* arm.cc (Arm_relocate_functions::abs16): Remove unused typedef.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 // Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
155 // Factory methods to create instruction templates in different formats.
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
176 }
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
211 // Return size of instruction template in bytes.
212 size_t
213 size() const;
214
215 // Return byte-alignment of instruction template.
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278 // Last stub type.
279 arm_stub_type_last = arm_stub_v4_veneer_bx
280 } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
319
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
356
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
412
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
435 // This may be overridden in the child class.
436 virtual void
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
444
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
451 private:
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461 };
462
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
515 {
516 if (symbol != NULL)
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
520 }
521 else
522 {
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
557 eq(const Key& k) const
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 // branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
857
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
863
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873 public:
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
904 void
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
977
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
988
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
992 { return this->prev_addralign_; }
993
994 // Reset address and file offset.
995 void
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1003
1004 private:
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076 private:
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
1081
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150 public:
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1155 { }
1156
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1159
1160 // Initialize.
1161 void
1162 init();
1163
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1178
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1219 {
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225 {
1226 *poutput = offset;
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255 public:
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1279
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
1336
1337 bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346 public:
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
1360
1361 ~Arm_output_section()
1362 { }
1363
1364 // Group input sections for stub generation.
1365 void
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1386 const Task* task);
1387
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
1423
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
1446 // Return address alignment of EXIDX input section.
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1480 bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1499 { }
1500
1501 ~Arm_relobj()
1502 { delete this->attributes_section_data_; }
1503
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1507 {
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515 {
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
1528
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
1576
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1585 {
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
1589
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1632
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1641
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1656 }
1657
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1675
1676 void
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690 private:
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1697
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1702
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1728 void
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770 public:
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1775 { }
1776
1777 ~Arm_dynobj()
1778 { delete this->attributes_section_data_; }
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
1869
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
1874 { return this->reloc_stub_; }
1875
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129 { }
2130
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2140
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2166 }
2167
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179 }
2180
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191 }
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2203
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221 }
2222
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2225 void
2226 gc_process_relocs(Symbol_table* symtab,
2227 Layout* layout,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
2240 scan_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256 // Return the value to use for a dynamic symbol which requires special
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2273
2274 // Scan the relocs during a relocatable link.
2275 void
2276 scan_relocatable_relocs(Symbol_table* symtab,
2277 Layout* layout,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
2289 // Relocate a section during a relocatable link.
2290 void
2291 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 off_t offset_in_output_section,
2297 const Relocatable_relocs*,
2298 unsigned char* view,
2299 Arm_address view_address,
2300 section_size_type view_size,
2301 unsigned char* reloc_view,
2302 section_size_type reloc_view_size);
2303
2304 // Perform target-specific processing in a relocatable link. This is
2305 // only used if we use the relocation strategy RELOC_SPECIAL.
2306 void
2307 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2308 unsigned int sh_type,
2309 const unsigned char* preloc_in,
2310 size_t relnum,
2311 Output_section* output_section,
2312 off_t offset_in_output_section,
2313 unsigned char* view,
2314 typename elfcpp::Elf_types<32>::Elf_Addr
2315 view_address,
2316 section_size_type view_size,
2317 unsigned char* preloc_out);
2318
2319 // Return whether SYM is defined by the ABI.
2320 bool
2321 do_is_defined_by_abi(const Symbol* sym) const
2322 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2323
2324 // Return whether there is a GOT section.
2325 bool
2326 has_got_section() const
2327 { return this->got_ != NULL; }
2328
2329 // Return the size of the GOT section.
2330 section_size_type
2331 got_size() const
2332 {
2333 gold_assert(this->got_ != NULL);
2334 return this->got_->data_size();
2335 }
2336
2337 // Return the number of entries in the GOT.
2338 unsigned int
2339 got_entry_count() const
2340 {
2341 if (!this->has_got_section())
2342 return 0;
2343 return this->got_size() / 4;
2344 }
2345
2346 // Return the number of entries in the PLT.
2347 unsigned int
2348 plt_entry_count() const;
2349
2350 // Return the offset of the first non-reserved PLT entry.
2351 unsigned int
2352 first_plt_entry_offset() const;
2353
2354 // Return the size of each PLT entry.
2355 unsigned int
2356 plt_entry_size() const;
2357
2358 // Map platform-specific reloc types
2359 static unsigned int
2360 get_real_reloc_type(unsigned int r_type);
2361
2362 //
2363 // Methods to support stub-generations.
2364 //
2365
2366 // Return the stub factory
2367 const Stub_factory&
2368 stub_factory() const
2369 { return this->stub_factory_; }
2370
2371 // Make a new Arm_input_section object.
2372 Arm_input_section<big_endian>*
2373 new_arm_input_section(Relobj*, unsigned int);
2374
2375 // Find the Arm_input_section object corresponding to the SHNDX-th input
2376 // section of RELOBJ.
2377 Arm_input_section<big_endian>*
2378 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2379
2380 // Make a new Stub_table
2381 Stub_table<big_endian>*
2382 new_stub_table(Arm_input_section<big_endian>*);
2383
2384 // Scan a section for stub generation.
2385 void
2386 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2387 const unsigned char*, size_t, Output_section*,
2388 bool, const unsigned char*, Arm_address,
2389 section_size_type);
2390
2391 // Relocate a stub.
2392 void
2393 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2394 Output_section*, unsigned char*, Arm_address,
2395 section_size_type);
2396
2397 // Get the default ARM target.
2398 static Target_arm<big_endian>*
2399 default_target()
2400 {
2401 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2402 && parameters->target().is_big_endian() == big_endian);
2403 return static_cast<Target_arm<big_endian>*>(
2404 parameters->sized_target<32, big_endian>());
2405 }
2406
2407 // Whether NAME belongs to a mapping symbol.
2408 static bool
2409 is_mapping_symbol_name(const char* name)
2410 {
2411 return (name
2412 && name[0] == '$'
2413 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2414 && (name[2] == '\0' || name[2] == '.'));
2415 }
2416
2417 // Whether we work around the Cortex-A8 erratum.
2418 bool
2419 fix_cortex_a8() const
2420 { return this->fix_cortex_a8_; }
2421
2422 // Whether we merge exidx entries in debuginfo.
2423 bool
2424 merge_exidx_entries() const
2425 { return parameters->options().merge_exidx_entries(); }
2426
2427 // Whether we fix R_ARM_V4BX relocation.
2428 // 0 - do not fix
2429 // 1 - replace with MOV instruction (armv4 target)
2430 // 2 - make interworking veneer (>= armv4t targets only)
2431 General_options::Fix_v4bx
2432 fix_v4bx() const
2433 { return parameters->options().fix_v4bx(); }
2434
2435 // Scan a span of THUMB code section for Cortex-A8 erratum.
2436 void
2437 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2438 section_size_type, section_size_type,
2439 const unsigned char*, Arm_address);
2440
2441 // Apply Cortex-A8 workaround to a branch.
2442 void
2443 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2444 unsigned char*, Arm_address);
2445
2446 protected:
2447 // Make the PLT-generator object.
2448 Output_data_plt_arm<big_endian>*
2449 make_data_plt(Layout* layout, Output_data_space* got_plt)
2450 { return this->do_make_data_plt(layout, got_plt); }
2451
2452 // Make an ELF object.
2453 Object*
2454 do_make_elf_object(const std::string&, Input_file*, off_t,
2455 const elfcpp::Ehdr<32, big_endian>& ehdr);
2456
2457 Object*
2458 do_make_elf_object(const std::string&, Input_file*, off_t,
2459 const elfcpp::Ehdr<32, !big_endian>&)
2460 { gold_unreachable(); }
2461
2462 Object*
2463 do_make_elf_object(const std::string&, Input_file*, off_t,
2464 const elfcpp::Ehdr<64, false>&)
2465 { gold_unreachable(); }
2466
2467 Object*
2468 do_make_elf_object(const std::string&, Input_file*, off_t,
2469 const elfcpp::Ehdr<64, true>&)
2470 { gold_unreachable(); }
2471
2472 // Make an output section.
2473 Output_section*
2474 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2475 elfcpp::Elf_Xword flags)
2476 { return new Arm_output_section<big_endian>(name, type, flags); }
2477
2478 void
2479 do_adjust_elf_header(unsigned char* view, int len) const;
2480
2481 // We only need to generate stubs, and hence perform relaxation if we are
2482 // not doing relocatable linking.
2483 bool
2484 do_may_relax() const
2485 { return !parameters->options().relocatable(); }
2486
2487 bool
2488 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2489
2490 // Determine whether an object attribute tag takes an integer, a
2491 // string or both.
2492 int
2493 do_attribute_arg_type(int tag) const;
2494
2495 // Reorder tags during output.
2496 int
2497 do_attributes_order(int num) const;
2498
2499 // This is called when the target is selected as the default.
2500 void
2501 do_select_as_default_target()
2502 {
2503 // No locking is required since there should only be one default target.
2504 // We cannot have both the big-endian and little-endian ARM targets
2505 // as the default.
2506 gold_assert(arm_reloc_property_table == NULL);
2507 arm_reloc_property_table = new Arm_reloc_property_table();
2508 }
2509
2510 // Virtual function which is set to return true by a target if
2511 // it can use relocation types to determine if a function's
2512 // pointer is taken.
2513 virtual bool
2514 do_can_check_for_function_pointers() const
2515 { return true; }
2516
2517 // Whether a section called SECTION_NAME may have function pointers to
2518 // sections not eligible for safe ICF folding.
2519 virtual bool
2520 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2521 {
2522 return (!is_prefix_of(".ARM.exidx", section_name)
2523 && !is_prefix_of(".ARM.extab", section_name)
2524 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2525 }
2526
2527 virtual void
2528 do_define_standard_symbols(Symbol_table*, Layout*);
2529
2530 virtual Output_data_plt_arm<big_endian>*
2531 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2532 {
2533 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2534 }
2535
2536 private:
2537 // The class which scans relocations.
2538 class Scan
2539 {
2540 public:
2541 Scan()
2542 : issued_non_pic_error_(false)
2543 { }
2544
2545 static inline int
2546 get_reference_flags(unsigned int r_type);
2547
2548 inline void
2549 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2550 Sized_relobj_file<32, big_endian>* object,
2551 unsigned int data_shndx,
2552 Output_section* output_section,
2553 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2554 const elfcpp::Sym<32, big_endian>& lsym);
2555
2556 inline void
2557 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2558 Sized_relobj_file<32, big_endian>* object,
2559 unsigned int data_shndx,
2560 Output_section* output_section,
2561 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2562 Symbol* gsym);
2563
2564 inline bool
2565 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2566 Sized_relobj_file<32, big_endian>* ,
2567 unsigned int ,
2568 Output_section* ,
2569 const elfcpp::Rel<32, big_endian>& ,
2570 unsigned int ,
2571 const elfcpp::Sym<32, big_endian>&);
2572
2573 inline bool
2574 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2575 Sized_relobj_file<32, big_endian>* ,
2576 unsigned int ,
2577 Output_section* ,
2578 const elfcpp::Rel<32, big_endian>& ,
2579 unsigned int , Symbol*);
2580
2581 private:
2582 static void
2583 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2584 unsigned int r_type);
2585
2586 static void
2587 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2588 unsigned int r_type, Symbol*);
2589
2590 void
2591 check_non_pic(Relobj*, unsigned int r_type);
2592
2593 // Almost identical to Symbol::needs_plt_entry except that it also
2594 // handles STT_ARM_TFUNC.
2595 static bool
2596 symbol_needs_plt_entry(const Symbol* sym)
2597 {
2598 // An undefined symbol from an executable does not need a PLT entry.
2599 if (sym->is_undefined() && !parameters->options().shared())
2600 return false;
2601
2602 return (!parameters->doing_static_link()
2603 && (sym->type() == elfcpp::STT_FUNC
2604 || sym->type() == elfcpp::STT_ARM_TFUNC)
2605 && (sym->is_from_dynobj()
2606 || sym->is_undefined()
2607 || sym->is_preemptible()));
2608 }
2609
2610 inline bool
2611 possible_function_pointer_reloc(unsigned int r_type);
2612
2613 // Whether we have issued an error about a non-PIC compilation.
2614 bool issued_non_pic_error_;
2615 };
2616
2617 // The class which implements relocation.
2618 class Relocate
2619 {
2620 public:
2621 Relocate()
2622 { }
2623
2624 ~Relocate()
2625 { }
2626
2627 // Return whether the static relocation needs to be applied.
2628 inline bool
2629 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2630 unsigned int r_type,
2631 bool is_32bit,
2632 Output_section* output_section);
2633
2634 // Do a relocation. Return false if the caller should not issue
2635 // any warnings about this relocation.
2636 inline bool
2637 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2638 Output_section*, size_t relnum,
2639 const elfcpp::Rel<32, big_endian>&,
2640 unsigned int r_type, const Sized_symbol<32>*,
2641 const Symbol_value<32>*,
2642 unsigned char*, Arm_address,
2643 section_size_type);
2644
2645 // Return whether we want to pass flag NON_PIC_REF for this
2646 // reloc. This means the relocation type accesses a symbol not via
2647 // GOT or PLT.
2648 static inline bool
2649 reloc_is_non_pic(unsigned int r_type)
2650 {
2651 switch (r_type)
2652 {
2653 // These relocation types reference GOT or PLT entries explicitly.
2654 case elfcpp::R_ARM_GOT_BREL:
2655 case elfcpp::R_ARM_GOT_ABS:
2656 case elfcpp::R_ARM_GOT_PREL:
2657 case elfcpp::R_ARM_GOT_BREL12:
2658 case elfcpp::R_ARM_PLT32_ABS:
2659 case elfcpp::R_ARM_TLS_GD32:
2660 case elfcpp::R_ARM_TLS_LDM32:
2661 case elfcpp::R_ARM_TLS_IE32:
2662 case elfcpp::R_ARM_TLS_IE12GP:
2663
2664 // These relocate types may use PLT entries.
2665 case elfcpp::R_ARM_CALL:
2666 case elfcpp::R_ARM_THM_CALL:
2667 case elfcpp::R_ARM_JUMP24:
2668 case elfcpp::R_ARM_THM_JUMP24:
2669 case elfcpp::R_ARM_THM_JUMP19:
2670 case elfcpp::R_ARM_PLT32:
2671 case elfcpp::R_ARM_THM_XPC22:
2672 case elfcpp::R_ARM_PREL31:
2673 case elfcpp::R_ARM_SBREL31:
2674 return false;
2675
2676 default:
2677 return true;
2678 }
2679 }
2680
2681 private:
2682 // Do a TLS relocation.
2683 inline typename Arm_relocate_functions<big_endian>::Status
2684 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2685 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2686 const Sized_symbol<32>*, const Symbol_value<32>*,
2687 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2688 section_size_type);
2689
2690 };
2691
2692 // A class which returns the size required for a relocation type,
2693 // used while scanning relocs during a relocatable link.
2694 class Relocatable_size_for_reloc
2695 {
2696 public:
2697 unsigned int
2698 get_size_for_reloc(unsigned int, Relobj*);
2699 };
2700
2701 // Adjust TLS relocation type based on the options and whether this
2702 // is a local symbol.
2703 static tls::Tls_optimization
2704 optimize_tls_reloc(bool is_final, int r_type);
2705
2706 // Get the GOT section, creating it if necessary.
2707 Arm_output_data_got<big_endian>*
2708 got_section(Symbol_table*, Layout*);
2709
2710 // Get the GOT PLT section.
2711 Output_data_space*
2712 got_plt_section() const
2713 {
2714 gold_assert(this->got_plt_ != NULL);
2715 return this->got_plt_;
2716 }
2717
2718 // Create a PLT entry for a global symbol.
2719 void
2720 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2721
2722 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2723 void
2724 define_tls_base_symbol(Symbol_table*, Layout*);
2725
2726 // Create a GOT entry for the TLS module index.
2727 unsigned int
2728 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2729 Sized_relobj_file<32, big_endian>* object);
2730
2731 // Get the PLT section.
2732 const Output_data_plt_arm<big_endian>*
2733 plt_section() const
2734 {
2735 gold_assert(this->plt_ != NULL);
2736 return this->plt_;
2737 }
2738
2739 // Get the dynamic reloc section, creating it if necessary.
2740 Reloc_section*
2741 rel_dyn_section(Layout*);
2742
2743 // Get the section to use for TLS_DESC relocations.
2744 Reloc_section*
2745 rel_tls_desc_section(Layout*) const;
2746
2747 // Return true if the symbol may need a COPY relocation.
2748 // References from an executable object to non-function symbols
2749 // defined in a dynamic object may need a COPY relocation.
2750 bool
2751 may_need_copy_reloc(Symbol* gsym)
2752 {
2753 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2754 && gsym->may_need_copy_reloc());
2755 }
2756
2757 // Add a potential copy relocation.
2758 void
2759 copy_reloc(Symbol_table* symtab, Layout* layout,
2760 Sized_relobj_file<32, big_endian>* object,
2761 unsigned int shndx, Output_section* output_section,
2762 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2763 {
2764 this->copy_relocs_.copy_reloc(symtab, layout,
2765 symtab->get_sized_symbol<32>(sym),
2766 object, shndx, output_section, reloc,
2767 this->rel_dyn_section(layout));
2768 }
2769
2770 // Whether two EABI versions are compatible.
2771 static bool
2772 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2773
2774 // Merge processor-specific flags from input object and those in the ELF
2775 // header of the output.
2776 void
2777 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2778
2779 // Get the secondary compatible architecture.
2780 static int
2781 get_secondary_compatible_arch(const Attributes_section_data*);
2782
2783 // Set the secondary compatible architecture.
2784 static void
2785 set_secondary_compatible_arch(Attributes_section_data*, int);
2786
2787 static int
2788 tag_cpu_arch_combine(const char*, int, int*, int, int);
2789
2790 // Helper to print AEABI enum tag value.
2791 static std::string
2792 aeabi_enum_name(unsigned int);
2793
2794 // Return string value for TAG_CPU_name.
2795 static std::string
2796 tag_cpu_name_value(unsigned int);
2797
2798 // Merge object attributes from input object and those in the output.
2799 void
2800 merge_object_attributes(const char*, const Attributes_section_data*);
2801
2802 // Helper to get an AEABI object attribute
2803 Object_attribute*
2804 get_aeabi_object_attribute(int tag) const
2805 {
2806 Attributes_section_data* pasd = this->attributes_section_data_;
2807 gold_assert(pasd != NULL);
2808 Object_attribute* attr =
2809 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2810 gold_assert(attr != NULL);
2811 return attr;
2812 }
2813
2814 //
2815 // Methods to support stub-generations.
2816 //
2817
2818 // Group input sections for stub generation.
2819 void
2820 group_sections(Layout*, section_size_type, bool, const Task*);
2821
2822 // Scan a relocation for stub generation.
2823 void
2824 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2825 const Sized_symbol<32>*, unsigned int,
2826 const Symbol_value<32>*,
2827 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2828
2829 // Scan a relocation section for stub.
2830 template<int sh_type>
2831 void
2832 scan_reloc_section_for_stubs(
2833 const Relocate_info<32, big_endian>* relinfo,
2834 const unsigned char* prelocs,
2835 size_t reloc_count,
2836 Output_section* output_section,
2837 bool needs_special_offset_handling,
2838 const unsigned char* view,
2839 elfcpp::Elf_types<32>::Elf_Addr view_address,
2840 section_size_type);
2841
2842 // Fix .ARM.exidx section coverage.
2843 void
2844 fix_exidx_coverage(Layout*, const Input_objects*,
2845 Arm_output_section<big_endian>*, Symbol_table*,
2846 const Task*);
2847
2848 // Functors for STL set.
2849 struct output_section_address_less_than
2850 {
2851 bool
2852 operator()(const Output_section* s1, const Output_section* s2) const
2853 { return s1->address() < s2->address(); }
2854 };
2855
2856 // Information about this specific target which we pass to the
2857 // general Target structure.
2858 static const Target::Target_info arm_info;
2859
2860 // The types of GOT entries needed for this platform.
2861 // These values are exposed to the ABI in an incremental link.
2862 // Do not renumber existing values without changing the version
2863 // number of the .gnu_incremental_inputs section.
2864 enum Got_type
2865 {
2866 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2867 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2868 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2869 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2870 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2871 };
2872
2873 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2874
2875 // Map input section to Arm_input_section.
2876 typedef Unordered_map<Section_id,
2877 Arm_input_section<big_endian>*,
2878 Section_id_hash>
2879 Arm_input_section_map;
2880
2881 // Map output addresses to relocs for Cortex-A8 erratum.
2882 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2883 Cortex_a8_relocs_info;
2884
2885 // The GOT section.
2886 Arm_output_data_got<big_endian>* got_;
2887 // The PLT section.
2888 Output_data_plt_arm<big_endian>* plt_;
2889 // The GOT PLT section.
2890 Output_data_space* got_plt_;
2891 // The dynamic reloc section.
2892 Reloc_section* rel_dyn_;
2893 // Relocs saved to avoid a COPY reloc.
2894 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2895 // Space for variables copied with a COPY reloc.
2896 Output_data_space* dynbss_;
2897 // Offset of the GOT entry for the TLS module index.
2898 unsigned int got_mod_index_offset_;
2899 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2900 bool tls_base_symbol_defined_;
2901 // Vector of Stub_tables created.
2902 Stub_table_list stub_tables_;
2903 // Stub factory.
2904 const Stub_factory &stub_factory_;
2905 // Whether we force PIC branch veneers.
2906 bool should_force_pic_veneer_;
2907 // Map for locating Arm_input_sections.
2908 Arm_input_section_map arm_input_section_map_;
2909 // Attributes section data in output.
2910 Attributes_section_data* attributes_section_data_;
2911 // Whether we want to fix code for Cortex-A8 erratum.
2912 bool fix_cortex_a8_;
2913 // Map addresses to relocs for Cortex-A8 erratum.
2914 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2915 };
2916
2917 template<bool big_endian>
2918 const Target::Target_info Target_arm<big_endian>::arm_info =
2919 {
2920 32, // size
2921 big_endian, // is_big_endian
2922 elfcpp::EM_ARM, // machine_code
2923 false, // has_make_symbol
2924 false, // has_resolve
2925 false, // has_code_fill
2926 true, // is_default_stack_executable
2927 false, // can_icf_inline_merge_sections
2928 '\0', // wrap_char
2929 "/usr/lib/libc.so.1", // dynamic_linker
2930 0x8000, // default_text_segment_address
2931 0x1000, // abi_pagesize (overridable by -z max-page-size)
2932 0x1000, // common_pagesize (overridable by -z common-page-size)
2933 false, // isolate_execinstr
2934 0, // rosegment_gap
2935 elfcpp::SHN_UNDEF, // small_common_shndx
2936 elfcpp::SHN_UNDEF, // large_common_shndx
2937 0, // small_common_section_flags
2938 0, // large_common_section_flags
2939 ".ARM.attributes", // attributes_section
2940 "aeabi" // attributes_vendor
2941 };
2942
2943 // Arm relocate functions class
2944 //
2945
2946 template<bool big_endian>
2947 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2948 {
2949 public:
2950 typedef enum
2951 {
2952 STATUS_OKAY, // No error during relocation.
2953 STATUS_OVERFLOW, // Relocation overflow.
2954 STATUS_BAD_RELOC // Relocation cannot be applied.
2955 } Status;
2956
2957 private:
2958 typedef Relocate_functions<32, big_endian> Base;
2959 typedef Arm_relocate_functions<big_endian> This;
2960
2961 // Encoding of imm16 argument for movt and movw ARM instructions
2962 // from ARM ARM:
2963 //
2964 // imm16 := imm4 | imm12
2965 //
2966 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2967 // +-------+---------------+-------+-------+-----------------------+
2968 // | | |imm4 | |imm12 |
2969 // +-------+---------------+-------+-------+-----------------------+
2970
2971 // Extract the relocation addend from VAL based on the ARM
2972 // instruction encoding described above.
2973 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2974 extract_arm_movw_movt_addend(
2975 typename elfcpp::Swap<32, big_endian>::Valtype val)
2976 {
2977 // According to the Elf ABI for ARM Architecture the immediate
2978 // field is sign-extended to form the addend.
2979 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2980 }
2981
2982 // Insert X into VAL based on the ARM instruction encoding described
2983 // above.
2984 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2985 insert_val_arm_movw_movt(
2986 typename elfcpp::Swap<32, big_endian>::Valtype val,
2987 typename elfcpp::Swap<32, big_endian>::Valtype x)
2988 {
2989 val &= 0xfff0f000;
2990 val |= x & 0x0fff;
2991 val |= (x & 0xf000) << 4;
2992 return val;
2993 }
2994
2995 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2996 // from ARM ARM:
2997 //
2998 // imm16 := imm4 | i | imm3 | imm8
2999 //
3000 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3001 // +---------+-+-----------+-------++-+-----+-------+---------------+
3002 // | |i| |imm4 || |imm3 | |imm8 |
3003 // +---------+-+-----------+-------++-+-----+-------+---------------+
3004
3005 // Extract the relocation addend from VAL based on the Thumb2
3006 // instruction encoding described above.
3007 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3008 extract_thumb_movw_movt_addend(
3009 typename elfcpp::Swap<32, big_endian>::Valtype val)
3010 {
3011 // According to the Elf ABI for ARM Architecture the immediate
3012 // field is sign-extended to form the addend.
3013 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3014 | ((val >> 15) & 0x0800)
3015 | ((val >> 4) & 0x0700)
3016 | (val & 0x00ff));
3017 }
3018
3019 // Insert X into VAL based on the Thumb2 instruction encoding
3020 // described above.
3021 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3022 insert_val_thumb_movw_movt(
3023 typename elfcpp::Swap<32, big_endian>::Valtype val,
3024 typename elfcpp::Swap<32, big_endian>::Valtype x)
3025 {
3026 val &= 0xfbf08f00;
3027 val |= (x & 0xf000) << 4;
3028 val |= (x & 0x0800) << 15;
3029 val |= (x & 0x0700) << 4;
3030 val |= (x & 0x00ff);
3031 return val;
3032 }
3033
3034 // Calculate the smallest constant Kn for the specified residual.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036 static uint32_t
3037 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3038 {
3039 int32_t msb;
3040
3041 if (residual == 0)
3042 return 0;
3043 // Determine the most significant bit in the residual and
3044 // align the resulting value to a 2-bit boundary.
3045 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3046 ;
3047 // The desired shift is now (msb - 6), or zero, whichever
3048 // is the greater.
3049 return (((msb - 6) < 0) ? 0 : (msb - 6));
3050 }
3051
3052 // Calculate the final residual for the specified group index.
3053 // If the passed group index is less than zero, the method will return
3054 // the value of the specified residual without any change.
3055 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3056 static typename elfcpp::Swap<32, big_endian>::Valtype
3057 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3058 const int group)
3059 {
3060 for (int n = 0; n <= group; n++)
3061 {
3062 // Calculate which part of the value to mask.
3063 uint32_t shift = calc_grp_kn(residual);
3064 // Calculate the residual for the next time around.
3065 residual &= ~(residual & (0xff << shift));
3066 }
3067
3068 return residual;
3069 }
3070
3071 // Calculate the value of Gn for the specified group index.
3072 // We return it in the form of an encoded constant-and-rotation.
3073 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3074 static typename elfcpp::Swap<32, big_endian>::Valtype
3075 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3076 const int group)
3077 {
3078 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3079 uint32_t shift = 0;
3080
3081 for (int n = 0; n <= group; n++)
3082 {
3083 // Calculate which part of the value to mask.
3084 shift = calc_grp_kn(residual);
3085 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3086 gn = residual & (0xff << shift);
3087 // Calculate the residual for the next time around.
3088 residual &= ~gn;
3089 }
3090 // Return Gn in the form of an encoded constant-and-rotation.
3091 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3092 }
3093
3094 public:
3095 // Handle ARM long branches.
3096 static typename This::Status
3097 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3098 unsigned char*, const Sized_symbol<32>*,
3099 const Arm_relobj<big_endian>*, unsigned int,
3100 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3101
3102 // Handle THUMB long branches.
3103 static typename This::Status
3104 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3105 unsigned char*, const Sized_symbol<32>*,
3106 const Arm_relobj<big_endian>*, unsigned int,
3107 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3108
3109
3110 // Return the branch offset of a 32-bit THUMB branch.
3111 static inline int32_t
3112 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3113 {
3114 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3115 // involving the J1 and J2 bits.
3116 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3117 uint32_t upper = upper_insn & 0x3ffU;
3118 uint32_t lower = lower_insn & 0x7ffU;
3119 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3120 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3121 uint32_t i1 = j1 ^ s ? 0 : 1;
3122 uint32_t i2 = j2 ^ s ? 0 : 1;
3123
3124 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3125 | (upper << 12) | (lower << 1));
3126 }
3127
3128 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3129 // UPPER_INSN is the original upper instruction of the branch. Caller is
3130 // responsible for overflow checking and BLX offset adjustment.
3131 static inline uint16_t
3132 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3133 {
3134 uint32_t s = offset < 0 ? 1 : 0;
3135 uint32_t bits = static_cast<uint32_t>(offset);
3136 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3137 }
3138
3139 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3140 // LOWER_INSN is the original lower instruction of the branch. Caller is
3141 // responsible for overflow checking and BLX offset adjustment.
3142 static inline uint16_t
3143 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3144 {
3145 uint32_t s = offset < 0 ? 1 : 0;
3146 uint32_t bits = static_cast<uint32_t>(offset);
3147 return ((lower_insn & ~0x2fffU)
3148 | ((((bits >> 23) & 1) ^ !s) << 13)
3149 | ((((bits >> 22) & 1) ^ !s) << 11)
3150 | ((bits >> 1) & 0x7ffU));
3151 }
3152
3153 // Return the branch offset of a 32-bit THUMB conditional branch.
3154 static inline int32_t
3155 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3156 {
3157 uint32_t s = (upper_insn & 0x0400U) >> 10;
3158 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3159 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3160 uint32_t lower = (lower_insn & 0x07ffU);
3161 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3162
3163 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3164 }
3165
3166 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3167 // instruction. UPPER_INSN is the original upper instruction of the branch.
3168 // Caller is responsible for overflow checking.
3169 static inline uint16_t
3170 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3171 {
3172 uint32_t s = offset < 0 ? 1 : 0;
3173 uint32_t bits = static_cast<uint32_t>(offset);
3174 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3175 }
3176
3177 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3178 // instruction. LOWER_INSN is the original lower instruction of the branch.
3179 // The caller is responsible for overflow checking.
3180 static inline uint16_t
3181 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3182 {
3183 uint32_t bits = static_cast<uint32_t>(offset);
3184 uint32_t j2 = (bits & 0x00080000U) >> 19;
3185 uint32_t j1 = (bits & 0x00040000U) >> 18;
3186 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3187
3188 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3189 }
3190
3191 // R_ARM_ABS8: S + A
3192 static inline typename This::Status
3193 abs8(unsigned char* view,
3194 const Sized_relobj_file<32, big_endian>* object,
3195 const Symbol_value<32>* psymval)
3196 {
3197 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3198 Valtype* wv = reinterpret_cast<Valtype*>(view);
3199 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3200 int32_t addend = Bits<8>::sign_extend32(val);
3201 Arm_address x = psymval->value(object, addend);
3202 val = Bits<32>::bit_select32(val, x, 0xffU);
3203 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3204
3205 // R_ARM_ABS8 permits signed or unsigned results.
3206 return (Bits<8>::has_signed_unsigned_overflow32(x)
3207 ? This::STATUS_OVERFLOW
3208 : This::STATUS_OKAY);
3209 }
3210
3211 // R_ARM_THM_ABS5: S + A
3212 static inline typename This::Status
3213 thm_abs5(unsigned char* view,
3214 const Sized_relobj_file<32, big_endian>* object,
3215 const Symbol_value<32>* psymval)
3216 {
3217 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3218 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3219 Valtype* wv = reinterpret_cast<Valtype*>(view);
3220 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3221 Reltype addend = (val & 0x7e0U) >> 6;
3222 Reltype x = psymval->value(object, addend);
3223 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3224 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3225 return (Bits<5>::has_overflow32(x)
3226 ? This::STATUS_OVERFLOW
3227 : This::STATUS_OKAY);
3228 }
3229
3230 // R_ARM_ABS12: S + A
3231 static inline typename This::Status
3232 abs12(unsigned char* view,
3233 const Sized_relobj_file<32, big_endian>* object,
3234 const Symbol_value<32>* psymval)
3235 {
3236 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3237 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3238 Valtype* wv = reinterpret_cast<Valtype*>(view);
3239 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3240 Reltype addend = val & 0x0fffU;
3241 Reltype x = psymval->value(object, addend);
3242 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3243 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3244 return (Bits<12>::has_overflow32(x)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3247 }
3248
3249 // R_ARM_ABS16: S + A
3250 static inline typename This::Status
3251 abs16(unsigned char* view,
3252 const Sized_relobj_file<32, big_endian>* object,
3253 const Symbol_value<32>* psymval)
3254 {
3255 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3256 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3257 int32_t addend = Bits<16>::sign_extend32(val);
3258 Arm_address x = psymval->value(object, addend);
3259 val = Bits<32>::bit_select32(val, x, 0xffffU);
3260 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3261
3262 // R_ARM_ABS16 permits signed or unsigned results.
3263 return (Bits<16>::has_signed_unsigned_overflow32(x)
3264 ? This::STATUS_OVERFLOW
3265 : This::STATUS_OKAY);
3266 }
3267
3268 // R_ARM_ABS32: (S + A) | T
3269 static inline typename This::Status
3270 abs32(unsigned char* view,
3271 const Sized_relobj_file<32, big_endian>* object,
3272 const Symbol_value<32>* psymval,
3273 Arm_address thumb_bit)
3274 {
3275 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3276 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3277 Valtype x = psymval->value(object, addend) | thumb_bit;
3278 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3279 return This::STATUS_OKAY;
3280 }
3281
3282 // R_ARM_REL32: (S + A) | T - P
3283 static inline typename This::Status
3284 rel32(unsigned char* view,
3285 const Sized_relobj_file<32, big_endian>* object,
3286 const Symbol_value<32>* psymval,
3287 Arm_address address,
3288 Arm_address thumb_bit)
3289 {
3290 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3291 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3292 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3293 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3294 return This::STATUS_OKAY;
3295 }
3296
3297 // R_ARM_THM_JUMP24: (S + A) | T - P
3298 static typename This::Status
3299 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3300 const Symbol_value<32>* psymval, Arm_address address,
3301 Arm_address thumb_bit);
3302
3303 // R_ARM_THM_JUMP6: S + A – P
3304 static inline typename This::Status
3305 thm_jump6(unsigned char* view,
3306 const Sized_relobj_file<32, big_endian>* object,
3307 const Symbol_value<32>* psymval,
3308 Arm_address address)
3309 {
3310 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3311 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3312 Valtype* wv = reinterpret_cast<Valtype*>(view);
3313 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3314 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3315 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3316 Reltype x = (psymval->value(object, addend) - address);
3317 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3318 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3319 // CZB does only forward jumps.
3320 return ((x > 0x007e)
3321 ? This::STATUS_OVERFLOW
3322 : This::STATUS_OKAY);
3323 }
3324
3325 // R_ARM_THM_JUMP8: S + A – P
3326 static inline typename This::Status
3327 thm_jump8(unsigned char* view,
3328 const Sized_relobj_file<32, big_endian>* object,
3329 const Symbol_value<32>* psymval,
3330 Arm_address address)
3331 {
3332 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3333 Valtype* wv = reinterpret_cast<Valtype*>(view);
3334 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3335 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3336 int32_t x = (psymval->value(object, addend) - address);
3337 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3338 | ((x & 0x01fe) >> 1)));
3339 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3340 return (Bits<9>::has_overflow32(x)
3341 ? This::STATUS_OVERFLOW
3342 : This::STATUS_OKAY);
3343 }
3344
3345 // R_ARM_THM_JUMP11: S + A – P
3346 static inline typename This::Status
3347 thm_jump11(unsigned char* view,
3348 const Sized_relobj_file<32, big_endian>* object,
3349 const Symbol_value<32>* psymval,
3350 Arm_address address)
3351 {
3352 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3353 Valtype* wv = reinterpret_cast<Valtype*>(view);
3354 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3355 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3356 int32_t x = (psymval->value(object, addend) - address);
3357 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3358 | ((x & 0x0ffe) >> 1)));
3359 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3360 return (Bits<12>::has_overflow32(x)
3361 ? This::STATUS_OVERFLOW
3362 : This::STATUS_OKAY);
3363 }
3364
3365 // R_ARM_BASE_PREL: B(S) + A - P
3366 static inline typename This::Status
3367 base_prel(unsigned char* view,
3368 Arm_address origin,
3369 Arm_address address)
3370 {
3371 Base::rel32(view, origin - address);
3372 return STATUS_OKAY;
3373 }
3374
3375 // R_ARM_BASE_ABS: B(S) + A
3376 static inline typename This::Status
3377 base_abs(unsigned char* view,
3378 Arm_address origin)
3379 {
3380 Base::rel32(view, origin);
3381 return STATUS_OKAY;
3382 }
3383
3384 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3385 static inline typename This::Status
3386 got_brel(unsigned char* view,
3387 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3388 {
3389 Base::rel32(view, got_offset);
3390 return This::STATUS_OKAY;
3391 }
3392
3393 // R_ARM_GOT_PREL: GOT(S) + A - P
3394 static inline typename This::Status
3395 got_prel(unsigned char* view,
3396 Arm_address got_entry,
3397 Arm_address address)
3398 {
3399 Base::rel32(view, got_entry - address);
3400 return This::STATUS_OKAY;
3401 }
3402
3403 // R_ARM_PREL: (S + A) | T - P
3404 static inline typename This::Status
3405 prel31(unsigned char* view,
3406 const Sized_relobj_file<32, big_endian>* object,
3407 const Symbol_value<32>* psymval,
3408 Arm_address address,
3409 Arm_address thumb_bit)
3410 {
3411 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3412 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3413 Valtype addend = Bits<31>::sign_extend32(val);
3414 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3415 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3416 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3417 return (Bits<31>::has_overflow32(x)
3418 ? This::STATUS_OVERFLOW
3419 : This::STATUS_OKAY);
3420 }
3421
3422 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3423 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3424 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3425 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3426 static inline typename This::Status
3427 movw(unsigned char* view,
3428 const Sized_relobj_file<32, big_endian>* object,
3429 const Symbol_value<32>* psymval,
3430 Arm_address relative_address_base,
3431 Arm_address thumb_bit,
3432 bool check_overflow)
3433 {
3434 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3435 Valtype* wv = reinterpret_cast<Valtype*>(view);
3436 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3437 Valtype addend = This::extract_arm_movw_movt_addend(val);
3438 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3439 - relative_address_base);
3440 val = This::insert_val_arm_movw_movt(val, x);
3441 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3442 return ((check_overflow && Bits<16>::has_overflow32(x))
3443 ? This::STATUS_OVERFLOW
3444 : This::STATUS_OKAY);
3445 }
3446
3447 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3448 // R_ARM_MOVT_PREL: S + A - P
3449 // R_ARM_MOVT_BREL: S + A - B(S)
3450 static inline typename This::Status
3451 movt(unsigned char* view,
3452 const Sized_relobj_file<32, big_endian>* object,
3453 const Symbol_value<32>* psymval,
3454 Arm_address relative_address_base)
3455 {
3456 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3457 Valtype* wv = reinterpret_cast<Valtype*>(view);
3458 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3459 Valtype addend = This::extract_arm_movw_movt_addend(val);
3460 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3461 val = This::insert_val_arm_movw_movt(val, x);
3462 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3463 // FIXME: IHI0044D says that we should check for overflow.
