2010-06-15 Viktor Kutuzov <vkutuzov@accesssoftek.com>
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
110 //
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
151 // Factory methods to create instruction templates in different formats.
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
210
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
440
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457 };
458
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
511 {
512 if (symbol != NULL)
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
516 }
517 else
518 {
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 //
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
989
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 private:
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1072
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1077 };
1078
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1082
1083 typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1085
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1088
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1090 {
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1101
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1106
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1111
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1116
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1120
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1126 };
1127
1128 // A class to wrap an ordinary input section containing executable code.
1129
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1132 {
1133 public:
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1137 { }
1138
1139 ~Arm_input_section()
1140 { }
1141
1142 // Initialize.
1143 void
1144 init();
1145
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1155
1156 // Set the stub_table.
1157 void
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
1160
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
1167 // Return the original size of the section.
1168 uint32_t
1169 original_size() const
1170 { return this->original_size_; }
1171
1172 protected:
1173 // Write data to output file.
1174 void
1175 do_write(Output_file*);
1176
1177 // Return required alignment of this.
1178 uint64_t
1179 do_addralign() const
1180 {
1181 if (this->is_stub_table_owner())
1182 return std::max(this->stub_table_->addralign(),
1183 static_cast<uint64_t>(this->original_addralign_));
1184 else
1185 return this->original_addralign_;
1186 }
1187
1188 // Finalize data size.
1189 void
1190 set_final_data_size();
1191
1192 // Reset address and file offset.
1193 void
1194 do_reset_address_and_file_offset();
1195
1196 // Output offset.
1197 bool
1198 do_output_offset(const Relobj* object, unsigned int shndx,
1199 section_offset_type offset,
1200 section_offset_type* poutput) const
1201 {
1202 if ((object == this->relobj())
1203 && (shndx == this->shndx())
1204 && (offset >= 0)
1205 && (offset <=
1206 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1207 {
1208 *poutput = offset;
1209 return true;
1210 }
1211 else
1212 return false;
1213 }
1214
1215 private:
1216 // Copying is not allowed.
1217 Arm_input_section(const Arm_input_section&);
1218 Arm_input_section& operator=(const Arm_input_section&);
1219
1220 // Address alignment of the original input section.
1221 uint32_t original_addralign_;
1222 // Section size of the original input section.
1223 uint32_t original_size_;
1224 // Stub table.
1225 Stub_table<big_endian>* stub_table_;
1226 };
1227
1228 // Arm_exidx_fixup class. This is used to define a number of methods
1229 // and keep states for fixing up EXIDX coverage.
1230
1231 class Arm_exidx_fixup
1232 {
1233 public:
1234 Arm_exidx_fixup(Output_section* exidx_output_section,
1235 bool merge_exidx_entries = true)
1236 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237 last_inlined_entry_(0), last_input_section_(NULL),
1238 section_offset_map_(NULL), first_output_text_section_(NULL),
1239 merge_exidx_entries_(merge_exidx_entries)
1240 { }
1241
1242 ~Arm_exidx_fixup()
1243 { delete this->section_offset_map_; }
1244
1245 // Process an EXIDX section for entry merging. Return number of bytes to
1246 // be deleted in output. If parts of the input EXIDX section are merged
1247 // a heap allocated Arm_exidx_section_offset_map is store in the located
1248 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1249 // releasing it.
1250 template<bool big_endian>
1251 uint32_t
1252 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253 Arm_exidx_section_offset_map** psection_offset_map);
1254
1255 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256 // input section, if there is not one already.
1257 void
1258 add_exidx_cantunwind_as_needed();
1259
1260 // Return the output section for the text section which is linked to the
1261 // first exidx input in output.
1262 Output_section*
1263 first_output_text_section() const
1264 { return this->first_output_text_section_; }
1265
1266 private:
1267 // Copying is not allowed.
1268 Arm_exidx_fixup(const Arm_exidx_fixup&);
1269 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1270
1271 // Type of EXIDX unwind entry.
1272 enum Unwind_type
1273 {
1274 // No type.
1275 UT_NONE,
1276 // EXIDX_CANTUNWIND.
1277 UT_EXIDX_CANTUNWIND,
1278 // Inlined entry.
1279 UT_INLINED_ENTRY,
1280 // Normal entry.
1281 UT_NORMAL_ENTRY,
1282 };
1283
1284 // Process an EXIDX entry. We only care about the second word of the
1285 // entry. Return true if the entry can be deleted.
1286 bool
1287 process_exidx_entry(uint32_t second_word);
1288
1289 // Update the current section offset map during EXIDX section fix-up.
1290 // If there is no map, create one. INPUT_OFFSET is the offset of a
1291 // reference point, DELETED_BYTES is the number of deleted by in the
1292 // section so far. If DELETE_ENTRY is true, the reference point and
1293 // all offsets after the previous reference point are discarded.
1294 void
1295 update_offset_map(section_offset_type input_offset,
1296 section_size_type deleted_bytes, bool delete_entry);
1297
1298 // EXIDX output section.
1299 Output_section* exidx_output_section_;
1300 // Unwind type of the last EXIDX entry processed.
1301 Unwind_type last_unwind_type_;
1302 // Last seen inlined EXIDX entry.
1303 uint32_t last_inlined_entry_;
1304 // Last processed EXIDX input section.
1305 const Arm_exidx_input_section* last_input_section_;
1306 // Section offset map created in process_exidx_section.
1307 Arm_exidx_section_offset_map* section_offset_map_;
1308 // Output section for the text section which is linked to the first exidx
1309 // input in output.
1310 Output_section* first_output_text_section_;
1311
1312 bool merge_exidx_entries_;
1313 };
1314
1315 // Arm output section class. This is defined mainly to add a number of
1316 // stub generation methods.
1317
1318 template<bool big_endian>
1319 class Arm_output_section : public Output_section
1320 {
1321 public:
1322 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1323
1324 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325 elfcpp::Elf_Xword flags)
1326 : Output_section(name, type, flags)
1327 { }
1328
1329 ~Arm_output_section()
1330 { }
1331
1332 // Group input sections for stub generation.
1333 void
1334 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1335
1336 // Downcast a base pointer to an Arm_output_section pointer. This is
1337 // not type-safe but we only use Arm_output_section not the base class.
1338 static Arm_output_section<big_endian>*
1339 as_arm_output_section(Output_section* os)
1340 { return static_cast<Arm_output_section<big_endian>*>(os); }
1341
1342 // Append all input text sections in this into LIST.
1343 void
1344 append_text_sections_to_list(Text_section_list* list);
1345
1346 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1347 // is a list of text input sections sorted in ascending order of their
1348 // output addresses.
1349 void
1350 fix_exidx_coverage(Layout* layout,
1351 const Text_section_list& sorted_text_section,
1352 Symbol_table* symtab,
1353 bool merge_exidx_entries);
1354
1355 private:
1356 // For convenience.
1357 typedef Output_section::Input_section Input_section;
1358 typedef Output_section::Input_section_list Input_section_list;
1359
1360 // Create a stub group.
1361 void create_stub_group(Input_section_list::const_iterator,
1362 Input_section_list::const_iterator,
1363 Input_section_list::const_iterator,
1364 Target_arm<big_endian>*,
1365 std::vector<Output_relaxed_input_section*>*);
1366 };
1367
1368 // Arm_exidx_input_section class. This represents an EXIDX input section.
1369
1370 class Arm_exidx_input_section
1371 {
1372 public:
1373 static const section_offset_type invalid_offset =
1374 static_cast<section_offset_type>(-1);
1375
1376 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1377 unsigned int link, uint32_t size, uint32_t addralign)
1378 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1379 addralign_(addralign)
1380 { }
1381
1382 ~Arm_exidx_input_section()
1383 { }
1384
1385 // Accessors: This is a read-only class.
1386
1387 // Return the object containing this EXIDX input section.
1388 Relobj*
1389 relobj() const
1390 { return this->relobj_; }
1391
1392 // Return the section index of this EXIDX input section.
1393 unsigned int
1394 shndx() const
1395 { return this->shndx_; }
1396
1397 // Return the section index of linked text section in the same object.
1398 unsigned int
1399 link() const
1400 { return this->link_; }
1401
1402 // Return size of the EXIDX input section.
1403 uint32_t
1404 size() const
1405 { return this->size_; }
1406
1407 // Reutnr address alignment of EXIDX input section.
1408 uint32_t
1409 addralign() const
1410 { return this->addralign_; }
1411
1412 private:
1413 // Object containing this.
1414 Relobj* relobj_;
1415 // Section index of this.
1416 unsigned int shndx_;
1417 // text section linked to this in the same object.
1418 unsigned int link_;
1419 // Size of this. For ARM 32-bit is sufficient.
1420 uint32_t size_;
1421 // Address alignment of this. For ARM 32-bit is sufficient.
1422 uint32_t addralign_;
1423 };
1424
1425 // Arm_relobj class.
1426
1427 template<bool big_endian>
1428 class Arm_relobj : public Sized_relobj<32, big_endian>
1429 {
1430 public:
1431 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1432
1433 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1434 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1435 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1436 stub_tables_(), local_symbol_is_thumb_function_(),
1437 attributes_section_data_(NULL), mapping_symbols_info_(),
1438 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1439 output_local_symbol_count_needs_update_(false),
1440 merge_flags_and_attributes_(true)
1441 { }
1442
1443 ~Arm_relobj()
1444 { delete this->attributes_section_data_; }
1445
1446 // Return the stub table of the SHNDX-th section if there is one.
1447 Stub_table<big_endian>*
1448 stub_table(unsigned int shndx) const
1449 {
1450 gold_assert(shndx < this->stub_tables_.size());
1451 return this->stub_tables_[shndx];
1452 }
1453
1454 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1455 void
1456 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1457 {
1458 gold_assert(shndx < this->stub_tables_.size());
1459 this->stub_tables_[shndx] = stub_table;
1460 }
1461
1462 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1463 // index. This is only valid after do_count_local_symbol is called.
1464 bool
1465 local_symbol_is_thumb_function(unsigned int r_sym) const
1466 {
1467 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1468 return this->local_symbol_is_thumb_function_[r_sym];
1469 }
1470
1471 // Scan all relocation sections for stub generation.
1472 void
1473 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1474 const Layout*);
1475
1476 // Convert regular input section with index SHNDX to a relaxed section.
1477 void
1478 convert_input_section_to_relaxed_section(unsigned shndx)
1479 {
1480 // The stubs have relocations and we need to process them after writing
1481 // out the stubs. So relocation now must follow section write.
1482 this->set_section_offset(shndx, -1ULL);
1483 this->set_relocs_must_follow_section_writes();
1484 }
1485
1486 // Downcast a base pointer to an Arm_relobj pointer. This is
1487 // not type-safe but we only use Arm_relobj not the base class.
1488 static Arm_relobj<big_endian>*
1489 as_arm_relobj(Relobj* relobj)
1490 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1491
1492 // Processor-specific flags in ELF file header. This is valid only after
1493 // reading symbols.
1494 elfcpp::Elf_Word
1495 processor_specific_flags() const
1496 { return this->processor_specific_flags_; }
1497
1498 // Attribute section data This is the contents of the .ARM.attribute section
1499 // if there is one.
1500 const Attributes_section_data*
1501 attributes_section_data() const
1502 { return this->attributes_section_data_; }
1503
1504 // Mapping symbol location.
1505 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1506
1507 // Functor for STL container.
1508 struct Mapping_symbol_position_less
1509 {
1510 bool
1511 operator()(const Mapping_symbol_position& p1,
1512 const Mapping_symbol_position& p2) const
1513 {
1514 return (p1.first < p2.first
1515 || (p1.first == p2.first && p1.second < p2.second));
1516 }
1517 };
1518
1519 // We only care about the first character of a mapping symbol, so
1520 // we only store that instead of the whole symbol name.
1521 typedef std::map<Mapping_symbol_position, char,
1522 Mapping_symbol_position_less> Mapping_symbols_info;
1523
1524 // Whether a section contains any Cortex-A8 workaround.
1525 bool
1526 section_has_cortex_a8_workaround(unsigned int shndx) const
1527 {
1528 return (this->section_has_cortex_a8_workaround_ != NULL
1529 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1530 }
1531
1532 // Mark a section that has Cortex-A8 workaround.
1533 void
1534 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1535 {
1536 if (this->section_has_cortex_a8_workaround_ == NULL)
1537 this->section_has_cortex_a8_workaround_ =
1538 new std::vector<bool>(this->shnum(), false);
1539 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1540 }
1541
1542 // Return the EXIDX section of an text section with index SHNDX or NULL
1543 // if the text section has no associated EXIDX section.
1544 const Arm_exidx_input_section*
1545 exidx_input_section_by_link(unsigned int shndx) const
1546 {
1547 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1548 return ((p != this->exidx_section_map_.end()
1549 && p->second->link() == shndx)
1550 ? p->second
1551 : NULL);
1552 }
1553
1554 // Return the EXIDX section with index SHNDX or NULL if there is none.
1555 const Arm_exidx_input_section*
1556 exidx_input_section_by_shndx(unsigned shndx) const
1557 {
1558 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1559 return ((p != this->exidx_section_map_.end()
1560 && p->second->shndx() == shndx)
1561 ? p->second
1562 : NULL);
1563 }
1564
1565 // Whether output local symbol count needs updating.
1566 bool
1567 output_local_symbol_count_needs_update() const
1568 { return this->output_local_symbol_count_needs_update_; }
1569
1570 // Set output_local_symbol_count_needs_update flag to be true.
1571 void
1572 set_output_local_symbol_count_needs_update()
1573 { this->output_local_symbol_count_needs_update_ = true; }
1574
1575 // Update output local symbol count at the end of relaxation.
1576 void
1577 update_output_local_symbol_count();
1578
1579 // Whether we want to merge processor-specific flags and attributes.
1580 bool
1581 merge_flags_and_attributes() const
1582 { return this->merge_flags_and_attributes_; }
1583
1584 protected:
1585 // Post constructor setup.
1586 void
1587 do_setup()
1588 {
1589 // Call parent's setup method.
1590 Sized_relobj<32, big_endian>::do_setup();
1591
1592 // Initialize look-up tables.
1593 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1594 this->stub_tables_.swap(empty_stub_table_list);
1595 }
1596
1597 // Count the local symbols.
1598 void
1599 do_count_local_symbols(Stringpool_template<char>*,
1600 Stringpool_template<char>*);
1601
1602 void
1603 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1604 const unsigned char* pshdrs,
1605 typename Sized_relobj<32, big_endian>::Views* pivews);
1606
1607 // Read the symbol information.
1608 void
1609 do_read_symbols(Read_symbols_data* sd);
1610
1611 // Process relocs for garbage collection.
1612 void
1613 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1614
1615 private:
1616
1617 // Whether a section needs to be scanned for relocation stubs.
1618 bool
1619 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1620 const Relobj::Output_sections&,
1621 const Symbol_table *, const unsigned char*);
1622
1623 // Whether a section is a scannable text section.
1624 bool
1625 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1626 const Output_section*, const Symbol_table *);
1627
1628 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1629 bool
1630 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1631 unsigned int, Output_section*,
1632 const Symbol_table *);
1633
1634 // Scan a section for the Cortex-A8 erratum.
1635 void
1636 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1637 unsigned int, Output_section*,
1638 Target_arm<big_endian>*);
1639
1640 // Find the linked text section of an EXIDX section by looking at the
1641 // first reloction of the EXIDX section. PSHDR points to the section
1642 // headers of a relocation section and PSYMS points to the local symbols.
1643 // PSHNDX points to a location storing the text section index if found.
1644 // Return whether we can find the linked section.
1645 bool
1646 find_linked_text_section(const unsigned char* pshdr,
1647 const unsigned char* psyms, unsigned int* pshndx);
1648
1649 //
1650 // Make a new Arm_exidx_input_section object for EXIDX section with
1651 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1652 // index of the linked text section.
1653 void
1654 make_exidx_input_section(unsigned int shndx,
1655 const elfcpp::Shdr<32, big_endian>& shdr,
1656 unsigned int text_shndx);
1657
1658 // Return the output address of either a plain input section or a
1659 // relaxed input section. SHNDX is the section index.
1660 Arm_address
1661 simple_input_section_output_address(unsigned int, Output_section*);
1662
1663 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1664 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1665 Exidx_section_map;
1666
1667 // List of stub tables.
1668 Stub_table_list stub_tables_;
1669 // Bit vector to tell if a local symbol is a thumb function or not.
1670 // This is only valid after do_count_local_symbol is called.
1671 std::vector<bool> local_symbol_is_thumb_function_;
1672 // processor-specific flags in ELF file header.
1673 elfcpp::Elf_Word processor_specific_flags_;
1674 // Object attributes if there is an .ARM.attributes section or NULL.
1675 Attributes_section_data* attributes_section_data_;
1676 // Mapping symbols information.
1677 Mapping_symbols_info mapping_symbols_info_;
1678 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1679 std::vector<bool>* section_has_cortex_a8_workaround_;
1680 // Map a text section to its associated .ARM.exidx section, if there is one.
1681 Exidx_section_map exidx_section_map_;
1682 // Whether output local symbol count needs updating.
1683 bool output_local_symbol_count_needs_update_;
1684 // Whether we merge processor flags and attributes of this object to
1685 // output.
1686 bool merge_flags_and_attributes_;
1687 };
1688
1689 // Arm_dynobj class.
1690
1691 template<bool big_endian>
1692 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1693 {
1694 public:
1695 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1696 const elfcpp::Ehdr<32, big_endian>& ehdr)
1697 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1698 processor_specific_flags_(0), attributes_section_data_(NULL)
1699 { }
1700
1701 ~Arm_dynobj()
1702 { delete this->attributes_section_data_; }
1703
1704 // Downcast a base pointer to an Arm_relobj pointer. This is
1705 // not type-safe but we only use Arm_relobj not the base class.
1706 static Arm_dynobj<big_endian>*
1707 as_arm_dynobj(Dynobj* dynobj)
1708 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1709
1710 // Processor-specific flags in ELF file header. This is valid only after
1711 // reading symbols.
1712 elfcpp::Elf_Word
1713 processor_specific_flags() const
1714 { return this->processor_specific_flags_; }
1715
1716 // Attributes section data.
1717 const Attributes_section_data*
1718 attributes_section_data() const
1719 { return this->attributes_section_data_; }
1720
1721 protected:
1722 // Read the symbol information.
1723 void
1724 do_read_symbols(Read_symbols_data* sd);
1725
1726 private:
1727 // processor-specific flags in ELF file header.
1728 elfcpp::Elf_Word processor_specific_flags_;
1729 // Object attributes if there is an .ARM.attributes section or NULL.
1730 Attributes_section_data* attributes_section_data_;
1731 };
1732
1733 // Functor to read reloc addends during stub generation.
1734
1735 template<int sh_type, bool big_endian>
1736 struct Stub_addend_reader
1737 {
1738 // Return the addend for a relocation of a particular type. Depending
1739 // on whether this is a REL or RELA relocation, read the addend from a
1740 // view or from a Reloc object.
1741 elfcpp::Elf_types<32>::Elf_Swxword
1742 operator()(
1743 unsigned int /* r_type */,
1744 const unsigned char* /* view */,
1745 const typename Reloc_types<sh_type,
1746 32, big_endian>::Reloc& /* reloc */) const;
1747 };
1748
1749 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1750
1751 template<bool big_endian>
1752 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1753 {
1754 elfcpp::Elf_types<32>::Elf_Swxword
1755 operator()(
1756 unsigned int,
1757 const unsigned char*,
1758 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1759 };
1760
1761 // Specialized Stub_addend_reader for RELA type relocation sections.
1762 // We currently do not handle RELA type relocation sections but it is trivial
1763 // to implement the addend reader. This is provided for completeness and to
1764 // make it easier to add support for RELA relocation sections in the future.
1765
1766 template<bool big_endian>
1767 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1768 {
1769 elfcpp::Elf_types<32>::Elf_Swxword
1770 operator()(
1771 unsigned int,
1772 const unsigned char*,
1773 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1774 big_endian>::Reloc& reloc) const
1775 { return reloc.get_r_addend(); }
1776 };
1777
1778 // Cortex_a8_reloc class. We keep record of relocation that may need
1779 // the Cortex-A8 erratum workaround.
1780
1781 class Cortex_a8_reloc
1782 {
1783 public:
1784 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1785 Arm_address destination)
1786 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1787 { }
1788
1789 ~Cortex_a8_reloc()
1790 { }
1791
1792 // Accessors: This is a read-only class.
1793
1794 // Return the relocation stub associated with this relocation if there is
1795 // one.
1796 const Reloc_stub*
1797 reloc_stub() const
1798 { return this->reloc_stub_; }
1799
1800 // Return the relocation type.
1801 unsigned int
1802 r_type() const
1803 { return this->r_type_; }
1804
1805 // Return the destination address of the relocation. LSB stores the THUMB
1806 // bit.
1807 Arm_address
1808 destination() const
1809 { return this->destination_; }
1810
1811 private:
1812 // Associated relocation stub if there is one, or NULL.
1813 const Reloc_stub* reloc_stub_;
1814 // Relocation type.
1815 unsigned int r_type_;
1816 // Destination address of this relocation. LSB is used to distinguish
1817 // ARM/THUMB mode.
1818 Arm_address destination_;
1819 };
1820
1821 // Arm_output_data_got class. We derive this from Output_data_got to add
1822 // extra methods to handle TLS relocations in a static link.
1823
1824 template<bool big_endian>
1825 class Arm_output_data_got : public Output_data_got<32, big_endian>
1826 {
1827 public:
1828 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1829 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1830 { }
1831
1832 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1833 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1834 // applied in a static link.
1835 void
1836 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1837 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1838
1839 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1840 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1841 // relocation that needs to be applied in a static link.
1842 void
1843 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1844 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1845 {
1846 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1847 index));
1848 }
1849
1850 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1851 // The first one is initialized to be 1, which is the module index for
1852 // the main executable and the second one 0. A reloc of the type
1853 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1854 // be applied by gold. GSYM is a global symbol.
1855 void
1856 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1857
1858 // Same as the above but for a local symbol in OBJECT with INDEX.
1859 void
1860 add_tls_gd32_with_static_reloc(unsigned int got_type,
1861 Sized_relobj<32, big_endian>* object,
1862 unsigned int index);
1863
1864 protected:
1865 // Write out the GOT table.
1866 void
1867 do_write(Output_file*);
1868
1869 private:
1870 // This class represent dynamic relocations that need to be applied by
1871 // gold because we are using TLS relocations in a static link.
1872 class Static_reloc
1873 {
1874 public:
1875 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1876 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1877 { this->u_.global.symbol = gsym; }
1878
1879 Static_reloc(unsigned int got_offset, unsigned int r_type,
1880 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1881 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1882 {
1883 this->u_.local.relobj = relobj;
1884 this->u_.local.index = index;
1885 }
1886
1887 // Return the GOT offset.
1888 unsigned int
1889 got_offset() const
1890 { return this->got_offset_; }
1891
1892 // Relocation type.
1893 unsigned int
1894 r_type() const
1895 { return this->r_type_; }
1896
1897 // Whether the symbol is global or not.
1898 bool
1899 symbol_is_global() const
1900 { return this->symbol_is_global_; }
1901
1902 // For a relocation against a global symbol, the global symbol.
1903 Symbol*
1904 symbol() const
1905 {
1906 gold_assert(this->symbol_is_global_);
1907 return this->u_.global.symbol;
1908 }
1909
1910 // For a relocation against a local symbol, the defining object.
1911 Sized_relobj<32, big_endian>*
1912 relobj() const
1913 {
1914 gold_assert(!this->symbol_is_global_);
1915 return this->u_.local.relobj;
1916 }
1917
1918 // For a relocation against a local symbol, the local symbol index.
1919 unsigned int
1920 index() const
1921 {
1922 gold_assert(!this->symbol_is_global_);
1923 return this->u_.local.index;
1924 }
1925
1926 private:
1927 // GOT offset of the entry to which this relocation is applied.
1928 unsigned int got_offset_;
1929 // Type of relocation.
1930 unsigned int r_type_;
1931 // Whether this relocation is against a global symbol.
1932 bool symbol_is_global_;
1933 // A global or local symbol.
1934 union
1935 {
1936 struct
1937 {
1938 // For a global symbol, the symbol itself.
1939 Symbol* symbol;
1940 } global;
1941 struct
1942 {
1943 // For a local symbol, the object defining object.
1944 Sized_relobj<32, big_endian>* relobj;
1945 // For a local symbol, the symbol index.
1946 unsigned int index;
1947 } local;
1948 } u_;
1949 };
1950
1951 // Symbol table of the output object.
1952 Symbol_table* symbol_table_;
1953 // Layout of the output object.
1954 Layout* layout_;
1955 // Static relocs to be applied to the GOT.
1956 std::vector<Static_reloc> static_relocs_;
1957 };
1958
1959 // The ARM target has many relocation types with odd-sizes or incontigious
1960 // bits. The default handling of relocatable relocation cannot process these
1961 // relocations. So we have to extend the default code.
1962
1963 template<bool big_endian, int sh_type, typename Classify_reloc>
1964 class Arm_scan_relocatable_relocs :
1965 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
1966 {
1967 public:
1968 // Return the strategy to use for a local symbol which is a section
1969 // symbol, given the relocation type.
1970 inline Relocatable_relocs::Reloc_strategy
1971 local_section_strategy(unsigned int r_type, Relobj*)
1972 {
1973 if (sh_type == elfcpp::SHT_RELA)
1974 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
1975 else
1976 {
1977 if (r_type == elfcpp::R_ARM_TARGET1
1978 || r_type == elfcpp::R_ARM_TARGET2)
1979 {
1980 const Target_arm<big_endian>* arm_target =
1981 Target_arm<big_endian>::default_target();
1982 r_type = arm_target->get_real_reloc_type(r_type);
1983 }
1984
1985 switch(r_type)
1986 {
1987 // Relocations that write nothing. These exclude R_ARM_TARGET1
1988 // and R_ARM_TARGET2.
1989 case elfcpp::R_ARM_NONE:
1990 case elfcpp::R_ARM_V4BX:
1991 case elfcpp::R_ARM_TLS_GOTDESC:
1992 case elfcpp::R_ARM_TLS_CALL:
1993 case elfcpp::R_ARM_TLS_DESCSEQ:
1994 case elfcpp::R_ARM_THM_TLS_CALL:
1995 case elfcpp::R_ARM_GOTRELAX:
1996 case elfcpp::R_ARM_GNU_VTENTRY:
1997 case elfcpp::R_ARM_GNU_VTINHERIT:
1998 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
1999 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2000 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2001 // These should have been converted to something else above.
2002 case elfcpp::R_ARM_TARGET1:
2003 case elfcpp::R_ARM_TARGET2:
2004 gold_unreachable();
2005 // Relocations that write full 32 bits.
2006 case elfcpp::R_ARM_ABS32:
2007 case elfcpp::R_ARM_REL32:
2008 case elfcpp::R_ARM_SBREL32:
2009 case elfcpp::R_ARM_GOTOFF32:
2010 case elfcpp::R_ARM_BASE_PREL:
2011 case elfcpp::R_ARM_GOT_BREL:
2012 case elfcpp::R_ARM_BASE_ABS:
2013 case elfcpp::R_ARM_ABS32_NOI:
2014 case elfcpp::R_ARM_REL32_NOI:
2015 case elfcpp::R_ARM_PLT32_ABS:
2016 case elfcpp::R_ARM_GOT_ABS:
2017 case elfcpp::R_ARM_GOT_PREL:
2018 case elfcpp::R_ARM_TLS_GD32:
2019 case elfcpp::R_ARM_TLS_LDM32:
2020 case elfcpp::R_ARM_TLS_LDO32:
2021 case elfcpp::R_ARM_TLS_IE32:
2022 case elfcpp::R_ARM_TLS_LE32:
2023 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2024 default:
2025 // For all other static relocations, return RELOC_SPECIAL.
2026 return Relocatable_relocs::RELOC_SPECIAL;
2027 }
2028 }
2029 }
2030 };
2031
2032 // Utilities for manipulating integers of up to 32-bits
2033
2034 namespace utils
2035 {
2036 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2037 // an int32_t. NO_BITS must be between 1 to 32.
2038 template<int no_bits>
2039 static inline int32_t
2040 sign_extend(uint32_t bits)
2041 {
2042 gold_assert(no_bits >= 0 && no_bits <= 32);
2043 if (no_bits == 32)
2044 return static_cast<int32_t>(bits);
2045 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2046 bits &= mask;
2047 uint32_t top_bit = 1U << (no_bits - 1);
2048 int32_t as_signed = static_cast<int32_t>(bits);
2049 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2050 }
2051
2052 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2053 template<int no_bits>
2054 static inline bool
2055 has_overflow(uint32_t bits)
2056 {
2057 gold_assert(no_bits >= 0 && no_bits <= 32);
2058 if (no_bits == 32)
2059 return false;
2060 int32_t max = (1 << (no_bits - 1)) - 1;
2061 int32_t min = -(1 << (no_bits - 1));
2062 int32_t as_signed = static_cast<int32_t>(bits);
2063 return as_signed > max || as_signed < min;
2064 }
2065
2066 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2067 // fits in the given number of bits as either a signed or unsigned value.
2068 // For example, has_signed_unsigned_overflow<8> would check
2069 // -128 <= bits <= 255
2070 template<int no_bits>
2071 static inline bool
2072 has_signed_unsigned_overflow(uint32_t bits)
2073 {
2074 gold_assert(no_bits >= 2 && no_bits <= 32);
2075 if (no_bits == 32)
2076 return false;
2077 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2078 int32_t min = -(1 << (no_bits - 1));
2079 int32_t as_signed = static_cast<int32_t>(bits);
2080 return as_signed > max || as_signed < min;
2081 }
2082
2083 // Select bits from A and B using bits in MASK. For each n in [0..31],
2084 // the n-th bit in the result is chosen from the n-th bits of A and B.
2085 // A zero selects A and a one selects B.
2086 static inline uint32_t
2087 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2088 { return (a & ~mask) | (b & mask); }
2089 };
2090
2091 template<bool big_endian>
2092 class Target_arm : public Sized_target<32, big_endian>
2093 {
2094 public:
2095 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2096 Reloc_section;
2097
2098 // When were are relocating a stub, we pass this as the relocation number.
2099 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2100
2101 Target_arm()
2102 : Sized_target<32, big_endian>(&arm_info),
2103 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2104 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2105 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2106 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2107 may_use_blx_(false), should_force_pic_veneer_(false),
2108 arm_input_section_map_(), attributes_section_data_(NULL),
2109 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2110 { }
2111
2112 // Whether we can use BLX.
2113 bool
2114 may_use_blx() const
2115 { return this->may_use_blx_; }
2116
2117 // Set use-BLX flag.
2118 void
2119 set_may_use_blx(bool value)
2120 { this->may_use_blx_ = value; }
2121
2122 // Whether we force PCI branch veneers.
2123 bool
2124 should_force_pic_veneer() const
2125 { return this->should_force_pic_veneer_; }
2126
2127 // Set PIC veneer flag.
2128 void
2129 set_should_force_pic_veneer(bool value)
2130 { this->should_force_pic_veneer_ = value; }
2131
2132 // Whether we use THUMB-2 instructions.
2133 bool
2134 using_thumb2() const
2135 {
2136 Object_attribute* attr =
2137 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2138 int arch = attr->int_value();
2139 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2140 }
2141
2142 // Whether we use THUMB/THUMB-2 instructions only.
2143 bool
2144 using_thumb_only() const
2145 {
2146 Object_attribute* attr =
2147 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2148
2149 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2150 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2151 return true;
2152 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2153 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2154 return false;
2155 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2156 return attr->int_value() == 'M';
2157 }
2158
2159 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2160 bool
2161 may_use_arm_nop() const
2162 {
2163 Object_attribute* attr =
2164 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2165 int arch = attr->int_value();
2166 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2167 || arch == elfcpp::TAG_CPU_ARCH_V6K
2168 || arch == elfcpp::TAG_CPU_ARCH_V7
2169 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2170 }
2171
2172 // Whether we have THUMB-2 NOP.W instruction.
2173 bool
2174 may_use_thumb2_nop() const
2175 {
2176 Object_attribute* attr =
2177 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2178 int arch = attr->int_value();
2179 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2180 || arch == elfcpp::TAG_CPU_ARCH_V7
2181 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2182 }
2183
2184 // Process the relocations to determine unreferenced sections for
2185 // garbage collection.
2186 void
2187 gc_process_relocs(Symbol_table* symtab,
2188 Layout* layout,
2189 Sized_relobj<32, big_endian>* object,
2190 unsigned int data_shndx,
2191 unsigned int sh_type,
2192 const unsigned char* prelocs,
2193 size_t reloc_count,
2194 Output_section* output_section,
2195 bool needs_special_offset_handling,
2196 size_t local_symbol_count,
2197 const unsigned char* plocal_symbols);
2198
2199 // Scan the relocations to look for symbol adjustments.
2200 void
2201 scan_relocs(Symbol_table* symtab,
2202 Layout* layout,
2203 Sized_relobj<32, big_endian>* object,
2204 unsigned int data_shndx,
2205 unsigned int sh_type,
2206 const unsigned char* prelocs,
2207 size_t reloc_count,
2208 Output_section* output_section,
2209 bool needs_special_offset_handling,
2210 size_t local_symbol_count,
2211 const unsigned char* plocal_symbols);
2212
2213 // Finalize the sections.
2214 void
2215 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2216
2217 // Return the value to use for a dynamic symbol which requires special
2218 // treatment.
2219 uint64_t
2220 do_dynsym_value(const Symbol*) const;
2221
2222 // Relocate a section.
2223 void
2224 relocate_section(const Relocate_info<32, big_endian>*,
2225 unsigned int sh_type,
2226 const unsigned char* prelocs,
2227 size_t reloc_count,
2228 Output_section* output_section,
2229 bool needs_special_offset_handling,
2230 unsigned char* view,
2231 Arm_address view_address,
2232 section_size_type view_size,
2233 const Reloc_symbol_changes*);
2234
2235 // Scan the relocs during a relocatable link.
2236 void
2237 scan_relocatable_relocs(Symbol_table* symtab,
2238 Layout* layout,
2239 Sized_relobj<32, big_endian>* object,
2240 unsigned int data_shndx,
2241 unsigned int sh_type,
2242 const unsigned char* prelocs,
2243 size_t reloc_count,
2244 Output_section* output_section,
2245 bool needs_special_offset_handling,
2246 size_t local_symbol_count,
2247 const unsigned char* plocal_symbols,
2248 Relocatable_relocs*);
2249
2250 // Relocate a section during a relocatable link.
2251 void
2252 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2253 unsigned int sh_type,
2254 const unsigned char* prelocs,
2255 size_t reloc_count,
2256 Output_section* output_section,
2257 off_t offset_in_output_section,
2258 const Relocatable_relocs*,
2259 unsigned char* view,
2260 Arm_address view_address,
2261 section_size_type view_size,
2262 unsigned char* reloc_view,
2263 section_size_type reloc_view_size);
2264
2265 // Perform target-specific processing in a relocatable link. This is
2266 // only used if we use the relocation strategy RELOC_SPECIAL.
2267 void
2268 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2269 unsigned int sh_type,
2270 const unsigned char* preloc_in,
2271 size_t relnum,
2272 Output_section* output_section,
2273 off_t offset_in_output_section,
2274 unsigned char* view,
2275 typename elfcpp::Elf_types<32>::Elf_Addr
2276 view_address,
2277 section_size_type view_size,
2278 unsigned char* preloc_out);
2279
2280 // Return whether SYM is defined by the ABI.
2281 bool
2282 do_is_defined_by_abi(Symbol* sym) const
2283 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2284
2285 // Return whether there is a GOT section.
2286 bool
2287 has_got_section() const
2288 { return this->got_ != NULL; }
2289
2290 // Return the size of the GOT section.
2291 section_size_type
2292 got_size()
2293 {
2294 gold_assert(this->got_ != NULL);
2295 return this->got_->data_size();
2296 }
2297
2298 // Map platform-specific reloc types
2299 static unsigned int
2300 get_real_reloc_type (unsigned int r_type);
2301
2302 //
2303 // Methods to support stub-generations.
2304 //
2305
2306 // Return the stub factory
2307 const Stub_factory&
2308 stub_factory() const
2309 { return this->stub_factory_; }
2310
2311 // Make a new Arm_input_section object.
2312 Arm_input_section<big_endian>*
2313 new_arm_input_section(Relobj*, unsigned int);
2314
2315 // Find the Arm_input_section object corresponding to the SHNDX-th input
2316 // section of RELOBJ.
2317 Arm_input_section<big_endian>*
2318 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2319
2320 // Make a new Stub_table
2321 Stub_table<big_endian>*
2322 new_stub_table(Arm_input_section<big_endian>*);
2323
2324 // Scan a section for stub generation.
2325 void
2326 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2327 const unsigned char*, size_t, Output_section*,
2328 bool, const unsigned char*, Arm_address,
2329 section_size_type);
2330
2331 // Relocate a stub.
2332 void
2333 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2334 Output_section*, unsigned char*, Arm_address,
2335 section_size_type);
2336
2337 // Get the default ARM target.
2338 static Target_arm<big_endian>*
2339 default_target()
2340 {
2341 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2342 && parameters->target().is_big_endian() == big_endian);
2343 return static_cast<Target_arm<big_endian>*>(
2344 parameters->sized_target<32, big_endian>());
2345 }
2346
2347 // Whether NAME belongs to a mapping symbol.
2348 static bool
2349 is_mapping_symbol_name(const char* name)
2350 {
2351 return (name
2352 && name[0] == '$'
2353 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2354 && (name[2] == '\0' || name[2] == '.'));
2355 }
2356
2357 // Whether we work around the Cortex-A8 erratum.
2358 bool
2359 fix_cortex_a8() const
2360 { return this->fix_cortex_a8_; }
2361
2362 // Whether we merge exidx entries in debuginfo.
2363 bool
2364 merge_exidx_entries() const
2365 { return parameters->options().merge_exidx_entries(); }
2366
2367 // Whether we fix R_ARM_V4BX relocation.
2368 // 0 - do not fix
2369 // 1 - replace with MOV instruction (armv4 target)
2370 // 2 - make interworking veneer (>= armv4t targets only)
2371 General_options::Fix_v4bx
2372 fix_v4bx() const
2373 { return parameters->options().fix_v4bx(); }
2374
2375 // Scan a span of THUMB code section for Cortex-A8 erratum.
2376 void
2377 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2378 section_size_type, section_size_type,
2379 const unsigned char*, Arm_address);
2380
2381 // Apply Cortex-A8 workaround to a branch.
2382 void
2383 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2384 unsigned char*, Arm_address);
2385
2386 protected:
2387 // Make an ELF object.
2388 Object*
2389 do_make_elf_object(const std::string&, Input_file*, off_t,
2390 const elfcpp::Ehdr<32, big_endian>& ehdr);
2391
2392 Object*
2393 do_make_elf_object(const std::string&, Input_file*, off_t,
2394 const elfcpp::Ehdr<32, !big_endian>&)
2395 { gold_unreachable(); }
2396
2397 Object*
2398 do_make_elf_object(const std::string&, Input_file*, off_t,
2399 const elfcpp::Ehdr<64, false>&)
2400 { gold_unreachable(); }
2401
2402 Object*
2403 do_make_elf_object(const std::string&, Input_file*, off_t,
2404 const elfcpp::Ehdr<64, true>&)
2405 { gold_unreachable(); }
2406
2407 // Make an output section.
2408 Output_section*
2409 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2410 elfcpp::Elf_Xword flags)
2411 { return new Arm_output_section<big_endian>(name, type, flags); }
2412
2413 void
2414 do_adjust_elf_header(unsigned char* view, int len) const;
2415
2416 // We only need to generate stubs, and hence perform relaxation if we are
2417 // not doing relocatable linking.
2418 bool
2419 do_may_relax() const
2420 { return !parameters->options().relocatable(); }
2421
2422 bool
2423 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2424
2425 // Determine whether an object attribute tag takes an integer, a
2426 // string or both.
2427 int
2428 do_attribute_arg_type(int tag) const;
2429
2430 // Reorder tags during output.
2431 int
2432 do_attributes_order(int num) const;
2433
2434 // This is called when the target is selected as the default.
2435 void
2436 do_select_as_default_target()
2437 {
2438 // No locking is required since there should only be one default target.
2439 // We cannot have both the big-endian and little-endian ARM targets
2440 // as the default.
2441 gold_assert(arm_reloc_property_table == NULL);
2442 arm_reloc_property_table = new Arm_reloc_property_table();
2443 }
2444
2445 private:
2446 // The class which scans relocations.
