Add unused attribute where necessary to quiet GCC 6 warnings.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_short;
66
67 template<bool big_endian>
68 class Output_data_plt_arm_long;
69
70 template<bool big_endian>
71 class Stub_table;
72
73 template<bool big_endian>
74 class Arm_input_section;
75
76 class Arm_exidx_cantunwind;
77
78 class Arm_exidx_merged_section;
79
80 class Arm_exidx_fixup;
81
82 template<bool big_endian>
83 class Arm_output_section;
84
85 class Arm_exidx_input_section;
86
87 template<bool big_endian>
88 class Arm_relobj;
89
90 template<bool big_endian>
91 class Arm_relocate_functions;
92
93 template<bool big_endian>
94 class Arm_output_data_got;
95
96 template<bool big_endian>
97 class Target_arm;
98
99 // For convenience.
100 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
101
102 // Maximum branch offsets for ARM, THUMB and THUMB2.
103 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
104 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
105 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
106 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
107 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
108 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
109
110 // Thread Control Block size.
111 const size_t ARM_TCB_SIZE = 8;
112
113 // The arm target class.
114 //
115 // This is a very simple port of gold for ARM-EABI. It is intended for
116 // supporting Android only for the time being.
117 //
118 // TODOs:
119 // - Implement all static relocation types documented in arm-reloc.def.
120 // - Make PLTs more flexible for different architecture features like
121 // Thumb-2 and BE8.
122 // There are probably a lot more.
123
124 // Ideally we would like to avoid using global variables but this is used
125 // very in many places and sometimes in loops. If we use a function
126 // returning a static instance of Arm_reloc_property_table, it will be very
127 // slow in an threaded environment since the static instance needs to be
128 // locked. The pointer is below initialized in the
129 // Target::do_select_as_default_target() hook so that we do not spend time
130 // building the table if we are not linking ARM objects.
131 //
132 // An alternative is to to process the information in arm-reloc.def in
133 // compilation time and generate a representation of it in PODs only. That
134 // way we can avoid initialization when the linker starts.
135
136 Arm_reloc_property_table* arm_reloc_property_table = NULL;
137
138 // Instruction template class. This class is similar to the insn_sequence
139 // struct in bfd/elf32-arm.c.
140
141 class Insn_template
142 {
143 public:
144 // Types of instruction templates.
145 enum Type
146 {
147 THUMB16_TYPE = 1,
148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
149 // templates with class-specific semantics. Currently this is used
150 // only by the Cortex_a8_stub class for handling condition codes in
151 // conditional branches.
152 THUMB16_SPECIAL_TYPE,
153 THUMB32_TYPE,
154 ARM_TYPE,
155 DATA_TYPE
156 };
157
158 // Factory methods to create instruction templates in different formats.
159
160 static const Insn_template
161 thumb16_insn(uint32_t data)
162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
163
164 // A Thumb conditional branch, in which the proper condition is inserted
165 // when we build the stub.
166 static const Insn_template
167 thumb16_bcond_insn(uint32_t data)
168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
169
170 static const Insn_template
171 thumb32_insn(uint32_t data)
172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
173
174 static const Insn_template
175 thumb32_b_insn(uint32_t data, int reloc_addend)
176 {
177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 reloc_addend);
179 }
180
181 static const Insn_template
182 arm_insn(uint32_t data)
183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
184
185 static const Insn_template
186 arm_rel_insn(unsigned data, int reloc_addend)
187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
188
189 static const Insn_template
190 data_word(unsigned data, unsigned int r_type, int reloc_addend)
191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
192
193 // Accessors. This class is used for read-only objects so no modifiers
194 // are provided.
195
196 uint32_t
197 data() const
198 { return this->data_; }
199
200 // Return the instruction sequence type of this.
201 Type
202 type() const
203 { return this->type_; }
204
205 // Return the ARM relocation type of this.
206 unsigned int
207 r_type() const
208 { return this->r_type_; }
209
210 int32_t
211 reloc_addend() const
212 { return this->reloc_addend_; }
213
214 // Return size of instruction template in bytes.
215 size_t
216 size() const;
217
218 // Return byte-alignment of instruction template.
219 unsigned
220 alignment() const;
221
222 private:
223 // We make the constructor private to ensure that only the factory
224 // methods are used.
225 inline
226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
228 { }
229
230 // Instruction specific data. This is used to store information like
231 // some of the instruction bits.
232 uint32_t data_;
233 // Instruction template type.
234 Type type_;
235 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
236 unsigned int r_type_;
237 // Relocation addend.
238 int32_t reloc_addend_;
239 };
240
241 // Macro for generating code to stub types. One entry per long/short
242 // branch stub
243
244 #define DEF_STUBS \
245 DEF_STUB(long_branch_any_any) \
246 DEF_STUB(long_branch_v4t_arm_thumb) \
247 DEF_STUB(long_branch_thumb_only) \
248 DEF_STUB(long_branch_v4t_thumb_thumb) \
249 DEF_STUB(long_branch_v4t_thumb_arm) \
250 DEF_STUB(short_branch_v4t_thumb_arm) \
251 DEF_STUB(long_branch_any_arm_pic) \
252 DEF_STUB(long_branch_any_thumb_pic) \
253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
256 DEF_STUB(long_branch_thumb_only_pic) \
257 DEF_STUB(a8_veneer_b_cond) \
258 DEF_STUB(a8_veneer_b) \
259 DEF_STUB(a8_veneer_bl) \
260 DEF_STUB(a8_veneer_blx) \
261 DEF_STUB(v4_veneer_bx)
262
263 // Stub types.
264
265 #define DEF_STUB(x) arm_stub_##x,
266 typedef enum
267 {
268 arm_stub_none,
269 DEF_STUBS
270
271 // First reloc stub type.
272 arm_stub_reloc_first = arm_stub_long_branch_any_any,
273 // Last reloc stub type.
274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
275
276 // First Cortex-A8 stub type.
277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
278 // Last Cortex-A8 stub type.
279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
280
281 // Last stub type.
282 arm_stub_type_last = arm_stub_v4_veneer_bx
283 } Stub_type;
284 #undef DEF_STUB
285
286 // Stub template class. Templates are meant to be read-only objects.
287 // A stub template for a stub type contains all read-only attributes
288 // common to all stubs of the same type.
289
290 class Stub_template
291 {
292 public:
293 Stub_template(Stub_type, const Insn_template*, size_t);
294
295 ~Stub_template()
296 { }
297
298 // Return stub type.
299 Stub_type
300 type() const
301 { return this->type_; }
302
303 // Return an array of instruction templates.
304 const Insn_template*
305 insns() const
306 { return this->insns_; }
307
308 // Return size of template in number of instructions.
309 size_t
310 insn_count() const
311 { return this->insn_count_; }
312
313 // Return size of template in bytes.
314 size_t
315 size() const
316 { return this->size_; }
317
318 // Return alignment of the stub template.
319 unsigned
320 alignment() const
321 { return this->alignment_; }
322
323 // Return whether entry point is in thumb mode.
324 bool
325 entry_in_thumb_mode() const
326 { return this->entry_in_thumb_mode_; }
327
328 // Return number of relocations in this template.
329 size_t
330 reloc_count() const
331 { return this->relocs_.size(); }
332
333 // Return index of the I-th instruction with relocation.
334 size_t
335 reloc_insn_index(size_t i) const
336 {
337 gold_assert(i < this->relocs_.size());
338 return this->relocs_[i].first;
339 }
340
341 // Return the offset of the I-th instruction with relocation from the
342 // beginning of the stub.
343 section_size_type
344 reloc_offset(size_t i) const
345 {
346 gold_assert(i < this->relocs_.size());
347 return this->relocs_[i].second;
348 }
349
350 private:
351 // This contains information about an instruction template with a relocation
352 // and its offset from start of stub.
353 typedef std::pair<size_t, section_size_type> Reloc;
354
355 // A Stub_template may not be copied. We want to share templates as much
356 // as possible.
357 Stub_template(const Stub_template&);
358 Stub_template& operator=(const Stub_template&);
359
360 // Stub type.
361 Stub_type type_;
362 // Points to an array of Insn_templates.
363 const Insn_template* insns_;
364 // Number of Insn_templates in insns_[].
365 size_t insn_count_;
366 // Size of templated instructions in bytes.
367 size_t size_;
368 // Alignment of templated instructions.
369 unsigned alignment_;
370 // Flag to indicate if entry is in thumb mode.
371 bool entry_in_thumb_mode_;
372 // A table of reloc instruction indices and offsets. We can find these by
373 // looking at the instruction templates but we pre-compute and then stash
374 // them here for speed.
375 std::vector<Reloc> relocs_;
376 };
377
378 //
379 // A class for code stubs. This is a base class for different type of
380 // stubs used in the ARM target.
381 //
382
383 class Stub
384 {
385 private:
386 static const section_offset_type invalid_offset =
387 static_cast<section_offset_type>(-1);
388
389 public:
390 Stub(const Stub_template* stub_template)
391 : stub_template_(stub_template), offset_(invalid_offset)
392 { }
393
394 virtual
395 ~Stub()
396 { }
397
398 // Return the stub template.
399 const Stub_template*
400 stub_template() const
401 { return this->stub_template_; }
402
403 // Return offset of code stub from beginning of its containing stub table.
404 section_offset_type
405 offset() const
406 {
407 gold_assert(this->offset_ != invalid_offset);
408 return this->offset_;
409 }
410
411 // Set offset of code stub from beginning of its containing stub table.
412 void
413 set_offset(section_offset_type offset)
414 { this->offset_ = offset; }
415
416 // Return the relocation target address of the i-th relocation in the
417 // stub. This must be defined in a child class.
418 Arm_address
419 reloc_target(size_t i)
420 { return this->do_reloc_target(i); }
421
422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
423 void
424 write(unsigned char* view, section_size_type view_size, bool big_endian)
425 { this->do_write(view, view_size, big_endian); }
426
427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
428 // for the i-th instruction.
429 uint16_t
430 thumb16_special(size_t i)
431 { return this->do_thumb16_special(i); }
432
433 protected:
434 // This must be defined in the child class.
435 virtual Arm_address
436 do_reloc_target(size_t) = 0;
437
438 // This may be overridden in the child class.
439 virtual void
440 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
441 {
442 if (big_endian)
443 this->do_fixed_endian_write<true>(view, view_size);
444 else
445 this->do_fixed_endian_write<false>(view, view_size);
446 }
447
448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
449 // instruction template.
450 virtual uint16_t
451 do_thumb16_special(size_t)
452 { gold_unreachable(); }
453
454 private:
455 // A template to implement do_write.
456 template<bool big_endian>
457 void inline
458 do_fixed_endian_write(unsigned char*, section_size_type);
459
460 // Its template.
461 const Stub_template* stub_template_;
462 // Offset within the section of containing this stub.
463 section_offset_type offset_;
464 };
465
466 // Reloc stub class. These are stubs we use to fix up relocation because
467 // of limited branch ranges.
468
469 class Reloc_stub : public Stub
470 {
471 public:
472 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
473 // We assume we never jump to this address.
474 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
475
476 // Return destination address.
477 Arm_address
478 destination_address() const
479 {
480 gold_assert(this->destination_address_ != this->invalid_address);
481 return this->destination_address_;
482 }
483
484 // Set destination address.
485 void
486 set_destination_address(Arm_address address)
487 {
488 gold_assert(address != this->invalid_address);
489 this->destination_address_ = address;
490 }
491
492 // Reset destination address.
493 void
494 reset_destination_address()
495 { this->destination_address_ = this->invalid_address; }
496
497 // Determine stub type for a branch of a relocation of R_TYPE going
498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
499 // the branch target is a thumb instruction. TARGET is used for look
500 // up ARM-specific linker settings.
501 static Stub_type
502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
503 Arm_address branch_target, bool target_is_thumb);
504
505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
506 // and an addend. Since we treat global and local symbol differently, we
507 // use a Symbol object for a global symbol and a object-index pair for
508 // a local symbol.
509 class Key
510 {
511 public:
512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
514 // and R_SYM must not be invalid_index.
515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
516 unsigned int r_sym, int32_t addend)
517 : stub_type_(stub_type), addend_(addend)
518 {
519 if (symbol != NULL)
520 {
521 this->r_sym_ = Reloc_stub::invalid_index;
522 this->u_.symbol = symbol;
523 }
524 else
525 {
526 gold_assert(relobj != NULL && r_sym != invalid_index);
527 this->r_sym_ = r_sym;
528 this->u_.relobj = relobj;
529 }
530 }
531
532 ~Key()
533 { }
534
535 // Accessors: Keys are meant to be read-only object so no modifiers are
536 // provided.
537
538 // Return stub type.
539 Stub_type
540 stub_type() const
541 { return this->stub_type_; }
542
543 // Return the local symbol index or invalid_index.
544 unsigned int
545 r_sym() const
546 { return this->r_sym_; }
547
548 // Return the symbol if there is one.
549 const Symbol*
550 symbol() const
551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
552
553 // Return the relobj if there is one.
554 const Relobj*
555 relobj() const
556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
557
558 // Whether this equals to another key k.
559 bool
560 eq(const Key& k) const
561 {
562 return ((this->stub_type_ == k.stub_type_)
563 && (this->r_sym_ == k.r_sym_)
564 && ((this->r_sym_ != Reloc_stub::invalid_index)
565 ? (this->u_.relobj == k.u_.relobj)
566 : (this->u_.symbol == k.u_.symbol))
567 && (this->addend_ == k.addend_));
568 }
569
570 // Return a hash value.
571 size_t
572 hash_value() const
573 {
574 return (this->stub_type_
575 ^ this->r_sym_
576 ^ gold::string_hash<char>(
577 (this->r_sym_ != Reloc_stub::invalid_index)
578 ? this->u_.relobj->name().c_str()
579 : this->u_.symbol->name())
580 ^ this->addend_);
581 }
582
583 // Functors for STL associative containers.
584 struct hash
585 {
586 size_t
587 operator()(const Key& k) const
588 { return k.hash_value(); }
589 };
590
591 struct equal_to
592 {
593 bool
594 operator()(const Key& k1, const Key& k2) const
595 { return k1.eq(k2); }
596 };
597
598 // Name of key. This is mainly for debugging.
599 std::string
600 name() const ATTRIBUTE_UNUSED;
601
602 private:
603 // Stub type.
604 Stub_type stub_type_;
605 // If this is a local symbol, this is the index in the defining object.
606 // Otherwise, it is invalid_index for a global symbol.
607 unsigned int r_sym_;
608 // If r_sym_ is an invalid index, this points to a global symbol.
609 // Otherwise, it points to a relobj. We used the unsized and target
610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
611 // Arm_relobj, in order to avoid making the stub class a template
612 // as most of the stub machinery is endianness-neutral. However, it
613 // may require a bit of casting done by users of this class.
614 union
615 {
616 const Symbol* symbol;
617 const Relobj* relobj;
618 } u_;
619 // Addend associated with a reloc.
620 int32_t addend_;
621 };
622
623 protected:
624 // Reloc_stubs are created via a stub factory. So these are protected.
625 Reloc_stub(const Stub_template* stub_template)
626 : Stub(stub_template), destination_address_(invalid_address)
627 { }
628
629 ~Reloc_stub()
630 { }
631
632 friend class Stub_factory;
633
634 // Return the relocation target address of the i-th relocation in the
635 // stub.
636 Arm_address
637 do_reloc_target(size_t i)
638 {
639 // All reloc stub have only one relocation.
640 gold_assert(i == 0);
641 return this->destination_address_;
642 }
643
644 private:
645 // Address of destination.
646 Arm_address destination_address_;
647 };
648
649 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
650 // THUMB branch that meets the following conditions:
651 //
652 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
653 // branch address is 0xffe.
654 // 2. The branch target address is in the same page as the first word of the
655 // branch.
656 // 3. The branch follows a 32-bit instruction which is not a branch.
657 //
658 // To do the fix up, we need to store the address of the branch instruction
659 // and its target at least. We also need to store the original branch
660 // instruction bits for the condition code in a conditional branch. The
661 // condition code is used in a special instruction template. We also want
662 // to identify input sections needing Cortex-A8 workaround quickly. We store
663 // extra information about object and section index of the code section
664 // containing a branch being fixed up. The information is used to mark
665 // the code section when we finalize the Cortex-A8 stubs.
666 //
667
668 class Cortex_a8_stub : public Stub
669 {
670 public:
671 ~Cortex_a8_stub()
672 { }
673
674 // Return the object of the code section containing the branch being fixed
675 // up.
676 Relobj*
677 relobj() const
678 { return this->relobj_; }
679
680 // Return the section index of the code section containing the branch being
681 // fixed up.
682 unsigned int
683 shndx() const
684 { return this->shndx_; }
685
686 // Return the source address of stub. This is the address of the original
687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
688 // instruction.
689 Arm_address
690 source_address() const
691 { return this->source_address_; }
692
693 // Return the destination address of the stub. This is the branch taken
694 // address of the original branch instruction. LSB is 1 if it is a THUMB
695 // instruction address.