3464 return This::STATUS_OKAY;
3465 }
3466
3467 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3468 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3469 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3470 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3471 static inline typename This::Status
3472 thm_movw(unsigned char* view,
3473 const Sized_relobj_file<32, big_endian>* object,
3474 const Symbol_value<32>* psymval,
3475 Arm_address relative_address_base,
3476 Arm_address thumb_bit,
3477 bool check_overflow)
3478 {
3479 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3480 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3481 Valtype* wv = reinterpret_cast<Valtype*>(view);
3482 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3483 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3484 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3485 Reltype x =
3486 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3487 val = This::insert_val_thumb_movw_movt(val, x);
3488 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3489 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3490 return ((check_overflow && Bits<16>::has_overflow32(x))
3491 ? This::STATUS_OVERFLOW
3492 : This::STATUS_OKAY);
3493 }
3494
3495 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3496 // R_ARM_THM_MOVT_PREL: S + A - P
3497 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3498 static inline typename This::Status
3499 thm_movt(unsigned char* view,
3500 const Sized_relobj_file<32, big_endian>* object,
3501 const Symbol_value<32>* psymval,
3502 Arm_address relative_address_base)
3503 {
3504 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3505 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3506 Valtype* wv = reinterpret_cast<Valtype*>(view);
3507 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3508 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3509 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3510 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3511 val = This::insert_val_thumb_movw_movt(val, x);
3512 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3513 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3514 return This::STATUS_OKAY;
3515 }
3516
3517 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3518 static inline typename This::Status
3519 thm_alu11(unsigned char* view,
3520 const Sized_relobj_file<32, big_endian>* object,
3521 const Symbol_value<32>* psymval,
3522 Arm_address address,
3523 Arm_address thumb_bit)
3524 {
3525 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3526 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3527 Valtype* wv = reinterpret_cast<Valtype*>(view);
3528 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3529 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3530
3531 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3532 // -----------------------------------------------------------------------
3533 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3534 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3535 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3536 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3537 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3538 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3539
3540 // Determine a sign for the addend.
3541 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3542 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3543 // Thumb2 addend encoding:
3544 // imm12 := i | imm3 | imm8
3545 int32_t addend = (insn & 0xff)
3546 | ((insn & 0x00007000) >> 4)
3547 | ((insn & 0x04000000) >> 15);
3548 // Apply a sign to the added.
3549 addend *= sign;
3550
3551 int32_t x = (psymval->value(object, addend) | thumb_bit)
3552 - (address & 0xfffffffc);
3553 Reltype val = abs(x);
3554 // Mask out the value and a distinct part of the ADD/SUB opcode
3555 // (bits 7:5 of opword).
3556 insn = (insn & 0xfb0f8f00)
3557 | (val & 0xff)
3558 | ((val & 0x700) << 4)
3559 | ((val & 0x800) << 15);
3560 // Set the opcode according to whether the value to go in the
3561 // place is negative.
3562 if (x < 0)
3563 insn |= 0x00a00000;
3564
3565 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3566 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3567 return ((val > 0xfff) ?
3568 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3569 }
3570
3571 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3572 static inline typename This::Status
3573 thm_pc8(unsigned char* view,
3574 const Sized_relobj_file<32, big_endian>* object,
3575 const Symbol_value<32>* psymval,
3576 Arm_address address)
3577 {
3578 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3579 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3580 Valtype* wv = reinterpret_cast<Valtype*>(view);
3581 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3582 Reltype addend = ((insn & 0x00ff) << 2);
3583 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3584 Reltype val = abs(x);
3585 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3586
3587 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3588 return ((val > 0x03fc)
3589 ? This::STATUS_OVERFLOW
3590 : This::STATUS_OKAY);
3591 }
3592
3593 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3594 static inline typename This::Status
3595 thm_pc12(unsigned char* view,
3596 const Sized_relobj_file<32, big_endian>* object,
3597 const Symbol_value<32>* psymval,
3598 Arm_address address)
3599 {
3600 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3601 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3602 Valtype* wv = reinterpret_cast<Valtype*>(view);
3603 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3604 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3605 // Determine a sign for the addend (positive if the U bit is 1).
3606 const int sign = (insn & 0x00800000) ? 1 : -1;
3607 int32_t addend = (insn & 0xfff);
3608 // Apply a sign to the added.
3609 addend *= sign;
3610
3611 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3612 Reltype val = abs(x);
3613 // Mask out and apply the value and the U bit.
3614 insn = (insn & 0xff7ff000) | (val & 0xfff);
3615 // Set the U bit according to whether the value to go in the
3616 // place is positive.
3617 if (x >= 0)
3618 insn |= 0x00800000;
3619
3620 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3621 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3622 return ((val > 0xfff) ?
3623 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3624 }
3625
3626 // R_ARM_V4BX
3627 static inline typename This::Status
3628 v4bx(const Relocate_info<32, big_endian>* relinfo,
3629 unsigned char* view,
3630 const Arm_relobj<big_endian>* object,
3631 const Arm_address address,
3632 const bool is_interworking)
3633 {
3634
3635 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3636 Valtype* wv = reinterpret_cast<Valtype*>(view);
3637 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3638
3639 // Ensure that we have a BX instruction.
3640 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3641 const uint32_t reg = (val & 0xf);
3642 if (is_interworking && reg != 0xf)
3643 {
3644 Stub_table<big_endian>* stub_table =
3645 object->stub_table(relinfo->data_shndx);
3646 gold_assert(stub_table != NULL);
3647
3648 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3649 gold_assert(stub != NULL);
3650
3651 int32_t veneer_address =
3652 stub_table->address() + stub->offset() - 8 - address;
3653 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3654 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3655 // Replace with a branch to veneer (B <addr>)
3656 val = (val & 0xf0000000) | 0x0a000000
3657 | ((veneer_address >> 2) & 0x00ffffff);
3658 }
3659 else
3660 {
3661 // Preserve Rm (lowest four bits) and the condition code
3662 // (highest four bits). Other bits encode MOV PC,Rm.
3663 val = (val & 0xf000000f) | 0x01a0f000;
3664 }
3665 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3666 return This::STATUS_OKAY;
3667 }
3668
3669 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3670 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3671 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3672 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3673 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3674 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3675 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3676 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3677 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3678 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3679 static inline typename This::Status
3680 arm_grp_alu(unsigned char* view,
3681 const Sized_relobj_file<32, big_endian>* object,
3682 const Symbol_value<32>* psymval,
3683 const int group,
3684 Arm_address address,
3685 Arm_address thumb_bit,
3686 bool check_overflow)
3687 {
3688 gold_assert(group >= 0 && group < 3);
3689 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3690 Valtype* wv = reinterpret_cast<Valtype*>(view);
3691 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3692
3693 // ALU group relocations are allowed only for the ADD/SUB instructions.
3694 // (0x00800000 - ADD, 0x00400000 - SUB)
3695 const Valtype opcode = insn & 0x01e00000;
3696 if (opcode != 0x00800000 && opcode != 0x00400000)
3697 return This::STATUS_BAD_RELOC;
3698
3699 // Determine a sign for the addend.
3700 const int sign = (opcode == 0x00800000) ? 1 : -1;
3701 // shifter = rotate_imm * 2
3702 const uint32_t shifter = (insn & 0xf00) >> 7;
3703 // Initial addend value.
3704 int32_t addend = insn & 0xff;
3705 // Rotate addend right by shifter.
3706 addend = (addend >> shifter) | (addend << (32 - shifter));
3707 // Apply a sign to the added.
3708 addend *= sign;
3709
3710 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3711 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3712 // Check for overflow if required
3713 if (check_overflow
3714 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3715 return This::STATUS_OVERFLOW;
3716
3717 // Mask out the value and the ADD/SUB part of the opcode; take care
3718 // not to destroy the S bit.
3719 insn &= 0xff1ff000;
3720 // Set the opcode according to whether the value to go in the
3721 // place is negative.
3722 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3723 // Encode the offset (encoded Gn).
3724 insn |= gn;
3725
3726 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3727 return This::STATUS_OKAY;
3728 }
3729
3730 // R_ARM_LDR_PC_G0: S + A - P
3731 // R_ARM_LDR_PC_G1: S + A - P
3732 // R_ARM_LDR_PC_G2: S + A - P
3733 // R_ARM_LDR_SB_G0: S + A - B(S)
3734 // R_ARM_LDR_SB_G1: S + A - B(S)
3735 // R_ARM_LDR_SB_G2: S + A - B(S)
3736 static inline typename This::Status
3737 arm_grp_ldr(unsigned char* view,
3738 const Sized_relobj_file<32, big_endian>* object,
3739 const Symbol_value<32>* psymval,
3740 const int group,
3741 Arm_address address)
3742 {
3743 gold_assert(group >= 0 && group < 3);
3744 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3745 Valtype* wv = reinterpret_cast<Valtype*>(view);
3746 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3747
3748 const int sign = (insn & 0x00800000) ? 1 : -1;
3749 int32_t addend = (insn & 0xfff) * sign;
3750 int32_t x = (psymval->value(object, addend) - address);
3751 // Calculate the relevant G(n-1) value to obtain this stage residual.
3752 Valtype residual =
3753 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3754 if (residual >= 0x1000)
3755 return This::STATUS_OVERFLOW;
3756
3757 // Mask out the value and U bit.
3758 insn &= 0xff7ff000;
3759 // Set the U bit for non-negative values.
3760 if (x >= 0)
3761 insn |= 0x00800000;
3762 insn |= residual;
3763
3764 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3765 return This::STATUS_OKAY;
3766 }
3767
3768 // R_ARM_LDRS_PC_G0: S + A - P
3769 // R_ARM_LDRS_PC_G1: S + A - P
3770 // R_ARM_LDRS_PC_G2: S + A - P
3771 // R_ARM_LDRS_SB_G0: S + A - B(S)
3772 // R_ARM_LDRS_SB_G1: S + A - B(S)
3773 // R_ARM_LDRS_SB_G2: S + A - B(S)
3774 static inline typename This::Status
3775 arm_grp_ldrs(unsigned char* view,
3776 const Sized_relobj_file<32, big_endian>* object,
3777 const Symbol_value<32>* psymval,
3778 const int group,
3779 Arm_address address)
3780 {
3781 gold_assert(group >= 0 && group < 3);
3782 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3783 Valtype* wv = reinterpret_cast<Valtype*>(view);
3784 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3785
3786 const int sign = (insn & 0x00800000) ? 1 : -1;
3787 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3788 int32_t x = (psymval->value(object, addend) - address);
3789 // Calculate the relevant G(n-1) value to obtain this stage residual.
3790 Valtype residual =
3791 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3792 if (residual >= 0x100)
3793 return This::STATUS_OVERFLOW;
3794
3795 // Mask out the value and U bit.
3796 insn &= 0xff7ff0f0;
3797 // Set the U bit for non-negative values.
3798 if (x >= 0)
3799 insn |= 0x00800000;
3800 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3801
3802 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3803 return This::STATUS_OKAY;
3804 }
3805
3806 // R_ARM_LDC_PC_G0: S + A - P
3807 // R_ARM_LDC_PC_G1: S + A - P
3808 // R_ARM_LDC_PC_G2: S + A - P
3809 // R_ARM_LDC_SB_G0: S + A - B(S)
3810 // R_ARM_LDC_SB_G1: S + A - B(S)
3811 // R_ARM_LDC_SB_G2: S + A - B(S)
3812 static inline typename This::Status
3813 arm_grp_ldc(unsigned char* view,
3814 const Sized_relobj_file<32, big_endian>* object,
3815 const Symbol_value<32>* psymval,
3816 const int group,
3817 Arm_address address)
3818 {
3819 gold_assert(group >= 0 && group < 3);
3820 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3821 Valtype* wv = reinterpret_cast<Valtype*>(view);
3822 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3823
3824 const int sign = (insn & 0x00800000) ? 1 : -1;
3825 int32_t addend = ((insn & 0xff) << 2) * sign;
3826 int32_t x = (psymval->value(object, addend) - address);
3827 // Calculate the relevant G(n-1) value to obtain this stage residual.
3828 Valtype residual =
3829 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3830 if ((residual & 0x3) != 0 || residual >= 0x400)
3831 return This::STATUS_OVERFLOW;
3832
3833 // Mask out the value and U bit.
3834 insn &= 0xff7fff00;
3835 // Set the U bit for non-negative values.
3836 if (x >= 0)
3837 insn |= 0x00800000;
3838 insn |= (residual >> 2);
3839
3840 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3841 return This::STATUS_OKAY;
3842 }
3843 };
3844
3845 // Relocate ARM long branches. This handles relocation types
3846 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3847 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3848 // undefined and we do not use PLT in this relocation. In such a case,
3849 // the branch is converted into an NOP.
3850
3851 template<bool big_endian>
3852 typename Arm_relocate_functions<big_endian>::Status
3853 Arm_relocate_functions<big_endian>::arm_branch_common(
3854 unsigned int r_type,
3855 const Relocate_info<32, big_endian>* relinfo,
3856 unsigned char* view,
3857 const Sized_symbol<32>* gsym,
3858 const Arm_relobj<big_endian>* object,
3859 unsigned int r_sym,
3860 const Symbol_value<32>* psymval,
3861 Arm_address address,
3862 Arm_address thumb_bit,
3863 bool is_weakly_undefined_without_plt)
3864 {
3865 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3866 Valtype* wv = reinterpret_cast<Valtype*>(view);
3867 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3868
3869 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3870 && ((val & 0x0f000000UL) == 0x0a000000UL);
3871 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3872 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3873 && ((val & 0x0f000000UL) == 0x0b000000UL);
3874 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3875 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3876
3877 // Check that the instruction is valid.
3878 if (r_type == elfcpp::R_ARM_CALL)
3879 {
3880 if (!insn_is_uncond_bl && !insn_is_blx)
3881 return This::STATUS_BAD_RELOC;
3882 }
3883 else if (r_type == elfcpp::R_ARM_JUMP24)
3884 {
3885 if (!insn_is_b && !insn_is_cond_bl)
3886 return This::STATUS_BAD_RELOC;
3887 }
3888 else if (r_type == elfcpp::R_ARM_PLT32)
3889 {
3890 if (!insn_is_any_branch)
3891 return This::STATUS_BAD_RELOC;
3892 }
3893 else if (r_type == elfcpp::R_ARM_XPC25)
3894 {
3895 // FIXME: AAELF document IH0044C does not say much about it other
3896 // than it being obsolete.
3897 if (!insn_is_any_branch)
3898 return This::STATUS_BAD_RELOC;
3899 }
3900 else
3901 gold_unreachable();
3902
3903 // A branch to an undefined weak symbol is turned into a jump to
3904 // the next instruction unless a PLT entry will be created.
3905 // Do the same for local undefined symbols.
3906 // The jump to the next instruction is optimized as a NOP depending
3907 // on the architecture.
3908 const Target_arm<big_endian>* arm_target =
3909 Target_arm<big_endian>::default_target();
3910 if (is_weakly_undefined_without_plt)
3911 {
3912 gold_assert(!parameters->options().relocatable());
3913 Valtype cond = val & 0xf0000000U;
3914 if (arm_target->may_use_arm_nop())
3915 val = cond | 0x0320f000;
3916 else
3917 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3918 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3919 return This::STATUS_OKAY;
3920 }
3921
3922 Valtype addend = Bits<26>::sign_extend32(val << 2);
3923 Valtype branch_target = psymval->value(object, addend);
3924 int32_t branch_offset = branch_target - address;
3925
3926 // We need a stub if the branch offset is too large or if we need
3927 // to switch mode.
3928 bool may_use_blx = arm_target->may_use_v5t_interworking();
3929 Reloc_stub* stub = NULL;
3930
3931 if (!parameters->options().relocatable()
3932 && (Bits<26>::has_overflow32(branch_offset)
3933 || ((thumb_bit != 0)
3934 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3935 {
3936 Valtype unadjusted_branch_target = psymval->value(object, 0);
3937
3938 Stub_type stub_type =
3939 Reloc_stub::stub_type_for_reloc(r_type, address,
3940 unadjusted_branch_target,
3941 (thumb_bit != 0));
3942 if (stub_type != arm_stub_none)
3943 {
3944 Stub_table<big_endian>* stub_table =
3945 object->stub_table(relinfo->data_shndx);
3946 gold_assert(stub_table != NULL);
3947
3948 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3949 stub = stub_table->find_reloc_stub(stub_key);
3950 gold_assert(stub != NULL);
3951 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3952 branch_target = stub_table->address() + stub->offset() + addend;
3953 branch_offset = branch_target - address;
3954 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3955 }
3956 }
3957
3958 // At this point, if we still need to switch mode, the instruction
3959 // must either be a BLX or a BL that can be converted to a BLX.
3960 if (thumb_bit != 0)
3961 {
3962 // Turn BL to BLX.
3963 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3964 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3965 }
3966
3967 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3968 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3969 return (Bits<26>::has_overflow32(branch_offset)
3970 ? This::STATUS_OVERFLOW
3971 : This::STATUS_OKAY);
3972 }
3973
3974 // Relocate THUMB long branches. This handles relocation types
3975 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3976 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3977 // undefined and we do not use PLT in this relocation. In such a case,
3978 // the branch is converted into an NOP.
3979
3980 template<bool big_endian>
3981 typename Arm_relocate_functions<big_endian>::Status
3982 Arm_relocate_functions<big_endian>::thumb_branch_common(
3983 unsigned int r_type,
3984 const Relocate_info<32, big_endian>* relinfo,
3985 unsigned char* view,
3986 const Sized_symbol<32>* gsym,
3987 const Arm_relobj<big_endian>* object,
3988 unsigned int r_sym,
3989 const Symbol_value<32>* psymval,
3990 Arm_address address,
3991 Arm_address thumb_bit,
3992 bool is_weakly_undefined_without_plt)
3993 {
3994 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3995 Valtype* wv = reinterpret_cast<Valtype*>(view);
3996 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3997 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3998
3999 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4000 // into account.
4001 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4002 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4003
4004 // Check that the instruction is valid.
4005 if (r_type == elfcpp::R_ARM_THM_CALL)
4006 {
4007 if (!is_bl_insn && !is_blx_insn)
4008 return This::STATUS_BAD_RELOC;
4009 }
4010 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4011 {
4012 // This cannot be a BLX.
4013 if (!is_bl_insn)
4014 return This::STATUS_BAD_RELOC;
4015 }
4016 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4017 {
4018 // Check for Thumb to Thumb call.
4019 if (!is_blx_insn)
4020 return This::STATUS_BAD_RELOC;
4021 if (thumb_bit != 0)
4022 {
4023 gold_warning(_("%s: Thumb BLX instruction targets "
4024 "thumb function '%s'."),
4025 object->name().c_str(),
4026 (gsym ? gsym->name() : "(local)"));
4027 // Convert BLX to BL.
4028 lower_insn |= 0x1000U;
4029 }
4030 }
4031 else
4032 gold_unreachable();
4033
4034 // A branch to an undefined weak symbol is turned into a jump to
4035 // the next instruction unless a PLT entry will be created.
4036 // The jump to the next instruction is optimized as a NOP.W for
4037 // Thumb-2 enabled architectures.
4038 const Target_arm<big_endian>* arm_target =
4039 Target_arm<big_endian>::default_target();
4040 if (is_weakly_undefined_without_plt)
4041 {
4042 gold_assert(!parameters->options().relocatable());
4043 if (arm_target->may_use_thumb2_nop())
4044 {
4045 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4046 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4047 }
4048 else
4049 {
4050 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4051 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4052 }
4053 return This::STATUS_OKAY;
4054 }
4055
4056 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4057 Arm_address branch_target = psymval->value(object, addend);
4058
4059 // For BLX, bit 1 of target address comes from bit 1 of base address.
4060 bool may_use_blx = arm_target->may_use_v5t_interworking();
4061 if (thumb_bit == 0 && may_use_blx)
4062 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4063
4064 int32_t branch_offset = branch_target - address;
4065
4066 // We need a stub if the branch offset is too large or if we need
4067 // to switch mode.
4068 bool thumb2 = arm_target->using_thumb2();
4069 if (!parameters->options().relocatable()
4070 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4071 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4072 || ((thumb_bit == 0)
4073 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4074 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4075 {
4076 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4077
4078 Stub_type stub_type =
4079 Reloc_stub::stub_type_for_reloc(r_type, address,
4080 unadjusted_branch_target,
4081 (thumb_bit != 0));
4082
4083 if (stub_type != arm_stub_none)
4084 {
4085 Stub_table<big_endian>* stub_table =
4086 object->stub_table(relinfo->data_shndx);
4087 gold_assert(stub_table != NULL);
4088
4089 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4090 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4091 gold_assert(stub != NULL);
4092 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4093 branch_target = stub_table->address() + stub->offset() + addend;
4094 if (thumb_bit == 0 && may_use_blx)
4095 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4096 branch_offset = branch_target - address;
4097 }
4098 }
4099
4100 // At this point, if we still need to switch mode, the instruction
4101 // must either be a BLX or a BL that can be converted to a BLX.
4102 if (thumb_bit == 0)
4103 {
4104 gold_assert(may_use_blx
4105 && (r_type == elfcpp::R_ARM_THM_CALL
4106 || r_type == elfcpp::R_ARM_THM_XPC22));
4107 // Make sure this is a BLX.
4108 lower_insn &= ~0x1000U;
4109 }
4110 else
4111 {
4112 // Make sure this is a BL.
4113 lower_insn |= 0x1000U;
4114 }
4115
4116 // For a BLX instruction, make sure that the relocation is rounded up
4117 // to a word boundary. This follows the semantics of the instruction
4118 // which specifies that bit 1 of the target address will come from bit
4119 // 1 of the base address.
4120 if ((lower_insn & 0x5000U) == 0x4000U)
4121 gold_assert((branch_offset & 3) == 0);
4122
4123 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4124 // We use the Thumb-2 encoding, which is safe even if dealing with
4125 // a Thumb-1 instruction by virtue of our overflow check above. */
4126 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4127 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4128
4129 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4130 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4131
4132 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4133
4134 return ((thumb2
4135 ? Bits<25>::has_overflow32(branch_offset)
4136 : Bits<23>::has_overflow32(branch_offset))
4137 ? This::STATUS_OVERFLOW
4138 : This::STATUS_OKAY);
4139 }
4140
4141 // Relocate THUMB-2 long conditional branches.
4142 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4143 // undefined and we do not use PLT in this relocation. In such a case,
4144 // the branch is converted into an NOP.
4145
4146 template<bool big_endian>
4147 typename Arm_relocate_functions<big_endian>::Status
4148 Arm_relocate_functions<big_endian>::thm_jump19(
4149 unsigned char* view,
4150 const Arm_relobj<big_endian>* object,
4151 const Symbol_value<32>* psymval,
4152 Arm_address address,
4153 Arm_address thumb_bit)
4154 {
4155 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4156 Valtype* wv = reinterpret_cast<Valtype*>(view);
4157 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4158 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4159 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4160
4161 Arm_address branch_target = psymval->value(object, addend);
4162 int32_t branch_offset = branch_target - address;
4163
4164 // ??? Should handle interworking? GCC might someday try to
4165 // use this for tail calls.
4166 // FIXME: We do support thumb entry to PLT yet.
4167 if (thumb_bit == 0)
4168 {
4169 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4170 return This::STATUS_BAD_RELOC;
4171 }
4172
4173 // Put RELOCATION back into the insn.
4174 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4175 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4176
4177 // Put the relocated value back in the object file:
4178 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4179 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4180
4181 return (Bits<21>::has_overflow32(branch_offset)
4182 ? This::STATUS_OVERFLOW
4183 : This::STATUS_OKAY);
4184 }
4185
4186 // Get the GOT section, creating it if necessary.
4187
4188 template<bool big_endian>
4189 Arm_output_data_got<big_endian>*
4190 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4191 {
4192 if (this->got_ == NULL)
4193 {
4194 gold_assert(symtab != NULL && layout != NULL);
4195
4196 // When using -z now, we can treat .got as a relro section.
4197 // Without -z now, it is modified after program startup by lazy
4198 // PLT relocations.
4199 bool is_got_relro = parameters->options().now();
4200 Output_section_order got_order = (is_got_relro
4201 ? ORDER_RELRO_LAST
4202 : ORDER_DATA);
4203
4204 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4205 // .got.plt sections in output. The output .got section contains both
4206 // PLT and non-PLT GOT entries.
4207 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4208
4209 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4210 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4211 this->got_, got_order, is_got_relro);
4212
4213 // The old GNU linker creates a .got.plt section. We just
4214 // create another set of data in the .got section. Note that we
4215 // always create a PLT if we create a GOT, although the PLT
4216 // might be empty.
4217 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4218 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4219 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4220 this->got_plt_, got_order, is_got_relro);
4221
4222 // The first three entries are reserved.
4223 this->got_plt_->set_current_data_size(3 * 4);
4224
4225 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4226 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4227 Symbol_table::PREDEFINED,
4228 this->got_plt_,
4229 0, 0, elfcpp::STT_OBJECT,
4230 elfcpp::STB_LOCAL,
4231 elfcpp::STV_HIDDEN, 0,
4232 false, false);
4233 }
4234 return this->got_;
4235 }
4236
4237 // Get the dynamic reloc section, creating it if necessary.
4238
4239 template<bool big_endian>
4240 typename Target_arm<big_endian>::Reloc_section*
4241 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4242 {
4243 if (this->rel_dyn_ == NULL)
4244 {
4245 gold_assert(layout != NULL);
4246 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4247 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4248 elfcpp::SHF_ALLOC, this->rel_dyn_,
4249 ORDER_DYNAMIC_RELOCS, false);
4250 }
4251 return this->rel_dyn_;
4252 }
4253
4254 // Insn_template methods.
4255
4256 // Return byte size of an instruction template.
4257
4258 size_t
4259 Insn_template::size() const
4260 {
4261 switch (this->type())
4262 {
4263 case THUMB16_TYPE:
4264 case THUMB16_SPECIAL_TYPE:
4265 return 2;
4266 case ARM_TYPE:
4267 case THUMB32_TYPE:
4268 case DATA_TYPE:
4269 return 4;
4270 default:
4271 gold_unreachable();
4272 }
4273 }
4274
4275 // Return alignment of an instruction template.
4276
4277 unsigned
4278 Insn_template::alignment() const
4279 {
4280 switch (this->type())
4281 {
4282 case THUMB16_TYPE:
4283 case THUMB16_SPECIAL_TYPE:
4284 case THUMB32_TYPE:
4285 return 2;
4286 case ARM_TYPE:
4287 case DATA_TYPE:
4288 return 4;
4289 default:
4290 gold_unreachable();
4291 }
4292 }
4293
4294 // Stub_template methods.
4295
4296 Stub_template::Stub_template(
4297 Stub_type type, const Insn_template* insns,
4298 size_t insn_count)
4299 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4300 entry_in_thumb_mode_(false), relocs_()
4301 {
4302 off_t offset = 0;
4303
4304 // Compute byte size and alignment of stub template.
4305 for (size_t i = 0; i < insn_count; i++)
4306 {
4307 unsigned insn_alignment = insns[i].alignment();
4308 size_t insn_size = insns[i].size();
4309 gold_assert((offset & (insn_alignment - 1)) == 0);
4310 this->alignment_ = std::max(this->alignment_, insn_alignment);
4311 switch (insns[i].type())
4312 {
4313 case Insn_template::THUMB16_TYPE:
4314 case Insn_template::THUMB16_SPECIAL_TYPE:
4315 if (i == 0)
4316 this->entry_in_thumb_mode_ = true;
4317 break;
4318
4319 case Insn_template::THUMB32_TYPE:
4320 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4321 this->relocs_.push_back(Reloc(i, offset));
4322 if (i == 0)
4323 this->entry_in_thumb_mode_ = true;
4324 break;
4325
4326 case Insn_template::ARM_TYPE:
4327 // Handle cases where the target is encoded within the
4328 // instruction.
4329 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4330 this->relocs_.push_back(Reloc(i, offset));
4331 break;
4332
4333 case Insn_template::DATA_TYPE:
4334 // Entry point cannot be data.
4335 gold_assert(i != 0);
4336 this->relocs_.push_back(Reloc(i, offset));
4337 break;
4338
4339 default:
4340 gold_unreachable();
4341 }
4342 offset += insn_size;
4343 }
4344 this->size_ = offset;
4345 }
4346
4347 // Stub methods.
4348
4349 // Template to implement do_write for a specific target endianness.
4350
4351 template<bool big_endian>
4352 void inline
4353 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4354 {
4355 const Stub_template* stub_template = this->stub_template();
4356 const Insn_template* insns = stub_template->insns();
4357
4358 // FIXME: We do not handle BE8 encoding yet.
4359 unsigned char* pov = view;
4360 for (size_t i = 0; i < stub_template->insn_count(); i++)
4361 {
4362 switch (insns[i].type())
4363 {
4364 case Insn_template::THUMB16_TYPE:
4365 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4366 break;
4367 case Insn_template::THUMB16_SPECIAL_TYPE:
4368 elfcpp::Swap<16, big_endian>::writeval(
4369 pov,
4370 this->thumb16_special(i));
4371 break;
4372 case Insn_template::THUMB32_TYPE:
4373 {
4374 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4375 uint32_t lo = insns[i].data() & 0xffff;
4376 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4377 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4378 }
4379 break;
4380 case Insn_template::ARM_TYPE:
4381 case Insn_template::DATA_TYPE:
4382 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4383 break;
4384 default:
4385 gold_unreachable();
4386 }
4387 pov += insns[i].size();
4388 }
4389 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4390 }
4391
4392 // Reloc_stub::Key methods.
4393
4394 // Dump a Key as a string for debugging.
4395
4396 std::string
4397 Reloc_stub::Key::name() const
4398 {
4399 if (this->r_sym_ == invalid_index)
4400 {
4401 // Global symbol key name
4402 // <stub-type>:<symbol name>:<addend>.
4403 const std::string sym_name = this->u_.symbol->name();
4404 // We need to print two hex number and two colons. So just add 100 bytes
4405 // to the symbol name size.
4406 size_t len = sym_name.size() + 100;
4407 char* buffer = new char[len];
4408 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4409 sym_name.c_str(), this->addend_);
4410 gold_assert(c > 0 && c < static_cast<int>(len));
4411 delete[] buffer;
4412 return std::string(buffer);
4413 }
4414 else
4415 {
4416 // local symbol key name
4417 // <stub-type>:<object>:<r_sym>:<addend>.
4418 const size_t len = 200;
4419 char buffer[len];
4420 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4421 this->u_.relobj, this->r_sym_, this->addend_);
4422 gold_assert(c > 0 && c < static_cast<int>(len));
4423 return std::string(buffer);
4424 }
4425 }
4426
4427 // Reloc_stub methods.
4428
4429 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4430 // LOCATION to DESTINATION.
4431 // This code is based on the arm_type_of_stub function in
4432 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4433 // class simple.
4434
4435 Stub_type
4436 Reloc_stub::stub_type_for_reloc(
4437 unsigned int r_type,
4438 Arm_address location,
4439 Arm_address destination,
4440 bool target_is_thumb)
4441 {
4442 Stub_type stub_type = arm_stub_none;
4443
4444 // This is a bit ugly but we want to avoid using a templated class for
4445 // big and little endianities.
4446 bool may_use_blx;
4447 bool should_force_pic_veneer;
4448 bool thumb2;
4449 bool thumb_only;
4450 if (parameters->target().is_big_endian())
4451 {
4452 const Target_arm<true>* big_endian_target =
4453 Target_arm<true>::default_target();
4454 may_use_blx = big_endian_target->may_use_v5t_interworking();
4455 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4456 thumb2 = big_endian_target->using_thumb2();
4457 thumb_only = big_endian_target->using_thumb_only();
4458 }
4459 else
4460 {
4461 const Target_arm<false>* little_endian_target =
4462 Target_arm<false>::default_target();
4463 may_use_blx = little_endian_target->may_use_v5t_interworking();
4464 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4465 thumb2 = little_endian_target->using_thumb2();
4466 thumb_only = little_endian_target->using_thumb_only();
4467 }
4468
4469 int64_t branch_offset;
4470 bool output_is_position_independent =
4471 parameters->options().output_is_position_independent();
4472 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4473 {
4474 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4475 // base address (instruction address + 4).
4476 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4477 destination = Bits<32>::bit_select32(destination, location, 0x2);
4478 branch_offset = static_cast<int64_t>(destination) - location;
4479
4480 // Handle cases where:
4481 // - this call goes too far (different Thumb/Thumb2 max
4482 // distance)
4483 // - it's a Thumb->Arm call and blx is not available, or it's a
4484 // Thumb->Arm branch (not bl). A stub is needed in this case.
4485 if ((!thumb2
4486 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4487 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4488 || (thumb2
4489 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4490 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4491 || ((!target_is_thumb)
4492 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4493 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4494 {
4495 if (target_is_thumb)
4496 {
4497 // Thumb to thumb.
4498 if (!thumb_only)
4499 {
4500 stub_type = (output_is_position_independent
4501 || should_force_pic_veneer)
4502 // PIC stubs.
4503 ? ((may_use_blx
4504 && (r_type == elfcpp::R_ARM_THM_CALL))
4505 // V5T and above. Stub starts with ARM code, so
4506 // we must be able to switch mode before
4507 // reaching it, which is only possible for 'bl'
4508 // (ie R_ARM_THM_CALL relocation).
4509 ? arm_stub_long_branch_any_thumb_pic
4510 // On V4T, use Thumb code only.
4511 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4512
4513 // non-PIC stubs.
4514 : ((may_use_blx
4515 && (r_type == elfcpp::R_ARM_THM_CALL))
4516 ? arm_stub_long_branch_any_any // V5T and above.
4517 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4518 }
4519 else
4520 {
4521 stub_type = (output_is_position_independent
4522 || should_force_pic_veneer)
4523 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4524 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4525 }
4526 }
4527 else
4528 {
4529 // Thumb to arm.
4530
4531 // FIXME: We should check that the input section is from an
4532 // object that has interwork enabled.
4533
4534 stub_type = (output_is_position_independent
4535 || should_force_pic_veneer)
4536 // PIC stubs.
4537 ? ((may_use_blx
4538 && (r_type == elfcpp::R_ARM_THM_CALL))
4539 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4540 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4541
4542 // non-PIC stubs.
4543 : ((may_use_blx
4544 && (r_type == elfcpp::R_ARM_THM_CALL))
4545 ? arm_stub_long_branch_any_any // V5T and above.
4546 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4547
4548 // Handle v4t short branches.
4549 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4550 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4551 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4552 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4553 }
4554 }
4555 }
4556 else if (r_type == elfcpp::R_ARM_CALL
4557 || r_type == elfcpp::R_ARM_JUMP24
4558 || r_type == elfcpp::R_ARM_PLT32)
4559 {
4560 branch_offset = static_cast<int64_t>(destination) - location;
4561 if (target_is_thumb)
4562 {
4563 // Arm to thumb.
4564
4565 // FIXME: We should check that the input section is from an
4566 // object that has interwork enabled.
4567
4568 // We have an extra 2-bytes reach because of
4569 // the mode change (bit 24 (H) of BLX encoding).
4570 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4571 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4572 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4573 || (r_type == elfcpp::R_ARM_JUMP24)
4574 || (r_type == elfcpp::R_ARM_PLT32))
4575 {
4576 stub_type = (output_is_position_independent
4577 || should_force_pic_veneer)
4578 // PIC stubs.
4579 ? (may_use_blx
4580 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4581 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4582
4583 // non-PIC stubs.
4584 : (may_use_blx
4585 ? arm_stub_long_branch_any_any // V5T and above.
4586 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4587 }
4588 }
4589 else
4590 {
4591 // Arm to arm.
4592 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4593 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4594 {
4595 stub_type = (output_is_position_independent
4596 || should_force_pic_veneer)
4597 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4598 : arm_stub_long_branch_any_any; /// non-PIC.
4599 }
4600 }
4601 }
4602
4603 return stub_type;
4604 }
4605
4606 // Cortex_a8_stub methods.
4607
4608 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4609 // I is the position of the instruction template in the stub template.
4610
4611 uint16_t
4612 Cortex_a8_stub::do_thumb16_special(size_t i)
4613 {
4614 // The only use of this is to copy condition code from a conditional
4615 // branch being worked around to the corresponding conditional branch in
4616 // to the stub.
4617 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4618 && i == 0);
4619 uint16_t data = this->stub_template()->insns()[i].data();
4620 gold_assert((data & 0xff00U) == 0xd000U);
4621 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4622 return data;
4623 }
4624
4625 // Stub_factory methods.
4626
4627 Stub_factory::Stub_factory()
4628 {
4629 // The instruction template sequences are declared as static
4630 // objects and initialized first time the constructor runs.
4631
4632 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4633 // to reach the stub if necessary.
4634 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4635 {
4636 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4637 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4638 // dcd R_ARM_ABS32(X)
4639 };
4640
4641 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4642 // available.
4643 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4644 {
4645 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4646 Insn_template::arm_insn(0xe12fff1c), // bx ip
4647 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4648 // dcd R_ARM_ABS32(X)
4649 };
4650
4651 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4652 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4653 {
4654 Insn_template::thumb16_insn(0xb401), // push {r0}
4655 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4656 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4657 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4658 Insn_template::thumb16_insn(0x4760), // bx ip
4659 Insn_template::thumb16_insn(0xbf00), // nop
4660 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4661 // dcd R_ARM_ABS32(X)
4662 };
4663
4664 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4665 // allowed.
4666 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4667 {
4668 Insn_template::thumb16_insn(0x4778), // bx pc
4669 Insn_template::thumb16_insn(0x46c0), // nop
4670 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4671 Insn_template::arm_insn(0xe12fff1c), // bx ip
4672 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4673 // dcd R_ARM_ABS32(X)
4674 };
4675
4676 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4677 // available.
4678 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4679 {
4680 Insn_template::thumb16_insn(0x4778), // bx pc
4681 Insn_template::thumb16_insn(0x46c0), // nop
4682 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4683 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4684 // dcd R_ARM_ABS32(X)
4685 };
4686
4687 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4688 // one, when the destination is close enough.
4689 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4690 {
4691 Insn_template::thumb16_insn(0x4778), // bx pc
4692 Insn_template::thumb16_insn(0x46c0), // nop
4693 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4694 };
4695
4696 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4697 // blx to reach the stub if necessary.
4698 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4699 {
4700 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4701 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4702 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4703 // dcd R_ARM_REL32(X-4)
4704 };
4705
4706 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4707 // blx to reach the stub if necessary. We can not add into pc;
4708 // it is not guaranteed to mode switch (different in ARMv6 and
4709 // ARMv7).
4710 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4711 {
4712 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4713 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4714 Insn_template::arm_insn(0xe12fff1c), // bx ip
4715 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4716 // dcd R_ARM_REL32(X)
4717 };
4718
4719 // V4T ARM -> ARM long branch stub, PIC.
4720 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4721 {
4722 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4723 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4724 Insn_template::arm_insn(0xe12fff1c), // bx ip
4725 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4726 // dcd R_ARM_REL32(X)
4727 };
4728
4729 // V4T Thumb -> ARM long branch stub, PIC.
4730 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4731 {
4732 Insn_template::thumb16_insn(0x4778), // bx pc
4733 Insn_template::thumb16_insn(0x46c0), // nop
4734 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4735 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4736 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4737 // dcd R_ARM_REL32(X)
4738 };
4739
4740 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4741 // architectures.
4742 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4743 {
4744 Insn_template::thumb16_insn(0xb401), // push {r0}
4745 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4746 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4747 Insn_template::thumb16_insn(0x4484), // add ip, r0
4748 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4749 Insn_template::thumb16_insn(0x4760), // bx ip
4750 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4751 // dcd R_ARM_REL32(X)
4752 };
4753
4754 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4755 // allowed.
4756 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4757 {
4758 Insn_template::thumb16_insn(0x4778), // bx pc
4759 Insn_template::thumb16_insn(0x46c0), // nop
4760 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4761 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4762 Insn_template::arm_insn(0xe12fff1c), // bx ip
4763 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4764 // dcd R_ARM_REL32(X)
4765 };
4766
4767 // Cortex-A8 erratum-workaround stubs.
4768
4769 // Stub used for conditional branches (which may be beyond +/-1MB away,
4770 // so we can't use a conditional branch to reach this stub).
4771
4772 // original code:
4773 //
4774 // b<cond> X
4775 // after:
4776 //
4777 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4778 {
4779 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4780 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4781 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4782 // b.w X
4783 };
4784
4785 // Stub used for b.w and bl.w instructions.
4786
4787 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4788 {
4789 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4790 };
4791
4792 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4793 {
4794 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4795 };
4796
4797 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4798 // instruction (which switches to ARM mode) to point to this stub. Jump to
4799 // the real destination using an ARM-mode branch.