2447 class Scan
2448 {
2449 public:
2450 Scan()
2451 : issued_non_pic_error_(false)
2452 { }
2453
2454 inline void
2455 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2456 Sized_relobj<32, big_endian>* object,
2457 unsigned int data_shndx,
2458 Output_section* output_section,
2459 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2460 const elfcpp::Sym<32, big_endian>& lsym);
2461
2462 inline void
2463 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2464 Sized_relobj<32, big_endian>* object,
2465 unsigned int data_shndx,
2466 Output_section* output_section,
2467 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2468 Symbol* gsym);
2469
2470 inline bool
2471 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2472 Sized_relobj<32, big_endian>* ,
2473 unsigned int ,
2474 Output_section* ,
2475 const elfcpp::Rel<32, big_endian>& ,
2476 unsigned int ,
2477 const elfcpp::Sym<32, big_endian>&)
2478 { return false; }
2479
2480 inline bool
2481 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2482 Sized_relobj<32, big_endian>* ,
2483 unsigned int ,
2484 Output_section* ,
2485 const elfcpp::Rel<32, big_endian>& ,
2486 unsigned int , Symbol*)
2487 { return false; }
2488
2489 private:
2490 static void
2491 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2492 unsigned int r_type);
2493
2494 static void
2495 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2496 unsigned int r_type, Symbol*);
2497
2498 void
2499 check_non_pic(Relobj*, unsigned int r_type);
2500
2501 // Almost identical to Symbol::needs_plt_entry except that it also
2502 // handles STT_ARM_TFUNC.
2503 static bool
2504 symbol_needs_plt_entry(const Symbol* sym)
2505 {
2506 // An undefined symbol from an executable does not need a PLT entry.
2507 if (sym->is_undefined() && !parameters->options().shared())
2508 return false;
2509
2510 return (!parameters->doing_static_link()
2511 && (sym->type() == elfcpp::STT_FUNC
2512 || sym->type() == elfcpp::STT_ARM_TFUNC)
2513 && (sym->is_from_dynobj()
2514 || sym->is_undefined()
2515 || sym->is_preemptible()));
2516 }
2517
2518 // Whether we have issued an error about a non-PIC compilation.
2519 bool issued_non_pic_error_;
2520 };
2521
2522 // The class which implements relocation.
2523 class Relocate
2524 {
2525 public:
2526 Relocate()
2527 { }
2528
2529 ~Relocate()
2530 { }
2531
2532 // Return whether the static relocation needs to be applied.
2533 inline bool
2534 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2535 int ref_flags,
2536 bool is_32bit,
2537 Output_section* output_section);
2538
2539 // Do a relocation. Return false if the caller should not issue
2540 // any warnings about this relocation.
2541 inline bool
2542 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2543 Output_section*, size_t relnum,
2544 const elfcpp::Rel<32, big_endian>&,
2545 unsigned int r_type, const Sized_symbol<32>*,
2546 const Symbol_value<32>*,
2547 unsigned char*, Arm_address,
2548 section_size_type);
2549
2550 // Return whether we want to pass flag NON_PIC_REF for this
2551 // reloc. This means the relocation type accesses a symbol not via
2552 // GOT or PLT.
2553 static inline bool
2554 reloc_is_non_pic (unsigned int r_type)
2555 {
2556 switch (r_type)
2557 {
2558 // These relocation types reference GOT or PLT entries explicitly.
2559 case elfcpp::R_ARM_GOT_BREL:
2560 case elfcpp::R_ARM_GOT_ABS:
2561 case elfcpp::R_ARM_GOT_PREL:
2562 case elfcpp::R_ARM_GOT_BREL12:
2563 case elfcpp::R_ARM_PLT32_ABS:
2564 case elfcpp::R_ARM_TLS_GD32:
2565 case elfcpp::R_ARM_TLS_LDM32:
2566 case elfcpp::R_ARM_TLS_IE32:
2567 case elfcpp::R_ARM_TLS_IE12GP:
2568
2569 // These relocate types may use PLT entries.
2570 case elfcpp::R_ARM_CALL:
2571 case elfcpp::R_ARM_THM_CALL:
2572 case elfcpp::R_ARM_JUMP24:
2573 case elfcpp::R_ARM_THM_JUMP24:
2574 case elfcpp::R_ARM_THM_JUMP19:
2575 case elfcpp::R_ARM_PLT32:
2576 case elfcpp::R_ARM_THM_XPC22:
2577 case elfcpp::R_ARM_PREL31:
2578 case elfcpp::R_ARM_SBREL31:
2579 return false;
2580
2581 default:
2582 return true;
2583 }
2584 }
2585
2586 private:
2587 // Do a TLS relocation.
2588 inline typename Arm_relocate_functions<big_endian>::Status
2589 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2590 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2591 const Sized_symbol<32>*, const Symbol_value<32>*,
2592 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2593 section_size_type);
2594
2595 };
2596
2597 // A class which returns the size required for a relocation type,
2598 // used while scanning relocs during a relocatable link.
2599 class Relocatable_size_for_reloc
2600 {
2601 public:
2602 unsigned int
2603 get_size_for_reloc(unsigned int, Relobj*);
2604 };
2605
2606 // Adjust TLS relocation type based on the options and whether this
2607 // is a local symbol.
2608 static tls::Tls_optimization
2609 optimize_tls_reloc(bool is_final, int r_type);
2610
2611 // Get the GOT section, creating it if necessary.
2612 Arm_output_data_got<big_endian>*
2613 got_section(Symbol_table*, Layout*);
2614
2615 // Get the GOT PLT section.
2616 Output_data_space*
2617 got_plt_section() const
2618 {
2619 gold_assert(this->got_plt_ != NULL);
2620 return this->got_plt_;
2621 }
2622
2623 // Create a PLT entry for a global symbol.
2624 void
2625 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2626
2627 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2628 void
2629 define_tls_base_symbol(Symbol_table*, Layout*);
2630
2631 // Create a GOT entry for the TLS module index.
2632 unsigned int
2633 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2634 Sized_relobj<32, big_endian>* object);
2635
2636 // Get the PLT section.
2637 const Output_data_plt_arm<big_endian>*
2638 plt_section() const
2639 {
2640 gold_assert(this->plt_ != NULL);
2641 return this->plt_;
2642 }
2643
2644 // Get the dynamic reloc section, creating it if necessary.
2645 Reloc_section*
2646 rel_dyn_section(Layout*);
2647
2648 // Get the section to use for TLS_DESC relocations.
2649 Reloc_section*
2650 rel_tls_desc_section(Layout*) const;
2651
2652 // Return true if the symbol may need a COPY relocation.
2653 // References from an executable object to non-function symbols
2654 // defined in a dynamic object may need a COPY relocation.
2655 bool
2656 may_need_copy_reloc(Symbol* gsym)
2657 {
2658 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2659 && gsym->may_need_copy_reloc());
2660 }
2661
2662 // Add a potential copy relocation.
2663 void
2664 copy_reloc(Symbol_table* symtab, Layout* layout,
2665 Sized_relobj<32, big_endian>* object,
2666 unsigned int shndx, Output_section* output_section,
2667 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2668 {
2669 this->copy_relocs_.copy_reloc(symtab, layout,
2670 symtab->get_sized_symbol<32>(sym),
2671 object, shndx, output_section, reloc,
2672 this->rel_dyn_section(layout));
2673 }
2674
2675 // Whether two EABI versions are compatible.
2676 static bool
2677 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2678
2679 // Merge processor-specific flags from input object and those in the ELF
2680 // header of the output.
2681 void
2682 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2683
2684 // Get the secondary compatible architecture.
2685 static int
2686 get_secondary_compatible_arch(const Attributes_section_data*);
2687
2688 // Set the secondary compatible architecture.
2689 static void
2690 set_secondary_compatible_arch(Attributes_section_data*, int);
2691
2692 static int
2693 tag_cpu_arch_combine(const char*, int, int*, int, int);
2694
2695 // Helper to print AEABI enum tag value.
2696 static std::string
2697 aeabi_enum_name(unsigned int);
2698
2699 // Return string value for TAG_CPU_name.
2700 static std::string
2701 tag_cpu_name_value(unsigned int);
2702
2703 // Merge object attributes from input object and those in the output.
2704 void
2705 merge_object_attributes(const char*, const Attributes_section_data*);
2706
2707 // Helper to get an AEABI object attribute
2708 Object_attribute*
2709 get_aeabi_object_attribute(int tag) const
2710 {
2711 Attributes_section_data* pasd = this->attributes_section_data_;
2712 gold_assert(pasd != NULL);
2713 Object_attribute* attr =
2714 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2715 gold_assert(attr != NULL);
2716 return attr;
2717 }
2718
2719 //
2720 // Methods to support stub-generations.
2721 //
2722
2723 // Group input sections for stub generation.
2724 void
2725 group_sections(Layout*, section_size_type, bool);
2726
2727 // Scan a relocation for stub generation.
2728 void
2729 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2730 const Sized_symbol<32>*, unsigned int,
2731 const Symbol_value<32>*,
2732 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2733
2734 // Scan a relocation section for stub.
2735 template<int sh_type>
2736 void
2737 scan_reloc_section_for_stubs(
2738 const Relocate_info<32, big_endian>* relinfo,
2739 const unsigned char* prelocs,
2740 size_t reloc_count,
2741 Output_section* output_section,
2742 bool needs_special_offset_handling,
2743 const unsigned char* view,
2744 elfcpp::Elf_types<32>::Elf_Addr view_address,
2745 section_size_type);
2746
2747 // Fix .ARM.exidx section coverage.
2748 void
2749 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2750
2751 // Functors for STL set.
2752 struct output_section_address_less_than
2753 {
2754 bool
2755 operator()(const Output_section* s1, const Output_section* s2) const
2756 { return s1->address() < s2->address(); }
2757 };
2758
2759 // Information about this specific target which we pass to the
2760 // general Target structure.
2761 static const Target::Target_info arm_info;
2762
2763 // The types of GOT entries needed for this platform.
2764 enum Got_type
2765 {
2766 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2767 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2768 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2769 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2770 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2771 };
2772
2773 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2774
2775 // Map input section to Arm_input_section.
2776 typedef Unordered_map<Section_id,
2777 Arm_input_section<big_endian>*,
2778 Section_id_hash>
2779 Arm_input_section_map;
2780
2781 // Map output addresses to relocs for Cortex-A8 erratum.
2782 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2783 Cortex_a8_relocs_info;
2784
2785 // The GOT section.
2786 Arm_output_data_got<big_endian>* got_;
2787 // The PLT section.
2788 Output_data_plt_arm<big_endian>* plt_;
2789 // The GOT PLT section.
2790 Output_data_space* got_plt_;
2791 // The dynamic reloc section.
2792 Reloc_section* rel_dyn_;
2793 // Relocs saved to avoid a COPY reloc.
2794 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2795 // Space for variables copied with a COPY reloc.
2796 Output_data_space* dynbss_;
2797 // Offset of the GOT entry for the TLS module index.
2798 unsigned int got_mod_index_offset_;
2799 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2800 bool tls_base_symbol_defined_;
2801 // Vector of Stub_tables created.
2802 Stub_table_list stub_tables_;
2803 // Stub factory.
2804 const Stub_factory &stub_factory_;
2805 // Whether we can use BLX.
2806 bool may_use_blx_;
2807 // Whether we force PIC branch veneers.
2808 bool should_force_pic_veneer_;
2809 // Map for locating Arm_input_sections.
2810 Arm_input_section_map arm_input_section_map_;
2811 // Attributes section data in output.
2812 Attributes_section_data* attributes_section_data_;
2813 // Whether we want to fix code for Cortex-A8 erratum.
2814 bool fix_cortex_a8_;
2815 // Map addresses to relocs for Cortex-A8 erratum.
2816 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2817 };
2818
2819 template<bool big_endian>
2820 const Target::Target_info Target_arm<big_endian>::arm_info =
2821 {
2822 32, // size
2823 big_endian, // is_big_endian
2824 elfcpp::EM_ARM, // machine_code
2825 false, // has_make_symbol
2826 false, // has_resolve
2827 false, // has_code_fill
2828 true, // is_default_stack_executable
2829 '\0', // wrap_char
2830 "/usr/lib/libc.so.1", // dynamic_linker
2831 0x8000, // default_text_segment_address
2832 0x1000, // abi_pagesize (overridable by -z max-page-size)
2833 0x1000, // common_pagesize (overridable by -z common-page-size)
2834 elfcpp::SHN_UNDEF, // small_common_shndx
2835 elfcpp::SHN_UNDEF, // large_common_shndx
2836 0, // small_common_section_flags
2837 0, // large_common_section_flags
2838 ".ARM.attributes", // attributes_section
2839 "aeabi" // attributes_vendor
2840 };
2841
2842 // Arm relocate functions class
2843 //
2844
2845 template<bool big_endian>
2846 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2847 {
2848 public:
2849 typedef enum
2850 {
2851 STATUS_OKAY, // No error during relocation.
2852 STATUS_OVERFLOW, // Relocation oveflow.
2853 STATUS_BAD_RELOC // Relocation cannot be applied.
2854 } Status;
2855
2856 private:
2857 typedef Relocate_functions<32, big_endian> Base;
2858 typedef Arm_relocate_functions<big_endian> This;
2859
2860 // Encoding of imm16 argument for movt and movw ARM instructions
2861 // from ARM ARM:
2862 //
2863 // imm16 := imm4 | imm12
2864 //
2865 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2866 // +-------+---------------+-------+-------+-----------------------+
2867 // | | |imm4 | |imm12 |
2868 // +-------+---------------+-------+-------+-----------------------+
2869
2870 // Extract the relocation addend from VAL based on the ARM
2871 // instruction encoding described above.
2872 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2873 extract_arm_movw_movt_addend(
2874 typename elfcpp::Swap<32, big_endian>::Valtype val)
2875 {
2876 // According to the Elf ABI for ARM Architecture the immediate
2877 // field is sign-extended to form the addend.
2878 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2879 }
2880
2881 // Insert X into VAL based on the ARM instruction encoding described
2882 // above.
2883 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2884 insert_val_arm_movw_movt(
2885 typename elfcpp::Swap<32, big_endian>::Valtype val,
2886 typename elfcpp::Swap<32, big_endian>::Valtype x)
2887 {
2888 val &= 0xfff0f000;
2889 val |= x & 0x0fff;
2890 val |= (x & 0xf000) << 4;
2891 return val;
2892 }
2893
2894 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2895 // from ARM ARM:
2896 //
2897 // imm16 := imm4 | i | imm3 | imm8
2898 //
2899 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2900 // +---------+-+-----------+-------++-+-----+-------+---------------+
2901 // | |i| |imm4 || |imm3 | |imm8 |
2902 // +---------+-+-----------+-------++-+-----+-------+---------------+
2903
2904 // Extract the relocation addend from VAL based on the Thumb2
2905 // instruction encoding described above.
2906 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2907 extract_thumb_movw_movt_addend(
2908 typename elfcpp::Swap<32, big_endian>::Valtype val)
2909 {
2910 // According to the Elf ABI for ARM Architecture the immediate
2911 // field is sign-extended to form the addend.
2912 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2913 | ((val >> 15) & 0x0800)
2914 | ((val >> 4) & 0x0700)
2915 | (val & 0x00ff));
2916 }
2917
2918 // Insert X into VAL based on the Thumb2 instruction encoding
2919 // described above.
2920 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2921 insert_val_thumb_movw_movt(
2922 typename elfcpp::Swap<32, big_endian>::Valtype val,
2923 typename elfcpp::Swap<32, big_endian>::Valtype x)
2924 {
2925 val &= 0xfbf08f00;
2926 val |= (x & 0xf000) << 4;
2927 val |= (x & 0x0800) << 15;
2928 val |= (x & 0x0700) << 4;
2929 val |= (x & 0x00ff);
2930 return val;
2931 }
2932
2933 // Calculate the smallest constant Kn for the specified residual.
2934 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2935 static uint32_t
2936 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2937 {
2938 int32_t msb;
2939
2940 if (residual == 0)
2941 return 0;
2942 // Determine the most significant bit in the residual and
2943 // align the resulting value to a 2-bit boundary.
2944 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2945 ;
2946 // The desired shift is now (msb - 6), or zero, whichever
2947 // is the greater.
2948 return (((msb - 6) < 0) ? 0 : (msb - 6));
2949 }
2950
2951 // Calculate the final residual for the specified group index.
2952 // If the passed group index is less than zero, the method will return
2953 // the value of the specified residual without any change.
2954 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2955 static typename elfcpp::Swap<32, big_endian>::Valtype
2956 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2957 const int group)
2958 {
2959 for (int n = 0; n <= group; n++)
2960 {
2961 // Calculate which part of the value to mask.
2962 uint32_t shift = calc_grp_kn(residual);
2963 // Calculate the residual for the next time around.
2964 residual &= ~(residual & (0xff << shift));
2965 }
2966
2967 return residual;
2968 }
2969
2970 // Calculate the value of Gn for the specified group index.
2971 // We return it in the form of an encoded constant-and-rotation.
2972 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2973 static typename elfcpp::Swap<32, big_endian>::Valtype
2974 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2975 const int group)
2976 {
2977 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2978 uint32_t shift = 0;
2979
2980 for (int n = 0; n <= group; n++)
2981 {
2982 // Calculate which part of the value to mask.
2983 shift = calc_grp_kn(residual);
2984 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2985 gn = residual & (0xff << shift);
2986 // Calculate the residual for the next time around.
2987 residual &= ~gn;
2988 }
2989 // Return Gn in the form of an encoded constant-and-rotation.
2990 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2991 }
2992
2993 public:
2994 // Handle ARM long branches.
2995 static typename This::Status
2996 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2997 unsigned char *, const Sized_symbol<32>*,
2998 const Arm_relobj<big_endian>*, unsigned int,
2999 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3000
3001 // Handle THUMB long branches.
3002 static typename This::Status
3003 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3004 unsigned char *, const Sized_symbol<32>*,
3005 const Arm_relobj<big_endian>*, unsigned int,
3006 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3007
3008
3009 // Return the branch offset of a 32-bit THUMB branch.
3010 static inline int32_t
3011 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3012 {
3013 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3014 // involving the J1 and J2 bits.
3015 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3016 uint32_t upper = upper_insn & 0x3ffU;
3017 uint32_t lower = lower_insn & 0x7ffU;
3018 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3019 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3020 uint32_t i1 = j1 ^ s ? 0 : 1;
3021 uint32_t i2 = j2 ^ s ? 0 : 1;
3022
3023 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3024 | (upper << 12) | (lower << 1));
3025 }
3026
3027 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3028 // UPPER_INSN is the original upper instruction of the branch. Caller is
3029 // responsible for overflow checking and BLX offset adjustment.
3030 static inline uint16_t
3031 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3032 {
3033 uint32_t s = offset < 0 ? 1 : 0;
3034 uint32_t bits = static_cast<uint32_t>(offset);
3035 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3036 }
3037
3038 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3039 // LOWER_INSN is the original lower instruction of the branch. Caller is
3040 // responsible for overflow checking and BLX offset adjustment.
3041 static inline uint16_t
3042 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3043 {
3044 uint32_t s = offset < 0 ? 1 : 0;
3045 uint32_t bits = static_cast<uint32_t>(offset);
3046 return ((lower_insn & ~0x2fffU)
3047 | ((((bits >> 23) & 1) ^ !s) << 13)
3048 | ((((bits >> 22) & 1) ^ !s) << 11)
3049 | ((bits >> 1) & 0x7ffU));
3050 }
3051
3052 // Return the branch offset of a 32-bit THUMB conditional branch.
3053 static inline int32_t
3054 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3055 {
3056 uint32_t s = (upper_insn & 0x0400U) >> 10;
3057 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3058 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3059 uint32_t lower = (lower_insn & 0x07ffU);
3060 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3061
3062 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3063 }
3064
3065 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3066 // instruction. UPPER_INSN is the original upper instruction of the branch.
3067 // Caller is responsible for overflow checking.
3068 static inline uint16_t
3069 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3070 {
3071 uint32_t s = offset < 0 ? 1 : 0;
3072 uint32_t bits = static_cast<uint32_t>(offset);
3073 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3074 }
3075
3076 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3077 // instruction. LOWER_INSN is the original lower instruction of the branch.
3078 // Caller is reponsible for overflow checking.
3079 static inline uint16_t
3080 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3081 {
3082 uint32_t bits = static_cast<uint32_t>(offset);
3083 uint32_t j2 = (bits & 0x00080000U) >> 19;
3084 uint32_t j1 = (bits & 0x00040000U) >> 18;
3085 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3086
3087 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3088 }
3089
3090 // R_ARM_ABS8: S + A
3091 static inline typename This::Status
3092 abs8(unsigned char *view,
3093 const Sized_relobj<32, big_endian>* object,
3094 const Symbol_value<32>* psymval)
3095 {
3096 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3097 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3098 Valtype* wv = reinterpret_cast<Valtype*>(view);
3099 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3100 Reltype addend = utils::sign_extend<8>(val);
3101 Reltype x = psymval->value(object, addend);
3102 val = utils::bit_select(val, x, 0xffU);
3103 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3104
3105 // R_ARM_ABS8 permits signed or unsigned results.
3106 int signed_x = static_cast<int32_t>(x);
3107 return ((signed_x < -128 || signed_x > 255)
3108 ? This::STATUS_OVERFLOW
3109 : This::STATUS_OKAY);
3110 }
3111
3112 // R_ARM_THM_ABS5: S + A
3113 static inline typename This::Status
3114 thm_abs5(unsigned char *view,
3115 const Sized_relobj<32, big_endian>* object,
3116 const Symbol_value<32>* psymval)
3117 {
3118 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3119 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3120 Valtype* wv = reinterpret_cast<Valtype*>(view);
3121 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3122 Reltype addend = (val & 0x7e0U) >> 6;
3123 Reltype x = psymval->value(object, addend);
3124 val = utils::bit_select(val, x << 6, 0x7e0U);
3125 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3126
3127 // R_ARM_ABS16 permits signed or unsigned results.
3128 int signed_x = static_cast<int32_t>(x);
3129 return ((signed_x < -32768 || signed_x > 65535)
3130 ? This::STATUS_OVERFLOW
3131 : This::STATUS_OKAY);
3132 }
3133
3134 // R_ARM_ABS12: S + A
3135 static inline typename This::Status
3136 abs12(unsigned char *view,
3137 const Sized_relobj<32, big_endian>* object,
3138 const Symbol_value<32>* psymval)
3139 {
3140 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3141 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3142 Valtype* wv = reinterpret_cast<Valtype*>(view);
3143 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3144 Reltype addend = val & 0x0fffU;
3145 Reltype x = psymval->value(object, addend);
3146 val = utils::bit_select(val, x, 0x0fffU);
3147 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3148 return (utils::has_overflow<12>(x)
3149 ? This::STATUS_OVERFLOW
3150 : This::STATUS_OKAY);
3151 }
3152
3153 // R_ARM_ABS16: S + A
3154 static inline typename This::Status
3155 abs16(unsigned char *view,
3156 const Sized_relobj<32, big_endian>* object,
3157 const Symbol_value<32>* psymval)
3158 {
3159 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3160 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3161 Valtype* wv = reinterpret_cast<Valtype*>(view);
3162 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3163 Reltype addend = utils::sign_extend<16>(val);
3164 Reltype x = psymval->value(object, addend);
3165 val = utils::bit_select(val, x, 0xffffU);
3166 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3167 return (utils::has_signed_unsigned_overflow<16>(x)
3168 ? This::STATUS_OVERFLOW
3169 : This::STATUS_OKAY);
3170 }
3171
3172 // R_ARM_ABS32: (S + A) | T
3173 static inline typename This::Status
3174 abs32(unsigned char *view,
3175 const Sized_relobj<32, big_endian>* object,
3176 const Symbol_value<32>* psymval,
3177 Arm_address thumb_bit)
3178 {
3179 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3180 Valtype* wv = reinterpret_cast<Valtype*>(view);
3181 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3182 Valtype x = psymval->value(object, addend) | thumb_bit;
3183 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3184 return This::STATUS_OKAY;
3185 }
3186
3187 // R_ARM_REL32: (S + A) | T - P
3188 static inline typename This::Status
3189 rel32(unsigned char *view,
3190 const Sized_relobj<32, big_endian>* object,
3191 const Symbol_value<32>* psymval,
3192 Arm_address address,
3193 Arm_address thumb_bit)
3194 {
3195 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3196 Valtype* wv = reinterpret_cast<Valtype*>(view);
3197 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3198 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3199 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3200 return This::STATUS_OKAY;
3201 }
3202
3203 // R_ARM_THM_JUMP24: (S + A) | T - P
3204 static typename This::Status
3205 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3206 const Symbol_value<32>* psymval, Arm_address address,
3207 Arm_address thumb_bit);
3208
3209 // R_ARM_THM_JUMP6: S + A – P
3210 static inline typename This::Status
3211 thm_jump6(unsigned char *view,
3212 const Sized_relobj<32, big_endian>* object,
3213 const Symbol_value<32>* psymval,
3214 Arm_address address)
3215 {
3216 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3217 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3218 Valtype* wv = reinterpret_cast<Valtype*>(view);
3219 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3220 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3221 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3222 Reltype x = (psymval->value(object, addend) - address);
3223 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3224 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3225 // CZB does only forward jumps.
3226 return ((x > 0x007e)
3227 ? This::STATUS_OVERFLOW
3228 : This::STATUS_OKAY);
3229 }
3230
3231 // R_ARM_THM_JUMP8: S + A – P
3232 static inline typename This::Status
3233 thm_jump8(unsigned char *view,
3234 const Sized_relobj<32, big_endian>* object,
3235 const Symbol_value<32>* psymval,
3236 Arm_address address)
3237 {
3238 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3240 Valtype* wv = reinterpret_cast<Valtype*>(view);
3241 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3243 Reltype x = (psymval->value(object, addend) - address);
3244 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3245 return (utils::has_overflow<8>(x)
3246 ? This::STATUS_OVERFLOW
3247 : This::STATUS_OKAY);
3248 }
3249
3250 // R_ARM_THM_JUMP11: S + A – P
3251 static inline typename This::Status
3252 thm_jump11(unsigned char *view,
3253 const Sized_relobj<32, big_endian>* object,
3254 const Symbol_value<32>* psymval,
3255 Arm_address address)
3256 {
3257 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3258 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3259 Valtype* wv = reinterpret_cast<Valtype*>(view);
3260 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3261 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3262 Reltype x = (psymval->value(object, addend) - address);
3263 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3264 return (utils::has_overflow<11>(x)
3265 ? This::STATUS_OVERFLOW
3266 : This::STATUS_OKAY);
3267 }
3268
3269 // R_ARM_BASE_PREL: B(S) + A - P
3270 static inline typename This::Status
3271 base_prel(unsigned char* view,
3272 Arm_address origin,
3273 Arm_address address)
3274 {
3275 Base::rel32(view, origin - address);
3276 return STATUS_OKAY;
3277 }
3278
3279 // R_ARM_BASE_ABS: B(S) + A
3280 static inline typename This::Status
3281 base_abs(unsigned char* view,
3282 Arm_address origin)
3283 {
3284 Base::rel32(view, origin);
3285 return STATUS_OKAY;
3286 }
3287
3288 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3289 static inline typename This::Status
3290 got_brel(unsigned char* view,
3291 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3292 {
3293 Base::rel32(view, got_offset);
3294 return This::STATUS_OKAY;
3295 }
3296
3297 // R_ARM_GOT_PREL: GOT(S) + A - P
3298 static inline typename This::Status
3299 got_prel(unsigned char *view,
3300 Arm_address got_entry,
3301 Arm_address address)
3302 {
3303 Base::rel32(view, got_entry - address);
3304 return This::STATUS_OKAY;
3305 }
3306
3307 // R_ARM_PREL: (S + A) | T - P
3308 static inline typename This::Status
3309 prel31(unsigned char *view,
3310 const Sized_relobj<32, big_endian>* object,
3311 const Symbol_value<32>* psymval,
3312 Arm_address address,
3313 Arm_address thumb_bit)
3314 {
3315 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3316 Valtype* wv = reinterpret_cast<Valtype*>(view);
3317 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3318 Valtype addend = utils::sign_extend<31>(val);
3319 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3320 val = utils::bit_select(val, x, 0x7fffffffU);
3321 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3322 return (utils::has_overflow<31>(x) ?
3323 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3324 }
3325
3326 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3327 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3328 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3329 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3330 static inline typename This::Status
3331 movw(unsigned char* view,
3332 const Sized_relobj<32, big_endian>* object,
3333 const Symbol_value<32>* psymval,
3334 Arm_address relative_address_base,
3335 Arm_address thumb_bit,
3336 bool check_overflow)
3337 {
3338 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3339 Valtype* wv = reinterpret_cast<Valtype*>(view);
3340 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3341 Valtype addend = This::extract_arm_movw_movt_addend(val);
3342 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3343 - relative_address_base);
3344 val = This::insert_val_arm_movw_movt(val, x);
3345 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3346 return ((check_overflow && utils::has_overflow<16>(x))
3347 ? This::STATUS_OVERFLOW
3348 : This::STATUS_OKAY);
3349 }
3350
3351 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3352 // R_ARM_MOVT_PREL: S + A - P
3353 // R_ARM_MOVT_BREL: S + A - B(S)
3354 static inline typename This::Status
3355 movt(unsigned char* view,
3356 const Sized_relobj<32, big_endian>* object,
3357 const Symbol_value<32>* psymval,
3358 Arm_address relative_address_base)
3359 {
3360 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3361 Valtype* wv = reinterpret_cast<Valtype*>(view);
3362 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3363 Valtype addend = This::extract_arm_movw_movt_addend(val);
3364 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3365 val = This::insert_val_arm_movw_movt(val, x);
3366 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3367 // FIXME: IHI0044D says that we should check for overflow.
3368 return This::STATUS_OKAY;
3369 }
3370
3371 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3372 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3373 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3374 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3375 static inline typename This::Status
3376 thm_movw(unsigned char *view,
3377 const Sized_relobj<32, big_endian>* object,
3378 const Symbol_value<32>* psymval,
3379 Arm_address relative_address_base,
3380 Arm_address thumb_bit,
3381 bool check_overflow)
3382 {
3383 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3384 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3385 Valtype* wv = reinterpret_cast<Valtype*>(view);
3386 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3387 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3388 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3389 Reltype x =
3390 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3391 val = This::insert_val_thumb_movw_movt(val, x);
3392 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3393 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3394 return ((check_overflow && utils::has_overflow<16>(x))
3395 ? This::STATUS_OVERFLOW
3396 : This::STATUS_OKAY);
3397 }
3398
3399 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3400 // R_ARM_THM_MOVT_PREL: S + A - P
3401 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3402 static inline typename This::Status
3403 thm_movt(unsigned char* view,
3404 const Sized_relobj<32, big_endian>* object,
3405 const Symbol_value<32>* psymval,
3406 Arm_address relative_address_base)
3407 {
3408 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3409 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3410 Valtype* wv = reinterpret_cast<Valtype*>(view);
3411 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3412 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3413 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3414 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3415 val = This::insert_val_thumb_movw_movt(val, x);
3416 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3417 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3418 return This::STATUS_OKAY;
3419 }
3420
3421 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3422 static inline typename This::Status
3423 thm_alu11(unsigned char* view,
3424 const Sized_relobj<32, big_endian>* object,
3425 const Symbol_value<32>* psymval,
3426 Arm_address address,
3427 Arm_address thumb_bit)
3428 {
3429 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3430 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3431 Valtype* wv = reinterpret_cast<Valtype*>(view);
3432 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3433 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3434
3435 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3436 // -----------------------------------------------------------------------
3437 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3438 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3439 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3440 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3441 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3442 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3443
3444 // Determine a sign for the addend.
3445 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3446 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3447 // Thumb2 addend encoding:
3448 // imm12 := i | imm3 | imm8
3449 int32_t addend = (insn & 0xff)
3450 | ((insn & 0x00007000) >> 4)
3451 | ((insn & 0x04000000) >> 15);
3452 // Apply a sign to the added.
3453 addend *= sign;
3454
3455 int32_t x = (psymval->value(object, addend) | thumb_bit)
3456 - (address & 0xfffffffc);
3457 Reltype val = abs(x);
3458 // Mask out the value and a distinct part of the ADD/SUB opcode
3459 // (bits 7:5 of opword).
3460 insn = (insn & 0xfb0f8f00)
3461 | (val & 0xff)
3462 | ((val & 0x700) << 4)
3463 | ((val & 0x800) << 15);
3464 // Set the opcode according to whether the value to go in the
3465 // place is negative.
3466 if (x < 0)
3467 insn |= 0x00a00000;
3468
3469 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3470 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3471 return ((val > 0xfff) ?
3472 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3473 }
3474
3475 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3476 static inline typename This::Status
3477 thm_pc8(unsigned char* view,
3478 const Sized_relobj<32, big_endian>* object,
3479 const Symbol_value<32>* psymval,
3480 Arm_address address)
3481 {
3482 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3483 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3484 Valtype* wv = reinterpret_cast<Valtype*>(view);
3485 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3486 Reltype addend = ((insn & 0x00ff) << 2);
3487 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3488 Reltype val = abs(x);
3489 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3490
3491 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3492 return ((val > 0x03fc)
3493 ? This::STATUS_OVERFLOW
3494 : This::STATUS_OKAY);
3495 }
3496
3497 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3498 static inline typename This::Status
3499 thm_pc12(unsigned char* view,
3500 const Sized_relobj<32, big_endian>* object,
3501 const Symbol_value<32>* psymval,
3502 Arm_address address)
3503 {
3504 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3505 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3506 Valtype* wv = reinterpret_cast<Valtype*>(view);
3507 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3508 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3509 // Determine a sign for the addend (positive if the U bit is 1).
3510 const int sign = (insn & 0x00800000) ? 1 : -1;
3511 int32_t addend = (insn & 0xfff);
3512 // Apply a sign to the added.
3513 addend *= sign;
3514
3515 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3516 Reltype val = abs(x);
3517 // Mask out and apply the value and the U bit.
3518 insn = (insn & 0xff7ff000) | (val & 0xfff);
3519 // Set the U bit according to whether the value to go in the
3520 // place is positive.
3521 if (x >= 0)
3522 insn |= 0x00800000;
3523
3524 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3525 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3526 return ((val > 0xfff) ?
3527 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3528 }
3529
3530 // R_ARM_V4BX
3531 static inline typename This::Status
3532 v4bx(const Relocate_info<32, big_endian>* relinfo,
3533 unsigned char *view,
3534 const Arm_relobj<big_endian>* object,
3535 const Arm_address address,
3536 const bool is_interworking)
3537 {
3538
3539 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3540 Valtype* wv = reinterpret_cast<Valtype*>(view);
3541 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3542
3543 // Ensure that we have a BX instruction.
3544 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3545 const uint32_t reg = (val & 0xf);
3546 if (is_interworking && reg != 0xf)
3547 {
3548 Stub_table<big_endian>* stub_table =
3549 object->stub_table(relinfo->data_shndx);
3550 gold_assert(stub_table != NULL);
3551
3552 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3553 gold_assert(stub != NULL);
3554
3555 int32_t veneer_address =
3556 stub_table->address() + stub->offset() - 8 - address;
3557 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3558 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3559 // Replace with a branch to veneer (B <addr>)
3560 val = (val & 0xf0000000) | 0x0a000000
3561 | ((veneer_address >> 2) & 0x00ffffff);
3562 }
3563 else
3564 {
3565 // Preserve Rm (lowest four bits) and the condition code
3566 // (highest four bits). Other bits encode MOV PC,Rm.
3567 val = (val & 0xf000000f) | 0x01a0f000;
3568 }
3569 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3570 return This::STATUS_OKAY;
3571 }
3572
3573 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3574 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3575 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3576 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3577 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3578 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3579 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3580 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3581 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3582 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3583 static inline typename This::Status
3584 arm_grp_alu(unsigned char* view,
3585 const Sized_relobj<32, big_endian>* object,
3586 const Symbol_value<32>* psymval,
3587 const int group,
3588 Arm_address address,
3589 Arm_address thumb_bit,
3590 bool check_overflow)
3591 {
3592 gold_assert(group >= 0 && group < 3);
3593 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3594 Valtype* wv = reinterpret_cast<Valtype*>(view);
3595 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3596
3597 // ALU group relocations are allowed only for the ADD/SUB instructions.
3598 // (0x00800000 - ADD, 0x00400000 - SUB)
3599 const Valtype opcode = insn & 0x01e00000;
3600 if (opcode != 0x00800000 && opcode != 0x00400000)
3601 return This::STATUS_BAD_RELOC;
3602
3603 // Determine a sign for the addend.
3604 const int sign = (opcode == 0x00800000) ? 1 : -1;
3605 // shifter = rotate_imm * 2
3606 const uint32_t shifter = (insn & 0xf00) >> 7;
3607 // Initial addend value.
3608 int32_t addend = insn & 0xff;
3609 // Rotate addend right by shifter.
3610 addend = (addend >> shifter) | (addend << (32 - shifter));
3611 // Apply a sign to the added.
3612 addend *= sign;
3613
3614 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3615 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3616 // Check for overflow if required
3617 if (check_overflow
3618 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3619 return This::STATUS_OVERFLOW;
3620
3621 // Mask out the value and the ADD/SUB part of the opcode; take care
3622 // not to destroy the S bit.
3623 insn &= 0xff1ff000;
3624 // Set the opcode according to whether the value to go in the
3625 // place is negative.
3626 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3627 // Encode the offset (encoded Gn).
3628 insn |= gn;
3629
3630 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3631 return This::STATUS_OKAY;
3632 }
3633
3634 // R_ARM_LDR_PC_G0: S + A - P
3635 // R_ARM_LDR_PC_G1: S + A - P
3636 // R_ARM_LDR_PC_G2: S + A - P
3637 // R_ARM_LDR_SB_G0: S + A - B(S)
3638 // R_ARM_LDR_SB_G1: S + A - B(S)
3639 // R_ARM_LDR_SB_G2: S + A - B(S)
3640 static inline typename This::Status
3641 arm_grp_ldr(unsigned char* view,
3642 const Sized_relobj<32, big_endian>* object,
3643 const Symbol_value<32>* psymval,
3644 const int group,
3645 Arm_address address)
3646 {
3647 gold_assert(group >= 0 && group < 3);
3648 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3649 Valtype* wv = reinterpret_cast<Valtype*>(view);
3650 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3651
3652 const int sign = (insn & 0x00800000) ? 1 : -1;
3653 int32_t addend = (insn & 0xfff) * sign;
3654 int32_t x = (psymval->value(object, addend) - address);
3655 // Calculate the relevant G(n-1) value to obtain this stage residual.
3656 Valtype residual =
3657 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3658 if (residual >= 0x1000)
3659 return This::STATUS_OVERFLOW;
3660
3661 // Mask out the value and U bit.
3662 insn &= 0xff7ff000;
3663 // Set the U bit for non-negative values.
3664 if (x >= 0)
3665 insn |= 0x00800000;
3666 insn |= residual;
3667
3668 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3669 return This::STATUS_OKAY;
3670 }
3671
3672 // R_ARM_LDRS_PC_G0: S + A - P
3673 // R_ARM_LDRS_PC_G1: S + A - P
3674 // R_ARM_LDRS_PC_G2: S + A - P
3675 // R_ARM_LDRS_SB_G0: S + A - B(S)
3676 // R_ARM_LDRS_SB_G1: S + A - B(S)
3677 // R_ARM_LDRS_SB_G2: S + A - B(S)
3678 static inline typename This::Status
3679 arm_grp_ldrs(unsigned char* view,
3680 const Sized_relobj<32, big_endian>* object,
3681 const Symbol_value<32>* psymval,
3682 const int group,
3683 Arm_address address)
3684 {
3685 gold_assert(group >= 0 && group < 3);
3686 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3687 Valtype* wv = reinterpret_cast<Valtype*>(view);
3688 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3689
3690 const int sign = (insn & 0x00800000) ? 1 : -1;
3691 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3692 int32_t x = (psymval->value(object, addend) - address);
3693 // Calculate the relevant G(n-1) value to obtain this stage residual.
3694 Valtype residual =
3695 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3696 if (residual >= 0x100)
3697 return This::STATUS_OVERFLOW;
3698
3699 // Mask out the value and U bit.
3700 insn &= 0xff7ff0f0;
3701 // Set the U bit for non-negative values.
