-extended to form the addend.
2999 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3000 }
3001
3002 // Insert X into VAL based on the ARM instruction encoding described
3003 // above.
3004 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005 insert_val_arm_movw_movt(
3006 typename elfcpp::Swap<32, big_endian>::Valtype val,
3007 typename elfcpp::Swap<32, big_endian>::Valtype x)
3008 {
3009 val &= 0xfff0f000;
3010 val |= x & 0x0fff;
3011 val |= (x & 0xf000) << 4;
3012 return val;
3013 }
3014
3015 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3016 // from ARM ARM:
3017 //
3018 // imm16 := imm4 | i | imm3 | imm8
3019 //
3020 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3021 // +---------+-+-----------+-------++-+-----+-------+---------------+
3022 // | |i| |imm4 || |imm3 | |imm8 |
3023 // +---------+-+-----------+-------++-+-----+-------+---------------+
3024
3025 // Extract the relocation addend from VAL based on the Thumb2
3026 // instruction encoding described above.
3027 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3028 extract_thumb_movw_movt_addend(
3029 typename elfcpp::Swap<32, big_endian>::Valtype val)
3030 {
3031 // According to the Elf ABI for ARM Architecture the immediate
3032 // field is sign-extended to form the addend.
3033 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3034 | ((val >> 15) & 0x0800)
3035 | ((val >> 4) & 0x0700)
3036 | (val & 0x00ff));
3037 }
3038
3039 // Insert X into VAL based on the Thumb2 instruction encoding
3040 // described above.
3041 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3042 insert_val_thumb_movw_movt(
3043 typename elfcpp::Swap<32, big_endian>::Valtype val,
3044 typename elfcpp::Swap<32, big_endian>::Valtype x)
3045 {
3046 val &= 0xfbf08f00;
3047 val |= (x & 0xf000) << 4;
3048 val |= (x & 0x0800) << 15;
3049 val |= (x & 0x0700) << 4;
3050 val |= (x & 0x00ff);
3051 return val;
3052 }
3053
3054 // Calculate the smallest constant Kn for the specified residual.
3055 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3056 static uint32_t
3057 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3058 {
3059 int32_t msb;
3060
3061 if (residual == 0)
3062 return 0;
3063 // Determine the most significant bit in the residual and
3064 // align the resulting value to a 2-bit boundary.
3065 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3066 ;
3067 // The desired shift is now (msb - 6), or zero, whichever
3068 // is the greater.
3069 return (((msb - 6) < 0) ? 0 : (msb - 6));
3070 }
3071
3072 // Calculate the final residual for the specified group index.
3073 // If the passed group index is less than zero, the method will return
3074 // the value of the specified residual without any change.
3075 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3076 static typename elfcpp::Swap<32, big_endian>::Valtype
3077 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3078 const int group)
3079 {
3080 for (int n = 0; n <= group; n++)
3081 {
3082 // Calculate which part of the value to mask.
3083 uint32_t shift = calc_grp_kn(residual);
3084 // Calculate the residual for the next time around.
3085 residual &= ~(residual & (0xff << shift));
3086 }
3087
3088 return residual;
3089 }
3090
3091 // Calculate the value of Gn for the specified group index.
3092 // We return it in the form of an encoded constant-and-rotation.
3093 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3094 static typename elfcpp::Swap<32, big_endian>::Valtype
3095 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3096 const int group)
3097 {
3098 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3099 uint32_t shift = 0;
3100
3101 for (int n = 0; n <= group; n++)
3102 {
3103 // Calculate which part of the value to mask.
3104 shift = calc_grp_kn(residual);
3105 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3106 gn = residual & (0xff << shift);
3107 // Calculate the residual for the next time around.
3108 residual &= ~gn;
3109 }
3110 // Return Gn in the form of an encoded constant-and-rotation.
3111 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3112 }
3113
3114 public:
3115 // Handle ARM long branches.
3116 static typename This::Status
3117 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3118 unsigned char*, const Sized_symbol<32>*,
3119 const Arm_relobj<big_endian>*, unsigned int,
3120 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3121
3122 // Handle THUMB long branches.
3123 static typename This::Status
3124 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3125 unsigned char*, const Sized_symbol<32>*,
3126 const Arm_relobj<big_endian>*, unsigned int,
3127 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3128
3129
3130 // Return the branch offset of a 32-bit THUMB branch.
3131 static inline int32_t
3132 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3133 {
3134 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3135 // involving the J1 and J2 bits.
3136 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3137 uint32_t upper = upper_insn & 0x3ffU;
3138 uint32_t lower = lower_insn & 0x7ffU;
3139 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3140 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3141 uint32_t i1 = j1 ^ s ? 0 : 1;
3142 uint32_t i2 = j2 ^ s ? 0 : 1;
3143
3144 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3145 | (upper << 12) | (lower << 1));
3146 }
3147
3148 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3149 // UPPER_INSN is the original upper instruction of the branch. Caller is
3150 // responsible for overflow checking and BLX offset adjustment.
3151 static inline uint16_t
3152 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3153 {
3154 uint32_t s = offset < 0 ? 1 : 0;
3155 uint32_t bits = static_cast<uint32_t>(offset);
3156 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3157 }
3158
3159 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3160 // LOWER_INSN is the original lower instruction of the branch. Caller is
3161 // responsible for overflow checking and BLX offset adjustment.
3162 static inline uint16_t
3163 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3164 {
3165 uint32_t s = offset < 0 ? 1 : 0;
3166 uint32_t bits = static_cast<uint32_t>(offset);
3167 return ((lower_insn & ~0x2fffU)
3168 | ((((bits >> 23) & 1) ^ !s) << 13)
3169 | ((((bits >> 22) & 1) ^ !s) << 11)
3170 | ((bits >> 1) & 0x7ffU));
3171 }
3172
3173 // Return the branch offset of a 32-bit THUMB conditional branch.
3174 static inline int32_t
3175 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3176 {
3177 uint32_t s = (upper_insn & 0x0400U) >> 10;
3178 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3179 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3180 uint32_t lower = (lower_insn & 0x07ffU);
3181 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3182
3183 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3184 }
3185
3186 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3187 // instruction. UPPER_INSN is the original upper instruction of the branch.
3188 // Caller is responsible for overflow checking.
3189 static inline uint16_t
3190 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3191 {
3192 uint32_t s = offset < 0 ? 1 : 0;
3193 uint32_t bits = static_cast<uint32_t>(offset);
3194 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3195 }
3196
3197 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3198 // instruction. LOWER_INSN is the original lower instruction of the branch.
3199 // The caller is responsible for overflow checking.
3200 static inline uint16_t
3201 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3202 {
3203 uint32_t bits = static_cast<uint32_t>(offset);
3204 uint32_t j2 = (bits & 0x00080000U) >> 19;
3205 uint32_t j1 = (bits & 0x00040000U) >> 18;
3206 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3207
3208 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3209 }
3210
3211 // R_ARM_ABS8: S + A
3212 static inline typename This::Status
3213 abs8(unsigned char* view,
3214 const Sized_relobj_file<32, big_endian>* object,
3215 const Symbol_value<32>* psymval)
3216 {
3217 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3218 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3219 Valtype* wv = reinterpret_cast<Valtype*>(view);
3220 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3221 Reltype addend = utils::sign_extend<8>(val);
3222 Reltype x = psymval->value(object, addend);
3223 val = utils::bit_select(val, x, 0xffU);
3224 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3225
3226 // R_ARM_ABS8 permits signed or unsigned results.
3227 int signed_x = static_cast<int32_t>(x);
3228 return ((signed_x < -128 || signed_x > 255)
3229 ? This::STATUS_OVERFLOW
3230 : This::STATUS_OKAY);
3231 }
3232
3233 // R_ARM_THM_ABS5: S + A
3234 static inline typename This::Status
3235 thm_abs5(unsigned char* view,
3236 const Sized_relobj_file<32, big_endian>* object,
3237 const Symbol_value<32>* psymval)
3238 {
3239 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3240 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3241 Valtype* wv = reinterpret_cast<Valtype*>(view);
3242 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3243 Reltype addend = (val & 0x7e0U) >> 6;
3244 Reltype x = psymval->value(object, addend);
3245 val = utils::bit_select(val, x << 6, 0x7e0U);
3246 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3247
3248 // R_ARM_ABS16 permits signed or unsigned results.
3249 int signed_x = static_cast<int32_t>(x);
3250 return ((signed_x < -32768 || signed_x > 65535)
3251 ? This::STATUS_OVERFLOW
3252 : This::STATUS_OKAY);
3253 }
3254
3255 // R_ARM_ABS12: S + A
3256 static inline typename This::Status
3257 abs12(unsigned char* view,
3258 const Sized_relobj_file<32, big_endian>* object,
3259 const Symbol_value<32>* psymval)
3260 {
3261 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3262 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3263 Valtype* wv = reinterpret_cast<Valtype*>(view);
3264 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3265 Reltype addend = val & 0x0fffU;
3266 Reltype x = psymval->value(object, addend);
3267 val = utils::bit_select(val, x, 0x0fffU);
3268 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3269 return (utils::has_overflow<12>(x)
3270 ? This::STATUS_OVERFLOW
3271 : This::STATUS_OKAY);
3272 }
3273
3274 // R_ARM_ABS16: S + A
3275 static inline typename This::Status
3276 abs16(unsigned char* view,
3277 const Sized_relobj_file<32, big_endian>* object,
3278 const Symbol_value<32>* psymval)
3279 {
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3284 Reltype addend = utils::sign_extend<16>(val);
3285 Reltype x = psymval->value(object, addend);
3286 val = utils::bit_select(val, x, 0xffffU);
3287 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3288 return (utils::has_signed_unsigned_overflow<16>(x)
3289 ? This::STATUS_OVERFLOW
3290 : This::STATUS_OKAY);
3291 }
3292
3293 // R_ARM_ABS32: (S + A) | T
3294 static inline typename This::Status
3295 abs32(unsigned char* view,
3296 const Sized_relobj_file<32, big_endian>* object,
3297 const Symbol_value<32>* psymval,
3298 Arm_address thumb_bit)
3299 {
3300 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3301 Valtype* wv = reinterpret_cast<Valtype*>(view);
3302 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3303 Valtype x = psymval->value(object, addend) | thumb_bit;
3304 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3305 return This::STATUS_OKAY;
3306 }
3307
3308 // R_ARM_REL32: (S + A) | T - P
3309 static inline typename This::Status
3310 rel32(unsigned char* view,
3311 const Sized_relobj_file<32, big_endian>* object,
3312 const Symbol_value<32>* psymval,
3313 Arm_address address,
3314 Arm_address thumb_bit)
3315 {
3316 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3317 Valtype* wv = reinterpret_cast<Valtype*>(view);
3318 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3319 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3320 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3321 return This::STATUS_OKAY;
3322 }
3323
3324 // R_ARM_THM_JUMP24: (S + A) | T - P
3325 static typename This::Status
3326 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3327 const Symbol_value<32>* psymval, Arm_address address,
3328 Arm_address thumb_bit);
3329
3330 // R_ARM_THM_JUMP6: S + A – P
3331 static inline typename This::Status
3332 thm_jump6(unsigned char* view,
3333 const Sized_relobj_file<32, big_endian>* object,
3334 const Symbol_value<32>* psymval,
3335 Arm_address address)
3336 {
3337 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3338 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3339 Valtype* wv = reinterpret_cast<Valtype*>(view);
3340 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3341 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3342 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3343 Reltype x = (psymval->value(object, addend) - address);
3344 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3345 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3346 // CZB does only forward jumps.
3347 return ((x > 0x007e)
3348 ? This::STATUS_OVERFLOW
3349 : This::STATUS_OKAY);
3350 }
3351
3352 // R_ARM_THM_JUMP8: S + A – P
3353 static inline typename This::Status
3354 thm_jump8(unsigned char* view,
3355 const Sized_relobj_file<32, big_endian>* object,
3356 const Symbol_value<32>* psymval,
3357 Arm_address address)
3358 {
3359 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3360 Valtype* wv = reinterpret_cast<Valtype*>(view);
3361 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3362 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3363 int32_t x = (psymval->value(object, addend) - address);
3364 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3365 | ((x & 0x01fe) >> 1)));
3366 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3367 return (utils::has_overflow<9>(x)
3368 ? This::STATUS_OVERFLOW
3369 : This::STATUS_OKAY);
3370 }
3371
3372 // R_ARM_THM_JUMP11: S + A – P
3373 static inline typename This::Status
3374 thm_jump11(unsigned char* view,
3375 const Sized_relobj_file<32, big_endian>* object,
3376 const Symbol_value<32>* psymval,
3377 Arm_address address)
3378 {
3379 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3380 Valtype* wv = reinterpret_cast<Valtype*>(view);
3381 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3382 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3383 int32_t x = (psymval->value(object, addend) - address);
3384 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3385 | ((x & 0x0ffe) >> 1)));
3386 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3387 return (utils::has_overflow<12>(x)
3388 ? This::STATUS_OVERFLOW
3389 : This::STATUS_OKAY);
3390 }
3391
3392 // R_ARM_BASE_PREL: B(S) + A - P
3393 static inline typename This::Status
3394 base_prel(unsigned char* view,
3395 Arm_address origin,
3396 Arm_address address)
3397 {
3398 Base::rel32(view, origin - address);
3399 return STATUS_OKAY;
3400 }
3401
3402 // R_ARM_BASE_ABS: B(S) + A
3403 static inline typename This::Status
3404 base_abs(unsigned char* view,
3405 Arm_address origin)
3406 {
3407 Base::rel32(view, origin);
3408 return STATUS_OKAY;
3409 }
3410
3411 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3412 static inline typename This::Status
3413 got_brel(unsigned char* view,
3414 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3415 {
3416 Base::rel32(view, got_offset);
3417 return This::STATUS_OKAY;
3418 }
3419
3420 // R_ARM_GOT_PREL: GOT(S) + A - P
3421 static inline typename This::Status
3422 got_prel(unsigned char* view,
3423 Arm_address got_entry,
3424 Arm_address address)
3425 {
3426 Base::rel32(view, got_entry - address);
3427 return This::STATUS_OKAY;
3428 }
3429
3430 // R_ARM_PREL: (S + A) | T - P
3431 static inline typename This::Status
3432 prel31(unsigned char* view,
3433 const Sized_relobj_file<32, big_endian>* object,
3434 const Symbol_value<32>* psymval,
3435 Arm_address address,
3436 Arm_address thumb_bit)
3437 {
3438 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3439 Valtype* wv = reinterpret_cast<Valtype*>(view);
3440 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3441 Valtype addend = utils::sign_extend<31>(val);
3442 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3443 val = utils::bit_select(val, x, 0x7fffffffU);
3444 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3445 return (utils::has_overflow<31>(x) ?
3446 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3447 }
3448
3449 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3450 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3451 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3452 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3453 static inline typename This::Status
3454 movw(unsigned char* view,
3455 const Sized_relobj_file<32, big_endian>* object,
3456 const Symbol_value<32>* psymval,
3457 Arm_address relative_address_base,
3458 Arm_address thumb_bit,
3459 bool check_overflow)
3460 {
3461 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3462 Valtype* wv = reinterpret_cast<Valtype*>(view);
3463 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3464 Valtype addend = This::extract_arm_movw_movt_addend(val);
3465 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3466 - relative_address_base);
3467 val = This::insert_val_arm_movw_movt(val, x);
3468 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3469 return ((check_overflow && utils::has_overflow<16>(x))
3470 ? This::STATUS_OVERFLOW
3471 : This::STATUS_OKAY);
3472 }
3473
3474 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3475 // R_ARM_MOVT_PREL: S + A - P
3476 // R_ARM_MOVT_BREL: S + A - B(S)
3477 static inline typename This::Status
3478 movt(unsigned char* view,
3479 const Sized_relobj_file<32, big_endian>* object,
3480 const Symbol_value<32>* psymval,
3481 Arm_address relative_address_base)
3482 {
3483 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3484 Valtype* wv = reinterpret_cast<Valtype*>(view);
3485 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3486 Valtype addend = This::extract_arm_movw_movt_addend(val);
3487 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3488 val = This::insert_val_arm_movw_movt(val, x);
3489 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3490 // FIXME: IHI0044D says that we should check for overflow.
3491 return This::STATUS_OKAY;
3492 }
3493
3494 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3495 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3496 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3497 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3498 static inline typename This::Status
3499 thm_movw(unsigned char* view,
3500 const Sized_relobj_file<32, big_endian>* object,
3501 const Symbol_value<32>* psymval,
3502 Arm_address relative_address_base,
3503 Arm_address thumb_bit,
3504 bool check_overflow)
3505 {
3506 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3507 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3508 Valtype* wv = reinterpret_cast<Valtype*>(view);
3509 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3510 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3511 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3512 Reltype x =
3513 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3514 val = This::insert_val_thumb_movw_movt(val, x);
3515 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3516 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3517 return ((check_overflow && utils::has_overflow<16>(x))
3518 ? This::STATUS_OVERFLOW
3519 : This::STATUS_OKAY);
3520 }
3521
3522 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3523 // R_ARM_THM_MOVT_PREL: S + A - P
3524 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3525 static inline typename This::Status
3526 thm_movt(unsigned char* view,
3527 const Sized_relobj_file<32, big_endian>* object,
3528 const Symbol_value<32>* psymval,
3529 Arm_address relative_address_base)
3530 {
3531 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3532 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3533 Valtype* wv = reinterpret_cast<Valtype*>(view);
3534 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3535 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3536 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3537 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3538 val = This::insert_val_thumb_movw_movt(val, x);
3539 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3540 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3541 return This::STATUS_OKAY;
3542 }
3543
3544 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3545 static inline typename This::Status
3546 thm_alu11(unsigned char* view,
3547 const Sized_relobj_file<32, big_endian>* object,
3548 const Symbol_value<32>* psymval,
3549 Arm_address address,
3550 Arm_address thumb_bit)
3551 {
3552 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3553 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3554 Valtype* wv = reinterpret_cast<Valtype*>(view);
3555 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3556 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3557
3558 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3559 // -----------------------------------------------------------------------
3560 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3561 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3562 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3563 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3564 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3565 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3566
3567 // Determine a sign for the addend.
3568 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3569 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3570 // Thumb2 addend encoding:
3571 // imm12 := i | imm3 | imm8
3572 int32_t addend = (insn & 0xff)
3573 | ((insn & 0x00007000) >> 4)
3574 | ((insn & 0x04000000) >> 15);
3575 // Apply a sign to the added.
3576 addend *= sign;
3577
3578 int32_t x = (psymval->value(object, addend) | thumb_bit)
3579 - (address & 0xfffffffc);
3580 Reltype val = abs(x);
3581 // Mask out the value and a distinct part of the ADD/SUB opcode
3582 // (bits 7:5 of opword).
3583 insn = (insn & 0xfb0f8f00)
3584 | (val & 0xff)
3585 | ((val & 0x700) << 4)
3586 | ((val & 0x800) << 15);
3587 // Set the opcode according to whether the value to go in the
3588 // place is negative.
3589 if (x < 0)
3590 insn |= 0x00a00000;
3591
3592 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3593 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3594 return ((val > 0xfff) ?
3595 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3596 }
3597
3598 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3599 static inline typename This::Status
3600 thm_pc8(unsigned char* view,
3601 const Sized_relobj_file<32, big_endian>* object,
3602 const Symbol_value<32>* psymval,
3603 Arm_address address)
3604 {
3605 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3606 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3607 Valtype* wv = reinterpret_cast<Valtype*>(view);
3608 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3609 Reltype addend = ((insn & 0x00ff) << 2);
3610 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3611 Reltype val = abs(x);
3612 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3613
3614 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3615 return ((val > 0x03fc)
3616 ? This::STATUS_OVERFLOW
3617 : This::STATUS_OKAY);
3618 }
3619
3620 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3621 static inline typename This::Status
3622 thm_pc12(unsigned char* view,
3623 const Sized_relobj_file<32, big_endian>* object,
3624 const Symbol_value<32>* psymval,
3625 Arm_address address)
3626 {
3627 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3628 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3629 Valtype* wv = reinterpret_cast<Valtype*>(view);
3630 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3631 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3632 // Determine a sign for the addend (positive if the U bit is 1).
3633 const int sign = (insn & 0x00800000) ? 1 : -1;
3634 int32_t addend = (insn & 0xfff);
3635 // Apply a sign to the added.
3636 addend *= sign;
3637
3638 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3639 Reltype val = abs(x);
3640 // Mask out and apply the value and the U bit.
3641 insn = (insn & 0xff7ff000) | (val & 0xfff);
3642 // Set the U bit according to whether the value to go in the
3643 // place is positive.
3644 if (x >= 0)
3645 insn |= 0x00800000;
3646
3647 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3648 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3649 return ((val > 0xfff) ?
3650 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3651 }
3652
3653 // R_ARM_V4BX
3654 static inline typename This::Status
3655 v4bx(const Relocate_info<32, big_endian>* relinfo,
3656 unsigned char* view,
3657 const Arm_relobj<big_endian>* object,
3658 const Arm_address address,
3659 const bool is_interworking)
3660 {
3661
3662 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3663 Valtype* wv = reinterpret_cast<Valtype*>(view);
3664 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3665
3666 // Ensure that we have a BX instruction.
3667 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3668 const uint32_t reg = (val & 0xf);
3669 if (is_interworking && reg != 0xf)
3670 {
3671 Stub_table<big_endian>* stub_table =
3672 object->stub_table(relinfo->data_shndx);
3673 gold_assert(stub_table != NULL);
3674
3675 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3676 gold_assert(stub != NULL);
3677
3678 int32_t veneer_address =
3679 stub_table->address() + stub->offset() - 8 - address;
3680 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3681 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3682 // Replace with a branch to veneer (B <addr>)
3683 val = (val & 0xf0000000) | 0x0a000000
3684 | ((veneer_address >> 2) & 0x00ffffff);
3685 }
3686 else
3687 {
3688 // Preserve Rm (lowest four bits) and the condition code
3689 // (highest four bits). Other bits encode MOV PC,Rm.
3690 val = (val & 0xf000000f) | 0x01a0f000;
3691 }
3692 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3693 return This::STATUS_OKAY;
3694 }
3695
3696 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3697 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3698 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3699 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3700 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3701 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3702 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3703 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3704 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3705 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3706 static inline typename This::Status
3707 arm_grp_alu(unsigned char* view,
3708 const Sized_relobj_file<32, big_endian>* object,
3709 const Symbol_value<32>* psymval,
3710 const int group,
3711 Arm_address address,
3712 Arm_address thumb_bit,
3713 bool check_overflow)
3714 {
3715 gold_assert(group >= 0 && group < 3);
3716 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3717 Valtype* wv = reinterpret_cast<Valtype*>(view);
3718 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3719
3720 // ALU group relocations are allowed only for the ADD/SUB instructions.
3721 // (0x00800000 - ADD, 0x00400000 - SUB)
3722 const Valtype opcode = insn & 0x01e00000;
3723 if (opcode != 0x00800000 && opcode != 0x00400000)
3724 return This::STATUS_BAD_RELOC;
3725
3726 // Determine a sign for the addend.
3727 const int sign = (opcode == 0x00800000) ? 1 : -1;
3728 // shifter = rotate_imm * 2
3729 const uint32_t shifter = (insn & 0xf00) >> 7;
3730 // Initial addend value.
3731 int32_t addend = insn & 0xff;
3732 // Rotate addend right by shifter.
3733 addend = (addend >> shifter) | (addend << (32 - shifter));
3734 // Apply a sign to the added.
3735 addend *= sign;
3736
3737 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3738 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3739 // Check for overflow if required
3740 if (check_overflow
3741 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3742 return This::STATUS_OVERFLOW;
3743
3744 // Mask out the value and the ADD/SUB part of the opcode; take care
3745 // not to destroy the S bit.
3746 insn &= 0xff1ff000;
3747 // Set the opcode according to whether the value to go in the
3748 // place is negative.
3749 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3750 // Encode the offset (encoded Gn).
3751 insn |= gn;
3752
3753 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3754 return This::STATUS_OKAY;
3755 }
3756
3757 // R_ARM_LDR_PC_G0: S + A - P
3758 // R_ARM_LDR_PC_G1: S + A - P
3759 // R_ARM_LDR_PC_G2: S + A - P
3760 // R_ARM_LDR_SB_G0: S + A - B(S)
3761 // R_ARM_LDR_SB_G1: S + A - B(S)
3762 // R_ARM_LDR_SB_G2: S + A - B(S)
3763 static inline typename This::Status
3764 arm_grp_ldr(unsigned char* view,
3765 const Sized_relobj_file<32, big_endian>* object,
3766 const Symbol_value<32>* psymval,
3767 const int group,
3768 Arm_address address)
3769 {
3770 gold_assert(group >= 0 && group < 3);
3771 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3772 Valtype* wv = reinterpret_cast<Valtype*>(view);
3773 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3774
3775 const int sign = (insn & 0x00800000) ? 1 : -1;
3776 int32_t addend = (insn & 0xfff) * sign;
3777 int32_t x = (psymval->value(object, addend) - address);
3778 // Calculate the relevant G(n-1) value to obtain this stage residual.
3779 Valtype residual =
3780 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3781 if (residual >= 0x1000)
3782 return This::STATUS_OVERFLOW;
3783
3784 // Mask out the value and U bit.
3785 insn &= 0xff7ff000;
3786 // Set the U bit for non-negative values.
3787 if (x >= 0)
3788 insn |= 0x00800000;
3789 insn |= residual;
3790
3791 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3792 return This::STATUS_OKAY;
3793 }
3794
3795 // R_ARM_LDRS_PC_G0: S + A - P
3796 // R_ARM_LDRS_PC_G1: S + A - P
3797 // R_ARM_LDRS_PC_G2: S + A - P
3798 // R_ARM_LDRS_SB_G0: S + A - B(S)
3799 // R_ARM_LDRS_SB_G1: S + A - B(S)
3800 // R_ARM_LDRS_SB_G2: S + A - B(S)
3801 static inline typename This::Status
3802 arm_grp_ldrs(unsigned char* view,
3803 const Sized_relobj_file<32, big_endian>* object,
3804 const Symbol_value<32>* psymval,
3805 const int group,
3806 Arm_address address)
3807 {
3808 gold_assert(group >= 0 && group < 3);
3809 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3810 Valtype* wv = reinterpret_cast<Valtype*>(view);
3811 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3812
3813 const int sign = (insn & 0x00800000) ? 1 : -1;
3814 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3815 int32_t x = (psymval->value(object, addend) - address);
3816 // Calculate the relevant G(n-1) value to obtain this stage residual.
3817 Valtype residual =
3818 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3819 if (residual >= 0x100)
3820 return This::STATUS_OVERFLOW;
3821
3822 // Mask out the value and U bit.
3823 insn &= 0xff7ff0f0;
3824 // Set the U bit for non-negative values.
3825 if (x >= 0)
3826 insn |= 0x00800000;
3827 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3828
3829 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3830 return This::STATUS_OKAY;
3831 }
3832
3833 // R_ARM_LDC_PC_G0: S + A - P
3834 // R_ARM_LDC_PC_G1: S + A - P
3835 // R_ARM_LDC_PC_G2: S + A - P
3836 // R_ARM_LDC_SB_G0: S + A - B(S)
3837 // R_ARM_LDC_SB_G1: S + A - B(S)
3838 // R_ARM_LDC_SB_G2: S + A - B(S)
3839 static inline typename This::Status
3840 arm_grp_ldc(unsigned char* view,
3841 const Sized_relobj_file<32, big_endian>* object,
3842 const Symbol_value<32>* psymval,
3843 const int group,
3844 Arm_address address)
3845 {
3846 gold_assert(group >= 0 && group < 3);
3847 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3848 Valtype* wv = reinterpret_cast<Valtype*>(view);
3849 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3850
3851 const int sign = (insn & 0x00800000) ? 1 : -1;
3852 int32_t addend = ((insn & 0xff) << 2) * sign;
3853 int32_t x = (psymval->value(object, addend) - address);
3854 // Calculate the relevant G(n-1) value to obtain this stage residual.
3855 Valtype residual =
3856 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3857 if ((residual & 0x3) != 0 || residual >= 0x400)
3858 return This::STATUS_OVERFLOW;
3859
3860 // Mask out the value and U bit.
3861 insn &= 0xff7fff00;
3862 // Set the U bit for non-negative values.
3863 if (x >= 0)
3864 insn |= 0x00800000;
3865 insn |= (residual >> 2);
3866
3867 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3868 return This::STATUS_OKAY;
3869 }
3870 };
3871
3872 // Relocate ARM long branches. This handles relocation types
3873 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3874 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3875 // undefined and we do not use PLT in this relocation. In such a case,
3876 // the branch is converted into an NOP.
3877
3878 template<bool big_endian>
3879 typename Arm_relocate_functions<big_endian>::Status
3880 Arm_relocate_functions<big_endian>::arm_branch_common(
3881 unsigned int r_type,
3882 const Relocate_info<32, big_endian>* relinfo,
3883 unsigned char* view,
3884 const Sized_symbol<32>* gsym,
3885 const Arm_relobj<big_endian>* object,
3886 unsigned int r_sym,
3887 const Symbol_value<32>* psymval,
3888 Arm_address address,
3889 Arm_address thumb_bit,
3890 bool is_weakly_undefined_without_plt)
3891 {
3892 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3893 Valtype* wv = reinterpret_cast<Valtype*>(view);
3894 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3895
3896 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3897 && ((val & 0x0f000000UL) == 0x0a000000UL);
3898 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3899 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3900 && ((val & 0x0f000000UL) == 0x0b000000UL);
3901 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3902 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3903
3904 // Check that the instruction is valid.
3905 if (r_type == elfcpp::R_ARM_CALL)
3906 {
3907 if (!insn_is_uncond_bl && !insn_is_blx)
3908 return This::STATUS_BAD_RELOC;
3909 }
3910 else if (r_type == elfcpp::R_ARM_JUMP24)
3911 {
3912 if (!insn_is_b && !insn_is_cond_bl)
3913 return This::STATUS_BAD_RELOC;
3914 }
3915 else if (r_type == elfcpp::R_ARM_PLT32)
3916 {
3917 if (!insn_is_any_branch)
3918 return This::STATUS_BAD_RELOC;
3919 }
3920 else if (r_type == elfcpp::R_ARM_XPC25)
3921 {
3922 // FIXME: AAELF document IH0044C does not say much about it other
3923 // than it being obsolete.
3924 if (!insn_is_any_branch)
3925 return This::STATUS_BAD_RELOC;
3926 }
3927 else
3928 gold_unreachable();
3929
3930 // A branch to an undefined weak symbol is turned into a jump to
3931 // the next instruction unless a PLT entry will be created.
3932 // Do the same for local undefined symbols.
3933 // The jump to the next instruction is optimized as a NOP depending
3934 // on the architecture.
3935 const Target_arm<big_endian>* arm_target =
3936 Target_arm<big_endian>::default_target();
3937 if (is_weakly_undefined_without_plt)
3938 {
3939 gold_assert(!parameters->options().relocatable());
3940 Valtype cond = val & 0xf0000000U;
3941 if (arm_target->may_use_arm_nop())
3942 val = cond | 0x0320f000;
3943 else
3944 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3945 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3946 return This::STATUS_OKAY;
3947 }
3948
3949 Valtype addend = utils::sign_extend<26>(val << 2);
3950 Valtype branch_target = psymval->value(object, addend);
3951 int32_t branch_offset = branch_target - address;
3952
3953 // We need a stub if the branch offset is too large or if we need
3954 // to switch mode.
3955 bool may_use_blx = arm_target->may_use_blx();
3956 Reloc_stub* stub = NULL;
3957
3958 if (!parameters->options().relocatable()
3959 && (utils::has_overflow<26>(branch_offset)
3960 || ((thumb_bit != 0)
3961 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3962 {
3963 Valtype unadjusted_branch_target = psymval->value(object, 0);
3964
3965 Stub_type stub_type =
3966 Reloc_stub::stub_type_for_reloc(r_type, address,
3967 unadjusted_branch_target,
3968 (thumb_bit != 0));
3969 if (stub_type != arm_stub_none)
3970 {
3971 Stub_table<big_endian>* stub_table =
3972 object->stub_table(relinfo->data_shndx);
3973 gold_assert(stub_table != NULL);
3974
3975 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3976 stub = stub_table->find_reloc_stub(stub_key);
3977 gold_assert(stub != NULL);
3978 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3979 branch_target = stub_table->address() + stub->offset() + addend;
3980 branch_offset = branch_target - address;
3981 gold_assert(!utils::has_overflow<26>(branch_offset));
3982 }
3983 }
3984
3985 // At this point, if we still need to switch mode, the instruction
3986 // must either be a BLX or a BL that can be converted to a BLX.
3987 if (thumb_bit != 0)
3988 {
3989 // Turn BL to BLX.
3990 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3991 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3992 }
3993
3994 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3995 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3996 return (utils::has_overflow<26>(branch_offset)
3997 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3998 }
3999
4000 // Relocate THUMB long branches. This handles relocation types
4001 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4002 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4003 // undefined and we do not use PLT in this relocation. In such a case,
4004 // the branch is converted into an NOP.
4005
4006 template<bool big_endian>
4007 typename Arm_relocate_functions<big_endian>::Status
4008 Arm_relocate_functions<big_endian>::thumb_branch_common(
4009 unsigned int r_type,
4010 const Relocate_info<32, big_endian>* relinfo,
4011 unsigned char* view,
4012 const Sized_symbol<32>* gsym,
4013 const Arm_relobj<big_endian>* object,
4014 unsigned int r_sym,
4015 const Symbol_value<32>* psymval,
4016 Arm_address address,
4017 Arm_address thumb_bit,
4018 bool is_weakly_undefined_without_plt)
4019 {
4020 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4021 Valtype* wv = reinterpret_cast<Valtype*>(view);
4022 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4023 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4024
4025 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4026 // into account.
4027 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4028 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4029
4030 // Check that the instruction is valid.
4031 if (r_type == elfcpp::R_ARM_THM_CALL)
4032 {
4033 if (!is_bl_insn && !is_blx_insn)
4034 return This::STATUS_BAD_RELOC;
4035 }
4036 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4037 {
4038 // This cannot be a BLX.
4039 if (!is_bl_insn)
4040 return This::STATUS_BAD_RELOC;
4041 }
4042 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4043 {
4044 // Check for Thumb to Thumb call.
4045 if (!is_blx_insn)
4046 return This::STATUS_BAD_RELOC;
4047 if (thumb_bit != 0)
4048 {
4049 gold_warning(_("%s: Thumb BLX instruction targets "
4050 "thumb function '%s'."),
4051 object->name().c_str(),
4052 (gsym ? gsym->name() : "(local)"));
4053 // Convert BLX to BL.
4054 lower_insn |= 0x1000U;
4055 }
4056 }
4057 else
4058 gold_unreachable();
4059
4060 // A branch to an undefined weak symbol is turned into a jump to
4061 // the next instruction unless a PLT entry will be created.
4062 // The jump to the next instruction is optimized as a NOP.W for
4063 // Thumb-2 enabled architectures.
4064 const Target_arm<big_endian>* arm_target =
4065 Target_arm<big_endian>::default_target();
4066 if (is_weakly_undefined_without_plt)
4067 {
4068 gold_assert(!parameters->options().relocatable());
4069 if (arm_target->may_use_thumb2_nop())
4070 {
4071 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4072 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4073 }
4074 else
4075 {
4076 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4077 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4078 }
4079 return This::STATUS_OKAY;
4080 }
4081
4082 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4083 Arm_address branch_target = psymval->value(object, addend);
4084
4085 // For BLX, bit 1 of target address comes from bit 1 of base address.
4086 bool may_use_blx = arm_target->may_use_blx();
4087 if (thumb_bit == 0 && may_use_blx)
4088 branch_target = utils::bit_select(branch_target, address, 0x2);
4089
4090 int32_t branch_offset = branch_target - address;
4091
4092 // We need a stub if the branch offset is too large or if we need
4093 // to switch mode.