696 Arm_address
697 destination_address() const
698 { return this->destination_address_; }
699
700 // Return the instruction being fixed up.
701 uint32_t
702 original_insn() const
703 { return this->original_insn_; }
704
705 protected:
706 // Cortex_a8_stubs are created via a stub factory. So these are protected.
707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
708 unsigned int shndx, Arm_address source_address,
709 Arm_address destination_address, uint32_t original_insn)
710 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
711 source_address_(source_address | 1U),
712 destination_address_(destination_address),
713 original_insn_(original_insn)
714 { }
715
716 friend class Stub_factory;
717
718 // Return the relocation target address of the i-th relocation in the
719 // stub.
720 Arm_address
721 do_reloc_target(size_t i)
722 {
723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
724 {
725 // The conditional branch veneer has two relocations.
726 gold_assert(i < 2);
727 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 }
729 else
730 {
731 // All other Cortex-A8 stubs have only one relocation.
732 gold_assert(i == 0);
733 return this->destination_address_;
734 }
735 }
736
737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
738 uint16_t
739 do_thumb16_special(size_t);
740
741 private:
742 // Object of the code section containing the branch being fixed up.
743 Relobj* relobj_;
744 // Section index of the code section containing the branch begin fixed up.
745 unsigned int shndx_;
746 // Source address of original branch.
747 Arm_address source_address_;
748 // Destination address of the original branch.
749 Arm_address destination_address_;
750 // Original branch instruction. This is needed for copying the condition
751 // code from a condition branch to its stub.
752 uint32_t original_insn_;
753 };
754
755 // ARMv4 BX Rx branch relocation stub class.
756 class Arm_v4bx_stub : public Stub
757 {
758 public:
759 ~Arm_v4bx_stub()
760 { }
761
762 // Return the associated register.
763 uint32_t
764 reg() const
765 { return this->reg_; }
766
767 protected:
768 // Arm V4BX stubs are created via a stub factory. So these are protected.
769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
770 : Stub(stub_template), reg_(reg)
771 { }
772
773 friend class Stub_factory;
774
775 // Return the relocation target address of the i-th relocation in the
776 // stub.
777 Arm_address
778 do_reloc_target(size_t)
779 { gold_unreachable(); }
780
781 // This may be overridden in the child class.
782 virtual void
783 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
784 {
785 if (big_endian)
786 this->do_fixed_endian_v4bx_write<true>(view, view_size);
787 else
788 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 }
790
791 private:
792 // A template to implement do_write.
793 template<bool big_endian>
794 void inline
795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
796 {
797 const Insn_template* insns = this->stub_template()->insns();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[0].data()
800 + (this->reg_ << 16)));
801 view += insns[0].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[1].data() + this->reg_));
804 view += insns[1].size();
805 elfcpp::Swap<32, big_endian>::writeval(view,
806 (insns[2].data() + this->reg_));
807 }
808
809 // A register index (r0-r14), which is associated with the stub.
810 uint32_t reg_;
811 };
812
813 // Stub factory class.
814
815 class Stub_factory
816 {
817 public:
818 // Return the unique instance of this class.
819 static const Stub_factory&
820 get_instance()
821 {
822 static Stub_factory singleton;
823 return singleton;
824 }
825
826 // Make a relocation stub.
827 Reloc_stub*
828 make_reloc_stub(Stub_type stub_type) const
829 {
830 gold_assert(stub_type >= arm_stub_reloc_first
831 && stub_type <= arm_stub_reloc_last);
832 return new Reloc_stub(this->stub_templates_[stub_type]);
833 }
834
835 // Make a Cortex-A8 stub.
836 Cortex_a8_stub*
837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
838 Arm_address source, Arm_address destination,
839 uint32_t original_insn) const
840 {
841 gold_assert(stub_type >= arm_stub_cortex_a8_first
842 && stub_type <= arm_stub_cortex_a8_last);
843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
844 source, destination, original_insn);
845 }
846
847 // Make an ARM V4BX relocation stub.
848 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
849 Arm_v4bx_stub*
850 make_arm_v4bx_stub(uint32_t reg) const
851 {
852 gold_assert(reg < 0xf);
853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
854 reg);
855 }
856
857 private:
858 // Constructor and destructor are protected since we only return a single
859 // instance created in Stub_factory::get_instance().
860
861 Stub_factory();
862
863 // A Stub_factory may not be copied since it is a singleton.
864 Stub_factory(const Stub_factory&);
865 Stub_factory& operator=(Stub_factory&);
866
867 // Stub templates. These are initialized in the constructor.
868 const Stub_template* stub_templates_[arm_stub_type_last+1];
869 };
870
871 // A class to hold stubs for the ARM target.
872
873 template<bool big_endian>
874 class Stub_table : public Output_data
875 {
876 public:
877 Stub_table(Arm_input_section<big_endian>* owner)
878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
880 prev_data_size_(0), prev_addralign_(1)
881 { }
882
883 ~Stub_table()
884 { }
885
886 // Owner of this stub table.
887 Arm_input_section<big_endian>*
888 owner() const
889 { return this->owner_; }
890
891 // Whether this stub table is empty.
892 bool
893 empty() const
894 {
895 return (this->reloc_stubs_.empty()
896 && this->cortex_a8_stubs_.empty()
897 && this->arm_v4bx_stubs_.empty());
898 }
899
900 // Return the current data size.
901 off_t
902 current_data_size() const
903 { return this->current_data_size_for_child(); }
904
905 // Add a STUB using KEY. The caller is responsible for avoiding addition
906 // if a STUB with the same key has already been added.
907 void
908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
909 {
910 const Stub_template* stub_template = stub->stub_template();
911 gold_assert(stub_template->type() == key.stub_type());
912 this->reloc_stubs_[key] = stub;
913
914 // Assign stub offset early. We can do this because we never remove
915 // reloc stubs and they are in the beginning of the stub table.
916 uint64_t align = stub_template->alignment();
917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
918 stub->set_offset(this->reloc_stubs_size_);
919 this->reloc_stubs_size_ += stub_template->size();
920 this->reloc_stubs_addralign_ =
921 std::max(this->reloc_stubs_addralign_, align);
922 }
923
924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
925 // The caller is responsible for avoiding addition if a STUB with the same
926 // address has already been added.
927 void
928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
929 {
930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
931 this->cortex_a8_stubs_.insert(value);
932 }
933
934 // Add an ARM V4BX relocation stub. A register index will be retrieved
935 // from the stub.
936 void
937 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
938 {
939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
940 this->arm_v4bx_stubs_[stub->reg()] = stub;
941 }
942
943 // Remove all Cortex-A8 stubs.
944 void
945 remove_all_cortex_a8_stubs();
946
947 // Look up a relocation stub using KEY. Return NULL if there is none.
948 Reloc_stub*
949 find_reloc_stub(const Reloc_stub::Key& key) const
950 {
951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
952 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
953 }
954
955 // Look up an arm v4bx relocation stub using the register index.
956 // Return NULL if there is none.
957 Arm_v4bx_stub*
958 find_arm_v4bx_stub(const uint32_t reg) const
959 {
960 gold_assert(reg < 0xf);
961 return this->arm_v4bx_stubs_[reg];
962 }
963
964 // Relocate stubs in this stub table.
965 void
966 relocate_stubs(const Relocate_info<32, big_endian>*,
967 Target_arm<big_endian>*, Output_section*,
968 unsigned char*, Arm_address, section_size_type);
969
970 // Update data size and alignment at the end of a relaxation pass. Return
971 // true if either data size or alignment is different from that of the
972 // previous relaxation pass.
973 bool
974 update_data_size_and_addralign();
975
976 // Finalize stubs. Set the offsets of all stubs and mark input sections
977 // needing the Cortex-A8 workaround.
978 void
979 finalize_stubs();
980
981 // Apply Cortex-A8 workaround to an address range.
982 void
983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
984 unsigned char*, Arm_address,
985 section_size_type);
986
987 protected:
988 // Write out section contents.
989 void
990 do_write(Output_file*);
991
992 // Return the required alignment.
993 uint64_t
994 do_addralign() const
995 { return this->prev_addralign_; }
996
997 // Reset address and file offset.
998 void
999 do_reset_address_and_file_offset()
1000 { this->set_current_data_size_for_child(this->prev_data_size_); }
1001
1002 // Set final data size.
1003 void
1004 set_final_data_size()
1005 { this->set_data_size(this->current_data_size()); }
1006
1007 private:
1008 // Relocate one stub.
1009 void
1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1011 Target_arm<big_endian>*, Output_section*,
1012 unsigned char*, Arm_address, section_size_type);
1013
1014 // Unordered map of relocation stubs.
1015 typedef
1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1017 Reloc_stub::Key::equal_to>
1018 Reloc_stub_map;
1019
1020 // List of Cortex-A8 stubs ordered by addresses of branches being
1021 // fixed up in output.
1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1023 // List of Arm V4BX relocation stubs ordered by associated registers.
1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1025
1026 // Owner of this stub table.
1027 Arm_input_section<big_endian>* owner_;
1028 // The relocation stubs.
1029 Reloc_stub_map reloc_stubs_;
1030 // Size of reloc stubs.
1031 off_t reloc_stubs_size_;
1032 // Maximum address alignment of reloc stubs.
1033 uint64_t reloc_stubs_addralign_;
1034 // The cortex_a8_stubs.
1035 Cortex_a8_stub_list cortex_a8_stubs_;
1036 // The Arm V4BX relocation stubs.
1037 Arm_v4bx_stub_list arm_v4bx_stubs_;
1038 // data size of this in the previous pass.
1039 off_t prev_data_size_;
1040 // address alignment of this in the previous pass.
1041 uint64_t prev_addralign_;
1042 };
1043
1044 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1045 // we add to the end of an EXIDX input section that goes into the output.
1046
1047 class Arm_exidx_cantunwind : public Output_section_data
1048 {
1049 public:
1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1052 { }
1053
1054 // Return the object containing the section pointed by this.
1055 Relobj*
1056 relobj() const
1057 { return this->relobj_; }
1058
1059 // Return the section index of the section pointed by this.
1060 unsigned int
1061 shndx() const
1062 { return this->shndx_; }
1063
1064 protected:
1065 void
1066 do_write(Output_file* of)
1067 {
1068 if (parameters->target().is_big_endian())
1069 this->do_fixed_endian_write<true>(of);
1070 else
1071 this->do_fixed_endian_write<false>(of);
1072 }
1073
1074 // Write to a map file.
1075 void
1076 do_print_to_mapfile(Mapfile* mapfile) const
1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1078
1079 private:
1080 // Implement do_write for a given endianness.
1081 template<bool big_endian>
1082 void inline
1083 do_fixed_endian_write(Output_file*);
1084
1085 // The object containing the section pointed by this.
1086 Relobj* relobj_;
1087 // The section index of the section pointed by this.
1088 unsigned int shndx_;
1089 };
1090
1091 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1092 // Offset map is used to map input section offset within the EXIDX section
1093 // to the output offset from the start of this EXIDX section.
1094
1095 typedef std::map<section_offset_type, section_offset_type>
1096 Arm_exidx_section_offset_map;
1097
1098 // Arm_exidx_merged_section class. This represents an EXIDX input section
1099 // with some of its entries merged.
1100
1101 class Arm_exidx_merged_section : public Output_relaxed_input_section
1102 {
1103 public:
1104 // Constructor for Arm_exidx_merged_section.
1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1106 // SECTION_OFFSET_MAP points to a section offset map describing how
1107 // parts of the input section are mapped to output. DELETED_BYTES is
1108 // the number of bytes deleted from the EXIDX input section.
1109 Arm_exidx_merged_section(
1110 const Arm_exidx_input_section& exidx_input_section,
1111 const Arm_exidx_section_offset_map& section_offset_map,
1112 uint32_t deleted_bytes);
1113
1114 // Build output contents.
1115 void
1116 build_contents(const unsigned char*, section_size_type);
1117
1118 // Return the original EXIDX input section.
1119 const Arm_exidx_input_section&
1120 exidx_input_section() const
1121 { return this->exidx_input_section_; }
1122
1123 // Return the section offset map.
1124 const Arm_exidx_section_offset_map&
1125 section_offset_map() const
1126 { return this->section_offset_map_; }
1127
1128 protected:
1129 // Write merged section into file OF.
1130 void
1131 do_write(Output_file* of);
1132
1133 bool
1134 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1135 section_offset_type*) const;
1136
1137 private:
1138 // Original EXIDX input section.
1139 const Arm_exidx_input_section& exidx_input_section_;
1140 // Section offset map.
1141 const Arm_exidx_section_offset_map& section_offset_map_;
1142 // Merged section contents. We need to keep build the merged section
1143 // and save it here to avoid accessing the original EXIDX section when
1144 // we cannot lock the sections' object.
1145 unsigned char* section_contents_;
1146 };
1147
1148 // A class to wrap an ordinary input section containing executable code.
1149
1150 template<bool big_endian>
1151 class Arm_input_section : public Output_relaxed_input_section
1152 {
1153 public:
1154 Arm_input_section(Relobj* relobj, unsigned int shndx)
1155 : Output_relaxed_input_section(relobj, shndx, 1),
1156 original_addralign_(1), original_size_(0), stub_table_(NULL),
1157 original_contents_(NULL)
1158 { }
1159
1160 ~Arm_input_section()
1161 { delete[] this->original_contents_; }
1162
1163 // Initialize.
1164 void
1165 init();
1166
1167 // Whether this is a stub table owner.
1168 bool
1169 is_stub_table_owner() const
1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1171
1172 // Return the stub table.
1173 Stub_table<big_endian>*
1174 stub_table() const
1175 { return this->stub_table_; }
1176
1177 // Set the stub_table.
1178 void
1179 set_stub_table(Stub_table<big_endian>* stub_table)
1180 { this->stub_table_ = stub_table; }
1181
1182 // Downcast a base pointer to an Arm_input_section pointer. This is
1183 // not type-safe but we only use Arm_input_section not the base class.
1184 static Arm_input_section<big_endian>*
1185 as_arm_input_section(Output_relaxed_input_section* poris)
1186 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1187
1188 // Return the original size of the section.
1189 uint32_t
1190 original_size() const
1191 { return this->original_size_; }
1192
1193 protected:
1194 // Write data to output file.
1195 void
1196 do_write(Output_file*);
1197
1198 // Return required alignment of this.
1199 uint64_t
1200 do_addralign() const
1201 {
1202 if (this->is_stub_table_owner())
1203 return std::max(this->stub_table_->addralign(),
1204 static_cast<uint64_t>(this->original_addralign_));
1205 else
1206 return this->original_addralign_;
1207 }
1208
1209 // Finalize data size.
1210 void
1211 set_final_data_size();
1212
1213 // Reset address and file offset.
1214 void
1215 do_reset_address_and_file_offset();
1216
1217 // Output offset.
1218 bool
1219 do_output_offset(const Relobj* object, unsigned int shndx,
1220 section_offset_type offset,
1221 section_offset_type* poutput) const
1222 {
1223 if ((object == this->relobj())
1224 && (shndx == this->shndx())
1225 && (offset >= 0)
1226 && (offset <=
1227 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1228 {
1229 *poutput = offset;
1230 return true;
1231 }
1232 else
1233 return false;
1234 }
1235
1236 private:
1237 // Copying is not allowed.
1238 Arm_input_section(const Arm_input_section&);
1239 Arm_input_section& operator=(const Arm_input_section&);
1240
1241 // Address alignment of the original input section.
1242 uint32_t original_addralign_;
1243 // Section size of the original input section.
1244 uint32_t original_size_;
1245 // Stub table.
1246 Stub_table<big_endian>* stub_table_;
1247 // Original section contents. We have to make a copy here since the file
1248 // containing the original section may not be locked when we need to access
1249 // the contents.
1250 unsigned char* original_contents_;
1251 };
1252
1253 // Arm_exidx_fixup class. This is used to define a number of methods
1254 // and keep states for fixing up EXIDX coverage.
1255
1256 class Arm_exidx_fixup
1257 {
1258 public:
1259 Arm_exidx_fixup(Output_section* exidx_output_section,
1260 bool merge_exidx_entries = true)
1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1262 last_inlined_entry_(0), last_input_section_(NULL),
1263 section_offset_map_(NULL), first_output_text_section_(NULL),
1264 merge_exidx_entries_(merge_exidx_entries)
1265 { }
1266
1267 ~Arm_exidx_fixup()
1268 { delete this->section_offset_map_; }
1269
1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1272 // number of bytes to be deleted in output. If parts of the input EXIDX
1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1275 // responsible for releasing it.
1276 template<bool big_endian>
1277 uint32_t
1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1279 const unsigned char* section_contents,
1280 section_size_type section_size,
1281 Arm_exidx_section_offset_map** psection_offset_map);
1282
1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1284 // input section, if there is not one already.
1285 void
1286 add_exidx_cantunwind_as_needed();
1287
1288 // Return the output section for the text section which is linked to the
1289 // first exidx input in output.