3702 if (x >= 0)
3703 insn |= 0x00800000;
3704 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3705
3706 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3707 return This::STATUS_OKAY;
3708 }
3709
3710 // R_ARM_LDC_PC_G0: S + A - P
3711 // R_ARM_LDC_PC_G1: S + A - P
3712 // R_ARM_LDC_PC_G2: S + A - P
3713 // R_ARM_LDC_SB_G0: S + A - B(S)
3714 // R_ARM_LDC_SB_G1: S + A - B(S)
3715 // R_ARM_LDC_SB_G2: S + A - B(S)
3716 static inline typename This::Status
3717 arm_grp_ldc(unsigned char* view,
3718 const Sized_relobj<32, big_endian>* object,
3719 const Symbol_value<32>* psymval,
3720 const int group,
3721 Arm_address address)
3722 {
3723 gold_assert(group >= 0 && group < 3);
3724 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3725 Valtype* wv = reinterpret_cast<Valtype*>(view);
3726 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3727
3728 const int sign = (insn & 0x00800000) ? 1 : -1;
3729 int32_t addend = ((insn & 0xff) << 2) * sign;
3730 int32_t x = (psymval->value(object, addend) - address);
3731 // Calculate the relevant G(n-1) value to obtain this stage residual.
3732 Valtype residual =
3733 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3734 if ((residual & 0x3) != 0 || residual >= 0x400)
3735 return This::STATUS_OVERFLOW;
3736
3737 // Mask out the value and U bit.
3738 insn &= 0xff7fff00;
3739 // Set the U bit for non-negative values.
3740 if (x >= 0)
3741 insn |= 0x00800000;
3742 insn |= (residual >> 2);
3743
3744 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3745 return This::STATUS_OKAY;
3746 }
3747 };
3748
3749 // Relocate ARM long branches. This handles relocation types
3750 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3751 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3752 // undefined and we do not use PLT in this relocation. In such a case,
3753 // the branch is converted into an NOP.
3754
3755 template<bool big_endian>
3756 typename Arm_relocate_functions<big_endian>::Status
3757 Arm_relocate_functions<big_endian>::arm_branch_common(
3758 unsigned int r_type,
3759 const Relocate_info<32, big_endian>* relinfo,
3760 unsigned char *view,
3761 const Sized_symbol<32>* gsym,
3762 const Arm_relobj<big_endian>* object,
3763 unsigned int r_sym,
3764 const Symbol_value<32>* psymval,
3765 Arm_address address,
3766 Arm_address thumb_bit,
3767 bool is_weakly_undefined_without_plt)
3768 {
3769 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3770 Valtype* wv = reinterpret_cast<Valtype*>(view);
3771 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3772
3773 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3774 && ((val & 0x0f000000UL) == 0x0a000000UL);
3775 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3776 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3777 && ((val & 0x0f000000UL) == 0x0b000000UL);
3778 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3779 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3780
3781 // Check that the instruction is valid.
3782 if (r_type == elfcpp::R_ARM_CALL)
3783 {
3784 if (!insn_is_uncond_bl && !insn_is_blx)
3785 return This::STATUS_BAD_RELOC;
3786 }
3787 else if (r_type == elfcpp::R_ARM_JUMP24)
3788 {
3789 if (!insn_is_b && !insn_is_cond_bl)
3790 return This::STATUS_BAD_RELOC;
3791 }
3792 else if (r_type == elfcpp::R_ARM_PLT32)
3793 {
3794 if (!insn_is_any_branch)
3795 return This::STATUS_BAD_RELOC;
3796 }
3797 else if (r_type == elfcpp::R_ARM_XPC25)
3798 {
3799 // FIXME: AAELF document IH0044C does not say much about it other
3800 // than it being obsolete.
3801 if (!insn_is_any_branch)
3802 return This::STATUS_BAD_RELOC;
3803 }
3804 else
3805 gold_unreachable();
3806
3807 // A branch to an undefined weak symbol is turned into a jump to
3808 // the next instruction unless a PLT entry will be created.
3809 // Do the same for local undefined symbols.
3810 // The jump to the next instruction is optimized as a NOP depending
3811 // on the architecture.
3812 const Target_arm<big_endian>* arm_target =
3813 Target_arm<big_endian>::default_target();
3814 if (is_weakly_undefined_without_plt)
3815 {
3816 gold_assert(!parameters->options().relocatable());
3817 Valtype cond = val & 0xf0000000U;
3818 if (arm_target->may_use_arm_nop())
3819 val = cond | 0x0320f000;
3820 else
3821 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3822 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3823 return This::STATUS_OKAY;
3824 }
3825
3826 Valtype addend = utils::sign_extend<26>(val << 2);
3827 Valtype branch_target = psymval->value(object, addend);
3828 int32_t branch_offset = branch_target - address;
3829
3830 // We need a stub if the branch offset is too large or if we need
3831 // to switch mode.
3832 bool may_use_blx = arm_target->may_use_blx();
3833 Reloc_stub* stub = NULL;
3834
3835 if (!parameters->options().relocatable()
3836 && (utils::has_overflow<26>(branch_offset)
3837 || ((thumb_bit != 0)
3838 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3839 {
3840 Valtype unadjusted_branch_target = psymval->value(object, 0);
3841
3842 Stub_type stub_type =
3843 Reloc_stub::stub_type_for_reloc(r_type, address,
3844 unadjusted_branch_target,
3845 (thumb_bit != 0));
3846 if (stub_type != arm_stub_none)
3847 {
3848 Stub_table<big_endian>* stub_table =
3849 object->stub_table(relinfo->data_shndx);
3850 gold_assert(stub_table != NULL);
3851
3852 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3853 stub = stub_table->find_reloc_stub(stub_key);
3854 gold_assert(stub != NULL);
3855 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3856 branch_target = stub_table->address() + stub->offset() + addend;
3857 branch_offset = branch_target - address;
3858 gold_assert(!utils::has_overflow<26>(branch_offset));
3859 }
3860 }
3861
3862 // At this point, if we still need to switch mode, the instruction
3863 // must either be a BLX or a BL that can be converted to a BLX.
3864 if (thumb_bit != 0)
3865 {
3866 // Turn BL to BLX.
3867 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3868 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3869 }
3870
3871 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3872 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3873 return (utils::has_overflow<26>(branch_offset)
3874 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3875 }
3876
3877 // Relocate THUMB long branches. This handles relocation types
3878 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3879 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3880 // undefined and we do not use PLT in this relocation. In such a case,
3881 // the branch is converted into an NOP.
3882
3883 template<bool big_endian>
3884 typename Arm_relocate_functions<big_endian>::Status
3885 Arm_relocate_functions<big_endian>::thumb_branch_common(
3886 unsigned int r_type,
3887 const Relocate_info<32, big_endian>* relinfo,
3888 unsigned char *view,
3889 const Sized_symbol<32>* gsym,
3890 const Arm_relobj<big_endian>* object,
3891 unsigned int r_sym,
3892 const Symbol_value<32>* psymval,
3893 Arm_address address,
3894 Arm_address thumb_bit,
3895 bool is_weakly_undefined_without_plt)
3896 {
3897 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3898 Valtype* wv = reinterpret_cast<Valtype*>(view);
3899 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3900 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3901
3902 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3903 // into account.
3904 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3905 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3906
3907 // Check that the instruction is valid.
3908 if (r_type == elfcpp::R_ARM_THM_CALL)
3909 {
3910 if (!is_bl_insn && !is_blx_insn)
3911 return This::STATUS_BAD_RELOC;
3912 }
3913 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3914 {
3915 // This cannot be a BLX.
3916 if (!is_bl_insn)
3917 return This::STATUS_BAD_RELOC;
3918 }
3919 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3920 {
3921 // Check for Thumb to Thumb call.
3922 if (!is_blx_insn)
3923 return This::STATUS_BAD_RELOC;
3924 if (thumb_bit != 0)
3925 {
3926 gold_warning(_("%s: Thumb BLX instruction targets "
3927 "thumb function '%s'."),
3928 object->name().c_str(),
3929 (gsym ? gsym->name() : "(local)"));
3930 // Convert BLX to BL.
3931 lower_insn |= 0x1000U;
3932 }
3933 }
3934 else
3935 gold_unreachable();
3936
3937 // A branch to an undefined weak symbol is turned into a jump to
3938 // the next instruction unless a PLT entry will be created.
3939 // The jump to the next instruction is optimized as a NOP.W for
3940 // Thumb-2 enabled architectures.
3941 const Target_arm<big_endian>* arm_target =
3942 Target_arm<big_endian>::default_target();
3943 if (is_weakly_undefined_without_plt)
3944 {
3945 gold_assert(!parameters->options().relocatable());
3946 if (arm_target->may_use_thumb2_nop())
3947 {
3948 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3949 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3950 }
3951 else
3952 {
3953 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3954 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3955 }
3956 return This::STATUS_OKAY;
3957 }
3958
3959 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3960 Arm_address branch_target = psymval->value(object, addend);
3961
3962 // For BLX, bit 1 of target address comes from bit 1 of base address.
3963 bool may_use_blx = arm_target->may_use_blx();
3964 if (thumb_bit == 0 && may_use_blx)
3965 branch_target = utils::bit_select(branch_target, address, 0x2);
3966
3967 int32_t branch_offset = branch_target - address;
3968
3969 // We need a stub if the branch offset is too large or if we need
3970 // to switch mode.
3971 bool thumb2 = arm_target->using_thumb2();
3972 if (!parameters->options().relocatable()
3973 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
3974 || (thumb2 && utils::has_overflow<25>(branch_offset))
3975 || ((thumb_bit == 0)
3976 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3977 || r_type == elfcpp::R_ARM_THM_JUMP24))))
3978 {
3979 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3980
3981 Stub_type stub_type =
3982 Reloc_stub::stub_type_for_reloc(r_type, address,
3983 unadjusted_branch_target,
3984 (thumb_bit != 0));
3985
3986 if (stub_type != arm_stub_none)
3987 {
3988 Stub_table<big_endian>* stub_table =
3989 object->stub_table(relinfo->data_shndx);
3990 gold_assert(stub_table != NULL);
3991
3992 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3993 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
3994 gold_assert(stub != NULL);
3995 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3996 branch_target = stub_table->address() + stub->offset() + addend;
3997 if (thumb_bit == 0 && may_use_blx)
3998 branch_target = utils::bit_select(branch_target, address, 0x2);
3999 branch_offset = branch_target - address;
4000 }
4001 }
4002
4003 // At this point, if we still need to switch mode, the instruction
4004 // must either be a BLX or a BL that can be converted to a BLX.
4005 if (thumb_bit == 0)
4006 {
4007 gold_assert(may_use_blx
4008 && (r_type == elfcpp::R_ARM_THM_CALL
4009 || r_type == elfcpp::R_ARM_THM_XPC22));
4010 // Make sure this is a BLX.
4011 lower_insn &= ~0x1000U;
4012 }
4013 else
4014 {
4015 // Make sure this is a BL.
4016 lower_insn |= 0x1000U;
4017 }
4018
4019 // For a BLX instruction, make sure that the relocation is rounded up
4020 // to a word boundary. This follows the semantics of the instruction
4021 // which specifies that bit 1 of the target address will come from bit
4022 // 1 of the base address.
4023 if ((lower_insn & 0x5000U) == 0x4000U)
4024 gold_assert((branch_offset & 3) == 0);
4025
4026 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4027 // We use the Thumb-2 encoding, which is safe even if dealing with
4028 // a Thumb-1 instruction by virtue of our overflow check above. */
4029 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4030 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4031
4032 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4033 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4034
4035 gold_assert(!utils::has_overflow<25>(branch_offset));
4036
4037 return ((thumb2
4038 ? utils::has_overflow<25>(branch_offset)
4039 : utils::has_overflow<23>(branch_offset))
4040 ? This::STATUS_OVERFLOW
4041 : This::STATUS_OKAY);
4042 }
4043
4044 // Relocate THUMB-2 long conditional branches.
4045 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4046 // undefined and we do not use PLT in this relocation. In such a case,
4047 // the branch is converted into an NOP.
4048
4049 template<bool big_endian>
4050 typename Arm_relocate_functions<big_endian>::Status
4051 Arm_relocate_functions<big_endian>::thm_jump19(
4052 unsigned char *view,
4053 const Arm_relobj<big_endian>* object,
4054 const Symbol_value<32>* psymval,
4055 Arm_address address,
4056 Arm_address thumb_bit)
4057 {
4058 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4059 Valtype* wv = reinterpret_cast<Valtype*>(view);
4060 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4061 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4062 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4063
4064 Arm_address branch_target = psymval->value(object, addend);
4065 int32_t branch_offset = branch_target - address;
4066
4067 // ??? Should handle interworking? GCC might someday try to
4068 // use this for tail calls.
4069 // FIXME: We do support thumb entry to PLT yet.
4070 if (thumb_bit == 0)
4071 {
4072 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4073 return This::STATUS_BAD_RELOC;
4074 }
4075
4076 // Put RELOCATION back into the insn.
4077 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4078 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4079
4080 // Put the relocated value back in the object file:
4081 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4082 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4083
4084 return (utils::has_overflow<21>(branch_offset)
4085 ? This::STATUS_OVERFLOW
4086 : This::STATUS_OKAY);
4087 }
4088
4089 // Get the GOT section, creating it if necessary.
4090
4091 template<bool big_endian>
4092 Arm_output_data_got<big_endian>*
4093 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4094 {
4095 if (this->got_ == NULL)
4096 {
4097 gold_assert(symtab != NULL && layout != NULL);
4098
4099 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4100
4101 Output_section* os;
4102 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4103 (elfcpp::SHF_ALLOC
4104 | elfcpp::SHF_WRITE),
4105 this->got_, false, false, false,
4106 true);
4107 // The old GNU linker creates a .got.plt section. We just
4108 // create another set of data in the .got section. Note that we
4109 // always create a PLT if we create a GOT, although the PLT
4110 // might be empty.
4111 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4112 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4113 (elfcpp::SHF_ALLOC
4114 | elfcpp::SHF_WRITE),
4115 this->got_plt_, false, false,
4116 false, false);
4117
4118 // The first three entries are reserved.
4119 this->got_plt_->set_current_data_size(3 * 4);
4120
4121 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4122 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4123 Symbol_table::PREDEFINED,
4124 this->got_plt_,
4125 0, 0, elfcpp::STT_OBJECT,
4126 elfcpp::STB_LOCAL,
4127 elfcpp::STV_HIDDEN, 0,
4128 false, false);
4129 }
4130 return this->got_;
4131 }
4132
4133 // Get the dynamic reloc section, creating it if necessary.
4134
4135 template<bool big_endian>
4136 typename Target_arm<big_endian>::Reloc_section*
4137 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4138 {
4139 if (this->rel_dyn_ == NULL)
4140 {
4141 gold_assert(layout != NULL);
4142 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4143 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4144 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4145 false, false, false);
4146 }
4147 return this->rel_dyn_;
4148 }
4149
4150 // Insn_template methods.
4151
4152 // Return byte size of an instruction template.
4153
4154 size_t
4155 Insn_template::size() const
4156 {
4157 switch (this->type())
4158 {
4159 case THUMB16_TYPE:
4160 case THUMB16_SPECIAL_TYPE:
4161 return 2;
4162 case ARM_TYPE:
4163 case THUMB32_TYPE:
4164 case DATA_TYPE:
4165 return 4;
4166 default:
4167 gold_unreachable();
4168 }
4169 }
4170
4171 // Return alignment of an instruction template.
4172
4173 unsigned
4174 Insn_template::alignment() const
4175 {
4176 switch (this->type())
4177 {
4178 case THUMB16_TYPE:
4179 case THUMB16_SPECIAL_TYPE:
4180 case THUMB32_TYPE:
4181 return 2;
4182 case ARM_TYPE:
4183 case DATA_TYPE:
4184 return 4;
4185 default:
4186 gold_unreachable();
4187 }
4188 }
4189
4190 // Stub_template methods.
4191
4192 Stub_template::Stub_template(
4193 Stub_type type, const Insn_template* insns,
4194 size_t insn_count)
4195 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4196 entry_in_thumb_mode_(false), relocs_()
4197 {
4198 off_t offset = 0;
4199
4200 // Compute byte size and alignment of stub template.
4201 for (size_t i = 0; i < insn_count; i++)
4202 {
4203 unsigned insn_alignment = insns[i].alignment();
4204 size_t insn_size = insns[i].size();
4205 gold_assert((offset & (insn_alignment - 1)) == 0);
4206 this->alignment_ = std::max(this->alignment_, insn_alignment);
4207 switch (insns[i].type())
4208 {
4209 case Insn_template::THUMB16_TYPE:
4210 case Insn_template::THUMB16_SPECIAL_TYPE:
4211 if (i == 0)
4212 this->entry_in_thumb_mode_ = true;
4213 break;
4214
4215 case Insn_template::THUMB32_TYPE:
4216 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4217 this->relocs_.push_back(Reloc(i, offset));
4218 if (i == 0)
4219 this->entry_in_thumb_mode_ = true;
4220 break;
4221
4222 case Insn_template::ARM_TYPE:
4223 // Handle cases where the target is encoded within the
4224 // instruction.
4225 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4226 this->relocs_.push_back(Reloc(i, offset));
4227 break;
4228
4229 case Insn_template::DATA_TYPE:
4230 // Entry point cannot be data.
4231 gold_assert(i != 0);
4232 this->relocs_.push_back(Reloc(i, offset));
4233 break;
4234
4235 default:
4236 gold_unreachable();
4237 }
4238 offset += insn_size;
4239 }
4240 this->size_ = offset;
4241 }
4242
4243 // Stub methods.
4244
4245 // Template to implement do_write for a specific target endianness.
4246
4247 template<bool big_endian>
4248 void inline
4249 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4250 {
4251 const Stub_template* stub_template = this->stub_template();
4252 const Insn_template* insns = stub_template->insns();
4253
4254 // FIXME: We do not handle BE8 encoding yet.
4255 unsigned char* pov = view;
4256 for (size_t i = 0; i < stub_template->insn_count(); i++)
4257 {
4258 switch (insns[i].type())
4259 {
4260 case Insn_template::THUMB16_TYPE:
4261 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4262 break;
4263 case Insn_template::THUMB16_SPECIAL_TYPE:
4264 elfcpp::Swap<16, big_endian>::writeval(
4265 pov,
4266 this->thumb16_special(i));
4267 break;
4268 case Insn_template::THUMB32_TYPE:
4269 {
4270 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4271 uint32_t lo = insns[i].data() & 0xffff;
4272 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4273 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4274 }
4275 break;
4276 case Insn_template::ARM_TYPE:
4277 case Insn_template::DATA_TYPE:
4278 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4279 break;
4280 default:
4281 gold_unreachable();
4282 }
4283 pov += insns[i].size();
4284 }
4285 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4286 }
4287
4288 // Reloc_stub::Key methods.
4289
4290 // Dump a Key as a string for debugging.
4291
4292 std::string
4293 Reloc_stub::Key::name() const
4294 {
4295 if (this->r_sym_ == invalid_index)
4296 {
4297 // Global symbol key name
4298 // <stub-type>:<symbol name>:<addend>.
4299 const std::string sym_name = this->u_.symbol->name();
4300 // We need to print two hex number and two colons. So just add 100 bytes
4301 // to the symbol name size.
4302 size_t len = sym_name.size() + 100;
4303 char* buffer = new char[len];
4304 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4305 sym_name.c_str(), this->addend_);
4306 gold_assert(c > 0 && c < static_cast<int>(len));
4307 delete[] buffer;
4308 return std::string(buffer);
4309 }
4310 else
4311 {
4312 // local symbol key name
4313 // <stub-type>:<object>:<r_sym>:<addend>.
4314 const size_t len = 200;
4315 char buffer[len];
4316 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4317 this->u_.relobj, this->r_sym_, this->addend_);
4318 gold_assert(c > 0 && c < static_cast<int>(len));
4319 return std::string(buffer);
4320 }
4321 }
4322
4323 // Reloc_stub methods.
4324
4325 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4326 // LOCATION to DESTINATION.
4327 // This code is based on the arm_type_of_stub function in
4328 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4329 // class simple.
4330
4331 Stub_type
4332 Reloc_stub::stub_type_for_reloc(
4333 unsigned int r_type,
4334 Arm_address location,
4335 Arm_address destination,
4336 bool target_is_thumb)
4337 {
4338 Stub_type stub_type = arm_stub_none;
4339
4340 // This is a bit ugly but we want to avoid using a templated class for
4341 // big and little endianities.
4342 bool may_use_blx;
4343 bool should_force_pic_veneer;
4344 bool thumb2;
4345 bool thumb_only;
4346 if (parameters->target().is_big_endian())
4347 {
4348 const Target_arm<true>* big_endian_target =
4349 Target_arm<true>::default_target();
4350 may_use_blx = big_endian_target->may_use_blx();
4351 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4352 thumb2 = big_endian_target->using_thumb2();
4353 thumb_only = big_endian_target->using_thumb_only();
4354 }
4355 else
4356 {
4357 const Target_arm<false>* little_endian_target =
4358 Target_arm<false>::default_target();
4359 may_use_blx = little_endian_target->may_use_blx();
4360 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4361 thumb2 = little_endian_target->using_thumb2();
4362 thumb_only = little_endian_target->using_thumb_only();
4363 }
4364
4365 int64_t branch_offset;
4366 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4367 {
4368 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4369 // base address (instruction address + 4).
4370 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4371 destination = utils::bit_select(destination, location, 0x2);
4372 branch_offset = static_cast<int64_t>(destination) - location;
4373
4374 // Handle cases where:
4375 // - this call goes too far (different Thumb/Thumb2 max
4376 // distance)
4377 // - it's a Thumb->Arm call and blx is not available, or it's a
4378 // Thumb->Arm branch (not bl). A stub is needed in this case.
4379 if ((!thumb2
4380 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4381 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4382 || (thumb2
4383 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4384 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4385 || ((!target_is_thumb)
4386 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4387 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4388 {
4389 if (target_is_thumb)
4390 {
4391 // Thumb to thumb.
4392 if (!thumb_only)
4393 {
4394 stub_type = (parameters->options().shared()
4395 || should_force_pic_veneer)
4396 // PIC stubs.
4397 ? ((may_use_blx
4398 && (r_type == elfcpp::R_ARM_THM_CALL))
4399 // V5T and above. Stub starts with ARM code, so
4400 // we must be able to switch mode before
4401 // reaching it, which is only possible for 'bl'
4402 // (ie R_ARM_THM_CALL relocation).
4403 ? arm_stub_long_branch_any_thumb_pic
4404 // On V4T, use Thumb code only.
4405 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4406
4407 // non-PIC stubs.
4408 : ((may_use_blx
4409 && (r_type == elfcpp::R_ARM_THM_CALL))
4410 ? arm_stub_long_branch_any_any // V5T and above.
4411 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4412 }
4413 else
4414 {
4415 stub_type = (parameters->options().shared()
4416 || should_force_pic_veneer)
4417 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4418 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4419 }
4420 }
4421 else
4422 {
4423 // Thumb to arm.
4424
4425 // FIXME: We should check that the input section is from an
4426 // object that has interwork enabled.
4427
4428 stub_type = (parameters->options().shared()
4429 || should_force_pic_veneer)
4430 // PIC stubs.
4431 ? ((may_use_blx
4432 && (r_type == elfcpp::R_ARM_THM_CALL))
4433 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4434 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4435
4436 // non-PIC stubs.
4437 : ((may_use_blx
4438 && (r_type == elfcpp::R_ARM_THM_CALL))
4439 ? arm_stub_long_branch_any_any // V5T and above.
4440 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4441
4442 // Handle v4t short branches.
4443 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4444 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4445 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4446 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4447 }
4448 }
4449 }
4450 else if (r_type == elfcpp::R_ARM_CALL
4451 || r_type == elfcpp::R_ARM_JUMP24
4452 || r_type == elfcpp::R_ARM_PLT32)
4453 {
4454 branch_offset = static_cast<int64_t>(destination) - location;
4455 if (target_is_thumb)
4456 {
4457 // Arm to thumb.
4458
4459 // FIXME: We should check that the input section is from an
4460 // object that has interwork enabled.
4461
4462 // We have an extra 2-bytes reach because of
4463 // the mode change (bit 24 (H) of BLX encoding).
4464 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4465 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4466 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4467 || (r_type == elfcpp::R_ARM_JUMP24)
4468 || (r_type == elfcpp::R_ARM_PLT32))
4469 {
4470 stub_type = (parameters->options().shared()
4471 || should_force_pic_veneer)
4472 // PIC stubs.
4473 ? (may_use_blx
4474 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4475 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4476
4477 // non-PIC stubs.
4478 : (may_use_blx
4479 ? arm_stub_long_branch_any_any // V5T and above.
4480 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4481 }
4482 }
4483 else
4484 {
4485 // Arm to arm.
4486 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4487 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4488 {
4489 stub_type = (parameters->options().shared()
4490 || should_force_pic_veneer)
4491 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4492 : arm_stub_long_branch_any_any; /// non-PIC.
4493 }
4494 }
4495 }
4496
4497 return stub_type;
4498 }
4499
4500 // Cortex_a8_stub methods.
4501
4502 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4503 // I is the position of the instruction template in the stub template.
4504
4505 uint16_t
4506 Cortex_a8_stub::do_thumb16_special(size_t i)
4507 {
4508 // The only use of this is to copy condition code from a conditional
4509 // branch being worked around to the corresponding conditional branch in
4510 // to the stub.
4511 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4512 && i == 0);
4513 uint16_t data = this->stub_template()->insns()[i].data();
4514 gold_assert((data & 0xff00U) == 0xd000U);
4515 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4516 return data;
4517 }
4518
4519 // Stub_factory methods.
4520
4521 Stub_factory::Stub_factory()
4522 {
4523 // The instruction template sequences are declared as static
4524 // objects and initialized first time the constructor runs.
4525
4526 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4527 // to reach the stub if necessary.
4528 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4529 {
4530 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4531 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4532 // dcd R_ARM_ABS32(X)
4533 };
4534
4535 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4536 // available.
4537 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4538 {
4539 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4540 Insn_template::arm_insn(0xe12fff1c), // bx ip
4541 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4542 // dcd R_ARM_ABS32(X)
4543 };
4544
4545 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4546 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4547 {
4548 Insn_template::thumb16_insn(0xb401), // push {r0}
4549 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4550 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4551 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4552 Insn_template::thumb16_insn(0x4760), // bx ip
4553 Insn_template::thumb16_insn(0xbf00), // nop
4554 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4555 // dcd R_ARM_ABS32(X)
4556 };
4557
4558 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4559 // allowed.
4560 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4561 {
4562 Insn_template::thumb16_insn(0x4778), // bx pc
4563 Insn_template::thumb16_insn(0x46c0), // nop
4564 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4565 Insn_template::arm_insn(0xe12fff1c), // bx ip
4566 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4567 // dcd R_ARM_ABS32(X)
4568 };
4569
4570 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4571 // available.
4572 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4573 {
4574 Insn_template::thumb16_insn(0x4778), // bx pc
4575 Insn_template::thumb16_insn(0x46c0), // nop
4576 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4577 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4578 // dcd R_ARM_ABS32(X)
4579 };
4580
4581 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4582 // one, when the destination is close enough.
4583 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4584 {
4585 Insn_template::thumb16_insn(0x4778), // bx pc
4586 Insn_template::thumb16_insn(0x46c0), // nop
4587 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4588 };
4589
4590 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4591 // blx to reach the stub if necessary.
4592 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4593 {
4594 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4595 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4596 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4597 // dcd R_ARM_REL32(X-4)
4598 };
4599
4600 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4601 // blx to reach the stub if necessary. We can not add into pc;
4602 // it is not guaranteed to mode switch (different in ARMv6 and
4603 // ARMv7).
4604 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4605 {
4606 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4607 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4608 Insn_template::arm_insn(0xe12fff1c), // bx ip
4609 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4610 // dcd R_ARM_REL32(X)
4611 };
4612
4613 // V4T ARM -> ARM long branch stub, PIC.
4614 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4615 {
4616 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4617 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4618 Insn_template::arm_insn(0xe12fff1c), // bx ip
4619 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4620 // dcd R_ARM_REL32(X)
4621 };
4622
4623 // V4T Thumb -> ARM long branch stub, PIC.
4624 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4625 {
4626 Insn_template::thumb16_insn(0x4778), // bx pc
4627 Insn_template::thumb16_insn(0x46c0), // nop
4628 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4629 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4630 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4631 // dcd R_ARM_REL32(X)
4632 };
4633
4634 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4635 // architectures.
4636 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4637 {
4638 Insn_template::thumb16_insn(0xb401), // push {r0}
4639 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4640 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4641 Insn_template::thumb16_insn(0x4484), // add ip, r0
4642 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4643 Insn_template::thumb16_insn(0x4760), // bx ip
4644 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4645 // dcd R_ARM_REL32(X)
4646 };
4647
4648 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4649 // allowed.
4650 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4651 {
4652 Insn_template::thumb16_insn(0x4778), // bx pc
4653 Insn_template::thumb16_insn(0x46c0), // nop
4654 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4655 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4656 Insn_template::arm_insn(0xe12fff1c), // bx ip
4657 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4658 // dcd R_ARM_REL32(X)
4659 };
4660
4661 // Cortex-A8 erratum-workaround stubs.
4662
4663 // Stub used for conditional branches (which may be beyond +/-1MB away,
4664 // so we can't use a conditional branch to reach this stub).
4665
4666 // original code:
4667 //
4668 // b<cond> X
4669 // after:
4670 //
4671 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4672 {
4673 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4674 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4675 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4676 // b.w X
4677 };
4678
4679 // Stub used for b.w and bl.w instructions.
4680
4681 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4682 {
4683 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4684 };
4685
4686 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4687 {
4688 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4689 };
4690
4691 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4692 // instruction (which switches to ARM mode) to point to this stub. Jump to
4693 // the real destination using an ARM-mode branch.
4694 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4695 {
4696 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4697 };
4698
4699 // Stub used to provide an interworking for R_ARM_V4BX relocation
4700 // (bx r[n] instruction).
4701 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4702 {
4703 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4704 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4705 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4706 };
4707
4708 // Fill in the stub template look-up table. Stub templates are constructed
4709 // per instance of Stub_factory for fast look-up without locking
4710 // in a thread-enabled environment.
4711
4712 this->stub_templates_[arm_stub_none] =
4713 new Stub_template(arm_stub_none, NULL, 0);
4714
4715 #define DEF_STUB(x) \
4716 do \
4717 { \
4718 size_t array_size \
4719 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4720 Stub_type type = arm_stub_##x; \
4721 this->stub_templates_[type] = \
4722 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4723 } \
4724 while (0);
4725
4726 DEF_STUBS
4727 #undef DEF_STUB
4728 }
4729
4730 // Stub_table methods.
4731
4732 // Removel all Cortex-A8 stub.
4733
4734 template<bool big_endian>
4735 void
4736 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4737 {
4738 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4739 p != this->cortex_a8_stubs_.end();
4740 ++p)
4741 delete p->second;
4742 this->cortex_a8_stubs_.clear();
4743 }
4744
4745 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4746
4747 template<bool big_endian>
4748 void
4749 Stub_table<big_endian>::relocate_stub(
4750 Stub* stub,
4751 const Relocate_info<32, big_endian>* relinfo,
4752 Target_arm<big_endian>* arm_target,
4753 Output_section* output_section,
4754 unsigned char* view,
4755 Arm_address address,
4756 section_size_type view_size)
4757 {
4758 const Stub_template* stub_template = stub->stub_template();
4759 if (stub_template->reloc_count() != 0)
4760 {
4761 // Adjust view to cover the stub only.
4762 section_size_type offset = stub->offset();
4763 section_size_type stub_size = stub_template->size();
4764 gold_assert(offset + stub_size <= view_size);
4765
4766 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4767 address + offset, stub_size);
4768 }
4769 }
4770
4771 // Relocate all stubs in this stub table.
4772
4773 template<bool big_endian>
4774 void
4775 Stub_table<big_endian>::relocate_stubs(
4776 const Relocate_info<32, big_endian>* relinfo,
4777 Target_arm<big_endian>* arm_target,
4778 Output_section* output_section,
4779 unsigned char* view,
4780 Arm_address address,
4781 section_size_type view_size)
4782 {
4783 // If we are passed a view bigger than the stub table's. we need to
4784 // adjust the view.
4785 gold_assert(address == this->address()
4786 && (view_size
4787 == static_cast<section_size_type>(this->data_size())));
4788
4789 // Relocate all relocation stubs.
4790 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4791 p != this->reloc_stubs_.end();
4792 ++p)
4793 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4794 address, view_size);
4795
4796 // Relocate all Cortex-A8 stubs.
4797 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4798 p != this->cortex_a8_stubs_.end();
4799 ++p)
4800 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4801 address, view_size);
4802
4803 // Relocate all ARM V4BX stubs.
4804 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4805 p != this->arm_v4bx_stubs_.end();
4806 ++p)
4807 {
4808 if (*p != NULL)
4809 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4810 address, view_size);
4811 }
4812 }
4813
4814 // Write out the stubs to file.
4815
4816 template<bool big_endian>
4817 void
4818 Stub_table<big_endian>::do_write(Output_file* of)
4819 {
4820 off_t offset = this->offset();
4821 const section_size_type oview_size =
4822 convert_to_section_size_type(this->data_size());
4823 unsigned char* const oview = of->get_output_view(offset, oview_size);
4824
4825 // Write relocation stubs.
4826 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4827 p != this->reloc_stubs_.end();
4828 ++p)
4829 {
4830 Reloc_stub* stub = p->second;
4831 Arm_address address = this->address() + stub->offset();
4832 gold_assert(address
4833 == align_address(address,
4834 stub->stub_template()->alignment()));
4835 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4836 big_endian);
4837 }
4838
4839 // Write Cortex-A8 stubs.
4840 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4841 p != this->cortex_a8_stubs_.end();
4842 ++p)
4843 {
4844 Cortex_a8_stub* stub = p->second;
4845 Arm_address address = this->address() + stub->offset();
4846 gold_assert(address
4847 == align_address(address,
4848 stub->stub_template()->alignment()));
4849 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4850 big_endian);
4851 }
4852
4853 // Write ARM V4BX relocation stubs.
4854 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4855 p != this->arm_v4bx_stubs_.end();
4856 ++p)
4857 {
4858 if (*p == NULL)
4859 continue;
4860
4861 Arm_address address = this->address() + (*p)->offset();
4862 gold_assert(address
4863 == align_address(address,
4864 (*p)->stub_template()->alignment()));
4865 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4866 big_endian);
4867 }
4868
4869 of->write_output_view(this->offset(), oview_size, oview);
4870 }
4871
4872 // Update the data size and address alignment of the stub table at the end
4873 // of a relaxation pass. Return true if either the data size or the
4874 // alignment changed in this relaxation pass.
4875
4876 template<bool big_endian>
4877 bool
4878 Stub_table<big_endian>::update_data_size_and_addralign()
4879 {
4880 // Go over all stubs in table to compute data size and address alignment.
4881 off_t size = this->reloc_stubs_size_;
4882 unsigned addralign = this->reloc_stubs_addralign_;
4883
4884 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4885 p != this->cortex_a8_stubs_.end();
4886 ++p)
4887 {
4888 const Stub_template* stub_template = p->second->stub_template();
4889 addralign = std::max(addralign, stub_template->alignment());
4890 size = (align_address(size, stub_template->alignment())
4891 + stub_template->size());
4892 }
4893
4894 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4895 p != this->arm_v4bx_stubs_.end();
4896 ++p)
4897 {
4898 if (*p == NULL)
4899 continue;
4900
4901 const Stub_template* stub_template = (*p)->stub_template();
4902 addralign = std::max(addralign, stub_template->alignment());
4903 size = (align_address(size, stub_template->alignment())
4904 + stub_template->size());
4905 }
4906
4907 // Check if either data size or alignment changed in this pass.
4908 // Update prev_data_size_ and prev_addralign_. These will be used
4909 // as the current data size and address alignment for the next pass.
4910 bool changed = size != this->prev_data_size_;
4911 this->prev_data_size_ = size;
4912
4913 if (addralign != this->prev_addralign_)
4914 changed = true;
4915 this->prev_addralign_ = addralign;
4916
4917 return changed;
4918 }
4919
4920 // Finalize the stubs. This sets the offsets of the stubs within the stub
4921 // table. It also marks all input sections needing Cortex-A8 workaround.
4922
4923 template<bool big_endian>
4924 void
4925 Stub_table<big_endian>::finalize_stubs()
4926 {
4927 off_t off = this->reloc_stubs_size_;
4928 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4929 p != this->cortex_a8_stubs_.end();
4930 ++p)
4931 {
4932 Cortex_a8_stub* stub = p->second;
4933 const Stub_template* stub_template = stub->stub_template();
4934 uint64_t stub_addralign = stub_template->alignment();
4935 off = align_address(off, stub_addralign);
4936 stub->set_offset(off);
4937 off += stub_template->size();
4938
4939 // Mark input section so that we can determine later if a code section
4940 // needs the Cortex-A8 workaround quickly.
4941 Arm_relobj<big_endian>* arm_relobj =
4942 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4943 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4944 }
4945
4946 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4947 p != this->arm_v4bx_stubs_.end();
4948 ++p)
4949 {
4950 if (*p == NULL)
4951 continue;
4952
4953 const Stub_template* stub_template = (*p)->stub_template();
4954 uint64_t stub_addralign = stub_template->alignment();
4955 off = align_address(off, stub_addralign);
4956 (*p)->set_offset(off);
4957 off += stub_template->size();
4958 }
4959
4960 gold_assert(off <= this->prev_data_size_);
4961 }
4962
4963 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4964 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4965 // of the address range seen by the linker.
4966
4967 template<bool big_endian>
4968 void
4969 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4970 Target_arm<big_endian>* arm_target,
4971 unsigned char* view,
4972 Arm_address view_address,
4973 section_size_type view_size)
4974 {
4975 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4976 for (Cortex_a8_stub_list::const_iterator p =
4977 this->cortex_a8_stubs_.lower_bound(view_address);
4978 ((p != this->cortex_a8_stubs_.end())
4979 && (p->first < (view_address + view_size)));
4980 ++p)
4981 {
4982 // We do not store the THUMB bit in the LSB of either the branch address
4983 // or the stub offset. There is no need to strip the LSB.
4984 Arm_address branch_address = p->first;
4985 const Cortex_a8_stub* stub = p->second;
4986 Arm_address stub_address = this->address() + stub->offset();
4987
4988 // Offset of the branch instruction relative to this view.
4989 section_size_type offset =
4990 convert_to_section_size_type(branch_address - view_address);
4991 gold_assert((offset + 4) <= view_size);
4992
4993 arm_target->apply_cortex_a8_workaround(stub, stub_address,
4994 view + offset, branch_address);
4995 }
4996 }
4997
4998 // Arm_input_section methods.
4999
5000 // Initialize an Arm_input_section.
5001
5002 template<bool big_endian>
5003 void
5004 Arm_input_section<big_endian>::init()
5005 {
5006 Relobj* relobj = this->relobj();
5007 unsigned int shndx = this->shndx();
5008
5009 // Cache these to speed up size and alignment queries. It is too slow
5010 // to call section_addraglin and section_size every time.
5011 this->original_addralign_ =
5012 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5013 this->original_size_ =
5014 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5015
5016 // We want to make this look like the original input section after
5017 // output sections are finalized.
5018 Output_section* os = relobj->output_section(shndx);
5019 off_t offset = relobj->output_section_offset(shndx);
5020 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5021 this->set_address(os->address() + offset);
5022 this->set_file_offset(os->offset() + offset);
5023
5024 this->set_current_data_size(this->original_size_);
5025 this->finalize_data_size();
5026 }
5027
5028 template<bool big_endian>
5029 void
5030 Arm_input_section<big_endian>::do_write(Output_file* of)
5031 {
5032 // We have to write out the original section content.
5033 section_size_type section_size;
5034 const unsigned char* section_contents =
5035 this->relobj()->section_contents(this->shndx(), &section_size, false);
5036 of->write(this->offset(), section_contents, section_size);
5037
5038 // If this owns a stub table and it is not empty, write it.
5039 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5040 this->stub_table_->write(of);
5041 }
5042
5043 // Finalize data size.
5044
5045 template<bool big_endian>
5046 void
5047 Arm_input_section<big_endian>::set_final_data_size()
5048 {
5049 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5050
5051 if (this->is_stub_table_owner())
5052 {
5053 this->stub_table_->finalize_data_size();
5054 off = align_address(off, this->stub_table_->addralign());
5055 off += this->stub_table_->data_size();
5056 }
5057 this->set_data_size(off);
5058 }
5059
5060 // Reset address and file offset.
5061
5062 template<bool big_endian>
5063 void
5064 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5065 {
5066 // Size of the original input section contents.