4094 bool thumb2 = arm_target->using_thumb2();
4095 if (!parameters->options().relocatable()
4096 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4097 || (thumb2 && utils::has_overflow<25>(branch_offset))
4098 || ((thumb_bit == 0)
4099 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4100 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4101 {
4102 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4103
4104 Stub_type stub_type =
4105 Reloc_stub::stub_type_for_reloc(r_type, address,
4106 unadjusted_branch_target,
4107 (thumb_bit != 0));
4108
4109 if (stub_type != arm_stub_none)
4110 {
4111 Stub_table<big_endian>* stub_table =
4112 object->stub_table(relinfo->data_shndx);
4113 gold_assert(stub_table != NULL);
4114
4115 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4116 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4117 gold_assert(stub != NULL);
4118 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4119 branch_target = stub_table->address() + stub->offset() + addend;
4120 if (thumb_bit == 0 && may_use_blx)
4121 branch_target = utils::bit_select(branch_target, address, 0x2);
4122 branch_offset = branch_target - address;
4123 }
4124 }
4125
4126 // At this point, if we still need to switch mode, the instruction
4127 // must either be a BLX or a BL that can be converted to a BLX.
4128 if (thumb_bit == 0)
4129 {
4130 gold_assert(may_use_blx
4131 && (r_type == elfcpp::R_ARM_THM_CALL
4132 || r_type == elfcpp::R_ARM_THM_XPC22));
4133 // Make sure this is a BLX.
4134 lower_insn &= ~0x1000U;
4135 }
4136 else
4137 {
4138 // Make sure this is a BL.
4139 lower_insn |= 0x1000U;
4140 }
4141
4142 // For a BLX instruction, make sure that the relocation is rounded up
4143 // to a word boundary. This follows the semantics of the instruction
4144 // which specifies that bit 1 of the target address will come from bit
4145 // 1 of the base address.
4146 if ((lower_insn & 0x5000U) == 0x4000U)
4147 gold_assert((branch_offset & 3) == 0);
4148
4149 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4150 // We use the Thumb-2 encoding, which is safe even if dealing with
4151 // a Thumb-1 instruction by virtue of our overflow check above. */
4152 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4153 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4154
4155 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4156 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4157
4158 gold_assert(!utils::has_overflow<25>(branch_offset));
4159
4160 return ((thumb2
4161 ? utils::has_overflow<25>(branch_offset)
4162 : utils::has_overflow<23>(branch_offset))
4163 ? This::STATUS_OVERFLOW
4164 : This::STATUS_OKAY);
4165 }
4166
4167 // Relocate THUMB-2 long conditional branches.
4168 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4169 // undefined and we do not use PLT in this relocation. In such a case,
4170 // the branch is converted into an NOP.
4171
4172 template<bool big_endian>
4173 typename Arm_relocate_functions<big_endian>::Status
4174 Arm_relocate_functions<big_endian>::thm_jump19(
4175 unsigned char* view,
4176 const Arm_relobj<big_endian>* object,
4177 const Symbol_value<32>* psymval,
4178 Arm_address address,
4179 Arm_address thumb_bit)
4180 {
4181 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4182 Valtype* wv = reinterpret_cast<Valtype*>(view);
4183 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4184 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4185 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4186
4187 Arm_address branch_target = psymval->value(object, addend);
4188 int32_t branch_offset = branch_target - address;
4189
4190 // ??? Should handle interworking? GCC might someday try to
4191 // use this for tail calls.
4192 // FIXME: We do support thumb entry to PLT yet.
4193 if (thumb_bit == 0)
4194 {
4195 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4196 return This::STATUS_BAD_RELOC;
4197 }
4198
4199 // Put RELOCATION back into the insn.
4200 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4201 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4202
4203 // Put the relocated value back in the object file:
4204 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4205 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4206
4207 return (utils::has_overflow<21>(branch_offset)
4208 ? This::STATUS_OVERFLOW
4209 : This::STATUS_OKAY);
4210 }
4211
4212 // Get the GOT section, creating it if necessary.
4213
4214 template<bool big_endian>
4215 Arm_output_data_got<big_endian>*
4216 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4217 {
4218 if (this->got_ == NULL)
4219 {
4220 gold_assert(symtab != NULL && layout != NULL);
4221
4222 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4223
4224 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4225 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4226 this->got_, ORDER_DATA, false);
4227
4228 // The old GNU linker creates a .got.plt section. We just
4229 // create another set of data in the .got section. Note that we
4230 // always create a PLT if we create a GOT, although the PLT
4231 // might be empty.
4232 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4233 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4234 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4235 this->got_plt_, ORDER_DATA, false);
4236
4237 // The first three entries are reserved.
4238 this->got_plt_->set_current_data_size(3 * 4);
4239
4240 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4241 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4242 Symbol_table::PREDEFINED,
4243 this->got_plt_,
4244 0, 0, elfcpp::STT_OBJECT,
4245 elfcpp::STB_LOCAL,
4246 elfcpp::STV_HIDDEN, 0,
4247 false, false);
4248 }
4249 return this->got_;
4250 }
4251
4252 // Get the dynamic reloc section, creating it if necessary.
4253
4254 template<bool big_endian>
4255 typename Target_arm<big_endian>::Reloc_section*
4256 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4257 {
4258 if (this->rel_dyn_ == NULL)
4259 {
4260 gold_assert(layout != NULL);
4261 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4262 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4263 elfcpp::SHF_ALLOC, this->rel_dyn_,
4264 ORDER_DYNAMIC_RELOCS, false);
4265 }
4266 return this->rel_dyn_;
4267 }
4268
4269 // Insn_template methods.
4270
4271 // Return byte size of an instruction template.
4272
4273 size_t
4274 Insn_template::size() const
4275 {
4276 switch (this->type())
4277 {
4278 case THUMB16_TYPE:
4279 case THUMB16_SPECIAL_TYPE:
4280 return 2;
4281 case ARM_TYPE:
4282 case THUMB32_TYPE:
4283 case DATA_TYPE:
4284 return 4;
4285 default:
4286 gold_unreachable();
4287 }
4288 }
4289
4290 // Return alignment of an instruction template.
4291
4292 unsigned
4293 Insn_template::alignment() const
4294 {
4295 switch (this->type())
4296 {
4297 case THUMB16_TYPE:
4298 case THUMB16_SPECIAL_TYPE:
4299 case THUMB32_TYPE:
4300 return 2;
4301 case ARM_TYPE:
4302 case DATA_TYPE:
4303 return 4;
4304 default:
4305 gold_unreachable();
4306 }
4307 }
4308
4309 // Stub_template methods.
4310
4311 Stub_template::Stub_template(
4312 Stub_type type, const Insn_template* insns,
4313 size_t insn_count)
4314 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4315 entry_in_thumb_mode_(false), relocs_()
4316 {
4317 off_t offset = 0;
4318
4319 // Compute byte size and alignment of stub template.
4320 for (size_t i = 0; i < insn_count; i++)
4321 {
4322 unsigned insn_alignment = insns[i].alignment();
4323 size_t insn_size = insns[i].size();
4324 gold_assert((offset & (insn_alignment - 1)) == 0);
4325 this->alignment_ = std::max(this->alignment_, insn_alignment);
4326 switch (insns[i].type())
4327 {
4328 case Insn_template::THUMB16_TYPE:
4329 case Insn_template::THUMB16_SPECIAL_TYPE:
4330 if (i == 0)
4331 this->entry_in_thumb_mode_ = true;
4332 break;
4333
4334 case Insn_template::THUMB32_TYPE:
4335 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4336 this->relocs_.push_back(Reloc(i, offset));
4337 if (i == 0)
4338 this->entry_in_thumb_mode_ = true;
4339 break;
4340
4341 case Insn_template::ARM_TYPE:
4342 // Handle cases where the target is encoded within the
4343 // instruction.
4344 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4345 this->relocs_.push_back(Reloc(i, offset));
4346 break;
4347
4348 case Insn_template::DATA_TYPE:
4349 // Entry point cannot be data.
4350 gold_assert(i != 0);
4351 this->relocs_.push_back(Reloc(i, offset));
4352 break;
4353
4354 default:
4355 gold_unreachable();
4356 }
4357 offset += insn_size;
4358 }
4359 this->size_ = offset;
4360 }
4361
4362 // Stub methods.
4363
4364 // Template to implement do_write for a specific target endianness.
4365
4366 template<bool big_endian>
4367 void inline
4368 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4369 {
4370 const Stub_template* stub_template = this->stub_template();
4371 const Insn_template* insns = stub_template->insns();
4372
4373 // FIXME: We do not handle BE8 encoding yet.
4374 unsigned char* pov = view;
4375 for (size_t i = 0; i < stub_template->insn_count(); i++)
4376 {
4377 switch (insns[i].type())
4378 {
4379 case Insn_template::THUMB16_TYPE:
4380 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4381 break;
4382 case Insn_template::THUMB16_SPECIAL_TYPE:
4383 elfcpp::Swap<16, big_endian>::writeval(
4384 pov,
4385 this->thumb16_special(i));
4386 break;
4387 case Insn_template::THUMB32_TYPE:
4388 {
4389 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4390 uint32_t lo = insns[i].data() & 0xffff;
4391 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4392 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4393 }
4394 break;
4395 case Insn_template::ARM_TYPE:
4396 case Insn_template::DATA_TYPE:
4397 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4398 break;
4399 default:
4400 gold_unreachable();
4401 }
4402 pov += insns[i].size();
4403 }
4404 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4405 }
4406
4407 // Reloc_stub::Key methods.
4408
4409 // Dump a Key as a string for debugging.
4410
4411 std::string
4412 Reloc_stub::Key::name() const
4413 {
4414 if (this->r_sym_ == invalid_index)
4415 {
4416 // Global symbol key name
4417 // <stub-type>:<symbol name>:<addend>.
4418 const std::string sym_name = this->u_.symbol->name();
4419 // We need to print two hex number and two colons. So just add 100 bytes
4420 // to the symbol name size.
4421 size_t len = sym_name.size() + 100;
4422 char* buffer = new char[len];
4423 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4424 sym_name.c_str(), this->addend_);
4425 gold_assert(c > 0 && c < static_cast<int>(len));
4426 delete[] buffer;
4427 return std::string(buffer);
4428 }
4429 else
4430 {
4431 // local symbol key name
4432 // <stub-type>:<object>:<r_sym>:<addend>.
4433 const size_t len = 200;
4434 char buffer[len];
4435 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4436 this->u_.relobj, this->r_sym_, this->addend_);
4437 gold_assert(c > 0 && c < static_cast<int>(len));
4438 return std::string(buffer);
4439 }
4440 }
4441
4442 // Reloc_stub methods.
4443
4444 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4445 // LOCATION to DESTINATION.
4446 // This code is based on the arm_type_of_stub function in
4447 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4448 // class simple.
4449
4450 Stub_type
4451 Reloc_stub::stub_type_for_reloc(
4452 unsigned int r_type,
4453 Arm_address location,
4454 Arm_address destination,
4455 bool target_is_thumb)
4456 {
4457 Stub_type stub_type = arm_stub_none;
4458
4459 // This is a bit ugly but we want to avoid using a templated class for
4460 // big and little endianities.
4461 bool may_use_blx;
4462 bool should_force_pic_veneer;
4463 bool thumb2;
4464 bool thumb_only;
4465 if (parameters->target().is_big_endian())
4466 {
4467 const Target_arm<true>* big_endian_target =
4468 Target_arm<true>::default_target();
4469 may_use_blx = big_endian_target->may_use_blx();
4470 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4471 thumb2 = big_endian_target->using_thumb2();
4472 thumb_only = big_endian_target->using_thumb_only();
4473 }
4474 else
4475 {
4476 const Target_arm<false>* little_endian_target =
4477 Target_arm<false>::default_target();
4478 may_use_blx = little_endian_target->may_use_blx();
4479 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4480 thumb2 = little_endian_target->using_thumb2();
4481 thumb_only = little_endian_target->using_thumb_only();
4482 }
4483
4484 int64_t branch_offset;
4485 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4486 {
4487 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4488 // base address (instruction address + 4).
4489 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4490 destination = utils::bit_select(destination, location, 0x2);
4491 branch_offset = static_cast<int64_t>(destination) - location;
4492
4493 // Handle cases where:
4494 // - this call goes too far (different Thumb/Thumb2 max
4495 // distance)
4496 // - it's a Thumb->Arm call and blx is not available, or it's a
4497 // Thumb->Arm branch (not bl). A stub is needed in this case.
4498 if ((!thumb2
4499 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4500 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4501 || (thumb2
4502 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4503 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4504 || ((!target_is_thumb)
4505 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4506 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4507 {
4508 if (target_is_thumb)
4509 {
4510 // Thumb to thumb.
4511 if (!thumb_only)
4512 {
4513 stub_type = (parameters->options().shared()
4514 || should_force_pic_veneer)
4515 // PIC stubs.
4516 ? ((may_use_blx
4517 && (r_type == elfcpp::R_ARM_THM_CALL))
4518 // V5T and above. Stub starts with ARM code, so
4519 // we must be able to switch mode before
4520 // reaching it, which is only possible for 'bl'
4521 // (ie R_ARM_THM_CALL relocation).
4522 ? arm_stub_long_branch_any_thumb_pic
4523 // On V4T, use Thumb code only.
4524 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4525
4526 // non-PIC stubs.
4527 : ((may_use_blx
4528 && (r_type == elfcpp::R_ARM_THM_CALL))
4529 ? arm_stub_long_branch_any_any // V5T and above.
4530 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4531 }
4532 else
4533 {
4534 stub_type = (parameters->options().shared()
4535 || should_force_pic_veneer)
4536 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4537 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4538 }
4539 }
4540 else
4541 {
4542 // Thumb to arm.
4543
4544 // FIXME: We should check that the input section is from an
4545 // object that has interwork enabled.
4546
4547 stub_type = (parameters->options().shared()
4548 || should_force_pic_veneer)
4549 // PIC stubs.
4550 ? ((may_use_blx
4551 && (r_type == elfcpp::R_ARM_THM_CALL))
4552 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4553 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4554
4555 // non-PIC stubs.
4556 : ((may_use_blx
4557 && (r_type == elfcpp::R_ARM_THM_CALL))
4558 ? arm_stub_long_branch_any_any // V5T and above.
4559 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4560
4561 // Handle v4t short branches.
4562 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4563 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4564 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4565 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4566 }
4567 }
4568 }
4569 else if (r_type == elfcpp::R_ARM_CALL
4570 || r_type == elfcpp::R_ARM_JUMP24
4571 || r_type == elfcpp::R_ARM_PLT32)
4572 {
4573 branch_offset = static_cast<int64_t>(destination) - location;
4574 if (target_is_thumb)
4575 {
4576 // Arm to thumb.
4577
4578 // FIXME: We should check that the input section is from an
4579 // object that has interwork enabled.
4580
4581 // We have an extra 2-bytes reach because of
4582 // the mode change (bit 24 (H) of BLX encoding).
4583 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4584 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4585 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4586 || (r_type == elfcpp::R_ARM_JUMP24)
4587 || (r_type == elfcpp::R_ARM_PLT32))
4588 {
4589 stub_type = (parameters->options().shared()
4590 || should_force_pic_veneer)
4591 // PIC stubs.
4592 ? (may_use_blx
4593 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4594 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4595
4596 // non-PIC stubs.
4597 : (may_use_blx
4598 ? arm_stub_long_branch_any_any // V5T and above.
4599 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4600 }
4601 }
4602 else
4603 {
4604 // Arm to arm.
4605 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4606 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4607 {
4608 stub_type = (parameters->options().shared()
4609 || should_force_pic_veneer)
4610 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4611 : arm_stub_long_branch_any_any; /// non-PIC.
4612 }
4613 }
4614 }
4615
4616 return stub_type;
4617 }
4618
4619 // Cortex_a8_stub methods.
4620
4621 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4622 // I is the position of the instruction template in the stub template.
4623
4624 uint16_t
4625 Cortex_a8_stub::do_thumb16_special(size_t i)
4626 {
4627 // The only use of this is to copy condition code from a conditional
4628 // branch being worked around to the corresponding conditional branch in
4629 // to the stub.
4630 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4631 && i == 0);
4632 uint16_t data = this->stub_template()->insns()[i].data();
4633 gold_assert((data & 0xff00U) == 0xd000U);
4634 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4635 return data;
4636 }
4637
4638 // Stub_factory methods.
4639
4640 Stub_factory::Stub_factory()
4641 {
4642 // The instruction template sequences are declared as static
4643 // objects and initialized first time the constructor runs.
4644
4645 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4646 // to reach the stub if necessary.
4647 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4648 {
4649 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4650 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4651 // dcd R_ARM_ABS32(X)
4652 };
4653
4654 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4655 // available.
4656 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4657 {
4658 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4659 Insn_template::arm_insn(0xe12fff1c), // bx ip
4660 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4661 // dcd R_ARM_ABS32(X)
4662 };
4663
4664 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4665 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4666 {
4667 Insn_template::thumb16_insn(0xb401), // push {r0}
4668 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4669 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4670 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4671 Insn_template::thumb16_insn(0x4760), // bx ip
4672 Insn_template::thumb16_insn(0xbf00), // nop
4673 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4674 // dcd R_ARM_ABS32(X)
4675 };
4676
4677 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4678 // allowed.
4679 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4680 {
4681 Insn_template::thumb16_insn(0x4778), // bx pc
4682 Insn_template::thumb16_insn(0x46c0), // nop
4683 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4684 Insn_template::arm_insn(0xe12fff1c), // bx ip
4685 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4686 // dcd R_ARM_ABS32(X)
4687 };
4688
4689 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4690 // available.
4691 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4692 {
4693 Insn_template::thumb16_insn(0x4778), // bx pc
4694 Insn_template::thumb16_insn(0x46c0), // nop
4695 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4696 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4697 // dcd R_ARM_ABS32(X)
4698 };
4699
4700 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4701 // one, when the destination is close enough.
4702 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4703 {
4704 Insn_template::thumb16_insn(0x4778), // bx pc
4705 Insn_template::thumb16_insn(0x46c0), // nop
4706 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4707 };
4708
4709 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4710 // blx to reach the stub if necessary.
4711 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4712 {
4713 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4714 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4715 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4716 // dcd R_ARM_REL32(X-4)
4717 };
4718
4719 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4720 // blx to reach the stub if necessary. We can not add into pc;
4721 // it is not guaranteed to mode switch (different in ARMv6 and
4722 // ARMv7).
4723 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4724 {
4725 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4726 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4727 Insn_template::arm_insn(0xe12fff1c), // bx ip
4728 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4729 // dcd R_ARM_REL32(X)
4730 };
4731
4732 // V4T ARM -> ARM long branch stub, PIC.
4733 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4734 {
4735 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4736 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4737 Insn_template::arm_insn(0xe12fff1c), // bx ip
4738 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4739 // dcd R_ARM_REL32(X)
4740 };
4741
4742 // V4T Thumb -> ARM long branch stub, PIC.
4743 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4744 {
4745 Insn_template::thumb16_insn(0x4778), // bx pc
4746 Insn_template::thumb16_insn(0x46c0), // nop
4747 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4748 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4749 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4750 // dcd R_ARM_REL32(X)
4751 };
4752
4753 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4754 // architectures.
4755 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4756 {
4757 Insn_template::thumb16_insn(0xb401), // push {r0}
4758 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4759 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4760 Insn_template::thumb16_insn(0x4484), // add ip, r0
4761 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4762 Insn_template::thumb16_insn(0x4760), // bx ip
4763 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4764 // dcd R_ARM_REL32(X)
4765 };
4766
4767 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4768 // allowed.
4769 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4770 {
4771 Insn_template::thumb16_insn(0x4778), // bx pc
4772 Insn_template::thumb16_insn(0x46c0), // nop
4773 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4774 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4775 Insn_template::arm_insn(0xe12fff1c), // bx ip
4776 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4777 // dcd R_ARM_REL32(X)
4778 };
4779
4780 // Cortex-A8 erratum-workaround stubs.
4781
4782 // Stub used for conditional branches (which may be beyond +/-1MB away,
4783 // so we can't use a conditional branch to reach this stub).
4784
4785 // original code:
4786 //
4787 // b<cond> X
4788 // after:
4789 //
4790 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4791 {
4792 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4793 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4794 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4795 // b.w X
4796 };
4797
4798 // Stub used for b.w and bl.w instructions.
4799
4800 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4801 {
4802 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4803 };
4804
4805 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4806 {
4807 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4808 };
4809
4810 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4811 // instruction (which switches to ARM mode) to point to this stub. Jump to
4812 // the real destination using an ARM-mode branch.
4813 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4814 {
4815 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4816 };
4817
4818 // Stub used to provide an interworking for R_ARM_V4BX relocation
4819 // (bx r[n] instruction).
4820 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4821 {
4822 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4823 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4824 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4825 };
4826
4827 // Fill in the stub template look-up table. Stub templates are constructed
4828 // per instance of Stub_factory for fast look-up without locking
4829 // in a thread-enabled environment.
4830
4831 this->stub_templates_[arm_stub_none] =
4832 new Stub_template(arm_stub_none, NULL, 0);
4833
4834 #define DEF_STUB(x) \
4835 do \
4836 { \
4837 size_t array_size \
4838 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4839 Stub_type type = arm_stub_##x; \
4840 this->stub_templates_[type] = \
4841 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4842 } \
4843 while (0);
4844
4845 DEF_STUBS
4846 #undef DEF_STUB
4847 }
4848
4849 // Stub_table methods.
4850
4851 // Remove all Cortex-A8 stub.
4852
4853 template<bool big_endian>
4854 void
4855 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4856 {
4857 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4858 p != this->cortex_a8_stubs_.end();
4859 ++p)
4860 delete p->second;
4861 this->cortex_a8_stubs_.clear();
4862 }
4863
4864 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4865
4866 template<bool big_endian>
4867 void
4868 Stub_table<big_endian>::relocate_stub(
4869 Stub* stub,
4870 const Relocate_info<32, big_endian>* relinfo,
4871 Target_arm<big_endian>* arm_target,
4872 Output_section* output_section,
4873 unsigned char* view,
4874 Arm_address address,
4875 section_size_type view_size)
4876 {
4877 const Stub_template* stub_template = stub->stub_template();
4878 if (stub_template->reloc_count() != 0)
4879 {
4880 // Adjust view to cover the stub only.
4881 section_size_type offset = stub->offset();
4882 section_size_type stub_size = stub_template->size();
4883 gold_assert(offset + stub_size <= view_size);
4884
4885 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4886 address + offset, stub_size);
4887 }
4888 }
4889
4890 // Relocate all stubs in this stub table.
4891
4892 template<bool big_endian>
4893 void
4894 Stub_table<big_endian>::relocate_stubs(
4895 const Relocate_info<32, big_endian>* relinfo,
4896 Target_arm<big_endian>* arm_target,
4897 Output_section* output_section,
4898 unsigned char* view,
4899 Arm_address address,
4900 section_size_type view_size)
4901 {
4902 // If we are passed a view bigger than the stub table's. we need to
4903 // adjust the view.
4904 gold_assert(address == this->address()
4905 && (view_size
4906 == static_cast<section_size_type>(this->data_size())));
4907
4908 // Relocate all relocation stubs.
4909 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4910 p != this->reloc_stubs_.end();
4911 ++p)
4912 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4913 address, view_size);
4914
4915 // Relocate all Cortex-A8 stubs.
4916 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4917 p != this->cortex_a8_stubs_.end();
4918 ++p)
4919 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4920 address, view_size);
4921
4922 // Relocate all ARM V4BX stubs.
4923 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4924 p != this->arm_v4bx_stubs_.end();
4925 ++p)
4926 {
4927 if (*p != NULL)
4928 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4929 address, view_size);
4930 }
4931 }
4932
4933 // Write out the stubs to file.
4934
4935 template<bool big_endian>
4936 void
4937 Stub_table<big_endian>::do_write(Output_file* of)
4938 {
4939 off_t offset = this->offset();
4940 const section_size_type oview_size =
4941 convert_to_section_size_type(this->data_size());
4942 unsigned char* const oview = of->get_output_view(offset, oview_size);
4943
4944 // Write relocation stubs.
4945 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4946 p != this->reloc_stubs_.end();
4947 ++p)
4948 {
4949 Reloc_stub* stub = p->second;
4950 Arm_address address = this->address() + stub->offset();
4951 gold_assert(address
4952 == align_address(address,
4953 stub->stub_template()->alignment()));
4954 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4955 big_endian);
4956 }
4957
4958 // Write Cortex-A8 stubs.
4959 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4960 p != this->cortex_a8_stubs_.end();
4961 ++p)
4962 {
4963 Cortex_a8_stub* stub = p->second;
4964 Arm_address address = this->address() + stub->offset();
4965 gold_assert(address
4966 == align_address(address,
4967 stub->stub_template()->alignment()));
4968 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4969 big_endian);
4970 }
4971
4972 // Write ARM V4BX relocation stubs.
4973 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4974 p != this->arm_v4bx_stubs_.end();
4975 ++p)
4976 {
4977 if (*p == NULL)
4978 continue;
4979
4980 Arm_address address = this->address() + (*p)->offset();
4981 gold_assert(address
4982 == align_address(address,
4983 (*p)->stub_template()->alignment()));
4984 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4985 big_endian);
4986 }
4987
4988 of->write_output_view(this->offset(), oview_size, oview);
4989 }
4990
4991 // Update the data size and address alignment of the stub table at the end
4992 // of a relaxation pass. Return true if either the data size or the
4993 // alignment changed in this relaxation pass.
4994
4995 template<bool big_endian>
4996 bool
4997 Stub_table<big_endian>::update_data_size_and_addralign()
4998 {
4999 // Go over all stubs in table to compute data size and address alignment.
5000 off_t size = this->reloc_stubs_size_;
5001 unsigned addralign = this->reloc_stubs_addralign_;
5002
5003 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5004 p != this->cortex_a8_stubs_.end();
5005 ++p)
5006 {
5007 const Stub_template* stub_template = p->second->stub_template();
5008 addralign = std::max(addralign, stub_template->alignment());
5009 size = (align_address(size, stub_template->alignment())
5010 + stub_template->size());
5011 }
5012
5013 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5014 p != this->arm_v4bx_stubs_.end();
5015 ++p)
5016 {
5017 if (*p == NULL)
5018 continue;
5019
5020 const Stub_template* stub_template = (*p)->stub_template();
5021 addralign = std::max(addralign, stub_template->alignment());
5022 size = (align_address(size, stub_template->alignment())
5023 + stub_template->size());
5024 }
5025
5026 // Check if either data size or alignment changed in this pass.
5027 // Update prev_data_size_ and prev_addralign_. These will be used
5028 // as the current data size and address alignment for the next pass.
5029 bool changed = size != this->prev_data_size_;
5030 this->prev_data_size_ = size;
5031
5032 if (addralign != this->prev_addralign_)
5033 changed = true;
5034 this->prev_addralign_ = addralign;
5035
5036 return changed;
5037 }
5038
5039 // Finalize the stubs. This sets the offsets of the stubs within the stub
5040 // table. It also marks all input sections needing Cortex-A8 workaround.
5041
5042 template<bool big_endian>
5043 void
5044 Stub_table<big_endian>::finalize_stubs()
5045 {
5046 off_t off = this->reloc_stubs_size_;
5047 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5048 p != this->cortex_a8_stubs_.end();
5049 ++p)
5050 {
5051 Cortex_a8_stub* stub = p->second;
5052 const Stub_template* stub_template = stub->stub_template();
5053 uint64_t stub_addralign = stub_template->alignment();
5054 off = align_address(off, stub_addralign);
5055 stub->set_offset(off);
5056 off += stub_template->size();
5057
5058 // Mark input section so that we can determine later if a code section
5059 // needs the Cortex-A8 workaround quickly.
5060 Arm_relobj<big_endian>* arm_relobj =
5061 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5062 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5063 }
5064
5065 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5066 p != this->arm_v4bx_stubs_.end();
5067 ++p)
5068 {
5069 if (*p == NULL)
5070 continue;
5071
5072 const Stub_template* stub_template = (*p)->stub_template();
5073 uint64_t stub_addralign = stub_template->alignment();
5074 off = align_address(off, stub_addralign);
5075 (*p)->set_offset(off);
5076 off += stub_template->size();
5077 }
5078
5079 gold_assert(off <= this->prev_data_size_);
5080 }
5081
5082 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5083 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5084 // of the address range seen by the linker.
5085
5086 template<bool big_endian>
5087 void
5088 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5089 Target_arm<big_endian>* arm_target,
5090 unsigned char* view,
5091 Arm_address view_address,
5092 section_size_type view_size)
5093 {
5094 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5095 for (Cortex_a8_stub_list::const_iterator p =
5096 this->cortex_a8_stubs_.lower_bound(view_address);
5097 ((p != this->cortex_a8_stubs_.end())
5098 && (p->first < (view_address + view_size)));
5099 ++p)
5100 {
5101 // We do not store the THUMB bit in the LSB of either the branch address
5102 // or the stub offset. There is no need to strip the LSB.
5103 Arm_address branch_address = p->first;
5104 const Cortex_a8_stub* stub = p->second;
5105 Arm_address stub_address = this->address() + stub->offset();
5106
5107 // Offset of the branch instruction relative to this view.
5108 section_size_type offset =
5109 convert_to_section_size_type(branch_address - view_address);
5110 gold_assert((offset + 4) <= view_size);
5111
5112 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5113 view + offset, branch_address);
5114 }
5115 }
5116
5117 // Arm_input_section methods.
5118
5119 // Initialize an Arm_input_section.
5120
5121 template<bool big_endian>
5122 void
5123 Arm_input_section<big_endian>::init()
5124 {
5125 Relobj* relobj = this->relobj();
5126 unsigned int shndx = this->shndx();
5127
5128 // We have to cache original size, alignment and contents to avoid locking
5129 // the original file.
5130 this->original_addralign_ =
5131 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5132
5133 // This is not efficient but we expect only a small number of relaxed
5134 // input sections for stubs.
5135 section_size_type section_size;
5136 const unsigned char* section_contents =
5137 relobj->section_contents(shndx, &section_size, false);
5138 this->original_size_ =
5139 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5140
5141 gold_assert(this->original_contents_ == NULL);
5142 this->original_contents_ = new unsigned char[section_size];
5143 memcpy(this->original_contents_, section_contents, section_size);
5144
5145 // We want to make this look like the original input section after
5146 // output sections are finalized.
5147 Output_section* os = relobj->output_section(shndx);
5148 off_t offset = relobj->output_section_offset(shndx);
5149 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5150 this->set_address(os->address() + offset);
5151 this->set_file_offset(os->offset() + offset);
5152
5153 this->set_current_data_size(this->original_size_);
5154 this->finalize_data_size();
5155 }
5156
5157 template<bool big_endian>
5158 void
5159 Arm_input_section<big_endian>::do_write(Output_file* of)
5160 {
5161 // We have to write out the original section content.
5162 gold_assert(this->original_contents_ != NULL);
5163 of->write(this->offset(), this->original_contents_,
5164 this->original_size_);
5165
5166 // If this owns a stub table and it is not empty, write it.
5167 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5168 this->stub_table_->write(of);
5169 }
5170
5171 // Finalize data size.
5172
5173 template<bool big_endian>
5174 void
5175 Arm_input_section<big_endian>::set_final_data_size()
5176 {
5177 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5178
5179 if (this->is_stub_table_owner())
5180 {
5181 this->stub_table_->finalize_data_size();
5182 off = align_address(off, this->stub_table_->addralign());
5183 off += this->stub_table_->data_size();
5184 }
5185 this->set_data_size(off);
5186 }
5187
5188 // Reset address and file offset.
5189
5190 template<bool big_endian>
5191 void
5192 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5193 {
5194 // Size of the original input section contents.
5195 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5196
5197 // If this is a stub table owner, account for the stub table size.
5198 if (this->is_stub_table_owner())
5199 {
5200 Stub_table<big_endian>* stub_table = this->stub_table_;
5201
5202 // Reset the stub table's address and file offset. The
5203 // current data size for child will be updated after that.
5204 stub_table_->reset_address_and_file_offset();
5205 off = align_address(off, stub_table_->addralign());
5206 off += stub_table->current_data_size();
5207 }
5208
5209 this->set_current_data_size(off);
5210 }
5211
5212 // Arm_exidx_cantunwind methods.
5213
5214 // Write this to Output file OF for a fixed endianness.
5215
5216 template<bool big_endian>
5217 void
5218 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5219 {
5220 off_t offset = this->offset();
5221 const section_size_type oview_size = 8;
5222 unsigned char* const oview = of->get_output_view(offset, oview_size);
5223
5224 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5225 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5226
5227 Output_section* os = this->relobj_->output_section(this->shndx_);
5228 gold_assert(os != NULL);
5229
5230 Arm_relobj<big_endian>* arm_relobj =
5231 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5232 Arm_address output_offset =
5233 arm_relobj->get_output_section_offset(this->shndx_);
5234 Arm_address section_start;
5235 section_size_type section_size;
5236
5237 // Find out the end of the text section referred by this.
5238 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5239 {
5240 section_start = os->address() + output_offset;
5241 const Arm_exidx_input_section* exidx_input_section =
5242 arm_relobj->exidx_input_section_by_link(this->shndx_);
5243 gold_assert(exidx_input_section != NULL);
5244 section_size =
5245 convert_to_section_size_type(exidx_input_section->text_size());
5246 }
5247 else
5248 {
5249 // Currently this only happens for a relaxed section.
5250 const Output_relaxed_input_section* poris =
5251 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5252 gold_assert(poris != NULL);
5253 section_start = poris->address();
5254 section_size = convert_to_section_size_type(poris->data_size());
5255 }
5256
5257 // We always append this to the end of an EXIDX section.
5258 Arm_address output_address = section_start + section_size;
5259
5260 // Write out the entry. The first word either points to the beginning
5261 // or after the end of a text section. The second word is the special
5262 // EXIDX_CANTUNWIND value.
5263 uint32_t prel31_offset = output_address - this->address();
5264 if (utils::has_overflow<31>(offset))
5265 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5266 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5267 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5268
5269 of->write_output_view(this->offset(), oview_size, oview);
5270 }
5271
5272 // Arm_exidx_merged_section methods.
5273
5274 // Constructor for Arm_exidx_merged_section.
5275 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5276 // SECTION_OFFSET_MAP points to a section offset map describing how
5277 // parts of the input section are mapped to output. DELETED_BYTES is
5278 // the number of bytes deleted from the EXIDX input section.
5279
5280 Arm_exidx_merged_section::Arm_exidx_merged_section(
5281 const Arm_exidx_input_section& exidx_input_section,
5282 const Arm_exidx_section_offset_map& section_offset_map,
5283 uint32_t deleted_bytes)
5284 : Output_relaxed_input_section(exidx_input_section.relobj(),
5285 exidx_input_section.shndx(),
5286 exidx_input_section.addralign()),
5287 exidx_input_section_(exidx_input_section),
5288 section_offset_map_(section_offset_map)
5289 {
5290 // If we retain or discard the whole EXIDX input section, we would
5291 // not be here.
5292 gold_assert(deleted_bytes != 0
5293 && deleted_bytes != this->exidx_input_section_.size());
5294
5295 // Fix size here so that we do not need to implement set_final_data_size.
5296 uint32_t size = exidx_input_section.size() - deleted_bytes;
5297 this->set_data_size(size);
5298 this->fix_data_size();
5299
5300 // Allocate buffer for section contents and build contents.
5301 this->section_contents_ = new unsigned char[size];
5302 }
5303
5304 // Build the contents of a merged EXIDX output section.
5305
5306 void
5307 Arm_exidx_merged_section::build_contents(
5308 const unsigned char* original_contents,
5309 section_size_type original_size)
5310 {
5311 // Go over spans of input offsets and write only those that are not
5312 // discarded.