4800 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4801 {
4802 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4803 };
4804
4805 // Stub used to provide an interworking for R_ARM_V4BX relocation
4806 // (bx r[n] instruction).
4807 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4808 {
4809 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4810 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4811 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4812 };
4813
4814 // Fill in the stub template look-up table. Stub templates are constructed
4815 // per instance of Stub_factory for fast look-up without locking
4816 // in a thread-enabled environment.
4817
4818 this->stub_templates_[arm_stub_none] =
4819 new Stub_template(arm_stub_none, NULL, 0);
4820
4821 #define DEF_STUB(x) \
4822 do \
4823 { \
4824 size_t array_size \
4825 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4826 Stub_type type = arm_stub_##x; \
4827 this->stub_templates_[type] = \
4828 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4829 } \
4830 while (0);
4831
4832 DEF_STUBS
4833 #undef DEF_STUB
4834 }
4835
4836 // Stub_table methods.
4837
4838 // Remove all Cortex-A8 stub.
4839
4840 template<bool big_endian>
4841 void
4842 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4843 {
4844 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4845 p != this->cortex_a8_stubs_.end();
4846 ++p)
4847 delete p->second;
4848 this->cortex_a8_stubs_.clear();
4849 }
4850
4851 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4852
4853 template<bool big_endian>
4854 void
4855 Stub_table<big_endian>::relocate_stub(
4856 Stub* stub,
4857 const Relocate_info<32, big_endian>* relinfo,
4858 Target_arm<big_endian>* arm_target,
4859 Output_section* output_section,
4860 unsigned char* view,
4861 Arm_address address,
4862 section_size_type view_size)
4863 {
4864 const Stub_template* stub_template = stub->stub_template();
4865 if (stub_template->reloc_count() != 0)
4866 {
4867 // Adjust view to cover the stub only.
4868 section_size_type offset = stub->offset();
4869 section_size_type stub_size = stub_template->size();
4870 gold_assert(offset + stub_size <= view_size);
4871
4872 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4873 address + offset, stub_size);
4874 }
4875 }
4876
4877 // Relocate all stubs in this stub table.
4878
4879 template<bool big_endian>
4880 void
4881 Stub_table<big_endian>::relocate_stubs(
4882 const Relocate_info<32, big_endian>* relinfo,
4883 Target_arm<big_endian>* arm_target,
4884 Output_section* output_section,
4885 unsigned char* view,
4886 Arm_address address,
4887 section_size_type view_size)
4888 {
4889 // If we are passed a view bigger than the stub table's. we need to
4890 // adjust the view.
4891 gold_assert(address == this->address()
4892 && (view_size
4893 == static_cast<section_size_type>(this->data_size())));
4894
4895 // Relocate all relocation stubs.
4896 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4897 p != this->reloc_stubs_.end();
4898 ++p)
4899 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4900 address, view_size);
4901
4902 // Relocate all Cortex-A8 stubs.
4903 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4904 p != this->cortex_a8_stubs_.end();
4905 ++p)
4906 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4907 address, view_size);
4908
4909 // Relocate all ARM V4BX stubs.
4910 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4911 p != this->arm_v4bx_stubs_.end();
4912 ++p)
4913 {
4914 if (*p != NULL)
4915 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4916 address, view_size);
4917 }
4918 }
4919
4920 // Write out the stubs to file.
4921
4922 template<bool big_endian>
4923 void
4924 Stub_table<big_endian>::do_write(Output_file* of)
4925 {
4926 off_t offset = this->offset();
4927 const section_size_type oview_size =
4928 convert_to_section_size_type(this->data_size());
4929 unsigned char* const oview = of->get_output_view(offset, oview_size);
4930
4931 // Write relocation stubs.
4932 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4933 p != this->reloc_stubs_.end();
4934 ++p)
4935 {
4936 Reloc_stub* stub = p->second;
4937 Arm_address address = this->address() + stub->offset();
4938 gold_assert(address
4939 == align_address(address,
4940 stub->stub_template()->alignment()));
4941 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4942 big_endian);
4943 }
4944
4945 // Write Cortex-A8 stubs.
4946 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4948 ++p)
4949 {
4950 Cortex_a8_stub* stub = p->second;
4951 Arm_address address = this->address() + stub->offset();
4952 gold_assert(address
4953 == align_address(address,
4954 stub->stub_template()->alignment()));
4955 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4956 big_endian);
4957 }
4958
4959 // Write ARM V4BX relocation stubs.
4960 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4961 p != this->arm_v4bx_stubs_.end();
4962 ++p)
4963 {
4964 if (*p == NULL)
4965 continue;
4966
4967 Arm_address address = this->address() + (*p)->offset();
4968 gold_assert(address
4969 == align_address(address,
4970 (*p)->stub_template()->alignment()));
4971 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4972 big_endian);
4973 }
4974
4975 of->write_output_view(this->offset(), oview_size, oview);
4976 }
4977
4978 // Update the data size and address alignment of the stub table at the end
4979 // of a relaxation pass. Return true if either the data size or the
4980 // alignment changed in this relaxation pass.
4981
4982 template<bool big_endian>
4983 bool
4984 Stub_table<big_endian>::update_data_size_and_addralign()
4985 {
4986 // Go over all stubs in table to compute data size and address alignment.
4987 off_t size = this->reloc_stubs_size_;
4988 unsigned addralign = this->reloc_stubs_addralign_;
4989
4990 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4991 p != this->cortex_a8_stubs_.end();
4992 ++p)
4993 {
4994 const Stub_template* stub_template = p->second->stub_template();
4995 addralign = std::max(addralign, stub_template->alignment());
4996 size = (align_address(size, stub_template->alignment())
4997 + stub_template->size());
4998 }
4999
5000 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5001 p != this->arm_v4bx_stubs_.end();
5002 ++p)
5003 {
5004 if (*p == NULL)
5005 continue;
5006
5007 const Stub_template* stub_template = (*p)->stub_template();
5008 addralign = std::max(addralign, stub_template->alignment());
5009 size = (align_address(size, stub_template->alignment())
5010 + stub_template->size());
5011 }
5012
5013 // Check if either data size or alignment changed in this pass.
5014 // Update prev_data_size_ and prev_addralign_. These will be used
5015 // as the current data size and address alignment for the next pass.
5016 bool changed = size != this->prev_data_size_;
5017 this->prev_data_size_ = size;
5018
5019 if (addralign != this->prev_addralign_)
5020 changed = true;
5021 this->prev_addralign_ = addralign;
5022
5023 return changed;
5024 }
5025
5026 // Finalize the stubs. This sets the offsets of the stubs within the stub
5027 // table. It also marks all input sections needing Cortex-A8 workaround.
5028
5029 template<bool big_endian>
5030 void
5031 Stub_table<big_endian>::finalize_stubs()
5032 {
5033 off_t off = this->reloc_stubs_size_;
5034 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5035 p != this->cortex_a8_stubs_.end();
5036 ++p)
5037 {
5038 Cortex_a8_stub* stub = p->second;
5039 const Stub_template* stub_template = stub->stub_template();
5040 uint64_t stub_addralign = stub_template->alignment();
5041 off = align_address(off, stub_addralign);
5042 stub->set_offset(off);
5043 off += stub_template->size();
5044
5045 // Mark input section so that we can determine later if a code section
5046 // needs the Cortex-A8 workaround quickly.
5047 Arm_relobj<big_endian>* arm_relobj =
5048 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5049 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5050 }
5051
5052 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5053 p != this->arm_v4bx_stubs_.end();
5054 ++p)
5055 {
5056 if (*p == NULL)
5057 continue;
5058
5059 const Stub_template* stub_template = (*p)->stub_template();
5060 uint64_t stub_addralign = stub_template->alignment();
5061 off = align_address(off, stub_addralign);
5062 (*p)->set_offset(off);
5063 off += stub_template->size();
5064 }
5065
5066 gold_assert(off <= this->prev_data_size_);
5067 }
5068
5069 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5070 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5071 // of the address range seen by the linker.
5072
5073 template<bool big_endian>
5074 void
5075 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5076 Target_arm<big_endian>* arm_target,
5077 unsigned char* view,
5078 Arm_address view_address,
5079 section_size_type view_size)
5080 {
5081 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5082 for (Cortex_a8_stub_list::const_iterator p =
5083 this->cortex_a8_stubs_.lower_bound(view_address);
5084 ((p != this->cortex_a8_stubs_.end())
5085 && (p->first < (view_address + view_size)));
5086 ++p)
5087 {
5088 // We do not store the THUMB bit in the LSB of either the branch address
5089 // or the stub offset. There is no need to strip the LSB.
5090 Arm_address branch_address = p->first;
5091 const Cortex_a8_stub* stub = p->second;
5092 Arm_address stub_address = this->address() + stub->offset();
5093
5094 // Offset of the branch instruction relative to this view.
5095 section_size_type offset =
5096 convert_to_section_size_type(branch_address - view_address);
5097 gold_assert((offset + 4) <= view_size);
5098
5099 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5100 view + offset, branch_address);
5101 }
5102 }
5103
5104 // Arm_input_section methods.
5105
5106 // Initialize an Arm_input_section.
5107
5108 template<bool big_endian>
5109 void
5110 Arm_input_section<big_endian>::init()
5111 {
5112 Relobj* relobj = this->relobj();
5113 unsigned int shndx = this->shndx();
5114
5115 // We have to cache original size, alignment and contents to avoid locking
5116 // the original file.
5117 this->original_addralign_ =
5118 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5119
5120 // This is not efficient but we expect only a small number of relaxed
5121 // input sections for stubs.
5122 section_size_type section_size;
5123 const unsigned char* section_contents =
5124 relobj->section_contents(shndx, &section_size, false);
5125 this->original_size_ =
5126 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5127
5128 gold_assert(this->original_contents_ == NULL);
5129 this->original_contents_ = new unsigned char[section_size];
5130 memcpy(this->original_contents_, section_contents, section_size);
5131
5132 // We want to make this look like the original input section after
5133 // output sections are finalized.
5134 Output_section* os = relobj->output_section(shndx);
5135 off_t offset = relobj->output_section_offset(shndx);
5136 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5137 this->set_address(os->address() + offset);
5138 this->set_file_offset(os->offset() + offset);
5139
5140 this->set_current_data_size(this->original_size_);
5141 this->finalize_data_size();
5142 }
5143
5144 template<bool big_endian>
5145 void
5146 Arm_input_section<big_endian>::do_write(Output_file* of)
5147 {
5148 // We have to write out the original section content.
5149 gold_assert(this->original_contents_ != NULL);
5150 of->write(this->offset(), this->original_contents_,
5151 this->original_size_);
5152
5153 // If this owns a stub table and it is not empty, write it.
5154 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5155 this->stub_table_->write(of);
5156 }
5157
5158 // Finalize data size.
5159
5160 template<bool big_endian>
5161 void
5162 Arm_input_section<big_endian>::set_final_data_size()
5163 {
5164 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5165
5166 if (this->is_stub_table_owner())
5167 {
5168 this->stub_table_->finalize_data_size();
5169 off = align_address(off, this->stub_table_->addralign());
5170 off += this->stub_table_->data_size();
5171 }
5172 this->set_data_size(off);
5173 }
5174
5175 // Reset address and file offset.
5176
5177 template<bool big_endian>
5178 void
5179 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5180 {
5181 // Size of the original input section contents.
5182 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5183
5184 // If this is a stub table owner, account for the stub table size.
5185 if (this->is_stub_table_owner())
5186 {
5187 Stub_table<big_endian>* stub_table = this->stub_table_;
5188
5189 // Reset the stub table's address and file offset. The
5190 // current data size for child will be updated after that.
5191 stub_table_->reset_address_and_file_offset();
5192 off = align_address(off, stub_table_->addralign());
5193 off += stub_table->current_data_size();
5194 }
5195
5196 this->set_current_data_size(off);
5197 }
5198
5199 // Arm_exidx_cantunwind methods.
5200
5201 // Write this to Output file OF for a fixed endianness.
5202
5203 template<bool big_endian>
5204 void
5205 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5206 {
5207 off_t offset = this->offset();
5208 const section_size_type oview_size = 8;
5209 unsigned char* const oview = of->get_output_view(offset, oview_size);
5210
5211 Output_section* os = this->relobj_->output_section(this->shndx_);
5212 gold_assert(os != NULL);
5213
5214 Arm_relobj<big_endian>* arm_relobj =
5215 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5216 Arm_address output_offset =
5217 arm_relobj->get_output_section_offset(this->shndx_);
5218 Arm_address section_start;
5219 section_size_type section_size;
5220
5221 // Find out the end of the text section referred by this.
5222 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5223 {
5224 section_start = os->address() + output_offset;
5225 const Arm_exidx_input_section* exidx_input_section =
5226 arm_relobj->exidx_input_section_by_link(this->shndx_);
5227 gold_assert(exidx_input_section != NULL);
5228 section_size =
5229 convert_to_section_size_type(exidx_input_section->text_size());
5230 }
5231 else
5232 {
5233 // Currently this only happens for a relaxed section.
5234 const Output_relaxed_input_section* poris =
5235 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5236 gold_assert(poris != NULL);
5237 section_start = poris->address();
5238 section_size = convert_to_section_size_type(poris->data_size());
5239 }
5240
5241 // We always append this to the end of an EXIDX section.
5242 Arm_address output_address = section_start + section_size;
5243
5244 // Write out the entry. The first word either points to the beginning
5245 // or after the end of a text section. The second word is the special
5246 // EXIDX_CANTUNWIND value.
5247 uint32_t prel31_offset = output_address - this->address();
5248 if (Bits<31>::has_overflow32(offset))
5249 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5250 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5251 prel31_offset & 0x7fffffffU);
5252 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5253 elfcpp::EXIDX_CANTUNWIND);
5254
5255 of->write_output_view(this->offset(), oview_size, oview);
5256 }
5257
5258 // Arm_exidx_merged_section methods.
5259
5260 // Constructor for Arm_exidx_merged_section.
5261 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5262 // SECTION_OFFSET_MAP points to a section offset map describing how
5263 // parts of the input section are mapped to output. DELETED_BYTES is
5264 // the number of bytes deleted from the EXIDX input section.
5265
5266 Arm_exidx_merged_section::Arm_exidx_merged_section(
5267 const Arm_exidx_input_section& exidx_input_section,
5268 const Arm_exidx_section_offset_map& section_offset_map,
5269 uint32_t deleted_bytes)
5270 : Output_relaxed_input_section(exidx_input_section.relobj(),
5271 exidx_input_section.shndx(),
5272 exidx_input_section.addralign()),
5273 exidx_input_section_(exidx_input_section),
5274 section_offset_map_(section_offset_map)
5275 {
5276 // If we retain or discard the whole EXIDX input section, we would
5277 // not be here.
5278 gold_assert(deleted_bytes != 0
5279 && deleted_bytes != this->exidx_input_section_.size());
5280
5281 // Fix size here so that we do not need to implement set_final_data_size.
5282 uint32_t size = exidx_input_section.size() - deleted_bytes;
5283 this->set_data_size(size);
5284 this->fix_data_size();
5285
5286 // Allocate buffer for section contents and build contents.
5287 this->section_contents_ = new unsigned char[size];
5288 }
5289
5290 // Build the contents of a merged EXIDX output section.
5291
5292 void
5293 Arm_exidx_merged_section::build_contents(
5294 const unsigned char* original_contents,
5295 section_size_type original_size)
5296 {
5297 // Go over spans of input offsets and write only those that are not
5298 // discarded.
5299 section_offset_type in_start = 0;
5300 section_offset_type out_start = 0;
5301 section_offset_type in_max =
5302 convert_types<section_offset_type>(original_size);
5303 section_offset_type out_max =
5304 convert_types<section_offset_type>(this->data_size());
5305 for (Arm_exidx_section_offset_map::const_iterator p =
5306 this->section_offset_map_.begin();
5307 p != this->section_offset_map_.end();
5308 ++p)
5309 {
5310 section_offset_type in_end = p->first;
5311 gold_assert(in_end >= in_start);
5312 section_offset_type out_end = p->second;
5313 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5314 if (out_end != -1)
5315 {
5316 size_t out_chunk_size =
5317 convert_types<size_t>(out_end - out_start + 1);
5318
5319 gold_assert(out_chunk_size == in_chunk_size
5320 && in_end < in_max && out_end < out_max);
5321
5322 memcpy(this->section_contents_ + out_start,
5323 original_contents + in_start,
5324 out_chunk_size);
5325 out_start += out_chunk_size;
5326 }
5327 in_start += in_chunk_size;
5328 }
5329 }
5330
5331 // Given an input OBJECT, an input section index SHNDX within that
5332 // object, and an OFFSET relative to the start of that input
5333 // section, return whether or not the corresponding offset within
5334 // the output section is known. If this function returns true, it
5335 // sets *POUTPUT to the output offset. The value -1 indicates that
5336 // this input offset is being discarded.
5337
5338 bool
5339 Arm_exidx_merged_section::do_output_offset(
5340 const Relobj* relobj,
5341 unsigned int shndx,
5342 section_offset_type offset,
5343 section_offset_type* poutput) const
5344 {
5345 // We only handle offsets for the original EXIDX input section.
5346 if (relobj != this->exidx_input_section_.relobj()
5347 || shndx != this->exidx_input_section_.shndx())
5348 return false;
5349
5350 section_offset_type section_size =
5351 convert_types<section_offset_type>(this->exidx_input_section_.size());
5352 if (offset < 0 || offset >= section_size)
5353 // Input offset is out of valid range.
5354 *poutput = -1;
5355 else
5356 {
5357 // We need to look up the section offset map to determine the output
5358 // offset. Find the reference point in map that is first offset
5359 // bigger than or equal to this offset.
5360 Arm_exidx_section_offset_map::const_iterator p =
5361 this->section_offset_map_.lower_bound(offset);
5362
5363 // The section offset maps are build such that this should not happen if
5364 // input offset is in the valid range.
5365 gold_assert(p != this->section_offset_map_.end());
5366
5367 // We need to check if this is dropped.
5368 section_offset_type ref = p->first;
5369 section_offset_type mapped_ref = p->second;
5370
5371 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5372 // Offset is present in output.
5373 *poutput = mapped_ref + (offset - ref);
5374 else
5375 // Offset is discarded owing to EXIDX entry merging.
5376 *poutput = -1;
5377 }
5378
5379 return true;
5380 }
5381
5382 // Write this to output file OF.
5383
5384 void
5385 Arm_exidx_merged_section::do_write(Output_file* of)
5386 {
5387 off_t offset = this->offset();
5388 const section_size_type oview_size = this->data_size();
5389 unsigned char* const oview = of->get_output_view(offset, oview_size);
5390
5391 Output_section* os = this->relobj()->output_section(this->shndx());
5392 gold_assert(os != NULL);
5393
5394 memcpy(oview, this->section_contents_, oview_size);
5395 of->write_output_view(this->offset(), oview_size, oview);
5396 }
5397
5398 // Arm_exidx_fixup methods.
5399
5400 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5401 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5402 // points to the end of the last seen EXIDX section.
5403
5404 void
5405 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5406 {
5407 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5408 && this->last_input_section_ != NULL)
5409 {
5410 Relobj* relobj = this->last_input_section_->relobj();
5411 unsigned int text_shndx = this->last_input_section_->link();
5412 Arm_exidx_cantunwind* cantunwind =
5413 new Arm_exidx_cantunwind(relobj, text_shndx);
5414 this->exidx_output_section_->add_output_section_data(cantunwind);
5415 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5416 }
5417 }
5418
5419 // Process an EXIDX section entry in input. Return whether this entry
5420 // can be deleted in the output. SECOND_WORD in the second word of the
5421 // EXIDX entry.
5422
5423 bool
5424 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5425 {
5426 bool delete_entry;
5427 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5428 {
5429 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5430 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5431 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5432 }
5433 else if ((second_word & 0x80000000) != 0)
5434 {
5435 // Inlined unwinding data. Merge if equal to previous.
5436 delete_entry = (merge_exidx_entries_
5437 && this->last_unwind_type_ == UT_INLINED_ENTRY
5438 && this->last_inlined_entry_ == second_word);
5439 this->last_unwind_type_ = UT_INLINED_ENTRY;
5440 this->last_inlined_entry_ = second_word;
5441 }
5442 else
5443 {
5444 // Normal table entry. In theory we could merge these too,
5445 // but duplicate entries are likely to be much less common.
5446 delete_entry = false;
5447 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5448 }
5449 return delete_entry;
5450 }
5451
5452 // Update the current section offset map during EXIDX section fix-up.
5453 // If there is no map, create one. INPUT_OFFSET is the offset of a
5454 // reference point, DELETED_BYTES is the number of deleted by in the
5455 // section so far. If DELETE_ENTRY is true, the reference point and
5456 // all offsets after the previous reference point are discarded.
5457
5458 void
5459 Arm_exidx_fixup::update_offset_map(
5460 section_offset_type input_offset,
5461 section_size_type deleted_bytes,
5462 bool delete_entry)
5463 {
5464 if (this->section_offset_map_ == NULL)
5465 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5466 section_offset_type output_offset;
5467 if (delete_entry)
5468 output_offset = Arm_exidx_input_section::invalid_offset;
5469 else
5470 output_offset = input_offset - deleted_bytes;
5471 (*this->section_offset_map_)[input_offset] = output_offset;
5472 }
5473
5474 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5475 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5476 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5477 // If some entries are merged, also store a pointer to a newly created
5478 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5479 // owns the map and is responsible for releasing it after use.
5480
5481 template<bool big_endian>
5482 uint32_t
5483 Arm_exidx_fixup::process_exidx_section(
5484 const Arm_exidx_input_section* exidx_input_section,
5485 const unsigned char* section_contents,
5486 section_size_type section_size,
5487 Arm_exidx_section_offset_map** psection_offset_map)
5488 {
5489 Relobj* relobj = exidx_input_section->relobj();
5490 unsigned shndx = exidx_input_section->shndx();
5491
5492 if ((section_size % 8) != 0)
5493 {
5494 // Something is wrong with this section. Better not touch it.
5495 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5496 relobj->name().c_str(), shndx);
5497 this->last_input_section_ = exidx_input_section;
5498 this->last_unwind_type_ = UT_NONE;
5499 return 0;
5500 }
5501
5502 uint32_t deleted_bytes = 0;
5503 bool prev_delete_entry = false;
5504 gold_assert(this->section_offset_map_ == NULL);
5505
5506 for (section_size_type i = 0; i < section_size; i += 8)
5507 {
5508 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5509 const Valtype* wv =
5510 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5511 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5512
5513 bool delete_entry = this->process_exidx_entry(second_word);
5514
5515 // Entry deletion causes changes in output offsets. We use a std::map
5516 // to record these. And entry (x, y) means input offset x
5517 // is mapped to output offset y. If y is invalid_offset, then x is
5518 // dropped in the output. Because of the way std::map::lower_bound
5519 // works, we record the last offset in a region w.r.t to keeping or
5520 // dropping. If there is no entry (x0, y0) for an input offset x0,
5521 // the output offset y0 of it is determined by the output offset y1 of
5522 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5523 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5524 // y0 is also -1.
5525 if (delete_entry != prev_delete_entry && i != 0)
5526 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5527
5528 // Update total deleted bytes for this entry.
5529 if (delete_entry)
5530 deleted_bytes += 8;
5531
5532 prev_delete_entry = delete_entry;
5533 }
5534
5535 // If section offset map is not NULL, make an entry for the end of
5536 // section.
5537 if (this->section_offset_map_ != NULL)
5538 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5539
5540 *psection_offset_map = this->section_offset_map_;
5541 this->section_offset_map_ = NULL;
5542 this->last_input_section_ = exidx_input_section;
5543
5544 // Set the first output text section so that we can link the EXIDX output
5545 // section to it. Ignore any EXIDX input section that is completely merged.
5546 if (this->first_output_text_section_ == NULL
5547 && deleted_bytes != section_size)
5548 {
5549 unsigned int link = exidx_input_section->link();
5550 Output_section* os = relobj->output_section(link);
5551 gold_assert(os != NULL);
5552 this->first_output_text_section_ = os;
5553 }
5554
5555 return deleted_bytes;
5556 }
5557
5558 // Arm_output_section methods.
5559
5560 // Create a stub group for input sections from BEGIN to END. OWNER
5561 // points to the input section to be the owner a new stub table.
5562
5563 template<bool big_endian>
5564 void
5565 Arm_output_section<big_endian>::create_stub_group(
5566 Input_section_list::const_iterator begin,
5567 Input_section_list::const_iterator end,
5568 Input_section_list::const_iterator owner,
5569 Target_arm<big_endian>* target,
5570 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5571 const Task* task)
5572 {
5573 // We use a different kind of relaxed section in an EXIDX section.
5574 // The static casting from Output_relaxed_input_section to
5575 // Arm_input_section is invalid in an EXIDX section. We are okay
5576 // because we should not be calling this for an EXIDX section.
5577 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5578
5579 // Currently we convert ordinary input sections into relaxed sections only
5580 // at this point but we may want to support creating relaxed input section
5581 // very early. So we check here to see if owner is already a relaxed
5582 // section.
5583
5584 Arm_input_section<big_endian>* arm_input_section;
5585 if (owner->is_relaxed_input_section())
5586 {
5587 arm_input_section =
5588 Arm_input_section<big_endian>::as_arm_input_section(
5589 owner->relaxed_input_section());
5590 }
5591 else
5592 {
5593 gold_assert(owner->is_input_section());
5594 // Create a new relaxed input section. We need to lock the original
5595 // file.
5596 Task_lock_obj<Object> tl(task, owner->relobj());
5597 arm_input_section =
5598 target->new_arm_input_section(owner->relobj(), owner->shndx());
5599 new_relaxed_sections->push_back(arm_input_section);
5600 }
5601
5602 // Create a stub table.
5603 Stub_table<big_endian>* stub_table =
5604 target->new_stub_table(arm_input_section);
5605
5606 arm_input_section->set_stub_table(stub_table);
5607
5608 Input_section_list::const_iterator p = begin;
5609 Input_section_list::const_iterator prev_p;
5610
5611 // Look for input sections or relaxed input sections in [begin ... end].
5612 do
5613 {
5614 if (p->is_input_section() || p->is_relaxed_input_section())
5615 {
5616 // The stub table information for input sections live
5617 // in their objects.
5618 Arm_relobj<big_endian>* arm_relobj =
5619 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5620 arm_relobj->set_stub_table(p->shndx(), stub_table);
5621 }
5622 prev_p = p++;
5623 }
5624 while (prev_p != end);
5625 }
5626
5627 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5628 // of stub groups. We grow a stub group by adding input section until the
5629 // size is just below GROUP_SIZE. The last input section will be converted
5630 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5631 // input section after the stub table, effectively double the group size.
5632 //
5633 // This is similar to the group_sections() function in elf32-arm.c but is
5634 // implemented differently.
5635
5636 template<bool big_endian>
5637 void
5638 Arm_output_section<big_endian>::group_sections(
5639 section_size_type group_size,
5640 bool stubs_always_after_branch,
5641 Target_arm<big_endian>* target,
5642 const Task* task)
5643 {
5644 // We only care about sections containing code.
5645 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5646 return;
5647
5648 // States for grouping.
5649 typedef enum
5650 {
5651 // No group is being built.
5652 NO_GROUP,
5653 // A group is being built but the stub table is not found yet.
5654 // We keep group a stub group until the size is just under GROUP_SIZE.
5655 // The last input section in the group will be used as the stub table.
5656 FINDING_STUB_SECTION,
5657 // A group is being built and we have already found a stub table.
5658 // We enter this state to grow a stub group by adding input section
5659 // after the stub table. This effectively doubles the group size.
5660 HAS_STUB_SECTION
5661 } State;
5662
5663 // Any newly created relaxed sections are stored here.
5664 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5665
5666 State state = NO_GROUP;
5667 section_size_type off = 0;
5668 section_size_type group_begin_offset = 0;
5669 section_size_type group_end_offset = 0;
5670 section_size_type stub_table_end_offset = 0;
5671 Input_section_list::const_iterator group_begin =
5672 this->input_sections().end();
5673 Input_section_list::const_iterator stub_table =
5674 this->input_sections().end();
5675 Input_section_list::const_iterator group_end = this->input_sections().end();
5676 for (Input_section_list::const_iterator p = this->input_sections().begin();
5677 p != this->input_sections().end();
5678 ++p)
5679 {
5680 section_size_type section_begin_offset =
5681 align_address(off, p->addralign());
5682 section_size_type section_end_offset =
5683 section_begin_offset + p->data_size();
5684
5685 // Check to see if we should group the previously seen sections.
5686 switch (state)
5687 {
5688 case NO_GROUP:
5689 break;
5690
5691 case FINDING_STUB_SECTION:
5692 // Adding this section makes the group larger than GROUP_SIZE.
5693 if (section_end_offset - group_begin_offset >= group_size)
5694 {
5695 if (stubs_always_after_branch)
5696 {
5697 gold_assert(group_end != this->input_sections().end());
5698 this->create_stub_group(group_begin, group_end, group_end,
5699 target, &new_relaxed_sections,
5700 task);
5701 state = NO_GROUP;
5702 }
5703 else
5704 {
5705 // But wait, there's more! Input sections up to
5706 // stub_group_size bytes after the stub table can be
5707 // handled by it too.
5708 state = HAS_STUB_SECTION;
5709 stub_table = group_end;
5710 stub_table_end_offset = group_end_offset;
5711 }
5712 }
5713 break;
5714
5715 case HAS_STUB_SECTION:
5716 // Adding this section makes the post stub-section group larger
5717 // than GROUP_SIZE.
5718 if (section_end_offset - stub_table_end_offset >= group_size)
5719 {
5720 gold_assert(group_end != this->input_sections().end());
5721 this->create_stub_group(group_begin, group_end, stub_table,
5722 target, &new_relaxed_sections, task);
5723 state = NO_GROUP;
5724 }
5725 break;
5726
5727 default:
5728 gold_unreachable();
5729 }
5730
5731 // If we see an input section and currently there is no group, start
5732 // a new one. Skip any empty sections. We look at the data size
5733 // instead of calling p->relobj()->section_size() to avoid locking.
5734 if ((p->is_input_section() || p->is_relaxed_input_section())
5735 && (p->data_size() != 0))
5736 {
5737 if (state == NO_GROUP)
5738 {
5739 state = FINDING_STUB_SECTION;
5740 group_begin = p;
5741 group_begin_offset = section_begin_offset;
5742 }
5743
5744 // Keep track of the last input section seen.
5745 group_end = p;
5746 group_end_offset = section_end_offset;
5747 }
5748
5749 off = section_end_offset;
5750 }
5751
5752 // Create a stub group for any ungrouped sections.
5753 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5754 {
5755 gold_assert(group_end != this->input_sections().end());
5756 this->create_stub_group(group_begin, group_end,
5757 (state == FINDING_STUB_SECTION
5758 ? group_end
5759 : stub_table),
5760 target, &new_relaxed_sections, task);
5761 }
5762
5763 // Convert input section into relaxed input section in a batch.
5764 if (!new_relaxed_sections.empty())
5765 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5766
5767 // Update the section offsets
5768 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5769 {
5770 Arm_relobj<big_endian>* arm_relobj =
5771 Arm_relobj<big_endian>::as_arm_relobj(
5772 new_relaxed_sections[i]->relobj());
5773 unsigned int shndx = new_relaxed_sections[i]->shndx();
5774 // Tell Arm_relobj that this input section is converted.
5775 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5776 }
5777 }
5778
5779 // Append non empty text sections in this to LIST in ascending
5780 // order of their position in this.
5781
5782 template<bool big_endian>
5783 void
5784 Arm_output_section<big_endian>::append_text_sections_to_list(
5785 Text_section_list* list)
5786 {
5787 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5788
5789 for (Input_section_list::const_iterator p = this->input_sections().begin();
5790 p != this->input_sections().end();
5791 ++p)
5792 {
5793 // We only care about plain or relaxed input sections. We also
5794 // ignore any merged sections.
5795 if (p->is_input_section() || p->is_relaxed_input_section())
5796 list->push_back(Text_section_list::value_type(p->relobj(),
5797 p->shndx()));
5798 }
5799 }
5800
5801 template<bool big_endian>
5802 void
5803 Arm_output_section<big_endian>::fix_exidx_coverage(
5804 Layout* layout,
5805 const Text_section_list& sorted_text_sections,
5806 Symbol_table* symtab,
5807 bool merge_exidx_entries,
5808 const Task* task)
5809 {
5810 // We should only do this for the EXIDX output section.
5811 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5812
5813 // We don't want the relaxation loop to undo these changes, so we discard
5814 // the current saved states and take another one after the fix-up.
5815 this->discard_states();
5816
5817 // Remove all input sections.
5818 uint64_t address = this->address();
5819 typedef std::list<Output_section::Input_section> Input_section_list;
5820 Input_section_list input_sections;
5821 this->reset_address_and_file_offset();
5822 this->get_input_sections(address, std::string(""), &input_sections);
5823
5824 if (!this->input_sections().empty())
5825 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5826
5827 // Go through all the known input sections and record them.
5828 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5829 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5830 Section_id_hash> Text_to_exidx_map;
5831 Text_to_exidx_map text_to_exidx_map;
5832 for (Input_section_list::const_iterator p = input_sections.begin();
5833 p != input_sections.end();
5834 ++p)
5835 {
5836 // This should never happen. At this point, we should only see
5837 // plain EXIDX input sections.
5838 gold_assert(!p->is_relaxed_input_section());
5839 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5840 }
5841
5842 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5843
5844 // Go over the sorted text sections.
5845 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5846 Section_id_set processed_input_sections;
5847 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5848 p != sorted_text_sections.end();
5849 ++p)
5850 {
5851 Relobj* relobj = p->first;
5852 unsigned int shndx = p->second;
5853
5854 Arm_relobj<big_endian>* arm_relobj =
5855 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5856 const Arm_exidx_input_section* exidx_input_section =
5857 arm_relobj->exidx_input_section_by_link(shndx);
5858
5859 // If this text section has no EXIDX section or if the EXIDX section
5860 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5861 // of the last seen EXIDX section.
5862 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5863 {
5864 exidx_fixup.add_exidx_cantunwind_as_needed();
5865 continue;
5866 }
5867
5868 Relobj* exidx_relobj = exidx_input_section->relobj();
5869 unsigned int exidx_shndx = exidx_input_section->shndx();
5870 Section_id sid(exidx_relobj, exidx_shndx);
5871 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5872 if (iter == text_to_exidx_map.end())
5873 {
5874 // This is odd. We have not seen this EXIDX input section before.
5875 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5876 // issue a warning instead. We assume the user knows what he
5877 // or she is doing. Otherwise, this is an error.
5878 if (layout->script_options()->saw_sections_clause())
5879 gold_warning(_("unwinding may not work because EXIDX input section"
5880 " %u of %s is not in EXIDX output section"),
5881 exidx_shndx, exidx_relobj->name().c_str());
5882 else
5883 gold_error(_("unwinding may not work because EXIDX input section"
5884 " %u of %s is not in EXIDX output section"),
5885 exidx_shndx, exidx_relobj->name().c_str());
5886
5887 exidx_fixup.add_exidx_cantunwind_as_needed();
5888 continue;
5889 }
5890
5891 // We need to access the contents of the EXIDX section, lock the
5892 // object here.
5893 Task_lock_obj<Object> tl(task, exidx_relobj);
5894 section_size_type exidx_size;
5895 const unsigned char* exidx_contents =
5896 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5897
5898 // Fix up coverage and append input section to output data list.
5899 Arm_exidx_section_offset_map* section_offset_map = NULL;
5900 uint32_t deleted_bytes =
5901 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5902 exidx_contents,
5903 exidx_size,
5904 &section_offset_map);
5905
5906 if (deleted_bytes == exidx_input_section->size())
5907 {
5908 // The whole EXIDX section got merged. Remove it from output.
5909 gold_assert(section_offset_map == NULL);
5910 exidx_relobj->set_output_section(exidx_shndx, NULL);
5911
5912 // All local symbols defined in this input section will be dropped.
5913 // We need to adjust output local symbol count.
5914 arm_relobj->set_output_local_symbol_count_needs_update();
5915 }
5916 else if (deleted_bytes > 0)
5917 {
5918 // Some entries are merged. We need to convert this EXIDX input
5919 // section into a relaxed section.
5920 gold_assert(section_offset_map != NULL);
5921
5922 Arm_exidx_merged_section* merged_section =
5923 new Arm_exidx_merged_section(*exidx_input_section,
5924 *section_offset_map, deleted_bytes);
5925 merged_section->build_contents(exidx_contents, exidx_size);
5926
5927 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5928 this->add_relaxed_input_section(layout, merged_section, secname);
5929 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5930
5931 // All local symbols defined in discarded portions of this input
5932 // section will be dropped. We need to adjust output local symbol
5933 // count.
5934 arm_relobj->set_output_local_symbol_count_needs_update();
5935 }
5936 else
5937 {
5938 // Just add back the EXIDX input section.
5939 gold_assert(section_offset_map == NULL);
5940 const Output_section::Input_section* pis = iter->second;
5941 gold_assert(pis->is_input_section());
5942 this->add_script_input_section(*pis);
5943 }
5944
5945 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5946 }
5947
5948 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5949 exidx_fixup.add_exidx_cantunwind_as_needed();
5950
5951 // Remove any known EXIDX input sections that are not processed.
5952 for (Input_section_list::const_iterator p = input_sections.begin();
5953 p != input_sections.end();
5954 ++p)
5955 {
5956 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5957 == processed_input_sections.end())
5958 {
5959 // We discard a known EXIDX section because its linked
5960 // text section has been folded by ICF. We also discard an
5961 // EXIDX section with error, the output does not matter in this
5962 // case. We do this to avoid triggering asserts.
5963 Arm_relobj<big_endian>* arm_relobj =
5964 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5965 const Arm_exidx_input_section* exidx_input_section =
5966 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5967 gold_assert(exidx_input_section != NULL);
5968 if (!exidx_input_section->has_errors())
5969 {
5970 unsigned int text_shndx = exidx_input_section->link();
5971 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5972 }
5973
5974 // Remove this from link. We also need to recount the
5975 // local symbols.
5976 p->relobj()->set_output_section(p->shndx(), NULL);
5977 arm_relobj->set_output_local_symbol_count_needs_update();
5978 }
5979 }
5980
5981 // Link exidx output section to the first seen output section and
5982 // set correct entry size.
5983 this->set_link_section(exidx_fixup.first_output_text_section());
5984 this->set_entsize(8);
5985
5986 // Make changes permanent.
5987 this->save_states();
5988 this->set_section_offsets_need_adjustment();
5989 }
5990
5991 // Link EXIDX output sections to text output sections.
5992
5993 template<bool big_endian>
5994 void
5995 Arm_output_section<big_endian>::set_exidx_section_link()
5996 {
5997 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5998 if (!this->input_sections().empty())
5999 {
6000 Input_section_list::const_iterator p = this->input_sections().begin();
6001 Arm_relobj<big_endian>* arm_relobj =
6002 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6003 unsigned exidx_shndx = p->shndx();
6004 const Arm_exidx_input_section* exidx_input_section =
6005 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6006 gold_assert(exidx_input_section != NULL);
6007 unsigned int text_shndx = exidx_input_section->link();
6008 Output_section* os = arm_relobj->output_section(text_shndx);
6009 this->set_link_section(os);
6010 }
6011 }
6012
6013 // Arm_relobj methods.
6014
6015 // Determine if an input section is scannable for stub processing. SHDR is
6016 // the header of the section and SHNDX is the section index. OS is the output
6017 // section for the input section and SYMTAB is the global symbol table used to
6018 // look up ICF information.
6019
6020 template<bool big_endian>
6021 bool
6022 Arm_relobj<big_endian>::section_is_scannable(
6023 const elfcpp::Shdr<32, big_endian>& shdr,
6024 unsigned int shndx,
6025 const Output_section* os,
6026 const Symbol_table* symtab)
6027 {
6028 // Skip any empty sections, unallocated sections or sections whose
6029 // type are not SHT_PROGBITS.
6030 if (shdr.get_sh_size() == 0
6031 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6032 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6033 return false;
6034
6035 // Skip any discarded or ICF'ed sections.