5067 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5068
5069 // If this is a stub table owner, account for the stub table size.
5070 if (this->is_stub_table_owner())
5071 {
5072 Stub_table<big_endian>* stub_table = this->stub_table_;
5073
5074 // Reset the stub table's address and file offset. The
5075 // current data size for child will be updated after that.
5076 stub_table_->reset_address_and_file_offset();
5077 off = align_address(off, stub_table_->addralign());
5078 off += stub_table->current_data_size();
5079 }
5080
5081 this->set_current_data_size(off);
5082 }
5083
5084 // Arm_exidx_cantunwind methods.
5085
5086 // Write this to Output file OF for a fixed endianness.
5087
5088 template<bool big_endian>
5089 void
5090 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5091 {
5092 off_t offset = this->offset();
5093 const section_size_type oview_size = 8;
5094 unsigned char* const oview = of->get_output_view(offset, oview_size);
5095
5096 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5097 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5098
5099 Output_section* os = this->relobj_->output_section(this->shndx_);
5100 gold_assert(os != NULL);
5101
5102 Arm_relobj<big_endian>* arm_relobj =
5103 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5104 Arm_address output_offset =
5105 arm_relobj->get_output_section_offset(this->shndx_);
5106 Arm_address section_start;
5107 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5108 section_start = os->address() + output_offset;
5109 else
5110 {
5111 // Currently this only happens for a relaxed section.
5112 const Output_relaxed_input_section* poris =
5113 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5114 gold_assert(poris != NULL);
5115 section_start = poris->address();
5116 }
5117
5118 // We always append this to the end of an EXIDX section.
5119 Arm_address output_address =
5120 section_start + this->relobj_->section_size(this->shndx_);
5121
5122 // Write out the entry. The first word either points to the beginning
5123 // or after the end of a text section. The second word is the special
5124 // EXIDX_CANTUNWIND value.
5125 uint32_t prel31_offset = output_address - this->address();
5126 if (utils::has_overflow<31>(offset))
5127 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5128 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5129 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5130
5131 of->write_output_view(this->offset(), oview_size, oview);
5132 }
5133
5134 // Arm_exidx_merged_section methods.
5135
5136 // Constructor for Arm_exidx_merged_section.
5137 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5138 // SECTION_OFFSET_MAP points to a section offset map describing how
5139 // parts of the input section are mapped to output. DELETED_BYTES is
5140 // the number of bytes deleted from the EXIDX input section.
5141
5142 Arm_exidx_merged_section::Arm_exidx_merged_section(
5143 const Arm_exidx_input_section& exidx_input_section,
5144 const Arm_exidx_section_offset_map& section_offset_map,
5145 uint32_t deleted_bytes)
5146 : Output_relaxed_input_section(exidx_input_section.relobj(),
5147 exidx_input_section.shndx(),
5148 exidx_input_section.addralign()),
5149 exidx_input_section_(exidx_input_section),
5150 section_offset_map_(section_offset_map)
5151 {
5152 // Fix size here so that we do not need to implement set_final_data_size.
5153 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5154 this->fix_data_size();
5155 }
5156
5157 // Given an input OBJECT, an input section index SHNDX within that
5158 // object, and an OFFSET relative to the start of that input
5159 // section, return whether or not the corresponding offset within
5160 // the output section is known. If this function returns true, it
5161 // sets *POUTPUT to the output offset. The value -1 indicates that
5162 // this input offset is being discarded.
5163
5164 bool
5165 Arm_exidx_merged_section::do_output_offset(
5166 const Relobj* relobj,
5167 unsigned int shndx,
5168 section_offset_type offset,
5169 section_offset_type* poutput) const
5170 {
5171 // We only handle offsets for the original EXIDX input section.
5172 if (relobj != this->exidx_input_section_.relobj()
5173 || shndx != this->exidx_input_section_.shndx())
5174 return false;
5175
5176 section_offset_type section_size =
5177 convert_types<section_offset_type>(this->exidx_input_section_.size());
5178 if (offset < 0 || offset >= section_size)
5179 // Input offset is out of valid range.
5180 *poutput = -1;
5181 else
5182 {
5183 // We need to look up the section offset map to determine the output
5184 // offset. Find the reference point in map that is first offset
5185 // bigger than or equal to this offset.
5186 Arm_exidx_section_offset_map::const_iterator p =
5187 this->section_offset_map_.lower_bound(offset);
5188
5189 // The section offset maps are build such that this should not happen if
5190 // input offset is in the valid range.
5191 gold_assert(p != this->section_offset_map_.end());
5192
5193 // We need to check if this is dropped.
5194 section_offset_type ref = p->first;
5195 section_offset_type mapped_ref = p->second;
5196
5197 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5198 // Offset is present in output.
5199 *poutput = mapped_ref + (offset - ref);
5200 else
5201 // Offset is discarded owing to EXIDX entry merging.
5202 *poutput = -1;
5203 }
5204
5205 return true;
5206 }
5207
5208 // Write this to output file OF.
5209
5210 void
5211 Arm_exidx_merged_section::do_write(Output_file* of)
5212 {
5213 // If we retain or discard the whole EXIDX input section, we would
5214 // not be here.
5215 gold_assert(this->data_size() != this->exidx_input_section_.size()
5216 && this->data_size() != 0);
5217
5218 off_t offset = this->offset();
5219 const section_size_type oview_size = this->data_size();
5220 unsigned char* const oview = of->get_output_view(offset, oview_size);
5221
5222 Output_section* os = this->relobj()->output_section(this->shndx());
5223 gold_assert(os != NULL);
5224
5225 // Get contents of EXIDX input section.
5226 section_size_type section_size;
5227 const unsigned char* section_contents =
5228 this->relobj()->section_contents(this->shndx(), &section_size, false);
5229 gold_assert(section_size == this->exidx_input_section_.size());
5230
5231 // Go over spans of input offsets and write only those that are not
5232 // discarded.
5233 section_offset_type in_start = 0;
5234 section_offset_type out_start = 0;
5235 for(Arm_exidx_section_offset_map::const_iterator p =
5236 this->section_offset_map_.begin();
5237 p != this->section_offset_map_.end();
5238 ++p)
5239 {
5240 section_offset_type in_end = p->first;
5241 gold_assert(in_end >= in_start);
5242 section_offset_type out_end = p->second;
5243 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5244 if (out_end != -1)
5245 {
5246 size_t out_chunk_size =
5247 convert_types<size_t>(out_end - out_start + 1);
5248 gold_assert(out_chunk_size == in_chunk_size);
5249 memcpy(oview + out_start, section_contents + in_start,
5250 out_chunk_size);
5251 out_start += out_chunk_size;
5252 }
5253 in_start += in_chunk_size;
5254 }
5255
5256 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5257 of->write_output_view(this->offset(), oview_size, oview);
5258 }
5259
5260 // Arm_exidx_fixup methods.
5261
5262 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5263 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5264 // points to the end of the last seen EXIDX section.
5265
5266 void
5267 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5268 {
5269 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5270 && this->last_input_section_ != NULL)
5271 {
5272 Relobj* relobj = this->last_input_section_->relobj();
5273 unsigned int text_shndx = this->last_input_section_->link();
5274 Arm_exidx_cantunwind* cantunwind =
5275 new Arm_exidx_cantunwind(relobj, text_shndx);
5276 this->exidx_output_section_->add_output_section_data(cantunwind);
5277 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5278 }
5279 }
5280
5281 // Process an EXIDX section entry in input. Return whether this entry
5282 // can be deleted in the output. SECOND_WORD in the second word of the
5283 // EXIDX entry.
5284
5285 bool
5286 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5287 {
5288 bool delete_entry;
5289 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5290 {
5291 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5292 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5293 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5294 }
5295 else if ((second_word & 0x80000000) != 0)
5296 {
5297 // Inlined unwinding data. Merge if equal to previous.
5298 delete_entry = (merge_exidx_entries_
5299 && this->last_unwind_type_ == UT_INLINED_ENTRY
5300 && this->last_inlined_entry_ == second_word);
5301 this->last_unwind_type_ = UT_INLINED_ENTRY;
5302 this->last_inlined_entry_ = second_word;
5303 }
5304 else
5305 {
5306 // Normal table entry. In theory we could merge these too,
5307 // but duplicate entries are likely to be much less common.
5308 delete_entry = false;
5309 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5310 }
5311 return delete_entry;
5312 }
5313
5314 // Update the current section offset map during EXIDX section fix-up.
5315 // If there is no map, create one. INPUT_OFFSET is the offset of a
5316 // reference point, DELETED_BYTES is the number of deleted by in the
5317 // section so far. If DELETE_ENTRY is true, the reference point and
5318 // all offsets after the previous reference point are discarded.
5319
5320 void
5321 Arm_exidx_fixup::update_offset_map(
5322 section_offset_type input_offset,
5323 section_size_type deleted_bytes,
5324 bool delete_entry)
5325 {
5326 if (this->section_offset_map_ == NULL)
5327 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5328 section_offset_type output_offset;
5329 if (delete_entry)
5330 output_offset = Arm_exidx_input_section::invalid_offset;
5331 else
5332 output_offset = input_offset - deleted_bytes;
5333 (*this->section_offset_map_)[input_offset] = output_offset;
5334 }
5335
5336 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5337 // bytes deleted. If some entries are merged, also store a pointer to a newly
5338 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5339 // caller owns the map and is responsible for releasing it after use.
5340
5341 template<bool big_endian>
5342 uint32_t
5343 Arm_exidx_fixup::process_exidx_section(
5344 const Arm_exidx_input_section* exidx_input_section,
5345 Arm_exidx_section_offset_map** psection_offset_map)
5346 {
5347 Relobj* relobj = exidx_input_section->relobj();
5348 unsigned shndx = exidx_input_section->shndx();
5349 section_size_type section_size;
5350 const unsigned char* section_contents =
5351 relobj->section_contents(shndx, &section_size, false);
5352
5353 if ((section_size % 8) != 0)
5354 {
5355 // Something is wrong with this section. Better not touch it.
5356 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5357 relobj->name().c_str(), shndx);
5358 this->last_input_section_ = exidx_input_section;
5359 this->last_unwind_type_ = UT_NONE;
5360 return 0;
5361 }
5362
5363 uint32_t deleted_bytes = 0;
5364 bool prev_delete_entry = false;
5365 gold_assert(this->section_offset_map_ == NULL);
5366
5367 for (section_size_type i = 0; i < section_size; i += 8)
5368 {
5369 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5370 const Valtype* wv =
5371 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5372 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5373
5374 bool delete_entry = this->process_exidx_entry(second_word);
5375
5376 // Entry deletion causes changes in output offsets. We use a std::map
5377 // to record these. And entry (x, y) means input offset x
5378 // is mapped to output offset y. If y is invalid_offset, then x is
5379 // dropped in the output. Because of the way std::map::lower_bound
5380 // works, we record the last offset in a region w.r.t to keeping or
5381 // dropping. If there is no entry (x0, y0) for an input offset x0,
5382 // the output offset y0 of it is determined by the output offset y1 of
5383 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5384 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5385 // y0 is also -1.
5386 if (delete_entry != prev_delete_entry && i != 0)
5387 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5388
5389 // Update total deleted bytes for this entry.
5390 if (delete_entry)
5391 deleted_bytes += 8;
5392
5393 prev_delete_entry = delete_entry;
5394 }
5395
5396 // If section offset map is not NULL, make an entry for the end of
5397 // section.
5398 if (this->section_offset_map_ != NULL)
5399 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5400
5401 *psection_offset_map = this->section_offset_map_;
5402 this->section_offset_map_ = NULL;
5403 this->last_input_section_ = exidx_input_section;
5404
5405 // Set the first output text section so that we can link the EXIDX output
5406 // section to it. Ignore any EXIDX input section that is completely merged.
5407 if (this->first_output_text_section_ == NULL
5408 && deleted_bytes != section_size)
5409 {
5410 unsigned int link = exidx_input_section->link();
5411 Output_section* os = relobj->output_section(link);
5412 gold_assert(os != NULL);
5413 this->first_output_text_section_ = os;
5414 }
5415
5416 return deleted_bytes;
5417 }
5418
5419 // Arm_output_section methods.
5420
5421 // Create a stub group for input sections from BEGIN to END. OWNER
5422 // points to the input section to be the owner a new stub table.
5423
5424 template<bool big_endian>
5425 void
5426 Arm_output_section<big_endian>::create_stub_group(
5427 Input_section_list::const_iterator begin,
5428 Input_section_list::const_iterator end,
5429 Input_section_list::const_iterator owner,
5430 Target_arm<big_endian>* target,
5431 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5432 {
5433 // We use a different kind of relaxed section in an EXIDX section.
5434 // The static casting from Output_relaxed_input_section to
5435 // Arm_input_section is invalid in an EXIDX section. We are okay
5436 // because we should not be calling this for an EXIDX section.
5437 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5438
5439 // Currently we convert ordinary input sections into relaxed sections only
5440 // at this point but we may want to support creating relaxed input section
5441 // very early. So we check here to see if owner is already a relaxed
5442 // section.
5443
5444 Arm_input_section<big_endian>* arm_input_section;
5445 if (owner->is_relaxed_input_section())
5446 {
5447 arm_input_section =
5448 Arm_input_section<big_endian>::as_arm_input_section(
5449 owner->relaxed_input_section());
5450 }
5451 else
5452 {
5453 gold_assert(owner->is_input_section());
5454 // Create a new relaxed input section.
5455 arm_input_section =
5456 target->new_arm_input_section(owner->relobj(), owner->shndx());
5457 new_relaxed_sections->push_back(arm_input_section);
5458 }
5459
5460 // Create a stub table.
5461 Stub_table<big_endian>* stub_table =
5462 target->new_stub_table(arm_input_section);
5463
5464 arm_input_section->set_stub_table(stub_table);
5465
5466 Input_section_list::const_iterator p = begin;
5467 Input_section_list::const_iterator prev_p;
5468
5469 // Look for input sections or relaxed input sections in [begin ... end].
5470 do
5471 {
5472 if (p->is_input_section() || p->is_relaxed_input_section())
5473 {
5474 // The stub table information for input sections live
5475 // in their objects.
5476 Arm_relobj<big_endian>* arm_relobj =
5477 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5478 arm_relobj->set_stub_table(p->shndx(), stub_table);
5479 }
5480 prev_p = p++;
5481 }
5482 while (prev_p != end);
5483 }
5484
5485 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5486 // of stub groups. We grow a stub group by adding input section until the
5487 // size is just below GROUP_SIZE. The last input section will be converted
5488 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5489 // input section after the stub table, effectively double the group size.
5490 //
5491 // This is similar to the group_sections() function in elf32-arm.c but is
5492 // implemented differently.
5493
5494 template<bool big_endian>
5495 void
5496 Arm_output_section<big_endian>::group_sections(
5497 section_size_type group_size,
5498 bool stubs_always_after_branch,
5499 Target_arm<big_endian>* target)
5500 {
5501 // We only care about sections containing code.
5502 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5503 return;
5504
5505 // States for grouping.
5506 typedef enum
5507 {
5508 // No group is being built.
5509 NO_GROUP,
5510 // A group is being built but the stub table is not found yet.
5511 // We keep group a stub group until the size is just under GROUP_SIZE.
5512 // The last input section in the group will be used as the stub table.
5513 FINDING_STUB_SECTION,
5514 // A group is being built and we have already found a stub table.
5515 // We enter this state to grow a stub group by adding input section
5516 // after the stub table. This effectively doubles the group size.
5517 HAS_STUB_SECTION
5518 } State;
5519
5520 // Any newly created relaxed sections are stored here.
5521 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5522
5523 State state = NO_GROUP;
5524 section_size_type off = 0;
5525 section_size_type group_begin_offset = 0;
5526 section_size_type group_end_offset = 0;
5527 section_size_type stub_table_end_offset = 0;
5528 Input_section_list::const_iterator group_begin =
5529 this->input_sections().end();
5530 Input_section_list::const_iterator stub_table =
5531 this->input_sections().end();
5532 Input_section_list::const_iterator group_end = this->input_sections().end();
5533 for (Input_section_list::const_iterator p = this->input_sections().begin();
5534 p != this->input_sections().end();
5535 ++p)
5536 {
5537 section_size_type section_begin_offset =
5538 align_address(off, p->addralign());
5539 section_size_type section_end_offset =
5540 section_begin_offset + p->data_size();
5541
5542 // Check to see if we should group the previously seens sections.
5543 switch (state)
5544 {
5545 case NO_GROUP:
5546 break;
5547
5548 case FINDING_STUB_SECTION:
5549 // Adding this section makes the group larger than GROUP_SIZE.
5550 if (section_end_offset - group_begin_offset >= group_size)
5551 {
5552 if (stubs_always_after_branch)
5553 {
5554 gold_assert(group_end != this->input_sections().end());
5555 this->create_stub_group(group_begin, group_end, group_end,
5556 target, &new_relaxed_sections);
5557 state = NO_GROUP;
5558 }
5559 else
5560 {
5561 // But wait, there's more! Input sections up to
5562 // stub_group_size bytes after the stub table can be
5563 // handled by it too.
5564 state = HAS_STUB_SECTION;
5565 stub_table = group_end;
5566 stub_table_end_offset = group_end_offset;
5567 }
5568 }
5569 break;
5570
5571 case HAS_STUB_SECTION:
5572 // Adding this section makes the post stub-section group larger
5573 // than GROUP_SIZE.
5574 if (section_end_offset - stub_table_end_offset >= group_size)
5575 {
5576 gold_assert(group_end != this->input_sections().end());
5577 this->create_stub_group(group_begin, group_end, stub_table,
5578 target, &new_relaxed_sections);
5579 state = NO_GROUP;
5580 }
5581 break;
5582
5583 default:
5584 gold_unreachable();
5585 }
5586
5587 // If we see an input section and currently there is no group, start
5588 // a new one. Skip any empty sections.
5589 if ((p->is_input_section() || p->is_relaxed_input_section())
5590 && (p->relobj()->section_size(p->shndx()) != 0))
5591 {
5592 if (state == NO_GROUP)
5593 {
5594 state = FINDING_STUB_SECTION;
5595 group_begin = p;
5596 group_begin_offset = section_begin_offset;
5597 }
5598
5599 // Keep track of the last input section seen.
5600 group_end = p;
5601 group_end_offset = section_end_offset;
5602 }
5603
5604 off = section_end_offset;
5605 }
5606
5607 // Create a stub group for any ungrouped sections.
5608 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5609 {
5610 gold_assert(group_end != this->input_sections().end());
5611 this->create_stub_group(group_begin, group_end,
5612 (state == FINDING_STUB_SECTION
5613 ? group_end
5614 : stub_table),
5615 target, &new_relaxed_sections);
5616 }
5617
5618 // Convert input section into relaxed input section in a batch.
5619 if (!new_relaxed_sections.empty())
5620 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5621
5622 // Update the section offsets
5623 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5624 {
5625 Arm_relobj<big_endian>* arm_relobj =
5626 Arm_relobj<big_endian>::as_arm_relobj(
5627 new_relaxed_sections[i]->relobj());
5628 unsigned int shndx = new_relaxed_sections[i]->shndx();
5629 // Tell Arm_relobj that this input section is converted.
5630 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5631 }
5632 }
5633
5634 // Append non empty text sections in this to LIST in ascending
5635 // order of their position in this.
5636
5637 template<bool big_endian>
5638 void
5639 Arm_output_section<big_endian>::append_text_sections_to_list(
5640 Text_section_list* list)
5641 {
5642 // We only care about text sections.
5643 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5644 return;
5645
5646 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5647
5648 for (Input_section_list::const_iterator p = this->input_sections().begin();
5649 p != this->input_sections().end();
5650 ++p)
5651 {
5652 // We only care about plain or relaxed input sections. We also
5653 // ignore any merged sections.
5654 if ((p->is_input_section() || p->is_relaxed_input_section())
5655 && p->data_size() != 0)
5656 list->push_back(Text_section_list::value_type(p->relobj(),
5657 p->shndx()));
5658 }
5659 }
5660
5661 template<bool big_endian>
5662 void
5663 Arm_output_section<big_endian>::fix_exidx_coverage(
5664 Layout* layout,
5665 const Text_section_list& sorted_text_sections,
5666 Symbol_table* symtab,
5667 bool merge_exidx_entries)
5668 {
5669 // We should only do this for the EXIDX output section.
5670 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5671
5672 // We don't want the relaxation loop to undo these changes, so we discard
5673 // the current saved states and take another one after the fix-up.
5674 this->discard_states();
5675
5676 // Remove all input sections.
5677 uint64_t address = this->address();
5678 typedef std::list<Output_section::Input_section> Input_section_list;
5679 Input_section_list input_sections;
5680 this->reset_address_and_file_offset();
5681 this->get_input_sections(address, std::string(""), &input_sections);
5682
5683 if (!this->input_sections().empty())
5684 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5685
5686 // Go through all the known input sections and record them.
5687 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5688 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5689 Section_id_hash> Text_to_exidx_map;
5690 Text_to_exidx_map text_to_exidx_map;
5691 for (Input_section_list::const_iterator p = input_sections.begin();
5692 p != input_sections.end();
5693 ++p)
5694 {
5695 // This should never happen. At this point, we should only see
5696 // plain EXIDX input sections.
5697 gold_assert(!p->is_relaxed_input_section());
5698 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5699 }
5700
5701 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5702
5703 // Go over the sorted text sections.
5704 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5705 Section_id_set processed_input_sections;
5706 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5707 p != sorted_text_sections.end();
5708 ++p)
5709 {
5710 Relobj* relobj = p->first;
5711 unsigned int shndx = p->second;
5712
5713 Arm_relobj<big_endian>* arm_relobj =
5714 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5715 const Arm_exidx_input_section* exidx_input_section =
5716 arm_relobj->exidx_input_section_by_link(shndx);
5717
5718 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5719 // entry pointing to the end of the last seen EXIDX section.
5720 if (exidx_input_section == NULL)
5721 {
5722 exidx_fixup.add_exidx_cantunwind_as_needed();
5723 continue;
5724 }
5725
5726 Relobj* exidx_relobj = exidx_input_section->relobj();
5727 unsigned int exidx_shndx = exidx_input_section->shndx();
5728 Section_id sid(exidx_relobj, exidx_shndx);
5729 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5730 if (iter == text_to_exidx_map.end())
5731 {
5732 // This is odd. We have not seen this EXIDX input section before.
5733 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5734 // issue a warning instead. We assume the user knows what he
5735 // or she is doing. Otherwise, this is an error.
5736 if (layout->script_options()->saw_sections_clause())
5737 gold_warning(_("unwinding may not work because EXIDX input section"
5738 " %u of %s is not in EXIDX output section"),
5739 exidx_shndx, exidx_relobj->name().c_str());
5740 else
5741 gold_error(_("unwinding may not work because EXIDX input section"
5742 " %u of %s is not in EXIDX output section"),
5743 exidx_shndx, exidx_relobj->name().c_str());
5744
5745 exidx_fixup.add_exidx_cantunwind_as_needed();
5746 continue;
5747 }
5748
5749 // Fix up coverage and append input section to output data list.
5750 Arm_exidx_section_offset_map* section_offset_map = NULL;
5751 uint32_t deleted_bytes =
5752 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5753 &section_offset_map);
5754
5755 if (deleted_bytes == exidx_input_section->size())
5756 {
5757 // The whole EXIDX section got merged. Remove it from output.
5758 gold_assert(section_offset_map == NULL);
5759 exidx_relobj->set_output_section(exidx_shndx, NULL);
5760
5761 // All local symbols defined in this input section will be dropped.
5762 // We need to adjust output local symbol count.
5763 arm_relobj->set_output_local_symbol_count_needs_update();
5764 }
5765 else if (deleted_bytes > 0)
5766 {
5767 // Some entries are merged. We need to convert this EXIDX input
5768 // section into a relaxed section.
5769 gold_assert(section_offset_map != NULL);
5770 Arm_exidx_merged_section* merged_section =
5771 new Arm_exidx_merged_section(*exidx_input_section,
5772 *section_offset_map, deleted_bytes);
5773 this->add_relaxed_input_section(merged_section);
5774 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5775
5776 // All local symbols defined in discarded portions of this input
5777 // section will be dropped. We need to adjust output local symbol
5778 // count.
5779 arm_relobj->set_output_local_symbol_count_needs_update();
5780 }
5781 else
5782 {
5783 // Just add back the EXIDX input section.
5784 gold_assert(section_offset_map == NULL);
5785 const Output_section::Input_section* pis = iter->second;
5786 gold_assert(pis->is_input_section());
5787 this->add_script_input_section(*pis);
5788 }
5789
5790 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5791 }
5792
5793 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5794 exidx_fixup.add_exidx_cantunwind_as_needed();
5795
5796 // Remove any known EXIDX input sections that are not processed.
5797 for (Input_section_list::const_iterator p = input_sections.begin();
5798 p != input_sections.end();
5799 ++p)
5800 {
5801 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5802 == processed_input_sections.end())
5803 {
5804 // We only discard a known EXIDX section because its linked
5805 // text section has been folded by ICF.
5806 Arm_relobj<big_endian>* arm_relobj =
5807 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5808 const Arm_exidx_input_section* exidx_input_section =
5809 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5810 gold_assert(exidx_input_section != NULL);
5811 unsigned int text_shndx = exidx_input_section->link();
5812 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5813
5814 // Remove this from link. We also need to recount the
5815 // local symbols.
5816 p->relobj()->set_output_section(p->shndx(), NULL);
5817 arm_relobj->set_output_local_symbol_count_needs_update();
5818 }
5819 }
5820
5821 // Link exidx output section to the first seen output section and
5822 // set correct entry size.
5823 this->set_link_section(exidx_fixup.first_output_text_section());
5824 this->set_entsize(8);
5825
5826 // Make changes permanent.
5827 this->save_states();
5828 this->set_section_offsets_need_adjustment();
5829 }
5830
5831 // Arm_relobj methods.
5832
5833 // Determine if an input section is scannable for stub processing. SHDR is
5834 // the header of the section and SHNDX is the section index. OS is the output
5835 // section for the input section and SYMTAB is the global symbol table used to
5836 // look up ICF information.
5837
5838 template<bool big_endian>
5839 bool
5840 Arm_relobj<big_endian>::section_is_scannable(
5841 const elfcpp::Shdr<32, big_endian>& shdr,
5842 unsigned int shndx,
5843 const Output_section* os,
5844 const Symbol_table *symtab)
5845 {
5846 // Skip any empty sections, unallocated sections or sections whose
5847 // type are not SHT_PROGBITS.
5848 if (shdr.get_sh_size() == 0
5849 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5850 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5851 return false;
5852
5853 // Skip any discarded or ICF'ed sections.
5854 if (os == NULL || symtab->is_section_folded(this, shndx))
5855 return false;
5856
5857 // If this requires special offset handling, check to see if it is
5858 // a relaxed section. If this is not, then it is a merged section that
5859 // we cannot handle.
5860 if (this->is_output_section_offset_invalid(shndx))
5861 {
5862 const Output_relaxed_input_section* poris =
5863 os->find_relaxed_input_section(this, shndx);
5864 if (poris == NULL)
5865 return false;
5866 }
5867
5868 return true;
5869 }
5870
5871 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5872 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5873
5874 template<bool big_endian>
5875 bool
5876 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5877 const elfcpp::Shdr<32, big_endian>& shdr,
5878 const Relobj::Output_sections& out_sections,
5879 const Symbol_table *symtab,
5880 const unsigned char* pshdrs)
5881 {
5882 unsigned int sh_type = shdr.get_sh_type();
5883 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5884 return false;
5885
5886 // Ignore empty section.
5887 off_t sh_size = shdr.get_sh_size();
5888 if (sh_size == 0)
5889 return false;
5890
5891 // Ignore reloc section with unexpected symbol table. The
5892 // error will be reported in the final link.
5893 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5894 return false;
5895
5896 unsigned int reloc_size;
5897 if (sh_type == elfcpp::SHT_REL)
5898 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5899 else
5900 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5901
5902 // Ignore reloc section with unexpected entsize or uneven size.
5903 // The error will be reported in the final link.
5904 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5905 return false;
5906
5907 // Ignore reloc section with bad info. This error will be
5908 // reported in the final link.
5909 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5910 if (index >= this->shnum())
5911 return false;
5912
5913 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5914 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5915 return this->section_is_scannable(text_shdr, index,
5916 out_sections[index], symtab);
5917 }
5918
5919 // Return the output address of either a plain input section or a relaxed
5920 // input section. SHNDX is the section index. We define and use this
5921 // instead of calling Output_section::output_address because that is slow
5922 // for large output.
5923
5924 template<bool big_endian>
5925 Arm_address
5926 Arm_relobj<big_endian>::simple_input_section_output_address(
5927 unsigned int shndx,
5928 Output_section* os)
5929 {
5930 if (this->is_output_section_offset_invalid(shndx))
5931 {
5932 const Output_relaxed_input_section* poris =
5933 os->find_relaxed_input_section(this, shndx);
5934 // We do not handle merged sections here.
5935 gold_assert(poris != NULL);
5936 return poris->address();
5937 }
5938 else
5939 return os->address() + this->get_output_section_offset(shndx);
5940 }
5941
5942 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5943 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5944
5945 template<bool big_endian>
5946 bool
5947 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5948 const elfcpp::Shdr<32, big_endian>& shdr,
5949 unsigned int shndx,
5950 Output_section* os,
5951 const Symbol_table* symtab)
5952 {
5953 if (!this->section_is_scannable(shdr, shndx, os, symtab))
5954 return false;
5955
5956 // If the section does not cross any 4K-boundaries, it does not need to
5957 // be scanned.
5958 Arm_address address = this->simple_input_section_output_address(shndx, os);
5959 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5960 return false;
5961
5962 return true;
5963 }
5964
5965 // Scan a section for Cortex-A8 workaround.
5966
5967 template<bool big_endian>
5968 void
5969 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5970 const elfcpp::Shdr<32, big_endian>& shdr,
5971 unsigned int shndx,
5972 Output_section* os,
5973 Target_arm<big_endian>* arm_target)
5974 {
5975 // Look for the first mapping symbol in this section. It should be
5976 // at (shndx, 0).
5977 Mapping_symbol_position section_start(shndx, 0);
5978 typename Mapping_symbols_info::const_iterator p =
5979 this->mapping_symbols_info_.lower_bound(section_start);
5980
5981 // There are no mapping symbols for this section. Treat it as a data-only
5982 // section. Issue a warning if section is marked as containing
5983 // instructions.
5984 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5985 {
5986 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
5987 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
5988 "erratum because it has no mapping symbols."),
5989 shndx, this->name().c_str());
5990 return;
5991 }
5992
5993 Arm_address output_address =
5994 this->simple_input_section_output_address(shndx, os);
5995
5996 // Get the section contents.
5997 section_size_type input_view_size = 0;
5998 const unsigned char* input_view =
5999 this->section_contents(shndx, &input_view_size, false);
6000
6001 // We need to go through the mapping symbols to determine what to
6002 // scan. There are two reasons. First, we should look at THUMB code and
6003 // THUMB code only. Second, we only want to look at the 4K-page boundary
6004 // to speed up the scanning.
6005
6006 while (p != this->mapping_symbols_info_.end()
6007 && p->first.first == shndx)
6008 {
6009 typename Mapping_symbols_info::const_iterator next =
6010 this->mapping_symbols_info_.upper_bound(p->first);
6011
6012 // Only scan part of a section with THUMB code.
6013 if (p->second == 't')
6014 {
6015 // Determine the end of this range.
6016 section_size_type span_start =
6017 convert_to_section_size_type(p->first.second);
6018 section_size_type span_end;
6019 if (next != this->mapping_symbols_info_.end()
6020 && next->first.first == shndx)
6021 span_end = convert_to_section_size_type(next->first.second);
6022 else
6023 span_end = convert_to_section_size_type(shdr.get_sh_size());
6024
6025 if (((span_start + output_address) & ~0xfffUL)
6026 != ((span_end + output_address - 1) & ~0xfffUL))
6027 {
6028 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6029 span_start, span_end,
6030 input_view,
6031 output_address);
6032 }
6033 }
6034
6035 p = next;
6036 }
6037 }
6038
6039 // Scan relocations for stub generation.
6040
6041 template<bool big_endian>
6042 void
6043 Arm_relobj<big_endian>::scan_sections_for_stubs(
6044 Target_arm<big_endian>* arm_target,
6045 const Symbol_table* symtab,
6046 const Layout* layout)
6047 {
6048 unsigned int shnum = this->shnum();
6049 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6050
6051 // Read the section headers.
6052 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6053 shnum * shdr_size,
6054 true, true);
6055
6056 // To speed up processing, we set up hash tables for fast lookup of
6057 // input offsets to output addresses.
6058 this->initialize_input_to_output_maps();
6059
6060 const Relobj::Output_sections& out_sections(this->output_sections());
6061
6062 Relocate_info<32, big_endian> relinfo;
6063 relinfo.symtab = symtab;
6064 relinfo.layout = layout;
6065 relinfo.object = this;
6066
6067 // Do relocation stubs scanning.
6068 const unsigned char* p = pshdrs + shdr_size;
6069 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6070 {
6071 const elfcpp::Shdr<32, big_endian> shdr(p);
6072 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6073 pshdrs))
6074 {
6075 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6076 Arm_address output_offset = this->get_output_section_offset(index);
6077 Arm_address output_address;
6078 if (output_offset != invalid_address)
6079 output_address = out_sections[index]->address() + output_offset;
6080 else
6081 {
6082 // Currently this only happens for a relaxed section.
6083 const Output_relaxed_input_section* poris =
6084 out_sections[index]->find_relaxed_input_section(this, index);
6085 gold_assert(poris != NULL);
6086 output_address = poris->address();
6087 }
6088
6089 // Get the relocations.
6090 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6091 shdr.get_sh_size(),
6092 true, false);
6093
6094 // Get the section contents. This does work for the case in which
6095 // we modify the contents of an input section. We need to pass the
6096 // output view under such circumstances.
6097 section_size_type input_view_size = 0;
6098 const unsigned char* input_view =
6099 this->section_contents(index, &input_view_size, false);
6100
6101 relinfo.reloc_shndx = i;
6102 relinfo.data_shndx = index;
6103 unsigned int sh_type = shdr.get_sh_type();
6104 unsigned int reloc_size;
6105 if (sh_type == elfcpp::SHT_REL)
6106 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6107 else
6108 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6109
6110 Output_section* os = out_sections[index];
6111 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6112 shdr.get_sh_size() / reloc_size,
6113 os,
6114 output_offset == invalid_address,
6115 input_view, output_address,
6116 input_view_size);
6117 }
6118 }
6119
6120 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6121 // after its relocation section, if there is one, is processed for
6122 // relocation stubs. Merging this loop with the one above would have been
6123 // complicated since we would have had to make sure that relocation stub
6124 // scanning is done first.
6125 if (arm_target->fix_cortex_a8())
6126 {
6127 const unsigned char* p = pshdrs + shdr_size;
6128 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6129 {
6130 const elfcpp::Shdr<32, big_endian> shdr(p);
6131 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6132 out_sections[i],
6133 symtab))
6134 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6135 arm_target);
6136 }
6137 }
6138
6139 // After we've done the relocations, we release the hash tables,
6140 // since we no longer need them.
6141 this->free_input_to_output_maps();
6142 }
6143
6144 // Count the local symbols. The ARM backend needs to know if a symbol
6145 // is a THUMB function or not. For global symbols, it is easy because
6146 // the Symbol object keeps the ELF symbol type. For local symbol it is
6147 // harder because we cannot access this information. So we override the
6148 // do_count_local_symbol in parent and scan local symbols to mark
6149 // THUMB functions. This is not the most efficient way but I do not want to
6150 // slow down other ports by calling a per symbol targer hook inside
6151 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6152
6153 template<bool big_endian>
6154 void
6155 Arm_relobj<big_endian>::do_count_local_symbols(
6156 Stringpool_template<char>* pool,
6157 Stringpool_template<char>* dynpool)
6158 {
6159 // We need to fix-up the values of any local symbols whose type are
6160 // STT_ARM_TFUNC.
6161
6162 // Ask parent to count the local symbols.
6163 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6164 const unsigned int loccount = this->local_symbol_count();
6165 if (loccount == 0)
6166 return;
6167
6168 // Intialize the thumb function bit-vector.
6169 std::vector<bool> empty_vector(loccount, false);
6170 this->local_symbol_is_thumb_function_.swap(empty_vector);
6171
6172 // Read the symbol table section header.
6173 const unsigned int symtab_shndx = this->symtab_shndx();
6174 elfcpp::Shdr<32, big_endian>
6175 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6176 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6177
6178 // Read the local symbols.
6179 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6180 gold_assert(loccount == symtabshdr.get_sh_info());
6181 off_t locsize = loccount * sym_size;
6182 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6183 locsize, true, true);
6184
6185 // For mapping symbol processing, we need to read the symbol names.
6186 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6187 if (strtab_shndx >= this->shnum())
6188 {
6189 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6190 return;
6191 }
6192
6193 elfcpp::Shdr<32, big_endian>
6194 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6195 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6196 {
6197 this->error(_("symbol table name section has wrong type: %u"),
6198 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6199 return;
6200 }
6201 const char* pnames =
6202 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6203 strtabshdr.get_sh_size(),
6204 false, false));
6205
6206 // Loop over the local symbols and mark any local symbols pointing
6207 // to THUMB functions.
6208
6209 // Skip the first dummy symbol.
6210 psyms += sym_size;
6211 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6212 this->local_values();
6213 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6214 {
6215 elfcpp::Sym<32, big_endian> sym(psyms);
6216 elfcpp::STT st_type = sym.get_st_type();
6217 Symbol_value<32>& lv((*plocal_values)[i]);
6218 Arm_address input_value = lv.input_value();
6219
6220 // Check to see if this is a mapping symbol.
6221 const char* sym_name = pnames + sym.get_st_name();
6222 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6223 {
6224 bool is_ordinary;
6225 unsigned int input_shndx =
6226 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6227 gold_assert(is_ordinary);
6228
6229 // Strip of LSB in case this is a THUMB symbol.
6230 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6231 this->mapping_symbols_info_[msp] = sym_name[1];
6232 }
6233
6234 if (st_type == elfcpp::STT_ARM_TFUNC
6235 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6236 {
6237 // This is a THUMB function. Mark this and canonicalize the
6238 // symbol value by setting LSB.
6239 this->local_symbol_is_thumb_function_[i] = true;
6240 if ((input_value & 1) == 0)
6241 lv.set_input_value(input_value | 1);
6242 }
6243 }
6244 }
6245
6246 // Relocate sections.
6247 template<bool big_endian>
6248 void
6249 Arm_relobj<big_endian>::do_relocate_sections(
6250 const Symbol_table* symtab,
6251 const Layout* layout,
6252 const unsigned char* pshdrs,
6253 typename Sized_relobj<32, big_endian>::Views* pviews)
6254 {
6255 // Call parent to relocate sections.
6256 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6257 pviews);
6258
6259 // We do not generate stubs if doing a relocatable link.
6260 if (parameters->options().relocatable())
6261 return;
6262
6263 // Relocate stub tables.
6264 unsigned int shnum = this->shnum();
6265
6266 Target_arm<big_endian>* arm_target =
6267 Target_arm<big_endian>::default_target();
6268
6269 Relocate_info<32, big_endian> relinfo;
6270 relinfo.symtab = symtab;
6271 relinfo.layout = layout;
6272 relinfo.object = this;
6273
6274 for (unsigned int i = 1; i < shnum; ++i)
6275 {
6276 Arm_input_section<big_endian>* arm_input_section =
6277 arm_target->find_arm_input_section(this, i);
6278
6279 if (arm_input_section != NULL
6280 && arm_input_section->is_stub_table_owner()
6281 && !arm_input_section->stub_table()->empty())
6282 {
6283 // We cannot discard a section if it owns a stub table.
6284 Output_section* os = this->output_section(i);
6285 gold_assert(os != NULL);
6286
6287 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6288 relinfo.reloc_shdr = NULL;
6289 relinfo.data_shndx = i;
6290 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6291
6292 gold_assert((*pviews)[i].view != NULL);
6293
6294 // We are passed the output section view. Adjust it to cover the
6295 // stub table only.
6296 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6297 gold_assert((stub_table->address() >= (*pviews)[i].address)
6298 && ((stub_table->address() + stub_table->data_size())
6299 <= (*pviews)[i].address + (*pviews)[i].view_size));
6300
6301 off_t offset = stub_table->address() - (*pviews)[i].address;
6302 unsigned char* view = (*pviews)[i].view + offset;
6303 Arm_address address = stub_table->address();
6304 section_size_type view_size = stub_table->data_size();
6305
6306 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6307 view_size);
6308 }
6309
6310 // Apply Cortex A8 workaround if applicable.