5313 section_offset_type in_start = 0;
5314 section_offset_type out_start = 0;
5315 section_offset_type in_max =
5316 convert_types<section_offset_type>(original_size);
5317 section_offset_type out_max =
5318 convert_types<section_offset_type>(this->data_size());
5319 for (Arm_exidx_section_offset_map::const_iterator p =
5320 this->section_offset_map_.begin();
5321 p != this->section_offset_map_.end();
5322 ++p)
5323 {
5324 section_offset_type in_end = p->first;
5325 gold_assert(in_end >= in_start);
5326 section_offset_type out_end = p->second;
5327 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5328 if (out_end != -1)
5329 {
5330 size_t out_chunk_size =
5331 convert_types<size_t>(out_end - out_start + 1);
5332
5333 gold_assert(out_chunk_size == in_chunk_size
5334 && in_end < in_max && out_end < out_max);
5335
5336 memcpy(this->section_contents_ + out_start,
5337 original_contents + in_start,
5338 out_chunk_size);
5339 out_start += out_chunk_size;
5340 }
5341 in_start += in_chunk_size;
5342 }
5343 }
5344
5345 // Given an input OBJECT, an input section index SHNDX within that
5346 // object, and an OFFSET relative to the start of that input
5347 // section, return whether or not the corresponding offset within
5348 // the output section is known. If this function returns true, it
5349 // sets *POUTPUT to the output offset. The value -1 indicates that
5350 // this input offset is being discarded.
5351
5352 bool
5353 Arm_exidx_merged_section::do_output_offset(
5354 const Relobj* relobj,
5355 unsigned int shndx,
5356 section_offset_type offset,
5357 section_offset_type* poutput) const
5358 {
5359 // We only handle offsets for the original EXIDX input section.
5360 if (relobj != this->exidx_input_section_.relobj()
5361 || shndx != this->exidx_input_section_.shndx())
5362 return false;
5363
5364 section_offset_type section_size =
5365 convert_types<section_offset_type>(this->exidx_input_section_.size());
5366 if (offset < 0 || offset >= section_size)
5367 // Input offset is out of valid range.
5368 *poutput = -1;
5369 else
5370 {
5371 // We need to look up the section offset map to determine the output
5372 // offset. Find the reference point in map that is first offset
5373 // bigger than or equal to this offset.
5374 Arm_exidx_section_offset_map::const_iterator p =
5375 this->section_offset_map_.lower_bound(offset);
5376
5377 // The section offset maps are build such that this should not happen if
5378 // input offset is in the valid range.
5379 gold_assert(p != this->section_offset_map_.end());
5380
5381 // We need to check if this is dropped.
5382 section_offset_type ref = p->first;
5383 section_offset_type mapped_ref = p->second;
5384
5385 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5386 // Offset is present in output.
5387 *poutput = mapped_ref + (offset - ref);
5388 else
5389 // Offset is discarded owing to EXIDX entry merging.
5390 *poutput = -1;
5391 }
5392
5393 return true;
5394 }
5395
5396 // Write this to output file OF.
5397
5398 void
5399 Arm_exidx_merged_section::do_write(Output_file* of)
5400 {
5401 off_t offset = this->offset();
5402 const section_size_type oview_size = this->data_size();
5403 unsigned char* const oview = of->get_output_view(offset, oview_size);
5404
5405 Output_section* os = this->relobj()->output_section(this->shndx());
5406 gold_assert(os != NULL);
5407
5408 memcpy(oview, this->section_contents_, oview_size);
5409 of->write_output_view(this->offset(), oview_size, oview);
5410 }
5411
5412 // Arm_exidx_fixup methods.
5413
5414 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5415 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5416 // points to the end of the last seen EXIDX section.
5417
5418 void
5419 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5420 {
5421 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5422 && this->last_input_section_ != NULL)
5423 {
5424 Relobj* relobj = this->last_input_section_->relobj();
5425 unsigned int text_shndx = this->last_input_section_->link();
5426 Arm_exidx_cantunwind* cantunwind =
5427 new Arm_exidx_cantunwind(relobj, text_shndx);
5428 this->exidx_output_section_->add_output_section_data(cantunwind);
5429 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5430 }
5431 }
5432
5433 // Process an EXIDX section entry in input. Return whether this entry
5434 // can be deleted in the output. SECOND_WORD in the second word of the
5435 // EXIDX entry.
5436
5437 bool
5438 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5439 {
5440 bool delete_entry;
5441 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5442 {
5443 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5444 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5445 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5446 }
5447 else if ((second_word & 0x80000000) != 0)
5448 {
5449 // Inlined unwinding data. Merge if equal to previous.
5450 delete_entry = (merge_exidx_entries_
5451 && this->last_unwind_type_ == UT_INLINED_ENTRY
5452 && this->last_inlined_entry_ == second_word);
5453 this->last_unwind_type_ = UT_INLINED_ENTRY;
5454 this->last_inlined_entry_ = second_word;
5455 }
5456 else
5457 {
5458 // Normal table entry. In theory we could merge these too,
5459 // but duplicate entries are likely to be much less common.
5460 delete_entry = false;
5461 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5462 }
5463 return delete_entry;
5464 }
5465
5466 // Update the current section offset map during EXIDX section fix-up.
5467 // If there is no map, create one. INPUT_OFFSET is the offset of a
5468 // reference point, DELETED_BYTES is the number of deleted by in the
5469 // section so far. If DELETE_ENTRY is true, the reference point and
5470 // all offsets after the previous reference point are discarded.
5471
5472 void
5473 Arm_exidx_fixup::update_offset_map(
5474 section_offset_type input_offset,
5475 section_size_type deleted_bytes,
5476 bool delete_entry)
5477 {
5478 if (this->section_offset_map_ == NULL)
5479 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5480 section_offset_type output_offset;
5481 if (delete_entry)
5482 output_offset = Arm_exidx_input_section::invalid_offset;
5483 else
5484 output_offset = input_offset - deleted_bytes;
5485 (*this->section_offset_map_)[input_offset] = output_offset;
5486 }
5487
5488 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5489 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5490 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5491 // If some entries are merged, also store a pointer to a newly created
5492 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5493 // owns the map and is responsible for releasing it after use.
5494
5495 template<bool big_endian>
5496 uint32_t
5497 Arm_exidx_fixup::process_exidx_section(
5498 const Arm_exidx_input_section* exidx_input_section,
5499 const unsigned char* section_contents,
5500 section_size_type section_size,
5501 Arm_exidx_section_offset_map** psection_offset_map)
5502 {
5503 Relobj* relobj = exidx_input_section->relobj();
5504 unsigned shndx = exidx_input_section->shndx();
5505
5506 if ((section_size % 8) != 0)
5507 {
5508 // Something is wrong with this section. Better not touch it.
5509 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5510 relobj->name().c_str(), shndx);
5511 this->last_input_section_ = exidx_input_section;
5512 this->last_unwind_type_ = UT_NONE;
5513 return 0;
5514 }
5515
5516 uint32_t deleted_bytes = 0;
5517 bool prev_delete_entry = false;
5518 gold_assert(this->section_offset_map_ == NULL);
5519
5520 for (section_size_type i = 0; i < section_size; i += 8)
5521 {
5522 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5523 const Valtype* wv =
5524 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5525 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5526
5527 bool delete_entry = this->process_exidx_entry(second_word);
5528
5529 // Entry deletion causes changes in output offsets. We use a std::map
5530 // to record these. And entry (x, y) means input offset x
5531 // is mapped to output offset y. If y is invalid_offset, then x is
5532 // dropped in the output. Because of the way std::map::lower_bound
5533 // works, we record the last offset in a region w.r.t to keeping or
5534 // dropping. If there is no entry (x0, y0) for an input offset x0,
5535 // the output offset y0 of it is determined by the output offset y1 of
5536 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5537 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5538 // y0 is also -1.
5539 if (delete_entry != prev_delete_entry && i != 0)
5540 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5541
5542 // Update total deleted bytes for this entry.
5543 if (delete_entry)
5544 deleted_bytes += 8;
5545
5546 prev_delete_entry = delete_entry;
5547 }
5548
5549 // If section offset map is not NULL, make an entry for the end of
5550 // section.
5551 if (this->section_offset_map_ != NULL)
5552 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5553
5554 *psection_offset_map = this->section_offset_map_;
5555 this->section_offset_map_ = NULL;
5556 this->last_input_section_ = exidx_input_section;
5557
5558 // Set the first output text section so that we can link the EXIDX output
5559 // section to it. Ignore any EXIDX input section that is completely merged.
5560 if (this->first_output_text_section_ == NULL
5561 && deleted_bytes != section_size)
5562 {
5563 unsigned int link = exidx_input_section->link();
5564 Output_section* os = relobj->output_section(link);
5565 gold_assert(os != NULL);
5566 this->first_output_text_section_ = os;
5567 }
5568
5569 return deleted_bytes;
5570 }
5571
5572 // Arm_output_section methods.
5573
5574 // Create a stub group for input sections from BEGIN to END. OWNER
5575 // points to the input section to be the owner a new stub table.
5576
5577 template<bool big_endian>
5578 void
5579 Arm_output_section<big_endian>::create_stub_group(
5580 Input_section_list::const_iterator begin,
5581 Input_section_list::const_iterator end,
5582 Input_section_list::const_iterator owner,
5583 Target_arm<big_endian>* target,
5584 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5585 const Task* task)
5586 {
5587 // We use a different kind of relaxed section in an EXIDX section.
5588 // The static casting from Output_relaxed_input_section to
5589 // Arm_input_section is invalid in an EXIDX section. We are okay
5590 // because we should not be calling this for an EXIDX section.
5591 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5592
5593 // Currently we convert ordinary input sections into relaxed sections only
5594 // at this point but we may want to support creating relaxed input section
5595 // very early. So we check here to see if owner is already a relaxed
5596 // section.
5597
5598 Arm_input_section<big_endian>* arm_input_section;
5599 if (owner->is_relaxed_input_section())
5600 {
5601 arm_input_section =
5602 Arm_input_section<big_endian>::as_arm_input_section(
5603 owner->relaxed_input_section());
5604 }
5605 else
5606 {
5607 gold_assert(owner->is_input_section());
5608 // Create a new relaxed input section. We need to lock the original
5609 // file.
5610 Task_lock_obj<Object> tl(task, owner->relobj());
5611 arm_input_section =
5612 target->new_arm_input_section(owner->relobj(), owner->shndx());
5613 new_relaxed_sections->push_back(arm_input_section);
5614 }
5615
5616 // Create a stub table.
5617 Stub_table<big_endian>* stub_table =
5618 target->new_stub_table(arm_input_section);
5619
5620 arm_input_section->set_stub_table(stub_table);
5621
5622 Input_section_list::const_iterator p = begin;
5623 Input_section_list::const_iterator prev_p;
5624
5625 // Look for input sections or relaxed input sections in [begin ... end].
5626 do
5627 {
5628 if (p->is_input_section() || p->is_relaxed_input_section())
5629 {
5630 // The stub table information for input sections live
5631 // in their objects.
5632 Arm_relobj<big_endian>* arm_relobj =
5633 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5634 arm_relobj->set_stub_table(p->shndx(), stub_table);
5635 }
5636 prev_p = p++;
5637 }
5638 while (prev_p != end);
5639 }
5640
5641 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5642 // of stub groups. We grow a stub group by adding input section until the
5643 // size is just below GROUP_SIZE. The last input section will be converted
5644 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5645 // input section after the stub table, effectively double the group size.
5646 //
5647 // This is similar to the group_sections() function in elf32-arm.c but is
5648 // implemented differently.
5649
5650 template<bool big_endian>
5651 void
5652 Arm_output_section<big_endian>::group_sections(
5653 section_size_type group_size,
5654 bool stubs_always_after_branch,
5655 Target_arm<big_endian>* target,
5656 const Task* task)
5657 {
5658 // We only care about sections containing code.
5659 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5660 return;
5661
5662 // States for grouping.
5663 typedef enum
5664 {
5665 // No group is being built.
5666 NO_GROUP,
5667 // A group is being built but the stub table is not found yet.
5668 // We keep group a stub group until the size is just under GROUP_SIZE.
5669 // The last input section in the group will be used as the stub table.
5670 FINDING_STUB_SECTION,
5671 // A group is being built and we have already found a stub table.
5672 // We enter this state to grow a stub group by adding input section
5673 // after the stub table. This effectively doubles the group size.
5674 HAS_STUB_SECTION
5675 } State;
5676
5677 // Any newly created relaxed sections are stored here.
5678 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5679
5680 State state = NO_GROUP;
5681 section_size_type off = 0;
5682 section_size_type group_begin_offset = 0;
5683 section_size_type group_end_offset = 0;
5684 section_size_type stub_table_end_offset = 0;
5685 Input_section_list::const_iterator group_begin =
5686 this->input_sections().end();
5687 Input_section_list::const_iterator stub_table =
5688 this->input_sections().end();
5689 Input_section_list::const_iterator group_end = this->input_sections().end();
5690 for (Input_section_list::const_iterator p = this->input_sections().begin();
5691 p != this->input_sections().end();
5692 ++p)
5693 {
5694 section_size_type section_begin_offset =
5695 align_address(off, p->addralign());
5696 section_size_type section_end_offset =
5697 section_begin_offset + p->data_size();
5698
5699 // Check to see if we should group the previously seen sections.
5700 switch (state)
5701 {
5702 case NO_GROUP:
5703 break;
5704
5705 case FINDING_STUB_SECTION:
5706 // Adding this section makes the group larger than GROUP_SIZE.
5707 if (section_end_offset - group_begin_offset >= group_size)
5708 {
5709 if (stubs_always_after_branch)
5710 {
5711 gold_assert(group_end != this->input_sections().end());
5712 this->create_stub_group(group_begin, group_end, group_end,
5713 target, &new_relaxed_sections,
5714 task);
5715 state = NO_GROUP;
5716 }
5717 else
5718 {
5719 // But wait, there's more! Input sections up to
5720 // stub_group_size bytes after the stub table can be
5721 // handled by it too.
5722 state = HAS_STUB_SECTION;
5723 stub_table = group_end;
5724 stub_table_end_offset = group_end_offset;
5725 }
5726 }
5727 break;
5728
5729 case HAS_STUB_SECTION:
5730 // Adding this section makes the post stub-section group larger
5731 // than GROUP_SIZE.
5732 if (section_end_offset - stub_table_end_offset >= group_size)
5733 {
5734 gold_assert(group_end != this->input_sections().end());
5735 this->create_stub_group(group_begin, group_end, stub_table,
5736 target, &new_relaxed_sections, task);
5737 state = NO_GROUP;
5738 }
5739 break;
5740
5741 default:
5742 gold_unreachable();
5743 }
5744
5745 // If we see an input section and currently there is no group, start
5746 // a new one. Skip any empty sections. We look at the data size
5747 // instead of calling p->relobj()->section_size() to avoid locking.
5748 if ((p->is_input_section() || p->is_relaxed_input_section())
5749 && (p->data_size() != 0))
5750 {
5751 if (state == NO_GROUP)
5752 {
5753 state = FINDING_STUB_SECTION;
5754 group_begin = p;
5755 group_begin_offset = section_begin_offset;
5756 }
5757
5758 // Keep track of the last input section seen.
5759 group_end = p;
5760 group_end_offset = section_end_offset;
5761 }
5762
5763 off = section_end_offset;
5764 }
5765
5766 // Create a stub group for any ungrouped sections.
5767 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5768 {
5769 gold_assert(group_end != this->input_sections().end());
5770 this->create_stub_group(group_begin, group_end,
5771 (state == FINDING_STUB_SECTION
5772 ? group_end
5773 : stub_table),
5774 target, &new_relaxed_sections, task);
5775 }
5776
5777 // Convert input section into relaxed input section in a batch.
5778 if (!new_relaxed_sections.empty())
5779 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5780
5781 // Update the section offsets
5782 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5783 {
5784 Arm_relobj<big_endian>* arm_relobj =
5785 Arm_relobj<big_endian>::as_arm_relobj(
5786 new_relaxed_sections[i]->relobj());
5787 unsigned int shndx = new_relaxed_sections[i]->shndx();
5788 // Tell Arm_relobj that this input section is converted.
5789 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5790 }
5791 }
5792
5793 // Append non empty text sections in this to LIST in ascending
5794 // order of their position in this.
5795
5796 template<bool big_endian>
5797 void
5798 Arm_output_section<big_endian>::append_text_sections_to_list(
5799 Text_section_list* list)
5800 {
5801 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5802
5803 for (Input_section_list::const_iterator p = this->input_sections().begin();
5804 p != this->input_sections().end();
5805 ++p)
5806 {
5807 // We only care about plain or relaxed input sections. We also
5808 // ignore any merged sections.
5809 if (p->is_input_section() || p->is_relaxed_input_section())
5810 list->push_back(Text_section_list::value_type(p->relobj(),
5811 p->shndx()));
5812 }
5813 }
5814
5815 template<bool big_endian>
5816 void
5817 Arm_output_section<big_endian>::fix_exidx_coverage(
5818 Layout* layout,
5819 const Text_section_list& sorted_text_sections,
5820 Symbol_table* symtab,
5821 bool merge_exidx_entries,
5822 const Task* task)
5823 {
5824 // We should only do this for the EXIDX output section.
5825 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5826
5827 // We don't want the relaxation loop to undo these changes, so we discard
5828 // the current saved states and take another one after the fix-up.
5829 this->discard_states();
5830
5831 // Remove all input sections.
5832 uint64_t address = this->address();
5833 typedef std::list<Output_section::Input_section> Input_section_list;
5834 Input_section_list input_sections;
5835 this->reset_address_and_file_offset();
5836 this->get_input_sections(address, std::string(""), &input_sections);
5837
5838 if (!this->input_sections().empty())
5839 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5840
5841 // Go through all the known input sections and record them.
5842 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5843 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5844 Section_id_hash> Text_to_exidx_map;
5845 Text_to_exidx_map text_to_exidx_map;
5846 for (Input_section_list::const_iterator p = input_sections.begin();
5847 p != input_sections.end();
5848 ++p)
5849 {
5850 // This should never happen. At this point, we should only see
5851 // plain EXIDX input sections.
5852 gold_assert(!p->is_relaxed_input_section());
5853 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5854 }
5855
5856 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5857
5858 // Go over the sorted text sections.
5859 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5860 Section_id_set processed_input_sections;
5861 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5862 p != sorted_text_sections.end();
5863 ++p)
5864 {
5865 Relobj* relobj = p->first;
5866 unsigned int shndx = p->second;
5867
5868 Arm_relobj<big_endian>* arm_relobj =
5869 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5870 const Arm_exidx_input_section* exidx_input_section =
5871 arm_relobj->exidx_input_section_by_link(shndx);
5872
5873 // If this text section has no EXIDX section or if the EXIDX section
5874 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5875 // of the last seen EXIDX section.
5876 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5877 {
5878 exidx_fixup.add_exidx_cantunwind_as_needed();
5879 continue;
5880 }
5881
5882 Relobj* exidx_relobj = exidx_input_section->relobj();
5883 unsigned int exidx_shndx = exidx_input_section->shndx();
5884 Section_id sid(exidx_relobj, exidx_shndx);
5885 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5886 if (iter == text_to_exidx_map.end())
5887 {
5888 // This is odd. We have not seen this EXIDX input section before.
5889 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5890 // issue a warning instead. We assume the user knows what he
5891 // or she is doing. Otherwise, this is an error.
5892 if (layout->script_options()->saw_sections_clause())
5893 gold_warning(_("unwinding may not work because EXIDX input section"
5894 " %u of %s is not in EXIDX output section"),
5895 exidx_shndx, exidx_relobj->name().c_str());
5896 else
5897 gold_error(_("unwinding may not work because EXIDX input section"
5898 " %u of %s is not in EXIDX output section"),
5899 exidx_shndx, exidx_relobj->name().c_str());
5900
5901 exidx_fixup.add_exidx_cantunwind_as_needed();
5902 continue;
5903 }
5904
5905 // We need to access the contents of the EXIDX section, lock the
5906 // object here.
5907 Task_lock_obj<Object> tl(task, exidx_relobj);
5908 section_size_type exidx_size;
5909 const unsigned char* exidx_contents =
5910 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5911
5912 // Fix up coverage and append input section to output data list.
5913 Arm_exidx_section_offset_map* section_offset_map = NULL;
5914 uint32_t deleted_bytes =
5915 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5916 exidx_contents,
5917 exidx_size,
5918 &section_offset_map);
5919
5920 if (deleted_bytes == exidx_input_section->size())
5921 {
5922 // The whole EXIDX section got merged. Remove it from output.
5923 gold_assert(section_offset_map == NULL);
5924 exidx_relobj->set_output_section(exidx_shndx, NULL);
5925
5926 // All local symbols defined in this input section will be dropped.
5927 // We need to adjust output local symbol count.
5928 arm_relobj->set_output_local_symbol_count_needs_update();
5929 }
5930 else if (deleted_bytes > 0)
5931 {
5932 // Some entries are merged. We need to convert this EXIDX input
5933 // section into a relaxed section.
5934 gold_assert(section_offset_map != NULL);
5935
5936 Arm_exidx_merged_section* merged_section =
5937 new Arm_exidx_merged_section(*exidx_input_section,
5938 *section_offset_map, deleted_bytes);
5939 merged_section->build_contents(exidx_contents, exidx_size);
5940
5941 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5942 this->add_relaxed_input_section(layout, merged_section, secname);
5943 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5944
5945 // All local symbols defined in discarded portions of this input
5946 // section will be dropped. We need to adjust output local symbol
5947 // count.
5948 arm_relobj->set_output_local_symbol_count_needs_update();
5949 }
5950 else
5951 {
5952 // Just add back the EXIDX input section.
5953 gold_assert(section_offset_map == NULL);
5954 const Output_section::Input_section* pis = iter->second;
5955 gold_assert(pis->is_input_section());
5956 this->add_script_input_section(*pis);
5957 }
5958
5959 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5960 }
5961
5962 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5963 exidx_fixup.add_exidx_cantunwind_as_needed();
5964
5965 // Remove any known EXIDX input sections that are not processed.
5966 for (Input_section_list::const_iterator p = input_sections.begin();
5967 p != input_sections.end();
5968 ++p)
5969 {
5970 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5971 == processed_input_sections.end())
5972 {
5973 // We discard a known EXIDX section because its linked
5974 // text section has been folded by ICF. We also discard an
5975 // EXIDX section with error, the output does not matter in this
5976 // case. We do this to avoid triggering asserts.
5977 Arm_relobj<big_endian>* arm_relobj =
5978 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5979 const Arm_exidx_input_section* exidx_input_section =
5980 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5981 gold_assert(exidx_input_section != NULL);
5982 if (!exidx_input_section->has_errors())
5983 {
5984 unsigned int text_shndx = exidx_input_section->link();
5985 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5986 }
5987
5988 // Remove this from link. We also need to recount the
5989 // local symbols.
5990 p->relobj()->set_output_section(p->shndx(), NULL);
5991 arm_relobj->set_output_local_symbol_count_needs_update();
5992 }
5993 }
5994
5995 // Link exidx output section to the first seen output section and
5996 // set correct entry size.
5997 this->set_link_section(exidx_fixup.first_output_text_section());
5998 this->set_entsize(8);
5999
6000 // Make changes permanent.
6001 this->save_states();
6002 this->set_section_offsets_need_adjustment();
6003 }
6004
6005 // Link EXIDX output sections to text output sections.
6006
6007 template<bool big_endian>
6008 void
6009 Arm_output_section<big_endian>::set_exidx_section_link()
6010 {
6011 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6012 if (!this->input_sections().empty())
6013 {
6014 Input_section_list::const_iterator p = this->input_sections().begin();
6015 Arm_relobj<big_endian>* arm_relobj =
6016 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6017 unsigned exidx_shndx = p->shndx();
6018 const Arm_exidx_input_section* exidx_input_section =
6019 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6020 gold_assert(exidx_input_section != NULL);
6021 unsigned int text_shndx = exidx_input_section->link();
6022 Output_section* os = arm_relobj->output_section(text_shndx);
6023 this->set_link_section(os);
6024 }
6025 }
6026
6027 // Arm_relobj methods.
6028
6029 // Determine if an input section is scannable for stub processing. SHDR is
6030 // the header of the section and SHNDX is the section index. OS is the output
6031 // section for the input section and SYMTAB is the global symbol table used to
6032 // look up ICF information.
6033
6034 template<bool big_endian>
6035 bool
6036 Arm_relobj<big_endian>::section_is_scannable(
6037 const elfcpp::Shdr<32, big_endian>& shdr,
6038 unsigned int shndx,
6039 const Output_section* os,
6040 const Symbol_table* symtab)
6041 {
6042 // Skip any empty sections, unallocated sections or sections whose
6043 // type are not SHT_PROGBITS.
6044 if (shdr.get_sh_size() == 0
6045 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6046 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6047 return false;
6048
6049 // Skip any discarded or ICF'ed sections.
6050 if (os == NULL || symtab->is_section_folded(this, shndx))
6051 return false;
6052
6053 // If this requires special offset handling, check to see if it is
6054 // a relaxed section. If this is not, then it is a merged section that
6055 // we cannot handle.
6056 if (this->is_output_section_offset_invalid(shndx))
6057 {
6058 const Output_relaxed_input_section* poris =
6059 os->find_relaxed_input_section(this, shndx);
6060 if (poris == NULL)
6061 return false;
6062 }
6063
6064 return true;
6065 }
6066
6067 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6068 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6069
6070 template<bool big_endian>
6071 bool
6072 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6073 const elfcpp::Shdr<32, big_endian>& shdr,
6074 const Relobj::Output_sections& out_sections,
6075 const Symbol_table* symtab,
6076 const unsigned char* pshdrs)
6077 {
6078 unsigned int sh_type = shdr.get_sh_type();
6079 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6080 return false;
6081
6082 // Ignore empty section.
6083 off_t sh_size = shdr.get_sh_size();
6084 if (sh_size == 0)
6085 return false;
6086
6087 // Ignore reloc section with unexpected symbol table. The
6088 // error will be reported in the final link.
6089 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6090 return false;
6091
6092 unsigned int reloc_size;
6093 if (sh_type == elfcpp::SHT_REL)
6094 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6095 else
6096 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6097
6098 // Ignore reloc section with unexpected entsize or uneven size.
6099 // The error will be reported in the final link.
6100 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6101 return false;
6102
6103 // Ignore reloc section with bad info. This error will be
6104 // reported in the final link.
6105 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6106 if (index >= this->shnum())
6107 return false;
6108
6109 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6110 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6111 return this->section_is_scannable(text_shdr, index,
6112 out_sections[index], symtab);
6113 }
6114
6115 // Return the output address of either a plain input section or a relaxed
6116 // input section. SHNDX is the section index. We define and use this
6117 // instead of calling Output_section::output_address because that is slow
6118 // for large output.
6119
6120 template<bool big_endian>
6121 Arm_address
6122 Arm_relobj<big_endian>::simple_input_section_output_address(
6123 unsigned int shndx,
6124 Output_section* os)
6125 {
6126 if (this->is_output_section_offset_invalid(shndx))
6127 {
6128 const Output_relaxed_input_section* poris =
6129 os->find_relaxed_input_section(this, shndx);
6130 // We do not handle merged sections here.
6131 gold_assert(poris != NULL);
6132 return poris->address();
6133 }
6134 else
6135 return os->address() + this->get_output_section_offset(shndx);
6136 }
6137
6138 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6139 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6140
6141 template<bool big_endian>
6142 bool
6143 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6144 const elfcpp::Shdr<32, big_endian>& shdr,
6145 unsigned int shndx,
6146 Output_section* os,
6147 const Symbol_table* symtab)
6148 {
6149 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6150 return false;
6151
6152 // If the section does not cross any 4K-boundaries, it does not need to
6153 // be scanned.
6154 Arm_address address = this->simple_input_section_output_address(shndx, os);
6155 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6156 return false;
6157
6158 return true;
6159 }
6160
6161 // Scan a section for Cortex-A8 workaround.
6162
6163 template<bool big_endian>
6164 void
6165 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6166 const elfcpp::Shdr<32, big_endian>& shdr,
6167 unsigned int shndx,
6168 Output_section* os,
6169 Target_arm<big_endian>* arm_target)
6170 {
6171 // Look for the first mapping symbol in this section. It should be
6172 // at (shndx, 0).
6173 Mapping_symbol_position section_start(shndx, 0);
6174 typename Mapping_symbols_info::const_iterator p =
6175 this->mapping_symbols_info_.lower_bound(section_start);
6176
6177 // There are no mapping symbols for this section. Treat it as a data-only
6178 // section. Issue a warning if section is marked as containing
6179 // instructions.
6180 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6181 {
6182 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6183 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6184 "erratum because it has no mapping symbols."),
6185 shndx, this->name().c_str());
6186 return;
6187 }
6188
6189 Arm_address output_address =
6190 this->simple_input_section_output_address(shndx, os);
6191
6192 // Get the section contents.
6193 section_size_type input_view_size = 0;
6194 const unsigned char* input_view =
6195 this->section_contents(shndx, &input_view_size, false);
6196
6197 // We need to go through the mapping symbols to determine what to
6198 // scan. There are two reasons. First, we should look at THUMB code and
6199 // THUMB code only. Second, we only want to look at the 4K-page boundary
6200 // to speed up the scanning.
6201
6202 while (p != this->mapping_symbols_info_.end()
6203 && p->first.first == shndx)
6204 {
6205 typename Mapping_symbols_info::const_iterator next =
6206 this->mapping_symbols_info_.upper_bound(p->first);
6207
6208 // Only scan part of a section with THUMB code.
6209 if (p->second == 't')
6210 {
6211 // Determine the end of this range.
6212 section_size_type span_start =
6213 convert_to_section_size_type(p->first.second);
6214 section_size_type span_end;
6215 if (next != this->mapping_symbols_info_.end()
6216 && next->first.first == shndx)
6217 span_end = convert_to_section_size_type(next->first.second);
6218 else
6219 span_end = convert_to_section_size_type(shdr.get_sh_size());
6220
6221 if (((span_start + output_address) & ~0xfffUL)
6222 != ((span_end + output_address - 1) & ~0xfffUL))
6223 {
6224 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6225 span_start, span_end,
6226 input_view,
6227 output_address);
6228 }
6229 }
6230
6231 p = next;
6232 }
6233 }
6234
6235 // Scan relocations for stub generation.
6236
6237 template<bool big_endian>
6238 void
6239 Arm_relobj<big_endian>::scan_sections_for_stubs(
6240 Target_arm<big_endian>* arm_target,
6241 const Symbol_table* symtab,
6242 const Layout* layout)
6243 {
6244 unsigned int shnum = this->shnum();
6245 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6246
6247 // Read the section headers.
6248 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6249 shnum * shdr_size,
6250 true, true);
6251
6252 // To speed up processing, we set up hash tables for fast lookup of
6253 // input offsets to output addresses.
6254 this->initialize_input_to_output_maps();
6255
6256 const Relobj::Output_sections& out_sections(this->output_sections());
6257
6258 Relocate_info<32, big_endian> relinfo;
6259 relinfo.symtab = symtab;
6260 relinfo.layout = layout;
6261 relinfo.object = this;
6262
6263 // Do relocation stubs scanning.
6264 const unsigned char* p = pshdrs + shdr_size;
6265 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6266 {
6267 const elfcpp::Shdr<32, big_endian> shdr(p);
6268 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6269 pshdrs))
6270 {
6271 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6272 Arm_address output_offset = this->get_output_section_offset(index);
6273 Arm_address output_address;
6274 if (output_offset != invalid_address)
6275 output_address = out_sections[index]->address() + output_offset;
6276 else
6277 {
6278 // Currently this only happens for a relaxed section.
6279 const Output_relaxed_input_section* poris =
6280 out_sections[index]->find_relaxed_input_section(this, index);
6281 gold_assert(poris != NULL);
6282 output_address = poris->address();
6283 }
6284
6285 // Get the relocations.
6286 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6287 shdr.get_sh_size(),
6288 true, false);
6289
6290 // Get the section contents. This does work for the case in which
6291 // we modify the contents of an input section. We need to pass the
6292 // output view under such circumstances.
6293 section_size_type input_view_size = 0;
6294 const unsigned char* input_view =
6295 this->section_contents(index, &input_view_size, false);
6296
6297 relinfo.reloc_shndx = i;
6298 relinfo.data_shndx = index;
6299 unsigned int sh_type = shdr.get_sh_type();
6300 unsigned int reloc_size;
6301 if (sh_type == elfcpp::SHT_REL)
6302 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6303 else
6304 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6305
6306 Output_section* os = out_sections[index];
6307 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6308 shdr.get_sh_size() / reloc_size,
6309 os,
6310 output_offset == invalid_address,
6311 input_view, output_address,
6312 input_view_size);
6313 }
6314 }
6315
6316 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6317 // after its relocation section, if there is one, is processed for
6318 // relocation stubs. Merging this loop with the one above would have been
6319 // complicated since we would have had to make sure that relocation stub
6320 // scanning is done first.
6321 if (arm_target->fix_cortex_a8())
6322 {
6323 const unsigned char* p = pshdrs + shdr_size;
6324 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6325 {
6326 const elfcpp::Shdr<32, big_endian> shdr(p);
6327 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6328 out_sections[i],
6329 symtab))
6330 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6331 arm_target);
6332 }
6333 }
6334
6335 // After we've done the relocations, we release the hash tables,
6336 // since we no longer need them.
6337 this->free_input_to_output_maps();
6338 }
6339
6340 // Count the local symbols. The ARM backend needs to know if a symbol
6341 // is a THUMB function or not. For global symbols, it is easy because
6342 // the Symbol object keeps the ELF symbol type. For local symbol it is
6343 // harder because we cannot access this information. So we override the
6344 // do_count_local_symbol in parent and scan local symbols to mark
6345 // THUMB functions. This is not the most efficient way but I do not want to
6346 // slow down other ports by calling a per symbol target hook inside
6347 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6348
6349 template<bool big_endian>
6350 void
6351 Arm_relobj<big_endian>::do_count_local_symbols(
6352 Stringpool_template<char>* pool,
6353 Stringpool_template<char>* dynpool)
6354 {
6355 // We need to fix-up the values of any local symbols whose type are
6356 // STT_ARM_TFUNC.
6357
6358 // Ask parent to count the local symbols.
6359 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6360 const unsigned int loccount = this->local_symbol_count();
6361 if (loccount == 0)
6362 return;
6363
6364 // Initialize the thumb function bit-vector.
6365 std::vector<bool> empty_vector(loccount, false);
6366 this->local_symbol_is_thumb_function_.swap(empty_vector);
6367
6368 // Read the symbol table section header.
6369 const unsigned int symtab_shndx = this->symtab_shndx();
6370 elfcpp::Shdr<32, big_endian>
6371 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6372 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6373
6374 // Read the local symbols.
6375 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6376 gold_assert(loccount == symtabshdr.get_sh_info());
6377 off_t locsize = loccount * sym_size;
6378 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6379 locsize, true, true);
6380
6381 // For mapping symbol processing, we need to read the symbol names.
6382 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6383 if (strtab_shndx >= this->shnum())
6384 {
6385 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6386 return;
6387 }
6388
6389 elfcpp::Shdr<32, big_endian>
6390 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6391 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6392 {
6393 this->error(_("symbol table name section has wrong type: %u"),
6394 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6395 return;
6396 }
6397 const char* pnames =
6398 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6399 strtabshdr.get_sh_size(),
6400 false, false));
6401
6402 // Loop over the local symbols and mark any local symbols pointing
6403 // to THUMB functions.
6404
6405 // Skip the first dummy symbol.
6406 psyms += sym_size;
6407 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6408 this->local_values();
6409 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6410 {
6411 elfcpp::Sym<32, big_endian> sym(psyms);
6412 elfcpp::STT st_type = sym.get_st_type();
6413 Symbol_value<32>& lv((*plocal_values)[i]);
6414 Arm_address input_value = lv.input_value();
6415
6416 // Check to see if this is a mapping symbol.