1290 Output_section*
1291 first_output_text_section() const
1292 { return this->first_output_text_section_; }
1293
1294 private:
1295 // Copying is not allowed.
1296 Arm_exidx_fixup(const Arm_exidx_fixup&);
1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1298
1299 // Type of EXIDX unwind entry.
1300 enum Unwind_type
1301 {
1302 // No type.
1303 UT_NONE,
1304 // EXIDX_CANTUNWIND.
1305 UT_EXIDX_CANTUNWIND,
1306 // Inlined entry.
1307 UT_INLINED_ENTRY,
1308 // Normal entry.
1309 UT_NORMAL_ENTRY,
1310 };
1311
1312 // Process an EXIDX entry. We only care about the second word of the
1313 // entry. Return true if the entry can be deleted.
1314 bool
1315 process_exidx_entry(uint32_t second_word);
1316
1317 // Update the current section offset map during EXIDX section fix-up.
1318 // If there is no map, create one. INPUT_OFFSET is the offset of a
1319 // reference point, DELETED_BYTES is the number of deleted by in the
1320 // section so far. If DELETE_ENTRY is true, the reference point and
1321 // all offsets after the previous reference point are discarded.
1322 void
1323 update_offset_map(section_offset_type input_offset,
1324 section_size_type deleted_bytes, bool delete_entry);
1325
1326 // EXIDX output section.
1327 Output_section* exidx_output_section_;
1328 // Unwind type of the last EXIDX entry processed.
1329 Unwind_type last_unwind_type_;
1330 // Last seen inlined EXIDX entry.
1331 uint32_t last_inlined_entry_;
1332 // Last processed EXIDX input section.
1333 const Arm_exidx_input_section* last_input_section_;
1334 // Section offset map created in process_exidx_section.
1335 Arm_exidx_section_offset_map* section_offset_map_;
1336 // Output section for the text section which is linked to the first exidx
1337 // input in output.
1338 Output_section* first_output_text_section_;
1339
1340 bool merge_exidx_entries_;
1341 };
1342
1343 // Arm output section class. This is defined mainly to add a number of
1344 // stub generation methods.
1345
1346 template<bool big_endian>
1347 class Arm_output_section : public Output_section
1348 {
1349 public:
1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1351
1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1353 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1354 elfcpp::Elf_Xword flags)
1355 : Output_section(name, type,
1356 (type == elfcpp::SHT_ARM_EXIDX
1357 ? flags | elfcpp::SHF_LINK_ORDER
1358 : flags))
1359 {
1360 if (type == elfcpp::SHT_ARM_EXIDX)
1361 this->set_always_keeps_input_sections();
1362 }
1363
1364 ~Arm_output_section()
1365 { }
1366
1367 // Group input sections for stub generation.
1368 void
1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1370
1371 // Downcast a base pointer to an Arm_output_section pointer. This is
1372 // not type-safe but we only use Arm_output_section not the base class.
1373 static Arm_output_section<big_endian>*
1374 as_arm_output_section(Output_section* os)
1375 { return static_cast<Arm_output_section<big_endian>*>(os); }
1376
1377 // Append all input text sections in this into LIST.
1378 void
1379 append_text_sections_to_list(Text_section_list* list);
1380
1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1382 // is a list of text input sections sorted in ascending order of their
1383 // output addresses.
1384 void
1385 fix_exidx_coverage(Layout* layout,
1386 const Text_section_list& sorted_text_section,
1387 Symbol_table* symtab,
1388 bool merge_exidx_entries,
1389 const Task* task);
1390
1391 // Link an EXIDX section into its corresponding text section.
1392 void
1393 set_exidx_section_link();
1394
1395 private:
1396 // For convenience.
1397 typedef Output_section::Input_section Input_section;
1398 typedef Output_section::Input_section_list Input_section_list;
1399
1400 // Create a stub group.
1401 void create_stub_group(Input_section_list::const_iterator,
1402 Input_section_list::const_iterator,
1403 Input_section_list::const_iterator,
1404 Target_arm<big_endian>*,
1405 std::vector<Output_relaxed_input_section*>*,
1406 const Task* task);
1407 };
1408
1409 // Arm_exidx_input_section class. This represents an EXIDX input section.
1410
1411 class Arm_exidx_input_section
1412 {
1413 public:
1414 static const section_offset_type invalid_offset =
1415 static_cast<section_offset_type>(-1);
1416
1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1418 unsigned int link, uint32_t size,
1419 uint32_t addralign, uint32_t text_size)
1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1421 addralign_(addralign), text_size_(text_size), has_errors_(false)
1422 { }
1423
1424 ~Arm_exidx_input_section()
1425 { }
1426
1427 // Accessors: This is a read-only class.
1428
1429 // Return the object containing this EXIDX input section.
1430 Relobj*
1431 relobj() const
1432 { return this->relobj_; }
1433
1434 // Return the section index of this EXIDX input section.
1435 unsigned int
1436 shndx() const
1437 { return this->shndx_; }
1438
1439 // Return the section index of linked text section in the same object.
1440 unsigned int
1441 link() const
1442 { return this->link_; }
1443
1444 // Return size of the EXIDX input section.
1445 uint32_t
1446 size() const
1447 { return this->size_; }
1448
1449 // Return address alignment of EXIDX input section.
1450 uint32_t
1451 addralign() const
1452 { return this->addralign_; }
1453
1454 // Return size of the associated text input section.
1455 uint32_t
1456 text_size() const
1457 { return this->text_size_; }
1458
1459 // Whether there are any errors in the EXIDX input section.
1460 bool
1461 has_errors() const
1462 { return this->has_errors_; }
1463
1464 // Set has-errors flag.
1465 void
1466 set_has_errors()
1467 { this->has_errors_ = true; }
1468
1469 private:
1470 // Object containing this.
1471 Relobj* relobj_;
1472 // Section index of this.
1473 unsigned int shndx_;
1474 // text section linked to this in the same object.
1475 unsigned int link_;
1476 // Size of this. For ARM 32-bit is sufficient.
1477 uint32_t size_;
1478 // Address alignment of this. For ARM 32-bit is sufficient.
1479 uint32_t addralign_;
1480 // Size of associated text section.
1481 uint32_t text_size_;
1482 // Whether this has any errors.
1483 bool has_errors_;
1484 };
1485
1486 // Arm_relobj class.
1487
1488 template<bool big_endian>
1489 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1490 {
1491 public:
1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1493
1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1497 stub_tables_(), local_symbol_is_thumb_function_(),
1498 attributes_section_data_(NULL), mapping_symbols_info_(),
1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1500 output_local_symbol_count_needs_update_(false),
1501 merge_flags_and_attributes_(true)
1502 { }
1503
1504 ~Arm_relobj()
1505 { delete this->attributes_section_data_; }
1506
1507 // Return the stub table of the SHNDX-th section if there is one.
1508 Stub_table<big_endian>*
1509 stub_table(unsigned int shndx) const
1510 {
1511 gold_assert(shndx < this->stub_tables_.size());
1512 return this->stub_tables_[shndx];
1513 }
1514
1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1516 void
1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1518 {
1519 gold_assert(shndx < this->stub_tables_.size());
1520 this->stub_tables_[shndx] = stub_table;
1521 }
1522
1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1524 // index. This is only valid after do_count_local_symbol is called.
1525 bool
1526 local_symbol_is_thumb_function(unsigned int r_sym) const
1527 {
1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1529 return this->local_symbol_is_thumb_function_[r_sym];
1530 }
1531
1532 // Scan all relocation sections for stub generation.
1533 void
1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1535 const Layout*);
1536
1537 // Convert regular input section with index SHNDX to a relaxed section.
1538 void
1539 convert_input_section_to_relaxed_section(unsigned shndx)
1540 {
1541 // The stubs have relocations and we need to process them after writing
1542 // out the stubs. So relocation now must follow section write.
1543 this->set_section_offset(shndx, -1ULL);
1544 this->set_relocs_must_follow_section_writes();
1545 }
1546
1547 // Downcast a base pointer to an Arm_relobj pointer. This is
1548 // not type-safe but we only use Arm_relobj not the base class.
1549 static Arm_relobj<big_endian>*
1550 as_arm_relobj(Relobj* relobj)
1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1552
1553 // Processor-specific flags in ELF file header. This is valid only after
1554 // reading symbols.
1555 elfcpp::Elf_Word
1556 processor_specific_flags() const
1557 { return this->processor_specific_flags_; }
1558
1559 // Attribute section data This is the contents of the .ARM.attribute section
1560 // if there is one.
1561 const Attributes_section_data*
1562 attributes_section_data() const
1563 { return this->attributes_section_data_; }
1564
1565 // Mapping symbol location.
1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1567
1568 // Functor for STL container.
1569 struct Mapping_symbol_position_less
1570 {
1571 bool
1572 operator()(const Mapping_symbol_position& p1,
1573 const Mapping_symbol_position& p2) const
1574 {
1575 return (p1.first < p2.first
1576 || (p1.first == p2.first && p1.second < p2.second));
1577 }
1578 };
1579
1580 // We only care about the first character of a mapping symbol, so
1581 // we only store that instead of the whole symbol name.
1582 typedef std::map<Mapping_symbol_position, char,
1583 Mapping_symbol_position_less> Mapping_symbols_info;
1584
1585 // Whether a section contains any Cortex-A8 workaround.
1586 bool
1587 section_has_cortex_a8_workaround(unsigned int shndx) const
1588 {
1589 return (this->section_has_cortex_a8_workaround_ != NULL
1590 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1591 }
1592
1593 // Mark a section that has Cortex-A8 workaround.
1594 void
1595 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1596 {
1597 if (this->section_has_cortex_a8_workaround_ == NULL)
1598 this->section_has_cortex_a8_workaround_ =
1599 new std::vector<bool>(this->shnum(), false);
1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1601 }
1602
1603 // Return the EXIDX section of an text section with index SHNDX or NULL
1604 // if the text section has no associated EXIDX section.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_link(unsigned int shndx) const
1607 {
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->link() == shndx)
1611 ? p->second
1612 : NULL);
1613 }
1614
1615 // Return the EXIDX section with index SHNDX or NULL if there is none.
1616 const Arm_exidx_input_section*
1617 exidx_input_section_by_shndx(unsigned shndx) const
1618 {
1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1620 return ((p != this->exidx_section_map_.end()
1621 && p->second->shndx() == shndx)
1622 ? p->second
1623 : NULL);
1624 }
1625
1626 // Whether output local symbol count needs updating.
1627 bool
1628 output_local_symbol_count_needs_update() const
1629 { return this->output_local_symbol_count_needs_update_; }
1630
1631 // Set output_local_symbol_count_needs_update flag to be true.
1632 void
1633 set_output_local_symbol_count_needs_update()
1634 { this->output_local_symbol_count_needs_update_ = true; }
1635
1636 // Update output local symbol count at the end of relaxation.
1637 void
1638 update_output_local_symbol_count();
1639
1640 // Whether we want to merge processor-specific flags and attributes.
1641 bool
1642 merge_flags_and_attributes() const
1643 { return this->merge_flags_and_attributes_; }
1644
1645 // Export list of EXIDX section indices.
1646 void
1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1648 {
1649 list->clear();
1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1651 p != this->exidx_section_map_.end();
1652 ++p)
1653 {
1654 if (p->second->shndx() == p->first)
1655 list->push_back(p->first);
1656 }
1657 // Sort list to make result independent of implementation of map.
1658 std::sort(list->begin(), list->end());
1659 }
1660
1661 protected:
1662 // Post constructor setup.
1663 void
1664 do_setup()
1665 {
1666 // Call parent's setup method.
1667 Sized_relobj_file<32, big_endian>::do_setup();
1668
1669 // Initialize look-up tables.
1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1671 this->stub_tables_.swap(empty_stub_table_list);
1672 }
1673
1674 // Count the local symbols.
1675 void
1676 do_count_local_symbols(Stringpool_template<char>*,
1677 Stringpool_template<char>*);
1678
1679 void
1680 do_relocate_sections(
1681 const Symbol_table* symtab, const Layout* layout,
1682 const unsigned char* pshdrs, Output_file* of,
1683 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1684
1685 // Read the symbol information.
1686 void
1687 do_read_symbols(Read_symbols_data* sd);
1688
1689 // Process relocs for garbage collection.
1690 void
1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692
1693 private:
1694
1695 // Whether a section needs to be scanned for relocation stubs.
1696 bool
1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1698 const Relobj::Output_sections&,
1699 const Symbol_table*, const unsigned char*);
1700
1701 // Whether a section is a scannable text section.
1702 bool
1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1704 const Output_section*, const Symbol_table*);
1705
1706 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1707 bool
1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1709 unsigned int, Output_section*,
1710 const Symbol_table*);
1711
1712 // Scan a section for the Cortex-A8 erratum.
1713 void
1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1715 unsigned int, Output_section*,
1716 Target_arm<big_endian>*);
1717
1718 // Find the linked text section of an EXIDX section by looking at the
1719 // first relocation of the EXIDX section. PSHDR points to the section
1720 // headers of a relocation section and PSYMS points to the local symbols.
1721 // PSHNDX points to a location storing the text section index if found.
1722 // Return whether we can find the linked section.
1723 bool
1724 find_linked_text_section(const unsigned char* pshdr,
1725 const unsigned char* psyms, unsigned int* pshndx);
1726
1727 //
1728 // Make a new Arm_exidx_input_section object for EXIDX section with
1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1730 // index of the linked text section.
1731 void
1732 make_exidx_input_section(unsigned int shndx,
1733 const elfcpp::Shdr<32, big_endian>& shdr,
1734 unsigned int text_shndx,
1735 const elfcpp::Shdr<32, big_endian>& text_shdr);
1736
1737 // Return the output address of either a plain input section or a
1738 // relaxed input section. SHNDX is the section index.
1739 Arm_address
1740 simple_input_section_output_address(unsigned int, Output_section*);
1741
1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1744 Exidx_section_map;
1745
1746 // List of stub tables.
1747 Stub_table_list stub_tables_;
1748 // Bit vector to tell if a local symbol is a thumb function or not.
1749 // This is only valid after do_count_local_symbol is called.
1750 std::vector<bool> local_symbol_is_thumb_function_;
1751 // processor-specific flags in ELF file header.
1752 elfcpp::Elf_Word processor_specific_flags_;
1753 // Object attributes if there is an .ARM.attributes section or NULL.
1754 Attributes_section_data* attributes_section_data_;
1755 // Mapping symbols information.
1756 Mapping_symbols_info mapping_symbols_info_;
1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1758 std::vector<bool>* section_has_cortex_a8_workaround_;
1759 // Map a text section to its associated .ARM.exidx section, if there is one.
1760 Exidx_section_map exidx_section_map_;
1761 // Whether output local symbol count needs updating.
1762 bool output_local_symbol_count_needs_update_;
1763 // Whether we merge processor flags and attributes of this object to
1764 // output.
1765 bool merge_flags_and_attributes_;
1766 };
1767
1768 // Arm_dynobj class.
1769
1770 template<bool big_endian>
1771 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1772 {
1773 public:
1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1775 const elfcpp::Ehdr<32, big_endian>& ehdr)
1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1777 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { }
1779
1780 ~Arm_dynobj()
1781 { delete this->attributes_section_data_; }
1782
1783 // Downcast a base pointer to an Arm_relobj pointer. This is
1784 // not type-safe but we only use Arm_relobj not the base class.
1785 static Arm_dynobj<big_endian>*
1786 as_arm_dynobj(Dynobj* dynobj)
1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1788
1789 // Processor-specific flags in ELF file header. This is valid only after
1790 // reading symbols.
1791 elfcpp::Elf_Word
1792 processor_specific_flags() const
1793 { return this->processor_specific_flags_; }
1794
1795 // Attributes section data.
1796 const Attributes_section_data*
1797 attributes_section_data() const
1798 { return this->attributes_section_data_; }
1799
1800 protected:
1801 // Read the symbol information.
1802 void
1803 do_read_symbols(Read_symbols_data* sd);
1804
1805 private:
1806 // processor-specific flags in ELF file header.
1807 elfcpp::Elf_Word processor_specific_flags_;
1808 // Object attributes if there is an .ARM.attributes section or NULL.
1809 Attributes_section_data* attributes_section_data_;
1810 };
1811
1812 // Functor to read reloc addends during stub generation.
1813
1814 template<int sh_type, bool big_endian>
1815 struct Stub_addend_reader
1816 {
1817 // Return the addend for a relocation of a particular type. Depending
1818 // on whether this is a REL or RELA relocation, read the addend from a
1819 // view or from a Reloc object.
1820 elfcpp::Elf_types<32>::Elf_Swxword
1821 operator()(
1822 unsigned int /* r_type */,
1823 const unsigned char* /* view */,
1824 const typename Reloc_types<sh_type,
1825 32, big_endian>::Reloc& /* reloc */) const;
1826 };
1827
1828 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1829
1830 template<bool big_endian>
1831 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1832 {
1833 elfcpp::Elf_types<32>::Elf_Swxword
1834 operator()(
1835 unsigned int,
1836 const unsigned char*,
1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1838 };
1839
1840 // Specialized Stub_addend_reader for RELA type relocation sections.