6311 if (this->section_has_cortex_a8_workaround(i))
6312 {
6313 unsigned char* view = (*pviews)[i].view;
6314 Arm_address view_address = (*pviews)[i].address;
6315 section_size_type view_size = (*pviews)[i].view_size;
6316 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6317
6318 // Adjust view to cover section.
6319 Output_section* os = this->output_section(i);
6320 gold_assert(os != NULL);
6321 Arm_address section_address =
6322 this->simple_input_section_output_address(i, os);
6323 uint64_t section_size = this->section_size(i);
6324
6325 gold_assert(section_address >= view_address
6326 && ((section_address + section_size)
6327 <= (view_address + view_size)));
6328
6329 unsigned char* section_view = view + (section_address - view_address);
6330
6331 // Apply the Cortex-A8 workaround to the output address range
6332 // corresponding to this input section.
6333 stub_table->apply_cortex_a8_workaround_to_address_range(
6334 arm_target,
6335 section_view,
6336 section_address,
6337 section_size);
6338 }
6339 }
6340 }
6341
6342 // Find the linked text section of an EXIDX section by looking the the first
6343 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6344 // must be linked to to its associated code section via the sh_link field of
6345 // its section header. However, some tools are broken and the link is not
6346 // always set. LD just drops such an EXIDX section silently, causing the
6347 // associated code not unwindabled. Here we try a little bit harder to
6348 // discover the linked code section.
6349 //
6350 // PSHDR points to the section header of a relocation section of an EXIDX
6351 // section. If we can find a linked text section, return true and
6352 // store the text section index in the location PSHNDX. Otherwise
6353 // return false.
6354
6355 template<bool big_endian>
6356 bool
6357 Arm_relobj<big_endian>::find_linked_text_section(
6358 const unsigned char* pshdr,
6359 const unsigned char* psyms,
6360 unsigned int* pshndx)
6361 {
6362 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6363
6364 // If there is no relocation, we cannot find the linked text section.
6365 size_t reloc_size;
6366 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6367 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6368 else
6369 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6370 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6371
6372 // Get the relocations.
6373 const unsigned char* prelocs =
6374 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6375
6376 // Find the REL31 relocation for the first word of the first EXIDX entry.
6377 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6378 {
6379 Arm_address r_offset;
6380 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6381 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6382 {
6383 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6384 r_info = reloc.get_r_info();
6385 r_offset = reloc.get_r_offset();
6386 }
6387 else
6388 {
6389 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6390 r_info = reloc.get_r_info();
6391 r_offset = reloc.get_r_offset();
6392 }
6393
6394 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6395 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6396 continue;
6397
6398 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6399 if (r_sym == 0
6400 || r_sym >= this->local_symbol_count()
6401 || r_offset != 0)
6402 continue;
6403
6404 // This is the relocation for the first word of the first EXIDX entry.
6405 // We expect to see a local section symbol.
6406 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6407 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6408 if (sym.get_st_type() == elfcpp::STT_SECTION)
6409 {
6410 bool is_ordinary;
6411 *pshndx =
6412 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6413 gold_assert(is_ordinary);
6414 return true;
6415 }
6416 else
6417 return false;
6418 }
6419
6420 return false;
6421 }
6422
6423 // Make an EXIDX input section object for an EXIDX section whose index is
6424 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6425 // is the section index of the linked text section.
6426
6427 template<bool big_endian>
6428 void
6429 Arm_relobj<big_endian>::make_exidx_input_section(
6430 unsigned int shndx,
6431 const elfcpp::Shdr<32, big_endian>& shdr,
6432 unsigned int text_shndx)
6433 {
6434 // Issue an error and ignore this EXIDX section if it points to a text
6435 // section already has an EXIDX section.
6436 if (this->exidx_section_map_[text_shndx] != NULL)
6437 {
6438 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6439 "in %s"),
6440 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6441 text_shndx, this->name().c_str());
6442 return;
6443 }
6444
6445 // Create an Arm_exidx_input_section object for this EXIDX section.
6446 Arm_exidx_input_section* exidx_input_section =
6447 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6448 shdr.get_sh_addralign());
6449 this->exidx_section_map_[text_shndx] = exidx_input_section;
6450
6451 // Also map the EXIDX section index to this.
6452 gold_assert(this->exidx_section_map_[shndx] == NULL);
6453 this->exidx_section_map_[shndx] = exidx_input_section;
6454 }
6455
6456 // Read the symbol information.
6457
6458 template<bool big_endian>
6459 void
6460 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6461 {
6462 // Call parent class to read symbol information.
6463 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6464
6465 // If this input file is a binary file, it has no processor
6466 // specific flags and attributes section.
6467 Input_file::Format format = this->input_file()->format();
6468 if (format != Input_file::FORMAT_ELF)
6469 {
6470 gold_assert(format == Input_file::FORMAT_BINARY);
6471 this->merge_flags_and_attributes_ = false;
6472 return;
6473 }
6474
6475 // Read processor-specific flags in ELF file header.
6476 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6477 elfcpp::Elf_sizes<32>::ehdr_size,
6478 true, false);
6479 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6480 this->processor_specific_flags_ = ehdr.get_e_flags();
6481
6482 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6483 // sections.
6484 std::vector<unsigned int> deferred_exidx_sections;
6485 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6486 const unsigned char* pshdrs = sd->section_headers->data();
6487 const unsigned char *ps = pshdrs + shdr_size;
6488 bool must_merge_flags_and_attributes = false;
6489 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6490 {
6491 elfcpp::Shdr<32, big_endian> shdr(ps);
6492
6493 // Sometimes an object has no contents except the section name string
6494 // table and an empty symbol table with the undefined symbol. We
6495 // don't want to merge processor-specific flags from such an object.
6496 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6497 {
6498 // Symbol table is not empty.
6499 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6500 elfcpp::Elf_sizes<32>::sym_size;
6501 if (shdr.get_sh_size() > sym_size)
6502 must_merge_flags_and_attributes = true;
6503 }
6504 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6505 // If this is neither an empty symbol table nor a string table,
6506 // be conservative.
6507 must_merge_flags_and_attributes = true;
6508
6509 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6510 {
6511 gold_assert(this->attributes_section_data_ == NULL);
6512 section_offset_type section_offset = shdr.get_sh_offset();
6513 section_size_type section_size =
6514 convert_to_section_size_type(shdr.get_sh_size());
6515 File_view* view = this->get_lasting_view(section_offset,
6516 section_size, true, false);
6517 this->attributes_section_data_ =
6518 new Attributes_section_data(view->data(), section_size);
6519 }
6520 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6521 {
6522 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6523 if (text_shndx >= this->shnum())
6524 gold_error(_("EXIDX section %u linked to invalid section %u"),
6525 i, text_shndx);
6526 else if (text_shndx == elfcpp::SHN_UNDEF)
6527 deferred_exidx_sections.push_back(i);
6528 else
6529 this->make_exidx_input_section(i, shdr, text_shndx);
6530 }
6531 }
6532
6533 // This is rare.
6534 if (!must_merge_flags_and_attributes)
6535 {
6536 this->merge_flags_and_attributes_ = false;
6537 return;
6538 }
6539
6540 // Some tools are broken and they do not set the link of EXIDX sections.
6541 // We look at the first relocation to figure out the linked sections.
6542 if (!deferred_exidx_sections.empty())
6543 {
6544 // We need to go over the section headers again to find the mapping
6545 // from sections being relocated to their relocation sections. This is
6546 // a bit inefficient as we could do that in the loop above. However,
6547 // we do not expect any deferred EXIDX sections normally. So we do not
6548 // want to slow down the most common path.
6549 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6550 Reloc_map reloc_map;
6551 ps = pshdrs + shdr_size;
6552 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6553 {
6554 elfcpp::Shdr<32, big_endian> shdr(ps);
6555 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6556 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6557 {
6558 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6559 if (info_shndx >= this->shnum())
6560 gold_error(_("relocation section %u has invalid info %u"),
6561 i, info_shndx);
6562 Reloc_map::value_type value(info_shndx, i);
6563 std::pair<Reloc_map::iterator, bool> result =
6564 reloc_map.insert(value);
6565 if (!result.second)
6566 gold_error(_("section %u has multiple relocation sections "
6567 "%u and %u"),
6568 info_shndx, i, reloc_map[info_shndx]);
6569 }
6570 }
6571
6572 // Read the symbol table section header.
6573 const unsigned int symtab_shndx = this->symtab_shndx();
6574 elfcpp::Shdr<32, big_endian>
6575 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6576 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6577
6578 // Read the local symbols.
6579 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6580 const unsigned int loccount = this->local_symbol_count();
6581 gold_assert(loccount == symtabshdr.get_sh_info());
6582 off_t locsize = loccount * sym_size;
6583 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6584 locsize, true, true);
6585
6586 // Process the deferred EXIDX sections.
6587 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6588 {
6589 unsigned int shndx = deferred_exidx_sections[i];
6590 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6591 unsigned int text_shndx;
6592 Reloc_map::const_iterator it = reloc_map.find(shndx);
6593 if (it != reloc_map.end()
6594 && find_linked_text_section(pshdrs + it->second * shdr_size,
6595 psyms, &text_shndx))
6596 this->make_exidx_input_section(shndx, shdr, text_shndx);
6597 else
6598 gold_error(_("EXIDX section %u has no linked text section."),
6599 shndx);
6600 }
6601 }
6602 }
6603
6604 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6605 // sections for unwinding. These sections are referenced implicitly by
6606 // text sections linked in the section headers. If we ignore these implict
6607 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6608 // will be garbage-collected incorrectly. Hence we override the same function
6609 // in the base class to handle these implicit references.
6610
6611 template<bool big_endian>
6612 void
6613 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6614 Layout* layout,
6615 Read_relocs_data* rd)
6616 {
6617 // First, call base class method to process relocations in this object.
6618 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6619
6620 // If --gc-sections is not specified, there is nothing more to do.
6621 // This happens when --icf is used but --gc-sections is not.
6622 if (!parameters->options().gc_sections())
6623 return;
6624
6625 unsigned int shnum = this->shnum();
6626 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6627 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6628 shnum * shdr_size,
6629 true, true);
6630
6631 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6632 // to these from the linked text sections.
6633 const unsigned char* ps = pshdrs + shdr_size;
6634 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6635 {
6636 elfcpp::Shdr<32, big_endian> shdr(ps);
6637 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6638 {
6639 // Found an .ARM.exidx section, add it to the set of reachable
6640 // sections from its linked text section.
6641 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6642 symtab->gc()->add_reference(this, text_shndx, this, i);
6643 }
6644 }
6645 }
6646
6647 // Update output local symbol count. Owing to EXIDX entry merging, some local
6648 // symbols will be removed in output. Adjust output local symbol count
6649 // accordingly. We can only changed the static output local symbol count. It
6650 // is too late to change the dynamic symbols.
6651
6652 template<bool big_endian>
6653 void
6654 Arm_relobj<big_endian>::update_output_local_symbol_count()
6655 {
6656 // Caller should check that this needs updating. We want caller checking
6657 // because output_local_symbol_count_needs_update() is most likely inlined.
6658 gold_assert(this->output_local_symbol_count_needs_update_);
6659
6660 gold_assert(this->symtab_shndx() != -1U);
6661 if (this->symtab_shndx() == 0)
6662 {
6663 // This object has no symbols. Weird but legal.
6664 return;
6665 }
6666
6667 // Read the symbol table section header.
6668 const unsigned int symtab_shndx = this->symtab_shndx();
6669 elfcpp::Shdr<32, big_endian>
6670 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6671 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6672
6673 // Read the local symbols.
6674 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6675 const unsigned int loccount = this->local_symbol_count();
6676 gold_assert(loccount == symtabshdr.get_sh_info());
6677 off_t locsize = loccount * sym_size;
6678 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6679 locsize, true, true);
6680
6681 // Loop over the local symbols.
6682
6683 typedef typename Sized_relobj<32, big_endian>::Output_sections
6684 Output_sections;
6685 const Output_sections& out_sections(this->output_sections());
6686 unsigned int shnum = this->shnum();
6687 unsigned int count = 0;
6688 // Skip the first, dummy, symbol.
6689 psyms += sym_size;
6690 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6691 {
6692 elfcpp::Sym<32, big_endian> sym(psyms);
6693
6694 Symbol_value<32>& lv((*this->local_values())[i]);
6695
6696 // This local symbol was already discarded by do_count_local_symbols.
6697 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6698 continue;
6699
6700 bool is_ordinary;
6701 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6702 &is_ordinary);
6703
6704 if (shndx < shnum)
6705 {
6706 Output_section* os = out_sections[shndx];
6707
6708 // This local symbol no longer has an output section. Discard it.
6709 if (os == NULL)
6710 {
6711 lv.set_no_output_symtab_entry();
6712 continue;
6713 }
6714
6715 // Currently we only discard parts of EXIDX input sections.
6716 // We explicitly check for a merged EXIDX input section to avoid
6717 // calling Output_section_data::output_offset unless necessary.
6718 if ((this->get_output_section_offset(shndx) == invalid_address)
6719 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6720 {
6721 section_offset_type output_offset =
6722 os->output_offset(this, shndx, lv.input_value());
6723 if (output_offset == -1)
6724 {
6725 // This symbol is defined in a part of an EXIDX input section
6726 // that is discarded due to entry merging.
6727 lv.set_no_output_symtab_entry();
6728 continue;
6729 }
6730 }
6731 }
6732
6733 ++count;
6734 }
6735
6736 this->set_output_local_symbol_count(count);
6737 this->output_local_symbol_count_needs_update_ = false;
6738 }
6739
6740 // Arm_dynobj methods.
6741
6742 // Read the symbol information.
6743
6744 template<bool big_endian>
6745 void
6746 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6747 {
6748 // Call parent class to read symbol information.
6749 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6750
6751 // Read processor-specific flags in ELF file header.
6752 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6753 elfcpp::Elf_sizes<32>::ehdr_size,
6754 true, false);
6755 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6756 this->processor_specific_flags_ = ehdr.get_e_flags();
6757
6758 // Read the attributes section if there is one.
6759 // We read from the end because gas seems to put it near the end of
6760 // the section headers.
6761 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6762 const unsigned char *ps =
6763 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6764 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6765 {
6766 elfcpp::Shdr<32, big_endian> shdr(ps);
6767 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6768 {
6769 section_offset_type section_offset = shdr.get_sh_offset();
6770 section_size_type section_size =
6771 convert_to_section_size_type(shdr.get_sh_size());
6772 File_view* view = this->get_lasting_view(section_offset,
6773 section_size, true, false);
6774 this->attributes_section_data_ =
6775 new Attributes_section_data(view->data(), section_size);
6776 break;
6777 }
6778 }
6779 }
6780
6781 // Stub_addend_reader methods.
6782
6783 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6784
6785 template<bool big_endian>
6786 elfcpp::Elf_types<32>::Elf_Swxword
6787 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6788 unsigned int r_type,
6789 const unsigned char* view,
6790 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6791 {
6792 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6793
6794 switch (r_type)
6795 {
6796 case elfcpp::R_ARM_CALL:
6797 case elfcpp::R_ARM_JUMP24:
6798 case elfcpp::R_ARM_PLT32:
6799 {
6800 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6801 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6802 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6803 return utils::sign_extend<26>(val << 2);
6804 }
6805
6806 case elfcpp::R_ARM_THM_CALL:
6807 case elfcpp::R_ARM_THM_JUMP24:
6808 case elfcpp::R_ARM_THM_XPC22:
6809 {
6810 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6811 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6812 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6813 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6814 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6815 }
6816
6817 case elfcpp::R_ARM_THM_JUMP19:
6818 {
6819 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6820 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6821 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6822 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6823 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6824 }
6825
6826 default:
6827 gold_unreachable();
6828 }
6829 }
6830
6831 // Arm_output_data_got methods.
6832
6833 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6834 // The first one is initialized to be 1, which is the module index for
6835 // the main executable and the second one 0. A reloc of the type
6836 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6837 // be applied by gold. GSYM is a global symbol.
6838 //
6839 template<bool big_endian>
6840 void
6841 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6842 unsigned int got_type,
6843 Symbol* gsym)
6844 {
6845 if (gsym->has_got_offset(got_type))
6846 return;
6847
6848 // We are doing a static link. Just mark it as belong to module 1,
6849 // the executable.
6850 unsigned int got_offset = this->add_constant(1);
6851 gsym->set_got_offset(got_type, got_offset);
6852 got_offset = this->add_constant(0);
6853 this->static_relocs_.push_back(Static_reloc(got_offset,
6854 elfcpp::R_ARM_TLS_DTPOFF32,
6855 gsym));
6856 }
6857
6858 // Same as the above but for a local symbol.
6859
6860 template<bool big_endian>
6861 void
6862 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6863 unsigned int got_type,
6864 Sized_relobj<32, big_endian>* object,
6865 unsigned int index)
6866 {
6867 if (object->local_has_got_offset(index, got_type))
6868 return;
6869
6870 // We are doing a static link. Just mark it as belong to module 1,
6871 // the executable.
6872 unsigned int got_offset = this->add_constant(1);
6873 object->set_local_got_offset(index, got_type, got_offset);
6874 got_offset = this->add_constant(0);
6875 this->static_relocs_.push_back(Static_reloc(got_offset,
6876 elfcpp::R_ARM_TLS_DTPOFF32,
6877 object, index));
6878 }
6879
6880 template<bool big_endian>
6881 void
6882 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6883 {
6884 // Call parent to write out GOT.
6885 Output_data_got<32, big_endian>::do_write(of);
6886
6887 // We are done if there is no fix up.
6888 if (this->static_relocs_.empty())
6889 return;
6890
6891 gold_assert(parameters->doing_static_link());
6892
6893 const off_t offset = this->offset();
6894 const section_size_type oview_size =
6895 convert_to_section_size_type(this->data_size());
6896 unsigned char* const oview = of->get_output_view(offset, oview_size);
6897
6898 Output_segment* tls_segment = this->layout_->tls_segment();
6899 gold_assert(tls_segment != NULL);
6900
6901 // The thread pointer $tp points to the TCB, which is followed by the
6902 // TLS. So we need to adjust $tp relative addressing by this amount.
6903 Arm_address aligned_tcb_size =
6904 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6905
6906 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6907 {
6908 Static_reloc& reloc(this->static_relocs_[i]);
6909
6910 Arm_address value;
6911 if (!reloc.symbol_is_global())
6912 {
6913 Sized_relobj<32, big_endian>* object = reloc.relobj();
6914 const Symbol_value<32>* psymval =
6915 reloc.relobj()->local_symbol(reloc.index());
6916
6917 // We are doing static linking. Issue an error and skip this
6918 // relocation if the symbol is undefined or in a discarded_section.
6919 bool is_ordinary;
6920 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6921 if ((shndx == elfcpp::SHN_UNDEF)
6922 || (is_ordinary
6923 && shndx != elfcpp::SHN_UNDEF
6924 && !object->is_section_included(shndx)
6925 && !this->symbol_table_->is_section_folded(object, shndx)))
6926 {
6927 gold_error(_("undefined or discarded local symbol %u from "
6928 " object %s in GOT"),
6929 reloc.index(), reloc.relobj()->name().c_str());
6930 continue;
6931 }
6932
6933 value = psymval->value(object, 0);
6934 }
6935 else
6936 {
6937 const Symbol* gsym = reloc.symbol();
6938 gold_assert(gsym != NULL);
6939 if (gsym->is_forwarder())
6940 gsym = this->symbol_table_->resolve_forwards(gsym);
6941
6942 // We are doing static linking. Issue an error and skip this
6943 // relocation if the symbol is undefined or in a discarded_section
6944 // unless it is a weakly_undefined symbol.
6945 if ((gsym->is_defined_in_discarded_section()
6946 || gsym->is_undefined())
6947 && !gsym->is_weak_undefined())
6948 {
6949 gold_error(_("undefined or discarded symbol %s in GOT"),
6950 gsym->name());
6951 continue;
6952 }
6953
6954 if (!gsym->is_weak_undefined())
6955 {
6956 const Sized_symbol<32>* sym =
6957 static_cast<const Sized_symbol<32>*>(gsym);
6958 value = sym->value();
6959 }
6960 else
6961 value = 0;
6962 }
6963
6964 unsigned got_offset = reloc.got_offset();
6965 gold_assert(got_offset < oview_size);
6966
6967 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6968 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6969 Valtype x;
6970 switch (reloc.r_type())
6971 {
6972 case elfcpp::R_ARM_TLS_DTPOFF32:
6973 x = value;
6974 break;
6975 case elfcpp::R_ARM_TLS_TPOFF32:
6976 x = value + aligned_tcb_size;
6977 break;
6978 default:
6979 gold_unreachable();
6980 }
6981 elfcpp::Swap<32, big_endian>::writeval(wv, x);
6982 }
6983
6984 of->write_output_view(offset, oview_size, oview);
6985 }
6986
6987 // A class to handle the PLT data.
6988
6989 template<bool big_endian>
6990 class Output_data_plt_arm : public Output_section_data
6991 {
6992 public:
6993 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6994 Reloc_section;
6995
6996 Output_data_plt_arm(Layout*, Output_data_space*);
6997
6998 // Add an entry to the PLT.
6999 void
7000 add_entry(Symbol* gsym);
7001
7002 // Return the .rel.plt section data.
7003 const Reloc_section*
7004 rel_plt() const
7005 { return this->rel_; }
7006
7007 protected:
7008 void
7009 do_adjust_output_section(Output_section* os);
7010
7011 // Write to a map file.
7012 void
7013 do_print_to_mapfile(Mapfile* mapfile) const
7014 { mapfile->print_output_data(this, _("** PLT")); }
7015
7016 private:
7017 // Template for the first PLT entry.
7018 static const uint32_t first_plt_entry[5];
7019
7020 // Template for subsequent PLT entries.
7021 static const uint32_t plt_entry[3];
7022
7023 // Set the final size.
7024 void
7025 set_final_data_size()
7026 {
7027 this->set_data_size(sizeof(first_plt_entry)
7028 + this->count_ * sizeof(plt_entry));
7029 }
7030
7031 // Write out the PLT data.
7032 void
7033 do_write(Output_file*);
7034
7035 // The reloc section.
7036 Reloc_section* rel_;
7037 // The .got.plt section.
7038 Output_data_space* got_plt_;
7039 // The number of PLT entries.
7040 unsigned int count_;
7041 };
7042
7043 // Create the PLT section. The ordinary .got section is an argument,
7044 // since we need to refer to the start. We also create our own .got
7045 // section just for PLT entries.
7046
7047 template<bool big_endian>
7048 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7049 Output_data_space* got_plt)
7050 : Output_section_data(4), got_plt_(got_plt), count_(0)
7051 {
7052 this->rel_ = new Reloc_section(false);
7053 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7054 elfcpp::SHF_ALLOC, this->rel_, true, false,
7055 false, false);
7056 }
7057
7058 template<bool big_endian>
7059 void
7060 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7061 {
7062 os->set_entsize(0);
7063 }
7064
7065 // Add an entry to the PLT.
7066
7067 template<bool big_endian>
7068 void
7069 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7070 {
7071 gold_assert(!gsym->has_plt_offset());
7072
7073 // Note that when setting the PLT offset we skip the initial
7074 // reserved PLT entry.
7075 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7076 + sizeof(first_plt_entry));
7077
7078 ++this->count_;
7079
7080 section_offset_type got_offset = this->got_plt_->current_data_size();
7081
7082 // Every PLT entry needs a GOT entry which points back to the PLT
7083 // entry (this will be changed by the dynamic linker, normally
7084 // lazily when the function is called).
7085 this->got_plt_->set_current_data_size(got_offset + 4);
7086
7087 // Every PLT entry needs a reloc.
7088 gsym->set_needs_dynsym_entry();
7089 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7090 got_offset);
7091
7092 // Note that we don't need to save the symbol. The contents of the
7093 // PLT are independent of which symbols are used. The symbols only
7094 // appear in the relocations.
7095 }
7096
7097 // ARM PLTs.
7098 // FIXME: This is not very flexible. Right now this has only been tested
7099 // on armv5te. If we are to support additional architecture features like
7100 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7101
7102 // The first entry in the PLT.
7103 template<bool big_endian>
7104 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7105 {
7106 0xe52de004, // str lr, [sp, #-4]!
7107 0xe59fe004, // ldr lr, [pc, #4]
7108 0xe08fe00e, // add lr, pc, lr
7109 0xe5bef008, // ldr pc, [lr, #8]!
7110 0x00000000, // &GOT[0] - .
7111 };
7112
7113 // Subsequent entries in the PLT.
7114
7115 template<bool big_endian>
7116 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7117 {
7118 0xe28fc600, // add ip, pc, #0xNN00000
7119 0xe28cca00, // add ip, ip, #0xNN000
7120 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7121 };
7122
7123 // Write out the PLT. This uses the hand-coded instructions above,
7124 // and adjusts them as needed. This is all specified by the arm ELF
7125 // Processor Supplement.
7126
7127 template<bool big_endian>
7128 void
7129 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7130 {
7131 const off_t offset = this->offset();
7132 const section_size_type oview_size =
7133 convert_to_section_size_type(this->data_size());
7134 unsigned char* const oview = of->get_output_view(offset, oview_size);
7135
7136 const off_t got_file_offset = this->got_plt_->offset();
7137 const section_size_type got_size =
7138 convert_to_section_size_type(this->got_plt_->data_size());
7139 unsigned char* const got_view = of->get_output_view(got_file_offset,
7140 got_size);
7141 unsigned char* pov = oview;
7142
7143 Arm_address plt_address = this->address();
7144 Arm_address got_address = this->got_plt_->address();
7145
7146 // Write first PLT entry. All but the last word are constants.
7147 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7148 / sizeof(plt_entry[0]));
7149 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7150 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7151 // Last word in first PLT entry is &GOT[0] - .
7152 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7153 got_address - (plt_address + 16));
7154 pov += sizeof(first_plt_entry);
7155
7156 unsigned char* got_pov = got_view;
7157
7158 memset(got_pov, 0, 12);
7159 got_pov += 12;
7160
7161 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7162 unsigned int plt_offset = sizeof(first_plt_entry);
7163 unsigned int plt_rel_offset = 0;
7164 unsigned int got_offset = 12;
7165 const unsigned int count = this->count_;
7166 for (unsigned int i = 0;
7167 i < count;
7168 ++i,
7169 pov += sizeof(plt_entry),
7170 got_pov += 4,
7171 plt_offset += sizeof(plt_entry),
7172 plt_rel_offset += rel_size,
7173 got_offset += 4)
7174 {
7175 // Set and adjust the PLT entry itself.
7176 int32_t offset = ((got_address + got_offset)
7177 - (plt_address + plt_offset + 8));
7178
7179 gold_assert(offset >= 0 && offset < 0x0fffffff);
7180 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7181 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7182 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7183 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7184 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7185 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7186
7187 // Set the entry in the GOT.
7188 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7189 }
7190
7191 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7192 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7193
7194 of->write_output_view(offset, oview_size, oview);
7195 of->write_output_view(got_file_offset, got_size, got_view);
7196 }
7197
7198 // Create a PLT entry for a global symbol.
7199
7200 template<bool big_endian>
7201 void
7202 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7203 Symbol* gsym)
7204 {
7205 if (gsym->has_plt_offset())
7206 return;
7207
7208 if (this->plt_ == NULL)
7209 {
7210 // Create the GOT sections first.
7211 this->got_section(symtab, layout);
7212
7213 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7214 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7215 (elfcpp::SHF_ALLOC
7216 | elfcpp::SHF_EXECINSTR),
7217 this->plt_, false, false, false, false);
7218 }
7219 this->plt_->add_entry(gsym);
7220 }
7221
7222 // Get the section to use for TLS_DESC relocations.
7223
7224 template<bool big_endian>
7225 typename Target_arm<big_endian>::Reloc_section*
7226 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7227 {
7228 return this->plt_section()->rel_tls_desc(layout);
7229 }
7230
7231 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7232
7233 template<bool big_endian>
7234 void
7235 Target_arm<big_endian>::define_tls_base_symbol(
7236 Symbol_table* symtab,
7237 Layout* layout)
7238 {
7239 if (this->tls_base_symbol_defined_)
7240 return;
7241
7242 Output_segment* tls_segment = layout->tls_segment();
7243 if (tls_segment != NULL)
7244 {
7245 bool is_exec = parameters->options().output_is_executable();
7246 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7247 Symbol_table::PREDEFINED,
7248 tls_segment, 0, 0,
7249 elfcpp::STT_TLS,
7250 elfcpp::STB_LOCAL,
7251 elfcpp::STV_HIDDEN, 0,
7252 (is_exec
7253 ? Symbol::SEGMENT_END
7254 : Symbol::SEGMENT_START),
7255 true);
7256 }
7257 this->tls_base_symbol_defined_ = true;
7258 }
7259
7260 // Create a GOT entry for the TLS module index.
7261
7262 template<bool big_endian>
7263 unsigned int
7264 Target_arm<big_endian>::got_mod_index_entry(
7265 Symbol_table* symtab,
7266 Layout* layout,
7267 Sized_relobj<32, big_endian>* object)
7268 {
7269 if (this->got_mod_index_offset_ == -1U)
7270 {
7271 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7272 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7273 unsigned int got_offset;
7274 if (!parameters->doing_static_link())
7275 {
7276 got_offset = got->add_constant(0);
7277 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7278 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7279 got_offset);
7280 }
7281 else
7282 {
7283 // We are doing a static link. Just mark it as belong to module 1,
7284 // the executable.
7285 got_offset = got->add_constant(1);
7286 }
7287
7288 got->add_constant(0);
7289 this->got_mod_index_offset_ = got_offset;
7290 }
7291 return this->got_mod_index_offset_;
7292 }
7293
7294 // Optimize the TLS relocation type based on what we know about the
7295 // symbol. IS_FINAL is true if the final address of this symbol is
7296 // known at link time.
7297
7298 template<bool big_endian>
7299 tls::Tls_optimization
7300 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7301 {
7302 // FIXME: Currently we do not do any TLS optimization.
7303 return tls::TLSOPT_NONE;
7304 }
7305
7306 // Report an unsupported relocation against a local symbol.
7307
7308 template<bool big_endian>
7309 void
7310 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7311 Sized_relobj<32, big_endian>* object,
7312 unsigned int r_type)
7313 {
7314 gold_error(_("%s: unsupported reloc %u against local symbol"),
7315 object->name().c_str(), r_type);
7316 }
7317
7318 // We are about to emit a dynamic relocation of type R_TYPE. If the
7319 // dynamic linker does not support it, issue an error. The GNU linker
7320 // only issues a non-PIC error for an allocated read-only section.
7321 // Here we know the section is allocated, but we don't know that it is
7322 // read-only. But we check for all the relocation types which the
7323 // glibc dynamic linker supports, so it seems appropriate to issue an
7324 // error even if the section is not read-only.
7325
7326 template<bool big_endian>
7327 void
7328 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7329 unsigned int r_type)
7330 {
7331 switch (r_type)
7332 {
7333 // These are the relocation types supported by glibc for ARM.
7334 case elfcpp::R_ARM_RELATIVE:
7335 case elfcpp::R_ARM_COPY:
7336 case elfcpp::R_ARM_GLOB_DAT:
7337 case elfcpp::R_ARM_JUMP_SLOT:
7338 case elfcpp::R_ARM_ABS32:
7339 case elfcpp::R_ARM_ABS32_NOI:
7340 case elfcpp::R_ARM_PC24:
7341 // FIXME: The following 3 types are not supported by Android's dynamic
7342 // linker.
7343 case elfcpp::R_ARM_TLS_DTPMOD32:
7344 case elfcpp::R_ARM_TLS_DTPOFF32:
7345 case elfcpp::R_ARM_TLS_TPOFF32:
7346 return;
7347
7348 default:
7349 {
7350 // This prevents us from issuing more than one error per reloc
7351 // section. But we can still wind up issuing more than one
7352 // error per object file.
7353 if (this->issued_non_pic_error_)
7354 return;
7355 const Arm_reloc_property* reloc_property =
7356 arm_reloc_property_table->get_reloc_property(r_type);
7357 gold_assert(reloc_property != NULL);
7358 object->error(_("requires unsupported dynamic reloc %s; "
7359 "recompile with -fPIC"),
7360 reloc_property->name().c_str());
7361 this->issued_non_pic_error_ = true;
7362 return;
7363 }
7364
7365 case elfcpp::R_ARM_NONE:
7366 gold_unreachable();
7367 }
7368 }
7369
7370 // Scan a relocation for a local symbol.
7371 // FIXME: This only handles a subset of relocation types used by Android
7372 // on ARM v5te devices.
7373
7374 template<bool big_endian>
7375 inline void
7376 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7377 Layout* layout,
7378 Target_arm* target,
7379 Sized_relobj<32, big_endian>* object,
7380 unsigned int data_shndx,
7381 Output_section* output_section,
7382 const elfcpp::Rel<32, big_endian>& reloc,
7383 unsigned int r_type,
7384 const elfcpp::Sym<32, big_endian>& lsym)
7385 {
7386 r_type = get_real_reloc_type(r_type);
7387 switch (r_type)
7388 {
7389 case elfcpp::R_ARM_NONE:
7390 case elfcpp::R_ARM_V4BX:
7391 case elfcpp::R_ARM_GNU_VTENTRY:
7392 case elfcpp::R_ARM_GNU_VTINHERIT:
7393 break;
7394
7395 case elfcpp::R_ARM_ABS32:
7396 case elfcpp::R_ARM_ABS32_NOI:
7397 // If building a shared library (or a position-independent
7398 // executable), we need to create a dynamic relocation for
7399 // this location. The relocation applied at link time will
7400 // apply the link-time value, so we flag the location with
7401 // an R_ARM_RELATIVE relocation so the dynamic loader can
7402 // relocate it easily.
7403 if (parameters->options().output_is_position_independent())
7404 {
7405 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7406 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7407 // If we are to add more other reloc types than R_ARM_ABS32,
7408 // we need to add check_non_pic(object, r_type) here.
7409 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7410 output_section, data_shndx,
7411 reloc.get_r_offset());
7412 }
7413 break;
7414
7415 case elfcpp::R_ARM_ABS16:
7416 case elfcpp::R_ARM_ABS12:
7417 case elfcpp::R_ARM_THM_ABS5:
7418 case elfcpp::R_ARM_ABS8:
7419 case elfcpp::R_ARM_BASE_ABS:
7420 case elfcpp::R_ARM_MOVW_ABS_NC:
7421 case elfcpp::R_ARM_MOVT_ABS:
7422 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7423 case elfcpp::R_ARM_THM_MOVT_ABS:
7424 // If building a shared library (or a position-independent
7425 // executable), we need to create a dynamic relocation for
7426 // this location. Because the addend needs to remain in the
7427 // data section, we need to be careful not to apply this
7428 // relocation statically.
7429 if (parameters->options().output_is_position_independent())
7430 {
7431 check_non_pic(object, r_type);
7432 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7433 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7434 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7435 rel_dyn->add_local(object, r_sym, r_type, output_section,
7436 data_shndx, reloc.get_r_offset());
7437 else
7438 {
7439 gold_assert(lsym.get_st_value() == 0);
7440 unsigned int shndx = lsym.get_st_shndx();
7441 bool is_ordinary;
7442 shndx = object->adjust_sym_shndx(r_sym, shndx,
7443 &is_ordinary);
7444 if (!is_ordinary)
7445 object->error(_("section symbol %u has bad shndx %u"),
7446 r_sym, shndx);
7447 else
7448 rel_dyn->add_local_section(object, shndx,
7449 r_type, output_section,
7450 data_shndx, reloc.get_r_offset());
7451 }
7452 }
7453 break;
7454
7455 case elfcpp::R_ARM_PC24:
7456 case elfcpp::R_ARM_REL32:
7457 case elfcpp::R_ARM_LDR_PC_G0:
7458 case elfcpp::R_ARM_SBREL32:
7459 case elfcpp::R_ARM_THM_CALL:
7460 case elfcpp::R_ARM_THM_PC8:
7461 case elfcpp::R_ARM_BASE_PREL:
7462 case elfcpp::R_ARM_PLT32:
7463 case elfcpp::R_ARM_CALL:
7464 case elfcpp::R_ARM_JUMP24:
7465 case elfcpp::R_ARM_THM_JUMP24:
7466 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7467 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7468 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7469 case elfcpp::R_ARM_SBREL31:
7470 case elfcpp::R_ARM_PREL31:
7471 case elfcpp::R_ARM_MOVW_PREL_NC:
7472 case elfcpp::R_ARM_MOVT_PREL:
7473 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7474 case elfcpp::R_ARM_THM_MOVT_PREL:
7475 case elfcpp::R_ARM_THM_JUMP19:
7476 case elfcpp::R_ARM_THM_JUMP6:
7477 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7478 case elfcpp::R_ARM_THM_PC12:
7479 case elfcpp::R_ARM_REL32_NOI:
7480 case elfcpp::R_ARM_ALU_PC_G0_NC:
7481 case elfcpp::R_ARM_ALU_PC_G0:
7482 case elfcpp::R_ARM_ALU_PC_G1_NC:
7483 case elfcpp::R_ARM_ALU_PC_G1:
7484 case elfcpp::R_ARM_ALU_PC_G2:
7485 case elfcpp::R_ARM_LDR_PC_G1:
7486 case elfcpp::R_ARM_LDR_PC_G2:
7487 case elfcpp::R_ARM_LDRS_PC_G0:
7488 case elfcpp::R_ARM_LDRS_PC_G1:
7489 case elfcpp::R_ARM_LDRS_PC_G2:
7490 case elfcpp::R_ARM_LDC_PC_G0:
7491 case elfcpp::R_ARM_LDC_PC_G1:
7492 case elfcpp::R_ARM_LDC_PC_G2:
7493 case elfcpp::R_ARM_ALU_SB_G0_NC:
7494 case elfcpp::R_ARM_ALU_SB_G0:
7495 case elfcpp::R_ARM_ALU_SB_G1_NC:
7496 case elfcpp::R_ARM_ALU_SB_G1:
7497 case elfcpp::R_ARM_ALU_SB_G2:
7498 case elfcpp::R_ARM_LDR_SB_G0:
7499 case elfcpp::R_ARM_LDR_SB_G1:
7500 case elfcpp::R_ARM_LDR_SB_G2:
7501 case elfcpp::R_ARM_LDRS_SB_G0:
7502 case elfcpp::R_ARM_LDRS_SB_G1:
7503 case elfcpp::R_ARM_LDRS_SB_G2:
7504 case elfcpp::R_ARM_LDC_SB_G0:
7505 case elfcpp::R_ARM_LDC_SB_G1:
7506 case elfcpp::R_ARM_LDC_SB_G2:
7507 case elfcpp::R_ARM_MOVW_BREL_NC:
7508 case elfcpp::R_ARM_MOVT_BREL:
7509 case elfcpp::R_ARM_MOVW_BREL:
7510 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7511 case elfcpp::R_ARM_THM_MOVT_BREL:
7512 case elfcpp::R_ARM_THM_MOVW_BREL:
7513 case elfcpp::R_ARM_THM_JUMP11:
7514 case elfcpp::R_ARM_THM_JUMP8:
7515 // We don't need to do anything for a relative addressing relocation
7516 // against a local symbol if it does not reference the GOT.
7517 break;
7518
7519 case elfcpp::R_ARM_GOTOFF32:
7520 case elfcpp::R_ARM_GOTOFF12:
7521 // We need a GOT section:
7522 target->got_section(symtab, layout);
7523 break;
7524
7525 case elfcpp::R_ARM_GOT_BREL:
7526 case elfcpp::R_ARM_GOT_PREL:
7527 {
7528 // The symbol requires a GOT entry.
7529 Arm_output_data_got<big_endian>* got =
7530 target->got_section(symtab, layout);
7531 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7532 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7533 {
7534 // If we are generating a shared object, we need to add a
7535 // dynamic RELATIVE relocation for this symbol's GOT entry.
7536 if (parameters->options().output_is_position_independent())
7537 {
7538 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7539 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7540 rel_dyn->add_local_relative(
7541 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7542 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7543 }
7544 }
7545 }
7546 break;
7547
7548 case elfcpp::R_ARM_TARGET1:
7549 case elfcpp::R_ARM_TARGET2:
7550 // This should have been mapped to another type already.
7551 // Fall through.
7552 case elfcpp::R_ARM_COPY:
7553 case elfcpp::R_ARM_GLOB_DAT:
7554 case elfcpp::R_ARM_JUMP_SLOT:
7555 case elfcpp::R_ARM_RELATIVE:
7556 // These are relocations which should only be seen by the
7557 // dynamic linker, and should never be seen here.