6417 const char* sym_name = pnames + sym.get_st_name();
6418 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6419 {
6420 bool is_ordinary;
6421 unsigned int input_shndx =
6422 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6423 gold_assert(is_ordinary);
6424
6425 // Strip of LSB in case this is a THUMB symbol.
6426 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6427 this->mapping_symbols_info_[msp] = sym_name[1];
6428 }
6429
6430 if (st_type == elfcpp::STT_ARM_TFUNC
6431 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6432 {
6433 // This is a THUMB function. Mark this and canonicalize the
6434 // symbol value by setting LSB.
6435 this->local_symbol_is_thumb_function_[i] = true;
6436 if ((input_value & 1) == 0)
6437 lv.set_input_value(input_value | 1);
6438 }
6439 }
6440 }
6441
6442 // Relocate sections.
6443 template<bool big_endian>
6444 void
6445 Arm_relobj<big_endian>::do_relocate_sections(
6446 const Symbol_table* symtab,
6447 const Layout* layout,
6448 const unsigned char* pshdrs,
6449 Output_file* of,
6450 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6451 {
6452 // Call parent to relocate sections.
6453 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6454 pshdrs, of, pviews);
6455
6456 // We do not generate stubs if doing a relocatable link.
6457 if (parameters->options().relocatable())
6458 return;
6459
6460 // Relocate stub tables.
6461 unsigned int shnum = this->shnum();
6462
6463 Target_arm<big_endian>* arm_target =
6464 Target_arm<big_endian>::default_target();
6465
6466 Relocate_info<32, big_endian> relinfo;
6467 relinfo.symtab = symtab;
6468 relinfo.layout = layout;
6469 relinfo.object = this;
6470
6471 for (unsigned int i = 1; i < shnum; ++i)
6472 {
6473 Arm_input_section<big_endian>* arm_input_section =
6474 arm_target->find_arm_input_section(this, i);
6475
6476 if (arm_input_section != NULL
6477 && arm_input_section->is_stub_table_owner()
6478 && !arm_input_section->stub_table()->empty())
6479 {
6480 // We cannot discard a section if it owns a stub table.
6481 Output_section* os = this->output_section(i);
6482 gold_assert(os != NULL);
6483
6484 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6485 relinfo.reloc_shdr = NULL;
6486 relinfo.data_shndx = i;
6487 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6488
6489 gold_assert((*pviews)[i].view != NULL);
6490
6491 // We are passed the output section view. Adjust it to cover the
6492 // stub table only.
6493 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6494 gold_assert((stub_table->address() >= (*pviews)[i].address)
6495 && ((stub_table->address() + stub_table->data_size())
6496 <= (*pviews)[i].address + (*pviews)[i].view_size));
6497
6498 off_t offset = stub_table->address() - (*pviews)[i].address;
6499 unsigned char* view = (*pviews)[i].view + offset;
6500 Arm_address address = stub_table->address();
6501 section_size_type view_size = stub_table->data_size();
6502
6503 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6504 view_size);
6505 }
6506
6507 // Apply Cortex A8 workaround if applicable.
6508 if (this->section_has_cortex_a8_workaround(i))
6509 {
6510 unsigned char* view = (*pviews)[i].view;
6511 Arm_address view_address = (*pviews)[i].address;
6512 section_size_type view_size = (*pviews)[i].view_size;
6513 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6514
6515 // Adjust view to cover section.
6516 Output_section* os = this->output_section(i);
6517 gold_assert(os != NULL);
6518 Arm_address section_address =
6519 this->simple_input_section_output_address(i, os);
6520 uint64_t section_size = this->section_size(i);
6521
6522 gold_assert(section_address >= view_address
6523 && ((section_address + section_size)
6524 <= (view_address + view_size)));
6525
6526 unsigned char* section_view = view + (section_address - view_address);
6527
6528 // Apply the Cortex-A8 workaround to the output address range
6529 // corresponding to this input section.
6530 stub_table->apply_cortex_a8_workaround_to_address_range(
6531 arm_target,
6532 section_view,
6533 section_address,
6534 section_size);
6535 }
6536 }
6537 }
6538
6539 // Find the linked text section of an EXIDX section by looking at the first
6540 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6541 // must be linked to its associated code section via the sh_link field of
6542 // its section header. However, some tools are broken and the link is not
6543 // always set. LD just drops such an EXIDX section silently, causing the
6544 // associated code not unwindabled. Here we try a little bit harder to
6545 // discover the linked code section.
6546 //
6547 // PSHDR points to the section header of a relocation section of an EXIDX
6548 // section. If we can find a linked text section, return true and
6549 // store the text section index in the location PSHNDX. Otherwise
6550 // return false.
6551
6552 template<bool big_endian>
6553 bool
6554 Arm_relobj<big_endian>::find_linked_text_section(
6555 const unsigned char* pshdr,
6556 const unsigned char* psyms,
6557 unsigned int* pshndx)
6558 {
6559 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6560
6561 // If there is no relocation, we cannot find the linked text section.
6562 size_t reloc_size;
6563 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6564 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6565 else
6566 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6567 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6568
6569 // Get the relocations.
6570 const unsigned char* prelocs =
6571 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6572
6573 // Find the REL31 relocation for the first word of the first EXIDX entry.
6574 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6575 {
6576 Arm_address r_offset;
6577 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6578 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6579 {
6580 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6581 r_info = reloc.get_r_info();
6582 r_offset = reloc.get_r_offset();
6583 }
6584 else
6585 {
6586 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6587 r_info = reloc.get_r_info();
6588 r_offset = reloc.get_r_offset();
6589 }
6590
6591 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6592 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6593 continue;
6594
6595 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6596 if (r_sym == 0
6597 || r_sym >= this->local_symbol_count()
6598 || r_offset != 0)
6599 continue;
6600
6601 // This is the relocation for the first word of the first EXIDX entry.
6602 // We expect to see a local section symbol.
6603 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6604 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6605 if (sym.get_st_type() == elfcpp::STT_SECTION)
6606 {
6607 bool is_ordinary;
6608 *pshndx =
6609 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6610 gold_assert(is_ordinary);
6611 return true;
6612 }
6613 else
6614 return false;
6615 }
6616
6617 return false;
6618 }
6619
6620 // Make an EXIDX input section object for an EXIDX section whose index is
6621 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6622 // is the section index of the linked text section.
6623
6624 template<bool big_endian>
6625 void
6626 Arm_relobj<big_endian>::make_exidx_input_section(
6627 unsigned int shndx,
6628 const elfcpp::Shdr<32, big_endian>& shdr,
6629 unsigned int text_shndx,
6630 const elfcpp::Shdr<32, big_endian>& text_shdr)
6631 {
6632 // Create an Arm_exidx_input_section object for this EXIDX section.
6633 Arm_exidx_input_section* exidx_input_section =
6634 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6635 shdr.get_sh_addralign(),
6636 text_shdr.get_sh_size());
6637
6638 gold_assert(this->exidx_section_map_[shndx] == NULL);
6639 this->exidx_section_map_[shndx] = exidx_input_section;
6640
6641 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6642 {
6643 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6644 this->section_name(shndx).c_str(), shndx, text_shndx,
6645 this->name().c_str());
6646 exidx_input_section->set_has_errors();
6647 }
6648 else if (this->exidx_section_map_[text_shndx] != NULL)
6649 {
6650 unsigned other_exidx_shndx =
6651 this->exidx_section_map_[text_shndx]->shndx();
6652 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6653 "%s(%u) in %s"),
6654 this->section_name(shndx).c_str(), shndx,
6655 this->section_name(other_exidx_shndx).c_str(),
6656 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6657 text_shndx, this->name().c_str());
6658 exidx_input_section->set_has_errors();
6659 }
6660 else
6661 this->exidx_section_map_[text_shndx] = exidx_input_section;
6662
6663 // Check section flags of text section.
6664 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6665 {
6666 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6667 " in %s"),
6668 this->section_name(shndx).c_str(), shndx,
6669 this->section_name(text_shndx).c_str(), text_shndx,
6670 this->name().c_str());
6671 exidx_input_section->set_has_errors();
6672 }
6673 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6674 // I would like to make this an error but currently ld just ignores
6675 // this.
6676 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6677 "%s(%u) in %s"),
6678 this->section_name(shndx).c_str(), shndx,
6679 this->section_name(text_shndx).c_str(), text_shndx,
6680 this->name().c_str());
6681 }
6682
6683 // Read the symbol information.
6684
6685 template<bool big_endian>
6686 void
6687 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6688 {
6689 // Call parent class to read symbol information.
6690 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6691
6692 // If this input file is a binary file, it has no processor
6693 // specific flags and attributes section.
6694 Input_file::Format format = this->input_file()->format();
6695 if (format != Input_file::FORMAT_ELF)
6696 {
6697 gold_assert(format == Input_file::FORMAT_BINARY);
6698 this->merge_flags_and_attributes_ = false;
6699 return;
6700 }
6701
6702 // Read processor-specific flags in ELF file header.
6703 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6704 elfcpp::Elf_sizes<32>::ehdr_size,
6705 true, false);
6706 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6707 this->processor_specific_flags_ = ehdr.get_e_flags();
6708
6709 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6710 // sections.
6711 std::vector<unsigned int> deferred_exidx_sections;
6712 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6713 const unsigned char* pshdrs = sd->section_headers->data();
6714 const unsigned char* ps = pshdrs + shdr_size;
6715 bool must_merge_flags_and_attributes = false;
6716 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6717 {
6718 elfcpp::Shdr<32, big_endian> shdr(ps);
6719
6720 // Sometimes an object has no contents except the section name string
6721 // table and an empty symbol table with the undefined symbol. We
6722 // don't want to merge processor-specific flags from such an object.
6723 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6724 {
6725 // Symbol table is not empty.
6726 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6727 elfcpp::Elf_sizes<32>::sym_size;
6728 if (shdr.get_sh_size() > sym_size)
6729 must_merge_flags_and_attributes = true;
6730 }
6731 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6732 // If this is neither an empty symbol table nor a string table,
6733 // be conservative.
6734 must_merge_flags_and_attributes = true;
6735
6736 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6737 {
6738 gold_assert(this->attributes_section_data_ == NULL);
6739 section_offset_type section_offset = shdr.get_sh_offset();
6740 section_size_type section_size =
6741 convert_to_section_size_type(shdr.get_sh_size());
6742 const unsigned char* view =
6743 this->get_view(section_offset, section_size, true, false);
6744 this->attributes_section_data_ =
6745 new Attributes_section_data(view, section_size);
6746 }
6747 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6748 {
6749 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6750 if (text_shndx == elfcpp::SHN_UNDEF)
6751 deferred_exidx_sections.push_back(i);
6752 else
6753 {
6754 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6755 + text_shndx * shdr_size);
6756 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6757 }
6758 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6759 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6760 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6761 this->section_name(i).c_str(), this->name().c_str());
6762 }
6763 }
6764
6765 // This is rare.
6766 if (!must_merge_flags_and_attributes)
6767 {
6768 gold_assert(deferred_exidx_sections.empty());
6769 this->merge_flags_and_attributes_ = false;
6770 return;
6771 }
6772
6773 // Some tools are broken and they do not set the link of EXIDX sections.
6774 // We look at the first relocation to figure out the linked sections.
6775 if (!deferred_exidx_sections.empty())
6776 {
6777 // We need to go over the section headers again to find the mapping
6778 // from sections being relocated to their relocation sections. This is
6779 // a bit inefficient as we could do that in the loop above. However,
6780 // we do not expect any deferred EXIDX sections normally. So we do not
6781 // want to slow down the most common path.
6782 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6783 Reloc_map reloc_map;
6784 ps = pshdrs + shdr_size;
6785 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6786 {
6787 elfcpp::Shdr<32, big_endian> shdr(ps);
6788 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6789 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6790 {
6791 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6792 if (info_shndx >= this->shnum())
6793 gold_error(_("relocation section %u has invalid info %u"),
6794 i, info_shndx);
6795 Reloc_map::value_type value(info_shndx, i);
6796 std::pair<Reloc_map::iterator, bool> result =
6797 reloc_map.insert(value);
6798 if (!result.second)
6799 gold_error(_("section %u has multiple relocation sections "
6800 "%u and %u"),
6801 info_shndx, i, reloc_map[info_shndx]);
6802 }
6803 }
6804
6805 // Read the symbol table section header.
6806 const unsigned int symtab_shndx = this->symtab_shndx();
6807 elfcpp::Shdr<32, big_endian>
6808 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6809 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6810
6811 // Read the local symbols.
6812 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6813 const unsigned int loccount = this->local_symbol_count();
6814 gold_assert(loccount == symtabshdr.get_sh_info());
6815 off_t locsize = loccount * sym_size;
6816 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6817 locsize, true, true);
6818
6819 // Process the deferred EXIDX sections.
6820 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6821 {
6822 unsigned int shndx = deferred_exidx_sections[i];
6823 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6824 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6825 Reloc_map::const_iterator it = reloc_map.find(shndx);
6826 if (it != reloc_map.end())
6827 find_linked_text_section(pshdrs + it->second * shdr_size,
6828 psyms, &text_shndx);
6829 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6830 + text_shndx * shdr_size);
6831 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6832 }
6833 }
6834 }
6835
6836 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6837 // sections for unwinding. These sections are referenced implicitly by
6838 // text sections linked in the section headers. If we ignore these implicit
6839 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6840 // will be garbage-collected incorrectly. Hence we override the same function
6841 // in the base class to handle these implicit references.
6842
6843 template<bool big_endian>
6844 void
6845 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6846 Layout* layout,
6847 Read_relocs_data* rd)
6848 {
6849 // First, call base class method to process relocations in this object.
6850 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6851
6852 // If --gc-sections is not specified, there is nothing more to do.
6853 // This happens when --icf is used but --gc-sections is not.
6854 if (!parameters->options().gc_sections())
6855 return;
6856
6857 unsigned int shnum = this->shnum();
6858 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6859 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6860 shnum * shdr_size,
6861 true, true);
6862
6863 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6864 // to these from the linked text sections.
6865 const unsigned char* ps = pshdrs + shdr_size;
6866 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6867 {
6868 elfcpp::Shdr<32, big_endian> shdr(ps);
6869 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6870 {
6871 // Found an .ARM.exidx section, add it to the set of reachable
6872 // sections from its linked text section.
6873 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6874 symtab->gc()->add_reference(this, text_shndx, this, i);
6875 }
6876 }
6877 }
6878
6879 // Update output local symbol count. Owing to EXIDX entry merging, some local
6880 // symbols will be removed in output. Adjust output local symbol count
6881 // accordingly. We can only changed the static output local symbol count. It
6882 // is too late to change the dynamic symbols.
6883
6884 template<bool big_endian>
6885 void
6886 Arm_relobj<big_endian>::update_output_local_symbol_count()
6887 {
6888 // Caller should check that this needs updating. We want caller checking
6889 // because output_local_symbol_count_needs_update() is most likely inlined.
6890 gold_assert(this->output_local_symbol_count_needs_update_);
6891
6892 gold_assert(this->symtab_shndx() != -1U);
6893 if (this->symtab_shndx() == 0)
6894 {
6895 // This object has no symbols. Weird but legal.
6896 return;
6897 }
6898
6899 // Read the symbol table section header.
6900 const unsigned int symtab_shndx = this->symtab_shndx();
6901 elfcpp::Shdr<32, big_endian>
6902 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6903 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6904
6905 // Read the local symbols.
6906 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6907 const unsigned int loccount = this->local_symbol_count();
6908 gold_assert(loccount == symtabshdr.get_sh_info());
6909 off_t locsize = loccount * sym_size;
6910 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6911 locsize, true, true);
6912
6913 // Loop over the local symbols.
6914
6915 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6916 Output_sections;
6917 const Output_sections& out_sections(this->output_sections());
6918 unsigned int shnum = this->shnum();
6919 unsigned int count = 0;
6920 // Skip the first, dummy, symbol.
6921 psyms += sym_size;
6922 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6923 {
6924 elfcpp::Sym<32, big_endian> sym(psyms);
6925
6926 Symbol_value<32>& lv((*this->local_values())[i]);
6927
6928 // This local symbol was already discarded by do_count_local_symbols.
6929 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6930 continue;
6931
6932 bool is_ordinary;
6933 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6934 &is_ordinary);
6935
6936 if (shndx < shnum)
6937 {
6938 Output_section* os = out_sections[shndx];
6939
6940 // This local symbol no longer has an output section. Discard it.
6941 if (os == NULL)
6942 {
6943 lv.set_no_output_symtab_entry();
6944 continue;
6945 }
6946
6947 // Currently we only discard parts of EXIDX input sections.
6948 // We explicitly check for a merged EXIDX input section to avoid
6949 // calling Output_section_data::output_offset unless necessary.
6950 if ((this->get_output_section_offset(shndx) == invalid_address)
6951 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6952 {
6953 section_offset_type output_offset =
6954 os->output_offset(this, shndx, lv.input_value());
6955 if (output_offset == -1)
6956 {
6957 // This symbol is defined in a part of an EXIDX input section
6958 // that is discarded due to entry merging.
6959 lv.set_no_output_symtab_entry();
6960 continue;
6961 }
6962 }
6963 }
6964
6965 ++count;
6966 }
6967
6968 this->set_output_local_symbol_count(count);
6969 this->output_local_symbol_count_needs_update_ = false;
6970 }
6971
6972 // Arm_dynobj methods.
6973
6974 // Read the symbol information.
6975
6976 template<bool big_endian>
6977 void
6978 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6979 {
6980 // Call parent class to read symbol information.
6981 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6982
6983 // Read processor-specific flags in ELF file header.
6984 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6985 elfcpp::Elf_sizes<32>::ehdr_size,
6986 true, false);
6987 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6988 this->processor_specific_flags_ = ehdr.get_e_flags();
6989
6990 // Read the attributes section if there is one.
6991 // We read from the end because gas seems to put it near the end of
6992 // the section headers.
6993 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6994 const unsigned char* ps =
6995 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6996 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6997 {
6998 elfcpp::Shdr<32, big_endian> shdr(ps);
6999 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7000 {
7001 section_offset_type section_offset = shdr.get_sh_offset();
7002 section_size_type section_size =
7003 convert_to_section_size_type(shdr.get_sh_size());
7004 const unsigned char* view =
7005 this->get_view(section_offset, section_size, true, false);
7006 this->attributes_section_data_ =
7007 new Attributes_section_data(view, section_size);
7008 break;
7009 }
7010 }
7011 }
7012
7013 // Stub_addend_reader methods.
7014
7015 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7016
7017 template<bool big_endian>
7018 elfcpp::Elf_types<32>::Elf_Swxword
7019 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7020 unsigned int r_type,
7021 const unsigned char* view,
7022 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7023 {
7024 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7025
7026 switch (r_type)
7027 {
7028 case elfcpp::R_ARM_CALL:
7029 case elfcpp::R_ARM_JUMP24:
7030 case elfcpp::R_ARM_PLT32:
7031 {
7032 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7033 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7034 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7035 return utils::sign_extend<26>(val << 2);
7036 }
7037
7038 case elfcpp::R_ARM_THM_CALL:
7039 case elfcpp::R_ARM_THM_JUMP24:
7040 case elfcpp::R_ARM_THM_XPC22:
7041 {
7042 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7043 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7044 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7045 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7046 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7047 }
7048
7049 case elfcpp::R_ARM_THM_JUMP19:
7050 {
7051 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7052 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7053 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7054 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7055 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7056 }
7057
7058 default:
7059 gold_unreachable();
7060 }
7061 }
7062
7063 // Arm_output_data_got methods.
7064
7065 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7066 // The first one is initialized to be 1, which is the module index for
7067 // the main executable and the second one 0. A reloc of the type
7068 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7069 // be applied by gold. GSYM is a global symbol.
7070 //
7071 template<bool big_endian>
7072 void
7073 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7074 unsigned int got_type,
7075 Symbol* gsym)
7076 {
7077 if (gsym->has_got_offset(got_type))
7078 return;
7079
7080 // We are doing a static link. Just mark it as belong to module 1,
7081 // the executable.
7082 unsigned int got_offset = this->add_constant(1);
7083 gsym->set_got_offset(got_type, got_offset);
7084 got_offset = this->add_constant(0);
7085 this->static_relocs_.push_back(Static_reloc(got_offset,
7086 elfcpp::R_ARM_TLS_DTPOFF32,
7087 gsym));
7088 }
7089
7090 // Same as the above but for a local symbol.
7091
7092 template<bool big_endian>
7093 void
7094 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7095 unsigned int got_type,
7096 Sized_relobj_file<32, big_endian>* object,
7097 unsigned int index)
7098 {
7099 if (object->local_has_got_offset(index, got_type))
7100 return;
7101
7102 // We are doing a static link. Just mark it as belong to module 1,
7103 // the executable.
7104 unsigned int got_offset = this->add_constant(1);
7105 object->set_local_got_offset(index, got_type, got_offset);
7106 got_offset = this->add_constant(0);
7107 this->static_relocs_.push_back(Static_reloc(got_offset,
7108 elfcpp::R_ARM_TLS_DTPOFF32,
7109 object, index));
7110 }
7111
7112 template<bool big_endian>
7113 void
7114 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7115 {
7116 // Call parent to write out GOT.
7117 Output_data_got<32, big_endian>::do_write(of);
7118
7119 // We are done if there is no fix up.
7120 if (this->static_relocs_.empty())
7121 return;
7122
7123 gold_assert(parameters->doing_static_link());
7124
7125 const off_t offset = this->offset();
7126 const section_size_type oview_size =
7127 convert_to_section_size_type(this->data_size());
7128 unsigned char* const oview = of->get_output_view(offset, oview_size);
7129
7130 Output_segment* tls_segment = this->layout_->tls_segment();
7131 gold_assert(tls_segment != NULL);
7132
7133 // The thread pointer $tp points to the TCB, which is followed by the
7134 // TLS. So we need to adjust $tp relative addressing by this amount.
7135 Arm_address aligned_tcb_size =
7136 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7137
7138 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7139 {
7140 Static_reloc& reloc(this->static_relocs_[i]);
7141
7142 Arm_address value;
7143 if (!reloc.symbol_is_global())
7144 {
7145 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7146 const Symbol_value<32>* psymval =
7147 reloc.relobj()->local_symbol(reloc.index());
7148
7149 // We are doing static linking. Issue an error and skip this
7150 // relocation if the symbol is undefined or in a discarded_section.
7151 bool is_ordinary;
7152 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7153 if ((shndx == elfcpp::SHN_UNDEF)
7154 || (is_ordinary
7155 && shndx != elfcpp::SHN_UNDEF
7156 && !object->is_section_included(shndx)
7157 && !this->symbol_table_->is_section_folded(object, shndx)))
7158 {
7159 gold_error(_("undefined or discarded local symbol %u from "
7160 " object %s in GOT"),
7161 reloc.index(), reloc.relobj()->name().c_str());
7162 continue;
7163 }
7164
7165 value = psymval->value(object, 0);
7166 }
7167 else
7168 {
7169 const Symbol* gsym = reloc.symbol();
7170 gold_assert(gsym != NULL);
7171 if (gsym->is_forwarder())
7172 gsym = this->symbol_table_->resolve_forwards(gsym);
7173
7174 // We are doing static linking. Issue an error and skip this
7175 // relocation if the symbol is undefined or in a discarded_section
7176 // unless it is a weakly_undefined symbol.
7177 if ((gsym->is_defined_in_discarded_section()
7178 || gsym->is_undefined())
7179 && !gsym->is_weak_undefined())
7180 {
7181 gold_error(_("undefined or discarded symbol %s in GOT"),
7182 gsym->name());
7183 continue;
7184 }
7185
7186 if (!gsym->is_weak_undefined())
7187 {
7188 const Sized_symbol<32>* sym =
7189 static_cast<const Sized_symbol<32>*>(gsym);
7190 value = sym->value();
7191 }
7192 else
7193 value = 0;
7194 }
7195
7196 unsigned got_offset = reloc.got_offset();
7197 gold_assert(got_offset < oview_size);
7198
7199 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7200 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7201 Valtype x;
7202 switch (reloc.r_type())
7203 {
7204 case elfcpp::R_ARM_TLS_DTPOFF32:
7205 x = value;
7206 break;
7207 case elfcpp::R_ARM_TLS_TPOFF32:
7208 x = value + aligned_tcb_size;
7209 break;
7210 default:
7211 gold_unreachable();
7212 }
7213 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7214 }
7215
7216 of->write_output_view(offset, oview_size, oview);
7217 }
7218
7219 // A class to handle the PLT data.
7220
7221 template<bool big_endian>
7222 class Output_data_plt_arm : public Output_section_data
7223 {
7224 public:
7225 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7226 Reloc_section;
7227
7228 Output_data_plt_arm(Layout*, Output_data_space*);
7229
7230 // Add an entry to the PLT.
7231 void
7232 add_entry(Symbol* gsym);
7233
7234 // Return the .rel.plt section data.
7235 const Reloc_section*
7236 rel_plt() const
7237 { return this->rel_; }
7238
7239 // Return the number of PLT entries.
7240 unsigned int
7241 entry_count() const
7242 { return this->count_; }
7243
7244 // Return the offset of the first non-reserved PLT entry.
7245 static unsigned int
7246 first_plt_entry_offset()
7247 { return sizeof(first_plt_entry); }
7248
7249 // Return the size of a PLT entry.
7250 static unsigned int
7251 get_plt_entry_size()
7252 { return sizeof(plt_entry); }
7253
7254 protected:
7255 void
7256 do_adjust_output_section(Output_section* os);
7257
7258 // Write to a map file.
7259 void
7260 do_print_to_mapfile(Mapfile* mapfile) const
7261 { mapfile->print_output_data(this, _("** PLT")); }
7262
7263 private:
7264 // Template for the first PLT entry.
7265 static const uint32_t first_plt_entry[5];
7266
7267 // Template for subsequent PLT entries.
7268 static const uint32_t plt_entry[3];
7269
7270 // Set the final size.
7271 void
7272 set_final_data_size()
7273 {
7274 this->set_data_size(sizeof(first_plt_entry)
7275 + this->count_ * sizeof(plt_entry));
7276 }
7277
7278 // Write out the PLT data.
7279 void
7280 do_write(Output_file*);
7281
7282 // The reloc section.
7283 Reloc_section* rel_;
7284 // The .got.plt section.
7285 Output_data_space* got_plt_;
7286 // The number of PLT entries.
7287 unsigned int count_;
7288 };
7289
7290 // Create the PLT section. The ordinary .got section is an argument,
7291 // since we need to refer to the start. We also create our own .got
7292 // section just for PLT entries.
7293
7294 template<bool big_endian>
7295 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7296 Output_data_space* got_plt)
7297 : Output_section_data(4), got_plt_(got_plt), count_(0)
7298 {
7299 this->rel_ = new Reloc_section(false);
7300 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7301 elfcpp::SHF_ALLOC, this->rel_,
7302 ORDER_DYNAMIC_PLT_RELOCS, false);
7303 }
7304
7305 template<bool big_endian>
7306 void
7307 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7308 {
7309 os->set_entsize(0);
7310 }
7311
7312 // Add an entry to the PLT.
7313
7314 template<bool big_endian>
7315 void
7316 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7317 {
7318 gold_assert(!gsym->has_plt_offset());
7319
7320 // Note that when setting the PLT offset we skip the initial
7321 // reserved PLT entry.
7322 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7323 + sizeof(first_plt_entry));
7324
7325 ++this->count_;
7326
7327 section_offset_type got_offset = this->got_plt_->current_data_size();
7328
7329 // Every PLT entry needs a GOT entry which points back to the PLT
7330 // entry (this will be changed by the dynamic linker, normally
7331 // lazily when the function is called).
7332 this->got_plt_->set_current_data_size(got_offset + 4);
7333
7334 // Every PLT entry needs a reloc.
7335 gsym->set_needs_dynsym_entry();
7336 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7337 got_offset);
7338
7339 // Note that we don't need to save the symbol. The contents of the
7340 // PLT are independent of which symbols are used. The symbols only
7341 // appear in the relocations.
7342 }
7343
7344 // ARM PLTs.
7345 // FIXME: This is not very flexible. Right now this has only been tested
7346 // on armv5te. If we are to support additional architecture features like
7347 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7348
7349 // The first entry in the PLT.
7350 template<bool big_endian>
7351 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7352 {
7353 0xe52de004, // str lr, [sp, #-4]!
7354 0xe59fe004, // ldr lr, [pc, #4]
7355 0xe08fe00e, // add lr, pc, lr
7356 0xe5bef008, // ldr pc, [lr, #8]!
7357 0x00000000, // &GOT[0] - .
7358 };
7359
7360 // Subsequent entries in the PLT.
7361
7362 template<bool big_endian>
7363 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7364 {
7365 0xe28fc600, // add ip, pc, #0xNN00000
7366 0xe28cca00, // add ip, ip, #0xNN000
7367 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7368 };
7369
7370 // Write out the PLT. This uses the hand-coded instructions above,
7371 // and adjusts them as needed. This is all specified by the arm ELF
7372 // Processor Supplement.
7373
7374 template<bool big_endian>
7375 void
7376 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7377 {
7378 const off_t offset = this->offset();
7379 const section_size_type oview_size =
7380 convert_to_section_size_type(this->data_size());
7381 unsigned char* const oview = of->get_output_view(offset, oview_size);
7382
7383 const off_t got_file_offset = this->got_plt_->offset();
7384 const section_size_type got_size =
7385 convert_to_section_size_type(this->got_plt_->data_size());
7386 unsigned char* const got_view = of->get_output_view(got_file_offset,
7387 got_size);
7388 unsigned char* pov = oview;
7389
7390 Arm_address plt_address = this->address();
7391 Arm_address got_address = this->got_plt_->address();
7392
7393 // Write first PLT entry. All but the last word are constants.
7394 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7395 / sizeof(plt_entry[0]));
7396 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7397 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7398 // Last word in first PLT entry is &GOT[0] - .
7399 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7400 got_address - (plt_address + 16));
7401 pov += sizeof(first_plt_entry);
7402
7403 unsigned char* got_pov = got_view;
7404
7405 memset(got_pov, 0, 12);
7406 got_pov += 12;
7407
7408 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7409 unsigned int plt_offset = sizeof(first_plt_entry);
7410 unsigned int plt_rel_offset = 0;
7411 unsigned int got_offset = 12;
7412 const unsigned int count = this->count_;
7413 for (unsigned int i = 0;
7414 i < count;
7415 ++i,
7416 pov += sizeof(plt_entry),
7417 got_pov += 4,
7418 plt_offset += sizeof(plt_entry),
7419 plt_rel_offset += rel_size,
7420 got_offset += 4)
7421 {
7422 // Set and adjust the PLT entry itself.
7423 int32_t offset = ((got_address + got_offset)
7424 - (plt_address + plt_offset + 8));
7425
7426 gold_assert(offset >= 0 && offset < 0x0fffffff);
7427 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7428 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7429 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7430 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7431 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7432 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7433
7434 // Set the entry in the GOT.
7435 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7436 }
7437
7438 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7439 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7440
7441 of->write_output_view(offset, oview_size, oview);
7442 of->write_output_view(got_file_offset, got_size, got_view);
7443 }
7444
7445 // Create a PLT entry for a global symbol.
7446
7447 template<bool big_endian>
7448 void
7449 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7450 Symbol* gsym)
7451 {
7452 if (gsym->has_plt_offset())
7453 return;
7454
7455 if (this->plt_ == NULL)
7456 {
7457 // Create the GOT sections first.
7458 this->got_section(symtab, layout);
7459
7460 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7461 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7462 (elfcpp::SHF_ALLOC
7463 | elfcpp::SHF_EXECINSTR),
7464 this->plt_, ORDER_PLT, false);
7465 }
7466 this->plt_->add_entry(gsym);
7467 }
7468
7469 // Return the number of entries in the PLT.
7470
7471 template<bool big_endian>
7472 unsigned int
7473 Target_arm<big_endian>::plt_entry_count() const
7474 {
7475 if (this->plt_ == NULL)
7476 return 0;
7477 return this->plt_->entry_count();
7478 }
7479
7480 // Return the offset of the first non-reserved PLT entry.
7481
7482 template<bool big_endian>
7483 unsigned int
7484 Target_arm<big_endian>::first_plt_entry_offset() const
7485 {
7486 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7487 }
7488
7489 // Return the size of each PLT entry.
7490
7491 template<bool big_endian>
7492 unsigned int
7493 Target_arm<big_endian>::plt_entry_size() const
7494 {
7495 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7496 }
7497
7498 // Get the section to use for TLS_DESC relocations.
7499
7500 template<bool big_endian>
7501 typename Target_arm<big_endian>::Reloc_section*
7502 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7503 {
7504 return this->plt_section()->rel_tls_desc(layout);
7505 }
7506
7507 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7508
7509 template<bool big_endian>
7510 void
7511 Target_arm<big_endian>::define_tls_base_symbol(
7512 Symbol_table* symtab,
7513 Layout* layout)
7514 {
7515 if (this->tls_base_symbol_defined_)
7516 return;
7517
7518 Output_segment* tls_segment = layout->tls_segment();
7519 if (tls_segment != NULL)
7520 {
7521 bool is_exec = parameters->options().output_is_executable();
7522 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7523 Symbol_table::PREDEFINED,
7524 tls_segment, 0, 0,
7525 elfcpp::STT_TLS,
7526 elfcpp::STB_LOCAL,
7527 elfcpp::STV_HIDDEN, 0,
7528 (is_exec
7529 ? Symbol::SEGMENT_END
7530 : Symbol::SEGMENT_START),
7531 true);
7532 }
7533 this->tls_base_symbol_defined_ = true;
7534 }
7535
7536 // Create a GOT entry for the TLS module index.
7537
7538 template<bool big_endian>
7539 unsigned int
7540 Target_arm<big_endian>::got_mod_index_entry(
7541 Symbol_table* symtab,
7542 Layout* layout,
7543 Sized_relobj_file<32, big_endian>* object)
7544 {
7545 if (this->got_mod_index_offset_ == -1U)
7546 {
7547 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7548 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7549 unsigned int got_offset;
7550 if (!parameters->doing_static_link())
7551 {
7552 got_offset = got->add_constant(0);
7553 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7554 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7555 got_offset);
7556 }
7557 else
7558 {
7559 // We are doing a static link. Just mark it as belong to module 1,
7560 // the executable.
7561 got_offset = got->add_constant(1);
7562 }
7563
7564 got->add_constant(0);
7565 this->got_mod_index_offset_ = got_offset;
7566 }
7567 return this->got_mod_index_offset_;
7568 }
7569
7570 // Optimize the TLS relocation type based on what we know about the
7571 // symbol. IS_FINAL is true if the final address of this symbol is
7572 // known at link time.
7573
7574 template<bool big_endian>
7575 tls::Tls_optimization
7576 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7577 {
7578 // FIXME: Currently we do not do any TLS optimization.
7579 return tls::TLSOPT_NONE;
7580 }
7581
7582 // Get the Reference_flags for a particular relocation.
7583
7584 template<bool big_endian>
7585 int
7586 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7587 {
7588 switch (r_type)
7589 {
7590 case elfcpp::R_ARM_NONE:
7591 case elfcpp::R_ARM_V4BX:
7592 case elfcpp::R_ARM_GNU_VTENTRY:
7593 case elfcpp::R_ARM_GNU_VTINHERIT:
7594 // No symbol reference.