1841 // We currently do not handle RELA type relocation sections but it is trivial
1842 // to implement the addend reader. This is provided for completeness and to
1843 // make it easier to add support for RELA relocation sections in the future.
1844
1845 template<bool big_endian>
1846 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1847 {
1848 elfcpp::Elf_types<32>::Elf_Swxword
1849 operator()(
1850 unsigned int,
1851 const unsigned char*,
1852 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1853 big_endian>::Reloc& reloc) const
1854 { return reloc.get_r_addend(); }
1855 };
1856
1857 // Cortex_a8_reloc class. We keep record of relocation that may need
1858 // the Cortex-A8 erratum workaround.
1859
1860 class Cortex_a8_reloc
1861 {
1862 public:
1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1864 Arm_address destination)
1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1866 { }
1867
1868 ~Cortex_a8_reloc()
1869 { }
1870
1871 // Accessors: This is a read-only class.
1872
1873 // Return the relocation stub associated with this relocation if there is
1874 // one.
1875 const Reloc_stub*
1876 reloc_stub() const
1877 { return this->reloc_stub_; }
1878
1879 // Return the relocation type.
1880 unsigned int
1881 r_type() const
1882 { return this->r_type_; }
1883
1884 // Return the destination address of the relocation. LSB stores the THUMB
1885 // bit.
1886 Arm_address
1887 destination() const
1888 { return this->destination_; }
1889
1890 private:
1891 // Associated relocation stub if there is one, or NULL.
1892 const Reloc_stub* reloc_stub_;
1893 // Relocation type.
1894 unsigned int r_type_;
1895 // Destination address of this relocation. LSB is used to distinguish
1896 // ARM/THUMB mode.
1897 Arm_address destination_;
1898 };
1899
1900 // Arm_output_data_got class. We derive this from Output_data_got to add
1901 // extra methods to handle TLS relocations in a static link.
1902
1903 template<bool big_endian>
1904 class Arm_output_data_got : public Output_data_got<32, big_endian>
1905 {
1906 public:
1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1909 { }
1910
1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1913 // applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1917
1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1920 // relocation that needs to be applied in a static link.
1921 void
1922 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1923 Sized_relobj_file<32, big_endian>* relobj,
1924 unsigned int index)
1925 {
1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 index));
1928 }
1929
1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1931 // The first one is initialized to be 1, which is the module index for
1932 // the main executable and the second one 0. A reloc of the type
1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1934 // be applied by gold. GSYM is a global symbol.
1935 void
1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1937
1938 // Same as the above but for a local symbol in OBJECT with INDEX.
1939 void
1940 add_tls_gd32_with_static_reloc(unsigned int got_type,
1941 Sized_relobj_file<32, big_endian>* object,
1942 unsigned int index);
1943
1944 protected:
1945 // Write out the GOT table.
1946 void
1947 do_write(Output_file*);
1948
1949 private:
1950 // This class represent dynamic relocations that need to be applied by
1951 // gold because we are using TLS relocations in a static link.
1952 class Static_reloc
1953 {
1954 public:
1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1957 { this->u_.global.symbol = gsym; }
1958
1959 Static_reloc(unsigned int got_offset, unsigned int r_type,
1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1962 {
1963 this->u_.local.relobj = relobj;
1964 this->u_.local.index = index;
1965 }
1966
1967 // Return the GOT offset.
1968 unsigned int
1969 got_offset() const
1970 { return this->got_offset_; }
1971
1972 // Relocation type.
1973 unsigned int
1974 r_type() const
1975 { return this->r_type_; }
1976
1977 // Whether the symbol is global or not.
1978 bool
1979 symbol_is_global() const
1980 { return this->symbol_is_global_; }
1981
1982 // For a relocation against a global symbol, the global symbol.
1983 Symbol*
1984 symbol() const
1985 {
1986 gold_assert(this->symbol_is_global_);
1987 return this->u_.global.symbol;
1988 }
1989
1990 // For a relocation against a local symbol, the defining object.
1991 Sized_relobj_file<32, big_endian>*
1992 relobj() const
1993 {
1994 gold_assert(!this->symbol_is_global_);
1995 return this->u_.local.relobj;
1996 }
1997
1998 // For a relocation against a local symbol, the local symbol index.
1999 unsigned int
2000 index() const
2001 {
2002 gold_assert(!this->symbol_is_global_);
2003 return this->u_.local.index;
2004 }
2005
2006 private:
2007 // GOT offset of the entry to which this relocation is applied.
2008 unsigned int got_offset_;
2009 // Type of relocation.
2010 unsigned int r_type_;
2011 // Whether this relocation is against a global symbol.
2012 bool symbol_is_global_;
2013 // A global or local symbol.
2014 union
2015 {
2016 struct
2017 {
2018 // For a global symbol, the symbol itself.
2019 Symbol* symbol;
2020 } global;
2021 struct
2022 {
2023 // For a local symbol, the object defining object.
2024 Sized_relobj_file<32, big_endian>* relobj;
2025 // For a local symbol, the symbol index.
2026 unsigned int index;
2027 } local;
2028 } u_;
2029 };
2030
2031 // Symbol table of the output object.
2032 Symbol_table* symbol_table_;
2033 // Layout of the output object.
2034 Layout* layout_;
2035 // Static relocs to be applied to the GOT.
2036 std::vector<Static_reloc> static_relocs_;
2037 };
2038
2039 // The ARM target has many relocation types with odd-sizes or noncontiguous
2040 // bits. The default handling of relocatable relocation cannot process these
2041 // relocations. So we have to extend the default code.
2042
2043 template<bool big_endian, typename Classify_reloc>
2044 class Arm_scan_relocatable_relocs :
2045 public Default_scan_relocatable_relocs<Classify_reloc>
2046 {
2047 public:
2048 // Return the strategy to use for a local symbol which is a section
2049 // symbol, given the relocation type.
2050 inline Relocatable_relocs::Reloc_strategy
2051 local_section_strategy(unsigned int r_type, Relobj*)
2052 {
2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2055 else
2056 {
2057 if (r_type == elfcpp::R_ARM_TARGET1
2058 || r_type == elfcpp::R_ARM_TARGET2)
2059 {
2060 const Target_arm<big_endian>* arm_target =
2061 Target_arm<big_endian>::default_target();
2062 r_type = arm_target->get_real_reloc_type(r_type);
2063 }
2064
2065 switch(r_type)
2066 {
2067 // Relocations that write nothing. These exclude R_ARM_TARGET1
2068 // and R_ARM_TARGET2.
2069 case elfcpp::R_ARM_NONE:
2070 case elfcpp::R_ARM_V4BX:
2071 case elfcpp::R_ARM_TLS_GOTDESC:
2072 case elfcpp::R_ARM_TLS_CALL:
2073 case elfcpp::R_ARM_TLS_DESCSEQ:
2074 case elfcpp::R_ARM_THM_TLS_CALL:
2075 case elfcpp::R_ARM_GOTRELAX:
2076 case elfcpp::R_ARM_GNU_VTENTRY:
2077 case elfcpp::R_ARM_GNU_VTINHERIT:
2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2081 // These should have been converted to something else above.
2082 case elfcpp::R_ARM_TARGET1:
2083 case elfcpp::R_ARM_TARGET2:
2084 gold_unreachable();
2085 // Relocations that write full 32 bits and
2086 // have alignment of 1.
2087 case elfcpp::R_ARM_ABS32:
2088 case elfcpp::R_ARM_REL32:
2089 case elfcpp::R_ARM_SBREL32:
2090 case elfcpp::R_ARM_GOTOFF32:
2091 case elfcpp::R_ARM_BASE_PREL:
2092 case elfcpp::R_ARM_GOT_BREL:
2093 case elfcpp::R_ARM_BASE_ABS:
2094 case elfcpp::R_ARM_ABS32_NOI:
2095 case elfcpp::R_ARM_REL32_NOI:
2096 case elfcpp::R_ARM_PLT32_ABS:
2097 case elfcpp::R_ARM_GOT_ABS:
2098 case elfcpp::R_ARM_GOT_PREL:
2099 case elfcpp::R_ARM_TLS_GD32:
2100 case elfcpp::R_ARM_TLS_LDM32:
2101 case elfcpp::R_ARM_TLS_LDO32:
2102 case elfcpp::R_ARM_TLS_IE32:
2103 case elfcpp::R_ARM_TLS_LE32:
2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2105 default:
2106 // For all other static relocations, return RELOC_SPECIAL.
2107 return Relocatable_relocs::RELOC_SPECIAL;
2108 }
2109 }
2110 }
2111 };
2112
2113 template<bool big_endian>
2114 class Target_arm : public Sized_target<32, big_endian>
2115 {
2116 public:
2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2118 Reloc_section;
2119
2120 // When were are relocating a stub, we pass this as the relocation number.
2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2122
2123 Target_arm(const Target::Target_info* info = &arm_info)
2124 : Sized_target<32, big_endian>(info),
2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2129 should_force_pic_veneer_(false),
2130 arm_input_section_map_(), attributes_section_data_(NULL),
2131 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2132 { }
2133
2134 // Whether we force PCI branch veneers.
2135 bool
2136 should_force_pic_veneer() const
2137 { return this->should_force_pic_veneer_; }
2138
2139 // Set PIC veneer flag.
2140 void
2141 set_should_force_pic_veneer(bool value)
2142 { this->should_force_pic_veneer_ = value; }
2143
2144 // Whether we use THUMB-2 instructions.
2145 bool
2146 using_thumb2() const
2147 {
2148 Object_attribute* attr =
2149 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2150 int arch = attr->int_value();
2151 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2152 }
2153
2154 // Whether we use THUMB/THUMB-2 instructions only.
2155 bool
2156 using_thumb_only() const
2157 {
2158 Object_attribute* attr =
2159 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2160
2161 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2162 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2163 return true;
2164 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2165 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2166 return false;
2167 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2168 return attr->int_value() == 'M';
2169 }
2170
2171 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2172 bool
2173 may_use_arm_nop() const
2174 {
2175 Object_attribute* attr =
2176 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2177 int arch = attr->int_value();
2178 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2179 || arch == elfcpp::TAG_CPU_ARCH_V6K
2180 || arch == elfcpp::TAG_CPU_ARCH_V7
2181 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2182 }
2183
2184 // Whether we have THUMB-2 NOP.W instruction.
2185 bool
2186 may_use_thumb2_nop() const
2187 {
2188 Object_attribute* attr =
2189 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2190 int arch = attr->int_value();
2191 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2192 || arch == elfcpp::TAG_CPU_ARCH_V7
2193 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2194 }
2195
2196 // Whether we have v4T interworking instructions available.
2197 bool
2198 may_use_v4t_interworking() const
2199 {
2200 Object_attribute* attr =
2201 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2202 int arch = attr->int_value();
2203 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2204 && arch != elfcpp::TAG_CPU_ARCH_V4);
2205 }
2206
2207 // Whether we have v5T interworking instructions available.
2208 bool
2209 may_use_v5t_interworking() const
2210 {
2211 Object_attribute* attr =
2212 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2213 int arch = attr->int_value();
2214 if (parameters->options().fix_arm1176())
2215 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2216 || arch == elfcpp::TAG_CPU_ARCH_V7
2217 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2218 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2219 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2220 else
2221 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2222 && arch != elfcpp::TAG_CPU_ARCH_V4
2223 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2224 }
2225
2226 // Process the relocations to determine unreferenced sections for
2227 // garbage collection.
2228 void
2229 gc_process_relocs(Symbol_table* symtab,
2230 Layout* layout,
2231 Sized_relobj_file<32, big_endian>* object,
2232 unsigned int data_shndx,
2233 unsigned int sh_type,
2234 const unsigned char* prelocs,
2235 size_t reloc_count,
2236 Output_section* output_section,
2237 bool needs_special_offset_handling,
2238 size_t local_symbol_count,
2239 const unsigned char* plocal_symbols);
2240
2241 // Scan the relocations to look for symbol adjustments.
2242 void
2243 scan_relocs(Symbol_table* symtab,
2244 Layout* layout,
2245 Sized_relobj_file<32, big_endian>* object,
2246 unsigned int data_shndx,
2247 unsigned int sh_type,
2248 const unsigned char* prelocs,
2249 size_t reloc_count,
2250 Output_section* output_section,
2251 bool needs_special_offset_handling,
2252 size_t local_symbol_count,
2253 const unsigned char* plocal_symbols);
2254
2255 // Finalize the sections.
2256 void
2257 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2258
2259 // Return the value to use for a dynamic symbol which requires special
2260 // treatment.
2261 uint64_t
2262 do_dynsym_value(const Symbol*) const;
2263
2264 // Return the plt address for globals. Since we have irelative plt entries,
2265 // address calculation is not as straightforward as plt_address + plt_offset.
2266 uint64_t
2267 do_plt_address_for_global(const Symbol* gsym) const
2268 { return this->plt_section()->address_for_global(gsym); }
2269
2270 // Return the plt address for locals. Since we have irelative plt entries,
2271 // address calculation is not as straightforward as plt_address + plt_offset.
2272 uint64_t
2273 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2274 { return this->plt_section()->address_for_local(relobj, symndx); }
2275
2276 // Relocate a section.
2277 void
2278 relocate_section(const Relocate_info<32, big_endian>*,
2279 unsigned int sh_type,
2280 const unsigned char* prelocs,
2281 size_t reloc_count,
2282 Output_section* output_section,
2283 bool needs_special_offset_handling,
2284 unsigned char* view,
2285 Arm_address view_address,
2286 section_size_type view_size,
2287 const Reloc_symbol_changes*);
2288
2289 // Scan the relocs during a relocatable link.
2290 void
2291 scan_relocatable_relocs(Symbol_table* symtab,
2292 Layout* layout,
2293 Sized_relobj_file<32, big_endian>* object,
2294 unsigned int data_shndx,
2295 unsigned int sh_type,
2296 const unsigned char* prelocs,
2297 size_t reloc_count,
2298 Output_section* output_section,
2299 bool needs_special_offset_handling,
2300 size_t local_symbol_count,
2301 const unsigned char* plocal_symbols,
2302 Relocatable_relocs*);
2303
2304 // Scan the relocs for --emit-relocs.
2305 void
2306 emit_relocs_scan(Symbol_table* symtab,
2307 Layout* layout,
2308 Sized_relobj_file<32, big_endian>* object,
2309 unsigned int data_shndx,
2310 unsigned int sh_type,
2311 const unsigned char* prelocs,
2312 size_t reloc_count,
2313 Output_section* output_section,
2314 bool needs_special_offset_handling,
2315 size_t local_symbol_count,
2316 const unsigned char* plocal_syms,
2317 Relocatable_relocs* rr);
2318
2319 // Emit relocations for a section.
2320 void
2321 relocate_relocs(const Relocate_info<32, big_endian>*,
2322 unsigned int sh_type,
2323 const unsigned char* prelocs,
2324 size_t reloc_count,
2325 Output_section* output_section,
2326 typename elfcpp::Elf_types<32>::Elf_Off
2327 offset_in_output_section,
2328 unsigned char* view,
2329 Arm_address view_address,
2330 section_size_type view_size,
2331 unsigned char* reloc_view,
2332 section_size_type reloc_view_size);
2333
2334 // Perform target-specific processing in a relocatable link. This is
2335 // only used if we use the relocation strategy RELOC_SPECIAL.
2336 void
2337 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2338 unsigned int sh_type,
2339 const unsigned char* preloc_in,
2340 size_t relnum,
2341 Output_section* output_section,
2342 typename elfcpp::Elf_types<32>::Elf_Off
2343 offset_in_output_section,
2344 unsigned char* view,
2345 typename elfcpp::Elf_types<32>::Elf_Addr
2346 view_address,
2347 section_size_type view_size,
2348 unsigned char* preloc_out);
2349
2350 // Return whether SYM is defined by the ABI.
2351 bool
2352 do_is_defined_by_abi(const Symbol* sym) const
2353 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2354
2355 // Return whether there is a GOT section.
2356 bool
2357 has_got_section() const
2358 { return this->got_ != NULL; }
2359
2360 // Return the size of the GOT section.
2361 section_size_type
2362 got_size() const
2363 {
2364 gold_assert(this->got_ != NULL);
2365 return this->got_->data_size();
2366 }
2367
2368 // Return the number of entries in the GOT.
2369 unsigned int
2370 got_entry_count() const
2371 {
2372 if (!this->has_got_section())
2373 return 0;
2374 return this->got_size() / 4;
2375 }
2376
2377 // Return the number of entries in the PLT.
2378 unsigned int
2379 plt_entry_count() const;
2380
2381 // Return the offset of the first non-reserved PLT entry.
2382 unsigned int
2383 first_plt_entry_offset() const;
2384
2385 // Return the size of each PLT entry.