7558 gold_error(_("%s: unexpected reloc %u in object file"),
7559 object->name().c_str(), r_type);
7560 break;
7561
7562
7563 // These are initial TLS relocs, which are expected when
7564 // linking.
7565 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7566 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7567 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7568 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7569 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7570 {
7571 bool output_is_shared = parameters->options().shared();
7572 const tls::Tls_optimization optimized_type
7573 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7574 r_type);
7575 switch (r_type)
7576 {
7577 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7578 if (optimized_type == tls::TLSOPT_NONE)
7579 {
7580 // Create a pair of GOT entries for the module index and
7581 // dtv-relative offset.
7582 Arm_output_data_got<big_endian>* got
7583 = target->got_section(symtab, layout);
7584 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7585 unsigned int shndx = lsym.get_st_shndx();
7586 bool is_ordinary;
7587 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7588 if (!is_ordinary)
7589 {
7590 object->error(_("local symbol %u has bad shndx %u"),
7591 r_sym, shndx);
7592 break;
7593 }
7594
7595 if (!parameters->doing_static_link())
7596 got->add_local_pair_with_rel(object, r_sym, shndx,
7597 GOT_TYPE_TLS_PAIR,
7598 target->rel_dyn_section(layout),
7599 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7600 else
7601 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7602 object, r_sym);
7603 }
7604 else
7605 // FIXME: TLS optimization not supported yet.
7606 gold_unreachable();
7607 break;
7608
7609 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7610 if (optimized_type == tls::TLSOPT_NONE)
7611 {
7612 // Create a GOT entry for the module index.
7613 target->got_mod_index_entry(symtab, layout, object);
7614 }
7615 else
7616 // FIXME: TLS optimization not supported yet.
7617 gold_unreachable();
7618 break;
7619
7620 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7621 break;
7622
7623 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7624 layout->set_has_static_tls();
7625 if (optimized_type == tls::TLSOPT_NONE)
7626 {
7627 // Create a GOT entry for the tp-relative offset.
7628 Arm_output_data_got<big_endian>* got
7629 = target->got_section(symtab, layout);
7630 unsigned int r_sym =
7631 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7632 if (!parameters->doing_static_link())
7633 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7634 target->rel_dyn_section(layout),
7635 elfcpp::R_ARM_TLS_TPOFF32);
7636 else if (!object->local_has_got_offset(r_sym,
7637 GOT_TYPE_TLS_OFFSET))
7638 {
7639 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7640 unsigned int got_offset =
7641 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7642 got->add_static_reloc(got_offset,
7643 elfcpp::R_ARM_TLS_TPOFF32, object,
7644 r_sym);
7645 }
7646 }
7647 else
7648 // FIXME: TLS optimization not supported yet.
7649 gold_unreachable();
7650 break;
7651
7652 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7653 layout->set_has_static_tls();
7654 if (output_is_shared)
7655 {
7656 // We need to create a dynamic relocation.
7657 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7658 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7659 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7660 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7661 output_section, data_shndx,
7662 reloc.get_r_offset());
7663 }
7664 break;
7665
7666 default:
7667 gold_unreachable();
7668 }
7669 }
7670 break;
7671
7672 default:
7673 unsupported_reloc_local(object, r_type);
7674 break;
7675 }
7676 }
7677
7678 // Report an unsupported relocation against a global symbol.
7679
7680 template<bool big_endian>
7681 void
7682 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7683 Sized_relobj<32, big_endian>* object,
7684 unsigned int r_type,
7685 Symbol* gsym)
7686 {
7687 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7688 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7689 }
7690
7691 // Scan a relocation for a global symbol.
7692
7693 template<bool big_endian>
7694 inline void
7695 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7696 Layout* layout,
7697 Target_arm* target,
7698 Sized_relobj<32, big_endian>* object,
7699 unsigned int data_shndx,
7700 Output_section* output_section,
7701 const elfcpp::Rel<32, big_endian>& reloc,
7702 unsigned int r_type,
7703 Symbol* gsym)
7704 {
7705 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7706 // section. We check here to avoid creating a dynamic reloc against
7707 // _GLOBAL_OFFSET_TABLE_.
7708 if (!target->has_got_section()
7709 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7710 target->got_section(symtab, layout);
7711
7712 r_type = get_real_reloc_type(r_type);
7713 switch (r_type)
7714 {
7715 case elfcpp::R_ARM_NONE:
7716 case elfcpp::R_ARM_V4BX:
7717 case elfcpp::R_ARM_GNU_VTENTRY:
7718 case elfcpp::R_ARM_GNU_VTINHERIT:
7719 break;
7720
7721 case elfcpp::R_ARM_ABS32:
7722 case elfcpp::R_ARM_ABS16:
7723 case elfcpp::R_ARM_ABS12:
7724 case elfcpp::R_ARM_THM_ABS5:
7725 case elfcpp::R_ARM_ABS8:
7726 case elfcpp::R_ARM_BASE_ABS:
7727 case elfcpp::R_ARM_MOVW_ABS_NC:
7728 case elfcpp::R_ARM_MOVT_ABS:
7729 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7730 case elfcpp::R_ARM_THM_MOVT_ABS:
7731 case elfcpp::R_ARM_ABS32_NOI:
7732 // Absolute addressing relocations.
7733 {
7734 // Make a PLT entry if necessary.
7735 if (this->symbol_needs_plt_entry(gsym))
7736 {
7737 target->make_plt_entry(symtab, layout, gsym);
7738 // Since this is not a PC-relative relocation, we may be
7739 // taking the address of a function. In that case we need to
7740 // set the entry in the dynamic symbol table to the address of
7741 // the PLT entry.
7742 if (gsym->is_from_dynobj() && !parameters->options().shared())
7743 gsym->set_needs_dynsym_value();
7744 }
7745 // Make a dynamic relocation if necessary.
7746 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7747 {
7748 if (gsym->may_need_copy_reloc())
7749 {
7750 target->copy_reloc(symtab, layout, object,
7751 data_shndx, output_section, gsym, reloc);
7752 }
7753 else if ((r_type == elfcpp::R_ARM_ABS32
7754 || r_type == elfcpp::R_ARM_ABS32_NOI)
7755 && gsym->can_use_relative_reloc(false))
7756 {
7757 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7758 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7759 output_section, object,
7760 data_shndx, reloc.get_r_offset());
7761 }
7762 else
7763 {
7764 check_non_pic(object, r_type);
7765 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7766 rel_dyn->add_global(gsym, r_type, output_section, object,
7767 data_shndx, reloc.get_r_offset());
7768 }
7769 }
7770 }
7771 break;
7772
7773 case elfcpp::R_ARM_GOTOFF32:
7774 case elfcpp::R_ARM_GOTOFF12:
7775 // We need a GOT section.
7776 target->got_section(symtab, layout);
7777 break;
7778
7779 case elfcpp::R_ARM_REL32:
7780 case elfcpp::R_ARM_LDR_PC_G0:
7781 case elfcpp::R_ARM_SBREL32:
7782 case elfcpp::R_ARM_THM_PC8:
7783 case elfcpp::R_ARM_BASE_PREL:
7784 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7785 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7786 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7787 case elfcpp::R_ARM_MOVW_PREL_NC:
7788 case elfcpp::R_ARM_MOVT_PREL:
7789 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7790 case elfcpp::R_ARM_THM_MOVT_PREL:
7791 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7792 case elfcpp::R_ARM_THM_PC12:
7793 case elfcpp::R_ARM_REL32_NOI:
7794 case elfcpp::R_ARM_ALU_PC_G0_NC:
7795 case elfcpp::R_ARM_ALU_PC_G0:
7796 case elfcpp::R_ARM_ALU_PC_G1_NC:
7797 case elfcpp::R_ARM_ALU_PC_G1:
7798 case elfcpp::R_ARM_ALU_PC_G2:
7799 case elfcpp::R_ARM_LDR_PC_G1:
7800 case elfcpp::R_ARM_LDR_PC_G2:
7801 case elfcpp::R_ARM_LDRS_PC_G0:
7802 case elfcpp::R_ARM_LDRS_PC_G1:
7803 case elfcpp::R_ARM_LDRS_PC_G2:
7804 case elfcpp::R_ARM_LDC_PC_G0:
7805 case elfcpp::R_ARM_LDC_PC_G1:
7806 case elfcpp::R_ARM_LDC_PC_G2:
7807 case elfcpp::R_ARM_ALU_SB_G0_NC:
7808 case elfcpp::R_ARM_ALU_SB_G0:
7809 case elfcpp::R_ARM_ALU_SB_G1_NC:
7810 case elfcpp::R_ARM_ALU_SB_G1:
7811 case elfcpp::R_ARM_ALU_SB_G2:
7812 case elfcpp::R_ARM_LDR_SB_G0:
7813 case elfcpp::R_ARM_LDR_SB_G1:
7814 case elfcpp::R_ARM_LDR_SB_G2:
7815 case elfcpp::R_ARM_LDRS_SB_G0:
7816 case elfcpp::R_ARM_LDRS_SB_G1:
7817 case elfcpp::R_ARM_LDRS_SB_G2:
7818 case elfcpp::R_ARM_LDC_SB_G0:
7819 case elfcpp::R_ARM_LDC_SB_G1:
7820 case elfcpp::R_ARM_LDC_SB_G2:
7821 case elfcpp::R_ARM_MOVW_BREL_NC:
7822 case elfcpp::R_ARM_MOVT_BREL:
7823 case elfcpp::R_ARM_MOVW_BREL:
7824 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7825 case elfcpp::R_ARM_THM_MOVT_BREL:
7826 case elfcpp::R_ARM_THM_MOVW_BREL:
7827 // Relative addressing relocations.
7828 {
7829 // Make a dynamic relocation if necessary.
7830 int flags = Symbol::NON_PIC_REF;
7831 if (gsym->needs_dynamic_reloc(flags))
7832 {
7833 if (target->may_need_copy_reloc(gsym))
7834 {
7835 target->copy_reloc(symtab, layout, object,
7836 data_shndx, output_section, gsym, reloc);
7837 }
7838 else
7839 {
7840 check_non_pic(object, r_type);
7841 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7842 rel_dyn->add_global(gsym, r_type, output_section, object,
7843 data_shndx, reloc.get_r_offset());
7844 }
7845 }
7846 }
7847 break;
7848
7849 case elfcpp::R_ARM_PC24:
7850 case elfcpp::R_ARM_THM_CALL:
7851 case elfcpp::R_ARM_PLT32:
7852 case elfcpp::R_ARM_CALL:
7853 case elfcpp::R_ARM_JUMP24:
7854 case elfcpp::R_ARM_THM_JUMP24:
7855 case elfcpp::R_ARM_SBREL31:
7856 case elfcpp::R_ARM_PREL31:
7857 case elfcpp::R_ARM_THM_JUMP19:
7858 case elfcpp::R_ARM_THM_JUMP6:
7859 case elfcpp::R_ARM_THM_JUMP11:
7860 case elfcpp::R_ARM_THM_JUMP8:
7861 // All the relocation above are branches except for the PREL31 ones.
7862 // A PREL31 relocation can point to a personality function in a shared
7863 // library. In that case we want to use a PLT because we want to
7864 // call the personality routine and the dyanmic linkers we care about
7865 // do not support dynamic PREL31 relocations. An REL31 relocation may
7866 // point to a function whose unwinding behaviour is being described but
7867 // we will not mistakenly generate a PLT for that because we should use
7868 // a local section symbol.
7869
7870 // If the symbol is fully resolved, this is just a relative
7871 // local reloc. Otherwise we need a PLT entry.
7872 if (gsym->final_value_is_known())
7873 break;
7874 // If building a shared library, we can also skip the PLT entry
7875 // if the symbol is defined in the output file and is protected
7876 // or hidden.
7877 if (gsym->is_defined()
7878 && !gsym->is_from_dynobj()
7879 && !gsym->is_preemptible())
7880 break;
7881 target->make_plt_entry(symtab, layout, gsym);
7882 break;
7883
7884 case elfcpp::R_ARM_GOT_BREL:
7885 case elfcpp::R_ARM_GOT_ABS:
7886 case elfcpp::R_ARM_GOT_PREL:
7887 {
7888 // The symbol requires a GOT entry.
7889 Arm_output_data_got<big_endian>* got =
7890 target->got_section(symtab, layout);
7891 if (gsym->final_value_is_known())
7892 got->add_global(gsym, GOT_TYPE_STANDARD);
7893 else
7894 {
7895 // If this symbol is not fully resolved, we need to add a
7896 // GOT entry with a dynamic relocation.
7897 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7898 if (gsym->is_from_dynobj()
7899 || gsym->is_undefined()
7900 || gsym->is_preemptible())
7901 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7902 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7903 else
7904 {
7905 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7906 rel_dyn->add_global_relative(
7907 gsym, elfcpp::R_ARM_RELATIVE, got,
7908 gsym->got_offset(GOT_TYPE_STANDARD));
7909 }
7910 }
7911 }
7912 break;
7913
7914 case elfcpp::R_ARM_TARGET1:
7915 case elfcpp::R_ARM_TARGET2:
7916 // These should have been mapped to other types already.
7917 // Fall through.
7918 case elfcpp::R_ARM_COPY:
7919 case elfcpp::R_ARM_GLOB_DAT:
7920 case elfcpp::R_ARM_JUMP_SLOT:
7921 case elfcpp::R_ARM_RELATIVE:
7922 // These are relocations which should only be seen by the
7923 // dynamic linker, and should never be seen here.
7924 gold_error(_("%s: unexpected reloc %u in object file"),
7925 object->name().c_str(), r_type);
7926 break;
7927
7928 // These are initial tls relocs, which are expected when
7929 // linking.
7930 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7931 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7932 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7933 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7934 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7935 {
7936 const bool is_final = gsym->final_value_is_known();
7937 const tls::Tls_optimization optimized_type
7938 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7939 switch (r_type)
7940 {
7941 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7942 if (optimized_type == tls::TLSOPT_NONE)
7943 {
7944 // Create a pair of GOT entries for the module index and
7945 // dtv-relative offset.
7946 Arm_output_data_got<big_endian>* got
7947 = target->got_section(symtab, layout);
7948 if (!parameters->doing_static_link())
7949 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7950 target->rel_dyn_section(layout),
7951 elfcpp::R_ARM_TLS_DTPMOD32,
7952 elfcpp::R_ARM_TLS_DTPOFF32);
7953 else
7954 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
7955 }
7956 else
7957 // FIXME: TLS optimization not supported yet.
7958 gold_unreachable();
7959 break;
7960
7961 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7962 if (optimized_type == tls::TLSOPT_NONE)
7963 {
7964 // Create a GOT entry for the module index.
7965 target->got_mod_index_entry(symtab, layout, object);
7966 }
7967 else
7968 // FIXME: TLS optimization not supported yet.
7969 gold_unreachable();
7970 break;
7971
7972 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7973 break;
7974
7975 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7976 layout->set_has_static_tls();
7977 if (optimized_type == tls::TLSOPT_NONE)
7978 {
7979 // Create a GOT entry for the tp-relative offset.
7980 Arm_output_data_got<big_endian>* got
7981 = target->got_section(symtab, layout);
7982 if (!parameters->doing_static_link())
7983 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7984 target->rel_dyn_section(layout),
7985 elfcpp::R_ARM_TLS_TPOFF32);
7986 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7987 {
7988 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7989 unsigned int got_offset =
7990 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7991 got->add_static_reloc(got_offset,
7992 elfcpp::R_ARM_TLS_TPOFF32, gsym);
7993 }
7994 }
7995 else
7996 // FIXME: TLS optimization not supported yet.
7997 gold_unreachable();
7998 break;
7999
8000 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8001 layout->set_has_static_tls();
8002 if (parameters->options().shared())
8003 {
8004 // We need to create a dynamic relocation.
8005 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8006 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8007 output_section, object,
8008 data_shndx, reloc.get_r_offset());
8009 }
8010 break;
8011
8012 default:
8013 gold_unreachable();
8014 }
8015 }
8016 break;
8017
8018 default:
8019 unsupported_reloc_global(object, r_type, gsym);
8020 break;
8021 }
8022 }
8023
8024 // Process relocations for gc.
8025
8026 template<bool big_endian>
8027 void
8028 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8029 Layout* layout,
8030 Sized_relobj<32, big_endian>* object,
8031 unsigned int data_shndx,
8032 unsigned int,
8033 const unsigned char* prelocs,
8034 size_t reloc_count,
8035 Output_section* output_section,
8036 bool needs_special_offset_handling,
8037 size_t local_symbol_count,
8038 const unsigned char* plocal_symbols)
8039 {
8040 typedef Target_arm<big_endian> Arm;
8041 typedef typename Target_arm<big_endian>::Scan Scan;
8042
8043 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
8044 symtab,
8045 layout,
8046 this,
8047 object,
8048 data_shndx,
8049 prelocs,
8050 reloc_count,
8051 output_section,
8052 needs_special_offset_handling,
8053 local_symbol_count,
8054 plocal_symbols);
8055 }
8056
8057 // Scan relocations for a section.
8058
8059 template<bool big_endian>
8060 void
8061 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8062 Layout* layout,
8063 Sized_relobj<32, big_endian>* object,
8064 unsigned int data_shndx,
8065 unsigned int sh_type,
8066 const unsigned char* prelocs,
8067 size_t reloc_count,
8068 Output_section* output_section,
8069 bool needs_special_offset_handling,
8070 size_t local_symbol_count,
8071 const unsigned char* plocal_symbols)
8072 {
8073 typedef typename Target_arm<big_endian>::Scan Scan;
8074 if (sh_type == elfcpp::SHT_RELA)
8075 {
8076 gold_error(_("%s: unsupported RELA reloc section"),
8077 object->name().c_str());
8078 return;
8079 }
8080
8081 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8082 symtab,
8083 layout,
8084 this,
8085 object,
8086 data_shndx,
8087 prelocs,
8088 reloc_count,
8089 output_section,
8090 needs_special_offset_handling,
8091 local_symbol_count,
8092 plocal_symbols);
8093 }
8094
8095 // Finalize the sections.
8096
8097 template<bool big_endian>
8098 void
8099 Target_arm<big_endian>::do_finalize_sections(
8100 Layout* layout,
8101 const Input_objects* input_objects,
8102 Symbol_table* symtab)
8103 {
8104 // Merge processor-specific flags.
8105 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8106 p != input_objects->relobj_end();
8107 ++p)
8108 {
8109 Arm_relobj<big_endian>* arm_relobj =
8110 Arm_relobj<big_endian>::as_arm_relobj(*p);
8111 if (arm_relobj->merge_flags_and_attributes())
8112 {
8113 this->merge_processor_specific_flags(
8114 arm_relobj->name(),
8115 arm_relobj->processor_specific_flags());
8116 this->merge_object_attributes(arm_relobj->name().c_str(),
8117 arm_relobj->attributes_section_data());
8118 }
8119 }
8120
8121 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8122 p != input_objects->dynobj_end();
8123 ++p)
8124 {
8125 Arm_dynobj<big_endian>* arm_dynobj =
8126 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8127 this->merge_processor_specific_flags(
8128 arm_dynobj->name(),
8129 arm_dynobj->processor_specific_flags());
8130 this->merge_object_attributes(arm_dynobj->name().c_str(),
8131 arm_dynobj->attributes_section_data());
8132 }
8133
8134 // Create an empty uninitialized attribute section if we still don't have it
8135 // at this moment. This happens if there is no attributes sections in all
8136 // inputs.
8137 if (this->attributes_section_data_ == NULL)
8138 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8139
8140 // Check BLX use.
8141 const Object_attribute* cpu_arch_attr =
8142 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8143 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8144 this->set_may_use_blx(true);
8145
8146 // Check if we need to use Cortex-A8 workaround.
8147 if (parameters->options().user_set_fix_cortex_a8())
8148 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8149 else
8150 {
8151 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8152 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8153 // profile.
8154 const Object_attribute* cpu_arch_profile_attr =
8155 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8156 this->fix_cortex_a8_ =
8157 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8158 && (cpu_arch_profile_attr->int_value() == 'A'
8159 || cpu_arch_profile_attr->int_value() == 0));
8160 }
8161
8162 // Check if we can use V4BX interworking.
8163 // The V4BX interworking stub contains BX instruction,
8164 // which is not specified for some profiles.
8165 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8166 && !this->may_use_blx())
8167 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8168 "the target profile does not support BX instruction"));
8169
8170 // Fill in some more dynamic tags.
8171 const Reloc_section* rel_plt = (this->plt_ == NULL
8172 ? NULL
8173 : this->plt_->rel_plt());
8174 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8175 this->rel_dyn_, true, false);
8176
8177 // Emit any relocs we saved in an attempt to avoid generating COPY
8178 // relocs.
8179 if (this->copy_relocs_.any_saved_relocs())
8180 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8181
8182 // Handle the .ARM.exidx section.
8183 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8184 if (exidx_section != NULL
8185 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8186 && !parameters->options().relocatable())
8187 {
8188 // Create __exidx_start and __exdix_end symbols.
8189 symtab->define_in_output_data("__exidx_start", NULL,
8190 Symbol_table::PREDEFINED,
8191 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8192 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8193 false, true);
8194 symtab->define_in_output_data("__exidx_end", NULL,
8195 Symbol_table::PREDEFINED,
8196 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8197 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8198 true, true);
8199
8200 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8201 // the .ARM.exidx section.
8202 if (!layout->script_options()->saw_phdrs_clause())
8203 {
8204 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8205 == NULL);
8206 Output_segment* exidx_segment =
8207 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8208 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8209 false);
8210 }
8211 }
8212
8213 // Create an .ARM.attributes section unless we have no regular input
8214 // object. In that case the output will be empty.
8215 if (input_objects->number_of_relobjs() != 0)
8216 {
8217 Output_attributes_section_data* attributes_section =
8218 new Output_attributes_section_data(*this->attributes_section_data_);
8219 layout->add_output_section_data(".ARM.attributes",
8220 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8221 attributes_section, false, false, false,
8222 false);
8223 }
8224 }
8225
8226 // Return whether a direct absolute static relocation needs to be applied.
8227 // In cases where Scan::local() or Scan::global() has created
8228 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8229 // of the relocation is carried in the data, and we must not
8230 // apply the static relocation.
8231
8232 template<bool big_endian>
8233 inline bool
8234 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8235 const Sized_symbol<32>* gsym,
8236 int ref_flags,
8237 bool is_32bit,
8238 Output_section* output_section)
8239 {
8240 // If the output section is not allocated, then we didn't call
8241 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8242 // the reloc here.
8243 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8244 return true;
8245
8246 // For local symbols, we will have created a non-RELATIVE dynamic
8247 // relocation only if (a) the output is position independent,
8248 // (b) the relocation is absolute (not pc- or segment-relative), and
8249 // (c) the relocation is not 32 bits wide.
8250 if (gsym == NULL)
8251 return !(parameters->options().output_is_position_independent()
8252 && (ref_flags & Symbol::ABSOLUTE_REF)
8253 && !is_32bit);
8254
8255 // For global symbols, we use the same helper routines used in the
8256 // scan pass. If we did not create a dynamic relocation, or if we
8257 // created a RELATIVE dynamic relocation, we should apply the static
8258 // relocation.
8259 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8260 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8261 && gsym->can_use_relative_reloc(ref_flags
8262 & Symbol::FUNCTION_CALL);
8263 return !has_dyn || is_rel;
8264 }
8265
8266 // Perform a relocation.
8267
8268 template<bool big_endian>
8269 inline bool
8270 Target_arm<big_endian>::Relocate::relocate(
8271 const Relocate_info<32, big_endian>* relinfo,
8272 Target_arm* target,
8273 Output_section *output_section,
8274 size_t relnum,
8275 const elfcpp::Rel<32, big_endian>& rel,
8276 unsigned int r_type,
8277 const Sized_symbol<32>* gsym,
8278 const Symbol_value<32>* psymval,
8279 unsigned char* view,
8280 Arm_address address,
8281 section_size_type view_size)
8282 {
8283 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8284
8285 r_type = get_real_reloc_type(r_type);
8286 const Arm_reloc_property* reloc_property =
8287 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8288 if (reloc_property == NULL)
8289 {
8290 std::string reloc_name =
8291 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8292 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8293 _("cannot relocate %s in object file"),
8294 reloc_name.c_str());
8295 return true;
8296 }
8297
8298 const Arm_relobj<big_endian>* object =
8299 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8300
8301 // If the final branch target of a relocation is THUMB instruction, this
8302 // is 1. Otherwise it is 0.
8303 Arm_address thumb_bit = 0;
8304 Symbol_value<32> symval;
8305 bool is_weakly_undefined_without_plt = false;
8306 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8307 {
8308 if (gsym != NULL)
8309 {
8310 // This is a global symbol. Determine if we use PLT and if the
8311 // final target is THUMB.
8312 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8313 {
8314 // This uses a PLT, change the symbol value.
8315 symval.set_output_value(target->plt_section()->address()
8316 + gsym->plt_offset());
8317 psymval = &symval;
8318 }
8319 else if (gsym->is_weak_undefined())
8320 {
8321 // This is a weakly undefined symbol and we do not use PLT
8322 // for this relocation. A branch targeting this symbol will
8323 // be converted into an NOP.
8324 is_weakly_undefined_without_plt = true;
8325 }
8326 else
8327 {
8328 // Set thumb bit if symbol:
8329 // -Has type STT_ARM_TFUNC or
8330 // -Has type STT_FUNC, is defined and with LSB in value set.
8331 thumb_bit =
8332 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8333 || (gsym->type() == elfcpp::STT_FUNC
8334 && !gsym->is_undefined()
8335 && ((psymval->value(object, 0) & 1) != 0)))
8336 ? 1
8337 : 0);
8338 }
8339 }
8340 else
8341 {
8342 // This is a local symbol. Determine if the final target is THUMB.
8343 // We saved this information when all the local symbols were read.
8344 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8345 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8346 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8347 }
8348 }
8349 else
8350 {
8351 // This is a fake relocation synthesized for a stub. It does not have
8352 // a real symbol. We just look at the LSB of the symbol value to
8353 // determine if the target is THUMB or not.
8354 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8355 }
8356
8357 // Strip LSB if this points to a THUMB target.
8358 if (thumb_bit != 0
8359 && reloc_property->uses_thumb_bit()
8360 && ((psymval->value(object, 0) & 1) != 0))
8361 {
8362 Arm_address stripped_value =
8363 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8364 symval.set_output_value(stripped_value);
8365 psymval = &symval;
8366 }
8367
8368 // Get the GOT offset if needed.
8369 // The GOT pointer points to the end of the GOT section.
8370 // We need to subtract the size of the GOT section to get
8371 // the actual offset to use in the relocation.
8372 bool have_got_offset = false;
8373 unsigned int got_offset = 0;
8374 switch (r_type)
8375 {
8376 case elfcpp::R_ARM_GOT_BREL:
8377 case elfcpp::R_ARM_GOT_PREL:
8378 if (gsym != NULL)
8379 {
8380 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8381 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8382 - target->got_size());
8383 }
8384 else
8385 {
8386 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8387 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8388 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8389 - target->got_size());
8390 }
8391 have_got_offset = true;
8392 break;
8393
8394 default:
8395 break;
8396 }
8397
8398 // To look up relocation stubs, we need to pass the symbol table index of
8399 // a local symbol.
8400 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8401
8402 // Get the addressing origin of the output segment defining the
8403 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8404 Arm_address sym_origin = 0;
8405 if (reloc_property->uses_symbol_base())
8406 {
8407 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8408 // R_ARM_BASE_ABS with the NULL symbol will give the
8409 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8410 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8411 sym_origin = target->got_plt_section()->address();
8412 else if (gsym == NULL)
8413 sym_origin = 0;
8414 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8415 sym_origin = gsym->output_segment()->vaddr();
8416 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8417 sym_origin = gsym->output_data()->address();
8418
8419 // TODO: Assumes the segment base to be zero for the global symbols
8420 // till the proper support for the segment-base-relative addressing
8421 // will be implemented. This is consistent with GNU ld.
8422 }
8423
8424 // For relative addressing relocation, find out the relative address base.
8425 Arm_address relative_address_base = 0;
8426 switch(reloc_property->relative_address_base())
8427 {
8428 case Arm_reloc_property::RAB_NONE:
8429 // Relocations with relative address bases RAB_TLS and RAB_tp are
8430 // handled by relocate_tls. So we do not need to do anything here.
8431 case Arm_reloc_property::RAB_TLS:
8432 case Arm_reloc_property::RAB_tp:
8433 break;
8434 case Arm_reloc_property::RAB_B_S:
8435 relative_address_base = sym_origin;
8436 break;
8437 case Arm_reloc_property::RAB_GOT_ORG:
8438 relative_address_base = target->got_plt_section()->address();
8439 break;
8440 case Arm_reloc_property::RAB_P:
8441 relative_address_base = address;
8442 break;
8443 case Arm_reloc_property::RAB_Pa:
8444 relative_address_base = address & 0xfffffffcU;
8445 break;
8446 default:
8447 gold_unreachable();
8448 }
8449
8450 typename Arm_relocate_functions::Status reloc_status =
8451 Arm_relocate_functions::STATUS_OKAY;
8452 bool check_overflow = reloc_property->checks_overflow();
8453 switch (r_type)
8454 {
8455 case elfcpp::R_ARM_NONE:
8456 break;
8457
8458 case elfcpp::R_ARM_ABS8:
8459 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8460 output_section))
8461 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8462 break;
8463
8464 case elfcpp::R_ARM_ABS12:
8465 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8466 output_section))
8467 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8468 break;
8469
8470 case elfcpp::R_ARM_ABS16:
8471 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8472 output_section))
8473 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8474 break;
8475
8476 case elfcpp::R_ARM_ABS32:
8477 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8478 output_section))
8479 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8480 thumb_bit);
8481 break;
8482
8483 case elfcpp::R_ARM_ABS32_NOI:
8484 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8485 output_section))
8486 // No thumb bit for this relocation: (S + A)
8487 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8488 0);
8489 break;
8490
8491 case elfcpp::R_ARM_MOVW_ABS_NC:
8492 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8493 output_section))
8494 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8495 0, thumb_bit,
8496 check_overflow);
8497 break;
8498
8499 case elfcpp::R_ARM_MOVT_ABS:
8500 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8501 output_section))
8502 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8503 break;
8504
8505 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8506 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8507 output_section))
8508 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8509 0, thumb_bit, false);
8510 break;
8511
8512 case elfcpp::R_ARM_THM_MOVT_ABS:
8513 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8514 output_section))
8515 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8516 psymval, 0);
8517 break;
8518
8519 case elfcpp::R_ARM_MOVW_PREL_NC:
8520 case elfcpp::R_ARM_MOVW_BREL_NC:
8521 case elfcpp::R_ARM_MOVW_BREL:
8522 reloc_status =
8523 Arm_relocate_functions::movw(view, object, psymval,
8524 relative_address_base, thumb_bit,
8525 check_overflow);
8526 break;
8527
8528 case elfcpp::R_ARM_MOVT_PREL:
8529 case elfcpp::R_ARM_MOVT_BREL:
8530 reloc_status =
8531 Arm_relocate_functions::movt(view, object, psymval,
8532 relative_address_base);
8533 break;
8534
8535 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8536 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8537 case elfcpp::R_ARM_THM_MOVW_BREL:
8538 reloc_status =
8539 Arm_relocate_functions::thm_movw(view, object, psymval,
8540 relative_address_base,
8541 thumb_bit, check_overflow);
8542 break;
8543
8544 case elfcpp::R_ARM_THM_MOVT_PREL:
8545 case elfcpp::R_ARM_THM_MOVT_BREL:
8546 reloc_status =
8547 Arm_relocate_functions::thm_movt(view, object, psymval,
8548 relative_address_base);
8549 break;
8550
8551 case elfcpp::R_ARM_REL32:
8552 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8553 address, thumb_bit);
8554 break;
8555
8556 case elfcpp::R_ARM_THM_ABS5:
8557 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8558 output_section))
8559 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8560 break;
8561
8562 // Thumb long branches.
8563 case elfcpp::R_ARM_THM_CALL:
8564 case elfcpp::R_ARM_THM_XPC22:
8565 case elfcpp::R_ARM_THM_JUMP24:
8566 reloc_status =
8567 Arm_relocate_functions::thumb_branch_common(
8568 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8569 thumb_bit, is_weakly_undefined_without_plt);
8570 break;
8571
8572 case elfcpp::R_ARM_GOTOFF32:
8573 {
8574 Arm_address got_origin;
8575 got_origin = target->got_plt_section()->address();
8576 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8577 got_origin, thumb_bit);
8578 }
8579 break;
8580
8581 case elfcpp::R_ARM_BASE_PREL:
8582 gold_assert(gsym != NULL);
8583 reloc_status =
8584 Arm_relocate_functions::base_prel(view, sym_origin, address);
8585 break;
8586
8587 case elfcpp::R_ARM_BASE_ABS:
8588 {
8589 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8590 output_section))
8591 break;
8592
8593 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8594 }
8595 break;
8596
8597 case elfcpp::R_ARM_GOT_BREL:
8598 gold_assert(have_got_offset);
8599 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8600 break;
8601
8602 case elfcpp::R_ARM_GOT_PREL:
8603 gold_assert(have_got_offset);
8604 // Get the address origin for GOT PLT, which is allocated right
8605 // after the GOT section, to calculate an absolute address of
8606 // the symbol GOT entry (got_origin + got_offset).
8607 Arm_address got_origin;
8608 got_origin = target->got_plt_section()->address();
8609 reloc_status = Arm_relocate_functions::got_prel(view,
8610 got_origin + got_offset,
8611 address);
8612 break;
8613
8614 case elfcpp::R_ARM_PLT32:
8615 case elfcpp::R_ARM_CALL:
8616 case elfcpp::R_ARM_JUMP24:
8617 case elfcpp::R_ARM_XPC25:
8618 gold_assert(gsym == NULL
8619 || gsym->has_plt_offset()
8620 || gsym->final_value_is_known()
8621 || (gsym->is_defined()
8622 && !gsym->is_from_dynobj()
8623 && !gsym->is_preemptible()));
8624 reloc_status =
8625 Arm_relocate_functions::arm_branch_common(
8626 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8627 thumb_bit, is_weakly_undefined_without_plt);
8628 break;
8629
8630 case elfcpp::R_ARM_THM_JUMP19:
8631 reloc_status =
8632 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8633 thumb_bit);
8634 break;
8635
8636 case elfcpp::R_ARM_THM_JUMP6:
8637 reloc_status =
8638 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8639 break;
8640
8641 case elfcpp::R_ARM_THM_JUMP8:
8642 reloc_status =
8643 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8644 break;
8645
8646 case elfcpp::R_ARM_THM_JUMP11:
8647 reloc_status =
8648 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8649 break;
8650
8651 case elfcpp::R_ARM_PREL31:
8652 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8653 address, thumb_bit);
8654 break;
8655
8656 case elfcpp::R_ARM_V4BX:
8657 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8658 {
8659 const bool is_v4bx_interworking =
8660 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8661 reloc_status =
8662 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8663 is_v4bx_interworking);
8664 }
8665 break;
8666
8667 case elfcpp::R_ARM_THM_PC8:
8668 reloc_status =
8669 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8670 break;
8671
8672 case elfcpp::R_ARM_THM_PC12:
8673 reloc_status =
8674 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8675 break;
8676
8677 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8678 reloc_status =
8679 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8680 thumb_bit);
8681 break;
8682
8683 case elfcpp::R_ARM_ALU_PC_G0_NC:
8684 case elfcpp::R_ARM_ALU_PC_G0:
8685 case elfcpp::R_ARM_ALU_PC_G1_NC:
8686 case elfcpp::R_ARM_ALU_PC_G1:
8687 case elfcpp::R_ARM_ALU_PC_G2:
8688 case elfcpp::R_ARM_ALU_SB_G0_NC:
8689 case elfcpp::R_ARM_ALU_SB_G0:
8690 case elfcpp::R_ARM_ALU_SB_G1_NC:
8691 case elfcpp::R_ARM_ALU_SB_G1:
8692 case elfcpp::R_ARM_ALU_SB_G2:
8693 reloc_status =
8694 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8695 reloc_property->group_index(),
8696 relative_address_base,
8697 thumb_bit, check_overflow);
8698 break;
8699
8700 case elfcpp::R_ARM_LDR_PC_G0:
8701 case elfcpp::R_ARM_LDR_PC_G1:
8702 case elfcpp::R_ARM_LDR_PC_G2:
8703 case elfcpp::R_ARM_LDR_SB_G0:
8704 case elfcpp::R_ARM_LDR_SB_G1:
8705 case elfcpp::R_ARM_LDR_SB_G2:
8706 reloc_status =
8707 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8708 reloc_property->group_index(),
8709 relative_address_base);
8710 break;
8711
8712 case elfcpp::R_ARM_LDRS_PC_G0:
8713 case elfcpp::R_ARM_LDRS_PC_G1:
8714 case elfcpp::R_ARM_LDRS_PC_G2:
8715 case elfcpp::R_ARM_LDRS_SB_G0:
8716 case elfcpp::R_ARM_LDRS_SB_G1:
8717 case elfcpp::R_ARM_LDRS_SB_G2:
8718 reloc_status =
8719 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8720 reloc_property->group_index(),
8721 relative_address_base);
8722 break;
8723
8724 case elfcpp::R_ARM_LDC_PC_G0:
8725 case elfcpp::R_ARM_LDC_PC_G1:
8726 case elfcpp::R_ARM_LDC_PC_G2:
8727 case elfcpp::R_ARM_LDC_SB_G0:
8728 case elfcpp::R_ARM_LDC_SB_G1:
8729 case elfcpp::R_ARM_LDC_SB_G2:
8730 reloc_status =
8731 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8732 reloc_property->group_index(),
8733 relative_address_base);
8734 break;
8735
8736 // These are initial tls relocs, which are expected when
8737 // linking.
8738 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8739 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8740 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8741 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8742 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8743 reloc_status =
8744 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8745 view, address, view_size);
8746 break;
8747
8748 default:
8749 gold_unreachable();
8750 }
8751
8752 // Report any errors.
8753 switch (reloc_status)
8754 {
8755 case Arm_relocate_functions::STATUS_OKAY:
8756 break;
8757 case Arm_relocate_functions::STATUS_OVERFLOW:
8758 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8759 _("relocation overflow in %s"),
8760 reloc_property->name().c_str());
8761 break;
8762 case Arm_relocate_functions::STATUS_BAD_RELOC:
8763 gold_error_at_location(
8764 relinfo,
8765 relnum,
8766 rel.get_r_offset(),
8767 _("unexpected opcode while processing relocation %s"),
8768 reloc_property->name().c_str());
8769 break;
8770 default:
8771 gold_unreachable();
8772 }
8773
8774 return true;
8775 }
8776
8777 // Perform a TLS relocation.
8778
8779 template<bool big_endian>
8780 inline typename Arm_relocate_functions<big_endian>::Status
8781 Target_arm<big_endian>::Relocate::relocate_tls(
8782 const Relocate_info<32, big_endian>* relinfo,
8783 Target_arm<big_endian>* target,
8784 size_t relnum,
8785 const elfcpp::Rel<32, big_endian>& rel,
8786 unsigned int r_type,
8787 const Sized_symbol<32>* gsym,
8788 const Symbol_value<32>* psymval,
8789 unsigned char* view,
8790 elfcpp::Elf_types<32>::Elf_Addr address,
8791 section_size_type /*view_size*/ )
8792 {
8793 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8794 typedef Relocate_functions<32, big_endian> RelocFuncs;
8795 Output_segment* tls_segment = relinfo->layout->tls_segment();
8796
8797 const Sized_relobj<32, big_endian>* object = relinfo->object;
8798
8799 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8800
8801 const bool is_final = (gsym == NULL
8802 ? !parameters->options().shared()
8803 : gsym->final_value_is_known());
8804 const tls::Tls_optimization optimized_type
8805 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8806 switch (r_type)
8807 {
8808 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8809 {
8810 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8811 unsigned int got_offset;
8812 if (gsym != NULL)
8813 {
8814 gold_assert(gsym->has_got_offset(got_type));
8815 got_offset = gsym->got_offset(got_type) - target->got_size();
8816 }
8817 else
8818 {
8819 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8820 gold_assert(object->local_has_got_offset(r_sym, got_type));
8821 got_offset = (object->local_got_offset(r_sym, got_type)
8822 - target->got_size());
8823 }
8824 if (optimized_type == tls::TLSOPT_NONE)
8825 {
8826 Arm_address got_entry =
8827 target->got_plt_section()->address() + got_offset;
8828
8829 // Relocate the field with the PC relative offset of the pair of
8830 // GOT entries.