6036 if (os == NULL || symtab->is_section_folded(this, shndx))
6037 return false;
6038
6039 // If this requires special offset handling, check to see if it is
6040 // a relaxed section. If this is not, then it is a merged section that
6041 // we cannot handle.
6042 if (this->is_output_section_offset_invalid(shndx))
6043 {
6044 const Output_relaxed_input_section* poris =
6045 os->find_relaxed_input_section(this, shndx);
6046 if (poris == NULL)
6047 return false;
6048 }
6049
6050 return true;
6051 }
6052
6053 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6054 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6055
6056 template<bool big_endian>
6057 bool
6058 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6059 const elfcpp::Shdr<32, big_endian>& shdr,
6060 const Relobj::Output_sections& out_sections,
6061 const Symbol_table* symtab,
6062 const unsigned char* pshdrs)
6063 {
6064 unsigned int sh_type = shdr.get_sh_type();
6065 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6066 return false;
6067
6068 // Ignore empty section.
6069 off_t sh_size = shdr.get_sh_size();
6070 if (sh_size == 0)
6071 return false;
6072
6073 // Ignore reloc section with unexpected symbol table. The
6074 // error will be reported in the final link.
6075 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6076 return false;
6077
6078 unsigned int reloc_size;
6079 if (sh_type == elfcpp::SHT_REL)
6080 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6081 else
6082 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6083
6084 // Ignore reloc section with unexpected entsize or uneven size.
6085 // The error will be reported in the final link.
6086 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6087 return false;
6088
6089 // Ignore reloc section with bad info. This error will be
6090 // reported in the final link.
6091 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6092 if (index >= this->shnum())
6093 return false;
6094
6095 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6096 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6097 return this->section_is_scannable(text_shdr, index,
6098 out_sections[index], symtab);
6099 }
6100
6101 // Return the output address of either a plain input section or a relaxed
6102 // input section. SHNDX is the section index. We define and use this
6103 // instead of calling Output_section::output_address because that is slow
6104 // for large output.
6105
6106 template<bool big_endian>
6107 Arm_address
6108 Arm_relobj<big_endian>::simple_input_section_output_address(
6109 unsigned int shndx,
6110 Output_section* os)
6111 {
6112 if (this->is_output_section_offset_invalid(shndx))
6113 {
6114 const Output_relaxed_input_section* poris =
6115 os->find_relaxed_input_section(this, shndx);
6116 // We do not handle merged sections here.
6117 gold_assert(poris != NULL);
6118 return poris->address();
6119 }
6120 else
6121 return os->address() + this->get_output_section_offset(shndx);
6122 }
6123
6124 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6125 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6126
6127 template<bool big_endian>
6128 bool
6129 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6130 const elfcpp::Shdr<32, big_endian>& shdr,
6131 unsigned int shndx,
6132 Output_section* os,
6133 const Symbol_table* symtab)
6134 {
6135 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6136 return false;
6137
6138 // If the section does not cross any 4K-boundaries, it does not need to
6139 // be scanned.
6140 Arm_address address = this->simple_input_section_output_address(shndx, os);
6141 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6142 return false;
6143
6144 return true;
6145 }
6146
6147 // Scan a section for Cortex-A8 workaround.
6148
6149 template<bool big_endian>
6150 void
6151 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6152 const elfcpp::Shdr<32, big_endian>& shdr,
6153 unsigned int shndx,
6154 Output_section* os,
6155 Target_arm<big_endian>* arm_target)
6156 {
6157 // Look for the first mapping symbol in this section. It should be
6158 // at (shndx, 0).
6159 Mapping_symbol_position section_start(shndx, 0);
6160 typename Mapping_symbols_info::const_iterator p =
6161 this->mapping_symbols_info_.lower_bound(section_start);
6162
6163 // There are no mapping symbols for this section. Treat it as a data-only
6164 // section. Issue a warning if section is marked as containing
6165 // instructions.
6166 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6167 {
6168 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6169 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6170 "erratum because it has no mapping symbols."),
6171 shndx, this->name().c_str());
6172 return;
6173 }
6174
6175 Arm_address output_address =
6176 this->simple_input_section_output_address(shndx, os);
6177
6178 // Get the section contents.
6179 section_size_type input_view_size = 0;
6180 const unsigned char* input_view =
6181 this->section_contents(shndx, &input_view_size, false);
6182
6183 // We need to go through the mapping symbols to determine what to
6184 // scan. There are two reasons. First, we should look at THUMB code and
6185 // THUMB code only. Second, we only want to look at the 4K-page boundary
6186 // to speed up the scanning.
6187
6188 while (p != this->mapping_symbols_info_.end()
6189 && p->first.first == shndx)
6190 {
6191 typename Mapping_symbols_info::const_iterator next =
6192 this->mapping_symbols_info_.upper_bound(p->first);
6193
6194 // Only scan part of a section with THUMB code.
6195 if (p->second == 't')
6196 {
6197 // Determine the end of this range.
6198 section_size_type span_start =
6199 convert_to_section_size_type(p->first.second);
6200 section_size_type span_end;
6201 if (next != this->mapping_symbols_info_.end()
6202 && next->first.first == shndx)
6203 span_end = convert_to_section_size_type(next->first.second);
6204 else
6205 span_end = convert_to_section_size_type(shdr.get_sh_size());
6206
6207 if (((span_start + output_address) & ~0xfffUL)
6208 != ((span_end + output_address - 1) & ~0xfffUL))
6209 {
6210 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6211 span_start, span_end,
6212 input_view,
6213 output_address);
6214 }
6215 }
6216
6217 p = next;
6218 }
6219 }
6220
6221 // Scan relocations for stub generation.
6222
6223 template<bool big_endian>
6224 void
6225 Arm_relobj<big_endian>::scan_sections_for_stubs(
6226 Target_arm<big_endian>* arm_target,
6227 const Symbol_table* symtab,
6228 const Layout* layout)
6229 {
6230 unsigned int shnum = this->shnum();
6231 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6232
6233 // Read the section headers.
6234 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6235 shnum * shdr_size,
6236 true, true);
6237
6238 // To speed up processing, we set up hash tables for fast lookup of
6239 // input offsets to output addresses.
6240 this->initialize_input_to_output_maps();
6241
6242 const Relobj::Output_sections& out_sections(this->output_sections());
6243
6244 Relocate_info<32, big_endian> relinfo;
6245 relinfo.symtab = symtab;
6246 relinfo.layout = layout;
6247 relinfo.object = this;
6248
6249 // Do relocation stubs scanning.
6250 const unsigned char* p = pshdrs + shdr_size;
6251 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6252 {
6253 const elfcpp::Shdr<32, big_endian> shdr(p);
6254 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6255 pshdrs))
6256 {
6257 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6258 Arm_address output_offset = this->get_output_section_offset(index);
6259 Arm_address output_address;
6260 if (output_offset != invalid_address)
6261 output_address = out_sections[index]->address() + output_offset;
6262 else
6263 {
6264 // Currently this only happens for a relaxed section.
6265 const Output_relaxed_input_section* poris =
6266 out_sections[index]->find_relaxed_input_section(this, index);
6267 gold_assert(poris != NULL);
6268 output_address = poris->address();
6269 }
6270
6271 // Get the relocations.
6272 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6273 shdr.get_sh_size(),
6274 true, false);
6275
6276 // Get the section contents. This does work for the case in which
6277 // we modify the contents of an input section. We need to pass the
6278 // output view under such circumstances.
6279 section_size_type input_view_size = 0;
6280 const unsigned char* input_view =
6281 this->section_contents(index, &input_view_size, false);
6282
6283 relinfo.reloc_shndx = i;
6284 relinfo.data_shndx = index;
6285 unsigned int sh_type = shdr.get_sh_type();
6286 unsigned int reloc_size;
6287 if (sh_type == elfcpp::SHT_REL)
6288 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6289 else
6290 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6291
6292 Output_section* os = out_sections[index];
6293 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6294 shdr.get_sh_size() / reloc_size,
6295 os,
6296 output_offset == invalid_address,
6297 input_view, output_address,
6298 input_view_size);
6299 }
6300 }
6301
6302 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6303 // after its relocation section, if there is one, is processed for
6304 // relocation stubs. Merging this loop with the one above would have been
6305 // complicated since we would have had to make sure that relocation stub
6306 // scanning is done first.
6307 if (arm_target->fix_cortex_a8())
6308 {
6309 const unsigned char* p = pshdrs + shdr_size;
6310 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6311 {
6312 const elfcpp::Shdr<32, big_endian> shdr(p);
6313 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6314 out_sections[i],
6315 symtab))
6316 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6317 arm_target);
6318 }
6319 }
6320
6321 // After we've done the relocations, we release the hash tables,
6322 // since we no longer need them.
6323 this->free_input_to_output_maps();
6324 }
6325
6326 // Count the local symbols. The ARM backend needs to know if a symbol
6327 // is a THUMB function or not. For global symbols, it is easy because
6328 // the Symbol object keeps the ELF symbol type. For local symbol it is
6329 // harder because we cannot access this information. So we override the
6330 // do_count_local_symbol in parent and scan local symbols to mark
6331 // THUMB functions. This is not the most efficient way but I do not want to
6332 // slow down other ports by calling a per symbol target hook inside
6333 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6334
6335 template<bool big_endian>
6336 void
6337 Arm_relobj<big_endian>::do_count_local_symbols(
6338 Stringpool_template<char>* pool,
6339 Stringpool_template<char>* dynpool)
6340 {
6341 // We need to fix-up the values of any local symbols whose type are
6342 // STT_ARM_TFUNC.
6343
6344 // Ask parent to count the local symbols.
6345 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6346 const unsigned int loccount = this->local_symbol_count();
6347 if (loccount == 0)
6348 return;
6349
6350 // Initialize the thumb function bit-vector.
6351 std::vector<bool> empty_vector(loccount, false);
6352 this->local_symbol_is_thumb_function_.swap(empty_vector);
6353
6354 // Read the symbol table section header.
6355 const unsigned int symtab_shndx = this->symtab_shndx();
6356 elfcpp::Shdr<32, big_endian>
6357 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6358 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6359
6360 // Read the local symbols.
6361 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6362 gold_assert(loccount == symtabshdr.get_sh_info());
6363 off_t locsize = loccount * sym_size;
6364 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6365 locsize, true, true);
6366
6367 // For mapping symbol processing, we need to read the symbol names.
6368 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6369 if (strtab_shndx >= this->shnum())
6370 {
6371 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6372 return;
6373 }
6374
6375 elfcpp::Shdr<32, big_endian>
6376 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6377 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6378 {
6379 this->error(_("symbol table name section has wrong type: %u"),
6380 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6381 return;
6382 }
6383 const char* pnames =
6384 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6385 strtabshdr.get_sh_size(),
6386 false, false));
6387
6388 // Loop over the local symbols and mark any local symbols pointing
6389 // to THUMB functions.
6390
6391 // Skip the first dummy symbol.
6392 psyms += sym_size;
6393 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6394 this->local_values();
6395 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6396 {
6397 elfcpp::Sym<32, big_endian> sym(psyms);
6398 elfcpp::STT st_type = sym.get_st_type();
6399 Symbol_value<32>& lv((*plocal_values)[i]);
6400 Arm_address input_value = lv.input_value();
6401
6402 // Check to see if this is a mapping symbol.
6403 const char* sym_name = pnames + sym.get_st_name();
6404 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6405 {
6406 bool is_ordinary;
6407 unsigned int input_shndx =
6408 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6409 gold_assert(is_ordinary);
6410
6411 // Strip of LSB in case this is a THUMB symbol.
6412 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6413 this->mapping_symbols_info_[msp] = sym_name[1];
6414 }
6415
6416 if (st_type == elfcpp::STT_ARM_TFUNC
6417 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6418 {
6419 // This is a THUMB function. Mark this and canonicalize the
6420 // symbol value by setting LSB.
6421 this->local_symbol_is_thumb_function_[i] = true;
6422 if ((input_value & 1) == 0)
6423 lv.set_input_value(input_value | 1);
6424 }
6425 }
6426 }
6427
6428 // Relocate sections.
6429 template<bool big_endian>
6430 void
6431 Arm_relobj<big_endian>::do_relocate_sections(
6432 const Symbol_table* symtab,
6433 const Layout* layout,
6434 const unsigned char* pshdrs,
6435 Output_file* of,
6436 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6437 {
6438 // Call parent to relocate sections.
6439 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6440 pshdrs, of, pviews);
6441
6442 // We do not generate stubs if doing a relocatable link.
6443 if (parameters->options().relocatable())
6444 return;
6445
6446 // Relocate stub tables.
6447 unsigned int shnum = this->shnum();
6448
6449 Target_arm<big_endian>* arm_target =
6450 Target_arm<big_endian>::default_target();
6451
6452 Relocate_info<32, big_endian> relinfo;
6453 relinfo.symtab = symtab;
6454 relinfo.layout = layout;
6455 relinfo.object = this;
6456
6457 for (unsigned int i = 1; i < shnum; ++i)
6458 {
6459 Arm_input_section<big_endian>* arm_input_section =
6460 arm_target->find_arm_input_section(this, i);
6461
6462 if (arm_input_section != NULL
6463 && arm_input_section->is_stub_table_owner()
6464 && !arm_input_section->stub_table()->empty())
6465 {
6466 // We cannot discard a section if it owns a stub table.
6467 Output_section* os = this->output_section(i);
6468 gold_assert(os != NULL);
6469
6470 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6471 relinfo.reloc_shdr = NULL;
6472 relinfo.data_shndx = i;
6473 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6474
6475 gold_assert((*pviews)[i].view != NULL);
6476
6477 // We are passed the output section view. Adjust it to cover the
6478 // stub table only.
6479 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6480 gold_assert((stub_table->address() >= (*pviews)[i].address)
6481 && ((stub_table->address() + stub_table->data_size())
6482 <= (*pviews)[i].address + (*pviews)[i].view_size));
6483
6484 off_t offset = stub_table->address() - (*pviews)[i].address;
6485 unsigned char* view = (*pviews)[i].view + offset;
6486 Arm_address address = stub_table->address();
6487 section_size_type view_size = stub_table->data_size();
6488
6489 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6490 view_size);
6491 }
6492
6493 // Apply Cortex A8 workaround if applicable.
6494 if (this->section_has_cortex_a8_workaround(i))
6495 {
6496 unsigned char* view = (*pviews)[i].view;
6497 Arm_address view_address = (*pviews)[i].address;
6498 section_size_type view_size = (*pviews)[i].view_size;
6499 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6500
6501 // Adjust view to cover section.
6502 Output_section* os = this->output_section(i);
6503 gold_assert(os != NULL);
6504 Arm_address section_address =
6505 this->simple_input_section_output_address(i, os);
6506 uint64_t section_size = this->section_size(i);
6507
6508 gold_assert(section_address >= view_address
6509 && ((section_address + section_size)
6510 <= (view_address + view_size)));
6511
6512 unsigned char* section_view = view + (section_address - view_address);
6513
6514 // Apply the Cortex-A8 workaround to the output address range
6515 // corresponding to this input section.
6516 stub_table->apply_cortex_a8_workaround_to_address_range(
6517 arm_target,
6518 section_view,
6519 section_address,
6520 section_size);
6521 }
6522 }
6523 }
6524
6525 // Find the linked text section of an EXIDX section by looking at the first
6526 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6527 // must be linked to its associated code section via the sh_link field of
6528 // its section header. However, some tools are broken and the link is not
6529 // always set. LD just drops such an EXIDX section silently, causing the
6530 // associated code not unwindabled. Here we try a little bit harder to
6531 // discover the linked code section.
6532 //
6533 // PSHDR points to the section header of a relocation section of an EXIDX
6534 // section. If we can find a linked text section, return true and
6535 // store the text section index in the location PSHNDX. Otherwise
6536 // return false.
6537
6538 template<bool big_endian>
6539 bool
6540 Arm_relobj<big_endian>::find_linked_text_section(
6541 const unsigned char* pshdr,
6542 const unsigned char* psyms,
6543 unsigned int* pshndx)
6544 {
6545 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6546
6547 // If there is no relocation, we cannot find the linked text section.
6548 size_t reloc_size;
6549 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6550 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6551 else
6552 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6553 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6554
6555 // Get the relocations.
6556 const unsigned char* prelocs =
6557 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6558
6559 // Find the REL31 relocation for the first word of the first EXIDX entry.
6560 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6561 {
6562 Arm_address r_offset;
6563 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6564 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6565 {
6566 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6567 r_info = reloc.get_r_info();
6568 r_offset = reloc.get_r_offset();
6569 }
6570 else
6571 {
6572 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6573 r_info = reloc.get_r_info();
6574 r_offset = reloc.get_r_offset();
6575 }
6576
6577 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6578 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6579 continue;
6580
6581 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6582 if (r_sym == 0
6583 || r_sym >= this->local_symbol_count()
6584 || r_offset != 0)
6585 continue;
6586
6587 // This is the relocation for the first word of the first EXIDX entry.
6588 // We expect to see a local section symbol.
6589 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6590 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6591 if (sym.get_st_type() == elfcpp::STT_SECTION)
6592 {
6593 bool is_ordinary;
6594 *pshndx =
6595 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6596 gold_assert(is_ordinary);
6597 return true;
6598 }
6599 else
6600 return false;
6601 }
6602
6603 return false;
6604 }
6605
6606 // Make an EXIDX input section object for an EXIDX section whose index is
6607 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6608 // is the section index of the linked text section.
6609
6610 template<bool big_endian>
6611 void
6612 Arm_relobj<big_endian>::make_exidx_input_section(
6613 unsigned int shndx,
6614 const elfcpp::Shdr<32, big_endian>& shdr,
6615 unsigned int text_shndx,
6616 const elfcpp::Shdr<32, big_endian>& text_shdr)
6617 {
6618 // Create an Arm_exidx_input_section object for this EXIDX section.
6619 Arm_exidx_input_section* exidx_input_section =
6620 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6621 shdr.get_sh_addralign(),
6622 text_shdr.get_sh_size());
6623
6624 gold_assert(this->exidx_section_map_[shndx] == NULL);
6625 this->exidx_section_map_[shndx] = exidx_input_section;
6626
6627 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6628 {
6629 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6630 this->section_name(shndx).c_str(), shndx, text_shndx,
6631 this->name().c_str());
6632 exidx_input_section->set_has_errors();
6633 }
6634 else if (this->exidx_section_map_[text_shndx] != NULL)
6635 {
6636 unsigned other_exidx_shndx =
6637 this->exidx_section_map_[text_shndx]->shndx();
6638 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6639 "%s(%u) in %s"),
6640 this->section_name(shndx).c_str(), shndx,
6641 this->section_name(other_exidx_shndx).c_str(),
6642 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6643 text_shndx, this->name().c_str());
6644 exidx_input_section->set_has_errors();
6645 }
6646 else
6647 this->exidx_section_map_[text_shndx] = exidx_input_section;
6648
6649 // Check section flags of text section.
6650 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6651 {
6652 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6653 " in %s"),
6654 this->section_name(shndx).c_str(), shndx,
6655 this->section_name(text_shndx).c_str(), text_shndx,
6656 this->name().c_str());
6657 exidx_input_section->set_has_errors();
6658 }
6659 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6660 // I would like to make this an error but currently ld just ignores
6661 // this.
6662 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6663 "%s(%u) in %s"),
6664 this->section_name(shndx).c_str(), shndx,
6665 this->section_name(text_shndx).c_str(), text_shndx,
6666 this->name().c_str());
6667 }
6668
6669 // Read the symbol information.
6670
6671 template<bool big_endian>
6672 void
6673 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6674 {
6675 // Call parent class to read symbol information.
6676 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6677
6678 // If this input file is a binary file, it has no processor
6679 // specific flags and attributes section.
6680 Input_file::Format format = this->input_file()->format();
6681 if (format != Input_file::FORMAT_ELF)
6682 {
6683 gold_assert(format == Input_file::FORMAT_BINARY);
6684 this->merge_flags_and_attributes_ = false;
6685 return;
6686 }
6687
6688 // Read processor-specific flags in ELF file header.
6689 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6690 elfcpp::Elf_sizes<32>::ehdr_size,
6691 true, false);
6692 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6693 this->processor_specific_flags_ = ehdr.get_e_flags();
6694
6695 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6696 // sections.
6697 std::vector<unsigned int> deferred_exidx_sections;
6698 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6699 const unsigned char* pshdrs = sd->section_headers->data();
6700 const unsigned char* ps = pshdrs + shdr_size;
6701 bool must_merge_flags_and_attributes = false;
6702 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6703 {
6704 elfcpp::Shdr<32, big_endian> shdr(ps);
6705
6706 // Sometimes an object has no contents except the section name string
6707 // table and an empty symbol table with the undefined symbol. We
6708 // don't want to merge processor-specific flags from such an object.
6709 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6710 {
6711 // Symbol table is not empty.
6712 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6713 elfcpp::Elf_sizes<32>::sym_size;
6714 if (shdr.get_sh_size() > sym_size)
6715 must_merge_flags_and_attributes = true;
6716 }
6717 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6718 // If this is neither an empty symbol table nor a string table,
6719 // be conservative.
6720 must_merge_flags_and_attributes = true;
6721
6722 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6723 {
6724 gold_assert(this->attributes_section_data_ == NULL);
6725 section_offset_type section_offset = shdr.get_sh_offset();
6726 section_size_type section_size =
6727 convert_to_section_size_type(shdr.get_sh_size());
6728 const unsigned char* view =
6729 this->get_view(section_offset, section_size, true, false);
6730 this->attributes_section_data_ =
6731 new Attributes_section_data(view, section_size);
6732 }
6733 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6734 {
6735 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6736 if (text_shndx == elfcpp::SHN_UNDEF)
6737 deferred_exidx_sections.push_back(i);
6738 else
6739 {
6740 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6741 + text_shndx * shdr_size);
6742 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6743 }
6744 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6745 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6746 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6747 this->section_name(i).c_str(), this->name().c_str());
6748 }
6749 }
6750
6751 // This is rare.
6752 if (!must_merge_flags_and_attributes)
6753 {
6754 gold_assert(deferred_exidx_sections.empty());
6755 this->merge_flags_and_attributes_ = false;
6756 return;
6757 }
6758
6759 // Some tools are broken and they do not set the link of EXIDX sections.
6760 // We look at the first relocation to figure out the linked sections.
6761 if (!deferred_exidx_sections.empty())
6762 {
6763 // We need to go over the section headers again to find the mapping
6764 // from sections being relocated to their relocation sections. This is
6765 // a bit inefficient as we could do that in the loop above. However,
6766 // we do not expect any deferred EXIDX sections normally. So we do not
6767 // want to slow down the most common path.
6768 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6769 Reloc_map reloc_map;
6770 ps = pshdrs + shdr_size;
6771 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6772 {
6773 elfcpp::Shdr<32, big_endian> shdr(ps);
6774 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6775 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6776 {
6777 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6778 if (info_shndx >= this->shnum())
6779 gold_error(_("relocation section %u has invalid info %u"),
6780 i, info_shndx);
6781 Reloc_map::value_type value(info_shndx, i);
6782 std::pair<Reloc_map::iterator, bool> result =
6783 reloc_map.insert(value);
6784 if (!result.second)
6785 gold_error(_("section %u has multiple relocation sections "
6786 "%u and %u"),
6787 info_shndx, i, reloc_map[info_shndx]);
6788 }
6789 }
6790
6791 // Read the symbol table section header.
6792 const unsigned int symtab_shndx = this->symtab_shndx();
6793 elfcpp::Shdr<32, big_endian>
6794 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6795 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6796
6797 // Read the local symbols.
6798 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6799 const unsigned int loccount = this->local_symbol_count();
6800 gold_assert(loccount == symtabshdr.get_sh_info());
6801 off_t locsize = loccount * sym_size;
6802 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6803 locsize, true, true);
6804
6805 // Process the deferred EXIDX sections.
6806 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6807 {
6808 unsigned int shndx = deferred_exidx_sections[i];
6809 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6810 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6811 Reloc_map::const_iterator it = reloc_map.find(shndx);
6812 if (it != reloc_map.end())
6813 find_linked_text_section(pshdrs + it->second * shdr_size,
6814 psyms, &text_shndx);
6815 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6816 + text_shndx * shdr_size);
6817 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6818 }
6819 }
6820 }
6821
6822 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6823 // sections for unwinding. These sections are referenced implicitly by
6824 // text sections linked in the section headers. If we ignore these implicit
6825 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6826 // will be garbage-collected incorrectly. Hence we override the same function
6827 // in the base class to handle these implicit references.
6828
6829 template<bool big_endian>
6830 void
6831 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6832 Layout* layout,
6833 Read_relocs_data* rd)
6834 {
6835 // First, call base class method to process relocations in this object.
6836 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6837
6838 // If --gc-sections is not specified, there is nothing more to do.
6839 // This happens when --icf is used but --gc-sections is not.
6840 if (!parameters->options().gc_sections())
6841 return;
6842
6843 unsigned int shnum = this->shnum();
6844 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6845 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6846 shnum * shdr_size,
6847 true, true);
6848
6849 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6850 // to these from the linked text sections.
6851 const unsigned char* ps = pshdrs + shdr_size;
6852 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6853 {
6854 elfcpp::Shdr<32, big_endian> shdr(ps);
6855 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6856 {
6857 // Found an .ARM.exidx section, add it to the set of reachable
6858 // sections from its linked text section.
6859 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6860 symtab->gc()->add_reference(this, text_shndx, this, i);
6861 }
6862 }
6863 }
6864
6865 // Update output local symbol count. Owing to EXIDX entry merging, some local
6866 // symbols will be removed in output. Adjust output local symbol count
6867 // accordingly. We can only changed the static output local symbol count. It
6868 // is too late to change the dynamic symbols.
6869
6870 template<bool big_endian>
6871 void
6872 Arm_relobj<big_endian>::update_output_local_symbol_count()
6873 {
6874 // Caller should check that this needs updating. We want caller checking
6875 // because output_local_symbol_count_needs_update() is most likely inlined.
6876 gold_assert(this->output_local_symbol_count_needs_update_);
6877
6878 gold_assert(this->symtab_shndx() != -1U);
6879 if (this->symtab_shndx() == 0)
6880 {
6881 // This object has no symbols. Weird but legal.
6882 return;
6883 }
6884
6885 // Read the symbol table section header.
6886 const unsigned int symtab_shndx = this->symtab_shndx();
6887 elfcpp::Shdr<32, big_endian>
6888 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6889 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6890
6891 // Read the local symbols.
6892 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6893 const unsigned int loccount = this->local_symbol_count();
6894 gold_assert(loccount == symtabshdr.get_sh_info());
6895 off_t locsize = loccount * sym_size;
6896 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6897 locsize, true, true);
6898
6899 // Loop over the local symbols.
6900
6901 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6902 Output_sections;
6903 const Output_sections& out_sections(this->output_sections());
6904 unsigned int shnum = this->shnum();
6905 unsigned int count = 0;
6906 // Skip the first, dummy, symbol.
6907 psyms += sym_size;
6908 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6909 {
6910 elfcpp::Sym<32, big_endian> sym(psyms);
6911
6912 Symbol_value<32>& lv((*this->local_values())[i]);
6913
6914 // This local symbol was already discarded by do_count_local_symbols.
6915 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6916 continue;
6917
6918 bool is_ordinary;
6919 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6920 &is_ordinary);
6921
6922 if (shndx < shnum)
6923 {
6924 Output_section* os = out_sections[shndx];
6925
6926 // This local symbol no longer has an output section. Discard it.
6927 if (os == NULL)
6928 {
6929 lv.set_no_output_symtab_entry();
6930 continue;
6931 }
6932
6933 // Currently we only discard parts of EXIDX input sections.
6934 // We explicitly check for a merged EXIDX input section to avoid
6935 // calling Output_section_data::output_offset unless necessary.
6936 if ((this->get_output_section_offset(shndx) == invalid_address)
6937 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6938 {
6939 section_offset_type output_offset =
6940 os->output_offset(this, shndx, lv.input_value());
6941 if (output_offset == -1)
6942 {
6943 // This symbol is defined in a part of an EXIDX input section
6944 // that is discarded due to entry merging.
6945 lv.set_no_output_symtab_entry();
6946 continue;
6947 }
6948 }
6949 }
6950
6951 ++count;
6952 }
6953
6954 this->set_output_local_symbol_count(count);
6955 this->output_local_symbol_count_needs_update_ = false;
6956 }
6957
6958 // Arm_dynobj methods.
6959
6960 // Read the symbol information.
6961
6962 template<bool big_endian>
6963 void
6964 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6965 {
6966 // Call parent class to read symbol information.
6967 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6968
6969 // Read processor-specific flags in ELF file header.
6970 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6971 elfcpp::Elf_sizes<32>::ehdr_size,
6972 true, false);
6973 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6974 this->processor_specific_flags_ = ehdr.get_e_flags();
6975
6976 // Read the attributes section if there is one.
6977 // We read from the end because gas seems to put it near the end of
6978 // the section headers.
6979 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6980 const unsigned char* ps =
6981 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6982 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6983 {
6984 elfcpp::Shdr<32, big_endian> shdr(ps);
6985 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6986 {
6987 section_offset_type section_offset = shdr.get_sh_offset();
6988 section_size_type section_size =
6989 convert_to_section_size_type(shdr.get_sh_size());
6990 const unsigned char* view =
6991 this->get_view(section_offset, section_size, true, false);
6992 this->attributes_section_data_ =
6993 new Attributes_section_data(view, section_size);
6994 break;
6995 }
6996 }
6997 }
6998
6999 // Stub_addend_reader methods.
7000
7001 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7002
7003 template<bool big_endian>
7004 elfcpp::Elf_types<32>::Elf_Swxword
7005 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7006 unsigned int r_type,
7007 const unsigned char* view,
7008 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7009 {
7010 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7011
7012 switch (r_type)
7013 {
7014 case elfcpp::R_ARM_CALL:
7015 case elfcpp::R_ARM_JUMP24:
7016 case elfcpp::R_ARM_PLT32:
7017 {
7018 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7019 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7020 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7021 return Bits<26>::sign_extend32(val << 2);
7022 }
7023
7024 case elfcpp::R_ARM_THM_CALL:
7025 case elfcpp::R_ARM_THM_JUMP24:
7026 case elfcpp::R_ARM_THM_XPC22:
7027 {
7028 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7029 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7030 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7031 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7032 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7033 }
7034
7035 case elfcpp::R_ARM_THM_JUMP19:
7036 {
7037 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7038 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7039 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7040 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7041 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7042 }
7043
7044 default:
7045 gold_unreachable();
7046 }
7047 }
7048
7049 // Arm_output_data_got methods.
7050
7051 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7052 // The first one is initialized to be 1, which is the module index for
7053 // the main executable and the second one 0. A reloc of the type
7054 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7055 // be applied by gold. GSYM is a global symbol.
7056 //
7057 template<bool big_endian>
7058 void
7059 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7060 unsigned int got_type,
7061 Symbol* gsym)
7062 {
7063 if (gsym->has_got_offset(got_type))
7064 return;
7065
7066 // We are doing a static link. Just mark it as belong to module 1,
7067 // the executable.
7068 unsigned int got_offset = this->add_constant(1);
7069 gsym->set_got_offset(got_type, got_offset);
7070 got_offset = this->add_constant(0);
7071 this->static_relocs_.push_back(Static_reloc(got_offset,
7072 elfcpp::R_ARM_TLS_DTPOFF32,
7073 gsym));
7074 }
7075
7076 // Same as the above but for a local symbol.
7077
7078 template<bool big_endian>
7079 void
7080 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7081 unsigned int got_type,
7082 Sized_relobj_file<32, big_endian>* object,
7083 unsigned int index)
7084 {
7085 if (object->local_has_got_offset(index, got_type))
7086 return;
7087
7088 // We are doing a static link. Just mark it as belong to module 1,
7089 // the executable.
7090 unsigned int got_offset = this->add_constant(1);
7091 object->set_local_got_offset(index, got_type, got_offset);
7092 got_offset = this->add_constant(0);
7093 this->static_relocs_.push_back(Static_reloc(got_offset,
7094 elfcpp::R_ARM_TLS_DTPOFF32,
7095 object, index));
7096 }
7097
7098 template<bool big_endian>
7099 void
7100 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7101 {
7102 // Call parent to write out GOT.
7103 Output_data_got<32, big_endian>::do_write(of);
7104
7105 // We are done if there is no fix up.
7106 if (this->static_relocs_.empty())
7107 return;
7108
7109 gold_assert(parameters->doing_static_link());
7110
7111 const off_t offset = this->offset();
7112 const section_size_type oview_size =
7113 convert_to_section_size_type(this->data_size());
7114 unsigned char* const oview = of->get_output_view(offset, oview_size);
7115
7116 Output_segment* tls_segment = this->layout_->tls_segment();
7117 gold_assert(tls_segment != NULL);
7118
7119 // The thread pointer $tp points to the TCB, which is followed by the
7120 // TLS. So we need to adjust $tp relative addressing by this amount.
7121 Arm_address aligned_tcb_size =
7122 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7123
7124 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7125 {
7126 Static_reloc& reloc(this->static_relocs_[i]);
7127
7128 Arm_address value;
7129 if (!reloc.symbol_is_global())
7130 {
7131 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7132 const Symbol_value<32>* psymval =
7133 reloc.relobj()->local_symbol(reloc.index());
7134
7135 // We are doing static linking. Issue an error and skip this
7136 // relocation if the symbol is undefined or in a discarded_section.
7137 bool is_ordinary;
7138 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7139 if ((shndx == elfcpp::SHN_UNDEF)
7140 || (is_ordinary
7141 && shndx != elfcpp::SHN_UNDEF
7142 && !object->is_section_included(shndx)
7143 && !this->symbol_table_->is_section_folded(object, shndx)))
7144 {
7145 gold_error(_("undefined or discarded local symbol %u from "
7146 " object %s in GOT"),
7147 reloc.index(), reloc.relobj()->name().c_str());
7148 continue;
7149 }
7150
7151 value = psymval->value(object, 0);
7152 }
7153 else
7154 {
7155 const Symbol* gsym = reloc.symbol();
7156 gold_assert(gsym != NULL);
7157 if (gsym->is_forwarder())
7158 gsym = this->symbol_table_->resolve_forwards(gsym);
7159
7160 // We are doing static linking. Issue an error and skip this
7161 // relocation if the symbol is undefined or in a discarded_section
7162 // unless it is a weakly_undefined symbol.
7163 if ((gsym->is_defined_in_discarded_section()
7164 || gsym->is_undefined())
7165 && !gsym->is_weak_undefined())
7166 {
7167 gold_error(_("undefined or discarded symbol %s in GOT"),
7168 gsym->name());
7169 continue;
7170 }
7171
7172 if (!gsym->is_weak_undefined())
7173 {
7174 const Sized_symbol<32>* sym =
7175 static_cast<const Sized_symbol<32>*>(gsym);
7176 value = sym->value();
7177 }
7178 else
7179 value = 0;
7180 }
7181
7182 unsigned got_offset = reloc.got_offset();
7183 gold_assert(got_offset < oview_size);
7184
7185 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7186 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7187 Valtype x;
7188 switch (reloc.r_type())
7189 {
7190 case elfcpp::R_ARM_TLS_DTPOFF32:
7191 x = value;
7192 break;
7193 case elfcpp::R_ARM_TLS_TPOFF32:
7194 x = value + aligned_tcb_size;
7195 break;
7196 default:
7197 gold_unreachable();
7198 }
7199 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7200 }
7201
7202 of->write_output_view(offset, oview_size, oview);
7203 }
7204
7205 // A class to handle the PLT data.
7206 // This is an abstract base class that handles most of the linker details
7207 // but does not know the actual contents of PLT entries. The derived
7208 // classes below fill in those details.
7209
7210 template<bool big_endian>
7211 class Output_data_plt_arm : public Output_section_data
7212 {
7213 public:
7214 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7215 Reloc_section;
7216
7217 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7218
7219 // Add an entry to the PLT.
7220 void
7221 add_entry(Symbol* gsym);
7222
7223 // Return the .rel.plt section data.
7224 const Reloc_section*
7225 rel_plt() const
7226 { return this->rel_; }
7227
7228 // Return the number of PLT entries.
7229 unsigned int
7230 entry_count() const
7231 { return this->count_; }
7232
7233 // Return the offset of the first non-reserved PLT entry.
7234 unsigned int
7235 first_plt_entry_offset() const
7236 { return this->do_first_plt_entry_offset(); }
7237
7238 // Return the size of a PLT entry.
7239 unsigned int
7240 get_plt_entry_size() const
7241 { return this->do_get_plt_entry_size(); }
7242
7243 protected:
7244 // Fill in the first PLT entry.
7245 void
7246 fill_first_plt_entry(unsigned char* pov,
7247 Arm_address got_address,
7248 Arm_address plt_address)
7249 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7250
7251 void
7252 fill_plt_entry(unsigned char* pov,
7253 Arm_address got_address,
7254 Arm_address plt_address,
7255 unsigned int got_offset,
7256 unsigned int plt_offset)
7257 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7258
7259 virtual unsigned int
7260 do_first_plt_entry_offset() const = 0;
7261
7262 virtual unsigned int
7263 do_get_plt_entry_size() const = 0;
7264
7265 virtual void
7266 do_fill_first_plt_entry(unsigned char* pov,
7267 Arm_address got_address,
7268 Arm_address plt_address) = 0;
7269
7270 virtual void
7271 do_fill_plt_entry(unsigned char* pov,
7272 Arm_address got_address,
7273 Arm_address plt_address,
7274 unsigned int got_offset,
7275 unsigned int plt_offset) = 0;
7276
7277 void
7278 do_adjust_output_section(Output_section* os);
7279
7280 // Write to a map file.
7281 void
7282 do_print_to_mapfile(Mapfile* mapfile) const
7283 { mapfile->print_output_data(this, _("** PLT")); }
7284
7285 private:
7286 // Set the final size.
7287 void
7288 set_final_data_size()
7289 {
7290 this->set_data_size(this->first_plt_entry_offset()
7291 + this->count_ * this->get_plt_entry_size());
7292 }
7293
7294 // Write out the PLT data.
7295 void
7296 do_write(Output_file*);
7297
7298 // The reloc section.
7299 Reloc_section* rel_;
7300 // The .got.plt section.
7301 Output_data_space* got_plt_;
7302 // The number of PLT entries.
7303 unsigned int count_;
7304 };
7305
7306 // Create the PLT section. The ordinary .got section is an argument,
7307 // since we need to refer to the start. We also create our own .got
7308 // section just for PLT entries.
7309
7310 template<bool big_endian>
7311 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7312 uint64_t addralign,
7313 Output_data_space* got_plt)
7314 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7315 {
7316 this->rel_ = new Reloc_section(false);
7317 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7318 elfcpp::SHF_ALLOC, this->rel_,
7319 ORDER_DYNAMIC_PLT_RELOCS, false);
7320 }
7321
7322 template<bool big_endian>
7323 void
7324 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7325 {
7326 os->set_entsize(0);
7327 }
7328
7329 // Add an entry to the PLT.
7330
7331 template<bool big_endian>
7332 void
7333 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7334 {
7335 gold_assert(!gsym->has_plt_offset());
7336
7337 // Note that when setting the PLT offset we skip the initial
7338 // reserved PLT entry.
7339 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7340 + this->first_plt_entry_offset());
7341
7342 ++this->count_;
7343
7344 section_offset_type got_offset = this->got_plt_->current_data_size();
7345
7346 // Every PLT entry needs a GOT entry which points back to the PLT
7347 // entry (this will be changed by the dynamic linker, normally
7348 // lazily when the function is called).
7349 this->got_plt_->set_current_data_size(got_offset + 4);
7350
7351 // Every PLT entry needs a reloc.
7352 gsym->set_needs_dynsym_entry();
7353 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7354 got_offset);
7355
7356 // Note that we don't need to save the symbol. The contents of the
7357 // PLT are independent of which symbols are used. The symbols only
7358 // appear in the relocations.
7359 }
7360
7361 template<bool big_endian>
7362 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7363 {
7364 public:
7365 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7366 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7367 { }
7368
7369 protected:
7370 // Return the offset of the first non-reserved PLT entry.
7371 virtual unsigned int
7372 do_first_plt_entry_offset() const
7373 { return sizeof(first_plt_entry); }
7374
7375 // Return the size of a PLT entry.