2386 unsigned int
2387 plt_entry_size() const;
2388
2389 // Get the section to use for IRELATIVE relocations, create it if necessary.
2390 Reloc_section*
2391 rel_irelative_section(Layout*);
2392
2393 // Map platform-specific reloc types
2394 static unsigned int
2395 get_real_reloc_type(unsigned int r_type);
2396
2397 //
2398 // Methods to support stub-generations.
2399 //
2400
2401 // Return the stub factory
2402 const Stub_factory&
2403 stub_factory() const
2404 { return this->stub_factory_; }
2405
2406 // Make a new Arm_input_section object.
2407 Arm_input_section<big_endian>*
2408 new_arm_input_section(Relobj*, unsigned int);
2409
2410 // Find the Arm_input_section object corresponding to the SHNDX-th input
2411 // section of RELOBJ.
2412 Arm_input_section<big_endian>*
2413 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2414
2415 // Make a new Stub_table
2416 Stub_table<big_endian>*
2417 new_stub_table(Arm_input_section<big_endian>*);
2418
2419 // Scan a section for stub generation.
2420 void
2421 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2422 const unsigned char*, size_t, Output_section*,
2423 bool, const unsigned char*, Arm_address,
2424 section_size_type);
2425
2426 // Relocate a stub.
2427 void
2428 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2429 Output_section*, unsigned char*, Arm_address,
2430 section_size_type);
2431
2432 // Get the default ARM target.
2433 static Target_arm<big_endian>*
2434 default_target()
2435 {
2436 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2437 && parameters->target().is_big_endian() == big_endian);
2438 return static_cast<Target_arm<big_endian>*>(
2439 parameters->sized_target<32, big_endian>());
2440 }
2441
2442 // Whether NAME belongs to a mapping symbol.
2443 static bool
2444 is_mapping_symbol_name(const char* name)
2445 {
2446 return (name
2447 && name[0] == '$'
2448 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2449 && (name[2] == '\0' || name[2] == '.'));
2450 }
2451
2452 // Whether we work around the Cortex-A8 erratum.
2453 bool
2454 fix_cortex_a8() const
2455 { return this->fix_cortex_a8_; }
2456
2457 // Whether we merge exidx entries in debuginfo.
2458 bool
2459 merge_exidx_entries() const
2460 { return parameters->options().merge_exidx_entries(); }
2461
2462 // Whether we fix R_ARM_V4BX relocation.
2463 // 0 - do not fix
2464 // 1 - replace with MOV instruction (armv4 target)
2465 // 2 - make interworking veneer (>= armv4t targets only)
2466 General_options::Fix_v4bx
2467 fix_v4bx() const
2468 { return parameters->options().fix_v4bx(); }
2469
2470 // Scan a span of THUMB code section for Cortex-A8 erratum.
2471 void
2472 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2473 section_size_type, section_size_type,
2474 const unsigned char*, Arm_address);
2475
2476 // Apply Cortex-A8 workaround to a branch.
2477 void
2478 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2479 unsigned char*, Arm_address);
2480
2481 protected:
2482 // Make the PLT-generator object.
2483 Output_data_plt_arm<big_endian>*
2484 make_data_plt(Layout* layout,
2485 Arm_output_data_got<big_endian>* got,
2486 Output_data_space* got_plt,
2487 Output_data_space* got_irelative)
2488 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2489
2490 // Make an ELF object.
2491 Object*
2492 do_make_elf_object(const std::string&, Input_file*, off_t,
2493 const elfcpp::Ehdr<32, big_endian>& ehdr);
2494
2495 Object*
2496 do_make_elf_object(const std::string&, Input_file*, off_t,
2497 const elfcpp::Ehdr<32, !big_endian>&)
2498 { gold_unreachable(); }
2499
2500 Object*
2501 do_make_elf_object(const std::string&, Input_file*, off_t,
2502 const elfcpp::Ehdr<64, false>&)
2503 { gold_unreachable(); }
2504
2505 Object*
2506 do_make_elf_object(const std::string&, Input_file*, off_t,
2507 const elfcpp::Ehdr<64, true>&)
2508 { gold_unreachable(); }
2509
2510 // Make an output section.
2511 Output_section*
2512 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2513 elfcpp::Elf_Xword flags)
2514 { return new Arm_output_section<big_endian>(name, type, flags); }
2515
2516 void
2517 do_adjust_elf_header(unsigned char* view, int len);
2518
2519 // We only need to generate stubs, and hence perform relaxation if we are
2520 // not doing relocatable linking.
2521 bool
2522 do_may_relax() const
2523 { return !parameters->options().relocatable(); }
2524
2525 bool
2526 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2527
2528 // Determine whether an object attribute tag takes an integer, a
2529 // string or both.
2530 int
2531 do_attribute_arg_type(int tag) const;
2532
2533 // Reorder tags during output.
2534 int
2535 do_attributes_order(int num) const;
2536
2537 // This is called when the target is selected as the default.
2538 void
2539 do_select_as_default_target()
2540 {
2541 // No locking is required since there should only be one default target.
2542 // We cannot have both the big-endian and little-endian ARM targets
2543 // as the default.
2544 gold_assert(arm_reloc_property_table == NULL);
2545 arm_reloc_property_table = new Arm_reloc_property_table();
2546 }
2547
2548 // Virtual function which is set to return true by a target if
2549 // it can use relocation types to determine if a function's
2550 // pointer is taken.
2551 virtual bool
2552 do_can_check_for_function_pointers() const
2553 { return true; }
2554
2555 // Whether a section called SECTION_NAME may have function pointers to
2556 // sections not eligible for safe ICF folding.
2557 virtual bool
2558 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2559 {
2560 return (!is_prefix_of(".ARM.exidx", section_name)
2561 && !is_prefix_of(".ARM.extab", section_name)
2562 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2563 }
2564
2565 virtual void
2566 do_define_standard_symbols(Symbol_table*, Layout*);
2567
2568 virtual Output_data_plt_arm<big_endian>*
2569 do_make_data_plt(Layout* layout,
2570 Arm_output_data_got<big_endian>* got,
2571 Output_data_space* got_plt,
2572 Output_data_space* got_irelative)
2573 {
2574 gold_assert(got_plt != NULL && got_irelative != NULL);
2575 if (parameters->options().long_plt())
2576 return new Output_data_plt_arm_long<big_endian>(
2577 layout, got, got_plt, got_irelative);
2578 else
2579 return new Output_data_plt_arm_short<big_endian>(
2580 layout, got, got_plt, got_irelative);
2581 }
2582
2583 private:
2584 // The class which scans relocations.
2585 class Scan
2586 {
2587 public:
2588 Scan()
2589 : issued_non_pic_error_(false)
2590 { }
2591
2592 static inline int
2593 get_reference_flags(unsigned int r_type);
2594
2595 inline void
2596 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2597 Sized_relobj_file<32, big_endian>* object,
2598 unsigned int data_shndx,
2599 Output_section* output_section,
2600 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2601 const elfcpp::Sym<32, big_endian>& lsym,
2602 bool is_discarded);
2603
2604 inline void
2605 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2606 Sized_relobj_file<32, big_endian>* object,
2607 unsigned int data_shndx,
2608 Output_section* output_section,
2609 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2610 Symbol* gsym);
2611
2612 inline bool
2613 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2614 Sized_relobj_file<32, big_endian>* ,
2615 unsigned int ,
2616 Output_section* ,
2617 const elfcpp::Rel<32, big_endian>& ,
2618 unsigned int ,
2619 const elfcpp::Sym<32, big_endian>&);
2620
2621 inline bool
2622 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2623 Sized_relobj_file<32, big_endian>* ,
2624 unsigned int ,
2625 Output_section* ,
2626 const elfcpp::Rel<32, big_endian>& ,
2627 unsigned int , Symbol*);
2628
2629 private:
2630 static void
2631 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2632 unsigned int r_type);
2633
2634 static void
2635 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2636 unsigned int r_type, Symbol*);
2637
2638 void
2639 check_non_pic(Relobj*, unsigned int r_type);
2640
2641 // Almost identical to Symbol::needs_plt_entry except that it also
2642 // handles STT_ARM_TFUNC.
2643 static bool
2644 symbol_needs_plt_entry(const Symbol* sym)
2645 {
2646 // An undefined symbol from an executable does not need a PLT entry.
2647 if (sym->is_undefined() && !parameters->options().shared())
2648 return false;
2649
2650 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2651 return true;
2652
2653 return (!parameters->doing_static_link()
2654 && (sym->type() == elfcpp::STT_FUNC
2655 || sym->type() == elfcpp::STT_ARM_TFUNC)
2656 && (sym->is_from_dynobj()
2657 || sym->is_undefined()
2658 || sym->is_preemptible()));
2659 }
2660
2661 inline bool
2662 possible_function_pointer_reloc(unsigned int r_type);
2663
2664 // Whether a plt entry is needed for ifunc.
2665 bool
2666 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2667 unsigned int r_type);
2668
2669 // Whether we have issued an error about a non-PIC compilation.
2670 bool issued_non_pic_error_;
2671 };
2672
2673 // The class which implements relocation.
2674 class Relocate
2675 {
2676 public:
2677 Relocate()
2678 { }
2679
2680 ~Relocate()
2681 { }
2682
2683 // Return whether the static relocation needs to be applied.
2684 inline bool
2685 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2686 unsigned int r_type,
2687 bool is_32bit,
2688 Output_section* output_section);
2689
2690 // Do a relocation. Return false if the caller should not issue
2691 // any warnings about this relocation.
2692 inline bool
2693 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2694 Target_arm*, Output_section*, size_t, const unsigned char*,
2695 const Sized_symbol<32>*, const Symbol_value<32>*,
2696 unsigned char*, Arm_address, section_size_type);
2697
2698 // Return whether we want to pass flag NON_PIC_REF for this
2699 // reloc. This means the relocation type accesses a symbol not via
2700 // GOT or PLT.
2701 static inline bool
2702 reloc_is_non_pic(unsigned int r_type)
2703 {
2704 switch (r_type)
2705 {
2706 // These relocation types reference GOT or PLT entries explicitly.
2707 case elfcpp::R_ARM_GOT_BREL:
2708 case elfcpp::R_ARM_GOT_ABS:
2709 case elfcpp::R_ARM_GOT_PREL:
2710 case elfcpp::R_ARM_GOT_BREL12:
2711 case elfcpp::R_ARM_PLT32_ABS:
2712 case elfcpp::R_ARM_TLS_GD32:
2713 case elfcpp::R_ARM_TLS_LDM32:
2714 case elfcpp::R_ARM_TLS_IE32:
2715 case elfcpp::R_ARM_TLS_IE12GP:
2716
2717 // These relocate types may use PLT entries.
2718 case elfcpp::R_ARM_CALL:
2719 case elfcpp::R_ARM_THM_CALL:
2720 case elfcpp::R_ARM_JUMP24:
2721 case elfcpp::R_ARM_THM_JUMP24:
2722 case elfcpp::R_ARM_THM_JUMP19:
2723 case elfcpp::R_ARM_PLT32:
2724 case elfcpp::R_ARM_THM_XPC22:
2725 case elfcpp::R_ARM_PREL31:
2726 case elfcpp::R_ARM_SBREL31:
2727 return false;
2728
2729 default:
2730 return true;
2731 }
2732 }
2733
2734 private:
2735 // Do a TLS relocation.
2736 inline typename Arm_relocate_functions<big_endian>::Status
2737 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2738 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2739 const Sized_symbol<32>*, const Symbol_value<32>*,
2740 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2741 section_size_type);
2742
2743 };
2744
2745 // A class for inquiring about properties of a relocation,
2746 // used while scanning relocs during a relocatable link and
2747 // garbage collection.
2748 class Classify_reloc :
2749 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
2750 {
2751 public:
2752 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
2753 Reltype;
2754
2755 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2756 static typename elfcpp::Elf_types<32>::Elf_Swxword
2757 get_r_addend(const Reltype*)
2758 { return 0; }
2759
2760 // Return the size of the addend of the relocation (only used for SHT_REL).
2761 static unsigned int
2762 get_size_for_reloc(unsigned int, Relobj*);
2763 };
2764
2765 // Adjust TLS relocation type based on the options and whether this
2766 // is a local symbol.
2767 static tls::Tls_optimization
2768 optimize_tls_reloc(bool is_final, int r_type);
2769
2770 // Get the GOT section, creating it if necessary.
2771 Arm_output_data_got<big_endian>*
2772 got_section(Symbol_table*, Layout*);
2773
2774 // Get the GOT PLT section.
2775 Output_data_space*
2776 got_plt_section() const
2777 {
2778 gold_assert(this->got_plt_ != NULL);
2779 return this->got_plt_;
2780 }
2781
2782 // Create the PLT section.
2783 void
2784 make_plt_section(Symbol_table* symtab, Layout* layout);
2785
2786 // Create a PLT entry for a global symbol.
2787 void
2788 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2789
2790 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2791 void
2792 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2793 Sized_relobj_file<32, big_endian>* relobj,
2794 unsigned int local_sym_index);
2795
2796 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2797 void
2798 define_tls_base_symbol(Symbol_table*, Layout*);
2799
2800 // Create a GOT entry for the TLS module index.
2801 unsigned int
2802 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2803 Sized_relobj_file<32, big_endian>* object);
2804
2805 // Get the PLT section.
2806 const Output_data_plt_arm<big_endian>*
2807 plt_section() const
2808 {
2809 gold_assert(this->plt_ != NULL);
2810 return this->plt_;
2811 }
2812
2813 // Get the dynamic reloc section, creating it if necessary.
2814 Reloc_section*
2815 rel_dyn_section(Layout*);
2816
2817 // Get the section to use for TLS_DESC relocations.
2818 Reloc_section*
2819 rel_tls_desc_section(Layout*) const;
2820
2821 // Return true if the symbol may need a COPY relocation.
2822 // References from an executable object to non-function symbols
2823 // defined in a dynamic object may need a COPY relocation.
2824 bool
2825 may_need_copy_reloc(Symbol* gsym)
2826 {
2827 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2828 && gsym->may_need_copy_reloc());
2829 }
2830
2831 // Add a potential copy relocation.
2832 void
2833 copy_reloc(Symbol_table* symtab, Layout* layout,
2834 Sized_relobj_file<32, big_endian>* object,
2835 unsigned int shndx, Output_section* output_section,
2836 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2837 {
2838 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2839 this->copy_relocs_.copy_reloc(symtab, layout,
2840 symtab->get_sized_symbol<32>(sym),
2841 object, shndx, output_section,
2842 r_type, reloc.get_r_offset(), 0,
2843 this->rel_dyn_section(layout));
2844 }
2845
2846 // Whether two EABI versions are compatible.
2847 static bool
2848 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2849
2850 // Merge processor-specific flags from input object and those in the ELF
2851 // header of the output.
2852 void
2853 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2854
2855 // Get the secondary compatible architecture.
2856 static int
2857 get_secondary_compatible_arch(const Attributes_section_data*);
2858
2859 // Set the secondary compatible architecture.
2860 static void
2861 set_secondary_compatible_arch(Attributes_section_data*, int);
2862
2863 static int
2864 tag_cpu_arch_combine(const char*, int, int*, int, int);
2865
2866 // Helper to print AEABI enum tag value.
2867 static std::string
2868 aeabi_enum_name(unsigned int);
2869
2870 // Return string value for TAG_CPU_name.
2871 static std::string
2872 tag_cpu_name_value(unsigned int);
2873
2874 // Query attributes object to see if integer divide instructions may be
2875 // present in an object.
2876 static bool
2877 attributes_accept_div(int arch, int profile,
2878 const Object_attribute* div_attr);
2879
2880 // Query attributes object to see if integer divide instructions are
2881 // forbidden to be in the object. This is not the inverse of
2882 // attributes_accept_div.
2883 static bool
2884 attributes_forbid_div(const Object_attribute* div_attr);
2885
2886 // Merge object attributes from input object and those in the output.
2887 void
2888 merge_object_attributes(const char*, const Attributes_section_data*);
2889
2890 // Helper to get an AEABI object attribute
2891 Object_attribute*
2892 get_aeabi_object_attribute(int tag) const
2893 {
2894 Attributes_section_data* pasd = this->attributes_section_data_;
2895 gold_assert(pasd != NULL);
2896 Object_attribute* attr =
2897 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2898 gold_assert(attr != NULL);
2899 return attr;
2900 }
2901
2902 //
2903 // Methods to support stub-generations.
2904 //
2905
2906 // Group input sections for stub generation.
2907 void
2908 group_sections(Layout*, section_size_type, bool, const Task*);
2909
2910 // Scan a relocation for stub generation.
2911 void
2912 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2913 const Sized_symbol<32>*, unsigned int,
2914 const Symbol_value<32>*,
2915 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2916
2917 // Scan a relocation section for stub.