8831 RelocFuncs::pcrel32(view, got_entry, address);
8832 return ArmRelocFuncs::STATUS_OKAY;
8833 }
8834 }
8835 break;
8836
8837 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8838 if (optimized_type == tls::TLSOPT_NONE)
8839 {
8840 // Relocate the field with the offset of the GOT entry for
8841 // the module index.
8842 unsigned int got_offset;
8843 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8844 - target->got_size());
8845 Arm_address got_entry =
8846 target->got_plt_section()->address() + got_offset;
8847
8848 // Relocate the field with the PC relative offset of the pair of
8849 // GOT entries.
8850 RelocFuncs::pcrel32(view, got_entry, address);
8851 return ArmRelocFuncs::STATUS_OKAY;
8852 }
8853 break;
8854
8855 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8856 RelocFuncs::rel32(view, value);
8857 return ArmRelocFuncs::STATUS_OKAY;
8858
8859 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8860 if (optimized_type == tls::TLSOPT_NONE)
8861 {
8862 // Relocate the field with the offset of the GOT entry for
8863 // the tp-relative offset of the symbol.
8864 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8865 unsigned int got_offset;
8866 if (gsym != NULL)
8867 {
8868 gold_assert(gsym->has_got_offset(got_type));
8869 got_offset = gsym->got_offset(got_type);
8870 }
8871 else
8872 {
8873 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8874 gold_assert(object->local_has_got_offset(r_sym, got_type));
8875 got_offset = object->local_got_offset(r_sym, got_type);
8876 }
8877
8878 // All GOT offsets are relative to the end of the GOT.
8879 got_offset -= target->got_size();
8880
8881 Arm_address got_entry =
8882 target->got_plt_section()->address() + got_offset;
8883
8884 // Relocate the field with the PC relative offset of the GOT entry.
8885 RelocFuncs::pcrel32(view, got_entry, address);
8886 return ArmRelocFuncs::STATUS_OKAY;
8887 }
8888 break;
8889
8890 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8891 // If we're creating a shared library, a dynamic relocation will
8892 // have been created for this location, so do not apply it now.
8893 if (!parameters->options().shared())
8894 {
8895 gold_assert(tls_segment != NULL);
8896
8897 // $tp points to the TCB, which is followed by the TLS, so we
8898 // need to add TCB size to the offset.
8899 Arm_address aligned_tcb_size =
8900 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8901 RelocFuncs::rel32(view, value + aligned_tcb_size);
8902
8903 }
8904 return ArmRelocFuncs::STATUS_OKAY;
8905
8906 default:
8907 gold_unreachable();
8908 }
8909
8910 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8911 _("unsupported reloc %u"),
8912 r_type);
8913 return ArmRelocFuncs::STATUS_BAD_RELOC;
8914 }
8915
8916 // Relocate section data.
8917
8918 template<bool big_endian>
8919 void
8920 Target_arm<big_endian>::relocate_section(
8921 const Relocate_info<32, big_endian>* relinfo,
8922 unsigned int sh_type,
8923 const unsigned char* prelocs,
8924 size_t reloc_count,
8925 Output_section* output_section,
8926 bool needs_special_offset_handling,
8927 unsigned char* view,
8928 Arm_address address,
8929 section_size_type view_size,
8930 const Reloc_symbol_changes* reloc_symbol_changes)
8931 {
8932 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8933 gold_assert(sh_type == elfcpp::SHT_REL);
8934
8935 // See if we are relocating a relaxed input section. If so, the view
8936 // covers the whole output section and we need to adjust accordingly.
8937 if (needs_special_offset_handling)
8938 {
8939 const Output_relaxed_input_section* poris =
8940 output_section->find_relaxed_input_section(relinfo->object,
8941 relinfo->data_shndx);
8942 if (poris != NULL)
8943 {
8944 Arm_address section_address = poris->address();
8945 section_size_type section_size = poris->data_size();
8946
8947 gold_assert((section_address >= address)
8948 && ((section_address + section_size)
8949 <= (address + view_size)));
8950
8951 off_t offset = section_address - address;
8952 view += offset;
8953 address += offset;
8954 view_size = section_size;
8955 }
8956 }
8957
8958 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8959 Arm_relocate>(
8960 relinfo,
8961 this,
8962 prelocs,
8963 reloc_count,
8964 output_section,
8965 needs_special_offset_handling,
8966 view,
8967 address,
8968 view_size,
8969 reloc_symbol_changes);
8970 }
8971
8972 // Return the size of a relocation while scanning during a relocatable
8973 // link.
8974
8975 template<bool big_endian>
8976 unsigned int
8977 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8978 unsigned int r_type,
8979 Relobj* object)
8980 {
8981 r_type = get_real_reloc_type(r_type);
8982 const Arm_reloc_property* arp =
8983 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8984 if (arp != NULL)
8985 return arp->size();
8986 else
8987 {
8988 std::string reloc_name =
8989 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8990 gold_error(_("%s: unexpected %s in object file"),
8991 object->name().c_str(), reloc_name.c_str());
8992 return 0;
8993 }
8994 }
8995
8996 // Scan the relocs during a relocatable link.
8997
8998 template<bool big_endian>
8999 void
9000 Target_arm<big_endian>::scan_relocatable_relocs(
9001 Symbol_table* symtab,
9002 Layout* layout,
9003 Sized_relobj<32, big_endian>* object,
9004 unsigned int data_shndx,
9005 unsigned int sh_type,
9006 const unsigned char* prelocs,
9007 size_t reloc_count,
9008 Output_section* output_section,
9009 bool needs_special_offset_handling,
9010 size_t local_symbol_count,
9011 const unsigned char* plocal_symbols,
9012 Relocatable_relocs* rr)
9013 {
9014 gold_assert(sh_type == elfcpp::SHT_REL);
9015
9016 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9017 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9018
9019 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9020 Scan_relocatable_relocs>(
9021 symtab,
9022 layout,
9023 object,
9024 data_shndx,
9025 prelocs,
9026 reloc_count,
9027 output_section,
9028 needs_special_offset_handling,
9029 local_symbol_count,
9030 plocal_symbols,
9031 rr);
9032 }
9033
9034 // Relocate a section during a relocatable link.
9035
9036 template<bool big_endian>
9037 void
9038 Target_arm<big_endian>::relocate_for_relocatable(
9039 const Relocate_info<32, big_endian>* relinfo,
9040 unsigned int sh_type,
9041 const unsigned char* prelocs,
9042 size_t reloc_count,
9043 Output_section* output_section,
9044 off_t offset_in_output_section,
9045 const Relocatable_relocs* rr,
9046 unsigned char* view,
9047 Arm_address view_address,
9048 section_size_type view_size,
9049 unsigned char* reloc_view,
9050 section_size_type reloc_view_size)
9051 {
9052 gold_assert(sh_type == elfcpp::SHT_REL);
9053
9054 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9055 relinfo,
9056 prelocs,
9057 reloc_count,
9058 output_section,
9059 offset_in_output_section,
9060 rr,
9061 view,
9062 view_address,
9063 view_size,
9064 reloc_view,
9065 reloc_view_size);
9066 }
9067
9068 // Perform target-specific processing in a relocatable link. This is
9069 // only used if we use the relocation strategy RELOC_SPECIAL.
9070
9071 template<bool big_endian>
9072 void
9073 Target_arm<big_endian>::relocate_special_relocatable(
9074 const Relocate_info<32, big_endian>* relinfo,
9075 unsigned int sh_type,
9076 const unsigned char* preloc_in,
9077 size_t relnum,
9078 Output_section* output_section,
9079 off_t offset_in_output_section,
9080 unsigned char* view,
9081 elfcpp::Elf_types<32>::Elf_Addr view_address,
9082 section_size_type,
9083 unsigned char* preloc_out)
9084 {
9085 // We can only handle REL type relocation sections.
9086 gold_assert(sh_type == elfcpp::SHT_REL);
9087
9088 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9089 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9090 Reltype_write;
9091 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9092
9093 const Arm_relobj<big_endian>* object =
9094 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9095 const unsigned int local_count = object->local_symbol_count();
9096
9097 Reltype reloc(preloc_in);
9098 Reltype_write reloc_write(preloc_out);
9099
9100 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9101 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9102 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9103
9104 const Arm_reloc_property* arp =
9105 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9106 gold_assert(arp != NULL);
9107
9108 // Get the new symbol index.
9109 // We only use RELOC_SPECIAL strategy in local relocations.
9110 gold_assert(r_sym < local_count);
9111
9112 // We are adjusting a section symbol. We need to find
9113 // the symbol table index of the section symbol for
9114 // the output section corresponding to input section
9115 // in which this symbol is defined.
9116 bool is_ordinary;
9117 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9118 gold_assert(is_ordinary);
9119 Output_section* os = object->output_section(shndx);
9120 gold_assert(os != NULL);
9121 gold_assert(os->needs_symtab_index());
9122 unsigned int new_symndx = os->symtab_index();
9123
9124 // Get the new offset--the location in the output section where
9125 // this relocation should be applied.
9126
9127 Arm_address offset = reloc.get_r_offset();
9128 Arm_address new_offset;
9129 if (offset_in_output_section != invalid_address)
9130 new_offset = offset + offset_in_output_section;
9131 else
9132 {
9133 section_offset_type sot_offset =
9134 convert_types<section_offset_type, Arm_address>(offset);
9135 section_offset_type new_sot_offset =
9136 output_section->output_offset(object, relinfo->data_shndx,
9137 sot_offset);
9138 gold_assert(new_sot_offset != -1);
9139 new_offset = new_sot_offset;
9140 }
9141
9142 // In an object file, r_offset is an offset within the section.
9143 // In an executable or dynamic object, generated by
9144 // --emit-relocs, r_offset is an absolute address.
9145 if (!parameters->options().relocatable())
9146 {
9147 new_offset += view_address;
9148 if (offset_in_output_section != invalid_address)
9149 new_offset -= offset_in_output_section;
9150 }
9151
9152 reloc_write.put_r_offset(new_offset);
9153 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9154
9155 // Handle the reloc addend.
9156 // The relocation uses a section symbol in the input file.
9157 // We are adjusting it to use a section symbol in the output
9158 // file. The input section symbol refers to some address in
9159 // the input section. We need the relocation in the output
9160 // file to refer to that same address. This adjustment to
9161 // the addend is the same calculation we use for a simple
9162 // absolute relocation for the input section symbol.
9163
9164 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9165
9166 // Handle THUMB bit.
9167 Symbol_value<32> symval;
9168 Arm_address thumb_bit =
9169 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9170 if (thumb_bit != 0
9171 && arp->uses_thumb_bit()
9172 && ((psymval->value(object, 0) & 1) != 0))
9173 {
9174 Arm_address stripped_value =
9175 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9176 symval.set_output_value(stripped_value);
9177 psymval = &symval;
9178 }
9179
9180 unsigned char* paddend = view + offset;
9181 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9182 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9183 switch (r_type)
9184 {
9185 case elfcpp::R_ARM_ABS8:
9186 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9187 psymval);
9188 break;
9189
9190 case elfcpp::R_ARM_ABS12:
9191 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9192 psymval);
9193 break;
9194
9195 case elfcpp::R_ARM_ABS16:
9196 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9197 psymval);
9198 break;
9199
9200 case elfcpp::R_ARM_THM_ABS5:
9201 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9202 object,
9203 psymval);
9204 break;
9205
9206 case elfcpp::R_ARM_MOVW_ABS_NC:
9207 case elfcpp::R_ARM_MOVW_PREL_NC:
9208 case elfcpp::R_ARM_MOVW_BREL_NC:
9209 case elfcpp::R_ARM_MOVW_BREL:
9210 reloc_status = Arm_relocate_functions<big_endian>::movw(
9211 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9212 break;
9213
9214 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9215 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9216 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9217 case elfcpp::R_ARM_THM_MOVW_BREL:
9218 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9219 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9220 break;
9221
9222 case elfcpp::R_ARM_THM_CALL:
9223 case elfcpp::R_ARM_THM_XPC22:
9224 case elfcpp::R_ARM_THM_JUMP24:
9225 reloc_status =
9226 Arm_relocate_functions<big_endian>::thumb_branch_common(
9227 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9228 false);
9229 break;
9230
9231 case elfcpp::R_ARM_PLT32:
9232 case elfcpp::R_ARM_CALL:
9233 case elfcpp::R_ARM_JUMP24:
9234 case elfcpp::R_ARM_XPC25:
9235 reloc_status =
9236 Arm_relocate_functions<big_endian>::arm_branch_common(
9237 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9238 false);
9239 break;
9240
9241 case elfcpp::R_ARM_THM_JUMP19:
9242 reloc_status =
9243 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9244 psymval, 0, thumb_bit);
9245 break;
9246
9247 case elfcpp::R_ARM_THM_JUMP6:
9248 reloc_status =
9249 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9250 0);
9251 break;
9252
9253 case elfcpp::R_ARM_THM_JUMP8:
9254 reloc_status =
9255 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9256 0);
9257 break;
9258
9259 case elfcpp::R_ARM_THM_JUMP11:
9260 reloc_status =
9261 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9262 0);
9263 break;
9264
9265 case elfcpp::R_ARM_PREL31:
9266 reloc_status =
9267 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9268 thumb_bit);
9269 break;
9270
9271 case elfcpp::R_ARM_THM_PC8:
9272 reloc_status =
9273 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9274 0);
9275 break;
9276
9277 case elfcpp::R_ARM_THM_PC12:
9278 reloc_status =
9279 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9280 0);
9281 break;
9282
9283 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9284 reloc_status =
9285 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9286 0, thumb_bit);
9287 break;
9288
9289 // These relocation truncate relocation results so we cannot handle them
9290 // in a relocatable link.
9291 case elfcpp::R_ARM_MOVT_ABS:
9292 case elfcpp::R_ARM_THM_MOVT_ABS:
9293 case elfcpp::R_ARM_MOVT_PREL:
9294 case elfcpp::R_ARM_MOVT_BREL:
9295 case elfcpp::R_ARM_THM_MOVT_PREL:
9296 case elfcpp::R_ARM_THM_MOVT_BREL:
9297 case elfcpp::R_ARM_ALU_PC_G0_NC:
9298 case elfcpp::R_ARM_ALU_PC_G0:
9299 case elfcpp::R_ARM_ALU_PC_G1_NC:
9300 case elfcpp::R_ARM_ALU_PC_G1:
9301 case elfcpp::R_ARM_ALU_PC_G2:
9302 case elfcpp::R_ARM_ALU_SB_G0_NC:
9303 case elfcpp::R_ARM_ALU_SB_G0:
9304 case elfcpp::R_ARM_ALU_SB_G1_NC:
9305 case elfcpp::R_ARM_ALU_SB_G1:
9306 case elfcpp::R_ARM_ALU_SB_G2:
9307 case elfcpp::R_ARM_LDR_PC_G0:
9308 case elfcpp::R_ARM_LDR_PC_G1:
9309 case elfcpp::R_ARM_LDR_PC_G2:
9310 case elfcpp::R_ARM_LDR_SB_G0:
9311 case elfcpp::R_ARM_LDR_SB_G1:
9312 case elfcpp::R_ARM_LDR_SB_G2:
9313 case elfcpp::R_ARM_LDRS_PC_G0:
9314 case elfcpp::R_ARM_LDRS_PC_G1:
9315 case elfcpp::R_ARM_LDRS_PC_G2:
9316 case elfcpp::R_ARM_LDRS_SB_G0:
9317 case elfcpp::R_ARM_LDRS_SB_G1:
9318 case elfcpp::R_ARM_LDRS_SB_G2:
9319 case elfcpp::R_ARM_LDC_PC_G0:
9320 case elfcpp::R_ARM_LDC_PC_G1:
9321 case elfcpp::R_ARM_LDC_PC_G2:
9322 case elfcpp::R_ARM_LDC_SB_G0:
9323 case elfcpp::R_ARM_LDC_SB_G1:
9324 case elfcpp::R_ARM_LDC_SB_G2:
9325 gold_error(_("cannot handle %s in a relocatable link"),
9326 arp->name().c_str());
9327 break;
9328
9329 default:
9330 gold_unreachable();
9331 }
9332
9333 // Report any errors.
9334 switch (reloc_status)
9335 {
9336 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9337 break;
9338 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9339 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9340 _("relocation overflow in %s"),
9341 arp->name().c_str());
9342 break;
9343 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9344 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9345 _("unexpected opcode while processing relocation %s"),
9346 arp->name().c_str());
9347 break;
9348 default:
9349 gold_unreachable();
9350 }
9351 }
9352
9353 // Return the value to use for a dynamic symbol which requires special
9354 // treatment. This is how we support equality comparisons of function
9355 // pointers across shared library boundaries, as described in the
9356 // processor specific ABI supplement.
9357
9358 template<bool big_endian>
9359 uint64_t
9360 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9361 {
9362 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9363 return this->plt_section()->address() + gsym->plt_offset();
9364 }
9365
9366 // Map platform-specific relocs to real relocs
9367 //
9368 template<bool big_endian>
9369 unsigned int
9370 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
9371 {
9372 switch (r_type)
9373 {
9374 case elfcpp::R_ARM_TARGET1:
9375 // This is either R_ARM_ABS32 or R_ARM_REL32;
9376 return elfcpp::R_ARM_ABS32;
9377
9378 case elfcpp::R_ARM_TARGET2:
9379 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9380 return elfcpp::R_ARM_GOT_PREL;
9381
9382 default:
9383 return r_type;
9384 }
9385 }
9386
9387 // Whether if two EABI versions V1 and V2 are compatible.
9388
9389 template<bool big_endian>
9390 bool
9391 Target_arm<big_endian>::are_eabi_versions_compatible(
9392 elfcpp::Elf_Word v1,
9393 elfcpp::Elf_Word v2)
9394 {
9395 // v4 and v5 are the same spec before and after it was released,
9396 // so allow mixing them.
9397 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9398 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9399 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9400 return true;
9401
9402 return v1 == v2;
9403 }
9404
9405 // Combine FLAGS from an input object called NAME and the processor-specific
9406 // flags in the ELF header of the output. Much of this is adapted from the
9407 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9408 // in bfd/elf32-arm.c.
9409
9410 template<bool big_endian>
9411 void
9412 Target_arm<big_endian>::merge_processor_specific_flags(
9413 const std::string& name,
9414 elfcpp::Elf_Word flags)
9415 {
9416 if (this->are_processor_specific_flags_set())
9417 {
9418 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9419
9420 // Nothing to merge if flags equal to those in output.
9421 if (flags == out_flags)
9422 return;
9423
9424 // Complain about various flag mismatches.
9425 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9426 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9427 if (!this->are_eabi_versions_compatible(version1, version2)
9428 && parameters->options().warn_mismatch())
9429 gold_error(_("Source object %s has EABI version %d but output has "
9430 "EABI version %d."),
9431 name.c_str(),
9432 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9433 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9434 }
9435 else
9436 {
9437 // If the input is the default architecture and had the default
9438 // flags then do not bother setting the flags for the output
9439 // architecture, instead allow future merges to do this. If no
9440 // future merges ever set these flags then they will retain their
9441 // uninitialised values, which surprise surprise, correspond
9442 // to the default values.
9443 if (flags == 0)
9444 return;
9445
9446 // This is the first time, just copy the flags.
9447 // We only copy the EABI version for now.
9448 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9449 }
9450 }
9451
9452 // Adjust ELF file header.
9453 template<bool big_endian>
9454 void
9455 Target_arm<big_endian>::do_adjust_elf_header(
9456 unsigned char* view,
9457 int len) const
9458 {
9459 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9460
9461 elfcpp::Ehdr<32, big_endian> ehdr(view);
9462 unsigned char e_ident[elfcpp::EI_NIDENT];
9463 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9464
9465 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9466 == elfcpp::EF_ARM_EABI_UNKNOWN)
9467 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9468 else
9469 e_ident[elfcpp::EI_OSABI] = 0;
9470 e_ident[elfcpp::EI_ABIVERSION] = 0;
9471
9472 // FIXME: Do EF_ARM_BE8 adjustment.
9473
9474 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9475 oehdr.put_e_ident(e_ident);
9476 }
9477
9478 // do_make_elf_object to override the same function in the base class.
9479 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9480 // to store ARM specific information. Hence we need to have our own
9481 // ELF object creation.
9482
9483 template<bool big_endian>
9484 Object*
9485 Target_arm<big_endian>::do_make_elf_object(
9486 const std::string& name,
9487 Input_file* input_file,
9488 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9489 {
9490 int et = ehdr.get_e_type();
9491 if (et == elfcpp::ET_REL)
9492 {
9493 Arm_relobj<big_endian>* obj =
9494 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9495 obj->setup();
9496 return obj;
9497 }
9498 else if (et == elfcpp::ET_DYN)
9499 {
9500 Sized_dynobj<32, big_endian>* obj =
9501 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9502 obj->setup();
9503 return obj;
9504 }
9505 else
9506 {
9507 gold_error(_("%s: unsupported ELF file type %d"),
9508 name.c_str(), et);
9509 return NULL;
9510 }
9511 }
9512
9513 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9514 // Returns -1 if no architecture could be read.
9515 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9516
9517 template<bool big_endian>
9518 int
9519 Target_arm<big_endian>::get_secondary_compatible_arch(
9520 const Attributes_section_data* pasd)
9521 {
9522 const Object_attribute *known_attributes =
9523 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9524
9525 // Note: the tag and its argument below are uleb128 values, though
9526 // currently-defined values fit in one byte for each.
9527 const std::string& sv =
9528 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9529 if (sv.size() == 2
9530 && sv.data()[0] == elfcpp::Tag_CPU_arch
9531 && (sv.data()[1] & 128) != 128)
9532 return sv.data()[1];
9533
9534 // This tag is "safely ignorable", so don't complain if it looks funny.
9535 return -1;
9536 }
9537
9538 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9539 // The tag is removed if ARCH is -1.
9540 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9541
9542 template<bool big_endian>
9543 void
9544 Target_arm<big_endian>::set_secondary_compatible_arch(
9545 Attributes_section_data* pasd,
9546 int arch)
9547 {
9548 Object_attribute *known_attributes =
9549 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9550
9551 if (arch == -1)
9552 {
9553 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9554 return;
9555 }
9556
9557 // Note: the tag and its argument below are uleb128 values, though
9558 // currently-defined values fit in one byte for each.
9559 char sv[3];
9560 sv[0] = elfcpp::Tag_CPU_arch;
9561 gold_assert(arch != 0);
9562 sv[1] = arch;
9563 sv[2] = '\0';
9564
9565 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9566 }
9567
9568 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9569 // into account.
9570 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9571
9572 template<bool big_endian>
9573 int
9574 Target_arm<big_endian>::tag_cpu_arch_combine(
9575 const char* name,
9576 int oldtag,
9577 int* secondary_compat_out,
9578 int newtag,
9579 int secondary_compat)
9580 {
9581 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9582 static const int v6t2[] =
9583 {
9584 T(V6T2), // PRE_V4.
9585 T(V6T2), // V4.
9586 T(V6T2), // V4T.
9587 T(V6T2), // V5T.
9588 T(V6T2), // V5TE.
9589 T(V6T2), // V5TEJ.
9590 T(V6T2), // V6.
9591 T(V7), // V6KZ.
9592 T(V6T2) // V6T2.
9593 };
9594 static const int v6k[] =
9595 {
9596 T(V6K), // PRE_V4.
9597 T(V6K), // V4.
9598 T(V6K), // V4T.
9599 T(V6K), // V5T.
9600 T(V6K), // V5TE.
9601 T(V6K), // V5TEJ.
9602 T(V6K), // V6.
9603 T(V6KZ), // V6KZ.
9604 T(V7), // V6T2.
9605 T(V6K) // V6K.
9606 };
9607 static const int v7[] =
9608 {
9609 T(V7), // PRE_V4.
9610 T(V7), // V4.
9611 T(V7), // V4T.
9612 T(V7), // V5T.
9613 T(V7), // V5TE.
9614 T(V7), // V5TEJ.
9615 T(V7), // V6.
9616 T(V7), // V6KZ.
9617 T(V7), // V6T2.
9618 T(V7), // V6K.
9619 T(V7) // V7.
9620 };
9621 static const int v6_m[] =
9622 {
9623 -1, // PRE_V4.
9624 -1, // V4.
9625 T(V6K), // V4T.
9626 T(V6K), // V5T.
9627 T(V6K), // V5TE.
9628 T(V6K), // V5TEJ.
9629 T(V6K), // V6.
9630 T(V6KZ), // V6KZ.
9631 T(V7), // V6T2.
9632 T(V6K), // V6K.
9633 T(V7), // V7.
9634 T(V6_M) // V6_M.
9635 };
9636 static const int v6s_m[] =
9637 {
9638 -1, // PRE_V4.
9639 -1, // V4.
9640 T(V6K), // V4T.
9641 T(V6K), // V5T.
9642 T(V6K), // V5TE.
9643 T(V6K), // V5TEJ.
9644 T(V6K), // V6.
9645 T(V6KZ), // V6KZ.
9646 T(V7), // V6T2.
9647 T(V6K), // V6K.
9648 T(V7), // V7.
9649 T(V6S_M), // V6_M.
9650 T(V6S_M) // V6S_M.
9651 };
9652 static const int v7e_m[] =
9653 {
9654 -1, // PRE_V4.
9655 -1, // V4.
9656 T(V7E_M), // V4T.
9657 T(V7E_M), // V5T.
9658 T(V7E_M), // V5TE.
9659 T(V7E_M), // V5TEJ.
9660 T(V7E_M), // V6.
9661 T(V7E_M), // V6KZ.
9662 T(V7E_M), // V6T2.
9663 T(V7E_M), // V6K.
9664 T(V7E_M), // V7.
9665 T(V7E_M), // V6_M.
9666 T(V7E_M), // V6S_M.
9667 T(V7E_M) // V7E_M.
9668 };
9669 static const int v4t_plus_v6_m[] =
9670 {
9671 -1, // PRE_V4.
9672 -1, // V4.
9673 T(V4T), // V4T.
9674 T(V5T), // V5T.
9675 T(V5TE), // V5TE.
9676 T(V5TEJ), // V5TEJ.
9677 T(V6), // V6.
9678 T(V6KZ), // V6KZ.
9679 T(V6T2), // V6T2.
9680 T(V6K), // V6K.
9681 T(V7), // V7.
9682 T(V6_M), // V6_M.
9683 T(V6S_M), // V6S_M.
9684 T(V7E_M), // V7E_M.
9685 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9686 };
9687 static const int *comb[] =
9688 {
9689 v6t2,
9690 v6k,
9691 v7,
9692 v6_m,
9693 v6s_m,
9694 v7e_m,
9695 // Pseudo-architecture.
9696 v4t_plus_v6_m
9697 };
9698
9699 // Check we've not got a higher architecture than we know about.
9700
9701 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9702 {
9703 gold_error(_("%s: unknown CPU architecture"), name);
9704 return -1;
9705 }
9706
9707 // Override old tag if we have a Tag_also_compatible_with on the output.
9708
9709 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9710 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9711 oldtag = T(V4T_PLUS_V6_M);
9712
9713 // And override the new tag if we have a Tag_also_compatible_with on the
9714 // input.
9715
9716 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9717 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9718 newtag = T(V4T_PLUS_V6_M);
9719
9720 // Architectures before V6KZ add features monotonically.
9721 int tagh = std::max(oldtag, newtag);
9722 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9723 return tagh;
9724
9725 int tagl = std::min(oldtag, newtag);
9726 int result = comb[tagh - T(V6T2)][tagl];
9727
9728 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9729 // as the canonical version.
9730 if (result == T(V4T_PLUS_V6_M))
9731 {
9732 result = T(V4T);
9733 *secondary_compat_out = T(V6_M);
9734 }
9735 else
9736 *secondary_compat_out = -1;
9737
9738 if (result == -1)
9739 {
9740 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9741 name, oldtag, newtag);
9742 return -1;
9743 }
9744
9745 return result;
9746 #undef T
9747 }
9748
9749 // Helper to print AEABI enum tag value.
9750
9751 template<bool big_endian>
9752 std::string
9753 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9754 {
9755 static const char *aeabi_enum_names[] =
9756 { "", "variable-size", "32-bit", "" };
9757 const size_t aeabi_enum_names_size =
9758 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9759
9760 if (value < aeabi_enum_names_size)
9761 return std::string(aeabi_enum_names[value]);
9762 else
9763 {
9764 char buffer[100];
9765 sprintf(buffer, "<unknown value %u>", value);
9766 return std::string(buffer);
9767 }
9768 }
9769
9770 // Return the string value to store in TAG_CPU_name.
9771
9772 template<bool big_endian>
9773 std::string
9774 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9775 {
9776 static const char *name_table[] = {
9777 // These aren't real CPU names, but we can't guess
9778 // that from the architecture version alone.
9779 "Pre v4",
9780 "ARM v4",
9781 "ARM v4T",
9782 "ARM v5T",
9783 "ARM v5TE",
9784 "ARM v5TEJ",
9785 "ARM v6",
9786 "ARM v6KZ",
9787 "ARM v6T2",
9788 "ARM v6K",
9789 "ARM v7",
9790 "ARM v6-M",
9791 "ARM v6S-M",
9792 "ARM v7E-M"
9793 };
9794 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9795
9796 if (value < name_table_size)
9797 return std::string(name_table[value]);
9798 else
9799 {
9800 char buffer[100];
9801 sprintf(buffer, "<unknown CPU value %u>", value);
9802 return std::string(buffer);
9803 }
9804 }
9805
9806 // Merge object attributes from input file called NAME with those of the
9807 // output. The input object attributes are in the object pointed by PASD.
9808
9809 template<bool big_endian>
9810 void
9811 Target_arm<big_endian>::merge_object_attributes(
9812 const char* name,
9813 const Attributes_section_data* pasd)
9814 {
9815 // Return if there is no attributes section data.
9816 if (pasd == NULL)
9817 return;
9818
9819 // If output has no object attributes, just copy.
9820 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9821 if (this->attributes_section_data_ == NULL)
9822 {
9823 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9824 Object_attribute* out_attr =
9825 this->attributes_section_data_->known_attributes(vendor);
9826
9827 // We do not output objects with Tag_MPextension_use_legacy - we move
9828 // the attribute's value to Tag_MPextension_use. */
9829 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
9830 {
9831 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
9832 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
9833 != out_attr[elfcpp::Tag_MPextension_use].int_value())
9834 {
9835 gold_error(_("%s has both the current and legacy "
9836 "Tag_MPextension_use attributes"),
9837 name);
9838 }
9839
9840 out_attr[elfcpp::Tag_MPextension_use] =
9841 out_attr[elfcpp::Tag_MPextension_use_legacy];
9842 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
9843 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
9844 }
9845
9846 return;
9847 }
9848
9849 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9850 Object_attribute* out_attr =
9851 this->attributes_section_data_->known_attributes(vendor);
9852
9853 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9854 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9855 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9856 {
9857 // Ignore mismatches if the object doesn't use floating point. */
9858 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9859 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9860 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9861 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9862 && parameters->options().warn_mismatch())
9863 gold_error(_("%s uses VFP register arguments, output does not"),
9864 name);
9865 }
9866
9867 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9868 {
9869 // Merge this attribute with existing attributes.
9870 switch (i)
9871 {
9872 case elfcpp::Tag_CPU_raw_name:
9873 case elfcpp::Tag_CPU_name:
9874 // These are merged after Tag_CPU_arch.
9875 break;
9876
9877 case elfcpp::Tag_ABI_optimization_goals:
9878 case elfcpp::Tag_ABI_FP_optimization_goals:
9879 // Use the first value seen.
9880 break;
9881
9882 case elfcpp::Tag_CPU_arch:
9883 {
9884 unsigned int saved_out_attr = out_attr->int_value();
9885 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9886 int secondary_compat =
9887 this->get_secondary_compatible_arch(pasd);
9888 int secondary_compat_out =
9889 this->get_secondary_compatible_arch(
9890 this->attributes_section_data_);
9891 out_attr[i].set_int_value(
9892 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9893 &secondary_compat_out,
9894 in_attr[i].int_value(),
9895 secondary_compat));
9896 this->set_secondary_compatible_arch(this->attributes_section_data_,
9897 secondary_compat_out);
9898
9899 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9900 if (out_attr[i].int_value() == saved_out_attr)
9901 ; // Leave the names alone.
9902 else if (out_attr[i].int_value() == in_attr[i].int_value())
9903 {
9904 // The output architecture has been changed to match the
9905 // input architecture. Use the input names.
9906 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9907 in_attr[elfcpp::Tag_CPU_name].string_value());
9908 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9909 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9910 }
9911 else
9912 {
9913 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9914 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9915 }
9916
9917 // If we still don't have a value for Tag_CPU_name,
9918 // make one up now. Tag_CPU_raw_name remains blank.
9919 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9920 {
9921 const std::string cpu_name =
9922 this->tag_cpu_name_value(out_attr[i].int_value());
9923 // FIXME: If we see an unknown CPU, this will be set
9924 // to "<unknown CPU n>", where n is the attribute value.
9925 // This is different from BFD, which leaves the name alone.
9926 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9927 }
9928 }
9929 break;
9930
9931 case elfcpp::Tag_ARM_ISA_use:
9932 case elfcpp::Tag_THUMB_ISA_use:
9933 case elfcpp::Tag_WMMX_arch:
9934 case elfcpp::Tag_Advanced_SIMD_arch:
9935 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9936 case elfcpp::Tag_ABI_FP_rounding:
9937 case elfcpp::Tag_ABI_FP_exceptions:
9938 case elfcpp::Tag_ABI_FP_user_exceptions:
9939 case elfcpp::Tag_ABI_FP_number_model:
9940 case elfcpp::Tag_VFP_HP_extension:
9941 case elfcpp::Tag_CPU_unaligned_access:
9942 case elfcpp::Tag_T2EE_use:
9943 case elfcpp::Tag_Virtualization_use:
9944 case elfcpp::Tag_MPextension_use:
9945 // Use the largest value specified.
9946 if (in_attr[i].int_value() > out_attr[i].int_value())
9947 out_attr[i].set_int_value(in_attr[i].int_value());
9948 break;
9949
9950 case elfcpp::Tag_ABI_align8_preserved:
9951 case elfcpp::Tag_ABI_PCS_RO_data:
9952 // Use the smallest value specified.
9953 if (in_attr[i].int_value() < out_attr[i].int_value())
9954 out_attr[i].set_int_value(in_attr[i].int_value());
9955 break;
9956
9957 case elfcpp::Tag_ABI_align8_needed:
9958 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9959 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9960 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9961 == 0)))
9962 {
9963 // This error message should be enabled once all non-conformant
9964 // binaries in the toolchain have had the attributes set
9965 // properly.
9966 // gold_error(_("output 8-byte data alignment conflicts with %s"),
9967 // name);
9968 }
9969 // Fall through.
9970 case elfcpp::Tag_ABI_FP_denormal:
9971 case elfcpp::Tag_ABI_PCS_GOT_use:
9972 {
9973 // These tags have 0 = don't care, 1 = strong requirement,
9974 // 2 = weak requirement.
9975 static const int order_021[3] = {0, 2, 1};
9976
9977 // Use the "greatest" from the sequence 0, 2, 1, or the largest
9978 // value if greater than 2 (for future-proofing).
9979 if ((in_attr[i].int_value() > 2
9980 && in_attr[i].int_value() > out_attr[i].int_value())
9981 || (in_attr[i].int_value() <= 2
9982 && out_attr[i].int_value() <= 2
9983 && (order_021[in_attr[i].int_value()]
9984 > order_021[out_attr[i].int_value()])))
9985 out_attr[i].set_int_value(in_attr[i].int_value());
9986 }
9987 break;
9988
9989 case elfcpp::Tag_CPU_arch_profile:
9990 if (out_attr[i].int_value() != in_attr[i].int_value())
9991 {
9992 // 0 will merge with anything.
9993 // 'A' and 'S' merge to 'A'.
9994 // 'R' and 'S' merge to 'R'.
9995 // 'M' and 'A|R|S' is an error.
9996 if (out_attr[i].int_value() == 0
9997 || (out_attr[i].int_value() == 'S'
9998 && (in_attr[i].int_value() == 'A'
9999 || in_attr[i].int_value() == 'R')))
10000 out_attr[i].set_int_value(in_attr[i].int_value());
10001 else if (in_attr[i].int_value() == 0
10002 || (in_attr[i].int_value() == 'S'
10003 && (out_attr[i].int_value() == 'A'
10004 || out_attr[i].int_value() == 'R')))
10005 ; // Do nothing.
10006 else if (parameters->options().warn_mismatch())
10007 {
10008 gold_error
10009 (_("conflicting architecture profiles %c/%c"),
10010 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10011 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10012 }
10013 }
10014 break;
10015 case elfcpp::Tag_VFP_arch:
10016 {
10017 static const struct
10018 {
10019 int ver;
10020 int regs;
10021 } vfp_versions[7] =
10022 {
10023 {0, 0},
10024 {1, 16},
10025 {2, 16},
10026 {3, 32},
10027 {3, 16},
10028 {4, 32},
10029 {4, 16}
10030 };
10031
10032 // Values greater than 6 aren't defined, so just pick the
10033 // biggest.
10034 if (in_attr[i].int_value() > 6
10035 && in_attr[i].int_value() > out_attr[i].int_value())
10036 {
10037 *out_attr = *in_attr;
10038 break;
10039 }
10040 // The output uses the superset of input features
10041 // (ISA version) and registers.
10042 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10043 vfp_versions[out_attr[i].int_value()].ver);
10044 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10045 vfp_versions[out_attr[i].int_value()].regs);
10046 // This assumes all possible supersets are also a valid
10047 // options.
10048 int newval;
10049 for (newval = 6; newval > 0; newval--)
10050 {
10051 if (regs == vfp_versions[newval].regs
10052 && ver == vfp_versions[newval].ver)
10053 break;
10054 }
10055 out_attr[i].set_int_value(newval);
10056 }
10057 break;
10058 case elfcpp::Tag_PCS_config:
10059 if (out_attr[i].int_value() == 0)
10060 out_attr[i].set_int_value(in_attr[i].int_value());
10061 else if (in_attr[i].int_value() != 0
10062 && out_attr[i].int_value() != 0
10063 && parameters->options().warn_mismatch())
10064 {
10065 // It's sometimes ok to mix different configs, so this is only
10066 // a warning.
10067 gold_warning(_("%s: conflicting platform configuration"), name);
10068 }
10069 break;
10070 case elfcpp::Tag_ABI_PCS_R9_use:
10071 if (in_attr[i].int_value() != out_attr[i].int_value()
10072 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10073 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10074 && parameters->options().warn_mismatch())
10075 {
10076 gold_error(_("%s: conflicting use of R9"), name);
10077 }
10078 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10079 out_attr[i].set_int_value(in_attr[i].int_value());
10080 break;
10081 case elfcpp::Tag_ABI_PCS_RW_data:
10082 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10083 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10084 != elfcpp::AEABI_R9_SB)
10085 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10086 != elfcpp::AEABI_R9_unused)
10087 && parameters->options().warn_mismatch())
10088 {
10089 gold_error(_("%s: SB relative addressing conflicts with use "
10090 "of R9"),
10091 name);
10092 }
10093 // Use the smallest value specified.
10094 if (in_attr[i].int_value() < out_attr[i].int_value())
10095 out_attr[i].set_int_value(in_attr[i].int_value());
10096 break;
10097 case elfcpp::Tag_ABI_PCS_wchar_t:
10098 // FIXME: Make it possible to turn off this warning.
10099 if (out_attr[i].int_value()
10100 && in_attr[i].int_value()
10101 && out_attr[i].int_value() != in_attr[i].int_value()
10102 && parameters->options().warn_mismatch())
10103 {
10104 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10105 "use %u-byte wchar_t; use of wchar_t values "
10106 "across objects may fail"),
10107 name, in_attr[i].int_value(),
10108 out_attr[i].int_value());
10109 }
10110 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10111 out_attr[i].set_int_value(in_attr[i].int_value());
10112 break;
10113 case elfcpp::Tag_ABI_enum_size:
10114 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10115 {
10116 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10117 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10118 {
10119 // The existing object is compatible with anything.
10120 // Use whatever requirements the new object has.
10121 out_attr[i].set_int_value(in_attr[i].int_value());
10122 }
10123 // FIXME: Make it possible to turn off this warning.