7376 virtual unsigned int
7377 do_get_plt_entry_size() const
7378 { return sizeof(plt_entry); }
7379
7380 virtual void
7381 do_fill_first_plt_entry(unsigned char* pov,
7382 Arm_address got_address,
7383 Arm_address plt_address);
7384
7385 virtual void
7386 do_fill_plt_entry(unsigned char* pov,
7387 Arm_address got_address,
7388 Arm_address plt_address,
7389 unsigned int got_offset,
7390 unsigned int plt_offset);
7391
7392 private:
7393 // Template for the first PLT entry.
7394 static const uint32_t first_plt_entry[5];
7395
7396 // Template for subsequent PLT entries.
7397 static const uint32_t plt_entry[3];
7398 };
7399
7400 // ARM PLTs.
7401 // FIXME: This is not very flexible. Right now this has only been tested
7402 // on armv5te. If we are to support additional architecture features like
7403 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7404
7405 // The first entry in the PLT.
7406 template<bool big_endian>
7407 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7408 {
7409 0xe52de004, // str lr, [sp, #-4]!
7410 0xe59fe004, // ldr lr, [pc, #4]
7411 0xe08fe00e, // add lr, pc, lr
7412 0xe5bef008, // ldr pc, [lr, #8]!
7413 0x00000000, // &GOT[0] - .
7414 };
7415
7416 template<bool big_endian>
7417 void
7418 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7419 unsigned char* pov,
7420 Arm_address got_address,
7421 Arm_address plt_address)
7422 {
7423 // Write first PLT entry. All but the last word are constants.
7424 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7425 / sizeof(plt_entry[0]));
7426 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7427 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7428 // Last word in first PLT entry is &GOT[0] - .
7429 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7430 got_address - (plt_address + 16));
7431 }
7432
7433 // Subsequent entries in the PLT.
7434
7435 template<bool big_endian>
7436 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7437 {
7438 0xe28fc600, // add ip, pc, #0xNN00000
7439 0xe28cca00, // add ip, ip, #0xNN000
7440 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7441 };
7442
7443 template<bool big_endian>
7444 void
7445 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7446 unsigned char* pov,
7447 Arm_address got_address,
7448 Arm_address plt_address,
7449 unsigned int got_offset,
7450 unsigned int plt_offset)
7451 {
7452 int32_t offset = ((got_address + got_offset)
7453 - (plt_address + plt_offset + 8));
7454
7455 gold_assert(offset >= 0 && offset < 0x0fffffff);
7456 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7457 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7458 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7459 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7460 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7461 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7462 }
7463
7464 // Write out the PLT. This uses the hand-coded instructions above,
7465 // and adjusts them as needed. This is all specified by the arm ELF
7466 // Processor Supplement.
7467
7468 template<bool big_endian>
7469 void
7470 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7471 {
7472 const off_t offset = this->offset();
7473 const section_size_type oview_size =
7474 convert_to_section_size_type(this->data_size());
7475 unsigned char* const oview = of->get_output_view(offset, oview_size);
7476
7477 const off_t got_file_offset = this->got_plt_->offset();
7478 const section_size_type got_size =
7479 convert_to_section_size_type(this->got_plt_->data_size());
7480 unsigned char* const got_view = of->get_output_view(got_file_offset,
7481 got_size);
7482 unsigned char* pov = oview;
7483
7484 Arm_address plt_address = this->address();
7485 Arm_address got_address = this->got_plt_->address();
7486
7487 // Write first PLT entry.
7488 this->fill_first_plt_entry(pov, got_address, plt_address);
7489 pov += this->first_plt_entry_offset();
7490
7491 unsigned char* got_pov = got_view;
7492
7493 memset(got_pov, 0, 12);
7494 got_pov += 12;
7495
7496 unsigned int plt_offset = this->first_plt_entry_offset();
7497 unsigned int got_offset = 12;
7498 const unsigned int count = this->count_;
7499 for (unsigned int i = 0;
7500 i < count;
7501 ++i,
7502 pov += this->get_plt_entry_size(),
7503 got_pov += 4,
7504 plt_offset += this->get_plt_entry_size(),
7505 got_offset += 4)
7506 {
7507 // Set and adjust the PLT entry itself.
7508 this->fill_plt_entry(pov, got_address, plt_address,
7509 got_offset, plt_offset);
7510
7511 // Set the entry in the GOT.
7512 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7513 }
7514
7515 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7516 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7517
7518 of->write_output_view(offset, oview_size, oview);
7519 of->write_output_view(got_file_offset, got_size, got_view);
7520 }
7521
7522 // Create a PLT entry for a global symbol.
7523
7524 template<bool big_endian>
7525 void
7526 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7527 Symbol* gsym)
7528 {
7529 if (gsym->has_plt_offset())
7530 return;
7531
7532 if (this->plt_ == NULL)
7533 {
7534 // Create the GOT sections first.
7535 this->got_section(symtab, layout);
7536
7537 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7538
7539 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7540 (elfcpp::SHF_ALLOC
7541 | elfcpp::SHF_EXECINSTR),
7542 this->plt_, ORDER_PLT, false);
7543 }
7544 this->plt_->add_entry(gsym);
7545 }
7546
7547 // Return the number of entries in the PLT.
7548
7549 template<bool big_endian>
7550 unsigned int
7551 Target_arm<big_endian>::plt_entry_count() const
7552 {
7553 if (this->plt_ == NULL)
7554 return 0;
7555 return this->plt_->entry_count();
7556 }
7557
7558 // Return the offset of the first non-reserved PLT entry.
7559
7560 template<bool big_endian>
7561 unsigned int
7562 Target_arm<big_endian>::first_plt_entry_offset() const
7563 {
7564 return this->plt_->first_plt_entry_offset();
7565 }
7566
7567 // Return the size of each PLT entry.
7568
7569 template<bool big_endian>
7570 unsigned int
7571 Target_arm<big_endian>::plt_entry_size() const
7572 {
7573 return this->plt_->get_plt_entry_size();
7574 }
7575
7576 // Get the section to use for TLS_DESC relocations.
7577
7578 template<bool big_endian>
7579 typename Target_arm<big_endian>::Reloc_section*
7580 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7581 {
7582 return this->plt_section()->rel_tls_desc(layout);
7583 }
7584
7585 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7586
7587 template<bool big_endian>
7588 void
7589 Target_arm<big_endian>::define_tls_base_symbol(
7590 Symbol_table* symtab,
7591 Layout* layout)
7592 {
7593 if (this->tls_base_symbol_defined_)
7594 return;
7595
7596 Output_segment* tls_segment = layout->tls_segment();
7597 if (tls_segment != NULL)
7598 {
7599 bool is_exec = parameters->options().output_is_executable();
7600 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7601 Symbol_table::PREDEFINED,
7602 tls_segment, 0, 0,
7603 elfcpp::STT_TLS,
7604 elfcpp::STB_LOCAL,
7605 elfcpp::STV_HIDDEN, 0,
7606 (is_exec
7607 ? Symbol::SEGMENT_END
7608 : Symbol::SEGMENT_START),
7609 true);
7610 }
7611 this->tls_base_symbol_defined_ = true;
7612 }
7613
7614 // Create a GOT entry for the TLS module index.
7615
7616 template<bool big_endian>
7617 unsigned int
7618 Target_arm<big_endian>::got_mod_index_entry(
7619 Symbol_table* symtab,
7620 Layout* layout,
7621 Sized_relobj_file<32, big_endian>* object)
7622 {
7623 if (this->got_mod_index_offset_ == -1U)
7624 {
7625 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7626 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7627 unsigned int got_offset;
7628 if (!parameters->doing_static_link())
7629 {
7630 got_offset = got->add_constant(0);
7631 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7632 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7633 got_offset);
7634 }
7635 else
7636 {
7637 // We are doing a static link. Just mark it as belong to module 1,
7638 // the executable.
7639 got_offset = got->add_constant(1);
7640 }
7641
7642 got->add_constant(0);
7643 this->got_mod_index_offset_ = got_offset;
7644 }
7645 return this->got_mod_index_offset_;
7646 }
7647
7648 // Optimize the TLS relocation type based on what we know about the
7649 // symbol. IS_FINAL is true if the final address of this symbol is
7650 // known at link time.
7651
7652 template<bool big_endian>
7653 tls::Tls_optimization
7654 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7655 {
7656 // FIXME: Currently we do not do any TLS optimization.
7657 return tls::TLSOPT_NONE;
7658 }
7659
7660 // Get the Reference_flags for a particular relocation.
7661
7662 template<bool big_endian>
7663 int
7664 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7665 {
7666 switch (r_type)
7667 {
7668 case elfcpp::R_ARM_NONE:
7669 case elfcpp::R_ARM_V4BX:
7670 case elfcpp::R_ARM_GNU_VTENTRY:
7671 case elfcpp::R_ARM_GNU_VTINHERIT:
7672 // No symbol reference.
7673 return 0;
7674
7675 case elfcpp::R_ARM_ABS32:
7676 case elfcpp::R_ARM_ABS16:
7677 case elfcpp::R_ARM_ABS12:
7678 case elfcpp::R_ARM_THM_ABS5:
7679 case elfcpp::R_ARM_ABS8:
7680 case elfcpp::R_ARM_BASE_ABS:
7681 case elfcpp::R_ARM_MOVW_ABS_NC:
7682 case elfcpp::R_ARM_MOVT_ABS:
7683 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7684 case elfcpp::R_ARM_THM_MOVT_ABS:
7685 case elfcpp::R_ARM_ABS32_NOI:
7686 return Symbol::ABSOLUTE_REF;
7687
7688 case elfcpp::R_ARM_REL32:
7689 case elfcpp::R_ARM_LDR_PC_G0:
7690 case elfcpp::R_ARM_SBREL32:
7691 case elfcpp::R_ARM_THM_PC8:
7692 case elfcpp::R_ARM_BASE_PREL:
7693 case elfcpp::R_ARM_MOVW_PREL_NC:
7694 case elfcpp::R_ARM_MOVT_PREL:
7695 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7696 case elfcpp::R_ARM_THM_MOVT_PREL:
7697 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7698 case elfcpp::R_ARM_THM_PC12:
7699 case elfcpp::R_ARM_REL32_NOI:
7700 case elfcpp::R_ARM_ALU_PC_G0_NC:
7701 case elfcpp::R_ARM_ALU_PC_G0:
7702 case elfcpp::R_ARM_ALU_PC_G1_NC:
7703 case elfcpp::R_ARM_ALU_PC_G1:
7704 case elfcpp::R_ARM_ALU_PC_G2:
7705 case elfcpp::R_ARM_LDR_PC_G1:
7706 case elfcpp::R_ARM_LDR_PC_G2:
7707 case elfcpp::R_ARM_LDRS_PC_G0:
7708 case elfcpp::R_ARM_LDRS_PC_G1:
7709 case elfcpp::R_ARM_LDRS_PC_G2:
7710 case elfcpp::R_ARM_LDC_PC_G0:
7711 case elfcpp::R_ARM_LDC_PC_G1:
7712 case elfcpp::R_ARM_LDC_PC_G2:
7713 case elfcpp::R_ARM_ALU_SB_G0_NC:
7714 case elfcpp::R_ARM_ALU_SB_G0:
7715 case elfcpp::R_ARM_ALU_SB_G1_NC:
7716 case elfcpp::R_ARM_ALU_SB_G1:
7717 case elfcpp::R_ARM_ALU_SB_G2:
7718 case elfcpp::R_ARM_LDR_SB_G0:
7719 case elfcpp::R_ARM_LDR_SB_G1:
7720 case elfcpp::R_ARM_LDR_SB_G2:
7721 case elfcpp::R_ARM_LDRS_SB_G0:
7722 case elfcpp::R_ARM_LDRS_SB_G1:
7723 case elfcpp::R_ARM_LDRS_SB_G2:
7724 case elfcpp::R_ARM_LDC_SB_G0:
7725 case elfcpp::R_ARM_LDC_SB_G1:
7726 case elfcpp::R_ARM_LDC_SB_G2:
7727 case elfcpp::R_ARM_MOVW_BREL_NC:
7728 case elfcpp::R_ARM_MOVT_BREL:
7729 case elfcpp::R_ARM_MOVW_BREL:
7730 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7731 case elfcpp::R_ARM_THM_MOVT_BREL:
7732 case elfcpp::R_ARM_THM_MOVW_BREL:
7733 case elfcpp::R_ARM_GOTOFF32:
7734 case elfcpp::R_ARM_GOTOFF12:
7735 case elfcpp::R_ARM_SBREL31:
7736 return Symbol::RELATIVE_REF;
7737
7738 case elfcpp::R_ARM_PLT32:
7739 case elfcpp::R_ARM_CALL:
7740 case elfcpp::R_ARM_JUMP24:
7741 case elfcpp::R_ARM_THM_CALL:
7742 case elfcpp::R_ARM_THM_JUMP24:
7743 case elfcpp::R_ARM_THM_JUMP19:
7744 case elfcpp::R_ARM_THM_JUMP6:
7745 case elfcpp::R_ARM_THM_JUMP11:
7746 case elfcpp::R_ARM_THM_JUMP8:
7747 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7748 // in unwind tables. It may point to functions via PLTs.
7749 // So we treat it like call/jump relocations above.
7750 case elfcpp::R_ARM_PREL31:
7751 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7752
7753 case elfcpp::R_ARM_GOT_BREL:
7754 case elfcpp::R_ARM_GOT_ABS:
7755 case elfcpp::R_ARM_GOT_PREL:
7756 // Absolute in GOT.
7757 return Symbol::ABSOLUTE_REF;
7758
7759 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7760 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7761 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7762 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7763 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7764 return Symbol::TLS_REF;
7765
7766 case elfcpp::R_ARM_TARGET1:
7767 case elfcpp::R_ARM_TARGET2:
7768 case elfcpp::R_ARM_COPY:
7769 case elfcpp::R_ARM_GLOB_DAT:
7770 case elfcpp::R_ARM_JUMP_SLOT:
7771 case elfcpp::R_ARM_RELATIVE:
7772 case elfcpp::R_ARM_PC24:
7773 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7774 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7775 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7776 default:
7777 // Not expected. We will give an error later.
7778 return 0;
7779 }
7780 }
7781
7782 // Report an unsupported relocation against a local symbol.
7783
7784 template<bool big_endian>
7785 void
7786 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7787 Sized_relobj_file<32, big_endian>* object,
7788 unsigned int r_type)
7789 {
7790 gold_error(_("%s: unsupported reloc %u against local symbol"),
7791 object->name().c_str(), r_type);
7792 }
7793
7794 // We are about to emit a dynamic relocation of type R_TYPE. If the
7795 // dynamic linker does not support it, issue an error. The GNU linker
7796 // only issues a non-PIC error for an allocated read-only section.
7797 // Here we know the section is allocated, but we don't know that it is
7798 // read-only. But we check for all the relocation types which the
7799 // glibc dynamic linker supports, so it seems appropriate to issue an
7800 // error even if the section is not read-only.
7801
7802 template<bool big_endian>
7803 void
7804 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7805 unsigned int r_type)
7806 {
7807 switch (r_type)
7808 {
7809 // These are the relocation types supported by glibc for ARM.
7810 case elfcpp::R_ARM_RELATIVE:
7811 case elfcpp::R_ARM_COPY:
7812 case elfcpp::R_ARM_GLOB_DAT:
7813 case elfcpp::R_ARM_JUMP_SLOT:
7814 case elfcpp::R_ARM_ABS32:
7815 case elfcpp::R_ARM_ABS32_NOI:
7816 case elfcpp::R_ARM_PC24:
7817 // FIXME: The following 3 types are not supported by Android's dynamic
7818 // linker.
7819 case elfcpp::R_ARM_TLS_DTPMOD32:
7820 case elfcpp::R_ARM_TLS_DTPOFF32:
7821 case elfcpp::R_ARM_TLS_TPOFF32:
7822 return;
7823
7824 default:
7825 {
7826 // This prevents us from issuing more than one error per reloc
7827 // section. But we can still wind up issuing more than one
7828 // error per object file.
7829 if (this->issued_non_pic_error_)
7830 return;
7831 const Arm_reloc_property* reloc_property =
7832 arm_reloc_property_table->get_reloc_property(r_type);
7833 gold_assert(reloc_property != NULL);
7834 object->error(_("requires unsupported dynamic reloc %s; "
7835 "recompile with -fPIC"),
7836 reloc_property->name().c_str());
7837 this->issued_non_pic_error_ = true;
7838 return;
7839 }
7840
7841 case elfcpp::R_ARM_NONE:
7842 gold_unreachable();
7843 }
7844 }
7845
7846 // Scan a relocation for a local symbol.
7847 // FIXME: This only handles a subset of relocation types used by Android
7848 // on ARM v5te devices.
7849
7850 template<bool big_endian>
7851 inline void
7852 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7853 Layout* layout,
7854 Target_arm* target,
7855 Sized_relobj_file<32, big_endian>* object,
7856 unsigned int data_shndx,
7857 Output_section* output_section,
7858 const elfcpp::Rel<32, big_endian>& reloc,
7859 unsigned int r_type,
7860 const elfcpp::Sym<32, big_endian>& lsym)
7861 {
7862 r_type = get_real_reloc_type(r_type);
7863 switch (r_type)
7864 {
7865 case elfcpp::R_ARM_NONE:
7866 case elfcpp::R_ARM_V4BX:
7867 case elfcpp::R_ARM_GNU_VTENTRY:
7868 case elfcpp::R_ARM_GNU_VTINHERIT:
7869 break;
7870
7871 case elfcpp::R_ARM_ABS32:
7872 case elfcpp::R_ARM_ABS32_NOI:
7873 // If building a shared library (or a position-independent
7874 // executable), we need to create a dynamic relocation for
7875 // this location. The relocation applied at link time will
7876 // apply the link-time value, so we flag the location with
7877 // an R_ARM_RELATIVE relocation so the dynamic loader can
7878 // relocate it easily.
7879 if (parameters->options().output_is_position_independent())
7880 {
7881 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7882 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7883 // If we are to add more other reloc types than R_ARM_ABS32,
7884 // we need to add check_non_pic(object, r_type) here.
7885 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7886 output_section, data_shndx,
7887 reloc.get_r_offset());
7888 }
7889 break;
7890
7891 case elfcpp::R_ARM_ABS16:
7892 case elfcpp::R_ARM_ABS12:
7893 case elfcpp::R_ARM_THM_ABS5:
7894 case elfcpp::R_ARM_ABS8:
7895 case elfcpp::R_ARM_BASE_ABS:
7896 case elfcpp::R_ARM_MOVW_ABS_NC:
7897 case elfcpp::R_ARM_MOVT_ABS:
7898 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7899 case elfcpp::R_ARM_THM_MOVT_ABS:
7900 // If building a shared library (or a position-independent
7901 // executable), we need to create a dynamic relocation for
7902 // this location. Because the addend needs to remain in the
7903 // data section, we need to be careful not to apply this
7904 // relocation statically.
7905 if (parameters->options().output_is_position_independent())
7906 {
7907 check_non_pic(object, r_type);
7908 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7909 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7910 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7911 rel_dyn->add_local(object, r_sym, r_type, output_section,
7912 data_shndx, reloc.get_r_offset());
7913 else
7914 {
7915 gold_assert(lsym.get_st_value() == 0);
7916 unsigned int shndx = lsym.get_st_shndx();
7917 bool is_ordinary;
7918 shndx = object->adjust_sym_shndx(r_sym, shndx,
7919 &is_ordinary);
7920 if (!is_ordinary)
7921 object->error(_("section symbol %u has bad shndx %u"),
7922 r_sym, shndx);
7923 else
7924 rel_dyn->add_local_section(object, shndx,
7925 r_type, output_section,
7926 data_shndx, reloc.get_r_offset());
7927 }
7928 }
7929 break;
7930
7931 case elfcpp::R_ARM_REL32:
7932 case elfcpp::R_ARM_LDR_PC_G0:
7933 case elfcpp::R_ARM_SBREL32:
7934 case elfcpp::R_ARM_THM_CALL:
7935 case elfcpp::R_ARM_THM_PC8:
7936 case elfcpp::R_ARM_BASE_PREL:
7937 case elfcpp::R_ARM_PLT32:
7938 case elfcpp::R_ARM_CALL:
7939 case elfcpp::R_ARM_JUMP24:
7940 case elfcpp::R_ARM_THM_JUMP24:
7941 case elfcpp::R_ARM_SBREL31:
7942 case elfcpp::R_ARM_PREL31:
7943 case elfcpp::R_ARM_MOVW_PREL_NC:
7944 case elfcpp::R_ARM_MOVT_PREL:
7945 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7946 case elfcpp::R_ARM_THM_MOVT_PREL:
7947 case elfcpp::R_ARM_THM_JUMP19:
7948 case elfcpp::R_ARM_THM_JUMP6:
7949 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7950 case elfcpp::R_ARM_THM_PC12:
7951 case elfcpp::R_ARM_REL32_NOI:
7952 case elfcpp::R_ARM_ALU_PC_G0_NC:
7953 case elfcpp::R_ARM_ALU_PC_G0:
7954 case elfcpp::R_ARM_ALU_PC_G1_NC:
7955 case elfcpp::R_ARM_ALU_PC_G1:
7956 case elfcpp::R_ARM_ALU_PC_G2:
7957 case elfcpp::R_ARM_LDR_PC_G1:
7958 case elfcpp::R_ARM_LDR_PC_G2:
7959 case elfcpp::R_ARM_LDRS_PC_G0:
7960 case elfcpp::R_ARM_LDRS_PC_G1:
7961 case elfcpp::R_ARM_LDRS_PC_G2:
7962 case elfcpp::R_ARM_LDC_PC_G0:
7963 case elfcpp::R_ARM_LDC_PC_G1:
7964 case elfcpp::R_ARM_LDC_PC_G2:
7965 case elfcpp::R_ARM_ALU_SB_G0_NC:
7966 case elfcpp::R_ARM_ALU_SB_G0:
7967 case elfcpp::R_ARM_ALU_SB_G1_NC:
7968 case elfcpp::R_ARM_ALU_SB_G1:
7969 case elfcpp::R_ARM_ALU_SB_G2:
7970 case elfcpp::R_ARM_LDR_SB_G0:
7971 case elfcpp::R_ARM_LDR_SB_G1:
7972 case elfcpp::R_ARM_LDR_SB_G2:
7973 case elfcpp::R_ARM_LDRS_SB_G0:
7974 case elfcpp::R_ARM_LDRS_SB_G1:
7975 case elfcpp::R_ARM_LDRS_SB_G2:
7976 case elfcpp::R_ARM_LDC_SB_G0:
7977 case elfcpp::R_ARM_LDC_SB_G1:
7978 case elfcpp::R_ARM_LDC_SB_G2:
7979 case elfcpp::R_ARM_MOVW_BREL_NC:
7980 case elfcpp::R_ARM_MOVT_BREL:
7981 case elfcpp::R_ARM_MOVW_BREL:
7982 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7983 case elfcpp::R_ARM_THM_MOVT_BREL:
7984 case elfcpp::R_ARM_THM_MOVW_BREL:
7985 case elfcpp::R_ARM_THM_JUMP11:
7986 case elfcpp::R_ARM_THM_JUMP8:
7987 // We don't need to do anything for a relative addressing relocation
7988 // against a local symbol if it does not reference the GOT.
7989 break;
7990
7991 case elfcpp::R_ARM_GOTOFF32:
7992 case elfcpp::R_ARM_GOTOFF12:
7993 // We need a GOT section:
7994 target->got_section(symtab, layout);
7995 break;
7996
7997 case elfcpp::R_ARM_GOT_BREL:
7998 case elfcpp::R_ARM_GOT_PREL:
7999 {
8000 // The symbol requires a GOT entry.
8001 Arm_output_data_got<big_endian>* got =
8002 target->got_section(symtab, layout);
8003 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8004 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8005 {
8006 // If we are generating a shared object, we need to add a
8007 // dynamic RELATIVE relocation for this symbol's GOT entry.
8008 if (parameters->options().output_is_position_independent())
8009 {
8010 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8011 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8012 rel_dyn->add_local_relative(
8013 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8014 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8015 }
8016 }
8017 }
8018 break;
8019
8020 case elfcpp::R_ARM_TARGET1:
8021 case elfcpp::R_ARM_TARGET2:
8022 // This should have been mapped to another type already.
8023 // Fall through.
8024 case elfcpp::R_ARM_COPY:
8025 case elfcpp::R_ARM_GLOB_DAT:
8026 case elfcpp::R_ARM_JUMP_SLOT:
8027 case elfcpp::R_ARM_RELATIVE:
8028 // These are relocations which should only be seen by the
8029 // dynamic linker, and should never be seen here.
8030 gold_error(_("%s: unexpected reloc %u in object file"),
8031 object->name().c_str(), r_type);
8032 break;
8033
8034
8035 // These are initial TLS relocs, which are expected when
8036 // linking.
8037 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8038 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8039 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8040 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8041 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8042 {
8043 bool output_is_shared = parameters->options().shared();
8044 const tls::Tls_optimization optimized_type
8045 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8046 r_type);
8047 switch (r_type)
8048 {
8049 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8050 if (optimized_type == tls::TLSOPT_NONE)
8051 {
8052 // Create a pair of GOT entries for the module index and
8053 // dtv-relative offset.
8054 Arm_output_data_got<big_endian>* got
8055 = target->got_section(symtab, layout);
8056 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8057 unsigned int shndx = lsym.get_st_shndx();
8058 bool is_ordinary;
8059 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8060 if (!is_ordinary)
8061 {
8062 object->error(_("local symbol %u has bad shndx %u"),
8063 r_sym, shndx);
8064 break;
8065 }
8066
8067 if (!parameters->doing_static_link())
8068 got->add_local_pair_with_rel(object, r_sym, shndx,
8069 GOT_TYPE_TLS_PAIR,
8070 target->rel_dyn_section(layout),
8071 elfcpp::R_ARM_TLS_DTPMOD32, 0);
8072 else
8073 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8074 object, r_sym);
8075 }
8076 else
8077 // FIXME: TLS optimization not supported yet.
8078 gold_unreachable();
8079 break;
8080
8081 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8082 if (optimized_type == tls::TLSOPT_NONE)
8083 {
8084 // Create a GOT entry for the module index.
8085 target->got_mod_index_entry(symtab, layout, object);
8086 }
8087 else
8088 // FIXME: TLS optimization not supported yet.
8089 gold_unreachable();
8090 break;
8091
8092 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8093 break;
8094
8095 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8096 layout->set_has_static_tls();
8097 if (optimized_type == tls::TLSOPT_NONE)
8098 {
8099 // Create a GOT entry for the tp-relative offset.
8100 Arm_output_data_got<big_endian>* got
8101 = target->got_section(symtab, layout);
8102 unsigned int r_sym =
8103 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8104 if (!parameters->doing_static_link())
8105 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8106 target->rel_dyn_section(layout),
8107 elfcpp::R_ARM_TLS_TPOFF32);
8108 else if (!object->local_has_got_offset(r_sym,
8109 GOT_TYPE_TLS_OFFSET))
8110 {
8111 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8112 unsigned int got_offset =
8113 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8114 got->add_static_reloc(got_offset,
8115 elfcpp::R_ARM_TLS_TPOFF32, object,
8116 r_sym);
8117 }
8118 }
8119 else
8120 // FIXME: TLS optimization not supported yet.
8121 gold_unreachable();
8122 break;
8123
8124 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8125 layout->set_has_static_tls();
8126 if (output_is_shared)
8127 {
8128 // We need to create a dynamic relocation.
8129 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8130 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8131 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8132 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8133 output_section, data_shndx,
8134 reloc.get_r_offset());
8135 }
8136 break;
8137
8138 default:
8139 gold_unreachable();
8140 }
8141 }
8142 break;
8143
8144 case elfcpp::R_ARM_PC24:
8145 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8146 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8147 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8148 default:
8149 unsupported_reloc_local(object, r_type);
8150 break;
8151 }
8152 }
8153
8154 // Report an unsupported relocation against a global symbol.
8155
8156 template<bool big_endian>
8157 void
8158 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8159 Sized_relobj_file<32, big_endian>* object,
8160 unsigned int r_type,
8161 Symbol* gsym)
8162 {
8163 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8164 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8165 }
8166
8167 template<bool big_endian>
8168 inline bool
8169 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8170 unsigned int r_type)
8171 {
8172 switch (r_type)
8173 {
8174 case elfcpp::R_ARM_PC24:
8175 case elfcpp::R_ARM_THM_CALL:
8176 case elfcpp::R_ARM_PLT32:
8177 case elfcpp::R_ARM_CALL:
8178 case elfcpp::R_ARM_JUMP24:
8179 case elfcpp::R_ARM_THM_JUMP24:
8180 case elfcpp::R_ARM_SBREL31:
8181 case elfcpp::R_ARM_PREL31:
8182 case elfcpp::R_ARM_THM_JUMP19:
8183 case elfcpp::R_ARM_THM_JUMP6:
8184 case elfcpp::R_ARM_THM_JUMP11:
8185 case elfcpp::R_ARM_THM_JUMP8:
8186 // All the relocations above are branches except SBREL31 and PREL31.
8187 return false;
8188
8189 default:
8190 // Be conservative and assume this is a function pointer.
8191 return true;
8192 }
8193 }
8194
8195 template<bool big_endian>
8196 inline bool
8197 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8198 Symbol_table*,
8199 Layout*,
8200 Target_arm<big_endian>* target,
8201 Sized_relobj_file<32, big_endian>*,
8202 unsigned int,
8203 Output_section*,
8204 const elfcpp::Rel<32, big_endian>&,
8205 unsigned int r_type,
8206 const elfcpp::Sym<32, big_endian>&)
8207 {
8208 r_type = target->get_real_reloc_type(r_type);
8209 return possible_function_pointer_reloc(r_type);
8210 }
8211
8212 template<bool big_endian>
8213 inline bool
8214 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8215 Symbol_table*,
8216 Layout*,
8217 Target_arm<big_endian>* target,
8218 Sized_relobj_file<32, big_endian>*,
8219 unsigned int,
8220 Output_section*,
8221 const elfcpp::Rel<32, big_endian>&,
8222 unsigned int r_type,
8223 Symbol* gsym)
8224 {
8225 // GOT is not a function.
8226 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8227 return false;
8228
8229 r_type = target->get_real_reloc_type(r_type);
8230 return possible_function_pointer_reloc(r_type);
8231 }
8232
8233 // Scan a relocation for a global symbol.
8234
8235 template<bool big_endian>
8236 inline void
8237 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8238 Layout* layout,
8239 Target_arm* target,
8240 Sized_relobj_file<32, big_endian>* object,
8241 unsigned int data_shndx,
8242 Output_section* output_section,
8243 const elfcpp::Rel<32, big_endian>& reloc,
8244 unsigned int r_type,
8245 Symbol* gsym)
8246 {
8247 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8248 // section. We check here to avoid creating a dynamic reloc against
8249 // _GLOBAL_OFFSET_TABLE_.
8250 if (!target->has_got_section()
8251 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8252 target->got_section(symtab, layout);
8253
8254 r_type = get_real_reloc_type(r_type);
8255 switch (r_type)
8256 {
8257 case elfcpp::R_ARM_NONE:
8258 case elfcpp::R_ARM_V4BX:
8259 case elfcpp::R_ARM_GNU_VTENTRY:
8260 case elfcpp::R_ARM_GNU_VTINHERIT:
8261 break;
8262
8263 case elfcpp::R_ARM_ABS32:
8264 case elfcpp::R_ARM_ABS16:
8265 case elfcpp::R_ARM_ABS12:
8266 case elfcpp::R_ARM_THM_ABS5:
8267 case elfcpp::R_ARM_ABS8:
8268 case elfcpp::R_ARM_BASE_ABS:
8269 case elfcpp::R_ARM_MOVW_ABS_NC:
8270 case elfcpp::R_ARM_MOVT_ABS:
8271 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8272 case elfcpp::R_ARM_THM_MOVT_ABS:
8273 case elfcpp::R_ARM_ABS32_NOI:
8274 // Absolute addressing relocations.
8275 {
8276 // Make a PLT entry if necessary.
8277 if (this->symbol_needs_plt_entry(gsym))
8278 {
8279 target->make_plt_entry(symtab, layout, gsym);
8280 // Since this is not a PC-relative relocation, we may be
8281 // taking the address of a function. In that case we need to
8282 // set the entry in the dynamic symbol table to the address of
8283 // the PLT entry.
8284 if (gsym->is_from_dynobj() && !parameters->options().shared())
8285 gsym->set_needs_dynsym_value();
8286 }
8287 // Make a dynamic relocation if necessary.
8288 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8289 {
8290 if (gsym->may_need_copy_reloc())
8291 {
8292 target->copy_reloc(symtab, layout, object,
8293 data_shndx, output_section, gsym, reloc);
8294 }
8295 else if ((r_type == elfcpp::R_ARM_ABS32
8296 || r_type == elfcpp::R_ARM_ABS32_NOI)
8297 && gsym->can_use_relative_reloc(false))
8298 {
8299 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8300 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8301 output_section, object,
8302 data_shndx, reloc.get_r_offset());
8303 }
8304 else
8305 {
8306 check_non_pic(object, r_type);
8307 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8308 rel_dyn->add_global(gsym, r_type, output_section, object,
8309 data_shndx, reloc.get_r_offset());
8310 }
8311 }
8312 }
8313 break;
8314
8315 case elfcpp::R_ARM_GOTOFF32:
8316 case elfcpp::R_ARM_GOTOFF12:
8317 // We need a GOT section.
8318 target->got_section(symtab, layout);
8319 break;
8320
8321 case elfcpp::R_ARM_REL32:
8322 case elfcpp::R_ARM_LDR_PC_G0:
8323 case elfcpp::R_ARM_SBREL32:
8324 case elfcpp::R_ARM_THM_PC8:
8325 case elfcpp::R_ARM_BASE_PREL:
8326 case elfcpp::R_ARM_MOVW_PREL_NC:
8327 case elfcpp::R_ARM_MOVT_PREL:
8328 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8329 case elfcpp::R_ARM_THM_MOVT_PREL:
8330 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8331 case elfcpp::R_ARM_THM_PC12:
8332 case elfcpp::R_ARM_REL32_NOI:
8333 case elfcpp::R_ARM_ALU_PC_G0_NC:
8334 case elfcpp::R_ARM_ALU_PC_G0:
8335 case elfcpp::R_ARM_ALU_PC_G1_NC:
8336 case elfcpp::R_ARM_ALU_PC_G1:
8337 case elfcpp::R_ARM_ALU_PC_G2:
8338 case elfcpp::R_ARM_LDR_PC_G1:
8339 case elfcpp::R_ARM_LDR_PC_G2:
8340 case elfcpp::R_ARM_LDRS_PC_G0:
8341 case elfcpp::R_ARM_LDRS_PC_G1:
8342 case elfcpp::R_ARM_LDRS_PC_G2:
8343 case elfcpp::R_ARM_LDC_PC_G0:
8344 case elfcpp::R_ARM_LDC_PC_G1:
8345 case elfcpp::R_ARM_LDC_PC_G2:
8346 case elfcpp::R_ARM_ALU_SB_G0_NC:
8347 case elfcpp::R_ARM_ALU_SB_G0:
8348 case elfcpp::R_ARM_ALU_SB_G1_NC:
8349 case elfcpp::R_ARM_ALU_SB_G1:
8350 case elfcpp::R_ARM_ALU_SB_G2:
8351 case elfcpp::R_ARM_LDR_SB_G0:
8352 case elfcpp::R_ARM_LDR_SB_G1:
8353 case elfcpp::R_ARM_LDR_SB_G2:
8354 case elfcpp::R_ARM_LDRS_SB_G0:
8355 case elfcpp::R_ARM_LDRS_SB_G1:
8356 case elfcpp::R_ARM_LDRS_SB_G2:
8357 case elfcpp::R_ARM_LDC_SB_G0:
8358 case elfcpp::R_ARM_LDC_SB_G1:
8359 case elfcpp::R_ARM_LDC_SB_G2:
8360 case elfcpp::R_ARM_MOVW_BREL_NC:
8361 case elfcpp::R_ARM_MOVT_BREL:
8362 case elfcpp::R_ARM_MOVW_BREL:
8363 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8364 case elfcpp::R_ARM_THM_MOVT_BREL:
8365 case elfcpp::R_ARM_THM_MOVW_BREL:
8366 // Relative addressing relocations.
8367 {
8368 // Make a dynamic relocation if necessary.
8369 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8370 {
8371 if (target->may_need_copy_reloc(gsym))
8372 {
8373 target->copy_reloc(symtab, layout, object,
8374 data_shndx, output_section, gsym, reloc);
8375 }
8376 else
8377 {
8378 check_non_pic(object, r_type);
8379 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8380 rel_dyn->add_global(gsym, r_type, output_section, object,
8381 data_shndx, reloc.get_r_offset());
8382 }
8383 }
8384 }
8385 break;
8386
8387 case elfcpp::R_ARM_THM_CALL:
8388 case elfcpp::R_ARM_PLT32:
8389 case elfcpp::R_ARM_CALL:
8390 case elfcpp::R_ARM_JUMP24:
8391 case elfcpp::R_ARM_THM_JUMP24:
8392 case elfcpp::R_ARM_SBREL31:
8393 case elfcpp::R_ARM_PREL31:
8394 case elfcpp::R_ARM_THM_JUMP19:
8395 case elfcpp::R_ARM_THM_JUMP6:
8396 case elfcpp::R_ARM_THM_JUMP11:
8397 case elfcpp::R_ARM_THM_JUMP8:
8398 // All the relocation above are branches except for the PREL31 ones.
8399 // A PREL31 relocation can point to a personality function in a shared
8400 // library. In that case we want to use a PLT because we want to
8401 // call the personality routine and the dynamic linkers we care about
8402 // do not support dynamic PREL31 relocations. An REL31 relocation may
8403 // point to a function whose unwinding behaviour is being described but
8404 // we will not mistakenly generate a PLT for that because we should use
8405 // a local section symbol.
8406
8407 // If the symbol is fully resolved, this is just a relative
8408 // local reloc. Otherwise we need a PLT entry.
8409 if (gsym->final_value_is_known())
8410 break;
8411 // If building a shared library, we can also skip the PLT entry
8412 // if the symbol is defined in the output file and is protected
8413 // or hidden.
8414 if (gsym->is_defined()
8415 && !gsym->is_from_dynobj()
8416 && !gsym->is_preemptible())
8417 break;
8418 target->make_plt_entry(symtab, layout, gsym);
8419 break;
8420
8421 case elfcpp::R_ARM_GOT_BREL:
8422 case elfcpp::R_ARM_GOT_ABS:
8423 case elfcpp::R_ARM_GOT_PREL:
8424 {
8425 // The symbol requires a GOT entry.
8426 Arm_output_data_got<big_endian>* got =
8427 target->got_section(symtab, layout);
8428 if (gsym->final_value_is_known())
8429 got->add_global(gsym, GOT_TYPE_STANDARD);
8430 else
8431 {
8432 // If this symbol is not fully resolved, we need to add a
8433 // GOT entry with a dynamic relocation.
8434 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8435 if (gsym->is_from_dynobj()
8436 || gsym->is_undefined()
8437 || gsym->is_preemptible()
8438 || (gsym->visibility() == elfcpp::STV_PROTECTED
8439 && parameters->options().shared()))
8440 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8441 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8442 else
8443 {
8444 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8445 rel_dyn->add_global_relative(
8446 gsym, elfcpp::R_ARM_RELATIVE, got,
8447 gsym->got_offset(GOT_TYPE_STANDARD));
8448 }
8449 }
8450 }
8451 break;
8452
8453 case elfcpp::R_ARM_TARGET1:
8454 case elfcpp::R_ARM_TARGET2:
8455 // These should have been mapped to other types already.
8456 // Fall through.
8457 case elfcpp::R_ARM_COPY:
8458 case elfcpp::R_ARM_GLOB_DAT:
8459 case elfcpp::R_ARM_JUMP_SLOT:
8460 case elfcpp::R_ARM_RELATIVE:
8461 // These are relocations which should only be seen by the
8462 // dynamic linker, and should never be seen here.