7595 return 0;
7596
7597 case elfcpp::R_ARM_ABS32:
7598 case elfcpp::R_ARM_ABS16:
7599 case elfcpp::R_ARM_ABS12:
7600 case elfcpp::R_ARM_THM_ABS5:
7601 case elfcpp::R_ARM_ABS8:
7602 case elfcpp::R_ARM_BASE_ABS:
7603 case elfcpp::R_ARM_MOVW_ABS_NC:
7604 case elfcpp::R_ARM_MOVT_ABS:
7605 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7606 case elfcpp::R_ARM_THM_MOVT_ABS:
7607 case elfcpp::R_ARM_ABS32_NOI:
7608 return Symbol::ABSOLUTE_REF;
7609
7610 case elfcpp::R_ARM_REL32:
7611 case elfcpp::R_ARM_LDR_PC_G0:
7612 case elfcpp::R_ARM_SBREL32:
7613 case elfcpp::R_ARM_THM_PC8:
7614 case elfcpp::R_ARM_BASE_PREL:
7615 case elfcpp::R_ARM_MOVW_PREL_NC:
7616 case elfcpp::R_ARM_MOVT_PREL:
7617 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7618 case elfcpp::R_ARM_THM_MOVT_PREL:
7619 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7620 case elfcpp::R_ARM_THM_PC12:
7621 case elfcpp::R_ARM_REL32_NOI:
7622 case elfcpp::R_ARM_ALU_PC_G0_NC:
7623 case elfcpp::R_ARM_ALU_PC_G0:
7624 case elfcpp::R_ARM_ALU_PC_G1_NC:
7625 case elfcpp::R_ARM_ALU_PC_G1:
7626 case elfcpp::R_ARM_ALU_PC_G2:
7627 case elfcpp::R_ARM_LDR_PC_G1:
7628 case elfcpp::R_ARM_LDR_PC_G2:
7629 case elfcpp::R_ARM_LDRS_PC_G0:
7630 case elfcpp::R_ARM_LDRS_PC_G1:
7631 case elfcpp::R_ARM_LDRS_PC_G2:
7632 case elfcpp::R_ARM_LDC_PC_G0:
7633 case elfcpp::R_ARM_LDC_PC_G1:
7634 case elfcpp::R_ARM_LDC_PC_G2:
7635 case elfcpp::R_ARM_ALU_SB_G0_NC:
7636 case elfcpp::R_ARM_ALU_SB_G0:
7637 case elfcpp::R_ARM_ALU_SB_G1_NC:
7638 case elfcpp::R_ARM_ALU_SB_G1:
7639 case elfcpp::R_ARM_ALU_SB_G2:
7640 case elfcpp::R_ARM_LDR_SB_G0:
7641 case elfcpp::R_ARM_LDR_SB_G1:
7642 case elfcpp::R_ARM_LDR_SB_G2:
7643 case elfcpp::R_ARM_LDRS_SB_G0:
7644 case elfcpp::R_ARM_LDRS_SB_G1:
7645 case elfcpp::R_ARM_LDRS_SB_G2:
7646 case elfcpp::R_ARM_LDC_SB_G0:
7647 case elfcpp::R_ARM_LDC_SB_G1:
7648 case elfcpp::R_ARM_LDC_SB_G2:
7649 case elfcpp::R_ARM_MOVW_BREL_NC:
7650 case elfcpp::R_ARM_MOVT_BREL:
7651 case elfcpp::R_ARM_MOVW_BREL:
7652 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7653 case elfcpp::R_ARM_THM_MOVT_BREL:
7654 case elfcpp::R_ARM_THM_MOVW_BREL:
7655 case elfcpp::R_ARM_GOTOFF32:
7656 case elfcpp::R_ARM_GOTOFF12:
7657 case elfcpp::R_ARM_SBREL31:
7658 return Symbol::RELATIVE_REF;
7659
7660 case elfcpp::R_ARM_PLT32:
7661 case elfcpp::R_ARM_CALL:
7662 case elfcpp::R_ARM_JUMP24:
7663 case elfcpp::R_ARM_THM_CALL:
7664 case elfcpp::R_ARM_THM_JUMP24:
7665 case elfcpp::R_ARM_THM_JUMP19:
7666 case elfcpp::R_ARM_THM_JUMP6:
7667 case elfcpp::R_ARM_THM_JUMP11:
7668 case elfcpp::R_ARM_THM_JUMP8:
7669 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7670 // in unwind tables. It may point to functions via PLTs.
7671 // So we treat it like call/jump relocations above.
7672 case elfcpp::R_ARM_PREL31:
7673 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7674
7675 case elfcpp::R_ARM_GOT_BREL:
7676 case elfcpp::R_ARM_GOT_ABS:
7677 case elfcpp::R_ARM_GOT_PREL:
7678 // Absolute in GOT.
7679 return Symbol::ABSOLUTE_REF;
7680
7681 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7682 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7683 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7684 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7685 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7686 return Symbol::TLS_REF;
7687
7688 case elfcpp::R_ARM_TARGET1:
7689 case elfcpp::R_ARM_TARGET2:
7690 case elfcpp::R_ARM_COPY:
7691 case elfcpp::R_ARM_GLOB_DAT:
7692 case elfcpp::R_ARM_JUMP_SLOT:
7693 case elfcpp::R_ARM_RELATIVE:
7694 case elfcpp::R_ARM_PC24:
7695 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7696 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7697 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7698 default:
7699 // Not expected. We will give an error later.
7700 return 0;
7701 }
7702 }
7703
7704 // Report an unsupported relocation against a local symbol.
7705
7706 template<bool big_endian>
7707 void
7708 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7709 Sized_relobj_file<32, big_endian>* object,
7710 unsigned int r_type)
7711 {
7712 gold_error(_("%s: unsupported reloc %u against local symbol"),
7713 object->name().c_str(), r_type);
7714 }
7715
7716 // We are about to emit a dynamic relocation of type R_TYPE. If the
7717 // dynamic linker does not support it, issue an error. The GNU linker
7718 // only issues a non-PIC error for an allocated read-only section.
7719 // Here we know the section is allocated, but we don't know that it is
7720 // read-only. But we check for all the relocation types which the
7721 // glibc dynamic linker supports, so it seems appropriate to issue an
7722 // error even if the section is not read-only.
7723
7724 template<bool big_endian>
7725 void
7726 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7727 unsigned int r_type)
7728 {
7729 switch (r_type)
7730 {
7731 // These are the relocation types supported by glibc for ARM.
7732 case elfcpp::R_ARM_RELATIVE:
7733 case elfcpp::R_ARM_COPY:
7734 case elfcpp::R_ARM_GLOB_DAT:
7735 case elfcpp::R_ARM_JUMP_SLOT:
7736 case elfcpp::R_ARM_ABS32:
7737 case elfcpp::R_ARM_ABS32_NOI:
7738 case elfcpp::R_ARM_PC24:
7739 // FIXME: The following 3 types are not supported by Android's dynamic
7740 // linker.
7741 case elfcpp::R_ARM_TLS_DTPMOD32:
7742 case elfcpp::R_ARM_TLS_DTPOFF32:
7743 case elfcpp::R_ARM_TLS_TPOFF32:
7744 return;
7745
7746 default:
7747 {
7748 // This prevents us from issuing more than one error per reloc
7749 // section. But we can still wind up issuing more than one
7750 // error per object file.
7751 if (this->issued_non_pic_error_)
7752 return;
7753 const Arm_reloc_property* reloc_property =
7754 arm_reloc_property_table->get_reloc_property(r_type);
7755 gold_assert(reloc_property != NULL);
7756 object->error(_("requires unsupported dynamic reloc %s; "
7757 "recompile with -fPIC"),
7758 reloc_property->name().c_str());
7759 this->issued_non_pic_error_ = true;
7760 return;
7761 }
7762
7763 case elfcpp::R_ARM_NONE:
7764 gold_unreachable();
7765 }
7766 }
7767
7768 // Scan a relocation for a local symbol.
7769 // FIXME: This only handles a subset of relocation types used by Android
7770 // on ARM v5te devices.
7771
7772 template<bool big_endian>
7773 inline void
7774 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7775 Layout* layout,
7776 Target_arm* target,
7777 Sized_relobj_file<32, big_endian>* object,
7778 unsigned int data_shndx,
7779 Output_section* output_section,
7780 const elfcpp::Rel<32, big_endian>& reloc,
7781 unsigned int r_type,
7782 const elfcpp::Sym<32, big_endian>& lsym)
7783 {
7784 r_type = get_real_reloc_type(r_type);
7785 switch (r_type)
7786 {
7787 case elfcpp::R_ARM_NONE:
7788 case elfcpp::R_ARM_V4BX:
7789 case elfcpp::R_ARM_GNU_VTENTRY:
7790 case elfcpp::R_ARM_GNU_VTINHERIT:
7791 break;
7792
7793 case elfcpp::R_ARM_ABS32:
7794 case elfcpp::R_ARM_ABS32_NOI:
7795 // If building a shared library (or a position-independent
7796 // executable), we need to create a dynamic relocation for
7797 // this location. The relocation applied at link time will
7798 // apply the link-time value, so we flag the location with
7799 // an R_ARM_RELATIVE relocation so the dynamic loader can
7800 // relocate it easily.
7801 if (parameters->options().output_is_position_independent())
7802 {
7803 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7804 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7805 // If we are to add more other reloc types than R_ARM_ABS32,
7806 // we need to add check_non_pic(object, r_type) here.
7807 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7808 output_section, data_shndx,
7809 reloc.get_r_offset());
7810 }
7811 break;
7812
7813 case elfcpp::R_ARM_ABS16:
7814 case elfcpp::R_ARM_ABS12:
7815 case elfcpp::R_ARM_THM_ABS5:
7816 case elfcpp::R_ARM_ABS8:
7817 case elfcpp::R_ARM_BASE_ABS:
7818 case elfcpp::R_ARM_MOVW_ABS_NC:
7819 case elfcpp::R_ARM_MOVT_ABS:
7820 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7821 case elfcpp::R_ARM_THM_MOVT_ABS:
7822 // If building a shared library (or a position-independent
7823 // executable), we need to create a dynamic relocation for
7824 // this location. Because the addend needs to remain in the
7825 // data section, we need to be careful not to apply this
7826 // relocation statically.
7827 if (parameters->options().output_is_position_independent())
7828 {
7829 check_non_pic(object, r_type);
7830 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7831 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7832 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7833 rel_dyn->add_local(object, r_sym, r_type, output_section,
7834 data_shndx, reloc.get_r_offset());
7835 else
7836 {
7837 gold_assert(lsym.get_st_value() == 0);
7838 unsigned int shndx = lsym.get_st_shndx();
7839 bool is_ordinary;
7840 shndx = object->adjust_sym_shndx(r_sym, shndx,
7841 &is_ordinary);
7842 if (!is_ordinary)
7843 object->error(_("section symbol %u has bad shndx %u"),
7844 r_sym, shndx);
7845 else
7846 rel_dyn->add_local_section(object, shndx,
7847 r_type, output_section,
7848 data_shndx, reloc.get_r_offset());
7849 }
7850 }
7851 break;
7852
7853 case elfcpp::R_ARM_REL32:
7854 case elfcpp::R_ARM_LDR_PC_G0:
7855 case elfcpp::R_ARM_SBREL32:
7856 case elfcpp::R_ARM_THM_CALL:
7857 case elfcpp::R_ARM_THM_PC8:
7858 case elfcpp::R_ARM_BASE_PREL:
7859 case elfcpp::R_ARM_PLT32:
7860 case elfcpp::R_ARM_CALL:
7861 case elfcpp::R_ARM_JUMP24:
7862 case elfcpp::R_ARM_THM_JUMP24:
7863 case elfcpp::R_ARM_SBREL31:
7864 case elfcpp::R_ARM_PREL31:
7865 case elfcpp::R_ARM_MOVW_PREL_NC:
7866 case elfcpp::R_ARM_MOVT_PREL:
7867 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7868 case elfcpp::R_ARM_THM_MOVT_PREL:
7869 case elfcpp::R_ARM_THM_JUMP19:
7870 case elfcpp::R_ARM_THM_JUMP6:
7871 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7872 case elfcpp::R_ARM_THM_PC12:
7873 case elfcpp::R_ARM_REL32_NOI:
7874 case elfcpp::R_ARM_ALU_PC_G0_NC:
7875 case elfcpp::R_ARM_ALU_PC_G0:
7876 case elfcpp::R_ARM_ALU_PC_G1_NC:
7877 case elfcpp::R_ARM_ALU_PC_G1:
7878 case elfcpp::R_ARM_ALU_PC_G2:
7879 case elfcpp::R_ARM_LDR_PC_G1:
7880 case elfcpp::R_ARM_LDR_PC_G2:
7881 case elfcpp::R_ARM_LDRS_PC_G0:
7882 case elfcpp::R_ARM_LDRS_PC_G1:
7883 case elfcpp::R_ARM_LDRS_PC_G2:
7884 case elfcpp::R_ARM_LDC_PC_G0:
7885 case elfcpp::R_ARM_LDC_PC_G1:
7886 case elfcpp::R_ARM_LDC_PC_G2:
7887 case elfcpp::R_ARM_ALU_SB_G0_NC:
7888 case elfcpp::R_ARM_ALU_SB_G0:
7889 case elfcpp::R_ARM_ALU_SB_G1_NC:
7890 case elfcpp::R_ARM_ALU_SB_G1:
7891 case elfcpp::R_ARM_ALU_SB_G2:
7892 case elfcpp::R_ARM_LDR_SB_G0:
7893 case elfcpp::R_ARM_LDR_SB_G1:
7894 case elfcpp::R_ARM_LDR_SB_G2:
7895 case elfcpp::R_ARM_LDRS_SB_G0:
7896 case elfcpp::R_ARM_LDRS_SB_G1:
7897 case elfcpp::R_ARM_LDRS_SB_G2:
7898 case elfcpp::R_ARM_LDC_SB_G0:
7899 case elfcpp::R_ARM_LDC_SB_G1:
7900 case elfcpp::R_ARM_LDC_SB_G2:
7901 case elfcpp::R_ARM_MOVW_BREL_NC:
7902 case elfcpp::R_ARM_MOVT_BREL:
7903 case elfcpp::R_ARM_MOVW_BREL:
7904 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7905 case elfcpp::R_ARM_THM_MOVT_BREL:
7906 case elfcpp::R_ARM_THM_MOVW_BREL:
7907 case elfcpp::R_ARM_THM_JUMP11:
7908 case elfcpp::R_ARM_THM_JUMP8:
7909 // We don't need to do anything for a relative addressing relocation
7910 // against a local symbol if it does not reference the GOT.
7911 break;
7912
7913 case elfcpp::R_ARM_GOTOFF32:
7914 case elfcpp::R_ARM_GOTOFF12:
7915 // We need a GOT section:
7916 target->got_section(symtab, layout);
7917 break;
7918
7919 case elfcpp::R_ARM_GOT_BREL:
7920 case elfcpp::R_ARM_GOT_PREL:
7921 {
7922 // The symbol requires a GOT entry.
7923 Arm_output_data_got<big_endian>* got =
7924 target->got_section(symtab, layout);
7925 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7926 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7927 {
7928 // If we are generating a shared object, we need to add a
7929 // dynamic RELATIVE relocation for this symbol's GOT entry.
7930 if (parameters->options().output_is_position_independent())
7931 {
7932 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7933 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7934 rel_dyn->add_local_relative(
7935 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7936 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7937 }
7938 }
7939 }
7940 break;
7941
7942 case elfcpp::R_ARM_TARGET1:
7943 case elfcpp::R_ARM_TARGET2:
7944 // This should have been mapped to another type already.
7945 // Fall through.
7946 case elfcpp::R_ARM_COPY:
7947 case elfcpp::R_ARM_GLOB_DAT:
7948 case elfcpp::R_ARM_JUMP_SLOT:
7949 case elfcpp::R_ARM_RELATIVE:
7950 // These are relocations which should only be seen by the
7951 // dynamic linker, and should never be seen here.
7952 gold_error(_("%s: unexpected reloc %u in object file"),
7953 object->name().c_str(), r_type);
7954 break;
7955
7956
7957 // These are initial TLS relocs, which are expected when
7958 // linking.
7959 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7960 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7961 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7962 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7963 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7964 {
7965 bool output_is_shared = parameters->options().shared();
7966 const tls::Tls_optimization optimized_type
7967 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7968 r_type);
7969 switch (r_type)
7970 {
7971 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7972 if (optimized_type == tls::TLSOPT_NONE)
7973 {
7974 // Create a pair of GOT entries for the module index and
7975 // dtv-relative offset.
7976 Arm_output_data_got<big_endian>* got
7977 = target->got_section(symtab, layout);
7978 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7979 unsigned int shndx = lsym.get_st_shndx();
7980 bool is_ordinary;
7981 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7982 if (!is_ordinary)
7983 {
7984 object->error(_("local symbol %u has bad shndx %u"),
7985 r_sym, shndx);
7986 break;
7987 }
7988
7989 if (!parameters->doing_static_link())
7990 got->add_local_pair_with_rel(object, r_sym, shndx,
7991 GOT_TYPE_TLS_PAIR,
7992 target->rel_dyn_section(layout),
7993 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7994 else
7995 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7996 object, r_sym);
7997 }
7998 else
7999 // FIXME: TLS optimization not supported yet.
8000 gold_unreachable();
8001 break;
8002
8003 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8004 if (optimized_type == tls::TLSOPT_NONE)
8005 {
8006 // Create a GOT entry for the module index.
8007 target->got_mod_index_entry(symtab, layout, object);
8008 }
8009 else
8010 // FIXME: TLS optimization not supported yet.
8011 gold_unreachable();
8012 break;
8013
8014 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8015 break;
8016
8017 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8018 layout->set_has_static_tls();
8019 if (optimized_type == tls::TLSOPT_NONE)
8020 {
8021 // Create a GOT entry for the tp-relative offset.
8022 Arm_output_data_got<big_endian>* got
8023 = target->got_section(symtab, layout);
8024 unsigned int r_sym =
8025 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8026 if (!parameters->doing_static_link())
8027 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8028 target->rel_dyn_section(layout),
8029 elfcpp::R_ARM_TLS_TPOFF32);
8030 else if (!object->local_has_got_offset(r_sym,
8031 GOT_TYPE_TLS_OFFSET))
8032 {
8033 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8034 unsigned int got_offset =
8035 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8036 got->add_static_reloc(got_offset,
8037 elfcpp::R_ARM_TLS_TPOFF32, object,
8038 r_sym);
8039 }
8040 }
8041 else
8042 // FIXME: TLS optimization not supported yet.
8043 gold_unreachable();
8044 break;
8045
8046 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8047 layout->set_has_static_tls();
8048 if (output_is_shared)
8049 {
8050 // We need to create a dynamic relocation.
8051 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8052 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8053 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8054 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8055 output_section, data_shndx,
8056 reloc.get_r_offset());
8057 }
8058 break;
8059
8060 default:
8061 gold_unreachable();
8062 }
8063 }
8064 break;
8065
8066 case elfcpp::R_ARM_PC24:
8067 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8068 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8069 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8070 default:
8071 unsupported_reloc_local(object, r_type);
8072 break;
8073 }
8074 }
8075
8076 // Report an unsupported relocation against a global symbol.
8077
8078 template<bool big_endian>
8079 void
8080 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8081 Sized_relobj_file<32, big_endian>* object,
8082 unsigned int r_type,
8083 Symbol* gsym)
8084 {
8085 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8086 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8087 }
8088
8089 template<bool big_endian>
8090 inline bool
8091 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8092 unsigned int r_type)
8093 {
8094 switch (r_type)
8095 {
8096 case elfcpp::R_ARM_PC24:
8097 case elfcpp::R_ARM_THM_CALL:
8098 case elfcpp::R_ARM_PLT32:
8099 case elfcpp::R_ARM_CALL:
8100 case elfcpp::R_ARM_JUMP24:
8101 case elfcpp::R_ARM_THM_JUMP24:
8102 case elfcpp::R_ARM_SBREL31:
8103 case elfcpp::R_ARM_PREL31:
8104 case elfcpp::R_ARM_THM_JUMP19:
8105 case elfcpp::R_ARM_THM_JUMP6:
8106 case elfcpp::R_ARM_THM_JUMP11:
8107 case elfcpp::R_ARM_THM_JUMP8:
8108 // All the relocations above are branches except SBREL31 and PREL31.
8109 return false;
8110
8111 default:
8112 // Be conservative and assume this is a function pointer.
8113 return true;
8114 }
8115 }
8116
8117 template<bool big_endian>
8118 inline bool
8119 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8120 Symbol_table*,
8121 Layout*,
8122 Target_arm<big_endian>* target,
8123 Sized_relobj_file<32, big_endian>*,
8124 unsigned int,
8125 Output_section*,
8126 const elfcpp::Rel<32, big_endian>&,
8127 unsigned int r_type,
8128 const elfcpp::Sym<32, big_endian>&)
8129 {
8130 r_type = target->get_real_reloc_type(r_type);
8131 return possible_function_pointer_reloc(r_type);
8132 }
8133
8134 template<bool big_endian>
8135 inline bool
8136 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8137 Symbol_table*,
8138 Layout*,
8139 Target_arm<big_endian>* target,
8140 Sized_relobj_file<32, big_endian>*,
8141 unsigned int,
8142 Output_section*,
8143 const elfcpp::Rel<32, big_endian>&,
8144 unsigned int r_type,
8145 Symbol* gsym)
8146 {
8147 // GOT is not a function.
8148 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8149 return false;
8150
8151 r_type = target->get_real_reloc_type(r_type);
8152 return possible_function_pointer_reloc(r_type);
8153 }
8154
8155 // Scan a relocation for a global symbol.
8156
8157 template<bool big_endian>
8158 inline void
8159 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8160 Layout* layout,
8161 Target_arm* target,
8162 Sized_relobj_file<32, big_endian>* object,
8163 unsigned int data_shndx,
8164 Output_section* output_section,
8165 const elfcpp::Rel<32, big_endian>& reloc,
8166 unsigned int r_type,
8167 Symbol* gsym)
8168 {
8169 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8170 // section. We check here to avoid creating a dynamic reloc against
8171 // _GLOBAL_OFFSET_TABLE_.
8172 if (!target->has_got_section()
8173 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8174 target->got_section(symtab, layout);
8175
8176 r_type = get_real_reloc_type(r_type);
8177 switch (r_type)
8178 {
8179 case elfcpp::R_ARM_NONE:
8180 case elfcpp::R_ARM_V4BX:
8181 case elfcpp::R_ARM_GNU_VTENTRY:
8182 case elfcpp::R_ARM_GNU_VTINHERIT:
8183 break;
8184
8185 case elfcpp::R_ARM_ABS32:
8186 case elfcpp::R_ARM_ABS16:
8187 case elfcpp::R_ARM_ABS12:
8188 case elfcpp::R_ARM_THM_ABS5:
8189 case elfcpp::R_ARM_ABS8:
8190 case elfcpp::R_ARM_BASE_ABS:
8191 case elfcpp::R_ARM_MOVW_ABS_NC:
8192 case elfcpp::R_ARM_MOVT_ABS:
8193 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8194 case elfcpp::R_ARM_THM_MOVT_ABS:
8195 case elfcpp::R_ARM_ABS32_NOI:
8196 // Absolute addressing relocations.
8197 {
8198 // Make a PLT entry if necessary.
8199 if (this->symbol_needs_plt_entry(gsym))
8200 {
8201 target->make_plt_entry(symtab, layout, gsym);
8202 // Since this is not a PC-relative relocation, we may be
8203 // taking the address of a function. In that case we need to
8204 // set the entry in the dynamic symbol table to the address of
8205 // the PLT entry.
8206 if (gsym->is_from_dynobj() && !parameters->options().shared())
8207 gsym->set_needs_dynsym_value();
8208 }
8209 // Make a dynamic relocation if necessary.
8210 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8211 {
8212 if (gsym->may_need_copy_reloc())
8213 {
8214 target->copy_reloc(symtab, layout, object,
8215 data_shndx, output_section, gsym, reloc);
8216 }
8217 else if ((r_type == elfcpp::R_ARM_ABS32
8218 || r_type == elfcpp::R_ARM_ABS32_NOI)
8219 && gsym->can_use_relative_reloc(false))
8220 {
8221 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8222 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8223 output_section, object,
8224 data_shndx, reloc.get_r_offset());
8225 }
8226 else
8227 {
8228 check_non_pic(object, r_type);
8229 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8230 rel_dyn->add_global(gsym, r_type, output_section, object,
8231 data_shndx, reloc.get_r_offset());
8232 }
8233 }
8234 }
8235 break;
8236
8237 case elfcpp::R_ARM_GOTOFF32:
8238 case elfcpp::R_ARM_GOTOFF12:
8239 // We need a GOT section.
8240 target->got_section(symtab, layout);
8241 break;
8242
8243 case elfcpp::R_ARM_REL32:
8244 case elfcpp::R_ARM_LDR_PC_G0:
8245 case elfcpp::R_ARM_SBREL32:
8246 case elfcpp::R_ARM_THM_PC8:
8247 case elfcpp::R_ARM_BASE_PREL:
8248 case elfcpp::R_ARM_MOVW_PREL_NC:
8249 case elfcpp::R_ARM_MOVT_PREL:
8250 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8251 case elfcpp::R_ARM_THM_MOVT_PREL:
8252 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8253 case elfcpp::R_ARM_THM_PC12:
8254 case elfcpp::R_ARM_REL32_NOI:
8255 case elfcpp::R_ARM_ALU_PC_G0_NC:
8256 case elfcpp::R_ARM_ALU_PC_G0:
8257 case elfcpp::R_ARM_ALU_PC_G1_NC:
8258 case elfcpp::R_ARM_ALU_PC_G1:
8259 case elfcpp::R_ARM_ALU_PC_G2:
8260 case elfcpp::R_ARM_LDR_PC_G1:
8261 case elfcpp::R_ARM_LDR_PC_G2:
8262 case elfcpp::R_ARM_LDRS_PC_G0:
8263 case elfcpp::R_ARM_LDRS_PC_G1:
8264 case elfcpp::R_ARM_LDRS_PC_G2:
8265 case elfcpp::R_ARM_LDC_PC_G0:
8266 case elfcpp::R_ARM_LDC_PC_G1:
8267 case elfcpp::R_ARM_LDC_PC_G2:
8268 case elfcpp::R_ARM_ALU_SB_G0_NC:
8269 case elfcpp::R_ARM_ALU_SB_G0:
8270 case elfcpp::R_ARM_ALU_SB_G1_NC:
8271 case elfcpp::R_ARM_ALU_SB_G1:
8272 case elfcpp::R_ARM_ALU_SB_G2:
8273 case elfcpp::R_ARM_LDR_SB_G0:
8274 case elfcpp::R_ARM_LDR_SB_G1:
8275 case elfcpp::R_ARM_LDR_SB_G2:
8276 case elfcpp::R_ARM_LDRS_SB_G0:
8277 case elfcpp::R_ARM_LDRS_SB_G1:
8278 case elfcpp::R_ARM_LDRS_SB_G2:
8279 case elfcpp::R_ARM_LDC_SB_G0:
8280 case elfcpp::R_ARM_LDC_SB_G1:
8281 case elfcpp::R_ARM_LDC_SB_G2:
8282 case elfcpp::R_ARM_MOVW_BREL_NC:
8283 case elfcpp::R_ARM_MOVT_BREL:
8284 case elfcpp::R_ARM_MOVW_BREL:
8285 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8286 case elfcpp::R_ARM_THM_MOVT_BREL:
8287 case elfcpp::R_ARM_THM_MOVW_BREL:
8288 // Relative addressing relocations.
8289 {
8290 // Make a dynamic relocation if necessary.
8291 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8292 {
8293 if (target->may_need_copy_reloc(gsym))
8294 {
8295 target->copy_reloc(symtab, layout, object,
8296 data_shndx, output_section, gsym, reloc);
8297 }
8298 else
8299 {
8300 check_non_pic(object, r_type);
8301 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8302 rel_dyn->add_global(gsym, r_type, output_section, object,
8303 data_shndx, reloc.get_r_offset());
8304 }
8305 }
8306 }
8307 break;
8308
8309 case elfcpp::R_ARM_THM_CALL:
8310 case elfcpp::R_ARM_PLT32:
8311 case elfcpp::R_ARM_CALL:
8312 case elfcpp::R_ARM_JUMP24:
8313 case elfcpp::R_ARM_THM_JUMP24:
8314 case elfcpp::R_ARM_SBREL31:
8315 case elfcpp::R_ARM_PREL31:
8316 case elfcpp::R_ARM_THM_JUMP19:
8317 case elfcpp::R_ARM_THM_JUMP6:
8318 case elfcpp::R_ARM_THM_JUMP11:
8319 case elfcpp::R_ARM_THM_JUMP8:
8320 // All the relocation above are branches except for the PREL31 ones.
8321 // A PREL31 relocation can point to a personality function in a shared
8322 // library. In that case we want to use a PLT because we want to
8323 // call the personality routine and the dynamic linkers we care about
8324 // do not support dynamic PREL31 relocations. An REL31 relocation may
8325 // point to a function whose unwinding behaviour is being described but
8326 // we will not mistakenly generate a PLT for that because we should use
8327 // a local section symbol.
8328
8329 // If the symbol is fully resolved, this is just a relative
8330 // local reloc. Otherwise we need a PLT entry.
8331 if (gsym->final_value_is_known())
8332 break;
8333 // If building a shared library, we can also skip the PLT entry
8334 // if the symbol is defined in the output file and is protected
8335 // or hidden.
8336 if (gsym->is_defined()
8337 && !gsym->is_from_dynobj()
8338 && !gsym->is_preemptible())
8339 break;
8340 target->make_plt_entry(symtab, layout, gsym);
8341 break;
8342
8343 case elfcpp::R_ARM_GOT_BREL:
8344 case elfcpp::R_ARM_GOT_ABS:
8345 case elfcpp::R_ARM_GOT_PREL:
8346 {
8347 // The symbol requires a GOT entry.
8348 Arm_output_data_got<big_endian>* got =
8349 target->got_section(symtab, layout);
8350 if (gsym->final_value_is_known())
8351 got->add_global(gsym, GOT_TYPE_STANDARD);
8352 else
8353 {
8354 // If this symbol is not fully resolved, we need to add a
8355 // GOT entry with a dynamic relocation.
8356 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8357 if (gsym->is_from_dynobj()
8358 || gsym->is_undefined()
8359 || gsym->is_preemptible())
8360 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8361 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8362 else
8363 {
8364 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8365 rel_dyn->add_global_relative(
8366 gsym, elfcpp::R_ARM_RELATIVE, got,
8367 gsym->got_offset(GOT_TYPE_STANDARD));
8368 }
8369 }
8370 }
8371 break;
8372
8373 case elfcpp::R_ARM_TARGET1:
8374 case elfcpp::R_ARM_TARGET2:
8375 // These should have been mapped to other types already.
8376 // Fall through.
8377 case elfcpp::R_ARM_COPY:
8378 case elfcpp::R_ARM_GLOB_DAT:
8379 case elfcpp::R_ARM_JUMP_SLOT:
8380 case elfcpp::R_ARM_RELATIVE:
8381 // These are relocations which should only be seen by the
8382 // dynamic linker, and should never be seen here.
8383 gold_error(_("%s: unexpected reloc %u in object file"),
8384 object->name().c_str(), r_type);
8385 break;
8386
8387 // These are initial tls relocs, which are expected when
8388 // linking.
8389 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8390 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8391 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8392 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8393 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8394 {
8395 const bool is_final = gsym->final_value_is_known();
8396 const tls::Tls_optimization optimized_type
8397 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8398 switch (r_type)
8399 {
8400 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8401 if (optimized_type == tls::TLSOPT_NONE)
8402 {
8403 // Create a pair of GOT entries for the module index and
8404 // dtv-relative offset.
8405 Arm_output_data_got<big_endian>* got
8406 = target->got_section(symtab, layout);
8407 if (!parameters->doing_static_link())
8408 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8409 target->rel_dyn_section(layout),
8410 elfcpp::R_ARM_TLS_DTPMOD32,
8411 elfcpp::R_ARM_TLS_DTPOFF32);
8412 else
8413 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8414 }
8415 else
8416 // FIXME: TLS optimization not supported yet.
8417 gold_unreachable();
8418 break;
8419
8420 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8421 if (optimized_type == tls::TLSOPT_NONE)
8422 {
8423 // Create a GOT entry for the module index.
8424 target->got_mod_index_entry(symtab, layout, object);
8425 }
8426 else
8427 // FIXME: TLS optimization not supported yet.
8428 gold_unreachable();
8429 break;
8430
8431 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8432 break;
8433
8434 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8435 layout->set_has_static_tls();
8436 if (optimized_type == tls::TLSOPT_NONE)
8437 {
8438 // Create a GOT entry for the tp-relative offset.
8439 Arm_output_data_got<big_endian>* got
8440 = target->got_section(symtab, layout);
8441 if (!parameters->doing_static_link())
8442 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8443 target->rel_dyn_section(layout),
8444 elfcpp::R_ARM_TLS_TPOFF32);
8445 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8446 {
8447 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8448 unsigned int got_offset =
8449 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8450 got->add_static_reloc(got_offset,
8451 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8452 }
8453 }
8454 else
8455 // FIXME: TLS optimization not supported yet.
8456 gold_unreachable();
8457 break;
8458
8459 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8460 layout->set_has_static_tls();
8461 if (parameters->options().shared())
8462 {
8463 // We need to create a dynamic relocation.
8464 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8465 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8466 output_section, object,
8467 data_shndx, reloc.get_r_offset());
8468 }
8469 break;
8470
8471 default:
8472 gold_unreachable();
8473 }
8474 }
8475 break;
8476
8477 case elfcpp::R_ARM_PC24:
8478 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8479 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8480 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8481 default:
8482 unsupported_reloc_global(object, r_type, gsym);
8483 break;
8484 }
8485 }
8486
8487 // Process relocations for gc.
8488
8489 template<bool big_endian>
8490 void
8491 Target_arm<big_endian>::gc_process_relocs(
8492 Symbol_table* symtab,
8493 Layout* layout,
8494 Sized_relobj_file<32, big_endian>* object,
8495 unsigned int data_shndx,
8496 unsigned int,
8497 const unsigned char* prelocs,
8498 size_t reloc_count,
8499 Output_section* output_section,
8500 bool needs_special_offset_handling,
8501 size_t local_symbol_count,
8502 const unsigned char* plocal_symbols)
8503 {
8504 typedef Target_arm<big_endian> Arm;
8505 typedef typename Target_arm<big_endian>::Scan Scan;
8506
8507 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8508 typename Target_arm::Relocatable_size_for_reloc>(
8509 symtab,
8510 layout,
8511 this,
8512 object,
8513 data_shndx,
8514 prelocs,
8515 reloc_count,
8516 output_section,
8517 needs_special_offset_handling,
8518 local_symbol_count,
8519 plocal_symbols);
8520 }
8521
8522 // Scan relocations for a section.
8523
8524 template<bool big_endian>
8525 void
8526 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8527 Layout* layout,
8528 Sized_relobj_file<32, big_endian>* object,
8529 unsigned int data_shndx,
8530 unsigned int sh_type,
8531 const unsigned char* prelocs,
8532 size_t reloc_count,
8533 Output_section* output_section,
8534 bool needs_special_offset_handling,
8535 size_t local_symbol_count,
8536 const unsigned char* plocal_symbols)
8537 {
8538 typedef typename Target_arm<big_endian>::Scan Scan;
8539 if (sh_type == elfcpp::SHT_RELA)
8540 {
8541 gold_error(_("%s: unsupported RELA reloc section"),
8542 object->name().c_str());
8543 return;
8544 }
8545
8546 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8547 symtab,
8548 layout,
8549 this,
8550 object,
8551 data_shndx,
8552 prelocs,
8553 reloc_count,
8554 output_section,
8555 needs_special_offset_handling,
8556 local_symbol_count,
8557 plocal_symbols);
8558 }
8559
8560 // Finalize the sections.
8561
8562 template<bool big_endian>
8563 void
8564 Target_arm<big_endian>::do_finalize_sections(
8565 Layout* layout,
8566 const Input_objects* input_objects,
8567 Symbol_table* symtab)
8568 {
8569 bool merged_any_attributes = false;
8570 // Merge processor-specific flags.