2918 template<int sh_type>
2919 void
2920 scan_reloc_section_for_stubs(
2921 const Relocate_info<32, big_endian>* relinfo,
2922 const unsigned char* prelocs,
2923 size_t reloc_count,
2924 Output_section* output_section,
2925 bool needs_special_offset_handling,
2926 const unsigned char* view,
2927 elfcpp::Elf_types<32>::Elf_Addr view_address,
2928 section_size_type);
2929
2930 // Fix .ARM.exidx section coverage.
2931 void
2932 fix_exidx_coverage(Layout*, const Input_objects*,
2933 Arm_output_section<big_endian>*, Symbol_table*,
2934 const Task*);
2935
2936 // Functors for STL set.
2937 struct output_section_address_less_than
2938 {
2939 bool
2940 operator()(const Output_section* s1, const Output_section* s2) const
2941 { return s1->address() < s2->address(); }
2942 };
2943
2944 // Information about this specific target which we pass to the
2945 // general Target structure.
2946 static const Target::Target_info arm_info;
2947
2948 // The types of GOT entries needed for this platform.
2949 // These values are exposed to the ABI in an incremental link.
2950 // Do not renumber existing values without changing the version
2951 // number of the .gnu_incremental_inputs section.
2952 enum Got_type
2953 {
2954 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2955 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2956 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2957 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2958 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2959 };
2960
2961 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2962
2963 // Map input section to Arm_input_section.
2964 typedef Unordered_map<Section_id,
2965 Arm_input_section<big_endian>*,
2966 Section_id_hash>
2967 Arm_input_section_map;
2968
2969 // Map output addresses to relocs for Cortex-A8 erratum.
2970 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2971 Cortex_a8_relocs_info;
2972
2973 // The GOT section.
2974 Arm_output_data_got<big_endian>* got_;
2975 // The PLT section.
2976 Output_data_plt_arm<big_endian>* plt_;
2977 // The GOT PLT section.
2978 Output_data_space* got_plt_;
2979 // The GOT section for IRELATIVE relocations.
2980 Output_data_space* got_irelative_;
2981 // The dynamic reloc section.
2982 Reloc_section* rel_dyn_;
2983 // The section to use for IRELATIVE relocs.
2984 Reloc_section* rel_irelative_;
2985 // Relocs saved to avoid a COPY reloc.
2986 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2987 // Offset of the GOT entry for the TLS module index.
2988 unsigned int got_mod_index_offset_;
2989 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2990 bool tls_base_symbol_defined_;
2991 // Vector of Stub_tables created.
2992 Stub_table_list stub_tables_;
2993 // Stub factory.
2994 const Stub_factory &stub_factory_;
2995 // Whether we force PIC branch veneers.
2996 bool should_force_pic_veneer_;
2997 // Map for locating Arm_input_sections.
2998 Arm_input_section_map arm_input_section_map_;
2999 // Attributes section data in output.
3000 Attributes_section_data* attributes_section_data_;
3001 // Whether we want to fix code for Cortex-A8 erratum.
3002 bool fix_cortex_a8_;
3003 // Map addresses to relocs for Cortex-A8 erratum.
3004 Cortex_a8_relocs_info cortex_a8_relocs_info_;
3005 };
3006
3007 template<bool big_endian>
3008 const Target::Target_info Target_arm<big_endian>::arm_info =
3009 {
3010 32, // size
3011 big_endian, // is_big_endian
3012 elfcpp::EM_ARM, // machine_code
3013 false, // has_make_symbol
3014 false, // has_resolve
3015 false, // has_code_fill
3016 true, // is_default_stack_executable
3017 false, // can_icf_inline_merge_sections
3018 '\0', // wrap_char
3019 "/usr/lib/libc.so.1", // dynamic_linker
3020 0x8000, // default_text_segment_address
3021 0x1000, // abi_pagesize (overridable by -z max-page-size)
3022 0x1000, // common_pagesize (overridable by -z common-page-size)
3023 false, // isolate_execinstr
3024 0, // rosegment_gap
3025 elfcpp::SHN_UNDEF, // small_common_shndx
3026 elfcpp::SHN_UNDEF, // large_common_shndx
3027 0, // small_common_section_flags
3028 0, // large_common_section_flags
3029 ".ARM.attributes", // attributes_section
3030 "aeabi", // attributes_vendor
3031 "_start", // entry_symbol_name
3032 32, // hash_entry_size
3033 };
3034
3035 // Arm relocate functions class
3036 //
3037
3038 template<bool big_endian>
3039 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3040 {
3041 public:
3042 typedef enum
3043 {
3044 STATUS_OKAY, // No error during relocation.
3045 STATUS_OVERFLOW, // Relocation overflow.
3046 STATUS_BAD_RELOC // Relocation cannot be applied.
3047 } Status;
3048
3049 private:
3050 typedef Relocate_functions<32, big_endian> Base;
3051 typedef Arm_relocate_functions<big_endian> This;
3052
3053 // Encoding of imm16 argument for movt and movw ARM instructions
3054 // from ARM ARM:
3055 //
3056 // imm16 := imm4 | imm12
3057 //
3058 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3059 // +-------+---------------+-------+-------+-----------------------+
3060 // | | |imm4 | |imm12 |
3061 // +-------+---------------+-------+-------+-----------------------+
3062
3063 // Extract the relocation addend from VAL based on the ARM
3064 // instruction encoding described above.
3065 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3066 extract_arm_movw_movt_addend(
3067 typename elfcpp::Swap<32, big_endian>::Valtype val)
3068 {
3069 // According to the Elf ABI for ARM Architecture the immediate
3070 // field is sign-extended to form the addend.
3071 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3072 }
3073
3074 // Insert X into VAL based on the ARM instruction encoding described
3075 // above.
3076 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3077 insert_val_arm_movw_movt(
3078 typename elfcpp::Swap<32, big_endian>::Valtype val,
3079 typename elfcpp::Swap<32, big_endian>::Valtype x)
3080 {
3081 val &= 0xfff0f000;
3082 val |= x & 0x0fff;
3083 val |= (x & 0xf000) << 4;
3084 return val;
3085 }
3086
3087 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3088 // from ARM ARM:
3089 //
3090 // imm16 := imm4 | i | imm3 | imm8
3091 //
3092 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3093 // +---------+-+-----------+-------++-+-----+-------+---------------+
3094 // | |i| |imm4 || |imm3 | |imm8 |
3095 // +---------+-+-----------+-------++-+-----+-------+---------------+
3096
3097 // Extract the relocation addend from VAL based on the Thumb2
3098 // instruction encoding described above.
3099 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3100 extract_thumb_movw_movt_addend(
3101 typename elfcpp::Swap<32, big_endian>::Valtype val)
3102 {
3103 // According to the Elf ABI for ARM Architecture the immediate
3104 // field is sign-extended to form the addend.
3105 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3106 | ((val >> 15) & 0x0800)
3107 | ((val >> 4) & 0x0700)
3108 | (val & 0x00ff));
3109 }
3110
3111 // Insert X into VAL based on the Thumb2 instruction encoding
3112 // described above.
3113 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3114 insert_val_thumb_movw_movt(
3115 typename elfcpp::Swap<32, big_endian>::Valtype val,
3116 typename elfcpp::Swap<32, big_endian>::Valtype x)
3117 {
3118 val &= 0xfbf08f00;
3119 val |= (x & 0xf000) << 4;
3120 val |= (x & 0x0800) << 15;
3121 val |= (x & 0x0700) << 4;
3122 val |= (x & 0x00ff);
3123 return val;
3124 }
3125
3126 // Calculate the smallest constant Kn for the specified residual.
3127 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3128 static uint32_t
3129 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3130 {
3131 int32_t msb;
3132
3133 if (residual == 0)
3134 return 0;
3135 // Determine the most significant bit in the residual and
3136 // align the resulting value to a 2-bit boundary.
3137 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3138 ;
3139 // The desired shift is now (msb - 6), or zero, whichever
3140 // is the greater.
3141 return (((msb - 6) < 0) ? 0 : (msb - 6));
3142 }
3143
3144 // Calculate the final residual for the specified group index.
3145 // If the passed group index is less than zero, the method will return
3146 // the value of the specified residual without any change.
3147 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3148 static typename elfcpp::Swap<32, big_endian>::Valtype
3149 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3150 const int group)
3151 {
3152 for (int n = 0; n <= group; n++)
3153 {
3154 // Calculate which part of the value to mask.
3155 uint32_t shift = calc_grp_kn(residual);
3156 // Calculate the residual for the next time around.
3157 residual &= ~(residual & (0xff << shift));
3158 }
3159
3160 return residual;
3161 }
3162
3163 // Calculate the value of Gn for the specified group index.
3164 // We return it in the form of an encoded constant-and-rotation.
3165 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3166 static typename elfcpp::Swap<32, big_endian>::Valtype
3167 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3168 const int group)
3169 {
3170 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3171 uint32_t shift = 0;
3172
3173 for (int n = 0; n <= group; n++)
3174 {
3175 // Calculate which part of the value to mask.
3176 shift = calc_grp_kn(residual);
3177 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3178 gn = residual & (0xff << shift);
3179 // Calculate the residual for the next time around.
3180 residual &= ~gn;
3181 }
3182 // Return Gn in the form of an encoded constant-and-rotation.
3183 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3184 }
3185
3186 public:
3187 // Handle ARM long branches.
3188 static typename This::Status
3189 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3190 unsigned char*, const Sized_symbol<32>*,
3191 const Arm_relobj<big_endian>*, unsigned int,
3192 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3193
3194 // Handle THUMB long branches.
3195 static typename This::Status
3196 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3197 unsigned char*, const Sized_symbol<32>*,
3198 const Arm_relobj<big_endian>*, unsigned int,
3199 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3200
3201
3202 // Return the branch offset of a 32-bit THUMB branch.
3203 static inline int32_t
3204 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3205 {
3206 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3207 // involving the J1 and J2 bits.
3208 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3209 uint32_t upper = upper_insn & 0x3ffU;
3210 uint32_t lower = lower_insn & 0x7ffU;
3211 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3212 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3213 uint32_t i1 = j1 ^ s ? 0 : 1;
3214 uint32_t i2 = j2 ^ s ? 0 : 1;
3215
3216 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3217 | (upper << 12) | (lower << 1));
3218 }
3219
3220 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3221 // UPPER_INSN is the original upper instruction of the branch. Caller is
3222 // responsible for overflow checking and BLX offset adjustment.
3223 static inline uint16_t
3224 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3225 {
3226 uint32_t s = offset < 0 ? 1 : 0;
3227 uint32_t bits = static_cast<uint32_t>(offset);
3228 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3229 }
3230
3231 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3232 // LOWER_INSN is the original lower instruction of the branch. Caller is
3233 // responsible for overflow checking and BLX offset adjustment.
3234 static inline uint16_t
3235 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3236 {
3237 uint32_t s = offset < 0 ? 1 : 0;
3238 uint32_t bits = static_cast<uint32_t>(offset);
3239 return ((lower_insn & ~0x2fffU)
3240 | ((((bits >> 23) & 1) ^ !s) << 13)
3241 | ((((bits >> 22) & 1) ^ !s) << 11)
3242 | ((bits >> 1) & 0x7ffU));
3243 }
3244
3245 // Return the branch offset of a 32-bit THUMB conditional branch.
3246 static inline int32_t
3247 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3248 {
3249 uint32_t s = (upper_insn & 0x0400U) >> 10;
3250 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3251 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3252 uint32_t lower = (lower_insn & 0x07ffU);
3253 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3254
3255 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3256 }
3257
3258 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3259 // instruction. UPPER_INSN is the original upper instruction of the branch.
3260 // Caller is responsible for overflow checking.
3261 static inline uint16_t
3262 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3263 {
3264 uint32_t s = offset < 0 ? 1 : 0;
3265 uint32_t bits = static_cast<uint32_t>(offset);
3266 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3267 }
3268
3269 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3270 // instruction. LOWER_INSN is the original lower instruction of the branch.
3271 // The caller is responsible for overflow checking.
3272 static inline uint16_t
3273 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3274 {
3275 uint32_t bits = static_cast<uint32_t>(offset);
3276 uint32_t j2 = (bits & 0x00080000U) >> 19;
3277 uint32_t j1 = (bits & 0x00040000U) >> 18;
3278 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3279
3280 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3281 }
3282
3283 // R_ARM_ABS8: S + A
3284 static inline typename This::Status
3285 abs8(unsigned char* view,
3286 const Sized_relobj_file<32, big_endian>* object,
3287 const Symbol_value<32>* psymval)
3288 {
3289 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3290 Valtype* wv = reinterpret_cast<Valtype*>(view);
3291 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3292 int32_t addend = Bits<8>::sign_extend32(val);
3293 Arm_address x = psymval->value(object, addend);
3294 val = Bits<32>::bit_select32(val, x, 0xffU);
3295 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3296
3297 // R_ARM_ABS8 permits signed or unsigned results.
3298 return (Bits<8>::has_signed_unsigned_overflow32(x)
3299 ? This::STATUS_OVERFLOW
3300 : This::STATUS_OKAY);
3301 }
3302
3303 // R_ARM_THM_ABS5: S + A
3304 static inline typename This::Status
3305 thm_abs5(unsigned char* view,
3306 const Sized_relobj_file<32, big_endian>* object,
3307 const Symbol_value<32>* psymval)
3308 {
3309 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3310 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3311 Valtype* wv = reinterpret_cast<Valtype*>(view);
3312 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3313 Reltype addend = (val & 0x7e0U) >> 6;
3314 Reltype x = psymval->value(object, addend);
3315 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3316 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3317 return (Bits<5>::has_overflow32(x)
3318 ? This::STATUS_OVERFLOW
3319 : This::STATUS_OKAY);
3320 }
3321
3322 // R_ARM_ABS12: S + A
3323 static inline typename This::Status
3324 abs12(unsigned char* view,
3325 const Sized_relobj_file<32, big_endian>* object,
3326 const Symbol_value<32>* psymval)
3327 {
3328 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3329 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3330 Valtype* wv = reinterpret_cast<Valtype*>(view);
3331 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3332 Reltype addend = val & 0x0fffU;
3333 Reltype x = psymval->value(object, addend);
3334 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3335 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3336 return (Bits<12>::has_overflow32(x)
3337 ? This::STATUS_OVERFLOW
3338 : This::STATUS_OKAY);
3339 }
3340
3341 // R_ARM_ABS16: S + A
3342 static inline typename This::Status
3343 abs16(unsigned char* view,
3344 const Sized_relobj_file<32, big_endian>* object,
3345 const Symbol_value<32>* psymval)
3346 {
3347 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3348 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3349 int32_t addend = Bits<16>::sign_extend32(val);
3350 Arm_address x = psymval->value(object, addend);
3351 val = Bits<32>::bit_select32(val, x, 0xffffU);
3352 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3353
3354 // R_ARM_ABS16 permits signed or unsigned results.
3355 return (Bits<16>::has_signed_unsigned_overflow32(x)
3356 ? This::STATUS_OVERFLOW
3357 : This::STATUS_OKAY);
3358 }
3359
3360 // R_ARM_ABS32: (S + A) | T
3361 static inline typename This::Status
3362 abs32(unsigned char* view,
3363 const Sized_relobj_file<32, big_endian>* object,
3364 const Symbol_value<32>* psymval,
3365 Arm_address thumb_bit)
3366 {
3367 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3368 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3369 Valtype x = psymval->value(object, addend) | thumb_bit;
3370 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3371 return This::STATUS_OKAY;
3372 }
3373
3374 // R_ARM_REL32: (S + A) | T - P
3375 static inline typename This::Status
3376 rel32(unsigned char* view,
3377 const Sized_relobj_file<32, big_endian>* object,
3378 const Symbol_value<32>* psymval,
3379 Arm_address address,
3380 Arm_address thumb_bit)
3381 {
3382 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3383 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3384 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3385 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3386 return This::STATUS_OKAY;
3387 }
3388
3389 // R_ARM_THM_JUMP24: (S + A) | T - P
3390 static typename This::Status
3391 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3392 const Symbol_value<32>* psymval, Arm_address address,
3393 Arm_address thumb_bit);
3394
3395 // R_ARM_THM_JUMP6: S + A – P
3396 static inline typename This::Status
3397 thm_jump6(unsigned char* view,
3398 const Sized_relobj_file<32, big_endian>* object,
3399 const Symbol_value<32>* psymval,
3400 Arm_address address)
3401 {
3402 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3403 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3404 Valtype* wv = reinterpret_cast<Valtype*>(view);
3405 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3406 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3407 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3408 Reltype x = (psymval->value(object, addend) - address);
3409 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3410 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3411 // CZB does only forward jumps.