10124 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10125 && out_attr[i].int_value() != in_attr[i].int_value()
10126 && parameters->options().warn_mismatch())
10127 {
10128 unsigned int in_value = in_attr[i].int_value();
10129 unsigned int out_value = out_attr[i].int_value();
10130 gold_warning(_("%s uses %s enums yet the output is to use "
10131 "%s enums; use of enum values across objects "
10132 "may fail"),
10133 name,
10134 this->aeabi_enum_name(in_value).c_str(),
10135 this->aeabi_enum_name(out_value).c_str());
10136 }
10137 }
10138 break;
10139 case elfcpp::Tag_ABI_VFP_args:
10140 // Aready done.
10141 break;
10142 case elfcpp::Tag_ABI_WMMX_args:
10143 if (in_attr[i].int_value() != out_attr[i].int_value()
10144 && parameters->options().warn_mismatch())
10145 {
10146 gold_error(_("%s uses iWMMXt register arguments, output does "
10147 "not"),
10148 name);
10149 }
10150 break;
10151 case Object_attribute::Tag_compatibility:
10152 // Merged in target-independent code.
10153 break;
10154 case elfcpp::Tag_ABI_HardFP_use:
10155 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10156 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10157 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10158 out_attr[i].set_int_value(3);
10159 else if (in_attr[i].int_value() > out_attr[i].int_value())
10160 out_attr[i].set_int_value(in_attr[i].int_value());
10161 break;
10162 case elfcpp::Tag_ABI_FP_16bit_format:
10163 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10164 {
10165 if (in_attr[i].int_value() != out_attr[i].int_value()
10166 && parameters->options().warn_mismatch())
10167 gold_error(_("fp16 format mismatch between %s and output"),
10168 name);
10169 }
10170 if (in_attr[i].int_value() != 0)
10171 out_attr[i].set_int_value(in_attr[i].int_value());
10172 break;
10173
10174 case elfcpp::Tag_DIV_use:
10175 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10176 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10177 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10178 // CPU. We will merge as follows: If the input attribute's value
10179 // is one then the output attribute's value remains unchanged. If
10180 // the input attribute's value is zero or two then if the output
10181 // attribute's value is one the output value is set to the input
10182 // value, otherwise the output value must be the same as the
10183 // inputs. */
10184 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10185 {
10186 if (in_attr[i].int_value() != out_attr[i].int_value())
10187 {
10188 gold_error(_("DIV usage mismatch between %s and output"),
10189 name);
10190 }
10191 }
10192
10193 if (in_attr[i].int_value() != 1)
10194 out_attr[i].set_int_value(in_attr[i].int_value());
10195
10196 break;
10197
10198 case elfcpp::Tag_MPextension_use_legacy:
10199 // We don't output objects with Tag_MPextension_use_legacy - we
10200 // move the value to Tag_MPextension_use.
10201 if (in_attr[i].int_value() != 0
10202 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10203 {
10204 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10205 != in_attr[i].int_value())
10206 {
10207 gold_error(_("%s has has both the current and legacy "
10208 "Tag_MPextension_use attributes"),
10209 name);
10210 }
10211 }
10212
10213 if (in_attr[i].int_value()
10214 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10215 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10216
10217 break;
10218
10219 case elfcpp::Tag_nodefaults:
10220 // This tag is set if it exists, but the value is unused (and is
10221 // typically zero). We don't actually need to do anything here -
10222 // the merge happens automatically when the type flags are merged
10223 // below.
10224 break;
10225 case elfcpp::Tag_also_compatible_with:
10226 // Already done in Tag_CPU_arch.
10227 break;
10228 case elfcpp::Tag_conformance:
10229 // Keep the attribute if it matches. Throw it away otherwise.
10230 // No attribute means no claim to conform.
10231 if (in_attr[i].string_value() != out_attr[i].string_value())
10232 out_attr[i].set_string_value("");
10233 break;
10234
10235 default:
10236 {
10237 const char* err_object = NULL;
10238
10239 // The "known_obj_attributes" table does contain some undefined
10240 // attributes. Ensure that there are unused.
10241 if (out_attr[i].int_value() != 0
10242 || out_attr[i].string_value() != "")
10243 err_object = "output";
10244 else if (in_attr[i].int_value() != 0
10245 || in_attr[i].string_value() != "")
10246 err_object = name;
10247
10248 if (err_object != NULL
10249 && parameters->options().warn_mismatch())
10250 {
10251 // Attribute numbers >=64 (mod 128) can be safely ignored.
10252 if ((i & 127) < 64)
10253 gold_error(_("%s: unknown mandatory EABI object attribute "
10254 "%d"),
10255 err_object, i);
10256 else
10257 gold_warning(_("%s: unknown EABI object attribute %d"),
10258 err_object, i);
10259 }
10260
10261 // Only pass on attributes that match in both inputs.
10262 if (!in_attr[i].matches(out_attr[i]))
10263 {
10264 out_attr[i].set_int_value(0);
10265 out_attr[i].set_string_value("");
10266 }
10267 }
10268 }
10269
10270 // If out_attr was copied from in_attr then it won't have a type yet.
10271 if (in_attr[i].type() && !out_attr[i].type())
10272 out_attr[i].set_type(in_attr[i].type());
10273 }
10274
10275 // Merge Tag_compatibility attributes and any common GNU ones.
10276 this->attributes_section_data_->merge(name, pasd);
10277
10278 // Check for any attributes not known on ARM.
10279 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10280 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10281 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10282 Other_attributes* out_other_attributes =
10283 this->attributes_section_data_->other_attributes(vendor);
10284 Other_attributes::iterator out_iter = out_other_attributes->begin();
10285
10286 while (in_iter != in_other_attributes->end()
10287 || out_iter != out_other_attributes->end())
10288 {
10289 const char* err_object = NULL;
10290 int err_tag = 0;
10291
10292 // The tags for each list are in numerical order.
10293 // If the tags are equal, then merge.
10294 if (out_iter != out_other_attributes->end()
10295 && (in_iter == in_other_attributes->end()
10296 || in_iter->first > out_iter->first))
10297 {
10298 // This attribute only exists in output. We can't merge, and we
10299 // don't know what the tag means, so delete it.
10300 err_object = "output";
10301 err_tag = out_iter->first;
10302 int saved_tag = out_iter->first;
10303 delete out_iter->second;
10304 out_other_attributes->erase(out_iter);
10305 out_iter = out_other_attributes->upper_bound(saved_tag);
10306 }
10307 else if (in_iter != in_other_attributes->end()
10308 && (out_iter != out_other_attributes->end()
10309 || in_iter->first < out_iter->first))
10310 {
10311 // This attribute only exists in input. We can't merge, and we
10312 // don't know what the tag means, so ignore it.
10313 err_object = name;
10314 err_tag = in_iter->first;
10315 ++in_iter;
10316 }
10317 else // The tags are equal.
10318 {
10319 // As present, all attributes in the list are unknown, and
10320 // therefore can't be merged meaningfully.
10321 err_object = "output";
10322 err_tag = out_iter->first;
10323
10324 // Only pass on attributes that match in both inputs.
10325 if (!in_iter->second->matches(*(out_iter->second)))
10326 {
10327 // No match. Delete the attribute.
10328 int saved_tag = out_iter->first;
10329 delete out_iter->second;
10330 out_other_attributes->erase(out_iter);
10331 out_iter = out_other_attributes->upper_bound(saved_tag);
10332 }
10333 else
10334 {
10335 // Matched. Keep the attribute and move to the next.
10336 ++out_iter;
10337 ++in_iter;
10338 }
10339 }
10340
10341 if (err_object && parameters->options().warn_mismatch())
10342 {
10343 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10344 if ((err_tag & 127) < 64)
10345 {
10346 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10347 err_object, err_tag);
10348 }
10349 else
10350 {
10351 gold_warning(_("%s: unknown EABI object attribute %d"),
10352 err_object, err_tag);
10353 }
10354 }
10355 }
10356 }
10357
10358 // Stub-generation methods for Target_arm.
10359
10360 // Make a new Arm_input_section object.
10361
10362 template<bool big_endian>
10363 Arm_input_section<big_endian>*
10364 Target_arm<big_endian>::new_arm_input_section(
10365 Relobj* relobj,
10366 unsigned int shndx)
10367 {
10368 Section_id sid(relobj, shndx);
10369
10370 Arm_input_section<big_endian>* arm_input_section =
10371 new Arm_input_section<big_endian>(relobj, shndx);
10372 arm_input_section->init();
10373
10374 // Register new Arm_input_section in map for look-up.
10375 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10376 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10377
10378 // Make sure that it we have not created another Arm_input_section
10379 // for this input section already.
10380 gold_assert(ins.second);
10381
10382 return arm_input_section;
10383 }
10384
10385 // Find the Arm_input_section object corresponding to the SHNDX-th input
10386 // section of RELOBJ.
10387
10388 template<bool big_endian>
10389 Arm_input_section<big_endian>*
10390 Target_arm<big_endian>::find_arm_input_section(
10391 Relobj* relobj,
10392 unsigned int shndx) const
10393 {
10394 Section_id sid(relobj, shndx);
10395 typename Arm_input_section_map::const_iterator p =
10396 this->arm_input_section_map_.find(sid);
10397 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10398 }
10399
10400 // Make a new stub table.
10401
10402 template<bool big_endian>
10403 Stub_table<big_endian>*
10404 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10405 {
10406 Stub_table<big_endian>* stub_table =
10407 new Stub_table<big_endian>(owner);
10408 this->stub_tables_.push_back(stub_table);
10409
10410 stub_table->set_address(owner->address() + owner->data_size());
10411 stub_table->set_file_offset(owner->offset() + owner->data_size());
10412 stub_table->finalize_data_size();
10413
10414 return stub_table;
10415 }
10416
10417 // Scan a relocation for stub generation.
10418
10419 template<bool big_endian>
10420 void
10421 Target_arm<big_endian>::scan_reloc_for_stub(
10422 const Relocate_info<32, big_endian>* relinfo,
10423 unsigned int r_type,
10424 const Sized_symbol<32>* gsym,
10425 unsigned int r_sym,
10426 const Symbol_value<32>* psymval,
10427 elfcpp::Elf_types<32>::Elf_Swxword addend,
10428 Arm_address address)
10429 {
10430 typedef typename Target_arm<big_endian>::Relocate Relocate;
10431
10432 const Arm_relobj<big_endian>* arm_relobj =
10433 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10434
10435 bool target_is_thumb;
10436 Symbol_value<32> symval;
10437 if (gsym != NULL)
10438 {
10439 // This is a global symbol. Determine if we use PLT and if the
10440 // final target is THUMB.
10441 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10442 {
10443 // This uses a PLT, change the symbol value.
10444 symval.set_output_value(this->plt_section()->address()
10445 + gsym->plt_offset());
10446 psymval = &symval;
10447 target_is_thumb = false;
10448 }
10449 else if (gsym->is_undefined())
10450 // There is no need to generate a stub symbol is undefined.
10451 return;
10452 else
10453 {
10454 target_is_thumb =
10455 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10456 || (gsym->type() == elfcpp::STT_FUNC
10457 && !gsym->is_undefined()
10458 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10459 }
10460 }
10461 else
10462 {
10463 // This is a local symbol. Determine if the final target is THUMB.
10464 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10465 }
10466
10467 // Strip LSB if this points to a THUMB target.
10468 const Arm_reloc_property* reloc_property =
10469 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10470 gold_assert(reloc_property != NULL);
10471 if (target_is_thumb
10472 && reloc_property->uses_thumb_bit()
10473 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10474 {
10475 Arm_address stripped_value =
10476 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10477 symval.set_output_value(stripped_value);
10478 psymval = &symval;
10479 }
10480
10481 // Get the symbol value.
10482 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10483
10484 // Owing to pipelining, the PC relative branches below actually skip
10485 // two instructions when the branch offset is 0.
10486 Arm_address destination;
10487 switch (r_type)
10488 {
10489 case elfcpp::R_ARM_CALL:
10490 case elfcpp::R_ARM_JUMP24:
10491 case elfcpp::R_ARM_PLT32:
10492 // ARM branches.
10493 destination = value + addend + 8;
10494 break;
10495 case elfcpp::R_ARM_THM_CALL:
10496 case elfcpp::R_ARM_THM_XPC22:
10497 case elfcpp::R_ARM_THM_JUMP24:
10498 case elfcpp::R_ARM_THM_JUMP19:
10499 // THUMB branches.
10500 destination = value + addend + 4;
10501 break;
10502 default:
10503 gold_unreachable();
10504 }
10505
10506 Reloc_stub* stub = NULL;
10507 Stub_type stub_type =
10508 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10509 target_is_thumb);
10510 if (stub_type != arm_stub_none)
10511 {
10512 // Try looking up an existing stub from a stub table.
10513 Stub_table<big_endian>* stub_table =
10514 arm_relobj->stub_table(relinfo->data_shndx);
10515 gold_assert(stub_table != NULL);
10516
10517 // Locate stub by destination.
10518 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10519
10520 // Create a stub if there is not one already
10521 stub = stub_table->find_reloc_stub(stub_key);
10522 if (stub == NULL)
10523 {
10524 // create a new stub and add it to stub table.
10525 stub = this->stub_factory().make_reloc_stub(stub_type);
10526 stub_table->add_reloc_stub(stub, stub_key);
10527 }
10528
10529 // Record the destination address.
10530 stub->set_destination_address(destination
10531 | (target_is_thumb ? 1 : 0));
10532 }
10533
10534 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10535 if (this->fix_cortex_a8_
10536 && (r_type == elfcpp::R_ARM_THM_JUMP24
10537 || r_type == elfcpp::R_ARM_THM_JUMP19
10538 || r_type == elfcpp::R_ARM_THM_CALL
10539 || r_type == elfcpp::R_ARM_THM_XPC22)
10540 && (address & 0xfffU) == 0xffeU)
10541 {
10542 // Found a candidate. Note we haven't checked the destination is
10543 // within 4K here: if we do so (and don't create a record) we can't
10544 // tell that a branch should have been relocated when scanning later.
10545 this->cortex_a8_relocs_info_[address] =
10546 new Cortex_a8_reloc(stub, r_type,
10547 destination | (target_is_thumb ? 1 : 0));
10548 }
10549 }
10550
10551 // This function scans a relocation sections for stub generation.
10552 // The template parameter Relocate must be a class type which provides
10553 // a single function, relocate(), which implements the machine
10554 // specific part of a relocation.
10555
10556 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10557 // SHT_REL or SHT_RELA.
10558
10559 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10560 // of relocs. OUTPUT_SECTION is the output section.
10561 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10562 // mapped to output offsets.
10563
10564 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10565 // VIEW_SIZE is the size. These refer to the input section, unless
10566 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10567 // the output section.
10568
10569 template<bool big_endian>
10570 template<int sh_type>
10571 void inline
10572 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10573 const Relocate_info<32, big_endian>* relinfo,
10574 const unsigned char* prelocs,
10575 size_t reloc_count,
10576 Output_section* output_section,
10577 bool needs_special_offset_handling,
10578 const unsigned char* view,
10579 elfcpp::Elf_types<32>::Elf_Addr view_address,
10580 section_size_type)
10581 {
10582 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10583 const int reloc_size =
10584 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10585
10586 Arm_relobj<big_endian>* arm_object =
10587 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10588 unsigned int local_count = arm_object->local_symbol_count();
10589
10590 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10591
10592 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10593 {
10594 Reltype reloc(prelocs);
10595
10596 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10597 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10598 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10599
10600 r_type = this->get_real_reloc_type(r_type);
10601
10602 // Only a few relocation types need stubs.
10603 if ((r_type != elfcpp::R_ARM_CALL)
10604 && (r_type != elfcpp::R_ARM_JUMP24)
10605 && (r_type != elfcpp::R_ARM_PLT32)
10606 && (r_type != elfcpp::R_ARM_THM_CALL)
10607 && (r_type != elfcpp::R_ARM_THM_XPC22)
10608 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10609 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10610 && (r_type != elfcpp::R_ARM_V4BX))
10611 continue;
10612
10613 section_offset_type offset =
10614 convert_to_section_size_type(reloc.get_r_offset());
10615
10616 if (needs_special_offset_handling)
10617 {
10618 offset = output_section->output_offset(relinfo->object,
10619 relinfo->data_shndx,
10620 offset);
10621 if (offset == -1)
10622 continue;
10623 }
10624
10625 // Create a v4bx stub if --fix-v4bx-interworking is used.
10626 if (r_type == elfcpp::R_ARM_V4BX)
10627 {
10628 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10629 {
10630 // Get the BX instruction.
10631 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10632 const Valtype* wv =
10633 reinterpret_cast<const Valtype*>(view + offset);
10634 elfcpp::Elf_types<32>::Elf_Swxword insn =
10635 elfcpp::Swap<32, big_endian>::readval(wv);
10636 const uint32_t reg = (insn & 0xf);
10637
10638 if (reg < 0xf)
10639 {
10640 // Try looking up an existing stub from a stub table.
10641 Stub_table<big_endian>* stub_table =
10642 arm_object->stub_table(relinfo->data_shndx);
10643 gold_assert(stub_table != NULL);
10644
10645 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10646 {
10647 // create a new stub and add it to stub table.
10648 Arm_v4bx_stub* stub =
10649 this->stub_factory().make_arm_v4bx_stub(reg);
10650 gold_assert(stub != NULL);
10651 stub_table->add_arm_v4bx_stub(stub);
10652 }
10653 }
10654 }
10655 continue;
10656 }
10657
10658 // Get the addend.
10659 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10660 elfcpp::Elf_types<32>::Elf_Swxword addend =
10661 stub_addend_reader(r_type, view + offset, reloc);
10662
10663 const Sized_symbol<32>* sym;
10664
10665 Symbol_value<32> symval;
10666 const Symbol_value<32> *psymval;
10667 if (r_sym < local_count)
10668 {
10669 sym = NULL;
10670 psymval = arm_object->local_symbol(r_sym);
10671
10672 // If the local symbol belongs to a section we are discarding,
10673 // and that section is a debug section, try to find the
10674 // corresponding kept section and map this symbol to its
10675 // counterpart in the kept section. The symbol must not
10676 // correspond to a section we are folding.
10677 bool is_ordinary;
10678 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10679 if (is_ordinary
10680 && shndx != elfcpp::SHN_UNDEF
10681 && !arm_object->is_section_included(shndx)
10682 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10683 {
10684 if (comdat_behavior == CB_UNDETERMINED)
10685 {
10686 std::string name =
10687 arm_object->section_name(relinfo->data_shndx);
10688 comdat_behavior = get_comdat_behavior(name.c_str());
10689 }
10690 if (comdat_behavior == CB_PRETEND)
10691 {
10692 bool found;
10693 typename elfcpp::Elf_types<32>::Elf_Addr value =
10694 arm_object->map_to_kept_section(shndx, &found);
10695 if (found)
10696 symval.set_output_value(value + psymval->input_value());
10697 else
10698 symval.set_output_value(0);
10699 }
10700 else
10701 {
10702 symval.set_output_value(0);
10703 }
10704 symval.set_no_output_symtab_entry();
10705 psymval = &symval;
10706 }
10707 }
10708 else
10709 {
10710 const Symbol* gsym = arm_object->global_symbol(r_sym);
10711 gold_assert(gsym != NULL);
10712 if (gsym->is_forwarder())
10713 gsym = relinfo->symtab->resolve_forwards(gsym);
10714
10715 sym = static_cast<const Sized_symbol<32>*>(gsym);
10716 if (sym->has_symtab_index())
10717 symval.set_output_symtab_index(sym->symtab_index());
10718 else
10719 symval.set_no_output_symtab_entry();
10720
10721 // We need to compute the would-be final value of this global
10722 // symbol.
10723 const Symbol_table* symtab = relinfo->symtab;
10724 const Sized_symbol<32>* sized_symbol =
10725 symtab->get_sized_symbol<32>(gsym);
10726 Symbol_table::Compute_final_value_status status;
10727 Arm_address value =
10728 symtab->compute_final_value<32>(sized_symbol, &status);
10729
10730 // Skip this if the symbol has not output section.
10731 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10732 continue;
10733
10734 symval.set_output_value(value);
10735 psymval = &symval;
10736 }
10737
10738 // If symbol is a section symbol, we don't know the actual type of
10739 // destination. Give up.
10740 if (psymval->is_section_symbol())
10741 continue;
10742
10743 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10744 addend, view_address + offset);
10745 }
10746 }
10747
10748 // Scan an input section for stub generation.
10749
10750 template<bool big_endian>
10751 void
10752 Target_arm<big_endian>::scan_section_for_stubs(
10753 const Relocate_info<32, big_endian>* relinfo,
10754 unsigned int sh_type,
10755 const unsigned char* prelocs,
10756 size_t reloc_count,
10757 Output_section* output_section,
10758 bool needs_special_offset_handling,
10759 const unsigned char* view,
10760 Arm_address view_address,
10761 section_size_type view_size)
10762 {
10763 if (sh_type == elfcpp::SHT_REL)
10764 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10765 relinfo,
10766 prelocs,
10767 reloc_count,
10768 output_section,
10769 needs_special_offset_handling,
10770 view,
10771 view_address,
10772 view_size);
10773 else if (sh_type == elfcpp::SHT_RELA)
10774 // We do not support RELA type relocations yet. This is provided for
10775 // completeness.
10776 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10777 relinfo,
10778 prelocs,
10779 reloc_count,
10780 output_section,
10781 needs_special_offset_handling,
10782 view,
10783 view_address,
10784 view_size);
10785 else
10786 gold_unreachable();
10787 }
10788
10789 // Group input sections for stub generation.
10790 //
10791 // We goup input sections in an output sections so that the total size,
10792 // including any padding space due to alignment is smaller than GROUP_SIZE
10793 // unless the only input section in group is bigger than GROUP_SIZE already.
10794 // Then an ARM stub table is created to follow the last input section
10795 // in group. For each group an ARM stub table is created an is placed
10796 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10797 // extend the group after the stub table.
10798
10799 template<bool big_endian>
10800 void
10801 Target_arm<big_endian>::group_sections(
10802 Layout* layout,
10803 section_size_type group_size,
10804 bool stubs_always_after_branch)
10805 {
10806 // Group input sections and insert stub table
10807 Layout::Section_list section_list;
10808 layout->get_allocated_sections(&section_list);
10809 for (Layout::Section_list::const_iterator p = section_list.begin();
10810 p != section_list.end();
10811 ++p)
10812 {
10813 Arm_output_section<big_endian>* output_section =
10814 Arm_output_section<big_endian>::as_arm_output_section(*p);
10815 output_section->group_sections(group_size, stubs_always_after_branch,
10816 this);
10817 }
10818 }
10819
10820 // Relaxation hook. This is where we do stub generation.
10821
10822 template<bool big_endian>
10823 bool
10824 Target_arm<big_endian>::do_relax(
10825 int pass,
10826 const Input_objects* input_objects,
10827 Symbol_table* symtab,
10828 Layout* layout)
10829 {
10830 // No need to generate stubs if this is a relocatable link.
10831 gold_assert(!parameters->options().relocatable());
10832
10833 // If this is the first pass, we need to group input sections into
10834 // stub groups.
10835 bool done_exidx_fixup = false;
10836 typedef typename Stub_table_list::iterator Stub_table_iterator;
10837 if (pass == 1)
10838 {
10839 // Determine the stub group size. The group size is the absolute
10840 // value of the parameter --stub-group-size. If --stub-group-size
10841 // is passed a negative value, we restict stubs to be always after
10842 // the stubbed branches.
10843 int32_t stub_group_size_param =
10844 parameters->options().stub_group_size();
10845 bool stubs_always_after_branch = stub_group_size_param < 0;
10846 section_size_type stub_group_size = abs(stub_group_size_param);
10847
10848 if (stub_group_size == 1)
10849 {
10850 // Default value.
10851 // Thumb branch range is +-4MB has to be used as the default
10852 // maximum size (a given section can contain both ARM and Thumb
10853 // code, so the worst case has to be taken into account). If we are
10854 // fixing cortex-a8 errata, the branch range has to be even smaller,
10855 // since wide conditional branch has a range of +-1MB only.
10856 //
10857 // This value is 48K less than that, which allows for 4096
10858 // 12-byte stubs. If we exceed that, then we will fail to link.
10859 // The user will have to relink with an explicit group size
10860 // option.
10861 stub_group_size = 4145152;
10862 }
10863
10864 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10865 // page as the first half of a 32-bit branch straddling two 4K pages.
10866 // This is a crude way of enforcing that. In addition, long conditional
10867 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
10868 // erratum, limit the group size to (1M - 12k) to avoid unreachable
10869 // cortex-A8 stubs from long conditional branches.
10870 if (this->fix_cortex_a8_)
10871 {
10872 stubs_always_after_branch = true;
10873 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
10874 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
10875 }
10876
10877 group_sections(layout, stub_group_size, stubs_always_after_branch);
10878
10879 // Also fix .ARM.exidx section coverage.
10880 Output_section* os = layout->find_output_section(".ARM.exidx");
10881 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10882 {
10883 Arm_output_section<big_endian>* exidx_output_section =
10884 Arm_output_section<big_endian>::as_arm_output_section(os);
10885 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10886 done_exidx_fixup = true;
10887 }
10888 }
10889 else
10890 {
10891 // If this is not the first pass, addresses and file offsets have
10892 // been reset at this point, set them here.
10893 for (Stub_table_iterator sp = this->stub_tables_.begin();
10894 sp != this->stub_tables_.end();
10895 ++sp)
10896 {
10897 Arm_input_section<big_endian>* owner = (*sp)->owner();
10898 off_t off = align_address(owner->original_size(),
10899 (*sp)->addralign());
10900 (*sp)->set_address_and_file_offset(owner->address() + off,
10901 owner->offset() + off);
10902 }
10903 }
10904
10905 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
10906 // beginning of each relaxation pass, just blow away all the stubs.
10907 // Alternatively, we could selectively remove only the stubs and reloc
10908 // information for code sections that have moved since the last pass.
10909 // That would require more book-keeping.
10910 if (this->fix_cortex_a8_)
10911 {
10912 // Clear all Cortex-A8 reloc information.
10913 for (typename Cortex_a8_relocs_info::const_iterator p =
10914 this->cortex_a8_relocs_info_.begin();
10915 p != this->cortex_a8_relocs_info_.end();
10916 ++p)
10917 delete p->second;
10918 this->cortex_a8_relocs_info_.clear();
10919
10920 // Remove all Cortex-A8 stubs.
10921 for (Stub_table_iterator sp = this->stub_tables_.begin();
10922 sp != this->stub_tables_.end();
10923 ++sp)
10924 (*sp)->remove_all_cortex_a8_stubs();
10925 }
10926
10927 // Scan relocs for relocation stubs
10928 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10929 op != input_objects->relobj_end();
10930 ++op)
10931 {
10932 Arm_relobj<big_endian>* arm_relobj =
10933 Arm_relobj<big_endian>::as_arm_relobj(*op);
10934 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
10935 }
10936
10937 // Check all stub tables to see if any of them have their data sizes
10938 // or addresses alignments changed. These are the only things that
10939 // matter.
10940 bool any_stub_table_changed = false;
10941 Unordered_set<const Output_section*> sections_needing_adjustment;
10942 for (Stub_table_iterator sp = this->stub_tables_.begin();
10943 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10944 ++sp)
10945 {
10946 if ((*sp)->update_data_size_and_addralign())
10947 {
10948 // Update data size of stub table owner.
10949 Arm_input_section<big_endian>* owner = (*sp)->owner();
10950 uint64_t address = owner->address();
10951 off_t offset = owner->offset();
10952 owner->reset_address_and_file_offset();
10953 owner->set_address_and_file_offset(address, offset);
10954
10955 sections_needing_adjustment.insert(owner->output_section());
10956 any_stub_table_changed = true;
10957 }
10958 }
10959
10960 // Output_section_data::output_section() returns a const pointer but we
10961 // need to update output sections, so we record all output sections needing
10962 // update above and scan the sections here to find out what sections need
10963 // to be updated.
10964 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10965 p != layout->section_list().end();
10966 ++p)
10967 {
10968 if (sections_needing_adjustment.find(*p)
10969 != sections_needing_adjustment.end())
10970 (*p)->set_section_offsets_need_adjustment();
10971 }
10972
10973 // Stop relaxation if no EXIDX fix-up and no stub table change.
10974 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10975
10976 // Finalize the stubs in the last relaxation pass.
10977 if (!continue_relaxation)
10978 {
10979 for (Stub_table_iterator sp = this->stub_tables_.begin();
10980 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10981 ++sp)
10982 (*sp)->finalize_stubs();
10983
10984 // Update output local symbol counts of objects if necessary.
10985 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10986 op != input_objects->relobj_end();
10987 ++op)
10988 {
10989 Arm_relobj<big_endian>* arm_relobj =
10990 Arm_relobj<big_endian>::as_arm_relobj(*op);
10991
10992 // Update output local symbol counts. We need to discard local
10993 // symbols defined in parts of input sections that are discarded by
10994 // relaxation.
10995 if (arm_relobj->output_local_symbol_count_needs_update())
10996 arm_relobj->update_output_local_symbol_count();
10997 }
10998 }
10999
11000 return continue_relaxation;
11001 }
11002
11003 // Relocate a stub.
11004
11005 template<bool big_endian>
11006 void
11007 Target_arm<big_endian>::relocate_stub(
11008 Stub* stub,
11009 const Relocate_info<32, big_endian>* relinfo,
11010 Output_section* output_section,
11011 unsigned char* view,
11012 Arm_address address,
11013 section_size_type view_size)
11014 {
11015 Relocate relocate;
11016 const Stub_template* stub_template = stub->stub_template();
11017 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11018 {
11019 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11020 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11021
11022 unsigned int r_type = insn->r_type();
11023 section_size_type reloc_offset = stub_template->reloc_offset(i);
11024 section_size_type reloc_size = insn->size();
11025 gold_assert(reloc_offset + reloc_size <= view_size);
11026
11027 // This is the address of the stub destination.
11028 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11029 Symbol_value<32> symval;
11030 symval.set_output_value(target);
11031
11032 // Synthesize a fake reloc just in case. We don't have a symbol so
11033 // we use 0.
11034 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11035 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11036 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11037 reloc_write.put_r_offset(reloc_offset);
11038 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11039 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11040
11041 relocate.relocate(relinfo, this, output_section,
11042 this->fake_relnum_for_stubs, rel, r_type,
11043 NULL, &symval, view + reloc_offset,
11044 address + reloc_offset, reloc_size);
11045 }
11046 }
11047
11048 // Determine whether an object attribute tag takes an integer, a
11049 // string or both.
11050
11051 template<bool big_endian>
11052 int
11053 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11054 {
11055 if (tag == Object_attribute::Tag_compatibility)
11056 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11057 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11058 else if (tag == elfcpp::Tag_nodefaults)
11059 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11060 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11061 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11062 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11063 else if (tag < 32)
11064 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11065 else
11066 return ((tag & 1) != 0
11067 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11068 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11069 }
11070
11071 // Reorder attributes.
11072 //
11073 // The ABI defines that Tag_conformance should be emitted first, and that
11074 // Tag_nodefaults should be second (if either is defined). This sets those
11075 // two positions, and bumps up the position of all the remaining tags to
11076 // compensate.
11077
11078 template<bool big_endian>
11079 int
11080 Target_arm<big_endian>::do_attributes_order(int num) const
11081 {
11082 // Reorder the known object attributes in output. We want to move
11083 // Tag_conformance to position 4 and Tag_conformance to position 5
11084 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11085 if (num == 4)
11086 return elfcpp::Tag_conformance;
11087 if (num == 5)
11088 return elfcpp::Tag_nodefaults;
11089 if ((num - 2) < elfcpp::Tag_nodefaults)
11090 return num - 2;
11091 if ((num - 1) < elfcpp::Tag_conformance)
11092 return num - 1;
11093 return num;
11094 }
11095
11096 // Scan a span of THUMB code for Cortex-A8 erratum.
11097
11098 template<bool big_endian>
11099 void
11100 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11101 Arm_relobj<big_endian>* arm_relobj,
11102 unsigned int shndx,
11103 section_size_type span_start,
11104 section_size_type span_end,
11105 const unsigned char* view,
11106 Arm_address address)
11107 {
11108 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11109 //
11110 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11111 // The branch target is in the same 4KB region as the
11112 // first half of the branch.
11113 // The instruction before the branch is a 32-bit
11114 // length non-branch instruction.
11115 section_size_type i = span_start;
11116 bool last_was_32bit = false;
11117 bool last_was_branch = false;
11118 while (i < span_end)
11119 {
11120 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11121 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11122 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11123 bool is_blx = false, is_b = false;
11124 bool is_bl = false, is_bcc = false;
11125
11126 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11127 if (insn_32bit)
11128 {
11129 // Load the rest of the insn (in manual-friendly order).
11130 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11131
11132 // Encoding T4: B<c>.W.
11133 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11134 // Encoding T1: BL<c>.W.
11135 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11136 // Encoding T2: BLX<c>.W.
11137 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11138 // Encoding T3: B<c>.W (not permitted in IT block).
11139 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11140 && (insn & 0x07f00000U) != 0x03800000U);
11141 }
11142
11143 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11144
11145 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11146 // page boundary and it follows 32-bit non-branch instruction,
11147 // we need to work around.
11148 if (is_32bit_branch
11149 && ((address + i) & 0xfffU) == 0xffeU
11150 && last_was_32bit
11151 && !last_was_branch)
11152 {
11153 // Check to see if there is a relocation stub for this branch.
11154 bool force_target_arm = false;
11155 bool force_target_thumb = false;
11156 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11157 Cortex_a8_relocs_info::const_iterator p =
11158 this->cortex_a8_relocs_info_.find(address + i);
11159
11160 if (p != this->cortex_a8_relocs_info_.end())
11161 {
11162 cortex_a8_reloc = p->second;
11163 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11164
11165 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11166 && !target_is_thumb)
11167 force_target_arm = true;
11168 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11169 && target_is_thumb)
11170 force_target_thumb = true;
11171 }
11172
11173 off_t offset;
11174 Stub_type stub_type = arm_stub_none;
11175
11176 // Check if we have an offending branch instruction.
11177 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11178 uint16_t lower_insn = insn & 0xffffU;
11179 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11180
11181 if (cortex_a8_reloc != NULL
11182 && cortex_a8_reloc->reloc_stub() != NULL)
11183 // We've already made a stub for this instruction, e.g.
11184 // it's a long branch or a Thumb->ARM stub. Assume that
11185 // stub will suffice to work around the A8 erratum (see
11186 // setting of always_after_branch above).
11187 ;
11188 else if (is_bcc)
11189 {
11190 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11191 lower_insn);
11192 stub_type = arm_stub_a8_veneer_b_cond;
11193 }
11194 else if (is_b || is_bl || is_blx)
11195 {
11196 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11197 lower_insn);
11198 if (is_blx)
11199 offset &= ~3;
11200
11201 stub_type = (is_blx
11202 ? arm_stub_a8_veneer_blx
11203 : (is_bl
11204 ? arm_stub_a8_veneer_bl
11205 : arm_stub_a8_veneer_b));
11206 }
11207
11208 if (stub_type != arm_stub_none)
11209 {
11210 Arm_address pc_for_insn = address + i + 4;
11211
11212 // The original instruction is a BL, but the target is
11213 // an ARM instruction. If we were not making a stub,
11214 // the BL would have been converted to a BLX. Use the
11215 // BLX stub instead in that case.
11216 if (this->may_use_blx() && force_target_arm
11217 && stub_type == arm_stub_a8_veneer_bl)
11218 {
11219 stub_type = arm_stub_a8_veneer_blx;
11220 is_blx = true;
11221 is_bl = false;
11222 }
11223 // Conversely, if the original instruction was
11224 // BLX but the target is Thumb mode, use the BL stub.
11225 else if (force_target_thumb
11226 && stub_type == arm_stub_a8_veneer_blx)
11227 {
11228 stub_type = arm_stub_a8_veneer_bl;
11229 is_blx = false;
11230 is_bl = true;
11231 }
11232
11233 if (is_blx)
11234 pc_for_insn &= ~3;
11235
11236 // If we found a relocation, use the proper destination,
11237 // not the offset in the (unrelocated) instruction.
11238 // Note this is always done if we switched the stub type above.
11239 if (cortex_a8_reloc != NULL)
11240 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11241
11242 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11243
11244 // Add a new stub if destination address in in the same page.
11245 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11246 {
11247 Cortex_a8_stub* stub =
11248 this->stub_factory_.make_cortex_a8_stub(stub_type,
11249 arm_relobj, shndx,
11250 address + i,
11251 target, insn);
11252 Stub_table<big_endian>* stub_table =
11253 arm_relobj->stub_table(shndx);
11254 gold_assert(stub_table != NULL);
11255 stub_table->add_cortex_a8_stub(address + i, stub);
11256 }
11257 }
11258 }
11259
11260 i += insn_32bit ? 4 : 2;
11261 last_was_32bit = insn_32bit;
11262 last_was_branch = is_32bit_branch;
11263 }
11264 }
11265
11266 // Apply the Cortex-A8 workaround.
11267
11268 template<bool big_endian>
11269 void
11270 Target_arm<big_endian>::apply_cortex_a8_workaround(
11271 const Cortex_a8_stub* stub,
11272 Arm_address stub_address,
11273 unsigned char* insn_view,
11274 Arm_address insn_address)
11275 {
11276 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11277 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11278 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11279 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11280 off_t branch_offset = stub_address - (insn_address + 4);
11281
11282 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11283 switch (stub->stub_template()->type())
11284 {
11285 case arm_stub_a8_veneer_b_cond:
11286 // For a conditional branch, we re-write it to be a uncondition
11287 // branch to the stub. We use the THUMB-2 encoding here.
11288 upper_insn = 0xf000U;
11289 lower_insn = 0xb800U;
11290 // Fall through
11291 case arm_stub_a8_veneer_b:
11292 case arm_stub_a8_veneer_bl:
11293 case arm_stub_a8_veneer_blx:
11294 if ((lower_insn & 0x5000U) == 0x4000U)
11295 // For a BLX instruction, make sure that the relocation is
11296 // rounded up to a word boundary. This follows the semantics of
11297 // the instruction which specifies that bit 1 of the target
11298 // address will come from bit 1 of the base address.
11299 branch_offset = (branch_offset + 2) & ~3;
11300
11301 // Put BRANCH_OFFSET back into the insn.
11302 gold_assert(!utils::has_overflow<25>(branch_offset));
11303 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11304 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11305 break;
11306
11307 default:
11308 gold_unreachable();
11309 }
11310
11311 // Put the relocated value back in the object file:
11312 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11313 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11314 }
11315
11316 template<bool big_endian>
11317 class Target_selector_arm : public Target_selector
11318 {
11319 public:
11320 Target_selector_arm()
11321 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11322 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11323 { }
11324
11325 Target*
11326 do_instantiate_target()
11327 { return new Target_arm<big_endian>(); }
11328 };
11329
11330 // Fix .ARM.exidx section coverage.
11331
11332 template<bool big_endian>
11333 void
11334 Target_arm<big_endian>::fix_exidx_coverage(
11335 Layout* layout,
11336 Arm_output_section<big_endian>* exidx_section,
11337 Symbol_table* symtab)
11338 {
11339 // We need to look at all the input sections in output in ascending
11340 // order of of output address. We do that by building a sorted list
11341 // of output sections by addresses. Then we looks at the output sections
11342 // in order. The input sections in an output section are already sorted
11343 // by addresses within the output section.
11344
11345 typedef std::set<Output_section*, output_section_address_less_than>
11346 Sorted_output_section_list;
11347 Sorted_output_section_list sorted_output_sections;
11348 Layout::Section_list section_list;
11349 layout->get_allocated_sections(&section_list);
11350 for (Layout::Section_list::const_iterator p = section_list.begin();
11351 p != section_list.end();
11352 ++p)
11353 {
11354 // We only care about output sections that contain executable code.
11355 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
11356 sorted_output_sections.insert(*p);
11357 }
11358
11359 // Go over the output sections in ascending order of output addresses.
11360 typedef typename Arm_output_section<big_endian>::Text_section_list
11361 Text_section_list;
11362 Text_section_list sorted_text_sections;
11363 for(typename Sorted_output_section_list::iterator p =
11364 sorted_output_sections.begin();
11365 p != sorted_output_sections.end();
11366 ++p)
11367 {
11368 Arm_output_section<big_endian>* arm_output_section =
11369 Arm_output_section<big_endian>::as_arm_output_section(*p);
11370 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11371 }
11372
11373 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11374 merge_exidx_entries());
11375 }
11376
11377 Target_selector_arm<false> target_selector_arm;
11378 Target_selector_arm<true> target_selector_armbe;
11379
11380 } // End anonymous namespace.
This page took 0.421458 seconds and 5 git commands to generate.