8571 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8572 p != input_objects->relobj_end();
8573 ++p)
8574 {
8575 Arm_relobj<big_endian>* arm_relobj =
8576 Arm_relobj<big_endian>::as_arm_relobj(*p);
8577 if (arm_relobj->merge_flags_and_attributes())
8578 {
8579 this->merge_processor_specific_flags(
8580 arm_relobj->name(),
8581 arm_relobj->processor_specific_flags());
8582 this->merge_object_attributes(arm_relobj->name().c_str(),
8583 arm_relobj->attributes_section_data());
8584 merged_any_attributes = true;
8585 }
8586 }
8587
8588 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8589 p != input_objects->dynobj_end();
8590 ++p)
8591 {
8592 Arm_dynobj<big_endian>* arm_dynobj =
8593 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8594 this->merge_processor_specific_flags(
8595 arm_dynobj->name(),
8596 arm_dynobj->processor_specific_flags());
8597 this->merge_object_attributes(arm_dynobj->name().c_str(),
8598 arm_dynobj->attributes_section_data());
8599 merged_any_attributes = true;
8600 }
8601
8602 // Create an empty uninitialized attribute section if we still don't have it
8603 // at this moment. This happens if there is no attributes sections in all
8604 // inputs.
8605 if (this->attributes_section_data_ == NULL)
8606 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8607
8608 // Check BLX use.
8609 const Object_attribute* cpu_arch_attr =
8610 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8611 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8612 this->set_may_use_blx(true);
8613
8614 // Check if we need to use Cortex-A8 workaround.
8615 if (parameters->options().user_set_fix_cortex_a8())
8616 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8617 else
8618 {
8619 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8620 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8621 // profile.
8622 const Object_attribute* cpu_arch_profile_attr =
8623 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8624 this->fix_cortex_a8_ =
8625 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8626 && (cpu_arch_profile_attr->int_value() == 'A'
8627 || cpu_arch_profile_attr->int_value() == 0));
8628 }
8629
8630 // Check if we can use V4BX interworking.
8631 // The V4BX interworking stub contains BX instruction,
8632 // which is not specified for some profiles.
8633 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8634 && !this->may_use_blx())
8635 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8636 "the target profile does not support BX instruction"));
8637
8638 // Fill in some more dynamic tags.
8639 const Reloc_section* rel_plt = (this->plt_ == NULL
8640 ? NULL
8641 : this->plt_->rel_plt());
8642 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8643 this->rel_dyn_, true, false);
8644
8645 // Emit any relocs we saved in an attempt to avoid generating COPY
8646 // relocs.
8647 if (this->copy_relocs_.any_saved_relocs())
8648 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8649
8650 // Handle the .ARM.exidx section.
8651 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8652
8653 if (!parameters->options().relocatable())
8654 {
8655 if (exidx_section != NULL
8656 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8657 {
8658 // Create __exidx_start and __exidx_end symbols.
8659 symtab->define_in_output_data("__exidx_start", NULL,
8660 Symbol_table::PREDEFINED,
8661 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8662 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8663 0, false, true);
8664 symtab->define_in_output_data("__exidx_end", NULL,
8665 Symbol_table::PREDEFINED,
8666 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8667 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8668 0, true, true);
8669
8670 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8671 // the .ARM.exidx section.
8672 if (!layout->script_options()->saw_phdrs_clause())
8673 {
8674 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8675 0)
8676 == NULL);
8677 Output_segment* exidx_segment =
8678 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8679 exidx_segment->add_output_section_to_nonload(exidx_section,
8680 elfcpp::PF_R);
8681 }
8682 }
8683 else
8684 {
8685 symtab->define_as_constant("__exidx_start", NULL,
8686 Symbol_table::PREDEFINED,
8687 0, 0, elfcpp::STT_OBJECT,
8688 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8689 true, false);
8690 symtab->define_as_constant("__exidx_end", NULL,
8691 Symbol_table::PREDEFINED,
8692 0, 0, elfcpp::STT_OBJECT,
8693 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8694 true, false);
8695 }
8696 }
8697
8698 // Create an .ARM.attributes section if we have merged any attributes
8699 // from inputs.
8700 if (merged_any_attributes)
8701 {
8702 Output_attributes_section_data* attributes_section =
8703 new Output_attributes_section_data(*this->attributes_section_data_);
8704 layout->add_output_section_data(".ARM.attributes",
8705 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8706 attributes_section, ORDER_INVALID,
8707 false);
8708 }
8709
8710 // Fix up links in section EXIDX headers.
8711 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8712 p != layout->section_list().end();
8713 ++p)
8714 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8715 {
8716 Arm_output_section<big_endian>* os =
8717 Arm_output_section<big_endian>::as_arm_output_section(*p);
8718 os->set_exidx_section_link();
8719 }
8720 }
8721
8722 // Return whether a direct absolute static relocation needs to be applied.
8723 // In cases where Scan::local() or Scan::global() has created
8724 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8725 // of the relocation is carried in the data, and we must not
8726 // apply the static relocation.
8727
8728 template<bool big_endian>
8729 inline bool
8730 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8731 const Sized_symbol<32>* gsym,
8732 unsigned int r_type,
8733 bool is_32bit,
8734 Output_section* output_section)
8735 {
8736 // If the output section is not allocated, then we didn't call
8737 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8738 // the reloc here.
8739 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8740 return true;
8741
8742 int ref_flags = Scan::get_reference_flags(r_type);
8743
8744 // For local symbols, we will have created a non-RELATIVE dynamic
8745 // relocation only if (a) the output is position independent,
8746 // (b) the relocation is absolute (not pc- or segment-relative), and
8747 // (c) the relocation is not 32 bits wide.
8748 if (gsym == NULL)
8749 return !(parameters->options().output_is_position_independent()
8750 && (ref_flags & Symbol::ABSOLUTE_REF)
8751 && !is_32bit);
8752
8753 // For global symbols, we use the same helper routines used in the
8754 // scan pass. If we did not create a dynamic relocation, or if we
8755 // created a RELATIVE dynamic relocation, we should apply the static
8756 // relocation.
8757 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8758 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8759 && gsym->can_use_relative_reloc(ref_flags
8760 & Symbol::FUNCTION_CALL);
8761 return !has_dyn || is_rel;
8762 }
8763
8764 // Perform a relocation.
8765
8766 template<bool big_endian>
8767 inline bool
8768 Target_arm<big_endian>::Relocate::relocate(
8769 const Relocate_info<32, big_endian>* relinfo,
8770 Target_arm* target,
8771 Output_section* output_section,
8772 size_t relnum,
8773 const elfcpp::Rel<32, big_endian>& rel,
8774 unsigned int r_type,
8775 const Sized_symbol<32>* gsym,
8776 const Symbol_value<32>* psymval,
8777 unsigned char* view,
8778 Arm_address address,
8779 section_size_type view_size)
8780 {
8781 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8782
8783 r_type = get_real_reloc_type(r_type);
8784 const Arm_reloc_property* reloc_property =
8785 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8786 if (reloc_property == NULL)
8787 {
8788 std::string reloc_name =
8789 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8790 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8791 _("cannot relocate %s in object file"),
8792 reloc_name.c_str());
8793 return true;
8794 }
8795
8796 const Arm_relobj<big_endian>* object =
8797 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8798
8799 // If the final branch target of a relocation is THUMB instruction, this
8800 // is 1. Otherwise it is 0.
8801 Arm_address thumb_bit = 0;
8802 Symbol_value<32> symval;
8803 bool is_weakly_undefined_without_plt = false;
8804 bool have_got_offset = false;
8805 unsigned int got_offset = 0;
8806
8807 // If the relocation uses the GOT entry of a symbol instead of the symbol
8808 // itself, we don't care about whether the symbol is defined or what kind
8809 // of symbol it is.
8810 if (reloc_property->uses_got_entry())
8811 {
8812 // Get the GOT offset.
8813 // The GOT pointer points to the end of the GOT section.
8814 // We need to subtract the size of the GOT section to get
8815 // the actual offset to use in the relocation.
8816 // TODO: We should move GOT offset computing code in TLS relocations
8817 // to here.
8818 switch (r_type)
8819 {
8820 case elfcpp::R_ARM_GOT_BREL:
8821 case elfcpp::R_ARM_GOT_PREL:
8822 if (gsym != NULL)
8823 {
8824 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8825 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8826 - target->got_size());
8827 }
8828 else
8829 {
8830 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8831 gold_assert(object->local_has_got_offset(r_sym,
8832 GOT_TYPE_STANDARD));
8833 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8834 - target->got_size());
8835 }
8836 have_got_offset = true;
8837 break;
8838
8839 default:
8840 break;
8841 }
8842 }
8843 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8844 {
8845 if (gsym != NULL)
8846 {
8847 // This is a global symbol. Determine if we use PLT and if the
8848 // final target is THUMB.
8849 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8850 {
8851 // This uses a PLT, change the symbol value.
8852 symval.set_output_value(target->plt_section()->address()
8853 + gsym->plt_offset());
8854 psymval = &symval;
8855 }
8856 else if (gsym->is_weak_undefined())
8857 {
8858 // This is a weakly undefined symbol and we do not use PLT
8859 // for this relocation. A branch targeting this symbol will
8860 // be converted into an NOP.
8861 is_weakly_undefined_without_plt = true;
8862 }
8863 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8864 {
8865 // This relocation uses the symbol value but the symbol is
8866 // undefined. Exit early and have the caller reporting an
8867 // error.
8868 return true;
8869 }
8870 else
8871 {
8872 // Set thumb bit if symbol:
8873 // -Has type STT_ARM_TFUNC or
8874 // -Has type STT_FUNC, is defined and with LSB in value set.
8875 thumb_bit =
8876 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8877 || (gsym->type() == elfcpp::STT_FUNC
8878 && !gsym->is_undefined()
8879 && ((psymval->value(object, 0) & 1) != 0)))
8880 ? 1
8881 : 0);
8882 }
8883 }
8884 else
8885 {
8886 // This is a local symbol. Determine if the final target is THUMB.
8887 // We saved this information when all the local symbols were read.
8888 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8889 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8890 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8891 }
8892 }
8893 else
8894 {
8895 // This is a fake relocation synthesized for a stub. It does not have
8896 // a real symbol. We just look at the LSB of the symbol value to
8897 // determine if the target is THUMB or not.
8898 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8899 }
8900
8901 // Strip LSB if this points to a THUMB target.
8902 if (thumb_bit != 0
8903 && reloc_property->uses_thumb_bit()
8904 && ((psymval->value(object, 0) & 1) != 0))
8905 {
8906 Arm_address stripped_value =
8907 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8908 symval.set_output_value(stripped_value);
8909 psymval = &symval;
8910 }
8911
8912 // To look up relocation stubs, we need to pass the symbol table index of
8913 // a local symbol.
8914 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8915
8916 // Get the addressing origin of the output segment defining the
8917 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8918 Arm_address sym_origin = 0;
8919 if (reloc_property->uses_symbol_base())
8920 {
8921 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8922 // R_ARM_BASE_ABS with the NULL symbol will give the
8923 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8924 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8925 sym_origin = target->got_plt_section()->address();
8926 else if (gsym == NULL)
8927 sym_origin = 0;
8928 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8929 sym_origin = gsym->output_segment()->vaddr();
8930 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8931 sym_origin = gsym->output_data()->address();
8932
8933 // TODO: Assumes the segment base to be zero for the global symbols
8934 // till the proper support for the segment-base-relative addressing
8935 // will be implemented. This is consistent with GNU ld.
8936 }
8937
8938 // For relative addressing relocation, find out the relative address base.
8939 Arm_address relative_address_base = 0;
8940 switch(reloc_property->relative_address_base())
8941 {
8942 case Arm_reloc_property::RAB_NONE:
8943 // Relocations with relative address bases RAB_TLS and RAB_tp are
8944 // handled by relocate_tls. So we do not need to do anything here.
8945 case Arm_reloc_property::RAB_TLS:
8946 case Arm_reloc_property::RAB_tp:
8947 break;
8948 case Arm_reloc_property::RAB_B_S:
8949 relative_address_base = sym_origin;
8950 break;
8951 case Arm_reloc_property::RAB_GOT_ORG:
8952 relative_address_base = target->got_plt_section()->address();
8953 break;
8954 case Arm_reloc_property::RAB_P:
8955 relative_address_base = address;
8956 break;
8957 case Arm_reloc_property::RAB_Pa:
8958 relative_address_base = address & 0xfffffffcU;
8959 break;
8960 default:
8961 gold_unreachable();
8962 }
8963
8964 typename Arm_relocate_functions::Status reloc_status =
8965 Arm_relocate_functions::STATUS_OKAY;
8966 bool check_overflow = reloc_property->checks_overflow();
8967 switch (r_type)
8968 {
8969 case elfcpp::R_ARM_NONE:
8970 break;
8971
8972 case elfcpp::R_ARM_ABS8:
8973 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8974 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8975 break;
8976
8977 case elfcpp::R_ARM_ABS12:
8978 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8979 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8980 break;
8981
8982 case elfcpp::R_ARM_ABS16:
8983 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8984 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8985 break;
8986
8987 case elfcpp::R_ARM_ABS32:
8988 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8989 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8990 thumb_bit);
8991 break;
8992
8993 case elfcpp::R_ARM_ABS32_NOI:
8994 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8995 // No thumb bit for this relocation: (S + A)
8996 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8997 0);
8998 break;
8999
9000 case elfcpp::R_ARM_MOVW_ABS_NC:
9001 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9002 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9003 0, thumb_bit,
9004 check_overflow);
9005 break;
9006
9007 case elfcpp::R_ARM_MOVT_ABS:
9008 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9009 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9010 break;
9011
9012 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9013 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9014 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9015 0, thumb_bit, false);
9016 break;
9017
9018 case elfcpp::R_ARM_THM_MOVT_ABS:
9019 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9020 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9021 psymval, 0);
9022 break;
9023
9024 case elfcpp::R_ARM_MOVW_PREL_NC:
9025 case elfcpp::R_ARM_MOVW_BREL_NC:
9026 case elfcpp::R_ARM_MOVW_BREL:
9027 reloc_status =
9028 Arm_relocate_functions::movw(view, object, psymval,
9029 relative_address_base, thumb_bit,
9030 check_overflow);
9031 break;
9032
9033 case elfcpp::R_ARM_MOVT_PREL:
9034 case elfcpp::R_ARM_MOVT_BREL:
9035 reloc_status =
9036 Arm_relocate_functions::movt(view, object, psymval,
9037 relative_address_base);
9038 break;
9039
9040 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9041 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9042 case elfcpp::R_ARM_THM_MOVW_BREL:
9043 reloc_status =
9044 Arm_relocate_functions::thm_movw(view, object, psymval,
9045 relative_address_base,
9046 thumb_bit, check_overflow);
9047 break;
9048
9049 case elfcpp::R_ARM_THM_MOVT_PREL:
9050 case elfcpp::R_ARM_THM_MOVT_BREL:
9051 reloc_status =
9052 Arm_relocate_functions::thm_movt(view, object, psymval,
9053 relative_address_base);
9054 break;
9055
9056 case elfcpp::R_ARM_REL32:
9057 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9058 address, thumb_bit);
9059 break;
9060
9061 case elfcpp::R_ARM_THM_ABS5:
9062 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9063 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9064 break;
9065
9066 // Thumb long branches.
9067 case elfcpp::R_ARM_THM_CALL:
9068 case elfcpp::R_ARM_THM_XPC22:
9069 case elfcpp::R_ARM_THM_JUMP24:
9070 reloc_status =
9071 Arm_relocate_functions::thumb_branch_common(
9072 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9073 thumb_bit, is_weakly_undefined_without_plt);
9074 break;
9075
9076 case elfcpp::R_ARM_GOTOFF32:
9077 {
9078 Arm_address got_origin;
9079 got_origin = target->got_plt_section()->address();
9080 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9081 got_origin, thumb_bit);
9082 }
9083 break;
9084
9085 case elfcpp::R_ARM_BASE_PREL:
9086 gold_assert(gsym != NULL);
9087 reloc_status =
9088 Arm_relocate_functions::base_prel(view, sym_origin, address);
9089 break;
9090
9091 case elfcpp::R_ARM_BASE_ABS:
9092 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9093 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9094 break;
9095
9096 case elfcpp::R_ARM_GOT_BREL:
9097 gold_assert(have_got_offset);
9098 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9099 break;
9100
9101 case elfcpp::R_ARM_GOT_PREL:
9102 gold_assert(have_got_offset);
9103 // Get the address origin for GOT PLT, which is allocated right
9104 // after the GOT section, to calculate an absolute address of
9105 // the symbol GOT entry (got_origin + got_offset).
9106 Arm_address got_origin;
9107 got_origin = target->got_plt_section()->address();
9108 reloc_status = Arm_relocate_functions::got_prel(view,
9109 got_origin + got_offset,
9110 address);
9111 break;
9112
9113 case elfcpp::R_ARM_PLT32:
9114 case elfcpp::R_ARM_CALL:
9115 case elfcpp::R_ARM_JUMP24:
9116 case elfcpp::R_ARM_XPC25:
9117 gold_assert(gsym == NULL
9118 || gsym->has_plt_offset()
9119 || gsym->final_value_is_known()
9120 || (gsym->is_defined()
9121 && !gsym->is_from_dynobj()
9122 && !gsym->is_preemptible()));
9123 reloc_status =
9124 Arm_relocate_functions::arm_branch_common(
9125 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9126 thumb_bit, is_weakly_undefined_without_plt);
9127 break;
9128
9129 case elfcpp::R_ARM_THM_JUMP19:
9130 reloc_status =
9131 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9132 thumb_bit);
9133 break;
9134
9135 case elfcpp::R_ARM_THM_JUMP6:
9136 reloc_status =
9137 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9138 break;
9139
9140 case elfcpp::R_ARM_THM_JUMP8:
9141 reloc_status =
9142 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9143 break;
9144
9145 case elfcpp::R_ARM_THM_JUMP11:
9146 reloc_status =
9147 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9148 break;
9149
9150 case elfcpp::R_ARM_PREL31:
9151 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9152 address, thumb_bit);
9153 break;
9154
9155 case elfcpp::R_ARM_V4BX:
9156 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9157 {
9158 const bool is_v4bx_interworking =
9159 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9160 reloc_status =
9161 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9162 is_v4bx_interworking);
9163 }
9164 break;
9165
9166 case elfcpp::R_ARM_THM_PC8:
9167 reloc_status =
9168 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9169 break;
9170
9171 case elfcpp::R_ARM_THM_PC12:
9172 reloc_status =
9173 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9174 break;
9175
9176 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9177 reloc_status =
9178 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9179 thumb_bit);
9180 break;
9181
9182 case elfcpp::R_ARM_ALU_PC_G0_NC:
9183 case elfcpp::R_ARM_ALU_PC_G0:
9184 case elfcpp::R_ARM_ALU_PC_G1_NC:
9185 case elfcpp::R_ARM_ALU_PC_G1:
9186 case elfcpp::R_ARM_ALU_PC_G2:
9187 case elfcpp::R_ARM_ALU_SB_G0_NC:
9188 case elfcpp::R_ARM_ALU_SB_G0:
9189 case elfcpp::R_ARM_ALU_SB_G1_NC:
9190 case elfcpp::R_ARM_ALU_SB_G1:
9191 case elfcpp::R_ARM_ALU_SB_G2:
9192 reloc_status =
9193 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9194 reloc_property->group_index(),
9195 relative_address_base,
9196 thumb_bit, check_overflow);
9197 break;
9198
9199 case elfcpp::R_ARM_LDR_PC_G0:
9200 case elfcpp::R_ARM_LDR_PC_G1:
9201 case elfcpp::R_ARM_LDR_PC_G2:
9202 case elfcpp::R_ARM_LDR_SB_G0:
9203 case elfcpp::R_ARM_LDR_SB_G1:
9204 case elfcpp::R_ARM_LDR_SB_G2:
9205 reloc_status =
9206 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9207 reloc_property->group_index(),
9208 relative_address_base);
9209 break;
9210
9211 case elfcpp::R_ARM_LDRS_PC_G0:
9212 case elfcpp::R_ARM_LDRS_PC_G1:
9213 case elfcpp::R_ARM_LDRS_PC_G2:
9214 case elfcpp::R_ARM_LDRS_SB_G0:
9215 case elfcpp::R_ARM_LDRS_SB_G1:
9216 case elfcpp::R_ARM_LDRS_SB_G2:
9217 reloc_status =
9218 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9219 reloc_property->group_index(),
9220 relative_address_base);
9221 break;
9222
9223 case elfcpp::R_ARM_LDC_PC_G0:
9224 case elfcpp::R_ARM_LDC_PC_G1:
9225 case elfcpp::R_ARM_LDC_PC_G2:
9226 case elfcpp::R_ARM_LDC_SB_G0:
9227 case elfcpp::R_ARM_LDC_SB_G1:
9228 case elfcpp::R_ARM_LDC_SB_G2:
9229 reloc_status =
9230 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9231 reloc_property->group_index(),
9232 relative_address_base);
9233 break;
9234
9235 // These are initial tls relocs, which are expected when
9236 // linking.
9237 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9238 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9239 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9240 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9241 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9242 reloc_status =
9243 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9244 view, address, view_size);
9245 break;
9246
9247 // The known and unknown unsupported and/or deprecated relocations.
9248 case elfcpp::R_ARM_PC24:
9249 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9250 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9251 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9252 default:
9253 // Just silently leave the method. We should get an appropriate error
9254 // message in the scan methods.
9255 break;
9256 }
9257
9258 // Report any errors.
9259 switch (reloc_status)
9260 {
9261 case Arm_relocate_functions::STATUS_OKAY:
9262 break;
9263 case Arm_relocate_functions::STATUS_OVERFLOW:
9264 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9265 _("relocation overflow in %s"),
9266 reloc_property->name().c_str());
9267 break;
9268 case Arm_relocate_functions::STATUS_BAD_RELOC:
9269 gold_error_at_location(
9270 relinfo,
9271 relnum,
9272 rel.get_r_offset(),
9273 _("unexpected opcode while processing relocation %s"),
9274 reloc_property->name().c_str());
9275 break;
9276 default:
9277 gold_unreachable();
9278 }
9279
9280 return true;
9281 }
9282
9283 // Perform a TLS relocation.
9284
9285 template<bool big_endian>
9286 inline typename Arm_relocate_functions<big_endian>::Status
9287 Target_arm<big_endian>::Relocate::relocate_tls(
9288 const Relocate_info<32, big_endian>* relinfo,
9289 Target_arm<big_endian>* target,
9290 size_t relnum,
9291 const elfcpp::Rel<32, big_endian>& rel,
9292 unsigned int r_type,
9293 const Sized_symbol<32>* gsym,
9294 const Symbol_value<32>* psymval,
9295 unsigned char* view,
9296 elfcpp::Elf_types<32>::Elf_Addr address,
9297 section_size_type /*view_size*/ )
9298 {
9299 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9300 typedef Relocate_functions<32, big_endian> RelocFuncs;
9301 Output_segment* tls_segment = relinfo->layout->tls_segment();
9302
9303 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9304
9305 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9306
9307 const bool is_final = (gsym == NULL
9308 ? !parameters->options().shared()
9309 : gsym->final_value_is_known());
9310 const tls::Tls_optimization optimized_type
9311 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9312 switch (r_type)
9313 {
9314 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9315 {
9316 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9317 unsigned int got_offset;
9318 if (gsym != NULL)
9319 {
9320 gold_assert(gsym->has_got_offset(got_type));
9321 got_offset = gsym->got_offset(got_type) - target->got_size();
9322 }
9323 else
9324 {
9325 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9326 gold_assert(object->local_has_got_offset(r_sym, got_type));
9327 got_offset = (object->local_got_offset(r_sym, got_type)
9328 - target->got_size());
9329 }
9330 if (optimized_type == tls::TLSOPT_NONE)
9331 {
9332 Arm_address got_entry =
9333 target->got_plt_section()->address() + got_offset;
9334
9335 // Relocate the field with the PC relative offset of the pair of
9336 // GOT entries.
9337 RelocFuncs::pcrel32(view, got_entry, address);
9338 return ArmRelocFuncs::STATUS_OKAY;
9339 }
9340 }
9341 break;
9342
9343 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9344 if (optimized_type == tls::TLSOPT_NONE)
9345 {
9346 // Relocate the field with the offset of the GOT entry for
9347 // the module index.
9348 unsigned int got_offset;
9349 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9350 - target->got_size());
9351 Arm_address got_entry =
9352 target->got_plt_section()->address() + got_offset;
9353
9354 // Relocate the field with the PC relative offset of the pair of
9355 // GOT entries.
9356 RelocFuncs::pcrel32(view, got_entry, address);
9357 return ArmRelocFuncs::STATUS_OKAY;
9358 }
9359 break;
9360
9361 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9362 RelocFuncs::rel32(view, value);
9363 return ArmRelocFuncs::STATUS_OKAY;
9364
9365 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9366 if (optimized_type == tls::TLSOPT_NONE)
9367 {
9368 // Relocate the field with the offset of the GOT entry for
9369 // the tp-relative offset of the symbol.
9370 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9371 unsigned int got_offset;
9372 if (gsym != NULL)
9373 {
9374 gold_assert(gsym->has_got_offset(got_type));
9375 got_offset = gsym->got_offset(got_type);
9376 }
9377 else
9378 {
9379 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9380 gold_assert(object->local_has_got_offset(r_sym, got_type));
9381 got_offset = object->local_got_offset(r_sym, got_type);
9382 }
9383
9384 // All GOT offsets are relative to the end of the GOT.
9385 got_offset -= target->got_size();
9386
9387 Arm_address got_entry =
9388 target->got_plt_section()->address() + got_offset;
9389
9390 // Relocate the field with the PC relative offset of the GOT entry.
9391 RelocFuncs::pcrel32(view, got_entry, address);
9392 return ArmRelocFuncs::STATUS_OKAY;
9393 }
9394 break;
9395
9396 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9397 // If we're creating a shared library, a dynamic relocation will
9398 // have been created for this location, so do not apply it now.
9399 if (!parameters->options().shared())
9400 {
9401 gold_assert(tls_segment != NULL);
9402
9403 // $tp points to the TCB, which is followed by the TLS, so we
9404 // need to add TCB size to the offset.
9405 Arm_address aligned_tcb_size =
9406 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9407 RelocFuncs::rel32(view, value + aligned_tcb_size);
9408
9409 }
9410 return ArmRelocFuncs::STATUS_OKAY;
9411
9412 default:
9413 gold_unreachable();
9414 }
9415
9416 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9417 _("unsupported reloc %u"),
9418 r_type);
9419 return ArmRelocFuncs::STATUS_BAD_RELOC;
9420 }
9421
9422 // Relocate section data.
9423
9424 template<bool big_endian>
9425 void
9426 Target_arm<big_endian>::relocate_section(
9427 const Relocate_info<32, big_endian>* relinfo,
9428 unsigned int sh_type,
9429 const unsigned char* prelocs,
9430 size_t reloc_count,
9431 Output_section* output_section,
9432 bool needs_special_offset_handling,
9433 unsigned char* view,
9434 Arm_address address,
9435 section_size_type view_size,
9436 const Reloc_symbol_changes* reloc_symbol_changes)
9437 {
9438 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9439 gold_assert(sh_type == elfcpp::SHT_REL);
9440
9441 // See if we are relocating a relaxed input section. If so, the view
9442 // covers the whole output section and we need to adjust accordingly.
9443 if (needs_special_offset_handling)
9444 {
9445 const Output_relaxed_input_section* poris =
9446 output_section->find_relaxed_input_section(relinfo->object,
9447 relinfo->data_shndx);
9448 if (poris != NULL)
9449 {
9450 Arm_address section_address = poris->address();
9451 section_size_type section_size = poris->data_size();
9452
9453 gold_assert((section_address >= address)
9454 && ((section_address + section_size)
9455 <= (address + view_size)));
9456
9457 off_t offset = section_address - address;
9458 view += offset;
9459 address += offset;
9460 view_size = section_size;
9461 }
9462 }
9463
9464 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9465 Arm_relocate>(
9466 relinfo,
9467 this,
9468 prelocs,
9469 reloc_count,
9470 output_section,
9471 needs_special_offset_handling,
9472 view,
9473 address,
9474 view_size,
9475 reloc_symbol_changes);
9476 }
9477
9478 // Return the size of a relocation while scanning during a relocatable
9479 // link.
9480
9481 template<bool big_endian>
9482 unsigned int
9483 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9484 unsigned int r_type,
9485 Relobj* object)
9486 {
9487 r_type = get_real_reloc_type(r_type);
9488 const Arm_reloc_property* arp =
9489 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9490 if (arp != NULL)
9491 return arp->size();
9492 else
9493 {
9494 std::string reloc_name =
9495 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9496 gold_error(_("%s: unexpected %s in object file"),
9497 object->name().c_str(), reloc_name.c_str());
9498 return 0;
9499 }
9500 }
9501
9502 // Scan the relocs during a relocatable link.
9503
9504 template<bool big_endian>
9505 void
9506 Target_arm<big_endian>::scan_relocatable_relocs(
9507 Symbol_table* symtab,
9508 Layout* layout,
9509 Sized_relobj_file<32, big_endian>* object,
9510 unsigned int data_shndx,
9511 unsigned int sh_type,
9512 const unsigned char* prelocs,
9513 size_t reloc_count,
9514 Output_section* output_section,
9515 bool needs_special_offset_handling,
9516 size_t local_symbol_count,
9517 const unsigned char* plocal_symbols,
9518 Relocatable_relocs* rr)
9519 {
9520 gold_assert(sh_type == elfcpp::SHT_REL);
9521
9522 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9523 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9524
9525 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9526 Scan_relocatable_relocs>(
9527 symtab,
9528 layout,
9529 object,
9530 data_shndx,
9531 prelocs,
9532 reloc_count,
9533 output_section,
9534 needs_special_offset_handling,
9535 local_symbol_count,
9536 plocal_symbols,
9537 rr);
9538 }
9539
9540 // Relocate a section during a relocatable link.
9541
9542 template<bool big_endian>
9543 void
9544 Target_arm<big_endian>::relocate_for_relocatable(
9545 const Relocate_info<32, big_endian>* relinfo,
9546 unsigned int sh_type,
9547 const unsigned char* prelocs,
9548 size_t reloc_count,
9549 Output_section* output_section,
9550 off_t offset_in_output_section,
9551 const Relocatable_relocs* rr,
9552 unsigned char* view,
9553 Arm_address view_address,
9554 section_size_type view_size,
9555 unsigned char* reloc_view,
9556 section_size_type reloc_view_size)
9557 {
9558 gold_assert(sh_type == elfcpp::SHT_REL);
9559
9560 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9561 relinfo,
9562 prelocs,
9563 reloc_count,
9564 output_section,
9565 offset_in_output_section,
9566 rr,
9567 view,
9568 view_address,
9569 view_size,
9570 reloc_view,
9571 reloc_view_size);
9572 }
9573
9574 // Perform target-specific processing in a relocatable link. This is
9575 // only used if we use the relocation strategy RELOC_SPECIAL.
9576
9577 template<bool big_endian>
9578 void
9579 Target_arm<big_endian>::relocate_special_relocatable(
9580 const Relocate_info<32, big_endian>* relinfo,
9581 unsigned int sh_type,
9582 const unsigned char* preloc_in,
9583 size_t relnum,
9584 Output_section* output_section,
9585 off_t offset_in_output_section,
9586 unsigned char* view,
9587 elfcpp::Elf_types<32>::Elf_Addr view_address,
9588 section_size_type,
9589 unsigned char* preloc_out)
9590 {
9591 // We can only handle REL type relocation sections.
9592 gold_assert(sh_type == elfcpp::SHT_REL);
9593
9594 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9595 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9596 Reltype_write;
9597 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9598
9599 const Arm_relobj<big_endian>* object =
9600 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9601 const unsigned int local_count = object->local_symbol_count();
9602
9603 Reltype reloc(preloc_in);
9604 Reltype_write reloc_write(preloc_out);
9605
9606 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9607 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9608 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9609
9610 const Arm_reloc_property* arp =
9611 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9612 gold_assert(arp != NULL);
9613
9614 // Get the new symbol index.
9615 // We only use RELOC_SPECIAL strategy in local relocations.
9616 gold_assert(r_sym < local_count);
9617
9618 // We are adjusting a section symbol. We need to find
9619 // the symbol table index of the section symbol for
9620 // the output section corresponding to input section
9621 // in which this symbol is defined.
9622 bool is_ordinary;
9623 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9624 gold_assert(is_ordinary);
9625 Output_section* os = object->output_section(shndx);
9626 gold_assert(os != NULL);
9627 gold_assert(os->needs_symtab_index());
9628 unsigned int new_symndx = os->symtab_index();
9629
9630 // Get the new offset--the location in the output section where
9631 // this relocation should be applied.
9632
9633 Arm_address offset = reloc.get_r_offset();
9634 Arm_address new_offset;
9635 if (offset_in_output_section != invalid_address)
9636 new_offset = offset + offset_in_output_section;
9637 else
9638 {
9639 section_offset_type sot_offset =
9640 convert_types<section_offset_type, Arm_address>(offset);
9641 section_offset_type new_sot_offset =
9642 output_section->output_offset(object, relinfo->data_shndx,
9643 sot_offset);
9644 gold_assert(new_sot_offset != -1);
9645 new_offset = new_sot_offset;
9646 }
9647
9648 // In an object file, r_offset is an offset within the section.
9649 // In an executable or dynamic object, generated by
9650 // --emit-relocs, r_offset is an absolute address.
9651 if (!parameters->options().relocatable())
9652 {
9653 new_offset += view_address;
9654 if (offset_in_output_section != invalid_address)
9655 new_offset -= offset_in_output_section;
9656 }
9657
9658 reloc_write.put_r_offset(new_offset);
9659 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9660
9661 // Handle the reloc addend.
9662 // The relocation uses a section symbol in the input file.
9663 // We are adjusting it to use a section symbol in the output
9664 // file. The input section symbol refers to some address in
9665 // the input section. We need the relocation in the output
9666 // file to refer to that same address. This adjustment to
9667 // the addend is the same calculation we use for a simple
9668 // absolute relocation for the input section symbol.
9669
9670 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9671
9672 // Handle THUMB bit.
9673 Symbol_value<32> symval;
9674 Arm_address thumb_bit =
9675 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9676 if (thumb_bit != 0
9677 && arp->uses_thumb_bit()
9678 && ((psymval->value(object, 0) & 1) != 0))
9679 {
9680 Arm_address stripped_value =
9681 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9682 symval.set_output_value(stripped_value);
9683 psymval = &symval;
9684 }
9685
9686 unsigned char* paddend = view + offset;
9687 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9688 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9689 switch (r_type)
9690 {
9691 case elfcpp::R_ARM_ABS8:
9692 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9693 psymval);
9694 break;
9695
9696 case elfcpp::R_ARM_ABS12:
9697 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9698 psymval);
9699 break;
9700
9701 case elfcpp::R_ARM_ABS16:
9702 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9703 psymval);
9704 break;
9705
9706 case elfcpp::R_ARM_THM_ABS5:
9707 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9708 object,
9709 psymval);
9710 break;
9711
9712 case elfcpp::R_ARM_MOVW_ABS_NC:
9713 case elfcpp::R_ARM_MOVW_PREL_NC:
9714 case elfcpp::R_ARM_MOVW_BREL_NC:
9715 case elfcpp::R_ARM_MOVW_BREL:
9716 reloc_status = Arm_relocate_functions<big_endian>::movw(
9717 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9718 break;
9719
9720 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9721 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9722 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9723 case elfcpp::R_ARM_THM_MOVW_BREL:
9724 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9725 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9726 break;
9727
9728 case elfcpp::R_ARM_THM_CALL:
9729 case elfcpp::R_ARM_THM_XPC22:
9730 case elfcpp::R_ARM_THM_JUMP24:
9731 reloc_status =
9732 Arm_relocate_functions<big_endian>::thumb_branch_common(
9733 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9734 false);
9735 break;
9736
9737 case elfcpp::R_ARM_PLT32:
9738 case elfcpp::R_ARM_CALL:
9739 case elfcpp::R_ARM_JUMP24:
9740 case elfcpp::R_ARM_XPC25:
9741 reloc_status =
9742 Arm_relocate_functions<big_endian>::arm_branch_common(
9743 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9744 false);
9745 break;
9746
9747 case elfcpp::R_ARM_THM_JUMP19:
9748 reloc_status =
9749 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9750 psymval, 0, thumb_bit);
9751 break;
9752
9753 case elfcpp::R_ARM_THM_JUMP6:
9754 reloc_status =
9755 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9756 0);
9757 break;
9758
9759 case elfcpp::R_ARM_THM_JUMP8:
9760 reloc_status =
9761 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9762 0);
9763 break;
9764
9765 case elfcpp::R_ARM_THM_JUMP11:
9766 reloc_status =
9767 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9768 0);
9769 break;
9770
9771 case elfcpp::R_ARM_PREL31:
9772 reloc_status =
9773 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9774 thumb_bit);
9775 break;
9776
9777 case elfcpp::R_ARM_THM_PC8:
9778 reloc_status =
9779 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9780 0);
9781 break;
9782
9783 case elfcpp::R_ARM_THM_PC12:
9784 reloc_status =
9785 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9786 0);
9787 break;
9788
9789 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9790 reloc_status =
9791 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9792 0, thumb_bit);
9793 break;
9794
9795 // These relocation truncate relocation results so we cannot handle them
9796 // in a relocatable link.