3412 return ((x > 0x007e)
3413 ? This::STATUS_OVERFLOW
3414 : This::STATUS_OKAY);
3415 }
3416
3417 // R_ARM_THM_JUMP8: S + A – P
3418 static inline typename This::Status
3419 thm_jump8(unsigned char* view,
3420 const Sized_relobj_file<32, big_endian>* object,
3421 const Symbol_value<32>* psymval,
3422 Arm_address address)
3423 {
3424 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3425 Valtype* wv = reinterpret_cast<Valtype*>(view);
3426 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3427 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3428 int32_t x = (psymval->value(object, addend) - address);
3429 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3430 | ((x & 0x01fe) >> 1)));
3431 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3432 return (Bits<9>::has_overflow32(x)
3433 ? This::STATUS_OVERFLOW
3434 : This::STATUS_OKAY);
3435 }
3436
3437 // R_ARM_THM_JUMP11: S + A – P
3438 static inline typename This::Status
3439 thm_jump11(unsigned char* view,
3440 const Sized_relobj_file<32, big_endian>* object,
3441 const Symbol_value<32>* psymval,
3442 Arm_address address)
3443 {
3444 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3445 Valtype* wv = reinterpret_cast<Valtype*>(view);
3446 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3447 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3448 int32_t x = (psymval->value(object, addend) - address);
3449 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3450 | ((x & 0x0ffe) >> 1)));
3451 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3452 return (Bits<12>::has_overflow32(x)
3453 ? This::STATUS_OVERFLOW
3454 : This::STATUS_OKAY);
3455 }
3456
3457 // R_ARM_BASE_PREL: B(S) + A - P
3458 static inline typename This::Status
3459 base_prel(unsigned char* view,
3460 Arm_address origin,
3461 Arm_address address)
3462 {
3463 Base::rel32(view, origin - address);
3464 return STATUS_OKAY;
3465 }
3466
3467 // R_ARM_BASE_ABS: B(S) + A
3468 static inline typename This::Status
3469 base_abs(unsigned char* view,
3470 Arm_address origin)
3471 {
3472 Base::rel32(view, origin);
3473 return STATUS_OKAY;
3474 }
3475
3476 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3477 static inline typename This::Status
3478 got_brel(unsigned char* view,
3479 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3480 {
3481 Base::rel32(view, got_offset);
3482 return This::STATUS_OKAY;
3483 }
3484
3485 // R_ARM_GOT_PREL: GOT(S) + A - P
3486 static inline typename This::Status
3487 got_prel(unsigned char* view,
3488 Arm_address got_entry,
3489 Arm_address address)
3490 {
3491 Base::rel32(view, got_entry - address);
3492 return This::STATUS_OKAY;
3493 }
3494
3495 // R_ARM_PREL: (S + A) | T - P
3496 static inline typename This::Status
3497 prel31(unsigned char* view,
3498 const Sized_relobj_file<32, big_endian>* object,
3499 const Symbol_value<32>* psymval,
3500 Arm_address address,
3501 Arm_address thumb_bit)
3502 {
3503 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3504 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3505 Valtype addend = Bits<31>::sign_extend32(val);
3506 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3507 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3508 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3509 return (Bits<31>::has_overflow32(x)
3510 ? This::STATUS_OVERFLOW
3511 : This::STATUS_OKAY);
3512 }
3513
3514 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3515 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3516 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3517 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3518 static inline typename This::Status
3519 movw(unsigned char* view,
3520 const Sized_relobj_file<32, big_endian>* object,
3521 const Symbol_value<32>* psymval,
3522 Arm_address relative_address_base,
3523 Arm_address thumb_bit,
3524 bool check_overflow)
3525 {
3526 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3527 Valtype* wv = reinterpret_cast<Valtype*>(view);
3528 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3529 Valtype addend = This::extract_arm_movw_movt_addend(val);
3530 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3531 - relative_address_base);
3532 val = This::insert_val_arm_movw_movt(val, x);
3533 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3534 return ((check_overflow && Bits<16>::has_overflow32(x))
3535 ? This::STATUS_OVERFLOW
3536 : This::STATUS_OKAY);
3537 }
3538
3539 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3540 // R_ARM_MOVT_PREL: S + A - P
3541 // R_ARM_MOVT_BREL: S + A - B(S)
3542 static inline typename This::Status
3543 movt(unsigned char* view,
3544 const Sized_relobj_file<32, big_endian>* object,
3545 const Symbol_value<32>* psymval,
3546 Arm_address relative_address_base)
3547 {
3548 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3549 Valtype* wv = reinterpret_cast<Valtype*>(view);
3550 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3551 Valtype addend = This::extract_arm_movw_movt_addend(val);
3552 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3553 val = This::insert_val_arm_movw_movt(val, x);
3554 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3555 // FIXME: IHI0044D says that we should check for overflow.
3556 return This::STATUS_OKAY;
3557 }
3558
3559 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3560 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3561 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3562 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3563 static inline typename This::Status
3564 thm_movw(unsigned char* view,
3565 const Sized_relobj_file<32, big_endian>* object,
3566 const Symbol_value<32>* psymval,
3567 Arm_address relative_address_base,
3568 Arm_address thumb_bit,
3569 bool check_overflow)
3570 {
3571 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3572 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3573 Valtype* wv = reinterpret_cast<Valtype*>(view);
3574 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3575 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3576 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3577 Reltype x =
3578 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3579 val = This::insert_val_thumb_movw_movt(val, x);
3580 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3581 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3582 return ((check_overflow && Bits<16>::has_overflow32(x))
3583 ? This::STATUS_OVERFLOW
3584 : This::STATUS_OKAY);
3585 }
3586
3587 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3588 // R_ARM_THM_MOVT_PREL: S + A - P
3589 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3590 static inline typename This::Status
3591 thm_movt(unsigned char* view,
3592 const Sized_relobj_file<32, big_endian>* object,
3593 const Symbol_value<32>* psymval,
3594 Arm_address relative_address_base)
3595 {
3596 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3597 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3598 Valtype* wv = reinterpret_cast<Valtype*>(view);
3599 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3600 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3601 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3602 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3603 val = This::insert_val_thumb_movw_movt(val, x);
3604 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3605 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3606 return This::STATUS_OKAY;
3607 }
3608
3609 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3610 static inline typename This::Status
3611 thm_alu11(unsigned char* view,
3612 const Sized_relobj_file<32, big_endian>* object,
3613 const Symbol_value<32>* psymval,
3614 Arm_address address,
3615 Arm_address thumb_bit)
3616 {
3617 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3618 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3619 Valtype* wv = reinterpret_cast<Valtype*>(view);
3620 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3621 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3622
3623 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3624 // -----------------------------------------------------------------------
3625 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3626 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3627 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3628 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3629 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3630 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3631
3632 // Determine a sign for the addend.
3633 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3634 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3635 // Thumb2 addend encoding:
3636 // imm12 := i | imm3 | imm8
3637 int32_t addend = (insn & 0xff)
3638 | ((insn & 0x00007000) >> 4)
3639 | ((insn & 0x04000000) >> 15);
3640 // Apply a sign to the added.
3641 addend *= sign;
3642
3643 int32_t x = (psymval->value(object, addend) | thumb_bit)
3644 - (address & 0xfffffffc);
3645 Reltype val = abs(x);
3646 // Mask out the value and a distinct part of the ADD/SUB opcode
3647 // (bits 7:5 of opword).
3648 insn = (insn & 0xfb0f8f00)
3649 | (val & 0xff)
3650 | ((val & 0x700) << 4)
3651 | ((val & 0x800) << 15);
3652 // Set the opcode according to whether the value to go in the
3653 // place is negative.
3654 if (x < 0)
3655 insn |= 0x00a00000;
3656
3657 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3658 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3659 return ((val > 0xfff) ?
3660 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3661 }
3662
3663 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3664 static inline typename This::Status
3665 thm_pc8(unsigned char* view,
3666 const Sized_relobj_file<32, big_endian>* object,
3667 const Symbol_value<32>* psymval,
3668 Arm_address address)
3669 {
3670 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3671 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3672 Valtype* wv = reinterpret_cast<Valtype*>(view);
3673 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3674 Reltype addend = ((insn & 0x00ff) << 2);
3675 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3676 Reltype val = abs(x);
3677 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3678
3679 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3680 return ((val > 0x03fc)
3681 ? This::STATUS_OVERFLOW
3682 : This::STATUS_OKAY);
3683 }
3684
3685 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3686 static inline typename This::Status
3687 thm_pc12(unsigned char* view,
3688 const Sized_relobj_file<32, big_endian>* object,
3689 const Symbol_value<32>* psymval,
3690 Arm_address address)
3691 {
3692 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3693 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3694 Valtype* wv = reinterpret_cast<Valtype*>(view);
3695 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3696 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3697 // Determine a sign for the addend (positive if the U bit is 1).
3698 const int sign = (insn & 0x00800000) ? 1 : -1;
3699 int32_t addend = (insn & 0xfff);
3700 // Apply a sign to the added.
3701 addend *= sign;
3702
3703 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3704 Reltype val = abs(x);
3705 // Mask out and apply the value and the U bit.
3706 insn = (insn & 0xff7ff000) | (val & 0xfff);
3707 // Set the U bit according to whether the value to go in the
3708 // place is positive.
3709 if (x >= 0)
3710 insn |= 0x00800000;
3711
3712 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3713 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3714 return ((val > 0xfff) ?
3715 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3716 }
3717
3718 // R_ARM_V4BX
3719 static inline typename This::Status
3720 v4bx(const Relocate_info<32, big_endian>* relinfo,
3721 unsigned char* view,
3722 const Arm_relobj<big_endian>* object,
3723 const Arm_address address,
3724 const bool is_interworking)
3725 {
3726
3727 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3728 Valtype* wv = reinterpret_cast<Valtype*>(view);
3729 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3730
3731 // Ensure that we have a BX instruction.
3732 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3733 const uint32_t reg = (val & 0xf);
3734 if (is_interworking && reg != 0xf)
3735 {
3736 Stub_table<big_endian>* stub_table =
3737 object->stub_table(relinfo->data_shndx);
3738 gold_assert(stub_table != NULL);
3739
3740 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3741 gold_assert(stub != NULL);
3742
3743 int32_t veneer_address =
3744 stub_table->address() + stub->offset() - 8 - address;
3745 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3746 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3747 // Replace with a branch to veneer (B <addr>)
3748 val = (val & 0xf0000000) | 0x0a000000
3749 | ((veneer_address >> 2) & 0x00ffffff);
3750 }
3751 else
3752 {
3753 // Preserve Rm (lowest four bits) and the condition code
3754 // (highest four bits). Other bits encode MOV PC,Rm.
3755 val = (val & 0xf000000f) | 0x01a0f000;
3756 }
3757 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3758 return This::STATUS_OKAY;
3759 }
3760
3761 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3762 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3763 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3764 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3765 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3766 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3767 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3768 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3769 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3770 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3771 static inline typename This::Status
3772 arm_grp_alu(unsigned char* view,
3773 const Sized_relobj_file<32, big_endian>* object,
3774 const Symbol_value<32>* psymval,
3775 const int group,
3776 Arm_address address,
3777 Arm_address thumb_bit,
3778 bool check_overflow)
3779 {
3780 gold_assert(group >= 0 && group < 3);
3781 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3782 Valtype* wv = reinterpret_cast<Valtype*>(view);
3783 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3784
3785 // ALU group relocations are allowed only for the ADD/SUB instructions.
3786 // (0x00800000 - ADD, 0x00400000 - SUB)
3787 const Valtype opcode = insn & 0x01e00000;
3788 if (opcode != 0x00800000 && opcode != 0x00400000)
3789 return This::STATUS_BAD_RELOC;
3790
3791 // Determine a sign for the addend.
3792 const int sign = (opcode == 0x00800000) ? 1 : -1;
3793 // shifter = rotate_imm * 2
3794 const uint32_t shifter = (insn & 0xf00) >> 7;
3795 // Initial addend value.
3796 int32_t addend = insn & 0xff;
3797 // Rotate addend right by shifter.
3798 addend = (addend >> shifter) | (addend << (32 - shifter));
3799 // Apply a sign to the added.
3800 addend *= sign;
3801
3802 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3803 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3804 // Check for overflow if required
3805 if (check_overflow
3806 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3807 return This::STATUS_OVERFLOW;
3808
3809 // Mask out the value and the ADD/SUB part of the opcode; take care
3810 // not to destroy the S bit.
3811 insn &= 0xff1ff000;
3812 // Set the opcode according to whether the value to go in the
3813 // place is negative.
3814 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3815 // Encode the offset (encoded Gn).
3816 insn |= gn;
3817
3818 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3819 return This::STATUS_OKAY;
3820 }
3821
3822 // R_ARM_LDR_PC_G0: S + A - P
3823 // R_ARM_LDR_PC_G1: S + A - P
3824 // R_ARM_LDR_PC_G2: S + A - P
3825 // R_ARM_LDR_SB_G0: S + A - B(S)
3826 // R_ARM_LDR_SB_G1: S + A - B(S)
3827 // R_ARM_LDR_SB_G2: S + A - B(S)
3828 static inline typename This::Status
3829 arm_grp_ldr(unsigned char* view,
3830 const Sized_relobj_file<32, big_endian>* object,
3831 const Symbol_value<32>* psymval,
3832 const int group,
3833 Arm_address address)
3834 {
3835 gold_assert(group >= 0 && group < 3);
3836 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3837 Valtype* wv = reinterpret_cast<Valtype*>(view);
3838 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3839
3840 const int sign = (insn & 0x00800000) ? 1 : -1;
3841 int32_t addend = (insn & 0xfff) * sign;
3842 int32_t x = (psymval->value(object, addend) - address);
3843 // Calculate the relevant G(n-1) value to obtain this stage residual.
3844 Valtype residual =
3845 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3846 if (residual >= 0x1000)
3847 return This::STATUS_OVERFLOW;
3848
3849 // Mask out the value and U bit.
3850 insn &= 0xff7ff000;
3851 // Set the U bit for non-negative values.
3852 if (x >= 0)
3853 insn |= 0x00800000;
3854 insn |= residual;
3855
3856 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3857 return This::STATUS_OKAY;
3858 }
3859
3860 // R_ARM_LDRS_PC_G0: S + A - P
3861 // R_ARM_LDRS_PC_G1: S + A - P
3862 // R_ARM_LDRS_PC_G2: S + A - P
3863 // R_ARM_LDRS_SB_G0: S + A - B(S)
3864 // R_ARM_LDRS_SB_G1: S + A - B(S)
3865 // R_ARM_LDRS_SB_G2: S + A - B(S)
3866 static inline typename This::Status
3867 arm_grp_ldrs(unsigned char* view,
3868 const Sized_relobj_file<32, big_endian>* object,
3869 const Symbol_value<32>* psymval,
3870 const int group,
3871 Arm_address address)
3872 {
3873 gold_assert(group >= 0 && group < 3);
3874 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3875 Valtype* wv = reinterpret_cast<Valtype*>(view);
3876 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3877
3878 const int sign = (insn & 0x00800000) ? 1 : -1;
3879 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3880 int32_t x = (psymval->value(object, addend) - address);
3881 // Calculate the relevant G(n-1) value to obtain this stage residual.
3882 Valtype residual =
3883 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3884 if (residual >= 0x100)
3885 return This::STATUS_OVERFLOW;
3886
3887 // Mask out the value and U bit.
3888 insn &= 0xff7ff0f0;
3889 // Set the U bit for non-negative values.
3890 if (x >= 0)
3891 insn |= 0x00800000;
3892 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3893
3894 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3895 return This::STATUS_OKAY;
3896 }
3897
3898 // R_ARM_LDC_PC_G0: S + A - P
3899 // R_ARM_LDC_PC_G1: S + A - P
3900 // R_ARM_LDC_PC_G2: S + A - P
3901 // R_ARM_LDC_SB_G0: S + A - B(S)
3902 // R_ARM_LDC_SB_G1: S + A - B(S)
3903 // R_ARM_LDC_SB_G2: S + A - B(S)
3904 static inline typename This::Status
3905 arm_grp_ldc(unsigned char* view,
3906 const Sized_relobj_file<32, big_endian>* object,
3907 const Symbol_value<32>* psymval,
3908 const int group,
3909 Arm_address address)
3910 {
3911 gold_assert(group >= 0 && group < 3);
3912 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3913 Valtype* wv = reinterpret_cast<Valtype*>(view);
3914 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3915
3916 const int sign = (insn & 0x00800000) ? 1 : -1;
3917 int32_t addend = ((insn & 0xff) << 2) * sign;
3918 int32_t x = (psymval->value(object, addend) - address);
3919 // Calculate the relevant G(n-1) value to obtain this stage residual.
3920 Valtype residual =
3921 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3922 if ((residual & 0x3) != 0 || residual >= 0x400)
3923 return This::STATUS_OVERFLOW;
3924
3925 // Mask out the value and U bit.
3926 insn &= 0xff7fff00;
3927 // Set the U bit for non-negative values.
3928 if (x >= 0)
3929 insn |= 0x00800000;
3930 insn |= (residual >> 2);
3931
3932 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3933 return This::STATUS_OKAY;
3934 }
3935 };
3936
3937 // Relocate ARM long branches. This handles relocation types
3938 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3939 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3940 // undefined and we do not use PLT in this relocation. In such a case,
3941 // the branch is converted into an NOP.