8463 gold_error(_("%s: unexpected reloc %u in object file"),
8464 object->name().c_str(), r_type);
8465 break;
8466
8467 // These are initial tls relocs, which are expected when
8468 // linking.
8469 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8470 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8471 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8472 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8473 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8474 {
8475 const bool is_final = gsym->final_value_is_known();
8476 const tls::Tls_optimization optimized_type
8477 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8478 switch (r_type)
8479 {
8480 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8481 if (optimized_type == tls::TLSOPT_NONE)
8482 {
8483 // Create a pair of GOT entries for the module index and
8484 // dtv-relative offset.
8485 Arm_output_data_got<big_endian>* got
8486 = target->got_section(symtab, layout);
8487 if (!parameters->doing_static_link())
8488 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8489 target->rel_dyn_section(layout),
8490 elfcpp::R_ARM_TLS_DTPMOD32,
8491 elfcpp::R_ARM_TLS_DTPOFF32);
8492 else
8493 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8494 }
8495 else
8496 // FIXME: TLS optimization not supported yet.
8497 gold_unreachable();
8498 break;
8499
8500 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8501 if (optimized_type == tls::TLSOPT_NONE)
8502 {
8503 // Create a GOT entry for the module index.
8504 target->got_mod_index_entry(symtab, layout, object);
8505 }
8506 else
8507 // FIXME: TLS optimization not supported yet.
8508 gold_unreachable();
8509 break;
8510
8511 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8512 break;
8513
8514 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8515 layout->set_has_static_tls();
8516 if (optimized_type == tls::TLSOPT_NONE)
8517 {
8518 // Create a GOT entry for the tp-relative offset.
8519 Arm_output_data_got<big_endian>* got
8520 = target->got_section(symtab, layout);
8521 if (!parameters->doing_static_link())
8522 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8523 target->rel_dyn_section(layout),
8524 elfcpp::R_ARM_TLS_TPOFF32);
8525 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8526 {
8527 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8528 unsigned int got_offset =
8529 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8530 got->add_static_reloc(got_offset,
8531 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8532 }
8533 }
8534 else
8535 // FIXME: TLS optimization not supported yet.
8536 gold_unreachable();
8537 break;
8538
8539 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8540 layout->set_has_static_tls();
8541 if (parameters->options().shared())
8542 {
8543 // We need to create a dynamic relocation.
8544 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8545 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8546 output_section, object,
8547 data_shndx, reloc.get_r_offset());
8548 }
8549 break;
8550
8551 default:
8552 gold_unreachable();
8553 }
8554 }
8555 break;
8556
8557 case elfcpp::R_ARM_PC24:
8558 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8559 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8560 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8561 default:
8562 unsupported_reloc_global(object, r_type, gsym);
8563 break;
8564 }
8565 }
8566
8567 // Process relocations for gc.
8568
8569 template<bool big_endian>
8570 void
8571 Target_arm<big_endian>::gc_process_relocs(
8572 Symbol_table* symtab,
8573 Layout* layout,
8574 Sized_relobj_file<32, big_endian>* object,
8575 unsigned int data_shndx,
8576 unsigned int,
8577 const unsigned char* prelocs,
8578 size_t reloc_count,
8579 Output_section* output_section,
8580 bool needs_special_offset_handling,
8581 size_t local_symbol_count,
8582 const unsigned char* plocal_symbols)
8583 {
8584 typedef Target_arm<big_endian> Arm;
8585 typedef typename Target_arm<big_endian>::Scan Scan;
8586
8587 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8588 typename Target_arm::Relocatable_size_for_reloc>(
8589 symtab,
8590 layout,
8591 this,
8592 object,
8593 data_shndx,
8594 prelocs,
8595 reloc_count,
8596 output_section,
8597 needs_special_offset_handling,
8598 local_symbol_count,
8599 plocal_symbols);
8600 }
8601
8602 // Scan relocations for a section.
8603
8604 template<bool big_endian>
8605 void
8606 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8607 Layout* layout,
8608 Sized_relobj_file<32, big_endian>* object,
8609 unsigned int data_shndx,
8610 unsigned int sh_type,
8611 const unsigned char* prelocs,
8612 size_t reloc_count,
8613 Output_section* output_section,
8614 bool needs_special_offset_handling,
8615 size_t local_symbol_count,
8616 const unsigned char* plocal_symbols)
8617 {
8618 typedef typename Target_arm<big_endian>::Scan Scan;
8619 if (sh_type == elfcpp::SHT_RELA)
8620 {
8621 gold_error(_("%s: unsupported RELA reloc section"),
8622 object->name().c_str());
8623 return;
8624 }
8625
8626 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8627 symtab,
8628 layout,
8629 this,
8630 object,
8631 data_shndx,
8632 prelocs,
8633 reloc_count,
8634 output_section,
8635 needs_special_offset_handling,
8636 local_symbol_count,
8637 plocal_symbols);
8638 }
8639
8640 // Finalize the sections.
8641
8642 template<bool big_endian>
8643 void
8644 Target_arm<big_endian>::do_finalize_sections(
8645 Layout* layout,
8646 const Input_objects* input_objects,
8647 Symbol_table*)
8648 {
8649 bool merged_any_attributes = false;
8650 // Merge processor-specific flags.
8651 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8652 p != input_objects->relobj_end();
8653 ++p)
8654 {
8655 Arm_relobj<big_endian>* arm_relobj =
8656 Arm_relobj<big_endian>::as_arm_relobj(*p);
8657 if (arm_relobj->merge_flags_and_attributes())
8658 {
8659 this->merge_processor_specific_flags(
8660 arm_relobj->name(),
8661 arm_relobj->processor_specific_flags());
8662 this->merge_object_attributes(arm_relobj->name().c_str(),
8663 arm_relobj->attributes_section_data());
8664 merged_any_attributes = true;
8665 }
8666 }
8667
8668 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8669 p != input_objects->dynobj_end();
8670 ++p)
8671 {
8672 Arm_dynobj<big_endian>* arm_dynobj =
8673 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8674 this->merge_processor_specific_flags(
8675 arm_dynobj->name(),
8676 arm_dynobj->processor_specific_flags());
8677 this->merge_object_attributes(arm_dynobj->name().c_str(),
8678 arm_dynobj->attributes_section_data());
8679 merged_any_attributes = true;
8680 }
8681
8682 // Create an empty uninitialized attribute section if we still don't have it
8683 // at this moment. This happens if there is no attributes sections in all
8684 // inputs.
8685 if (this->attributes_section_data_ == NULL)
8686 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8687
8688 const Object_attribute* cpu_arch_attr =
8689 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8690 // Check if we need to use Cortex-A8 workaround.
8691 if (parameters->options().user_set_fix_cortex_a8())
8692 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8693 else
8694 {
8695 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8696 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8697 // profile.
8698 const Object_attribute* cpu_arch_profile_attr =
8699 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8700 this->fix_cortex_a8_ =
8701 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8702 && (cpu_arch_profile_attr->int_value() == 'A'
8703 || cpu_arch_profile_attr->int_value() == 0));
8704 }
8705
8706 // Check if we can use V4BX interworking.
8707 // The V4BX interworking stub contains BX instruction,
8708 // which is not specified for some profiles.
8709 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8710 && !this->may_use_v4t_interworking())
8711 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8712 "the target profile does not support BX instruction"));
8713
8714 // Fill in some more dynamic tags.
8715 const Reloc_section* rel_plt = (this->plt_ == NULL
8716 ? NULL
8717 : this->plt_->rel_plt());
8718 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8719 this->rel_dyn_, true, false);
8720
8721 // Emit any relocs we saved in an attempt to avoid generating COPY
8722 // relocs.
8723 if (this->copy_relocs_.any_saved_relocs())
8724 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8725
8726 // Handle the .ARM.exidx section.
8727 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8728
8729 if (!parameters->options().relocatable())
8730 {
8731 if (exidx_section != NULL
8732 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8733 {
8734 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8735 // the .ARM.exidx section.
8736 if (!layout->script_options()->saw_phdrs_clause())
8737 {
8738 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8739 0)
8740 == NULL);
8741 Output_segment* exidx_segment =
8742 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8743 exidx_segment->add_output_section_to_nonload(exidx_section,
8744 elfcpp::PF_R);
8745 }
8746 }
8747 }
8748
8749 // Create an .ARM.attributes section if we have merged any attributes
8750 // from inputs.
8751 if (merged_any_attributes)
8752 {
8753 Output_attributes_section_data* attributes_section =
8754 new Output_attributes_section_data(*this->attributes_section_data_);
8755 layout->add_output_section_data(".ARM.attributes",
8756 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8757 attributes_section, ORDER_INVALID,
8758 false);
8759 }
8760
8761 // Fix up links in section EXIDX headers.
8762 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8763 p != layout->section_list().end();
8764 ++p)
8765 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8766 {
8767 Arm_output_section<big_endian>* os =
8768 Arm_output_section<big_endian>::as_arm_output_section(*p);
8769 os->set_exidx_section_link();
8770 }
8771 }
8772
8773 // Return whether a direct absolute static relocation needs to be applied.
8774 // In cases where Scan::local() or Scan::global() has created
8775 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8776 // of the relocation is carried in the data, and we must not
8777 // apply the static relocation.
8778
8779 template<bool big_endian>
8780 inline bool
8781 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8782 const Sized_symbol<32>* gsym,
8783 unsigned int r_type,
8784 bool is_32bit,
8785 Output_section* output_section)
8786 {
8787 // If the output section is not allocated, then we didn't call
8788 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8789 // the reloc here.
8790 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8791 return true;
8792
8793 int ref_flags = Scan::get_reference_flags(r_type);
8794
8795 // For local symbols, we will have created a non-RELATIVE dynamic
8796 // relocation only if (a) the output is position independent,
8797 // (b) the relocation is absolute (not pc- or segment-relative), and
8798 // (c) the relocation is not 32 bits wide.
8799 if (gsym == NULL)
8800 return !(parameters->options().output_is_position_independent()
8801 && (ref_flags & Symbol::ABSOLUTE_REF)
8802 && !is_32bit);
8803
8804 // For global symbols, we use the same helper routines used in the
8805 // scan pass. If we did not create a dynamic relocation, or if we
8806 // created a RELATIVE dynamic relocation, we should apply the static
8807 // relocation.
8808 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8809 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8810 && gsym->can_use_relative_reloc(ref_flags
8811 & Symbol::FUNCTION_CALL);
8812 return !has_dyn || is_rel;
8813 }
8814
8815 // Perform a relocation.
8816
8817 template<bool big_endian>
8818 inline bool
8819 Target_arm<big_endian>::Relocate::relocate(
8820 const Relocate_info<32, big_endian>* relinfo,
8821 Target_arm* target,
8822 Output_section* output_section,
8823 size_t relnum,
8824 const elfcpp::Rel<32, big_endian>& rel,
8825 unsigned int r_type,
8826 const Sized_symbol<32>* gsym,
8827 const Symbol_value<32>* psymval,
8828 unsigned char* view,
8829 Arm_address address,
8830 section_size_type view_size)
8831 {
8832 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8833
8834 r_type = get_real_reloc_type(r_type);
8835 const Arm_reloc_property* reloc_property =
8836 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8837 if (reloc_property == NULL)
8838 {
8839 std::string reloc_name =
8840 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8841 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8842 _("cannot relocate %s in object file"),
8843 reloc_name.c_str());
8844 return true;
8845 }
8846
8847 const Arm_relobj<big_endian>* object =
8848 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8849
8850 // If the final branch target of a relocation is THUMB instruction, this
8851 // is 1. Otherwise it is 0.
8852 Arm_address thumb_bit = 0;
8853 Symbol_value<32> symval;
8854 bool is_weakly_undefined_without_plt = false;
8855 bool have_got_offset = false;
8856 unsigned int got_offset = 0;
8857
8858 // If the relocation uses the GOT entry of a symbol instead of the symbol
8859 // itself, we don't care about whether the symbol is defined or what kind
8860 // of symbol it is.
8861 if (reloc_property->uses_got_entry())
8862 {
8863 // Get the GOT offset.
8864 // The GOT pointer points to the end of the GOT section.
8865 // We need to subtract the size of the GOT section to get
8866 // the actual offset to use in the relocation.
8867 // TODO: We should move GOT offset computing code in TLS relocations
8868 // to here.
8869 switch (r_type)
8870 {
8871 case elfcpp::R_ARM_GOT_BREL:
8872 case elfcpp::R_ARM_GOT_PREL:
8873 if (gsym != NULL)
8874 {
8875 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8876 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8877 - target->got_size());
8878 }
8879 else
8880 {
8881 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8882 gold_assert(object->local_has_got_offset(r_sym,
8883 GOT_TYPE_STANDARD));
8884 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8885 - target->got_size());
8886 }
8887 have_got_offset = true;
8888 break;
8889
8890 default:
8891 break;
8892 }
8893 }
8894 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8895 {
8896 if (gsym != NULL)
8897 {
8898 // This is a global symbol. Determine if we use PLT and if the
8899 // final target is THUMB.
8900 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8901 {
8902 // This uses a PLT, change the symbol value.
8903 symval.set_output_value(target->plt_section()->address()
8904 + gsym->plt_offset());
8905 psymval = &symval;
8906 }
8907 else if (gsym->is_weak_undefined())
8908 {
8909 // This is a weakly undefined symbol and we do not use PLT
8910 // for this relocation. A branch targeting this symbol will
8911 // be converted into an NOP.
8912 is_weakly_undefined_without_plt = true;
8913 }
8914 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8915 {
8916 // This relocation uses the symbol value but the symbol is
8917 // undefined. Exit early and have the caller reporting an
8918 // error.
8919 return true;
8920 }
8921 else
8922 {
8923 // Set thumb bit if symbol:
8924 // -Has type STT_ARM_TFUNC or
8925 // -Has type STT_FUNC, is defined and with LSB in value set.
8926 thumb_bit =
8927 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8928 || (gsym->type() == elfcpp::STT_FUNC
8929 && !gsym->is_undefined()
8930 && ((psymval->value(object, 0) & 1) != 0)))
8931 ? 1
8932 : 0);
8933 }
8934 }
8935 else
8936 {
8937 // This is a local symbol. Determine if the final target is THUMB.
8938 // We saved this information when all the local symbols were read.
8939 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8940 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8941 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8942 }
8943 }
8944 else
8945 {
8946 // This is a fake relocation synthesized for a stub. It does not have
8947 // a real symbol. We just look at the LSB of the symbol value to
8948 // determine if the target is THUMB or not.
8949 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8950 }
8951
8952 // Strip LSB if this points to a THUMB target.
8953 if (thumb_bit != 0
8954 && reloc_property->uses_thumb_bit()
8955 && ((psymval->value(object, 0) & 1) != 0))
8956 {
8957 Arm_address stripped_value =
8958 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8959 symval.set_output_value(stripped_value);
8960 psymval = &symval;
8961 }
8962
8963 // To look up relocation stubs, we need to pass the symbol table index of
8964 // a local symbol.
8965 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8966
8967 // Get the addressing origin of the output segment defining the
8968 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8969 Arm_address sym_origin = 0;
8970 if (reloc_property->uses_symbol_base())
8971 {
8972 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8973 // R_ARM_BASE_ABS with the NULL symbol will give the
8974 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8975 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8976 sym_origin = target->got_plt_section()->address();
8977 else if (gsym == NULL)
8978 sym_origin = 0;
8979 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8980 sym_origin = gsym->output_segment()->vaddr();
8981 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8982 sym_origin = gsym->output_data()->address();
8983
8984 // TODO: Assumes the segment base to be zero for the global symbols
8985 // till the proper support for the segment-base-relative addressing
8986 // will be implemented. This is consistent with GNU ld.
8987 }
8988
8989 // For relative addressing relocation, find out the relative address base.
8990 Arm_address relative_address_base = 0;
8991 switch(reloc_property->relative_address_base())
8992 {
8993 case Arm_reloc_property::RAB_NONE:
8994 // Relocations with relative address bases RAB_TLS and RAB_tp are
8995 // handled by relocate_tls. So we do not need to do anything here.
8996 case Arm_reloc_property::RAB_TLS:
8997 case Arm_reloc_property::RAB_tp:
8998 break;
8999 case Arm_reloc_property::RAB_B_S:
9000 relative_address_base = sym_origin;
9001 break;
9002 case Arm_reloc_property::RAB_GOT_ORG:
9003 relative_address_base = target->got_plt_section()->address();
9004 break;
9005 case Arm_reloc_property::RAB_P:
9006 relative_address_base = address;
9007 break;
9008 case Arm_reloc_property::RAB_Pa:
9009 relative_address_base = address & 0xfffffffcU;
9010 break;
9011 default:
9012 gold_unreachable();
9013 }
9014
9015 typename Arm_relocate_functions::Status reloc_status =
9016 Arm_relocate_functions::STATUS_OKAY;
9017 bool check_overflow = reloc_property->checks_overflow();
9018 switch (r_type)
9019 {
9020 case elfcpp::R_ARM_NONE:
9021 break;
9022
9023 case elfcpp::R_ARM_ABS8:
9024 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9025 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9026 break;
9027
9028 case elfcpp::R_ARM_ABS12:
9029 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9030 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9031 break;
9032
9033 case elfcpp::R_ARM_ABS16:
9034 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9035 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9036 break;
9037
9038 case elfcpp::R_ARM_ABS32:
9039 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9040 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9041 thumb_bit);
9042 break;
9043
9044 case elfcpp::R_ARM_ABS32_NOI:
9045 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9046 // No thumb bit for this relocation: (S + A)
9047 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9048 0);
9049 break;
9050
9051 case elfcpp::R_ARM_MOVW_ABS_NC:
9052 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9053 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9054 0, thumb_bit,
9055 check_overflow);
9056 break;
9057
9058 case elfcpp::R_ARM_MOVT_ABS:
9059 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9060 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9061 break;
9062
9063 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9064 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9065 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9066 0, thumb_bit, false);
9067 break;
9068
9069 case elfcpp::R_ARM_THM_MOVT_ABS:
9070 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9071 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9072 psymval, 0);
9073 break;
9074
9075 case elfcpp::R_ARM_MOVW_PREL_NC:
9076 case elfcpp::R_ARM_MOVW_BREL_NC:
9077 case elfcpp::R_ARM_MOVW_BREL:
9078 reloc_status =
9079 Arm_relocate_functions::movw(view, object, psymval,
9080 relative_address_base, thumb_bit,
9081 check_overflow);
9082 break;
9083
9084 case elfcpp::R_ARM_MOVT_PREL:
9085 case elfcpp::R_ARM_MOVT_BREL:
9086 reloc_status =
9087 Arm_relocate_functions::movt(view, object, psymval,
9088 relative_address_base);
9089 break;
9090
9091 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9092 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9093 case elfcpp::R_ARM_THM_MOVW_BREL:
9094 reloc_status =
9095 Arm_relocate_functions::thm_movw(view, object, psymval,
9096 relative_address_base,
9097 thumb_bit, check_overflow);
9098 break;
9099
9100 case elfcpp::R_ARM_THM_MOVT_PREL:
9101 case elfcpp::R_ARM_THM_MOVT_BREL:
9102 reloc_status =
9103 Arm_relocate_functions::thm_movt(view, object, psymval,
9104 relative_address_base);
9105 break;
9106
9107 case elfcpp::R_ARM_REL32:
9108 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9109 address, thumb_bit);
9110 break;
9111
9112 case elfcpp::R_ARM_THM_ABS5:
9113 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9114 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9115 break;
9116
9117 // Thumb long branches.
9118 case elfcpp::R_ARM_THM_CALL:
9119 case elfcpp::R_ARM_THM_XPC22:
9120 case elfcpp::R_ARM_THM_JUMP24:
9121 reloc_status =
9122 Arm_relocate_functions::thumb_branch_common(
9123 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9124 thumb_bit, is_weakly_undefined_without_plt);
9125 break;
9126
9127 case elfcpp::R_ARM_GOTOFF32:
9128 {
9129 Arm_address got_origin;
9130 got_origin = target->got_plt_section()->address();
9131 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9132 got_origin, thumb_bit);
9133 }
9134 break;
9135
9136 case elfcpp::R_ARM_BASE_PREL:
9137 gold_assert(gsym != NULL);
9138 reloc_status =
9139 Arm_relocate_functions::base_prel(view, sym_origin, address);
9140 break;
9141
9142 case elfcpp::R_ARM_BASE_ABS:
9143 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9144 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9145 break;
9146
9147 case elfcpp::R_ARM_GOT_BREL:
9148 gold_assert(have_got_offset);
9149 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9150 break;
9151
9152 case elfcpp::R_ARM_GOT_PREL:
9153 gold_assert(have_got_offset);
9154 // Get the address origin for GOT PLT, which is allocated right
9155 // after the GOT section, to calculate an absolute address of
9156 // the symbol GOT entry (got_origin + got_offset).
9157 Arm_address got_origin;
9158 got_origin = target->got_plt_section()->address();
9159 reloc_status = Arm_relocate_functions::got_prel(view,
9160 got_origin + got_offset,
9161 address);
9162 break;
9163
9164 case elfcpp::R_ARM_PLT32:
9165 case elfcpp::R_ARM_CALL:
9166 case elfcpp::R_ARM_JUMP24:
9167 case elfcpp::R_ARM_XPC25:
9168 gold_assert(gsym == NULL
9169 || gsym->has_plt_offset()
9170 || gsym->final_value_is_known()
9171 || (gsym->is_defined()
9172 && !gsym->is_from_dynobj()
9173 && !gsym->is_preemptible()));
9174 reloc_status =
9175 Arm_relocate_functions::arm_branch_common(
9176 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9177 thumb_bit, is_weakly_undefined_without_plt);
9178 break;
9179
9180 case elfcpp::R_ARM_THM_JUMP19:
9181 reloc_status =
9182 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9183 thumb_bit);
9184 break;
9185
9186 case elfcpp::R_ARM_THM_JUMP6:
9187 reloc_status =
9188 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9189 break;
9190
9191 case elfcpp::R_ARM_THM_JUMP8:
9192 reloc_status =
9193 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9194 break;
9195
9196 case elfcpp::R_ARM_THM_JUMP11:
9197 reloc_status =
9198 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9199 break;
9200
9201 case elfcpp::R_ARM_PREL31:
9202 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9203 address, thumb_bit);
9204 break;
9205
9206 case elfcpp::R_ARM_V4BX:
9207 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9208 {
9209 const bool is_v4bx_interworking =
9210 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9211 reloc_status =
9212 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9213 is_v4bx_interworking);
9214 }
9215 break;
9216
9217 case elfcpp::R_ARM_THM_PC8:
9218 reloc_status =
9219 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9220 break;
9221
9222 case elfcpp::R_ARM_THM_PC12:
9223 reloc_status =
9224 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9225 break;
9226
9227 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9228 reloc_status =
9229 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9230 thumb_bit);
9231 break;
9232
9233 case elfcpp::R_ARM_ALU_PC_G0_NC:
9234 case elfcpp::R_ARM_ALU_PC_G0:
9235 case elfcpp::R_ARM_ALU_PC_G1_NC:
9236 case elfcpp::R_ARM_ALU_PC_G1:
9237 case elfcpp::R_ARM_ALU_PC_G2:
9238 case elfcpp::R_ARM_ALU_SB_G0_NC:
9239 case elfcpp::R_ARM_ALU_SB_G0:
9240 case elfcpp::R_ARM_ALU_SB_G1_NC:
9241 case elfcpp::R_ARM_ALU_SB_G1:
9242 case elfcpp::R_ARM_ALU_SB_G2:
9243 reloc_status =
9244 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9245 reloc_property->group_index(),
9246 relative_address_base,
9247 thumb_bit, check_overflow);
9248 break;
9249
9250 case elfcpp::R_ARM_LDR_PC_G0:
9251 case elfcpp::R_ARM_LDR_PC_G1:
9252 case elfcpp::R_ARM_LDR_PC_G2:
9253 case elfcpp::R_ARM_LDR_SB_G0:
9254 case elfcpp::R_ARM_LDR_SB_G1:
9255 case elfcpp::R_ARM_LDR_SB_G2:
9256 reloc_status =
9257 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9258 reloc_property->group_index(),
9259 relative_address_base);
9260 break;
9261
9262 case elfcpp::R_ARM_LDRS_PC_G0:
9263 case elfcpp::R_ARM_LDRS_PC_G1:
9264 case elfcpp::R_ARM_LDRS_PC_G2:
9265 case elfcpp::R_ARM_LDRS_SB_G0:
9266 case elfcpp::R_ARM_LDRS_SB_G1:
9267 case elfcpp::R_ARM_LDRS_SB_G2:
9268 reloc_status =
9269 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9270 reloc_property->group_index(),
9271 relative_address_base);
9272 break;
9273
9274 case elfcpp::R_ARM_LDC_PC_G0:
9275 case elfcpp::R_ARM_LDC_PC_G1:
9276 case elfcpp::R_ARM_LDC_PC_G2:
9277 case elfcpp::R_ARM_LDC_SB_G0:
9278 case elfcpp::R_ARM_LDC_SB_G1:
9279 case elfcpp::R_ARM_LDC_SB_G2:
9280 reloc_status =
9281 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9282 reloc_property->group_index(),
9283 relative_address_base);
9284 break;
9285
9286 // These are initial tls relocs, which are expected when
9287 // linking.
9288 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9289 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9290 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9291 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9292 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9293 reloc_status =
9294 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9295 view, address, view_size);
9296 break;
9297
9298 // The known and unknown unsupported and/or deprecated relocations.
9299 case elfcpp::R_ARM_PC24:
9300 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9301 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9302 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9303 default:
9304 // Just silently leave the method. We should get an appropriate error
9305 // message in the scan methods.
9306 break;
9307 }
9308
9309 // Report any errors.
9310 switch (reloc_status)
9311 {
9312 case Arm_relocate_functions::STATUS_OKAY:
9313 break;
9314 case Arm_relocate_functions::STATUS_OVERFLOW:
9315 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9316 _("relocation overflow in %s"),
9317 reloc_property->name().c_str());
9318 break;
9319 case Arm_relocate_functions::STATUS_BAD_RELOC:
9320 gold_error_at_location(
9321 relinfo,
9322 relnum,
9323 rel.get_r_offset(),
9324 _("unexpected opcode while processing relocation %s"),
9325 reloc_property->name().c_str());
9326 break;
9327 default:
9328 gold_unreachable();
9329 }
9330
9331 return true;
9332 }
9333
9334 // Perform a TLS relocation.
9335
9336 template<bool big_endian>
9337 inline typename Arm_relocate_functions<big_endian>::Status
9338 Target_arm<big_endian>::Relocate::relocate_tls(
9339 const Relocate_info<32, big_endian>* relinfo,
9340 Target_arm<big_endian>* target,
9341 size_t relnum,
9342 const elfcpp::Rel<32, big_endian>& rel,
9343 unsigned int r_type,
9344 const Sized_symbol<32>* gsym,
9345 const Symbol_value<32>* psymval,
9346 unsigned char* view,
9347 elfcpp::Elf_types<32>::Elf_Addr address,
9348 section_size_type /*view_size*/ )
9349 {
9350 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9351 typedef Relocate_functions<32, big_endian> RelocFuncs;
9352 Output_segment* tls_segment = relinfo->layout->tls_segment();
9353
9354 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9355
9356 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9357
9358 const bool is_final = (gsym == NULL
9359 ? !parameters->options().shared()
9360 : gsym->final_value_is_known());
9361 const tls::Tls_optimization optimized_type
9362 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9363 switch (r_type)
9364 {
9365 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9366 {
9367 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9368 unsigned int got_offset;
9369 if (gsym != NULL)
9370 {
9371 gold_assert(gsym->has_got_offset(got_type));
9372 got_offset = gsym->got_offset(got_type) - target->got_size();
9373 }
9374 else
9375 {
9376 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9377 gold_assert(object->local_has_got_offset(r_sym, got_type));
9378 got_offset = (object->local_got_offset(r_sym, got_type)
9379 - target->got_size());
9380 }
9381 if (optimized_type == tls::TLSOPT_NONE)
9382 {
9383 Arm_address got_entry =
9384 target->got_plt_section()->address() + got_offset;
9385
9386 // Relocate the field with the PC relative offset of the pair of
9387 // GOT entries.
9388 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9389 return ArmRelocFuncs::STATUS_OKAY;
9390 }
9391 }
9392 break;
9393
9394 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9395 if (optimized_type == tls::TLSOPT_NONE)
9396 {
9397 // Relocate the field with the offset of the GOT entry for
9398 // the module index.
9399 unsigned int got_offset;
9400 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9401 - target->got_size());
9402 Arm_address got_entry =
9403 target->got_plt_section()->address() + got_offset;
9404
9405 // Relocate the field with the PC relative offset of the pair of
9406 // GOT entries.
9407 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9408 return ArmRelocFuncs::STATUS_OKAY;
9409 }
9410 break;
9411
9412 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9413 RelocFuncs::rel32_unaligned(view, value);
9414 return ArmRelocFuncs::STATUS_OKAY;
9415
9416 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9417 if (optimized_type == tls::TLSOPT_NONE)
9418 {
9419 // Relocate the field with the offset of the GOT entry for
9420 // the tp-relative offset of the symbol.
9421 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9422 unsigned int got_offset;
9423 if (gsym != NULL)
9424 {
9425 gold_assert(gsym->has_got_offset(got_type));
9426 got_offset = gsym->got_offset(got_type);
9427 }
9428 else
9429 {
9430 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9431 gold_assert(object->local_has_got_offset(r_sym, got_type));
9432 got_offset = object->local_got_offset(r_sym, got_type);
9433 }
9434
9435 // All GOT offsets are relative to the end of the GOT.
9436 got_offset -= target->got_size();
9437
9438 Arm_address got_entry =
9439 target->got_plt_section()->address() + got_offset;
9440
9441 // Relocate the field with the PC relative offset of the GOT entry.
9442 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9443 return ArmRelocFuncs::STATUS_OKAY;
9444 }
9445 break;
9446
9447 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9448 // If we're creating a shared library, a dynamic relocation will
9449 // have been created for this location, so do not apply it now.
9450 if (!parameters->options().shared())
9451 {
9452 gold_assert(tls_segment != NULL);
9453
9454 // $tp points to the TCB, which is followed by the TLS, so we
9455 // need to add TCB size to the offset.
9456 Arm_address aligned_tcb_size =
9457 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9458 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9459
9460 }
9461 return ArmRelocFuncs::STATUS_OKAY;
9462
9463 default:
9464 gold_unreachable();
9465 }
9466
9467 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9468 _("unsupported reloc %u"),
9469 r_type);
9470 return ArmRelocFuncs::STATUS_BAD_RELOC;
9471 }
9472
9473 // Relocate section data.
9474
9475 template<bool big_endian>
9476 void
9477 Target_arm<big_endian>::relocate_section(
9478 const Relocate_info<32, big_endian>* relinfo,
9479 unsigned int sh_type,
9480 const unsigned char* prelocs,
9481 size_t reloc_count,
9482 Output_section* output_section,
9483 bool needs_special_offset_handling,
9484 unsigned char* view,
9485 Arm_address address,
9486 section_size_type view_size,
9487 const Reloc_symbol_changes* reloc_symbol_changes)
9488 {
9489 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9490 gold_assert(sh_type == elfcpp::SHT_REL);
9491
9492 // See if we are relocating a relaxed input section. If so, the view
9493 // covers the whole output section and we need to adjust accordingly.
9494 if (needs_special_offset_handling)
9495 {
9496 const Output_relaxed_input_section* poris =
9497 output_section->find_relaxed_input_section(relinfo->object,
9498 relinfo->data_shndx);
9499 if (poris != NULL)
9500 {
9501 Arm_address section_address = poris->address();
9502 section_size_type section_size = poris->data_size();
9503
9504 gold_assert((section_address >= address)
9505 && ((section_address + section_size)
9506 <= (address + view_size)));
9507
9508 off_t offset = section_address - address;
9509 view += offset;
9510 address += offset;
9511 view_size = section_size;
9512 }
9513 }
9514
9515 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9516 Arm_relocate>(
9517 relinfo,
9518 this,
9519 prelocs,
9520 reloc_count,
9521 output_section,
9522 needs_special_offset_handling,
9523 view,
9524 address,
9525 view_size,
9526 reloc_symbol_changes);
9527 }
9528
9529 // Return the size of a relocation while scanning during a relocatable
9530 // link.
9531
9532 template<bool big_endian>
9533 unsigned int
9534 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9535 unsigned int r_type,
9536 Relobj* object)
9537 {
9538 r_type = get_real_reloc_type(r_type);
9539 const Arm_reloc_property* arp =
9540 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9541 if (arp != NULL)
9542 return arp->size();
9543 else
9544 {
9545 std::string reloc_name =
9546 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9547 gold_error(_("%s: unexpected %s in object file"),
9548 object->name().c_str(), reloc_name.c_str());
9549 return 0;
9550 }
9551 }
9552
9553 // Scan the relocs during a relocatable link.
9554
9555 template<bool big_endian>
9556 void
9557 Target_arm<big_endian>::scan_relocatable_relocs(
9558 Symbol_table* symtab,
9559 Layout* layout,
9560 Sized_relobj_file<32, big_endian>* object,
9561 unsigned int data_shndx,
9562 unsigned int sh_type,
9563 const unsigned char* prelocs,
9564 size_t reloc_count,
9565 Output_section* output_section,
9566 bool needs_special_offset_handling,
9567 size_t local_symbol_count,
9568 const unsigned char* plocal_symbols,
9569 Relocatable_relocs* rr)
9570 {
9571 gold_assert(sh_type == elfcpp::SHT_REL);
9572
9573 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9574 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9575
9576 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9577 Scan_relocatable_relocs>(
9578 symtab,
9579 layout,
9580 object,
9581 data_shndx,
9582 prelocs,
9583 reloc_count,
9584 output_section,
9585 needs_special_offset_handling,
9586 local_symbol_count,
9587 plocal_symbols,
9588 rr);
9589 }
9590
9591 // Relocate a section during a relocatable link.
9592
9593 template<bool big_endian>
9594 void
9595 Target_arm<big_endian>::relocate_for_relocatable(
9596 const Relocate_info<32, big_endian>* relinfo,
9597 unsigned int sh_type,
9598 const unsigned char* prelocs,
9599 size_t reloc_count,
9600 Output_section* output_section,
9601 off_t offset_in_output_section,
9602 const Relocatable_relocs* rr,
9603 unsigned char* view,
9604 Arm_address view_address,
9605 section_size_type view_size,
9606 unsigned char* reloc_view,
9607 section_size_type reloc_view_size)
9608 {
9609 gold_assert(sh_type == elfcpp::SHT_REL);
9610
9611 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9612 relinfo,
9613 prelocs,
9614 reloc_count,
9615 output_section,
9616 offset_in_output_section,
9617 rr,
9618 view,
9619 view_address,
9620 view_size,
9621 reloc_view,
9622 reloc_view_size);
9623 }
9624
9625 // Perform target-specific processing in a relocatable link. This is
9626 // only used if we use the relocation strategy RELOC_SPECIAL.
9627
9628 template<bool big_endian>
9629 void
9630 Target_arm<big_endian>::relocate_special_relocatable(
9631 const Relocate_info<32, big_endian>* relinfo,
9632 unsigned int sh_type,
9633 const unsigned char* preloc_in,
9634 size_t relnum,
9635 Output_section* output_section,
9636 off_t offset_in_output_section,
9637 unsigned char* view,
9638 elfcpp::Elf_types<32>::Elf_Addr view_address,
9639 section_size_type,
9640 unsigned char* preloc_out)
9641 {
9642 // We can only handle REL type relocation sections.
9643 gold_assert(sh_type == elfcpp::SHT_REL);
9644
9645 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9646 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9647 Reltype_write;
9648 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9649
9650 const Arm_relobj<big_endian>* object =
9651 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9652 const unsigned int local_count = object->local_symbol_count();
9653
9654 Reltype reloc(preloc_in);
9655 Reltype_write reloc_write(preloc_out);
9656
9657 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9658 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9659 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9660
9661 const Arm_reloc_property* arp =
9662 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9663 gold_assert(arp != NULL);
9664
9665 // Get the new symbol index.
9666 // We only use RELOC_SPECIAL strategy in local relocations.
9667 gold_assert(r_sym < local_count);
9668
9669 // We are adjusting a section symbol. We need to find
9670 // the symbol table index of the section symbol for
9671 // the output section corresponding to input section
9672 // in which this symbol is defined.
9673 bool is_ordinary;
9674 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9675 gold_assert(is_ordinary);
9676 Output_section* os = object->output_section(shndx);
9677 gold_assert(os != NULL);
9678 gold_assert(os->needs_symtab_index());
9679 unsigned int new_symndx = os->symtab_index();
9680
9681 // Get the new offset--the location in the output section where
9682 // this relocation should be applied.
9683
9684 Arm_address offset = reloc.get_r_offset();
9685 Arm_address new_offset;
9686 if (offset_in_output_section != invalid_address)
9687 new_offset = offset + offset_in_output_section;
9688 else
9689 {
9690 section_offset_type sot_offset =
9691 convert_types<section_offset_type, Arm_address>(offset);
9692 section_offset_type new_sot_offset =
9693 output_section->output_offset(object, relinfo->data_shndx,
9694 sot_offset);
9695 gold_assert(new_sot_offset != -1);
9696 new_offset = new_sot_offset;
9697 }
9698
9699 // In an object file, r_offset is an offset within the section.
9700 // In an executable or dynamic object, generated by
9701 // --emit-relocs, r_offset is an absolute address.
9702 if (!parameters->options().relocatable())
9703 {
9704 new_offset += view_address;
9705 if (offset_in_output_section != invalid_address)
9706 new_offset -= offset_in_output_section;
9707 }
9708
9709 reloc_write.put_r_offset(new_offset);
9710 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9711
9712 // Handle the reloc addend.
9713 // The relocation uses a section symbol in the input file.
9714 // We are adjusting it to use a section symbol in the output
9715 // file. The input section symbol refers to some address in
9716 // the input section. We need the relocation in the output
9717 // file to refer to that same address. This adjustment to
9718 // the addend is the same calculation we use for a simple
9719 // absolute relocation for the input section symbol.
9720
9721 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9722
9723 // Handle THUMB bit.
9724 Symbol_value<32> symval;
9725 Arm_address thumb_bit =
9726 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9727 if (thumb_bit != 0
9728 && arp->uses_thumb_bit()
9729 && ((psymval->value(object, 0) & 1) != 0))
9730 {
9731 Arm_address stripped_value =
9732 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9733 symval.set_output_value(stripped_value);
9734 psymval = &symval;
9735 }
9736
9737 unsigned char* paddend = view + offset;
9738 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9739 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9740 switch (r_type)
9741 {
9742 case elfcpp::R_ARM_ABS8:
9743 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9744 psymval);
9745 break;
9746
9747 case elfcpp::R_ARM_ABS12:
9748 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9749 psymval);
9750 break;
9751
9752 case elfcpp::R_ARM_ABS16:
9753 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9754 psymval);
9755 break;
9756
9757 case elfcpp::R_ARM_THM_ABS5:
9758 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9759 object,
9760 psymval);
9761 break;
9762
9763 case elfcpp::R_ARM_MOVW_ABS_NC:
9764 case elfcpp::R_ARM_MOVW_PREL_NC:
9765 case elfcpp::R_ARM_MOVW_BREL_NC:
9766 case elfcpp::R_ARM_MOVW_BREL:
9767 reloc_status = Arm_relocate_functions<big_endian>::movw(
9768 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9769 break;
9770
9771 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9772 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9773 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9774 case elfcpp::R_ARM_THM_MOVW_BREL:
9775 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9776 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9777 break;
9778
9779 case elfcpp::R_ARM_THM_CALL:
9780 case elfcpp::R_ARM_THM_XPC22:
9781 case elfcpp::R_ARM_THM_JUMP24:
9782 reloc_status =
9783 Arm_relocate_functions<big_endian>::thumb_branch_common(
9784 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9785 false);
9786 break;
9787
9788 case elfcpp::R_ARM_PLT32:
9789 case elfcpp::R_ARM_CALL:
9790 case elfcpp::R_ARM_JUMP24:
9791 case elfcpp::R_ARM_XPC25:
9792 reloc_status =
9793 Arm_relocate_functions<big_endian>::arm_branch_common(
9794 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9795 false);
9796 break;
9797
9798 case elfcpp::R_ARM_THM_JUMP19:
9799 reloc_status =
9800 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9801 psymval, 0, thumb_bit);
9802 break;
9803
9804 case elfcpp::R_ARM_THM_JUMP6:
9805 reloc_status =
9806 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9807 0);
9808 break;
9809
9810 case elfcpp::R_ARM_THM_JUMP8:
9811 reloc_status =
9812 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9813 0);
9814 break;
9815
9816 case elfcpp::R_ARM_THM_JUMP11:
9817 reloc_status =
9818 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9819 0);
9820 break;
9821
9822 case elfcpp::R_ARM_PREL31:
9823 reloc_status =
9824 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9825 thumb_bit);
9826 break;
9827
9828 case elfcpp::R_ARM_THM_PC8:
9829 reloc_status =
9830 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9831 0);
9832 break;
9833
9834 case elfcpp::R_ARM_THM_PC12:
9835 reloc_status =
9836 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9837 0);
9838 break;
9839
9840 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9841 reloc_status =
9842 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9843 0, thumb_bit);
9844 break;
9845
9846 // These relocation truncate relocation results so we cannot handle them
9847 // in a relocatable link.