9797 case elfcpp::R_ARM_MOVT_ABS:
9798 case elfcpp::R_ARM_THM_MOVT_ABS:
9799 case elfcpp::R_ARM_MOVT_PREL:
9800 case elfcpp::R_ARM_MOVT_BREL:
9801 case elfcpp::R_ARM_THM_MOVT_PREL:
9802 case elfcpp::R_ARM_THM_MOVT_BREL:
9803 case elfcpp::R_ARM_ALU_PC_G0_NC:
9804 case elfcpp::R_ARM_ALU_PC_G0:
9805 case elfcpp::R_ARM_ALU_PC_G1_NC:
9806 case elfcpp::R_ARM_ALU_PC_G1:
9807 case elfcpp::R_ARM_ALU_PC_G2:
9808 case elfcpp::R_ARM_ALU_SB_G0_NC:
9809 case elfcpp::R_ARM_ALU_SB_G0:
9810 case elfcpp::R_ARM_ALU_SB_G1_NC:
9811 case elfcpp::R_ARM_ALU_SB_G1:
9812 case elfcpp::R_ARM_ALU_SB_G2:
9813 case elfcpp::R_ARM_LDR_PC_G0:
9814 case elfcpp::R_ARM_LDR_PC_G1:
9815 case elfcpp::R_ARM_LDR_PC_G2:
9816 case elfcpp::R_ARM_LDR_SB_G0:
9817 case elfcpp::R_ARM_LDR_SB_G1:
9818 case elfcpp::R_ARM_LDR_SB_G2:
9819 case elfcpp::R_ARM_LDRS_PC_G0:
9820 case elfcpp::R_ARM_LDRS_PC_G1:
9821 case elfcpp::R_ARM_LDRS_PC_G2:
9822 case elfcpp::R_ARM_LDRS_SB_G0:
9823 case elfcpp::R_ARM_LDRS_SB_G1:
9824 case elfcpp::R_ARM_LDRS_SB_G2:
9825 case elfcpp::R_ARM_LDC_PC_G0:
9826 case elfcpp::R_ARM_LDC_PC_G1:
9827 case elfcpp::R_ARM_LDC_PC_G2:
9828 case elfcpp::R_ARM_LDC_SB_G0:
9829 case elfcpp::R_ARM_LDC_SB_G1:
9830 case elfcpp::R_ARM_LDC_SB_G2:
9831 gold_error(_("cannot handle %s in a relocatable link"),
9832 arp->name().c_str());
9833 break;
9834
9835 default:
9836 gold_unreachable();
9837 }
9838
9839 // Report any errors.
9840 switch (reloc_status)
9841 {
9842 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9843 break;
9844 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9845 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9846 _("relocation overflow in %s"),
9847 arp->name().c_str());
9848 break;
9849 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9850 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9851 _("unexpected opcode while processing relocation %s"),
9852 arp->name().c_str());
9853 break;
9854 default:
9855 gold_unreachable();
9856 }
9857 }
9858
9859 // Return the value to use for a dynamic symbol which requires special
9860 // treatment. This is how we support equality comparisons of function
9861 // pointers across shared library boundaries, as described in the
9862 // processor specific ABI supplement.
9863
9864 template<bool big_endian>
9865 uint64_t
9866 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9867 {
9868 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9869 return this->plt_section()->address() + gsym->plt_offset();
9870 }
9871
9872 // Map platform-specific relocs to real relocs
9873 //
9874 template<bool big_endian>
9875 unsigned int
9876 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9877 {
9878 switch (r_type)
9879 {
9880 case elfcpp::R_ARM_TARGET1:
9881 // This is either R_ARM_ABS32 or R_ARM_REL32;
9882 return elfcpp::R_ARM_ABS32;
9883
9884 case elfcpp::R_ARM_TARGET2:
9885 // This can be any reloc type but usually is R_ARM_GOT_PREL
9886 return elfcpp::R_ARM_GOT_PREL;
9887
9888 default:
9889 return r_type;
9890 }
9891 }
9892
9893 // Whether if two EABI versions V1 and V2 are compatible.
9894
9895 template<bool big_endian>
9896 bool
9897 Target_arm<big_endian>::are_eabi_versions_compatible(
9898 elfcpp::Elf_Word v1,
9899 elfcpp::Elf_Word v2)
9900 {
9901 // v4 and v5 are the same spec before and after it was released,
9902 // so allow mixing them.
9903 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9904 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9905 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9906 return true;
9907
9908 return v1 == v2;
9909 }
9910
9911 // Combine FLAGS from an input object called NAME and the processor-specific
9912 // flags in the ELF header of the output. Much of this is adapted from the
9913 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9914 // in bfd/elf32-arm.c.
9915
9916 template<bool big_endian>
9917 void
9918 Target_arm<big_endian>::merge_processor_specific_flags(
9919 const std::string& name,
9920 elfcpp::Elf_Word flags)
9921 {
9922 if (this->are_processor_specific_flags_set())
9923 {
9924 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9925
9926 // Nothing to merge if flags equal to those in output.
9927 if (flags == out_flags)
9928 return;
9929
9930 // Complain about various flag mismatches.
9931 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9932 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9933 if (!this->are_eabi_versions_compatible(version1, version2)
9934 && parameters->options().warn_mismatch())
9935 gold_error(_("Source object %s has EABI version %d but output has "
9936 "EABI version %d."),
9937 name.c_str(),
9938 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9939 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9940 }
9941 else
9942 {
9943 // If the input is the default architecture and had the default
9944 // flags then do not bother setting the flags for the output
9945 // architecture, instead allow future merges to do this. If no
9946 // future merges ever set these flags then they will retain their
9947 // uninitialised values, which surprise surprise, correspond
9948 // to the default values.
9949 if (flags == 0)
9950 return;
9951
9952 // This is the first time, just copy the flags.
9953 // We only copy the EABI version for now.
9954 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9955 }
9956 }
9957
9958 // Adjust ELF file header.
9959 template<bool big_endian>
9960 void
9961 Target_arm<big_endian>::do_adjust_elf_header(
9962 unsigned char* view,
9963 int len) const
9964 {
9965 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9966
9967 elfcpp::Ehdr<32, big_endian> ehdr(view);
9968 unsigned char e_ident[elfcpp::EI_NIDENT];
9969 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9970
9971 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9972 == elfcpp::EF_ARM_EABI_UNKNOWN)
9973 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9974 else
9975 e_ident[elfcpp::EI_OSABI] = 0;
9976 e_ident[elfcpp::EI_ABIVERSION] = 0;
9977
9978 // FIXME: Do EF_ARM_BE8 adjustment.
9979
9980 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9981 oehdr.put_e_ident(e_ident);
9982 }
9983
9984 // do_make_elf_object to override the same function in the base class.
9985 // We need to use a target-specific sub-class of
9986 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9987 // Hence we need to have our own ELF object creation.
9988
9989 template<bool big_endian>
9990 Object*
9991 Target_arm<big_endian>::do_make_elf_object(
9992 const std::string& name,
9993 Input_file* input_file,
9994 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9995 {
9996 int et = ehdr.get_e_type();
9997 if (et == elfcpp::ET_REL)
9998 {
9999 Arm_relobj<big_endian>* obj =
10000 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10001 obj->setup();
10002 return obj;
10003 }
10004 else if (et == elfcpp::ET_DYN)
10005 {
10006 Sized_dynobj<32, big_endian>* obj =
10007 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10008 obj->setup();
10009 return obj;
10010 }
10011 else
10012 {
10013 gold_error(_("%s: unsupported ELF file type %d"),
10014 name.c_str(), et);
10015 return NULL;
10016 }
10017 }
10018
10019 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10020 // Returns -1 if no architecture could be read.
10021 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10022
10023 template<bool big_endian>
10024 int
10025 Target_arm<big_endian>::get_secondary_compatible_arch(
10026 const Attributes_section_data* pasd)
10027 {
10028 const Object_attribute* known_attributes =
10029 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10030
10031 // Note: the tag and its argument below are uleb128 values, though
10032 // currently-defined values fit in one byte for each.
10033 const std::string& sv =
10034 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10035 if (sv.size() == 2
10036 && sv.data()[0] == elfcpp::Tag_CPU_arch
10037 && (sv.data()[1] & 128) != 128)
10038 return sv.data()[1];
10039
10040 // This tag is "safely ignorable", so don't complain if it looks funny.
10041 return -1;
10042 }
10043
10044 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10045 // The tag is removed if ARCH is -1.
10046 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10047
10048 template<bool big_endian>
10049 void
10050 Target_arm<big_endian>::set_secondary_compatible_arch(
10051 Attributes_section_data* pasd,
10052 int arch)
10053 {
10054 Object_attribute* known_attributes =
10055 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10056
10057 if (arch == -1)
10058 {
10059 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10060 return;
10061 }
10062
10063 // Note: the tag and its argument below are uleb128 values, though
10064 // currently-defined values fit in one byte for each.
10065 char sv[3];
10066 sv[0] = elfcpp::Tag_CPU_arch;
10067 gold_assert(arch != 0);
10068 sv[1] = arch;
10069 sv[2] = '\0';
10070
10071 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10072 }
10073
10074 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10075 // into account.
10076 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10077
10078 template<bool big_endian>
10079 int
10080 Target_arm<big_endian>::tag_cpu_arch_combine(
10081 const char* name,
10082 int oldtag,
10083 int* secondary_compat_out,
10084 int newtag,
10085 int secondary_compat)
10086 {
10087 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10088 static const int v6t2[] =
10089 {
10090 T(V6T2), // PRE_V4.
10091 T(V6T2), // V4.
10092 T(V6T2), // V4T.
10093 T(V6T2), // V5T.
10094 T(V6T2), // V5TE.
10095 T(V6T2), // V5TEJ.
10096 T(V6T2), // V6.
10097 T(V7), // V6KZ.
10098 T(V6T2) // V6T2.
10099 };
10100 static const int v6k[] =
10101 {
10102 T(V6K), // PRE_V4.
10103 T(V6K), // V4.
10104 T(V6K), // V4T.
10105 T(V6K), // V5T.
10106 T(V6K), // V5TE.
10107 T(V6K), // V5TEJ.
10108 T(V6K), // V6.
10109 T(V6KZ), // V6KZ.
10110 T(V7), // V6T2.
10111 T(V6K) // V6K.
10112 };
10113 static const int v7[] =
10114 {
10115 T(V7), // PRE_V4.
10116 T(V7), // V4.
10117 T(V7), // V4T.
10118 T(V7), // V5T.
10119 T(V7), // V5TE.
10120 T(V7), // V5TEJ.
10121 T(V7), // V6.
10122 T(V7), // V6KZ.
10123 T(V7), // V6T2.
10124 T(V7), // V6K.
10125 T(V7) // V7.
10126 };
10127 static const int v6_m[] =
10128 {
10129 -1, // PRE_V4.
10130 -1, // V4.
10131 T(V6K), // V4T.
10132 T(V6K), // V5T.
10133 T(V6K), // V5TE.
10134 T(V6K), // V5TEJ.
10135 T(V6K), // V6.
10136 T(V6KZ), // V6KZ.
10137 T(V7), // V6T2.
10138 T(V6K), // V6K.
10139 T(V7), // V7.
10140 T(V6_M) // V6_M.
10141 };
10142 static const int v6s_m[] =
10143 {
10144 -1, // PRE_V4.
10145 -1, // V4.
10146 T(V6K), // V4T.
10147 T(V6K), // V5T.
10148 T(V6K), // V5TE.
10149 T(V6K), // V5TEJ.
10150 T(V6K), // V6.
10151 T(V6KZ), // V6KZ.
10152 T(V7), // V6T2.
10153 T(V6K), // V6K.
10154 T(V7), // V7.
10155 T(V6S_M), // V6_M.
10156 T(V6S_M) // V6S_M.
10157 };
10158 static const int v7e_m[] =
10159 {
10160 -1, // PRE_V4.
10161 -1, // V4.
10162 T(V7E_M), // V4T.
10163 T(V7E_M), // V5T.
10164 T(V7E_M), // V5TE.
10165 T(V7E_M), // V5TEJ.
10166 T(V7E_M), // V6.
10167 T(V7E_M), // V6KZ.
10168 T(V7E_M), // V6T2.
10169 T(V7E_M), // V6K.
10170 T(V7E_M), // V7.
10171 T(V7E_M), // V6_M.
10172 T(V7E_M), // V6S_M.
10173 T(V7E_M) // V7E_M.
10174 };
10175 static const int v4t_plus_v6_m[] =
10176 {
10177 -1, // PRE_V4.
10178 -1, // V4.
10179 T(V4T), // V4T.
10180 T(V5T), // V5T.
10181 T(V5TE), // V5TE.
10182 T(V5TEJ), // V5TEJ.
10183 T(V6), // V6.
10184 T(V6KZ), // V6KZ.
10185 T(V6T2), // V6T2.
10186 T(V6K), // V6K.
10187 T(V7), // V7.
10188 T(V6_M), // V6_M.
10189 T(V6S_M), // V6S_M.
10190 T(V7E_M), // V7E_M.
10191 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10192 };
10193 static const int* comb[] =
10194 {
10195 v6t2,
10196 v6k,
10197 v7,
10198 v6_m,
10199 v6s_m,
10200 v7e_m,
10201 // Pseudo-architecture.
10202 v4t_plus_v6_m
10203 };
10204
10205 // Check we've not got a higher architecture than we know about.
10206
10207 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10208 {
10209 gold_error(_("%s: unknown CPU architecture"), name);
10210 return -1;
10211 }
10212
10213 // Override old tag if we have a Tag_also_compatible_with on the output.
10214
10215 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10216 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10217 oldtag = T(V4T_PLUS_V6_M);
10218
10219 // And override the new tag if we have a Tag_also_compatible_with on the
10220 // input.
10221
10222 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10223 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10224 newtag = T(V4T_PLUS_V6_M);
10225
10226 // Architectures before V6KZ add features monotonically.
10227 int tagh = std::max(oldtag, newtag);
10228 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10229 return tagh;
10230
10231 int tagl = std::min(oldtag, newtag);
10232 int result = comb[tagh - T(V6T2)][tagl];
10233
10234 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10235 // as the canonical version.
10236 if (result == T(V4T_PLUS_V6_M))
10237 {
10238 result = T(V4T);
10239 *secondary_compat_out = T(V6_M);
10240 }
10241 else
10242 *secondary_compat_out = -1;
10243
10244 if (result == -1)
10245 {
10246 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10247 name, oldtag, newtag);
10248 return -1;
10249 }
10250
10251 return result;
10252 #undef T
10253 }
10254
10255 // Helper to print AEABI enum tag value.
10256
10257 template<bool big_endian>
10258 std::string
10259 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10260 {
10261 static const char* aeabi_enum_names[] =
10262 { "", "variable-size", "32-bit", "" };
10263 const size_t aeabi_enum_names_size =
10264 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10265
10266 if (value < aeabi_enum_names_size)
10267 return std::string(aeabi_enum_names[value]);
10268 else
10269 {
10270 char buffer[100];
10271 sprintf(buffer, "<unknown value %u>", value);
10272 return std::string(buffer);
10273 }
10274 }
10275
10276 // Return the string value to store in TAG_CPU_name.
10277
10278 template<bool big_endian>
10279 std::string
10280 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10281 {
10282 static const char* name_table[] = {
10283 // These aren't real CPU names, but we can't guess
10284 // that from the architecture version alone.
10285 "Pre v4",
10286 "ARM v4",
10287 "ARM v4T",
10288 "ARM v5T",
10289 "ARM v5TE",
10290 "ARM v5TEJ",
10291 "ARM v6",
10292 "ARM v6KZ",
10293 "ARM v6T2",
10294 "ARM v6K",
10295 "ARM v7",
10296 "ARM v6-M",
10297 "ARM v6S-M",
10298 "ARM v7E-M"
10299 };
10300 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10301
10302 if (value < name_table_size)
10303 return std::string(name_table[value]);
10304 else
10305 {
10306 char buffer[100];
10307 sprintf(buffer, "<unknown CPU value %u>", value);
10308 return std::string(buffer);
10309 }
10310 }
10311
10312 // Merge object attributes from input file called NAME with those of the
10313 // output. The input object attributes are in the object pointed by PASD.
10314
10315 template<bool big_endian>
10316 void
10317 Target_arm<big_endian>::merge_object_attributes(
10318 const char* name,
10319 const Attributes_section_data* pasd)
10320 {
10321 // Return if there is no attributes section data.
10322 if (pasd == NULL)
10323 return;
10324
10325 // If output has no object attributes, just copy.
10326 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10327 if (this->attributes_section_data_ == NULL)
10328 {
10329 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10330 Object_attribute* out_attr =
10331 this->attributes_section_data_->known_attributes(vendor);
10332
10333 // We do not output objects with Tag_MPextension_use_legacy - we move
10334 // the attribute's value to Tag_MPextension_use. */
10335 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10336 {
10337 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10338 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10339 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10340 {
10341 gold_error(_("%s has both the current and legacy "
10342 "Tag_MPextension_use attributes"),
10343 name);
10344 }
10345
10346 out_attr[elfcpp::Tag_MPextension_use] =
10347 out_attr[elfcpp::Tag_MPextension_use_legacy];
10348 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10349 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10350 }
10351
10352 return;
10353 }
10354
10355 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10356 Object_attribute* out_attr =
10357 this->attributes_section_data_->known_attributes(vendor);
10358
10359 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10360 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10361 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10362 {
10363 // Ignore mismatches if the object doesn't use floating point. */
10364 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10365 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10366 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10367 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10368 && parameters->options().warn_mismatch())
10369 gold_error(_("%s uses VFP register arguments, output does not"),
10370 name);
10371 }
10372
10373 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10374 {
10375 // Merge this attribute with existing attributes.
10376 switch (i)
10377 {
10378 case elfcpp::Tag_CPU_raw_name:
10379 case elfcpp::Tag_CPU_name:
10380 // These are merged after Tag_CPU_arch.
10381 break;
10382
10383 case elfcpp::Tag_ABI_optimization_goals:
10384 case elfcpp::Tag_ABI_FP_optimization_goals:
10385 // Use the first value seen.
10386 break;
10387
10388 case elfcpp::Tag_CPU_arch:
10389 {
10390 unsigned int saved_out_attr = out_attr->int_value();
10391 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10392 int secondary_compat =
10393 this->get_secondary_compatible_arch(pasd);
10394 int secondary_compat_out =
10395 this->get_secondary_compatible_arch(
10396 this->attributes_section_data_);
10397 out_attr[i].set_int_value(
10398 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10399 &secondary_compat_out,
10400 in_attr[i].int_value(),
10401 secondary_compat));
10402 this->set_secondary_compatible_arch(this->attributes_section_data_,
10403 secondary_compat_out);
10404
10405 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10406 if (out_attr[i].int_value() == saved_out_attr)
10407 ; // Leave the names alone.
10408 else if (out_attr[i].int_value() == in_attr[i].int_value())
10409 {
10410 // The output architecture has been changed to match the
10411 // input architecture. Use the input names.
10412 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10413 in_attr[elfcpp::Tag_CPU_name].string_value());
10414 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10415 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10416 }
10417 else
10418 {
10419 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10420 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10421 }
10422
10423 // If we still don't have a value for Tag_CPU_name,
10424 // make one up now. Tag_CPU_raw_name remains blank.
10425 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10426 {
10427 const std::string cpu_name =
10428 this->tag_cpu_name_value(out_attr[i].int_value());
10429 // FIXME: If we see an unknown CPU, this will be set
10430 // to "<unknown CPU n>", where n is the attribute value.
10431 // This is different from BFD, which leaves the name alone.
10432 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10433 }
10434 }
10435 break;
10436
10437 case elfcpp::Tag_ARM_ISA_use:
10438 case elfcpp::Tag_THUMB_ISA_use:
10439 case elfcpp::Tag_WMMX_arch:
10440 case elfcpp::Tag_Advanced_SIMD_arch:
10441 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10442 case elfcpp::Tag_ABI_FP_rounding:
10443 case elfcpp::Tag_ABI_FP_exceptions:
10444 case elfcpp::Tag_ABI_FP_user_exceptions:
10445 case elfcpp::Tag_ABI_FP_number_model:
10446 case elfcpp::Tag_VFP_HP_extension:
10447 case elfcpp::Tag_CPU_unaligned_access:
10448 case elfcpp::Tag_T2EE_use:
10449 case elfcpp::Tag_Virtualization_use:
10450 case elfcpp::Tag_MPextension_use:
10451 // Use the largest value specified.
10452 if (in_attr[i].int_value() > out_attr[i].int_value())
10453 out_attr[i].set_int_value(in_attr[i].int_value());
10454 break;
10455
10456 case elfcpp::Tag_ABI_align8_preserved:
10457 case elfcpp::Tag_ABI_PCS_RO_data:
10458 // Use the smallest value specified.
10459 if (in_attr[i].int_value() < out_attr[i].int_value())
10460 out_attr[i].set_int_value(in_attr[i].int_value());
10461 break;
10462
10463 case elfcpp::Tag_ABI_align8_needed:
10464 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10465 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10466 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10467 == 0)))
10468 {
10469 // This error message should be enabled once all non-conforming
10470 // binaries in the toolchain have had the attributes set
10471 // properly.
10472 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10473 // name);
10474 }
10475 // Fall through.
10476 case elfcpp::Tag_ABI_FP_denormal:
10477 case elfcpp::Tag_ABI_PCS_GOT_use:
10478 {
10479 // These tags have 0 = don't care, 1 = strong requirement,
10480 // 2 = weak requirement.
10481 static const int order_021[3] = {0, 2, 1};
10482
10483 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10484 // value if greater than 2 (for future-proofing).
10485 if ((in_attr[i].int_value() > 2
10486 && in_attr[i].int_value() > out_attr[i].int_value())
10487 || (in_attr[i].int_value() <= 2
10488 && out_attr[i].int_value() <= 2
10489 && (order_021[in_attr[i].int_value()]
10490 > order_021[out_attr[i].int_value()])))
10491 out_attr[i].set_int_value(in_attr[i].int_value());
10492 }
10493 break;
10494
10495 case elfcpp::Tag_CPU_arch_profile:
10496 if (out_attr[i].int_value() != in_attr[i].int_value())
10497 {
10498 // 0 will merge with anything.
10499 // 'A' and 'S' merge to 'A'.
10500 // 'R' and 'S' merge to 'R'.
10501 // 'M' and 'A|R|S' is an error.
10502 if (out_attr[i].int_value() == 0
10503 || (out_attr[i].int_value() == 'S'
10504 && (in_attr[i].int_value() == 'A'
10505 || in_attr[i].int_value() == 'R')))
10506 out_attr[i].set_int_value(in_attr[i].int_value());
10507 else if (in_attr[i].int_value() == 0
10508 || (in_attr[i].int_value() == 'S'
10509 && (out_attr[i].int_value() == 'A'
10510 || out_attr[i].int_value() == 'R')))
10511 ; // Do nothing.
10512 else if (parameters->options().warn_mismatch())
10513 {
10514 gold_error
10515 (_("conflicting architecture profiles %c/%c"),
10516 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10517 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10518 }
10519 }
10520 break;
10521 case elfcpp::Tag_VFP_arch:
10522 {
10523 static const struct
10524 {
10525 int ver;
10526 int regs;
10527 } vfp_versions[7] =
10528 {
10529 {0, 0},
10530 {1, 16},
10531 {2, 16},
10532 {3, 32},
10533 {3, 16},
10534 {4, 32},
10535 {4, 16}
10536 };
10537
10538 // Values greater than 6 aren't defined, so just pick the
10539 // biggest.
10540 if (in_attr[i].int_value() > 6
10541 && in_attr[i].int_value() > out_attr[i].int_value())
10542 {
10543 *out_attr = *in_attr;
10544 break;
10545 }
10546 // The output uses the superset of input features
10547 // (ISA version) and registers.
10548 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10549 vfp_versions[out_attr[i].int_value()].ver);
10550 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10551 vfp_versions[out_attr[i].int_value()].regs);
10552 // This assumes all possible supersets are also a valid
10553 // options.
10554 int newval;
10555 for (newval = 6; newval > 0; newval--)
10556 {
10557 if (regs == vfp_versions[newval].regs
10558 && ver == vfp_versions[newval].ver)
10559 break;
10560 }
10561 out_attr[i].set_int_value(newval);
10562 }
10563 break;
10564 case elfcpp::Tag_PCS_config:
10565 if (out_attr[i].int_value() == 0)
10566 out_attr[i].set_int_value(in_attr[i].int_value());
10567 else if (in_attr[i].int_value() != 0
10568 && out_attr[i].int_value() != 0
10569 && parameters->options().warn_mismatch())
10570 {
10571 // It's sometimes ok to mix different configs, so this is only
10572 // a warning.
10573 gold_warning(_("%s: conflicting platform configuration"), name);
10574 }
10575 break;
10576 case elfcpp::Tag_ABI_PCS_R9_use:
10577 if (in_attr[i].int_value() != out_attr[i].int_value()
10578 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10579 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10580 && parameters->options().warn_mismatch())
10581 {
10582 gold_error(_("%s: conflicting use of R9"), name);
10583 }
10584 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10585 out_attr[i].set_int_value(in_attr[i].int_value());
10586 break;
10587 case elfcpp::Tag_ABI_PCS_RW_data:
10588 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10589 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10590 != elfcpp::AEABI_R9_SB)
10591 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10592 != elfcpp::AEABI_R9_unused)
10593 && parameters->options().warn_mismatch())
10594 {
10595 gold_error(_("%s: SB relative addressing conflicts with use "
10596 "of R9"),
10597 name);
10598 }
10599 // Use the smallest value specified.
10600 if (in_attr[i].int_value() < out_attr[i].int_value())
10601 out_attr[i].set_int_value(in_attr[i].int_value());
10602 break;
10603 case elfcpp::Tag_ABI_PCS_wchar_t:
10604 if (out_attr[i].int_value()
10605 && in_attr[i].int_value()
10606 && out_attr[i].int_value() != in_attr[i].int_value()
10607 && parameters->options().warn_mismatch()
10608 && parameters->options().wchar_size_warning())
10609 {
10610 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10611 "use %u-byte wchar_t; use of wchar_t values "
10612 "across objects may fail"),
10613 name, in_attr[i].int_value(),
10614 out_attr[i].int_value());
10615 }
10616 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10617 out_attr[i].set_int_value(in_attr[i].int_value());
10618 break;
10619 case elfcpp::Tag_ABI_enum_size:
10620 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10621 {
10622 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10623 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10624 {
10625 // The existing object is compatible with anything.
10626 // Use whatever requirements the new object has.
10627 out_attr[i].set_int_value(in_attr[i].int_value());
10628 }
10629 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10630 && out_attr[i].int_value() != in_attr[i].int_value()
10631 && parameters->options().warn_mismatch()
10632 && parameters->options().enum_size_warning())
10633 {
10634 unsigned int in_value = in_attr[i].int_value();
10635 unsigned int out_value = out_attr[i].int_value();
10636 gold_warning(_("%s uses %s enums yet the output is to use "
10637 "%s enums; use of enum values across objects "
10638 "may fail"),
10639 name,
10640 this->aeabi_enum_name(in_value).c_str(),
10641 this->aeabi_enum_name(out_value).c_str());
10642 }
10643 }
10644 break;
10645 case elfcpp::Tag_ABI_VFP_args:
10646 // Already done.
10647 break;
10648 case elfcpp::Tag_ABI_WMMX_args:
10649 if (in_attr[i].int_value() != out_attr[i].int_value()
10650 && parameters->options().warn_mismatch())
10651 {
10652 gold_error(_("%s uses iWMMXt register arguments, output does "
10653 "not"),
10654 name);
10655 }
10656 break;
10657 case Object_attribute::Tag_compatibility:
10658 // Merged in target-independent code.
10659 break;
10660 case elfcpp::Tag_ABI_HardFP_use:
10661 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10662 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10663 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10664 out_attr[i].set_int_value(3);
10665 else if (in_attr[i].int_value() > out_attr[i].int_value())
10666 out_attr[i].set_int_value(in_attr[i].int_value());
10667 break;
10668 case elfcpp::Tag_ABI_FP_16bit_format:
10669 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10670 {
10671 if (in_attr[i].int_value() != out_attr[i].int_value()
10672 && parameters->options().warn_mismatch())
10673 gold_error(_("fp16 format mismatch between %s and output"),
10674 name);
10675 }
10676 if (in_attr[i].int_value() != 0)
10677 out_attr[i].set_int_value(in_attr[i].int_value());
10678 break;
10679
10680 case elfcpp::Tag_DIV_use:
10681 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10682 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10683 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10684 // CPU. We will merge as follows: If the input attribute's value
10685 // is one then the output attribute's value remains unchanged. If
10686 // the input attribute's value is zero or two then if the output
10687 // attribute's value is one the output value is set to the input
10688 // value, otherwise the output value must be the same as the
10689 // inputs. */
10690 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10691 {
10692 if (in_attr[i].int_value() != out_attr[i].int_value())
10693 {
10694 gold_error(_("DIV usage mismatch between %s and output"),
10695 name);
10696 }
10697 }
10698
10699 if (in_attr[i].int_value() != 1)
10700 out_attr[i].set_int_value(in_attr[i].int_value());
10701
10702 break;
10703
10704 case elfcpp::Tag_MPextension_use_legacy:
10705 // We don't output objects with Tag_MPextension_use_legacy - we
10706 // move the value to Tag_MPextension_use.
10707 if (in_attr[i].int_value() != 0
10708 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10709 {
10710 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10711 != in_attr[i].int_value())
10712 {
10713 gold_error(_("%s has has both the current and legacy "
10714 "Tag_MPextension_use attributes"),
10715 name);
10716 }
10717 }
10718
10719 if (in_attr[i].int_value()
10720 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10721 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10722
10723 break;
10724
10725 case elfcpp::Tag_nodefaults:
10726 // This tag is set if it exists, but the value is unused (and is
10727 // typically zero). We don't actually need to do anything here -
10728 // the merge happens automatically when the type flags are merged
10729 // below.
10730 break;
10731 case elfcpp::Tag_also_compatible_with:
10732 // Already done in Tag_CPU_arch.
10733 break;
10734 case elfcpp::Tag_conformance:
10735 // Keep the attribute if it matches. Throw it away otherwise.
10736 // No attribute means no claim to conform.
10737 if (in_attr[i].string_value() != out_attr[i].string_value())
10738 out_attr[i].set_string_value("");
10739 break;
10740
10741 default:
10742 {
10743 const char* err_object = NULL;
10744
10745 // The "known_obj_attributes" table does contain some undefined
10746 // attributes. Ensure that there are unused.
10747 if (out_attr[i].int_value() != 0
10748 || out_attr[i].string_value() != "")
10749 err_object = "output";
10750 else if (in_attr[i].int_value() != 0
10751 || in_attr[i].string_value() != "")
10752 err_object = name;
10753
10754 if (err_object != NULL
10755 && parameters->options().warn_mismatch())
10756 {
10757 // Attribute numbers >=64 (mod 128) can be safely ignored.
10758 if ((i & 127) < 64)
10759 gold_error(_("%s: unknown mandatory EABI object attribute "
10760 "%d"),
10761 err_object, i);
10762 else
10763 gold_warning(_("%s: unknown EABI object attribute %d"),
10764 err_object, i);
10765 }
10766
10767 // Only pass on attributes that match in both inputs.
10768 if (!in_attr[i].matches(out_attr[i]))
10769 {
10770 out_attr[i].set_int_value(0);
10771 out_attr[i].set_string_value("");
10772 }
10773 }
10774 }
10775
10776 // If out_attr was copied from in_attr then it won't have a type yet.
10777 if (in_attr[i].type() && !out_attr[i].type())
10778 out_attr[i].set_type(in_attr[i].type());
10779 }
10780
10781 // Merge Tag_compatibility attributes and any common GNU ones.
10782 this->attributes_section_data_->merge(name, pasd);
10783
10784 // Check for any attributes not known on ARM.
10785 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10786 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10787 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10788 Other_attributes* out_other_attributes =
10789 this->attributes_section_data_->other_attributes(vendor);
10790 Other_attributes::iterator out_iter = out_other_attributes->begin();
10791
10792 while (in_iter != in_other_attributes->end()
10793 || out_iter != out_other_attributes->end())
10794 {
10795 const char* err_object = NULL;
10796 int err_tag = 0;
10797
10798 // The tags for each list are in numerical order.
10799 // If the tags are equal, then merge.
10800 if (out_iter != out_other_attributes->end()
10801 && (in_iter == in_other_attributes->end()
10802 || in_iter->first > out_iter->first))
10803 {
10804 // This attribute only exists in output. We can't merge, and we
10805 // don't know what the tag means, so delete it.
10806 err_object = "output";
10807 err_tag = out_iter->first;
10808 int saved_tag = out_iter->first;
10809 delete out_iter->second;
10810 out_other_attributes->erase(out_iter);
10811 out_iter = out_other_attributes->upper_bound(saved_tag);
10812 }
10813 else if (in_iter != in_other_attributes->end()
10814 && (out_iter != out_other_attributes->end()
10815 || in_iter->first < out_iter->first))
10816 {
10817 // This attribute only exists in input. We can't merge, and we
10818 // don't know what the tag means, so ignore it.
10819 err_object = name;
10820 err_tag = in_iter->first;
10821 ++in_iter;
10822 }
10823 else // The tags are equal.
10824 {
10825 // As present, all attributes in the list are unknown, and
10826 // therefore can't be merged meaningfully.
10827 err_object = "output";
10828 err_tag = out_iter->first;
10829
10830 // Only pass on attributes that match in both inputs.
10831 if (!in_iter->second->matches(*(out_iter->second)))
10832 {
10833 // No match. Delete the attribute.
10834 int saved_tag = out_iter->first;
10835 delete out_iter->second;
10836 out_other_attributes->erase(out_iter);
10837 out_iter = out_other_attributes->upper_bound(saved_tag);
10838 }
10839 else
10840 {
10841 // Matched. Keep the attribute and move to the next.
10842 ++out_iter;
10843 ++in_iter;
10844 }
10845 }
10846
10847 if (err_object && parameters->options().warn_mismatch())
10848 {
10849 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10850 if ((err_tag & 127) < 64)
10851 {
10852 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10853 err_object, err_tag);
10854 }
10855 else
10856 {
10857 gold_warning(_("%s: unknown EABI object attribute %d"),
10858 err_object, err_tag);
10859 }
10860 }
10861 }
10862 }
10863
10864 // Stub-generation methods for Target_arm.
10865
10866 // Make a new Arm_input_section object.