9848 case elfcpp::R_ARM_MOVT_ABS:
9849 case elfcpp::R_ARM_THM_MOVT_ABS:
9850 case elfcpp::R_ARM_MOVT_PREL:
9851 case elfcpp::R_ARM_MOVT_BREL:
9852 case elfcpp::R_ARM_THM_MOVT_PREL:
9853 case elfcpp::R_ARM_THM_MOVT_BREL:
9854 case elfcpp::R_ARM_ALU_PC_G0_NC:
9855 case elfcpp::R_ARM_ALU_PC_G0:
9856 case elfcpp::R_ARM_ALU_PC_G1_NC:
9857 case elfcpp::R_ARM_ALU_PC_G1:
9858 case elfcpp::R_ARM_ALU_PC_G2:
9859 case elfcpp::R_ARM_ALU_SB_G0_NC:
9860 case elfcpp::R_ARM_ALU_SB_G0:
9861 case elfcpp::R_ARM_ALU_SB_G1_NC:
9862 case elfcpp::R_ARM_ALU_SB_G1:
9863 case elfcpp::R_ARM_ALU_SB_G2:
9864 case elfcpp::R_ARM_LDR_PC_G0:
9865 case elfcpp::R_ARM_LDR_PC_G1:
9866 case elfcpp::R_ARM_LDR_PC_G2:
9867 case elfcpp::R_ARM_LDR_SB_G0:
9868 case elfcpp::R_ARM_LDR_SB_G1:
9869 case elfcpp::R_ARM_LDR_SB_G2:
9870 case elfcpp::R_ARM_LDRS_PC_G0:
9871 case elfcpp::R_ARM_LDRS_PC_G1:
9872 case elfcpp::R_ARM_LDRS_PC_G2:
9873 case elfcpp::R_ARM_LDRS_SB_G0:
9874 case elfcpp::R_ARM_LDRS_SB_G1:
9875 case elfcpp::R_ARM_LDRS_SB_G2:
9876 case elfcpp::R_ARM_LDC_PC_G0:
9877 case elfcpp::R_ARM_LDC_PC_G1:
9878 case elfcpp::R_ARM_LDC_PC_G2:
9879 case elfcpp::R_ARM_LDC_SB_G0:
9880 case elfcpp::R_ARM_LDC_SB_G1:
9881 case elfcpp::R_ARM_LDC_SB_G2:
9882 gold_error(_("cannot handle %s in a relocatable link"),
9883 arp->name().c_str());
9884 break;
9885
9886 default:
9887 gold_unreachable();
9888 }
9889
9890 // Report any errors.
9891 switch (reloc_status)
9892 {
9893 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9894 break;
9895 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9896 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9897 _("relocation overflow in %s"),
9898 arp->name().c_str());
9899 break;
9900 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9901 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9902 _("unexpected opcode while processing relocation %s"),
9903 arp->name().c_str());
9904 break;
9905 default:
9906 gold_unreachable();
9907 }
9908 }
9909
9910 // Return the value to use for a dynamic symbol which requires special
9911 // treatment. This is how we support equality comparisons of function
9912 // pointers across shared library boundaries, as described in the
9913 // processor specific ABI supplement.
9914
9915 template<bool big_endian>
9916 uint64_t
9917 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9918 {
9919 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9920 return this->plt_section()->address() + gsym->plt_offset();
9921 }
9922
9923 // Map platform-specific relocs to real relocs
9924 //
9925 template<bool big_endian>
9926 unsigned int
9927 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9928 {
9929 switch (r_type)
9930 {
9931 case elfcpp::R_ARM_TARGET1:
9932 // This is either R_ARM_ABS32 or R_ARM_REL32;
9933 return elfcpp::R_ARM_ABS32;
9934
9935 case elfcpp::R_ARM_TARGET2:
9936 // This can be any reloc type but usually is R_ARM_GOT_PREL
9937 return elfcpp::R_ARM_GOT_PREL;
9938
9939 default:
9940 return r_type;
9941 }
9942 }
9943
9944 // Whether if two EABI versions V1 and V2 are compatible.
9945
9946 template<bool big_endian>
9947 bool
9948 Target_arm<big_endian>::are_eabi_versions_compatible(
9949 elfcpp::Elf_Word v1,
9950 elfcpp::Elf_Word v2)
9951 {
9952 // v4 and v5 are the same spec before and after it was released,
9953 // so allow mixing them.
9954 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9955 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9956 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9957 return true;
9958
9959 return v1 == v2;
9960 }
9961
9962 // Combine FLAGS from an input object called NAME and the processor-specific
9963 // flags in the ELF header of the output. Much of this is adapted from the
9964 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9965 // in bfd/elf32-arm.c.
9966
9967 template<bool big_endian>
9968 void
9969 Target_arm<big_endian>::merge_processor_specific_flags(
9970 const std::string& name,
9971 elfcpp::Elf_Word flags)
9972 {
9973 if (this->are_processor_specific_flags_set())
9974 {
9975 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9976
9977 // Nothing to merge if flags equal to those in output.
9978 if (flags == out_flags)
9979 return;
9980
9981 // Complain about various flag mismatches.
9982 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9983 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9984 if (!this->are_eabi_versions_compatible(version1, version2)
9985 && parameters->options().warn_mismatch())
9986 gold_error(_("Source object %s has EABI version %d but output has "
9987 "EABI version %d."),
9988 name.c_str(),
9989 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9990 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9991 }
9992 else
9993 {
9994 // If the input is the default architecture and had the default
9995 // flags then do not bother setting the flags for the output
9996 // architecture, instead allow future merges to do this. If no
9997 // future merges ever set these flags then they will retain their
9998 // uninitialised values, which surprise surprise, correspond
9999 // to the default values.
10000 if (flags == 0)
10001 return;
10002
10003 // This is the first time, just copy the flags.
10004 // We only copy the EABI version for now.
10005 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10006 }
10007 }
10008
10009 // Adjust ELF file header.
10010 template<bool big_endian>
10011 void
10012 Target_arm<big_endian>::do_adjust_elf_header(
10013 unsigned char* view,
10014 int len) const
10015 {
10016 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10017
10018 elfcpp::Ehdr<32, big_endian> ehdr(view);
10019 unsigned char e_ident[elfcpp::EI_NIDENT];
10020 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10021
10022 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
10023 == elfcpp::EF_ARM_EABI_UNKNOWN)
10024 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10025 else
10026 e_ident[elfcpp::EI_OSABI] = 0;
10027 e_ident[elfcpp::EI_ABIVERSION] = 0;
10028
10029 // FIXME: Do EF_ARM_BE8 adjustment.
10030
10031 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10032 oehdr.put_e_ident(e_ident);
10033 }
10034
10035 // do_make_elf_object to override the same function in the base class.
10036 // We need to use a target-specific sub-class of
10037 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10038 // Hence we need to have our own ELF object creation.
10039
10040 template<bool big_endian>
10041 Object*
10042 Target_arm<big_endian>::do_make_elf_object(
10043 const std::string& name,
10044 Input_file* input_file,
10045 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10046 {
10047 int et = ehdr.get_e_type();
10048 // ET_EXEC files are valid input for --just-symbols/-R,
10049 // and we treat them as relocatable objects.
10050 if (et == elfcpp::ET_REL
10051 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10052 {
10053 Arm_relobj<big_endian>* obj =
10054 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10055 obj->setup();
10056 return obj;
10057 }
10058 else if (et == elfcpp::ET_DYN)
10059 {
10060 Sized_dynobj<32, big_endian>* obj =
10061 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10062 obj->setup();
10063 return obj;
10064 }
10065 else
10066 {
10067 gold_error(_("%s: unsupported ELF file type %d"),
10068 name.c_str(), et);
10069 return NULL;
10070 }
10071 }
10072
10073 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10074 // Returns -1 if no architecture could be read.
10075 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10076
10077 template<bool big_endian>
10078 int
10079 Target_arm<big_endian>::get_secondary_compatible_arch(
10080 const Attributes_section_data* pasd)
10081 {
10082 const Object_attribute* known_attributes =
10083 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10084
10085 // Note: the tag and its argument below are uleb128 values, though
10086 // currently-defined values fit in one byte for each.
10087 const std::string& sv =
10088 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10089 if (sv.size() == 2
10090 && sv.data()[0] == elfcpp::Tag_CPU_arch
10091 && (sv.data()[1] & 128) != 128)
10092 return sv.data()[1];
10093
10094 // This tag is "safely ignorable", so don't complain if it looks funny.
10095 return -1;
10096 }
10097
10098 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10099 // The tag is removed if ARCH is -1.
10100 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10101
10102 template<bool big_endian>
10103 void
10104 Target_arm<big_endian>::set_secondary_compatible_arch(
10105 Attributes_section_data* pasd,
10106 int arch)
10107 {
10108 Object_attribute* known_attributes =
10109 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10110
10111 if (arch == -1)
10112 {
10113 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10114 return;
10115 }
10116
10117 // Note: the tag and its argument below are uleb128 values, though
10118 // currently-defined values fit in one byte for each.
10119 char sv[3];
10120 sv[0] = elfcpp::Tag_CPU_arch;
10121 gold_assert(arch != 0);
10122 sv[1] = arch;
10123 sv[2] = '\0';
10124
10125 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10126 }
10127
10128 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10129 // into account.
10130 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10131
10132 template<bool big_endian>
10133 int
10134 Target_arm<big_endian>::tag_cpu_arch_combine(
10135 const char* name,
10136 int oldtag,
10137 int* secondary_compat_out,
10138 int newtag,
10139 int secondary_compat)
10140 {
10141 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10142 static const int v6t2[] =
10143 {
10144 T(V6T2), // PRE_V4.
10145 T(V6T2), // V4.
10146 T(V6T2), // V4T.
10147 T(V6T2), // V5T.
10148 T(V6T2), // V5TE.
10149 T(V6T2), // V5TEJ.
10150 T(V6T2), // V6.
10151 T(V7), // V6KZ.
10152 T(V6T2) // V6T2.
10153 };
10154 static const int v6k[] =
10155 {
10156 T(V6K), // PRE_V4.
10157 T(V6K), // V4.
10158 T(V6K), // V4T.
10159 T(V6K), // V5T.
10160 T(V6K), // V5TE.
10161 T(V6K), // V5TEJ.
10162 T(V6K), // V6.
10163 T(V6KZ), // V6KZ.
10164 T(V7), // V6T2.
10165 T(V6K) // V6K.
10166 };
10167 static const int v7[] =
10168 {
10169 T(V7), // PRE_V4.
10170 T(V7), // V4.
10171 T(V7), // V4T.
10172 T(V7), // V5T.
10173 T(V7), // V5TE.
10174 T(V7), // V5TEJ.
10175 T(V7), // V6.
10176 T(V7), // V6KZ.
10177 T(V7), // V6T2.
10178 T(V7), // V6K.
10179 T(V7) // V7.
10180 };
10181 static const int v6_m[] =
10182 {
10183 -1, // PRE_V4.
10184 -1, // V4.
10185 T(V6K), // V4T.
10186 T(V6K), // V5T.
10187 T(V6K), // V5TE.
10188 T(V6K), // V5TEJ.
10189 T(V6K), // V6.
10190 T(V6KZ), // V6KZ.
10191 T(V7), // V6T2.
10192 T(V6K), // V6K.
10193 T(V7), // V7.
10194 T(V6_M) // V6_M.
10195 };
10196 static const int v6s_m[] =
10197 {
10198 -1, // PRE_V4.
10199 -1, // V4.
10200 T(V6K), // V4T.
10201 T(V6K), // V5T.
10202 T(V6K), // V5TE.
10203 T(V6K), // V5TEJ.
10204 T(V6K), // V6.
10205 T(V6KZ), // V6KZ.
10206 T(V7), // V6T2.
10207 T(V6K), // V6K.
10208 T(V7), // V7.
10209 T(V6S_M), // V6_M.
10210 T(V6S_M) // V6S_M.
10211 };
10212 static const int v7e_m[] =
10213 {
10214 -1, // PRE_V4.
10215 -1, // V4.
10216 T(V7E_M), // V4T.
10217 T(V7E_M), // V5T.
10218 T(V7E_M), // V5TE.
10219 T(V7E_M), // V5TEJ.
10220 T(V7E_M), // V6.
10221 T(V7E_M), // V6KZ.
10222 T(V7E_M), // V6T2.
10223 T(V7E_M), // V6K.
10224 T(V7E_M), // V7.
10225 T(V7E_M), // V6_M.
10226 T(V7E_M), // V6S_M.
10227 T(V7E_M) // V7E_M.
10228 };
10229 static const int v4t_plus_v6_m[] =
10230 {
10231 -1, // PRE_V4.
10232 -1, // V4.
10233 T(V4T), // V4T.
10234 T(V5T), // V5T.
10235 T(V5TE), // V5TE.
10236 T(V5TEJ), // V5TEJ.
10237 T(V6), // V6.
10238 T(V6KZ), // V6KZ.
10239 T(V6T2), // V6T2.
10240 T(V6K), // V6K.
10241 T(V7), // V7.
10242 T(V6_M), // V6_M.
10243 T(V6S_M), // V6S_M.
10244 T(V7E_M), // V7E_M.
10245 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10246 };
10247 static const int* comb[] =
10248 {
10249 v6t2,
10250 v6k,
10251 v7,
10252 v6_m,
10253 v6s_m,
10254 v7e_m,
10255 // Pseudo-architecture.
10256 v4t_plus_v6_m
10257 };
10258
10259 // Check we've not got a higher architecture than we know about.
10260
10261 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10262 {
10263 gold_error(_("%s: unknown CPU architecture"), name);
10264 return -1;
10265 }
10266
10267 // Override old tag if we have a Tag_also_compatible_with on the output.
10268
10269 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10270 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10271 oldtag = T(V4T_PLUS_V6_M);
10272
10273 // And override the new tag if we have a Tag_also_compatible_with on the
10274 // input.
10275
10276 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10277 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10278 newtag = T(V4T_PLUS_V6_M);
10279
10280 // Architectures before V6KZ add features monotonically.
10281 int tagh = std::max(oldtag, newtag);
10282 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10283 return tagh;
10284
10285 int tagl = std::min(oldtag, newtag);
10286 int result = comb[tagh - T(V6T2)][tagl];
10287
10288 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10289 // as the canonical version.
10290 if (result == T(V4T_PLUS_V6_M))
10291 {
10292 result = T(V4T);
10293 *secondary_compat_out = T(V6_M);
10294 }
10295 else
10296 *secondary_compat_out = -1;
10297
10298 if (result == -1)
10299 {
10300 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10301 name, oldtag, newtag);
10302 return -1;
10303 }
10304
10305 return result;
10306 #undef T
10307 }
10308
10309 // Helper to print AEABI enum tag value.
10310
10311 template<bool big_endian>
10312 std::string
10313 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10314 {
10315 static const char* aeabi_enum_names[] =
10316 { "", "variable-size", "32-bit", "" };
10317 const size_t aeabi_enum_names_size =
10318 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10319
10320 if (value < aeabi_enum_names_size)
10321 return std::string(aeabi_enum_names[value]);
10322 else
10323 {
10324 char buffer[100];
10325 sprintf(buffer, "<unknown value %u>", value);
10326 return std::string(buffer);
10327 }
10328 }
10329
10330 // Return the string value to store in TAG_CPU_name.
10331
10332 template<bool big_endian>
10333 std::string
10334 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10335 {
10336 static const char* name_table[] = {
10337 // These aren't real CPU names, but we can't guess
10338 // that from the architecture version alone.
10339 "Pre v4",
10340 "ARM v4",
10341 "ARM v4T",
10342 "ARM v5T",
10343 "ARM v5TE",
10344 "ARM v5TEJ",
10345 "ARM v6",
10346 "ARM v6KZ",
10347 "ARM v6T2",
10348 "ARM v6K",
10349 "ARM v7",
10350 "ARM v6-M",
10351 "ARM v6S-M",
10352 "ARM v7E-M"
10353 };
10354 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10355
10356 if (value < name_table_size)
10357 return std::string(name_table[value]);
10358 else
10359 {
10360 char buffer[100];
10361 sprintf(buffer, "<unknown CPU value %u>", value);
10362 return std::string(buffer);
10363 }
10364 }
10365
10366 // Merge object attributes from input file called NAME with those of the
10367 // output. The input object attributes are in the object pointed by PASD.
10368
10369 template<bool big_endian>
10370 void
10371 Target_arm<big_endian>::merge_object_attributes(
10372 const char* name,
10373 const Attributes_section_data* pasd)
10374 {
10375 // Return if there is no attributes section data.
10376 if (pasd == NULL)
10377 return;
10378
10379 // If output has no object attributes, just copy.
10380 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10381 if (this->attributes_section_data_ == NULL)
10382 {
10383 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10384 Object_attribute* out_attr =
10385 this->attributes_section_data_->known_attributes(vendor);
10386
10387 // We do not output objects with Tag_MPextension_use_legacy - we move
10388 // the attribute's value to Tag_MPextension_use. */
10389 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10390 {
10391 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10392 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10393 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10394 {
10395 gold_error(_("%s has both the current and legacy "
10396 "Tag_MPextension_use attributes"),
10397 name);
10398 }
10399
10400 out_attr[elfcpp::Tag_MPextension_use] =
10401 out_attr[elfcpp::Tag_MPextension_use_legacy];
10402 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10403 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10404 }
10405
10406 return;
10407 }
10408
10409 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10410 Object_attribute* out_attr =
10411 this->attributes_section_data_->known_attributes(vendor);
10412
10413 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10414 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10415 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10416 {
10417 // Ignore mismatches if the object doesn't use floating point. */
10418 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10419 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10420 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10421 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10422 && parameters->options().warn_mismatch())
10423 gold_error(_("%s uses VFP register arguments, output does not"),
10424 name);
10425 }
10426
10427 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10428 {
10429 // Merge this attribute with existing attributes.
10430 switch (i)
10431 {
10432 case elfcpp::Tag_CPU_raw_name:
10433 case elfcpp::Tag_CPU_name:
10434 // These are merged after Tag_CPU_arch.
10435 break;
10436
10437 case elfcpp::Tag_ABI_optimization_goals:
10438 case elfcpp::Tag_ABI_FP_optimization_goals:
10439 // Use the first value seen.
10440 break;
10441
10442 case elfcpp::Tag_CPU_arch:
10443 {
10444 unsigned int saved_out_attr = out_attr->int_value();
10445 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10446 int secondary_compat =
10447 this->get_secondary_compatible_arch(pasd);
10448 int secondary_compat_out =
10449 this->get_secondary_compatible_arch(
10450 this->attributes_section_data_);
10451 out_attr[i].set_int_value(
10452 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10453 &secondary_compat_out,
10454 in_attr[i].int_value(),
10455 secondary_compat));
10456 this->set_secondary_compatible_arch(this->attributes_section_data_,
10457 secondary_compat_out);
10458
10459 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10460 if (out_attr[i].int_value() == saved_out_attr)
10461 ; // Leave the names alone.
10462 else if (out_attr[i].int_value() == in_attr[i].int_value())
10463 {
10464 // The output architecture has been changed to match the
10465 // input architecture. Use the input names.
10466 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10467 in_attr[elfcpp::Tag_CPU_name].string_value());
10468 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10469 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10470 }
10471 else
10472 {
10473 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10474 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10475 }
10476
10477 // If we still don't have a value for Tag_CPU_name,
10478 // make one up now. Tag_CPU_raw_name remains blank.
10479 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10480 {
10481 const std::string cpu_name =
10482 this->tag_cpu_name_value(out_attr[i].int_value());
10483 // FIXME: If we see an unknown CPU, this will be set
10484 // to "<unknown CPU n>", where n is the attribute value.
10485 // This is different from BFD, which leaves the name alone.
10486 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10487 }
10488 }
10489 break;
10490
10491 case elfcpp::Tag_ARM_ISA_use:
10492 case elfcpp::Tag_THUMB_ISA_use:
10493 case elfcpp::Tag_WMMX_arch:
10494 case elfcpp::Tag_Advanced_SIMD_arch:
10495 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10496 case elfcpp::Tag_ABI_FP_rounding:
10497 case elfcpp::Tag_ABI_FP_exceptions:
10498 case elfcpp::Tag_ABI_FP_user_exceptions:
10499 case elfcpp::Tag_ABI_FP_number_model:
10500 case elfcpp::Tag_VFP_HP_extension:
10501 case elfcpp::Tag_CPU_unaligned_access:
10502 case elfcpp::Tag_T2EE_use:
10503 case elfcpp::Tag_Virtualization_use:
10504 case elfcpp::Tag_MPextension_use:
10505 // Use the largest value specified.
10506 if (in_attr[i].int_value() > out_attr[i].int_value())
10507 out_attr[i].set_int_value(in_attr[i].int_value());
10508 break;
10509
10510 case elfcpp::Tag_ABI_align8_preserved:
10511 case elfcpp::Tag_ABI_PCS_RO_data:
10512 // Use the smallest value specified.
10513 if (in_attr[i].int_value() < out_attr[i].int_value())
10514 out_attr[i].set_int_value(in_attr[i].int_value());
10515 break;
10516
10517 case elfcpp::Tag_ABI_align8_needed:
10518 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10519 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10520 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10521 == 0)))
10522 {
10523 // This error message should be enabled once all non-conforming
10524 // binaries in the toolchain have had the attributes set
10525 // properly.
10526 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10527 // name);
10528 }
10529 // Fall through.
10530 case elfcpp::Tag_ABI_FP_denormal:
10531 case elfcpp::Tag_ABI_PCS_GOT_use:
10532 {
10533 // These tags have 0 = don't care, 1 = strong requirement,
10534 // 2 = weak requirement.
10535 static const int order_021[3] = {0, 2, 1};
10536
10537 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10538 // value if greater than 2 (for future-proofing).
10539 if ((in_attr[i].int_value() > 2
10540 && in_attr[i].int_value() > out_attr[i].int_value())
10541 || (in_attr[i].int_value() <= 2
10542 && out_attr[i].int_value() <= 2
10543 && (order_021[in_attr[i].int_value()]
10544 > order_021[out_attr[i].int_value()])))
10545 out_attr[i].set_int_value(in_attr[i].int_value());
10546 }
10547 break;
10548
10549 case elfcpp::Tag_CPU_arch_profile:
10550 if (out_attr[i].int_value() != in_attr[i].int_value())
10551 {
10552 // 0 will merge with anything.
10553 // 'A' and 'S' merge to 'A'.
10554 // 'R' and 'S' merge to 'R'.
10555 // 'M' and 'A|R|S' is an error.
10556 if (out_attr[i].int_value() == 0
10557 || (out_attr[i].int_value() == 'S'
10558 && (in_attr[i].int_value() == 'A'
10559 || in_attr[i].int_value() == 'R')))
10560 out_attr[i].set_int_value(in_attr[i].int_value());
10561 else if (in_attr[i].int_value() == 0
10562 || (in_attr[i].int_value() == 'S'
10563 && (out_attr[i].int_value() == 'A'
10564 || out_attr[i].int_value() == 'R')))
10565 ; // Do nothing.
10566 else if (parameters->options().warn_mismatch())
10567 {
10568 gold_error
10569 (_("conflicting architecture profiles %c/%c"),
10570 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10571 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10572 }
10573 }
10574 break;
10575 case elfcpp::Tag_VFP_arch:
10576 {
10577 static const struct
10578 {
10579 int ver;
10580 int regs;
10581 } vfp_versions[7] =
10582 {
10583 {0, 0},
10584 {1, 16},
10585 {2, 16},
10586 {3, 32},
10587 {3, 16},
10588 {4, 32},
10589 {4, 16}
10590 };
10591
10592 // Values greater than 6 aren't defined, so just pick the
10593 // biggest.
10594 if (in_attr[i].int_value() > 6
10595 && in_attr[i].int_value() > out_attr[i].int_value())
10596 {
10597 *out_attr = *in_attr;
10598 break;
10599 }
10600 // The output uses the superset of input features
10601 // (ISA version) and registers.
10602 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10603 vfp_versions[out_attr[i].int_value()].ver);
10604 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10605 vfp_versions[out_attr[i].int_value()].regs);
10606 // This assumes all possible supersets are also a valid
10607 // options.
10608 int newval;
10609 for (newval = 6; newval > 0; newval--)
10610 {
10611 if (regs == vfp_versions[newval].regs
10612 && ver == vfp_versions[newval].ver)
10613 break;
10614 }
10615 out_attr[i].set_int_value(newval);
10616 }
10617 break;
10618 case elfcpp::Tag_PCS_config:
10619 if (out_attr[i].int_value() == 0)
10620 out_attr[i].set_int_value(in_attr[i].int_value());
10621 else if (in_attr[i].int_value() != 0
10622 && out_attr[i].int_value() != 0
10623 && parameters->options().warn_mismatch())
10624 {
10625 // It's sometimes ok to mix different configs, so this is only
10626 // a warning.
10627 gold_warning(_("%s: conflicting platform configuration"), name);
10628 }
10629 break;
10630 case elfcpp::Tag_ABI_PCS_R9_use:
10631 if (in_attr[i].int_value() != out_attr[i].int_value()
10632 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10633 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10634 && parameters->options().warn_mismatch())
10635 {
10636 gold_error(_("%s: conflicting use of R9"), name);
10637 }
10638 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10639 out_attr[i].set_int_value(in_attr[i].int_value());
10640 break;
10641 case elfcpp::Tag_ABI_PCS_RW_data:
10642 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10643 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10644 != elfcpp::AEABI_R9_SB)
10645 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10646 != elfcpp::AEABI_R9_unused)
10647 && parameters->options().warn_mismatch())
10648 {
10649 gold_error(_("%s: SB relative addressing conflicts with use "
10650 "of R9"),
10651 name);
10652 }
10653 // Use the smallest value specified.
10654 if (in_attr[i].int_value() < out_attr[i].int_value())
10655 out_attr[i].set_int_value(in_attr[i].int_value());
10656 break;
10657 case elfcpp::Tag_ABI_PCS_wchar_t:
10658 if (out_attr[i].int_value()
10659 && in_attr[i].int_value()
10660 && out_attr[i].int_value() != in_attr[i].int_value()
10661 && parameters->options().warn_mismatch()
10662 && parameters->options().wchar_size_warning())
10663 {
10664 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10665 "use %u-byte wchar_t; use of wchar_t values "
10666 "across objects may fail"),
10667 name, in_attr[i].int_value(),
10668 out_attr[i].int_value());
10669 }
10670 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10671 out_attr[i].set_int_value(in_attr[i].int_value());
10672 break;
10673 case elfcpp::Tag_ABI_enum_size:
10674 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10675 {
10676 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10677 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10678 {
10679 // The existing object is compatible with anything.
10680 // Use whatever requirements the new object has.
10681 out_attr[i].set_int_value(in_attr[i].int_value());
10682 }
10683 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10684 && out_attr[i].int_value() != in_attr[i].int_value()
10685 && parameters->options().warn_mismatch()
10686 && parameters->options().enum_size_warning())
10687 {
10688 unsigned int in_value = in_attr[i].int_value();
10689 unsigned int out_value = out_attr[i].int_value();
10690 gold_warning(_("%s uses %s enums yet the output is to use "
10691 "%s enums; use of enum values across objects "
10692 "may fail"),
10693 name,
10694 this->aeabi_enum_name(in_value).c_str(),
10695 this->aeabi_enum_name(out_value).c_str());
10696 }
10697 }
10698 break;
10699 case elfcpp::Tag_ABI_VFP_args:
10700 // Already done.
10701 break;
10702 case elfcpp::Tag_ABI_WMMX_args:
10703 if (in_attr[i].int_value() != out_attr[i].int_value()
10704 && parameters->options().warn_mismatch())
10705 {
10706 gold_error(_("%s uses iWMMXt register arguments, output does "
10707 "not"),
10708 name);
10709 }
10710 break;
10711 case Object_attribute::Tag_compatibility:
10712 // Merged in target-independent code.
10713 break;
10714 case elfcpp::Tag_ABI_HardFP_use:
10715 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10716 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10717 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10718 out_attr[i].set_int_value(3);
10719 else if (in_attr[i].int_value() > out_attr[i].int_value())
10720 out_attr[i].set_int_value(in_attr[i].int_value());
10721 break;
10722 case elfcpp::Tag_ABI_FP_16bit_format:
10723 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10724 {
10725 if (in_attr[i].int_value() != out_attr[i].int_value()
10726 && parameters->options().warn_mismatch())
10727 gold_error(_("fp16 format mismatch between %s and output"),
10728 name);
10729 }
10730 if (in_attr[i].int_value() != 0)
10731 out_attr[i].set_int_value(in_attr[i].int_value());
10732 break;
10733
10734 case elfcpp::Tag_DIV_use:
10735 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10736 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10737 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10738 // CPU. We will merge as follows: If the input attribute's value
10739 // is one then the output attribute's value remains unchanged. If
10740 // the input attribute's value is zero or two then if the output
10741 // attribute's value is one the output value is set to the input
10742 // value, otherwise the output value must be the same as the
10743 // inputs. */
10744 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10745 {
10746 if (in_attr[i].int_value() != out_attr[i].int_value())
10747 {
10748 gold_error(_("DIV usage mismatch between %s and output"),
10749 name);
10750 }
10751 }
10752
10753 if (in_attr[i].int_value() != 1)
10754 out_attr[i].set_int_value(in_attr[i].int_value());
10755
10756 break;
10757
10758 case elfcpp::Tag_MPextension_use_legacy:
10759 // We don't output objects with Tag_MPextension_use_legacy - we
10760 // move the value to Tag_MPextension_use.
10761 if (in_attr[i].int_value() != 0
10762 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10763 {
10764 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10765 != in_attr[i].int_value())
10766 {
10767 gold_error(_("%s has has both the current and legacy "
10768 "Tag_MPextension_use attributes"),
10769 name);
10770 }
10771 }
10772
10773 if (in_attr[i].int_value()
10774 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10775 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10776
10777 break;
10778
10779 case elfcpp::Tag_nodefaults:
10780 // This tag is set if it exists, but the value is unused (and is
10781 // typically zero). We don't actually need to do anything here -
10782 // the merge happens automatically when the type flags are merged
10783 // below.
10784 break;
10785 case elfcpp::Tag_also_compatible_with:
10786 // Already done in Tag_CPU_arch.
10787 break;
10788 case elfcpp::Tag_conformance:
10789 // Keep the attribute if it matches. Throw it away otherwise.
10790 // No attribute means no claim to conform.
10791 if (in_attr[i].string_value() != out_attr[i].string_value())
10792 out_attr[i].set_string_value("");
10793 break;
10794
10795 default:
10796 {
10797 const char* err_object = NULL;
10798
10799 // The "known_obj_attributes" table does contain some undefined
10800 // attributes. Ensure that there are unused.
10801 if (out_attr[i].int_value() != 0
10802 || out_attr[i].string_value() != "")
10803 err_object = "output";
10804 else if (in_attr[i].int_value() != 0
10805 || in_attr[i].string_value() != "")
10806 err_object = name;
10807
10808 if (err_object != NULL
10809 && parameters->options().warn_mismatch())
10810 {
10811 // Attribute numbers >=64 (mod 128) can be safely ignored.
10812 if ((i & 127) < 64)
10813 gold_error(_("%s: unknown mandatory EABI object attribute "
10814 "%d"),
10815 err_object, i);
10816 else
10817 gold_warning(_("%s: unknown EABI object attribute %d"),
10818 err_object, i);
10819 }
10820
10821 // Only pass on attributes that match in both inputs.
10822 if (!in_attr[i].matches(out_attr[i]))
10823 {
10824 out_attr[i].set_int_value(0);
10825 out_attr[i].set_string_value("");
10826 }
10827 }
10828 }
10829
10830 // If out_attr was copied from in_attr then it won't have a type yet.
10831 if (in_attr[i].type() && !out_attr[i].type())
10832 out_attr[i].set_type(in_attr[i].type());
10833 }
10834
10835 // Merge Tag_compatibility attributes and any common GNU ones.
10836 this->attributes_section_data_->merge(name, pasd);
10837
10838 // Check for any attributes not known on ARM.
10839 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10840 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10841 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10842 Other_attributes* out_other_attributes =
10843 this->attributes_section_data_->other_attributes(vendor);
10844 Other_attributes::iterator out_iter = out_other_attributes->begin();
10845
10846 while (in_iter != in_other_attributes->end()
10847 || out_iter != out_other_attributes->end())
10848 {
10849 const char* err_object = NULL;
10850 int err_tag = 0;
10851
10852 // The tags for each list are in numerical order.
10853 // If the tags are equal, then merge.
10854 if (out_iter != out_other_attributes->end()
10855 && (in_iter == in_other_attributes->end()
10856 || in_iter->first > out_iter->first))
10857 {
10858 // This attribute only exists in output. We can't merge, and we
10859 // don't know what the tag means, so delete it.
10860 err_object = "output";
10861 err_tag = out_iter->first;
10862 int saved_tag = out_iter->first;
10863 delete out_iter->second;
10864 out_other_attributes->erase(out_iter);
10865 out_iter = out_other_attributes->upper_bound(saved_tag);
10866 }
10867 else if (in_iter != in_other_attributes->end()
10868 && (out_iter != out_other_attributes->end()
10869 || in_iter->first < out_iter->first))
10870 {
10871 // This attribute only exists in input. We can't merge, and we
10872 // don't know what the tag means, so ignore it.
10873 err_object = name;
10874 err_tag = in_iter->first;
10875 ++in_iter;
10876 }
10877 else // The tags are equal.
10878 {
10879 // As present, all attributes in the list are unknown, and
10880 // therefore can't be merged meaningfully.
10881 err_object = "output";
10882 err_tag = out_iter->first;
10883
10884 // Only pass on attributes that match in both inputs.
10885 if (!in_iter->second->matches(*(out_iter->second)))
10886 {
10887 // No match. Delete the attribute.
10888 int saved_tag = out_iter->first;
10889 delete out_iter->second;
10890 out_other_attributes->erase(out_iter);
10891 out_iter = out_other_attributes->upper_bound(saved_tag);
10892 }
10893 else
10894 {
10895 // Matched. Keep the attribute and move to the next.
10896 ++out_iter;
10897 ++in_iter;
10898 }
10899 }
10900
10901 if (err_object && parameters->options().warn_mismatch())
10902 {
10903 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10904 if ((err_tag & 127) < 64)
10905 {
10906 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10907 err_object, err_tag);
10908 }
10909 else
10910 {
10911 gold_warning(_("%s: unknown EABI object attribute %d"),
10912 err_object, err_tag);
10913 }
10914 }
10915 }
10916 }
10917
10918 // Stub-generation methods for Target_arm.
10919
10920 // Make a new Arm_input_section object.
10921
10922 template<bool big_endian>
10923 Arm_input_section<big_endian>*
10924 Target_arm<big_endian>::new_arm_input_section(
10925 Relobj* relobj,
10926 unsigned int shndx)
10927 {
10928 Section_id sid(relobj, shndx);
10929
10930 Arm_input_section<big_endian>* arm_input_section =
10931 new Arm_input_section<big_endian>(relobj, shndx);
10932 arm_input_section->init();
10933
10934 // Register new Arm_input_section in map for look-up.
10935 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10936 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10937
10938 // Make sure that it we have not created another Arm_input_section
10939 // for this input section already.
10940 gold_assert(ins.second);
10941
10942 return arm_input_section;
10943 }
10944
10945 // Find the Arm_input_section object corresponding to the SHNDX-th input
10946 // section of RELOBJ.
10947
10948 template<bool big_endian>
10949 Arm_input_section<big_endian>*
10950 Target_arm<big_endian>::find_arm_input_section(
10951 Relobj* relobj,
10952 unsigned int shndx) const
10953 {
10954 Section_id sid(relobj, shndx);
10955 typename Arm_input_section_map::const_iterator p =
10956 this->arm_input_section_map_.find(sid);
10957 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10958 }
10959
10960 // Make a new stub table.
10961
10962 template<bool big_endian>
10963 Stub_table<big_endian>*
10964 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10965 {
10966 Stub_table<big_endian>* stub_table =
10967 new Stub_table<big_endian>(owner);
10968 this->stub_tables_.push_back(stub_table);
10969
10970 stub_table->set_address(owner->address() + owner->data_size());
10971 stub_table->set_file_offset(owner->offset() + owner->data_size());
10972 stub_table->finalize_data_size();
10973
10974 return stub_table;
10975 }
10976
10977 // Scan a relocation for stub generation.
10978
10979 template<bool big_endian>
10980 void
10981 Target_arm<big_endian>::scan_reloc_for_stub(
10982 const Relocate_info<32, big_endian>* relinfo,
10983 unsigned int r_type,
10984 const Sized_symbol<32>* gsym,
10985 unsigned int r_sym,
10986 const Symbol_value<32>* psymval,
10987 elfcpp::Elf_types<32>::Elf_Swxword addend,
10988 Arm_address address)
10989 {
10990 const Arm_relobj<big_endian>* arm_relobj =
10991 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10992
10993 bool target_is_thumb;
10994 Symbol_value<32> symval;
10995 if (gsym != NULL)
10996 {
10997 // This is a global symbol. Determine if we use PLT and if the
10998 // final target is THUMB.
10999 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11000 {
11001 // This uses a PLT, change the symbol value.
11002 symval.set_output_value(this->plt_section()->address()
11003 + gsym->plt_offset());
11004 psymval = &symval;
11005 target_is_thumb = false;
11006 }
11007 else if (gsym->is_undefined())
11008 // There is no need to generate a stub symbol is undefined.
11009 return;
11010 else
11011 {
11012 target_is_thumb =
11013 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11014 || (gsym->type() == elfcpp::STT_FUNC
11015 && !gsym->is_undefined()
11016 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11017 }
11018 }
11019 else
11020 {
11021 // This is a local symbol. Determine if the final target is THUMB.
11022 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11023 }
11024
11025 // Strip LSB if this points to a THUMB target.
11026 const Arm_reloc_property* reloc_property =
11027 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11028 gold_assert(reloc_property != NULL);
11029 if (target_is_thumb
11030 && reloc_property->uses_thumb_bit()
11031 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11032 {
11033 Arm_address stripped_value =
11034 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11035 symval.set_output_value(stripped_value);
11036 psymval = &symval;
11037 }
11038
11039 // Get the symbol value.
11040 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11041
11042 // Owing to pipelining, the PC relative branches below actually skip
11043 // two instructions when the branch offset is 0.
11044 Arm_address destination;
11045 switch (r_type)
11046 {
11047 case elfcpp::R_ARM_CALL:
11048 case elfcpp::R_ARM_JUMP24:
11049 case elfcpp::R_ARM_PLT32:
11050 // ARM branches.
11051 destination = value + addend + 8;
11052 break;
11053 case elfcpp::R_ARM_THM_CALL:
11054 case elfcpp::R_ARM_THM_XPC22:
11055 case elfcpp::R_ARM_THM_JUMP24:
11056 case elfcpp::R_ARM_THM_JUMP19:
11057 // THUMB branches.