10867
10868 template<bool big_endian>
10869 Arm_input_section<big_endian>*
10870 Target_arm<big_endian>::new_arm_input_section(
10871 Relobj* relobj,
10872 unsigned int shndx)
10873 {
10874 Section_id sid(relobj, shndx);
10875
10876 Arm_input_section<big_endian>* arm_input_section =
10877 new Arm_input_section<big_endian>(relobj, shndx);
10878 arm_input_section->init();
10879
10880 // Register new Arm_input_section in map for look-up.
10881 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10882 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10883
10884 // Make sure that it we have not created another Arm_input_section
10885 // for this input section already.
10886 gold_assert(ins.second);
10887
10888 return arm_input_section;
10889 }
10890
10891 // Find the Arm_input_section object corresponding to the SHNDX-th input
10892 // section of RELOBJ.
10893
10894 template<bool big_endian>
10895 Arm_input_section<big_endian>*
10896 Target_arm<big_endian>::find_arm_input_section(
10897 Relobj* relobj,
10898 unsigned int shndx) const
10899 {
10900 Section_id sid(relobj, shndx);
10901 typename Arm_input_section_map::const_iterator p =
10902 this->arm_input_section_map_.find(sid);
10903 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10904 }
10905
10906 // Make a new stub table.
10907
10908 template<bool big_endian>
10909 Stub_table<big_endian>*
10910 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10911 {
10912 Stub_table<big_endian>* stub_table =
10913 new Stub_table<big_endian>(owner);
10914 this->stub_tables_.push_back(stub_table);
10915
10916 stub_table->set_address(owner->address() + owner->data_size());
10917 stub_table->set_file_offset(owner->offset() + owner->data_size());
10918 stub_table->finalize_data_size();
10919
10920 return stub_table;
10921 }
10922
10923 // Scan a relocation for stub generation.
10924
10925 template<bool big_endian>
10926 void
10927 Target_arm<big_endian>::scan_reloc_for_stub(
10928 const Relocate_info<32, big_endian>* relinfo,
10929 unsigned int r_type,
10930 const Sized_symbol<32>* gsym,
10931 unsigned int r_sym,
10932 const Symbol_value<32>* psymval,
10933 elfcpp::Elf_types<32>::Elf_Swxword addend,
10934 Arm_address address)
10935 {
10936 typedef typename Target_arm<big_endian>::Relocate Relocate;
10937
10938 const Arm_relobj<big_endian>* arm_relobj =
10939 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10940
10941 bool target_is_thumb;
10942 Symbol_value<32> symval;
10943 if (gsym != NULL)
10944 {
10945 // This is a global symbol. Determine if we use PLT and if the
10946 // final target is THUMB.
10947 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10948 {
10949 // This uses a PLT, change the symbol value.
10950 symval.set_output_value(this->plt_section()->address()
10951 + gsym->plt_offset());
10952 psymval = &symval;
10953 target_is_thumb = false;
10954 }
10955 else if (gsym->is_undefined())
10956 // There is no need to generate a stub symbol is undefined.
10957 return;
10958 else
10959 {
10960 target_is_thumb =
10961 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10962 || (gsym->type() == elfcpp::STT_FUNC
10963 && !gsym->is_undefined()
10964 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10965 }
10966 }
10967 else
10968 {
10969 // This is a local symbol. Determine if the final target is THUMB.
10970 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10971 }
10972
10973 // Strip LSB if this points to a THUMB target.
10974 const Arm_reloc_property* reloc_property =
10975 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10976 gold_assert(reloc_property != NULL);
10977 if (target_is_thumb
10978 && reloc_property->uses_thumb_bit()
10979 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10980 {
10981 Arm_address stripped_value =
10982 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10983 symval.set_output_value(stripped_value);
10984 psymval = &symval;
10985 }
10986
10987 // Get the symbol value.
10988 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10989
10990 // Owing to pipelining, the PC relative branches below actually skip
10991 // two instructions when the branch offset is 0.
10992 Arm_address destination;
10993 switch (r_type)
10994 {
10995 case elfcpp::R_ARM_CALL:
10996 case elfcpp::R_ARM_JUMP24:
10997 case elfcpp::R_ARM_PLT32:
10998 // ARM branches.
10999 destination = value + addend + 8;
11000 break;
11001 case elfcpp::R_ARM_THM_CALL:
11002 case elfcpp::R_ARM_THM_XPC22:
11003 case elfcpp::R_ARM_THM_JUMP24:
11004 case elfcpp::R_ARM_THM_JUMP19:
11005 // THUMB branches.
11006 destination = value + addend + 4;
11007 break;
11008 default:
11009 gold_unreachable();
11010 }
11011
11012 Reloc_stub* stub = NULL;
11013 Stub_type stub_type =
11014 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11015 target_is_thumb);
11016 if (stub_type != arm_stub_none)
11017 {
11018 // Try looking up an existing stub from a stub table.
11019 Stub_table<big_endian>* stub_table =
11020 arm_relobj->stub_table(relinfo->data_shndx);
11021 gold_assert(stub_table != NULL);
11022
11023 // Locate stub by destination.
11024 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11025
11026 // Create a stub if there is not one already
11027 stub = stub_table->find_reloc_stub(stub_key);
11028 if (stub == NULL)
11029 {
11030 // create a new stub and add it to stub table.
11031 stub = this->stub_factory().make_reloc_stub(stub_type);
11032 stub_table->add_reloc_stub(stub, stub_key);
11033 }
11034
11035 // Record the destination address.
11036 stub->set_destination_address(destination
11037 | (target_is_thumb ? 1 : 0));
11038 }
11039
11040 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11041 if (this->fix_cortex_a8_
11042 && (r_type == elfcpp::R_ARM_THM_JUMP24
11043 || r_type == elfcpp::R_ARM_THM_JUMP19
11044 || r_type == elfcpp::R_ARM_THM_CALL
11045 || r_type == elfcpp::R_ARM_THM_XPC22)
11046 && (address & 0xfffU) == 0xffeU)
11047 {
11048 // Found a candidate. Note we haven't checked the destination is
11049 // within 4K here: if we do so (and don't create a record) we can't
11050 // tell that a branch should have been relocated when scanning later.
11051 this->cortex_a8_relocs_info_[address] =
11052 new Cortex_a8_reloc(stub, r_type,
11053 destination | (target_is_thumb ? 1 : 0));
11054 }
11055 }
11056
11057 // This function scans a relocation sections for stub generation.
11058 // The template parameter Relocate must be a class type which provides
11059 // a single function, relocate(), which implements the machine
11060 // specific part of a relocation.
11061
11062 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11063 // SHT_REL or SHT_RELA.
11064
11065 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11066 // of relocs. OUTPUT_SECTION is the output section.
11067 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11068 // mapped to output offsets.
11069
11070 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11071 // VIEW_SIZE is the size. These refer to the input section, unless
11072 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11073 // the output section.
11074
11075 template<bool big_endian>
11076 template<int sh_type>
11077 void inline
11078 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11079 const Relocate_info<32, big_endian>* relinfo,
11080 const unsigned char* prelocs,
11081 size_t reloc_count,
11082 Output_section* output_section,
11083 bool needs_special_offset_handling,
11084 const unsigned char* view,
11085 elfcpp::Elf_types<32>::Elf_Addr view_address,
11086 section_size_type)
11087 {
11088 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11089 const int reloc_size =
11090 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11091
11092 Arm_relobj<big_endian>* arm_object =
11093 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11094 unsigned int local_count = arm_object->local_symbol_count();
11095
11096 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11097
11098 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11099 {
11100 Reltype reloc(prelocs);
11101
11102 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11103 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11104 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11105
11106 r_type = this->get_real_reloc_type(r_type);
11107
11108 // Only a few relocation types need stubs.
11109 if ((r_type != elfcpp::R_ARM_CALL)
11110 && (r_type != elfcpp::R_ARM_JUMP24)
11111 && (r_type != elfcpp::R_ARM_PLT32)
11112 && (r_type != elfcpp::R_ARM_THM_CALL)
11113 && (r_type != elfcpp::R_ARM_THM_XPC22)
11114 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11115 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11116 && (r_type != elfcpp::R_ARM_V4BX))
11117 continue;
11118
11119 section_offset_type offset =
11120 convert_to_section_size_type(reloc.get_r_offset());
11121
11122 if (needs_special_offset_handling)
11123 {
11124 offset = output_section->output_offset(relinfo->object,
11125 relinfo->data_shndx,
11126 offset);
11127 if (offset == -1)
11128 continue;
11129 }
11130
11131 // Create a v4bx stub if --fix-v4bx-interworking is used.
11132 if (r_type == elfcpp::R_ARM_V4BX)
11133 {
11134 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11135 {
11136 // Get the BX instruction.
11137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11138 const Valtype* wv =
11139 reinterpret_cast<const Valtype*>(view + offset);
11140 elfcpp::Elf_types<32>::Elf_Swxword insn =
11141 elfcpp::Swap<32, big_endian>::readval(wv);
11142 const uint32_t reg = (insn & 0xf);
11143
11144 if (reg < 0xf)
11145 {
11146 // Try looking up an existing stub from a stub table.
11147 Stub_table<big_endian>* stub_table =
11148 arm_object->stub_table(relinfo->data_shndx);
11149 gold_assert(stub_table != NULL);
11150
11151 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11152 {
11153 // create a new stub and add it to stub table.
11154 Arm_v4bx_stub* stub =
11155 this->stub_factory().make_arm_v4bx_stub(reg);
11156 gold_assert(stub != NULL);
11157 stub_table->add_arm_v4bx_stub(stub);
11158 }
11159 }
11160 }
11161 continue;
11162 }
11163
11164 // Get the addend.
11165 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11166 elfcpp::Elf_types<32>::Elf_Swxword addend =
11167 stub_addend_reader(r_type, view + offset, reloc);
11168
11169 const Sized_symbol<32>* sym;
11170
11171 Symbol_value<32> symval;
11172 const Symbol_value<32> *psymval;
11173 bool is_defined_in_discarded_section;
11174 unsigned int shndx;
11175 if (r_sym < local_count)
11176 {
11177 sym = NULL;
11178 psymval = arm_object->local_symbol(r_sym);
11179
11180 // If the local symbol belongs to a section we are discarding,
11181 // and that section is a debug section, try to find the
11182 // corresponding kept section and map this symbol to its
11183 // counterpart in the kept section. The symbol must not
11184 // correspond to a section we are folding.
11185 bool is_ordinary;
11186 shndx = psymval->input_shndx(&is_ordinary);
11187 is_defined_in_discarded_section =
11188 (is_ordinary
11189 && shndx != elfcpp::SHN_UNDEF
11190 && !arm_object->is_section_included(shndx)
11191 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11192
11193 // We need to compute the would-be final value of this local
11194 // symbol.
11195 if (!is_defined_in_discarded_section)
11196 {
11197 typedef Sized_relobj_file<32, big_endian> ObjType;
11198 typename ObjType::Compute_final_local_value_status status =
11199 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11200 relinfo->symtab);
11201 if (status == ObjType::CFLV_OK)
11202 {
11203 // Currently we cannot handle a branch to a target in
11204 // a merged section. If this is the case, issue an error
11205 // and also free the merge symbol value.
11206 if (!symval.has_output_value())
11207 {
11208 const std::string& section_name =
11209 arm_object->section_name(shndx);
11210 arm_object->error(_("cannot handle branch to local %u "
11211 "in a merged section %s"),
11212 r_sym, section_name.c_str());
11213 }
11214 psymval = &symval;
11215 }
11216 else
11217 {
11218 // We cannot determine the final value.
11219 continue;
11220 }
11221 }
11222 }
11223 else
11224 {
11225 const Symbol* gsym;
11226 gsym = arm_object->global_symbol(r_sym);
11227 gold_assert(gsym != NULL);
11228 if (gsym->is_forwarder())
11229 gsym = relinfo->symtab->resolve_forwards(gsym);
11230
11231 sym = static_cast<const Sized_symbol<32>*>(gsym);
11232 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11233 symval.set_output_symtab_index(sym->symtab_index());
11234 else
11235 symval.set_no_output_symtab_entry();
11236
11237 // We need to compute the would-be final value of this global
11238 // symbol.
11239 const Symbol_table* symtab = relinfo->symtab;
11240 const Sized_symbol<32>* sized_symbol =
11241 symtab->get_sized_symbol<32>(gsym);
11242 Symbol_table::Compute_final_value_status status;
11243 Arm_address value =
11244 symtab->compute_final_value<32>(sized_symbol, &status);
11245
11246 // Skip this if the symbol has not output section.
11247 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11248 continue;
11249 symval.set_output_value(value);
11250
11251 if (gsym->type() == elfcpp::STT_TLS)
11252 symval.set_is_tls_symbol();
11253 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11254 symval.set_is_ifunc_symbol();
11255 psymval = &symval;
11256
11257 is_defined_in_discarded_section =
11258 (gsym->is_defined_in_discarded_section()
11259 && gsym->is_undefined());
11260 shndx = 0;
11261 }
11262
11263 Symbol_value<32> symval2;
11264 if (is_defined_in_discarded_section)
11265 {
11266 if (comdat_behavior == CB_UNDETERMINED)
11267 {
11268 std::string name = arm_object->section_name(relinfo->data_shndx);
11269 comdat_behavior = get_comdat_behavior(name.c_str());
11270 }
11271 if (comdat_behavior == CB_PRETEND)
11272 {
11273 // FIXME: This case does not work for global symbols.
11274 // We have no place to store the original section index.
11275 // Fortunately this does not matter for comdat sections,
11276 // only for sections explicitly discarded by a linker
11277 // script.
11278 bool found;
11279 typename elfcpp::Elf_types<32>::Elf_Addr value =
11280 arm_object->map_to_kept_section(shndx, &found);
11281 if (found)
11282 symval2.set_output_value(value + psymval->input_value());
11283 else
11284 symval2.set_output_value(0);
11285 }
11286 else
11287 {
11288 if (comdat_behavior == CB_WARNING)
11289 gold_warning_at_location(relinfo, i, offset,
11290 _("relocation refers to discarded "
11291 "section"));
11292 symval2.set_output_value(0);
11293 }
11294 symval2.set_no_output_symtab_entry();
11295 psymval = &symval2;
11296 }
11297
11298 // If symbol is a section symbol, we don't know the actual type of
11299 // destination. Give up.
11300 if (psymval->is_section_symbol())
11301 continue;
11302
11303 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11304 addend, view_address + offset);
11305 }
11306 }
11307
11308 // Scan an input section for stub generation.
11309
11310 template<bool big_endian>
11311 void
11312 Target_arm<big_endian>::scan_section_for_stubs(
11313 const Relocate_info<32, big_endian>* relinfo,
11314 unsigned int sh_type,
11315 const unsigned char* prelocs,
11316 size_t reloc_count,
11317 Output_section* output_section,
11318 bool needs_special_offset_handling,
11319 const unsigned char* view,
11320 Arm_address view_address,
11321 section_size_type view_size)
11322 {
11323 if (sh_type == elfcpp::SHT_REL)
11324 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11325 relinfo,
11326 prelocs,
11327 reloc_count,
11328 output_section,
11329 needs_special_offset_handling,
11330 view,
11331 view_address,
11332 view_size);
11333 else if (sh_type == elfcpp::SHT_RELA)
11334 // We do not support RELA type relocations yet. This is provided for
11335 // completeness.
11336 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11337 relinfo,
11338 prelocs,
11339 reloc_count,
11340 output_section,
11341 needs_special_offset_handling,
11342 view,
11343 view_address,
11344 view_size);
11345 else
11346 gold_unreachable();
11347 }
11348
11349 // Group input sections for stub generation.
11350 //
11351 // We group input sections in an output section so that the total size,
11352 // including any padding space due to alignment is smaller than GROUP_SIZE
11353 // unless the only input section in group is bigger than GROUP_SIZE already.
11354 // Then an ARM stub table is created to follow the last input section
11355 // in group. For each group an ARM stub table is created an is placed
11356 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11357 // extend the group after the stub table.
11358
11359 template<bool big_endian>
11360 void
11361 Target_arm<big_endian>::group_sections(
11362 Layout* layout,
11363 section_size_type group_size,
11364 bool stubs_always_after_branch,
11365 const Task* task)
11366 {
11367 // Group input sections and insert stub table
11368 Layout::Section_list section_list;
11369 layout->get_allocated_sections(&section_list);
11370 for (Layout::Section_list::const_iterator p = section_list.begin();
11371 p != section_list.end();
11372 ++p)
11373 {
11374 Arm_output_section<big_endian>* output_section =
11375 Arm_output_section<big_endian>::as_arm_output_section(*p);
11376 output_section->group_sections(group_size, stubs_always_after_branch,
11377 this, task);
11378 }
11379 }
11380
11381 // Relaxation hook. This is where we do stub generation.
11382
11383 template<bool big_endian>
11384 bool
11385 Target_arm<big_endian>::do_relax(
11386 int pass,
11387 const Input_objects* input_objects,
11388 Symbol_table* symtab,
11389 Layout* layout,
11390 const Task* task)
11391 {
11392 // No need to generate stubs if this is a relocatable link.
11393 gold_assert(!parameters->options().relocatable());
11394
11395 // If this is the first pass, we need to group input sections into
11396 // stub groups.
11397 bool done_exidx_fixup = false;
11398 typedef typename Stub_table_list::iterator Stub_table_iterator;
11399 if (pass == 1)
11400 {
11401 // Determine the stub group size. The group size is the absolute
11402 // value of the parameter --stub-group-size. If --stub-group-size
11403 // is passed a negative value, we restrict stubs to be always after
11404 // the stubbed branches.
11405 int32_t stub_group_size_param =
11406 parameters->options().stub_group_size();
11407 bool stubs_always_after_branch = stub_group_size_param < 0;
11408 section_size_type stub_group_size = abs(stub_group_size_param);
11409
11410 if (stub_group_size == 1)
11411 {
11412 // Default value.
11413 // Thumb branch range is +-4MB has to be used as the default
11414 // maximum size (a given section can contain both ARM and Thumb
11415 // code, so the worst case has to be taken into account). If we are
11416 // fixing cortex-a8 errata, the branch range has to be even smaller,
11417 // since wide conditional branch has a range of +-1MB only.
11418 //
11419 // This value is 48K less than that, which allows for 4096
11420 // 12-byte stubs. If we exceed that, then we will fail to link.
11421 // The user will have to relink with an explicit group size
11422 // option.
11423 stub_group_size = 4145152;
11424 }
11425
11426 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11427 // page as the first half of a 32-bit branch straddling two 4K pages.
11428 // This is a crude way of enforcing that. In addition, long conditional
11429 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11430 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11431 // cortex-A8 stubs from long conditional branches.
11432 if (this->fix_cortex_a8_)
11433 {
11434 stubs_always_after_branch = true;
11435 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11436 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11437 }
11438
11439 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11440
11441 // Also fix .ARM.exidx section coverage.
11442 Arm_output_section<big_endian>* exidx_output_section = NULL;
11443 for (Layout::Section_list::const_iterator p =
11444 layout->section_list().begin();
11445 p != layout->section_list().end();
11446 ++p)
11447 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11448 {
11449 if (exidx_output_section == NULL)
11450 exidx_output_section =
11451 Arm_output_section<big_endian>::as_arm_output_section(*p);
11452 else
11453 // We cannot handle this now.
11454 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11455 "non-relocatable link"),
11456 exidx_output_section->name(),
11457 (*p)->name());
11458 }
11459
11460 if (exidx_output_section != NULL)
11461 {
11462 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11463 symtab, task);
11464 done_exidx_fixup = true;
11465 }
11466 }
11467 else
11468 {
11469 // If this is not the first pass, addresses and file offsets have
11470 // been reset at this point, set them here.
11471 for (Stub_table_iterator sp = this->stub_tables_.begin();
11472 sp != this->stub_tables_.end();
11473 ++sp)
11474 {
11475 Arm_input_section<big_endian>* owner = (*sp)->owner();
11476 off_t off = align_address(owner->original_size(),
11477 (*sp)->addralign());
11478 (*sp)->set_address_and_file_offset(owner->address() + off,
11479 owner->offset() + off);
11480 }
11481 }
11482
11483 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11484 // beginning of each relaxation pass, just blow away all the stubs.
11485 // Alternatively, we could selectively remove only the stubs and reloc
11486 // information for code sections that have moved since the last pass.
11487 // That would require more book-keeping.
11488 if (this->fix_cortex_a8_)
11489 {
11490 // Clear all Cortex-A8 reloc information.
11491 for (typename Cortex_a8_relocs_info::const_iterator p =
11492 this->cortex_a8_relocs_info_.begin();
11493 p != this->cortex_a8_relocs_info_.end();
11494 ++p)
11495 delete p->second;
11496 this->cortex_a8_relocs_info_.clear();
11497
11498 // Remove all Cortex-A8 stubs.
11499 for (Stub_table_iterator sp = this->stub_tables_.begin();
11500 sp != this->stub_tables_.end();
11501 ++sp)
11502 (*sp)->remove_all_cortex_a8_stubs();
11503 }
11504
11505 // Scan relocs for relocation stubs
11506 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11507 op != input_objects->relobj_end();
11508 ++op)
11509 {
11510 Arm_relobj<big_endian>* arm_relobj =
11511 Arm_relobj<big_endian>::as_arm_relobj(*op);
11512 // Lock the object so we can read from it. This is only called
11513 // single-threaded from Layout::finalize, so it is OK to lock.
11514 Task_lock_obj<Object> tl(task, arm_relobj);
11515 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11516 }
11517
11518 // Check all stub tables to see if any of them have their data sizes
11519 // or addresses alignments changed. These are the only things that
11520 // matter.
11521 bool any_stub_table_changed = false;
11522 Unordered_set<const Output_section*> sections_needing_adjustment;
11523 for (Stub_table_iterator sp = this->stub_tables_.begin();
11524 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11525 ++sp)
11526 {
11527 if ((*sp)->update_data_size_and_addralign())
11528 {
11529 // Update data size of stub table owner.
11530 Arm_input_section<big_endian>* owner = (*sp)->owner();
11531 uint64_t address = owner->address();
11532 off_t offset = owner->offset();
11533 owner->reset_address_and_file_offset();
11534 owner->set_address_and_file_offset(address, offset);
11535
11536 sections_needing_adjustment.insert(owner->output_section());
11537 any_stub_table_changed = true;
11538 }
11539 }
11540
11541 // Output_section_data::output_section() returns a const pointer but we
11542 // need to update output sections, so we record all output sections needing
11543 // update above and scan the sections here to find out what sections need
11544 // to be updated.
11545 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11546 p != layout->section_list().end();
11547 ++p)
11548 {
11549 if (sections_needing_adjustment.find(*p)
11550 != sections_needing_adjustment.end())
11551 (*p)->set_section_offsets_need_adjustment();
11552 }
11553
11554 // Stop relaxation if no EXIDX fix-up and no stub table change.
11555 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11556
11557 // Finalize the stubs in the last relaxation pass.
11558 if (!continue_relaxation)
11559 {
11560 for (Stub_table_iterator sp = this->stub_tables_.begin();
11561 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11562 ++sp)
11563 (*sp)->finalize_stubs();
11564
11565 // Update output local symbol counts of objects if necessary.
11566 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11567 op != input_objects->relobj_end();
11568 ++op)
11569 {
11570 Arm_relobj<big_endian>* arm_relobj =
11571 Arm_relobj<big_endian>::as_arm_relobj(*op);
11572
11573 // Update output local symbol counts. We need to discard local
11574 // symbols defined in parts of input sections that are discarded by
11575 // relaxation.
11576 if (arm_relobj->output_local_symbol_count_needs_update())
11577 {
11578 // We need to lock the object's file to update it.
11579 Task_lock_obj<Object> tl(task, arm_relobj);
11580 arm_relobj->update_output_local_symbol_count();
11581 }
11582 }
11583 }
11584
11585 return continue_relaxation;
11586 }
11587
11588 // Relocate a stub.
11589
11590 template<bool big_endian>
11591 void
11592 Target_arm<big_endian>::relocate_stub(
11593 Stub* stub,
11594 const Relocate_info<32, big_endian>* relinfo,
11595 Output_section* output_section,
11596 unsigned char* view,
11597 Arm_address address,
11598 section_size_type view_size)
11599 {
11600 Relocate relocate;
11601 const Stub_template* stub_template = stub->stub_template();
11602 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11603 {
11604 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11605 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11606
11607 unsigned int r_type = insn->r_type();
11608 section_size_type reloc_offset = stub_template->reloc_offset(i);
11609 section_size_type reloc_size = insn->size();
11610 gold_assert(reloc_offset + reloc_size <= view_size);
11611
11612 // This is the address of the stub destination.
11613 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11614 Symbol_value<32> symval;
11615 symval.set_output_value(target);
11616
11617 // Synthesize a fake reloc just in case. We don't have a symbol so
11618 // we use 0.
11619 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11620 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11621 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11622 reloc_write.put_r_offset(reloc_offset);
11623 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11624 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11625
11626 relocate.relocate(relinfo, this, output_section,
11627 this->fake_relnum_for_stubs, rel, r_type,
11628 NULL, &symval, view + reloc_offset,
11629 address + reloc_offset, reloc_size);
11630 }
11631 }
11632
11633 // Determine whether an object attribute tag takes an integer, a
11634 // string or both.
11635
11636 template<bool big_endian>
11637 int
11638 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11639 {
11640 if (tag == Object_attribute::Tag_compatibility)
11641 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11642 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11643 else if (tag == elfcpp::Tag_nodefaults)
11644 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11645 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11646 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11647 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11648 else if (tag < 32)
11649 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11650 else
11651 return ((tag & 1) != 0
11652 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11653 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11654 }
11655
11656 // Reorder attributes.
11657 //
11658 // The ABI defines that Tag_conformance should be emitted first, and that
11659 // Tag_nodefaults should be second (if either is defined). This sets those
11660 // two positions, and bumps up the position of all the remaining tags to
11661 // compensate.
11662
11663 template<bool big_endian>
11664 int
11665 Target_arm<big_endian>::do_attributes_order(int num) const
11666 {
11667 // Reorder the known object attributes in output. We want to move
11668 // Tag_conformance to position 4 and Tag_conformance to position 5
11669 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11670 if (num == 4)
11671 return elfcpp::Tag_conformance;
11672 if (num == 5)
11673 return elfcpp::Tag_nodefaults;
11674 if ((num - 2) < elfcpp::Tag_nodefaults)
11675 return num - 2;
11676 if ((num - 1) < elfcpp::Tag_conformance)
11677 return num - 1;
11678 return num;
11679 }
11680
11681 // Scan a span of THUMB code for Cortex-A8 erratum.
11682
11683 template<bool big_endian>
11684 void
11685 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11686 Arm_relobj<big_endian>* arm_relobj,
11687 unsigned int shndx,
11688 section_size_type span_start,
11689 section_size_type span_end,
11690 const unsigned char* view,
11691 Arm_address address)
11692 {
11693 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11694 //
11695 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11696 // The branch target is in the same 4KB region as the
11697 // first half of the branch.
11698 // The instruction before the branch is a 32-bit
11699 // length non-branch instruction.
11700 section_size_type i = span_start;
11701 bool last_was_32bit = false;
11702 bool last_was_branch = false;
11703 while (i < span_end)
11704 {
11705 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11706 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11707 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11708 bool is_blx = false, is_b = false;
11709 bool is_bl = false, is_bcc = false;
11710
11711 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11712 if (insn_32bit)
11713 {
11714 // Load the rest of the insn (in manual-friendly order).
11715 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11716
11717 // Encoding T4: B<c>.W.
11718 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11719 // Encoding T1: BL<c>.W.
11720 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11721 // Encoding T2: BLX<c>.W.
11722 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11723 // Encoding T3: B<c>.W (not permitted in IT block).
11724 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11725 && (insn & 0x07f00000U) != 0x03800000U);
11726 }
11727
11728 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11729
11730 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11731 // page boundary and it follows 32-bit non-branch instruction,
11732 // we need to work around.
11733 if (is_32bit_branch
11734 && ((address + i) & 0xfffU) == 0xffeU
11735 && last_was_32bit
11736 && !last_was_branch)
11737 {
11738 // Check to see if there is a relocation stub for this branch.
11739 bool force_target_arm = false;
11740 bool force_target_thumb = false;
11741 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11742 Cortex_a8_relocs_info::const_iterator p =
11743 this->cortex_a8_relocs_info_.find(address + i);
11744
11745 if (p != this->cortex_a8_relocs_info_.end())
11746 {
11747 cortex_a8_reloc = p->second;
11748 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11749
11750 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11751 && !target_is_thumb)
11752 force_target_arm = true;
11753 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11754 && target_is_thumb)
11755 force_target_thumb = true;
11756 }
11757
11758 off_t offset;
11759 Stub_type stub_type = arm_stub_none;
11760
11761 // Check if we have an offending branch instruction.
11762 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11763 uint16_t lower_insn = insn & 0xffffU;
11764 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11765
11766 if (cortex_a8_reloc != NULL
11767 && cortex_a8_reloc->reloc_stub() != NULL)
11768 // We've already made a stub for this instruction, e.g.
11769 // it's a long branch or a Thumb->ARM stub. Assume that
11770 // stub will suffice to work around the A8 erratum (see
11771 // setting of always_after_branch above).
11772 ;
11773 else if (is_bcc)
11774 {
11775 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11776 lower_insn);
11777 stub_type = arm_stub_a8_veneer_b_cond;
11778 }
11779 else if (is_b || is_bl || is_blx)
11780 {
11781 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11782 lower_insn);
11783 if (is_blx)
11784 offset &= ~3;
11785
11786 stub_type = (is_blx
11787 ? arm_stub_a8_veneer_blx
11788 : (is_bl
11789 ? arm_stub_a8_veneer_bl
11790 : arm_stub_a8_veneer_b));
11791 }
11792
11793 if (stub_type != arm_stub_none)
11794 {
11795 Arm_address pc_for_insn = address + i + 4;
11796
11797 // The original instruction is a BL, but the target is
11798 // an ARM instruction. If we were not making a stub,
11799 // the BL would have been converted to a BLX. Use the
11800 // BLX stub instead in that case.
11801 if (this->may_use_blx() && force_target_arm
11802 && stub_type == arm_stub_a8_veneer_bl)
11803 {
11804 stub_type = arm_stub_a8_veneer_blx;
11805 is_blx = true;
11806 is_bl = false;
11807 }
11808 // Conversely, if the original instruction was
11809 // BLX but the target is Thumb mode, use the BL stub.
11810 else if (force_target_thumb
11811 && stub_type == arm_stub_a8_veneer_blx)
11812 {
11813 stub_type = arm_stub_a8_veneer_bl;
11814 is_blx = false;
11815 is_bl = true;
11816 }
11817
11818 if (is_blx)
11819 pc_for_insn &= ~3;
11820
11821 // If we found a relocation, use the proper destination,
11822 // not the offset in the (unrelocated) instruction.
11823 // Note this is always done if we switched the stub type above.
11824 if (cortex_a8_reloc != NULL)
11825 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11826
11827 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11828
11829 // Add a new stub if destination address in in the same page.
11830 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11831 {
11832 Cortex_a8_stub* stub =
11833 this->stub_factory_.make_cortex_a8_stub(stub_type,
11834 arm_relobj, shndx,
11835 address + i,
11836 target, insn);
11837 Stub_table<big_endian>* stub_table =
11838 arm_relobj->stub_table(shndx);
11839 gold_assert(stub_table != NULL);
11840 stub_table->add_cortex_a8_stub(address + i, stub);
11841 }
11842 }
11843 }
11844
11845 i += insn_32bit ? 4 : 2;
11846 last_was_32bit = insn_32bit;
11847 last_was_branch = is_32bit_branch;
11848 }
11849 }
11850
11851 // Apply the Cortex-A8 workaround.
11852
11853 template<bool big_endian>
11854 void
11855 Target_arm<big_endian>::apply_cortex_a8_workaround(
11856 const Cortex_a8_stub* stub,
11857 Arm_address stub_address,
11858 unsigned char* insn_view,
11859 Arm_address insn_address)
11860 {
11861 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11862 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11863 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11864 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11865 off_t branch_offset = stub_address - (insn_address + 4);
11866
11867 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11868 switch (stub->stub_template()->type())
11869 {
11870 case arm_stub_a8_veneer_b_cond:
11871 // For a conditional branch, we re-write it to be an unconditional
11872 // branch to the stub. We use the THUMB-2 encoding here.
11873 upper_insn = 0xf000U;
11874 lower_insn = 0xb800U;
11875 // Fall through
11876 case arm_stub_a8_veneer_b:
11877 case arm_stub_a8_veneer_bl:
11878 case arm_stub_a8_veneer_blx:
11879 if ((lower_insn & 0x5000U) == 0x4000U)
11880 // For a BLX instruction, make sure that the relocation is
11881 // rounded up to a word boundary. This follows the semantics of
11882 // the instruction which specifies that bit 1 of the target
11883 // address will come from bit 1 of the base address.
11884 branch_offset = (branch_offset + 2) & ~3;
11885
11886 // Put BRANCH_OFFSET back into the insn.
11887 gold_assert(!utils::has_overflow<25>(branch_offset));
11888 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11889 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11890 break;
11891
11892 default:
11893 gold_unreachable();
11894 }
11895
11896 // Put the relocated value back in the object file:
11897 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11898 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11899 }
11900
11901 template<bool big_endian>
11902 class Target_selector_arm : public Target_selector
11903 {
11904 public:
11905 Target_selector_arm()
11906 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11907 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11908 (big_endian ? "armelfb" : "armelf"))
11909 { }
11910
11911 Target*
11912 do_instantiate_target()
11913 { return new Target_arm<big_endian>(); }
11914 };
11915
11916 // Fix .ARM.exidx section coverage.
11917
11918 template<bool big_endian>
11919 void
11920 Target_arm<big_endian>::fix_exidx_coverage(
11921 Layout* layout,
11922 const Input_objects* input_objects,
11923 Arm_output_section<big_endian>* exidx_section,
11924 Symbol_table* symtab,
11925 const Task* task)
11926 {
11927 // We need to look at all the input sections in output in ascending
11928 // order of of output address. We do that by building a sorted list
11929 // of output sections by addresses. Then we looks at the output sections
11930 // in order. The input sections in an output section are already sorted
11931 // by addresses within the output section.
11932
11933 typedef std::set<Output_section*, output_section_address_less_than>
11934 Sorted_output_section_list;
11935 Sorted_output_section_list sorted_output_sections;
11936
11937 // Find out all the output sections of input sections pointed by
11938 // EXIDX input sections.
11939 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11940 p != input_objects->relobj_end();
11941 ++p)
11942 {
11943 Arm_relobj<big_endian>* arm_relobj =
11944 Arm_relobj<big_endian>::as_arm_relobj(*p);
11945 std::vector<unsigned int> shndx_list;
11946 arm_relobj->get_exidx_shndx_list(&shndx_list);
11947 for (size_t i = 0; i < shndx_list.size(); ++i)
11948 {
11949 const Arm_exidx_input_section* exidx_input_section =
11950 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11951 gold_assert(exidx_input_section != NULL);
11952 if (!exidx_input_section->has_errors())
11953 {
11954 unsigned int text_shndx = exidx_input_section->link();
11955 Output_section* os = arm_relobj->output_section(text_shndx);
11956 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11957 sorted_output_sections.insert(os);
11958 }
11959 }
11960 }
11961
11962 // Go over the output sections in ascending order of output addresses.
11963 typedef typename Arm_output_section<big_endian>::Text_section_list
11964 Text_section_list;
11965 Text_section_list sorted_text_sections;
11966 for (typename Sorted_output_section_list::iterator p =
11967 sorted_output_sections.begin();
11968 p != sorted_output_sections.end();
11969 ++p)
11970 {
11971 Arm_output_section<big_endian>* arm_output_section =
11972 Arm_output_section<big_endian>::as_arm_output_section(*p);
11973 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11974 }
11975
11976 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11977 merge_exidx_entries(), task);
11978 }
11979
11980 Target_selector_arm<false> target_selector_arm;
11981 Target_selector_arm<true> target_selector_armbe;
11982
11983 } // End anonymous namespace.
This page took 0.32318 seconds and 5 git commands to generate.