11058 destination = value + addend + 4;
11059 break;
11060 default:
11061 gold_unreachable();
11062 }
11063
11064 Reloc_stub* stub = NULL;
11065 Stub_type stub_type =
11066 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11067 target_is_thumb);
11068 if (stub_type != arm_stub_none)
11069 {
11070 // Try looking up an existing stub from a stub table.
11071 Stub_table<big_endian>* stub_table =
11072 arm_relobj->stub_table(relinfo->data_shndx);
11073 gold_assert(stub_table != NULL);
11074
11075 // Locate stub by destination.
11076 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11077
11078 // Create a stub if there is not one already
11079 stub = stub_table->find_reloc_stub(stub_key);
11080 if (stub == NULL)
11081 {
11082 // create a new stub and add it to stub table.
11083 stub = this->stub_factory().make_reloc_stub(stub_type);
11084 stub_table->add_reloc_stub(stub, stub_key);
11085 }
11086
11087 // Record the destination address.
11088 stub->set_destination_address(destination
11089 | (target_is_thumb ? 1 : 0));
11090 }
11091
11092 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11093 if (this->fix_cortex_a8_
11094 && (r_type == elfcpp::R_ARM_THM_JUMP24
11095 || r_type == elfcpp::R_ARM_THM_JUMP19
11096 || r_type == elfcpp::R_ARM_THM_CALL
11097 || r_type == elfcpp::R_ARM_THM_XPC22)
11098 && (address & 0xfffU) == 0xffeU)
11099 {
11100 // Found a candidate. Note we haven't checked the destination is
11101 // within 4K here: if we do so (and don't create a record) we can't
11102 // tell that a branch should have been relocated when scanning later.
11103 this->cortex_a8_relocs_info_[address] =
11104 new Cortex_a8_reloc(stub, r_type,
11105 destination | (target_is_thumb ? 1 : 0));
11106 }
11107 }
11108
11109 // This function scans a relocation sections for stub generation.
11110 // The template parameter Relocate must be a class type which provides
11111 // a single function, relocate(), which implements the machine
11112 // specific part of a relocation.
11113
11114 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11115 // SHT_REL or SHT_RELA.
11116
11117 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11118 // of relocs. OUTPUT_SECTION is the output section.
11119 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11120 // mapped to output offsets.
11121
11122 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11123 // VIEW_SIZE is the size. These refer to the input section, unless
11124 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11125 // the output section.
11126
11127 template<bool big_endian>
11128 template<int sh_type>
11129 void inline
11130 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11131 const Relocate_info<32, big_endian>* relinfo,
11132 const unsigned char* prelocs,
11133 size_t reloc_count,
11134 Output_section* output_section,
11135 bool needs_special_offset_handling,
11136 const unsigned char* view,
11137 elfcpp::Elf_types<32>::Elf_Addr view_address,
11138 section_size_type)
11139 {
11140 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11141 const int reloc_size =
11142 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11143
11144 Arm_relobj<big_endian>* arm_object =
11145 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11146 unsigned int local_count = arm_object->local_symbol_count();
11147
11148 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11149
11150 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11151 {
11152 Reltype reloc(prelocs);
11153
11154 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11155 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11156 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11157
11158 r_type = this->get_real_reloc_type(r_type);
11159
11160 // Only a few relocation types need stubs.
11161 if ((r_type != elfcpp::R_ARM_CALL)
11162 && (r_type != elfcpp::R_ARM_JUMP24)
11163 && (r_type != elfcpp::R_ARM_PLT32)
11164 && (r_type != elfcpp::R_ARM_THM_CALL)
11165 && (r_type != elfcpp::R_ARM_THM_XPC22)
11166 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11167 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11168 && (r_type != elfcpp::R_ARM_V4BX))
11169 continue;
11170
11171 section_offset_type offset =
11172 convert_to_section_size_type(reloc.get_r_offset());
11173
11174 if (needs_special_offset_handling)
11175 {
11176 offset = output_section->output_offset(relinfo->object,
11177 relinfo->data_shndx,
11178 offset);
11179 if (offset == -1)
11180 continue;
11181 }
11182
11183 // Create a v4bx stub if --fix-v4bx-interworking is used.
11184 if (r_type == elfcpp::R_ARM_V4BX)
11185 {
11186 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11187 {
11188 // Get the BX instruction.
11189 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11190 const Valtype* wv =
11191 reinterpret_cast<const Valtype*>(view + offset);
11192 elfcpp::Elf_types<32>::Elf_Swxword insn =
11193 elfcpp::Swap<32, big_endian>::readval(wv);
11194 const uint32_t reg = (insn & 0xf);
11195
11196 if (reg < 0xf)
11197 {
11198 // Try looking up an existing stub from a stub table.
11199 Stub_table<big_endian>* stub_table =
11200 arm_object->stub_table(relinfo->data_shndx);
11201 gold_assert(stub_table != NULL);
11202
11203 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11204 {
11205 // create a new stub and add it to stub table.
11206 Arm_v4bx_stub* stub =
11207 this->stub_factory().make_arm_v4bx_stub(reg);
11208 gold_assert(stub != NULL);
11209 stub_table->add_arm_v4bx_stub(stub);
11210 }
11211 }
11212 }
11213 continue;
11214 }
11215
11216 // Get the addend.
11217 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11218 elfcpp::Elf_types<32>::Elf_Swxword addend =
11219 stub_addend_reader(r_type, view + offset, reloc);
11220
11221 const Sized_symbol<32>* sym;
11222
11223 Symbol_value<32> symval;
11224 const Symbol_value<32> *psymval;
11225 bool is_defined_in_discarded_section;
11226 unsigned int shndx;
11227 if (r_sym < local_count)
11228 {
11229 sym = NULL;
11230 psymval = arm_object->local_symbol(r_sym);
11231
11232 // If the local symbol belongs to a section we are discarding,
11233 // and that section is a debug section, try to find the
11234 // corresponding kept section and map this symbol to its
11235 // counterpart in the kept section. The symbol must not
11236 // correspond to a section we are folding.
11237 bool is_ordinary;
11238 shndx = psymval->input_shndx(&is_ordinary);
11239 is_defined_in_discarded_section =
11240 (is_ordinary
11241 && shndx != elfcpp::SHN_UNDEF
11242 && !arm_object->is_section_included(shndx)
11243 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11244
11245 // We need to compute the would-be final value of this local
11246 // symbol.
11247 if (!is_defined_in_discarded_section)
11248 {
11249 typedef Sized_relobj_file<32, big_endian> ObjType;
11250 typename ObjType::Compute_final_local_value_status status =
11251 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11252 relinfo->symtab);
11253 if (status == ObjType::CFLV_OK)
11254 {
11255 // Currently we cannot handle a branch to a target in
11256 // a merged section. If this is the case, issue an error
11257 // and also free the merge symbol value.
11258 if (!symval.has_output_value())
11259 {
11260 const std::string& section_name =
11261 arm_object->section_name(shndx);
11262 arm_object->error(_("cannot handle branch to local %u "
11263 "in a merged section %s"),
11264 r_sym, section_name.c_str());
11265 }
11266 psymval = &symval;
11267 }
11268 else
11269 {
11270 // We cannot determine the final value.
11271 continue;
11272 }
11273 }
11274 }
11275 else
11276 {
11277 const Symbol* gsym;
11278 gsym = arm_object->global_symbol(r_sym);
11279 gold_assert(gsym != NULL);
11280 if (gsym->is_forwarder())
11281 gsym = relinfo->symtab->resolve_forwards(gsym);
11282
11283 sym = static_cast<const Sized_symbol<32>*>(gsym);
11284 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11285 symval.set_output_symtab_index(sym->symtab_index());
11286 else
11287 symval.set_no_output_symtab_entry();
11288
11289 // We need to compute the would-be final value of this global
11290 // symbol.
11291 const Symbol_table* symtab = relinfo->symtab;
11292 const Sized_symbol<32>* sized_symbol =
11293 symtab->get_sized_symbol<32>(gsym);
11294 Symbol_table::Compute_final_value_status status;
11295 Arm_address value =
11296 symtab->compute_final_value<32>(sized_symbol, &status);
11297
11298 // Skip this if the symbol has not output section.
11299 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11300 continue;
11301 symval.set_output_value(value);
11302
11303 if (gsym->type() == elfcpp::STT_TLS)
11304 symval.set_is_tls_symbol();
11305 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11306 symval.set_is_ifunc_symbol();
11307 psymval = &symval;
11308
11309 is_defined_in_discarded_section =
11310 (gsym->is_defined_in_discarded_section()
11311 && gsym->is_undefined());
11312 shndx = 0;
11313 }
11314
11315 Symbol_value<32> symval2;
11316 if (is_defined_in_discarded_section)
11317 {
11318 if (comdat_behavior == CB_UNDETERMINED)
11319 {
11320 std::string name = arm_object->section_name(relinfo->data_shndx);
11321 comdat_behavior = get_comdat_behavior(name.c_str());
11322 }
11323 if (comdat_behavior == CB_PRETEND)
11324 {
11325 // FIXME: This case does not work for global symbols.
11326 // We have no place to store the original section index.
11327 // Fortunately this does not matter for comdat sections,
11328 // only for sections explicitly discarded by a linker
11329 // script.
11330 bool found;
11331 typename elfcpp::Elf_types<32>::Elf_Addr value =
11332 arm_object->map_to_kept_section(shndx, &found);
11333 if (found)
11334 symval2.set_output_value(value + psymval->input_value());
11335 else
11336 symval2.set_output_value(0);
11337 }
11338 else
11339 {
11340 if (comdat_behavior == CB_WARNING)
11341 gold_warning_at_location(relinfo, i, offset,
11342 _("relocation refers to discarded "
11343 "section"));
11344 symval2.set_output_value(0);
11345 }
11346 symval2.set_no_output_symtab_entry();
11347 psymval = &symval2;
11348 }
11349
11350 // If symbol is a section symbol, we don't know the actual type of
11351 // destination. Give up.
11352 if (psymval->is_section_symbol())
11353 continue;
11354
11355 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11356 addend, view_address + offset);
11357 }
11358 }
11359
11360 // Scan an input section for stub generation.
11361
11362 template<bool big_endian>
11363 void
11364 Target_arm<big_endian>::scan_section_for_stubs(
11365 const Relocate_info<32, big_endian>* relinfo,
11366 unsigned int sh_type,
11367 const unsigned char* prelocs,
11368 size_t reloc_count,
11369 Output_section* output_section,
11370 bool needs_special_offset_handling,
11371 const unsigned char* view,
11372 Arm_address view_address,
11373 section_size_type view_size)
11374 {
11375 if (sh_type == elfcpp::SHT_REL)
11376 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11377 relinfo,
11378 prelocs,
11379 reloc_count,
11380 output_section,
11381 needs_special_offset_handling,
11382 view,
11383 view_address,
11384 view_size);
11385 else if (sh_type == elfcpp::SHT_RELA)
11386 // We do not support RELA type relocations yet. This is provided for
11387 // completeness.
11388 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11389 relinfo,
11390 prelocs,
11391 reloc_count,
11392 output_section,
11393 needs_special_offset_handling,
11394 view,
11395 view_address,
11396 view_size);
11397 else
11398 gold_unreachable();
11399 }
11400
11401 // Group input sections for stub generation.
11402 //
11403 // We group input sections in an output section so that the total size,
11404 // including any padding space due to alignment is smaller than GROUP_SIZE
11405 // unless the only input section in group is bigger than GROUP_SIZE already.
11406 // Then an ARM stub table is created to follow the last input section
11407 // in group. For each group an ARM stub table is created an is placed
11408 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11409 // extend the group after the stub table.
11410
11411 template<bool big_endian>
11412 void
11413 Target_arm<big_endian>::group_sections(
11414 Layout* layout,
11415 section_size_type group_size,
11416 bool stubs_always_after_branch,
11417 const Task* task)
11418 {
11419 // Group input sections and insert stub table
11420 Layout::Section_list section_list;
11421 layout->get_allocated_sections(&section_list);
11422 for (Layout::Section_list::const_iterator p = section_list.begin();
11423 p != section_list.end();
11424 ++p)
11425 {
11426 Arm_output_section<big_endian>* output_section =
11427 Arm_output_section<big_endian>::as_arm_output_section(*p);
11428 output_section->group_sections(group_size, stubs_always_after_branch,
11429 this, task);
11430 }
11431 }
11432
11433 // Relaxation hook. This is where we do stub generation.
11434
11435 template<bool big_endian>
11436 bool
11437 Target_arm<big_endian>::do_relax(
11438 int pass,
11439 const Input_objects* input_objects,
11440 Symbol_table* symtab,
11441 Layout* layout,
11442 const Task* task)
11443 {
11444 // No need to generate stubs if this is a relocatable link.
11445 gold_assert(!parameters->options().relocatable());
11446
11447 // If this is the first pass, we need to group input sections into
11448 // stub groups.
11449 bool done_exidx_fixup = false;
11450 typedef typename Stub_table_list::iterator Stub_table_iterator;
11451 if (pass == 1)
11452 {
11453 // Determine the stub group size. The group size is the absolute
11454 // value of the parameter --stub-group-size. If --stub-group-size
11455 // is passed a negative value, we restrict stubs to be always after
11456 // the stubbed branches.
11457 int32_t stub_group_size_param =
11458 parameters->options().stub_group_size();
11459 bool stubs_always_after_branch = stub_group_size_param < 0;
11460 section_size_type stub_group_size = abs(stub_group_size_param);
11461
11462 if (stub_group_size == 1)
11463 {
11464 // Default value.
11465 // Thumb branch range is +-4MB has to be used as the default
11466 // maximum size (a given section can contain both ARM and Thumb
11467 // code, so the worst case has to be taken into account). If we are
11468 // fixing cortex-a8 errata, the branch range has to be even smaller,
11469 // since wide conditional branch has a range of +-1MB only.
11470 //
11471 // This value is 48K less than that, which allows for 4096
11472 // 12-byte stubs. If we exceed that, then we will fail to link.
11473 // The user will have to relink with an explicit group size
11474 // option.
11475 stub_group_size = 4145152;
11476 }
11477
11478 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11479 // page as the first half of a 32-bit branch straddling two 4K pages.
11480 // This is a crude way of enforcing that. In addition, long conditional
11481 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11482 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11483 // cortex-A8 stubs from long conditional branches.
11484 if (this->fix_cortex_a8_)
11485 {
11486 stubs_always_after_branch = true;
11487 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11488 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11489 }
11490
11491 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11492
11493 // Also fix .ARM.exidx section coverage.
11494 Arm_output_section<big_endian>* exidx_output_section = NULL;
11495 for (Layout::Section_list::const_iterator p =
11496 layout->section_list().begin();
11497 p != layout->section_list().end();
11498 ++p)
11499 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11500 {
11501 if (exidx_output_section == NULL)
11502 exidx_output_section =
11503 Arm_output_section<big_endian>::as_arm_output_section(*p);
11504 else
11505 // We cannot handle this now.
11506 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11507 "non-relocatable link"),
11508 exidx_output_section->name(),
11509 (*p)->name());
11510 }
11511
11512 if (exidx_output_section != NULL)
11513 {
11514 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11515 symtab, task);
11516 done_exidx_fixup = true;
11517 }
11518 }
11519 else
11520 {
11521 // If this is not the first pass, addresses and file offsets have
11522 // been reset at this point, set them here.
11523 for (Stub_table_iterator sp = this->stub_tables_.begin();
11524 sp != this->stub_tables_.end();
11525 ++sp)
11526 {
11527 Arm_input_section<big_endian>* owner = (*sp)->owner();
11528 off_t off = align_address(owner->original_size(),
11529 (*sp)->addralign());
11530 (*sp)->set_address_and_file_offset(owner->address() + off,
11531 owner->offset() + off);
11532 }
11533 }
11534
11535 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11536 // beginning of each relaxation pass, just blow away all the stubs.
11537 // Alternatively, we could selectively remove only the stubs and reloc
11538 // information for code sections that have moved since the last pass.
11539 // That would require more book-keeping.
11540 if (this->fix_cortex_a8_)
11541 {
11542 // Clear all Cortex-A8 reloc information.
11543 for (typename Cortex_a8_relocs_info::const_iterator p =
11544 this->cortex_a8_relocs_info_.begin();
11545 p != this->cortex_a8_relocs_info_.end();
11546 ++p)
11547 delete p->second;
11548 this->cortex_a8_relocs_info_.clear();
11549
11550 // Remove all Cortex-A8 stubs.
11551 for (Stub_table_iterator sp = this->stub_tables_.begin();
11552 sp != this->stub_tables_.end();
11553 ++sp)
11554 (*sp)->remove_all_cortex_a8_stubs();
11555 }
11556
11557 // Scan relocs for relocation stubs
11558 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11559 op != input_objects->relobj_end();
11560 ++op)
11561 {
11562 Arm_relobj<big_endian>* arm_relobj =
11563 Arm_relobj<big_endian>::as_arm_relobj(*op);
11564 // Lock the object so we can read from it. This is only called
11565 // single-threaded from Layout::finalize, so it is OK to lock.
11566 Task_lock_obj<Object> tl(task, arm_relobj);
11567 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11568 }
11569
11570 // Check all stub tables to see if any of them have their data sizes
11571 // or addresses alignments changed. These are the only things that
11572 // matter.
11573 bool any_stub_table_changed = false;
11574 Unordered_set<const Output_section*> sections_needing_adjustment;
11575 for (Stub_table_iterator sp = this->stub_tables_.begin();
11576 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11577 ++sp)
11578 {
11579 if ((*sp)->update_data_size_and_addralign())
11580 {
11581 // Update data size of stub table owner.
11582 Arm_input_section<big_endian>* owner = (*sp)->owner();
11583 uint64_t address = owner->address();
11584 off_t offset = owner->offset();
11585 owner->reset_address_and_file_offset();
11586 owner->set_address_and_file_offset(address, offset);
11587
11588 sections_needing_adjustment.insert(owner->output_section());
11589 any_stub_table_changed = true;
11590 }
11591 }
11592
11593 // Output_section_data::output_section() returns a const pointer but we
11594 // need to update output sections, so we record all output sections needing
11595 // update above and scan the sections here to find out what sections need
11596 // to be updated.
11597 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11598 p != layout->section_list().end();
11599 ++p)
11600 {
11601 if (sections_needing_adjustment.find(*p)
11602 != sections_needing_adjustment.end())
11603 (*p)->set_section_offsets_need_adjustment();
11604 }
11605
11606 // Stop relaxation if no EXIDX fix-up and no stub table change.
11607 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11608
11609 // Finalize the stubs in the last relaxation pass.
11610 if (!continue_relaxation)
11611 {
11612 for (Stub_table_iterator sp = this->stub_tables_.begin();
11613 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11614 ++sp)
11615 (*sp)->finalize_stubs();
11616
11617 // Update output local symbol counts of objects if necessary.
11618 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11619 op != input_objects->relobj_end();
11620 ++op)
11621 {
11622 Arm_relobj<big_endian>* arm_relobj =
11623 Arm_relobj<big_endian>::as_arm_relobj(*op);
11624
11625 // Update output local symbol counts. We need to discard local
11626 // symbols defined in parts of input sections that are discarded by
11627 // relaxation.
11628 if (arm_relobj->output_local_symbol_count_needs_update())
11629 {
11630 // We need to lock the object's file to update it.
11631 Task_lock_obj<Object> tl(task, arm_relobj);
11632 arm_relobj->update_output_local_symbol_count();
11633 }
11634 }
11635 }
11636
11637 return continue_relaxation;
11638 }
11639
11640 // Relocate a stub.
11641
11642 template<bool big_endian>
11643 void
11644 Target_arm<big_endian>::relocate_stub(
11645 Stub* stub,
11646 const Relocate_info<32, big_endian>* relinfo,
11647 Output_section* output_section,
11648 unsigned char* view,
11649 Arm_address address,
11650 section_size_type view_size)
11651 {
11652 Relocate relocate;
11653 const Stub_template* stub_template = stub->stub_template();
11654 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11655 {
11656 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11657 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11658
11659 unsigned int r_type = insn->r_type();
11660 section_size_type reloc_offset = stub_template->reloc_offset(i);
11661 section_size_type reloc_size = insn->size();
11662 gold_assert(reloc_offset + reloc_size <= view_size);
11663
11664 // This is the address of the stub destination.
11665 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11666 Symbol_value<32> symval;
11667 symval.set_output_value(target);
11668
11669 // Synthesize a fake reloc just in case. We don't have a symbol so
11670 // we use 0.
11671 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11672 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11673 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11674 reloc_write.put_r_offset(reloc_offset);
11675 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11676 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11677
11678 relocate.relocate(relinfo, this, output_section,
11679 this->fake_relnum_for_stubs, rel, r_type,
11680 NULL, &symval, view + reloc_offset,
11681 address + reloc_offset, reloc_size);
11682 }
11683 }
11684
11685 // Determine whether an object attribute tag takes an integer, a
11686 // string or both.
11687
11688 template<bool big_endian>
11689 int
11690 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11691 {
11692 if (tag == Object_attribute::Tag_compatibility)
11693 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11694 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11695 else if (tag == elfcpp::Tag_nodefaults)
11696 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11697 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11698 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11699 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11700 else if (tag < 32)
11701 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11702 else
11703 return ((tag & 1) != 0
11704 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11705 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11706 }
11707
11708 // Reorder attributes.
11709 //
11710 // The ABI defines that Tag_conformance should be emitted first, and that
11711 // Tag_nodefaults should be second (if either is defined). This sets those
11712 // two positions, and bumps up the position of all the remaining tags to
11713 // compensate.
11714
11715 template<bool big_endian>
11716 int
11717 Target_arm<big_endian>::do_attributes_order(int num) const
11718 {
11719 // Reorder the known object attributes in output. We want to move
11720 // Tag_conformance to position 4 and Tag_conformance to position 5
11721 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11722 if (num == 4)
11723 return elfcpp::Tag_conformance;
11724 if (num == 5)
11725 return elfcpp::Tag_nodefaults;
11726 if ((num - 2) < elfcpp::Tag_nodefaults)
11727 return num - 2;
11728 if ((num - 1) < elfcpp::Tag_conformance)
11729 return num - 1;
11730 return num;
11731 }
11732
11733 // Scan a span of THUMB code for Cortex-A8 erratum.
11734
11735 template<bool big_endian>
11736 void
11737 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11738 Arm_relobj<big_endian>* arm_relobj,
11739 unsigned int shndx,
11740 section_size_type span_start,
11741 section_size_type span_end,
11742 const unsigned char* view,
11743 Arm_address address)
11744 {
11745 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11746 //
11747 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11748 // The branch target is in the same 4KB region as the
11749 // first half of the branch.
11750 // The instruction before the branch is a 32-bit
11751 // length non-branch instruction.
11752 section_size_type i = span_start;
11753 bool last_was_32bit = false;
11754 bool last_was_branch = false;
11755 while (i < span_end)
11756 {
11757 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11758 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11759 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11760 bool is_blx = false, is_b = false;
11761 bool is_bl = false, is_bcc = false;
11762
11763 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11764 if (insn_32bit)
11765 {
11766 // Load the rest of the insn (in manual-friendly order).
11767 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11768
11769 // Encoding T4: B<c>.W.
11770 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11771 // Encoding T1: BL<c>.W.
11772 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11773 // Encoding T2: BLX<c>.W.
11774 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11775 // Encoding T3: B<c>.W (not permitted in IT block).
11776 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11777 && (insn & 0x07f00000U) != 0x03800000U);
11778 }
11779
11780 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11781
11782 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11783 // page boundary and it follows 32-bit non-branch instruction,
11784 // we need to work around.
11785 if (is_32bit_branch
11786 && ((address + i) & 0xfffU) == 0xffeU
11787 && last_was_32bit
11788 && !last_was_branch)
11789 {
11790 // Check to see if there is a relocation stub for this branch.
11791 bool force_target_arm = false;
11792 bool force_target_thumb = false;
11793 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11794 Cortex_a8_relocs_info::const_iterator p =
11795 this->cortex_a8_relocs_info_.find(address + i);
11796
11797 if (p != this->cortex_a8_relocs_info_.end())
11798 {
11799 cortex_a8_reloc = p->second;
11800 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11801
11802 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11803 && !target_is_thumb)
11804 force_target_arm = true;
11805 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11806 && target_is_thumb)
11807 force_target_thumb = true;
11808 }
11809
11810 off_t offset;
11811 Stub_type stub_type = arm_stub_none;
11812
11813 // Check if we have an offending branch instruction.
11814 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11815 uint16_t lower_insn = insn & 0xffffU;
11816 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11817
11818 if (cortex_a8_reloc != NULL
11819 && cortex_a8_reloc->reloc_stub() != NULL)
11820 // We've already made a stub for this instruction, e.g.
11821 // it's a long branch or a Thumb->ARM stub. Assume that
11822 // stub will suffice to work around the A8 erratum (see
11823 // setting of always_after_branch above).
11824 ;
11825 else if (is_bcc)
11826 {
11827 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11828 lower_insn);
11829 stub_type = arm_stub_a8_veneer_b_cond;
11830 }
11831 else if (is_b || is_bl || is_blx)
11832 {
11833 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11834 lower_insn);
11835 if (is_blx)
11836 offset &= ~3;
11837
11838 stub_type = (is_blx
11839 ? arm_stub_a8_veneer_blx
11840 : (is_bl
11841 ? arm_stub_a8_veneer_bl
11842 : arm_stub_a8_veneer_b));
11843 }
11844
11845 if (stub_type != arm_stub_none)
11846 {
11847 Arm_address pc_for_insn = address + i + 4;
11848
11849 // The original instruction is a BL, but the target is
11850 // an ARM instruction. If we were not making a stub,
11851 // the BL would have been converted to a BLX. Use the
11852 // BLX stub instead in that case.
11853 if (this->may_use_v5t_interworking() && force_target_arm
11854 && stub_type == arm_stub_a8_veneer_bl)
11855 {
11856 stub_type = arm_stub_a8_veneer_blx;
11857 is_blx = true;
11858 is_bl = false;
11859 }
11860 // Conversely, if the original instruction was
11861 // BLX but the target is Thumb mode, use the BL stub.
11862 else if (force_target_thumb
11863 && stub_type == arm_stub_a8_veneer_blx)
11864 {
11865 stub_type = arm_stub_a8_veneer_bl;
11866 is_blx = false;
11867 is_bl = true;
11868 }
11869
11870 if (is_blx)
11871 pc_for_insn &= ~3;
11872
11873 // If we found a relocation, use the proper destination,
11874 // not the offset in the (unrelocated) instruction.
11875 // Note this is always done if we switched the stub type above.
11876 if (cortex_a8_reloc != NULL)
11877 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11878
11879 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11880
11881 // Add a new stub if destination address in in the same page.
11882 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11883 {
11884 Cortex_a8_stub* stub =
11885 this->stub_factory_.make_cortex_a8_stub(stub_type,
11886 arm_relobj, shndx,
11887 address + i,
11888 target, insn);
11889 Stub_table<big_endian>* stub_table =
11890 arm_relobj->stub_table(shndx);
11891 gold_assert(stub_table != NULL);
11892 stub_table->add_cortex_a8_stub(address + i, stub);
11893 }
11894 }
11895 }
11896
11897 i += insn_32bit ? 4 : 2;
11898 last_was_32bit = insn_32bit;
11899 last_was_branch = is_32bit_branch;
11900 }
11901 }
11902
11903 // Apply the Cortex-A8 workaround.
11904
11905 template<bool big_endian>
11906 void
11907 Target_arm<big_endian>::apply_cortex_a8_workaround(
11908 const Cortex_a8_stub* stub,
11909 Arm_address stub_address,
11910 unsigned char* insn_view,
11911 Arm_address insn_address)
11912 {
11913 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11914 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11915 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11916 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11917 off_t branch_offset = stub_address - (insn_address + 4);
11918
11919 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11920 switch (stub->stub_template()->type())
11921 {
11922 case arm_stub_a8_veneer_b_cond:
11923 // For a conditional branch, we re-write it to be an unconditional
11924 // branch to the stub. We use the THUMB-2 encoding here.
11925 upper_insn = 0xf000U;
11926 lower_insn = 0xb800U;
11927 // Fall through
11928 case arm_stub_a8_veneer_b:
11929 case arm_stub_a8_veneer_bl:
11930 case arm_stub_a8_veneer_blx:
11931 if ((lower_insn & 0x5000U) == 0x4000U)
11932 // For a BLX instruction, make sure that the relocation is
11933 // rounded up to a word boundary. This follows the semantics of
11934 // the instruction which specifies that bit 1 of the target
11935 // address will come from bit 1 of the base address.
11936 branch_offset = (branch_offset + 2) & ~3;
11937
11938 // Put BRANCH_OFFSET back into the insn.
11939 gold_assert(!Bits<25>::has_overflow32(branch_offset));
11940 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11941 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11942 break;
11943
11944 default:
11945 gold_unreachable();
11946 }
11947
11948 // Put the relocated value back in the object file:
11949 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11950 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11951 }
11952
11953 // Target selector for ARM. Note this is never instantiated directly.
11954 // It's only used in Target_selector_arm_nacl, below.
11955
11956 template<bool big_endian>
11957 class Target_selector_arm : public Target_selector
11958 {
11959 public:
11960 Target_selector_arm()
11961 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11962 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11963 (big_endian ? "armelfb" : "armelf"))
11964 { }
11965
11966 Target*
11967 do_instantiate_target()
11968 { return new Target_arm<big_endian>(); }
11969 };
11970
11971 // Fix .ARM.exidx section coverage.
11972
11973 template<bool big_endian>
11974 void
11975 Target_arm<big_endian>::fix_exidx_coverage(
11976 Layout* layout,
11977 const Input_objects* input_objects,
11978 Arm_output_section<big_endian>* exidx_section,
11979 Symbol_table* symtab,
11980 const Task* task)
11981 {
11982 // We need to look at all the input sections in output in ascending
11983 // order of of output address. We do that by building a sorted list
11984 // of output sections by addresses. Then we looks at the output sections
11985 // in order. The input sections in an output section are already sorted
11986 // by addresses within the output section.
11987
11988 typedef std::set<Output_section*, output_section_address_less_than>
11989 Sorted_output_section_list;
11990 Sorted_output_section_list sorted_output_sections;
11991
11992 // Find out all the output sections of input sections pointed by
11993 // EXIDX input sections.
11994 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11995 p != input_objects->relobj_end();
11996 ++p)
11997 {
11998 Arm_relobj<big_endian>* arm_relobj =
11999 Arm_relobj<big_endian>::as_arm_relobj(*p);
12000 std::vector<unsigned int> shndx_list;
12001 arm_relobj->get_exidx_shndx_list(&shndx_list);
12002 for (size_t i = 0; i < shndx_list.size(); ++i)
12003 {
12004 const Arm_exidx_input_section* exidx_input_section =
12005 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12006 gold_assert(exidx_input_section != NULL);
12007 if (!exidx_input_section->has_errors())
12008 {
12009 unsigned int text_shndx = exidx_input_section->link();
12010 Output_section* os = arm_relobj->output_section(text_shndx);
12011 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12012 sorted_output_sections.insert(os);
12013 }
12014 }
12015 }
12016
12017 // Go over the output sections in ascending order of output addresses.
12018 typedef typename Arm_output_section<big_endian>::Text_section_list
12019 Text_section_list;
12020 Text_section_list sorted_text_sections;
12021 for (typename Sorted_output_section_list::iterator p =
12022 sorted_output_sections.begin();
12023 p != sorted_output_sections.end();
12024 ++p)
12025 {
12026 Arm_output_section<big_endian>* arm_output_section =
12027 Arm_output_section<big_endian>::as_arm_output_section(*p);
12028 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12029 }
12030
12031 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12032 merge_exidx_entries(), task);
12033 }
12034
12035 template<bool big_endian>
12036 void
12037 Target_arm<big_endian>::do_define_standard_symbols(
12038 Symbol_table* symtab,
12039 Layout* layout)
12040 {
12041 // Handle the .ARM.exidx section.
12042 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12043
12044 if (exidx_section != NULL)
12045 {
12046 // Create __exidx_start and __exidx_end symbols.
12047 symtab->define_in_output_data("__exidx_start",
12048 NULL, // version
12049 Symbol_table::PREDEFINED,
12050 exidx_section,
12051 0, // value
12052 0, // symsize
12053 elfcpp::STT_NOTYPE,
12054 elfcpp::STB_GLOBAL,
12055 elfcpp::STV_HIDDEN,
12056 0, // nonvis
12057 false, // offset_is_from_end
12058 true); // only_if_ref
12059
12060 symtab->define_in_output_data("__exidx_end",
12061 NULL, // version
12062 Symbol_table::PREDEFINED,
12063 exidx_section,
12064 0, // value
12065 0, // symsize
12066 elfcpp::STT_NOTYPE,
12067 elfcpp::STB_GLOBAL,
12068 elfcpp::STV_HIDDEN,
12069 0, // nonvis
12070 true, // offset_is_from_end
12071 true); // only_if_ref
12072 }
12073 else
12074 {
12075 // Define __exidx_start and __exidx_end even when .ARM.exidx
12076 // section is missing to match ld's behaviour.
12077 symtab->define_as_constant("__exidx_start", NULL,
12078 Symbol_table::PREDEFINED,
12079 0, 0, elfcpp::STT_OBJECT,
12080 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12081 true, false);
12082 symtab->define_as_constant("__exidx_end", NULL,
12083 Symbol_table::PREDEFINED,
12084 0, 0, elfcpp::STT_OBJECT,
12085 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12086 true, false);
12087 }
12088 }
12089
12090 // NaCl variant. It uses different PLT contents.
12091
12092 template<bool big_endian>
12093 class Output_data_plt_arm_nacl;
12094
12095 template<bool big_endian>
12096 class Target_arm_nacl : public Target_arm<big_endian>
12097 {
12098 public:
12099 Target_arm_nacl()
12100 : Target_arm<big_endian>(&arm_nacl_info)
12101 { }
12102
12103 protected:
12104 virtual Output_data_plt_arm<big_endian>*
12105 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12106 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12107
12108 private:
12109 static const Target::Target_info arm_nacl_info;
12110 };
12111
12112 template<bool big_endian>
12113 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12114 {
12115 32, // size
12116 big_endian, // is_big_endian
12117 elfcpp::EM_ARM, // machine_code
12118 false, // has_make_symbol
12119 false, // has_resolve
12120 false, // has_code_fill
12121 true, // is_default_stack_executable
12122 false, // can_icf_inline_merge_sections
12123 '\0', // wrap_char
12124 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12125 0x20000, // default_text_segment_address
12126 0x10000, // abi_pagesize (overridable by -z max-page-size)
12127 0x10000, // common_pagesize (overridable by -z common-page-size)
12128 true, // isolate_execinstr
12129 0x10000000, // rosegment_gap
12130 elfcpp::SHN_UNDEF, // small_common_shndx
12131 elfcpp::SHN_UNDEF, // large_common_shndx
12132 0, // small_common_section_flags
12133 0, // large_common_section_flags
12134 ".ARM.attributes", // attributes_section
12135 "aeabi" // attributes_vendor
12136 };
12137
12138 template<bool big_endian>
12139 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12140 {
12141 public:
12142 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12143 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12144 { }
12145
12146 protected:
12147 // Return the offset of the first non-reserved PLT entry.
12148 virtual unsigned int
12149 do_first_plt_entry_offset() const
12150 { return sizeof(first_plt_entry); }
12151
12152 // Return the size of a PLT entry.
12153 virtual unsigned int
12154 do_get_plt_entry_size() const
12155 { return sizeof(plt_entry); }
12156
12157 virtual void
12158 do_fill_first_plt_entry(unsigned char* pov,
12159 Arm_address got_address,
12160 Arm_address plt_address);
12161
12162 virtual void
12163 do_fill_plt_entry(unsigned char* pov,
12164 Arm_address got_address,
12165 Arm_address plt_address,
12166 unsigned int got_offset,
12167 unsigned int plt_offset);
12168
12169 private:
12170 inline uint32_t arm_movw_immediate(uint32_t value)
12171 {
12172 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12173 }
12174
12175 inline uint32_t arm_movt_immediate(uint32_t value)
12176 {
12177 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12178 }
12179
12180 // Template for the first PLT entry.
12181 static const uint32_t first_plt_entry[16];
12182
12183 // Template for subsequent PLT entries.
12184 static const uint32_t plt_entry[4];
12185 };
12186
12187 // The first entry in the PLT.
12188 template<bool big_endian>
12189 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12190 {
12191 // First bundle:
12192 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12193 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12194 0xe08cc00f, // add ip, ip, pc
12195 0xe52dc008, // str ip, [sp, #-8]!
12196 // Second bundle:
12197 0xe7dfcf1f, // bfc ip, #30, #2
12198 0xe59cc000, // ldr ip, [ip]
12199 0xe3ccc13f, // bic ip, ip, #0xc000000f
12200 0xe12fff1c, // bx ip
12201 // Third bundle:
12202 0xe320f000, // nop
12203 0xe320f000, // nop
12204 0xe320f000, // nop
12205 // .Lplt_tail:
12206 0xe50dc004, // str ip, [sp, #-4]
12207 // Fourth bundle:
12208 0xe7dfcf1f, // bfc ip, #30, #2
12209 0xe59cc000, // ldr ip, [ip]
12210 0xe3ccc13f, // bic ip, ip, #0xc000000f
12211 0xe12fff1c, // bx ip
12212 };
12213
12214 template<bool big_endian>
12215 void
12216 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12217 unsigned char* pov,
12218 Arm_address got_address,
12219 Arm_address plt_address)
12220 {
12221 // Write first PLT entry. All but first two words are constants.
12222 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12223 / sizeof(first_plt_entry[0]));
12224
12225 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12226
12227 elfcpp::Swap<32, big_endian>::writeval
12228 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12229 elfcpp::Swap<32, big_endian>::writeval
12230 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12231
12232 for (size_t i = 2; i < num_first_plt_words; ++i)
12233 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12234 }
12235
12236 // Subsequent entries in the PLT.
12237
12238 template<bool big_endian>
12239 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12240 {
12241 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12242 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12243 0xe08cc00f, // add ip, ip, pc
12244 0xea000000, // b .Lplt_tail
12245 };
12246
12247 template<bool big_endian>
12248 void
12249 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12250 unsigned char* pov,
12251 Arm_address got_address,
12252 Arm_address plt_address,
12253 unsigned int got_offset,
12254 unsigned int plt_offset)
12255 {
12256 // Calculate the displacement between the PLT slot and the
12257 // common tail that's part of the special initial PLT slot.
12258 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12259 - (plt_address + plt_offset
12260 + sizeof(plt_entry) + sizeof(uint32_t)));
12261 gold_assert((tail_displacement & 3) == 0);
12262 tail_displacement >>= 2;
12263
12264 gold_assert ((tail_displacement & 0xff000000) == 0
12265 || (-tail_displacement & 0xff000000) == 0);
12266
12267 // Calculate the displacement between the PLT slot and the entry
12268 // in the GOT. The offset accounts for the value produced by
12269 // adding to pc in the penultimate instruction of the PLT stub.
12270 const int32_t got_displacement = (got_address + got_offset
12271 - (plt_address + sizeof(plt_entry)));
12272
12273 elfcpp::Swap<32, big_endian>::writeval
12274 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12275 elfcpp::Swap<32, big_endian>::writeval
12276 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12277 elfcpp::Swap<32, big_endian>::writeval
12278 (pov + 8, plt_entry[2]);
12279 elfcpp::Swap<32, big_endian>::writeval
12280 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12281 }
12282
12283 // Target selectors.
12284
12285 template<bool big_endian>
12286 class Target_selector_arm_nacl
12287 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12288 Target_arm_nacl<big_endian> >
12289 {
12290 public:
12291 Target_selector_arm_nacl()
12292 : Target_selector_nacl<Target_selector_arm<big_endian>,
12293 Target_arm_nacl<big_endian> >(
12294 "arm",
12295 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12296 big_endian ? "armelfb_nacl" : "armelf_nacl")
12297 { }
12298 };
12299
12300 Target_selector_arm_nacl<false> target_selector_arm;
12301 Target_selector_arm_nacl<true> target_selector_armbe;
12302
12303 } // End anonymous namespace.
This page took 0.380829 seconds and 5 git commands to generate.