3942
3943 template<bool big_endian>
3944 typename Arm_relocate_functions<big_endian>::Status
3945 Arm_relocate_functions<big_endian>::arm_branch_common(
3946 unsigned int r_type,
3947 const Relocate_info<32, big_endian>* relinfo,
3948 unsigned char* view,
3949 const Sized_symbol<32>* gsym,
3950 const Arm_relobj<big_endian>* object,
3951 unsigned int r_sym,
3952 const Symbol_value<32>* psymval,
3953 Arm_address address,
3954 Arm_address thumb_bit,
3955 bool is_weakly_undefined_without_plt)
3956 {
3957 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3958 Valtype* wv = reinterpret_cast<Valtype*>(view);
3959 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3960
3961 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3962 && ((val & 0x0f000000UL) == 0x0a000000UL);
3963 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3964 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3965 && ((val & 0x0f000000UL) == 0x0b000000UL);
3966 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3967 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3968
3969 // Check that the instruction is valid.
3970 if (r_type == elfcpp::R_ARM_CALL)
3971 {
3972 if (!insn_is_uncond_bl && !insn_is_blx)
3973 return This::STATUS_BAD_RELOC;
3974 }
3975 else if (r_type == elfcpp::R_ARM_JUMP24)
3976 {
3977 if (!insn_is_b && !insn_is_cond_bl)
3978 return This::STATUS_BAD_RELOC;
3979 }
3980 else if (r_type == elfcpp::R_ARM_PLT32)
3981 {
3982 if (!insn_is_any_branch)
3983 return This::STATUS_BAD_RELOC;
3984 }
3985 else if (r_type == elfcpp::R_ARM_XPC25)
3986 {
3987 // FIXME: AAELF document IH0044C does not say much about it other
3988 // than it being obsolete.
3989 if (!insn_is_any_branch)
3990 return This::STATUS_BAD_RELOC;
3991 }
3992 else
3993 gold_unreachable();
3994
3995 // A branch to an undefined weak symbol is turned into a jump to
3996 // the next instruction unless a PLT entry will be created.
3997 // Do the same for local undefined symbols.
3998 // The jump to the next instruction is optimized as a NOP depending
3999 // on the architecture.
4000 const Target_arm<big_endian>* arm_target =
4001 Target_arm<big_endian>::default_target();
4002 if (is_weakly_undefined_without_plt)
4003 {
4004 gold_assert(!parameters->options().relocatable());
4005 Valtype cond = val & 0xf0000000U;
4006 if (arm_target->may_use_arm_nop())
4007 val = cond | 0x0320f000;
4008 else
4009 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
4010 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4011 return This::STATUS_OKAY;
4012 }
4013
4014 Valtype addend = Bits<26>::sign_extend32(val << 2);
4015 Valtype branch_target = psymval->value(object, addend);
4016 int32_t branch_offset = branch_target - address;
4017
4018 // We need a stub if the branch offset is too large or if we need
4019 // to switch mode.
4020 bool may_use_blx = arm_target->may_use_v5t_interworking();
4021 Reloc_stub* stub = NULL;
4022
4023 if (!parameters->options().relocatable()
4024 && (Bits<26>::has_overflow32(branch_offset)
4025 || ((thumb_bit != 0)
4026 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
4027 {
4028 Valtype unadjusted_branch_target = psymval->value(object, 0);
4029
4030 Stub_type stub_type =
4031 Reloc_stub::stub_type_for_reloc(r_type, address,
4032 unadjusted_branch_target,
4033 (thumb_bit != 0));
4034 if (stub_type != arm_stub_none)
4035 {
4036 Stub_table<big_endian>* stub_table =
4037 object->stub_table(relinfo->data_shndx);
4038 gold_assert(stub_table != NULL);
4039
4040 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4041 stub = stub_table->find_reloc_stub(stub_key);
4042 gold_assert(stub != NULL);
4043 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4044 branch_target = stub_table->address() + stub->offset() + addend;
4045 branch_offset = branch_target - address;
4046 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4047 }
4048 }
4049
4050 // At this point, if we still need to switch mode, the instruction
4051 // must either be a BLX or a BL that can be converted to a BLX.
4052 if (thumb_bit != 0)
4053 {
4054 // Turn BL to BLX.
4055 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4056 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4057 }
4058
4059 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4060 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4061 return (Bits<26>::has_overflow32(branch_offset)
4062 ? This::STATUS_OVERFLOW
4063 : This::STATUS_OKAY);
4064 }
4065
4066 // Relocate THUMB long branches. This handles relocation types
4067 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4068 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4069 // undefined and we do not use PLT in this relocation. In such a case,
4070 // the branch is converted into an NOP.
4071
4072 template<bool big_endian>
4073 typename Arm_relocate_functions<big_endian>::Status
4074 Arm_relocate_functions<big_endian>::thumb_branch_common(
4075 unsigned int r_type,
4076 const Relocate_info<32, big_endian>* relinfo,
4077 unsigned char* view,
4078 const Sized_symbol<32>* gsym,
4079 const Arm_relobj<big_endian>* object,
4080 unsigned int r_sym,
4081 const Symbol_value<32>* psymval,
4082 Arm_address address,
4083 Arm_address thumb_bit,
4084 bool is_weakly_undefined_without_plt)
4085 {
4086 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4087 Valtype* wv = reinterpret_cast<Valtype*>(view);
4088 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4089 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4090
4091 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4092 // into account.
4093 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4094 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4095
4096 // Check that the instruction is valid.
4097 if (r_type == elfcpp::R_ARM_THM_CALL)
4098 {
4099 if (!is_bl_insn && !is_blx_insn)
4100 return This::STATUS_BAD_RELOC;
4101 }
4102 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4103 {
4104 // This cannot be a BLX.
4105 if (!is_bl_insn)
4106 return This::STATUS_BAD_RELOC;
4107 }
4108 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4109 {
4110 // Check for Thumb to Thumb call.
4111 if (!is_blx_insn)
4112 return This::STATUS_BAD_RELOC;
4113 if (thumb_bit != 0)
4114 {
4115 gold_warning(_("%s: Thumb BLX instruction targets "
4116 "thumb function '%s'."),
4117 object->name().c_str(),
4118 (gsym ? gsym->name() : "(local)"));
4119 // Convert BLX to BL.
4120 lower_insn |= 0x1000U;
4121 }
4122 }
4123 else
4124 gold_unreachable();
4125
4126 // A branch to an undefined weak symbol is turned into a jump to
4127 // the next instruction unless a PLT entry will be created.
4128 // The jump to the next instruction is optimized as a NOP.W for
4129 // Thumb-2 enabled architectures.
4130 const Target_arm<big_endian>* arm_target =
4131 Target_arm<big_endian>::default_target();
4132 if (is_weakly_undefined_without_plt)
4133 {
4134 gold_assert(!parameters->options().relocatable());
4135 if (arm_target->may_use_thumb2_nop())
4136 {
4137 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4138 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4139 }
4140 else
4141 {
4142 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4143 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4144 }
4145 return This::STATUS_OKAY;
4146 }
4147
4148 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4149 Arm_address branch_target = psymval->value(object, addend);
4150
4151 // For BLX, bit 1 of target address comes from bit 1 of base address.
4152 bool may_use_blx = arm_target->may_use_v5t_interworking();
4153 if (thumb_bit == 0 && may_use_blx)
4154 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4155
4156 int32_t branch_offset = branch_target - address;
4157
4158 // We need a stub if the branch offset is too large or if we need
4159 // to switch mode.
4160 bool thumb2 = arm_target->using_thumb2();
4161 if (!parameters->options().relocatable()
4162 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4163 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4164 || ((thumb_bit == 0)
4165 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4166 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4167 {
4168 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4169
4170 Stub_type stub_type =
4171 Reloc_stub::stub_type_for_reloc(r_type, address,
4172 unadjusted_branch_target,
4173 (thumb_bit != 0));
4174
4175 if (stub_type != arm_stub_none)
4176 {
4177 Stub_table<big_endian>* stub_table =
4178 object->stub_table(relinfo->data_shndx);
4179 gold_assert(stub_table != NULL);
4180
4181 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4182 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4183 gold_assert(stub != NULL);
4184 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4185 branch_target = stub_table->address() + stub->offset() + addend;
4186 if (thumb_bit == 0 && may_use_blx)
4187 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4188 branch_offset = branch_target - address;
4189 }
4190 }
4191
4192 // At this point, if we still need to switch mode, the instruction
4193 // must either be a BLX or a BL that can be converted to a BLX.
4194 if (thumb_bit == 0)
4195 {
4196 gold_assert(may_use_blx
4197 && (r_type == elfcpp::R_ARM_THM_CALL
4198 || r_type == elfcpp::R_ARM_THM_XPC22));
4199 // Make sure this is a BLX.
4200 lower_insn &= ~0x1000U;
4201 }
4202 else
4203 {
4204 // Make sure this is a BL.
4205 lower_insn |= 0x1000U;
4206 }
4207
4208 // For a BLX instruction, make sure that the relocation is rounded up
4209 // to a word boundary. This follows the semantics of the instruction
4210 // which specifies that bit 1 of the target address will come from bit
4211 // 1 of the base address.
4212 if ((lower_insn & 0x5000U) == 0x4000U)
4213 gold_assert((branch_offset & 3) == 0);
4214
4215 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4216 // We use the Thumb-2 encoding, which is safe even if dealing with
4217 // a Thumb-1 instruction by virtue of our overflow check above. */
4218 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4219 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4220
4221 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4222 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4223
4224 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4225
4226 return ((thumb2
4227 ? Bits<25>::has_overflow32(branch_offset)
4228 : Bits<23>::has_overflow32(branch_offset))
4229 ? This::STATUS_OVERFLOW
4230 : This::STATUS_OKAY);
4231 }
4232
4233 // Relocate THUMB-2 long conditional branches.
4234 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4235 // undefined and we do not use PLT in this relocation. In such a case,
4236 // the branch is converted into an NOP.
4237
4238 template<bool big_endian>
4239 typename Arm_relocate_functions<big_endian>::Status
4240 Arm_relocate_functions<big_endian>::thm_jump19(
4241 unsigned char* view,
4242 const Arm_relobj<big_endian>* object,
4243 const Symbol_value<32>* psymval,
4244 Arm_address address,
4245 Arm_address thumb_bit)
4246 {
4247 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4248 Valtype* wv = reinterpret_cast<Valtype*>(view);
4249 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4250 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4251 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4252
4253 Arm_address branch_target = psymval->value(object, addend);
4254 int32_t branch_offset = branch_target - address;
4255
4256 // ??? Should handle interworking? GCC might someday try to
4257 // use this for tail calls.
4258 // FIXME: We do support thumb entry to PLT yet.
4259 if (thumb_bit == 0)
4260 {
4261 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4262 return This::STATUS_BAD_RELOC;
4263 }
4264
4265 // Put RELOCATION back into the insn.
4266 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4267 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4268
4269 // Put the relocated value back in the object file:
4270 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4271 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4272
4273 return (Bits<21>::has_overflow32(branch_offset)
4274 ? This::STATUS_OVERFLOW
4275 : This::STATUS_OKAY);
4276 }
4277
4278 // Get the GOT section, creating it if necessary.
4279
4280 template<bool big_endian>
4281 Arm_output_data_got<big_endian>*
4282 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4283 {
4284 if (this->got_ == NULL)
4285 {
4286 gold_assert(symtab != NULL && layout != NULL);
4287
4288 // When using -z now, we can treat .got as a relro section.
4289 // Without -z now, it is modified after program startup by lazy
4290 // PLT relocations.
4291 bool is_got_relro = parameters->options().now();
4292 Output_section_order got_order = (is_got_relro
4293 ? ORDER_RELRO_LAST
4294 : ORDER_DATA);
4295
4296 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4297 // .got.plt sections in output. The output .got section contains both
4298 // PLT and non-PLT GOT entries.
4299 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4300
4301 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4302 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4303 this->got_, got_order, is_got_relro);
4304
4305 // The old GNU linker creates a .got.plt section. We just
4306 // create another set of data in the .got section. Note that we
4307 // always create a PLT if we create a GOT, although the PLT
4308 // might be empty.
4309 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4310 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4311 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4312 this->got_plt_, got_order, is_got_relro);
4313
4314 // The first three entries are reserved.
4315 this->got_plt_->set_current_data_size(3 * 4);
4316
4317 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4318 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4319 Symbol_table::PREDEFINED,
4320 this->got_plt_,
4321 0, 0, elfcpp::STT_OBJECT,
4322 elfcpp::STB_LOCAL,
4323 elfcpp::STV_HIDDEN, 0,
4324 false, false);
4325
4326 // If there are any IRELATIVE relocations, they get GOT entries
4327 // in .got.plt after the jump slot entries.
4328 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4329 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4330 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4331 this->got_irelative_,
4332 got_order, is_got_relro);
4333
4334 }
4335 return this->got_;
4336 }
4337
4338 // Get the dynamic reloc section, creating it if necessary.
4339
4340 template<bool big_endian>
4341 typename Target_arm<big_endian>::Reloc_section*
4342 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4343 {
4344 if (this->rel_dyn_ == NULL)
4345 {
4346 gold_assert(layout != NULL);
4347 // Create both relocation sections in the same place, so as to ensure
4348 // their relative order in the output section.
4349 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4350 this->rel_irelative_ = new Reloc_section(false);
4351 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4352 elfcpp::SHF_ALLOC, this->rel_dyn_,
4353 ORDER_DYNAMIC_RELOCS, false);
4354 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4355 elfcpp::SHF_ALLOC, this->rel_irelative_,
4356 ORDER_DYNAMIC_RELOCS, false);
4357 }
4358 return this->rel_dyn_;
4359 }
4360
4361
4362 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4363 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4364 // follow the other dynamic relocations so that they can refer to global
4365 // variables initialized by those relocs.
4366
4367 template<bool big_endian>
4368 typename Target_arm<big_endian>::Reloc_section*
4369 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4370 {
4371 if (this->rel_irelative_ == NULL)
4372 {
4373 // Delegate the creation to rel_dyn_section so as to ensure their order in
4374 // the output section.
4375 this->rel_dyn_section(layout);
4376 gold_assert(this->rel_irelative_ != NULL
4377 && (this->rel_dyn_->output_section()
4378 == this->rel_irelative_->output_section()));
4379 }
4380 return this->rel_irelative_;
4381 }
4382
4383
4384 // Insn_template methods.
4385
4386 // Return byte size of an instruction template.
4387
4388 size_t
4389 Insn_template::size() const
4390 {
4391 switch (this->type())
4392 {
4393 case THUMB16_TYPE:
4394 case THUMB16_SPECIAL_TYPE:
4395 return 2;
4396 case ARM_TYPE:
4397 case THUMB32_TYPE:
4398 case DATA_TYPE:
4399 return 4;
4400 default:
4401 gold_unreachable();
4402 }
4403 }
4404
4405 // Return alignment of an instruction template.
4406
4407 unsigned
4408 Insn_template::alignment() const
4409 {
4410 switch (this->type())
4411 {
4412 case THUMB16_TYPE:
4413 case THUMB16_SPECIAL_TYPE:
4414 case THUMB32_TYPE:
4415 return 2;
4416 case ARM_TYPE:
4417 case DATA_TYPE:
4418 return 4;
4419 default:
4420 gold_unreachable();
4421 }
4422 }
4423
4424 // Stub_template methods.
4425
4426 Stub_template::Stub_template(
4427 Stub_type type, const Insn_template* insns,
4428 size_t insn_count)
4429 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4430 entry_in_thumb_mode_(false), relocs_()
4431 {
4432 off_t offset = 0;
4433
4434 // Compute byte size and alignment of stub template.
4435 for (size_t i = 0; i < insn_count; i++)
4436 {
4437 unsigned insn_alignment = insns[i].alignment();
4438 size_t insn_size = insns[i].size();
4439 gold_assert((offset & (insn_alignment - 1)) == 0);
4440 this->alignment_ = std::max(this->alignment_, insn_alignment);
4441 switch (insns[i].type())
4442 {
4443 case Insn_template::THUMB16_TYPE:
4444 case Insn_template::THUMB16_SPECIAL_TYPE:
4445 if (i == 0)
4446 this->entry_in_thumb_mode_ = true;
4447 break;
4448
4449 case Insn_template::THUMB32_TYPE:
4450 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4451 this->relocs_.push_back(Reloc(i, offset));
4452 if (i == 0)
4453 this->entry_in_thumb_mode_ = true;
4454 break;
4455
4456 case Insn_template::ARM_TYPE:
4457 // Handle cases where the target is encoded within the
4458 // instruction.
4459 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4460 this->relocs_.push_back(Reloc(i, offset));
4461 break;
4462
4463 case Insn_template::DATA_TYPE:
4464 // Entry point cannot be data.
4465 gold_assert(i != 0);
4466 this->relocs_.push_back(Reloc(i, offset));
4467 break;
4468
4469 default:
4470 gold_unreachable();
4471 }
4472 offset += insn_size;
4473 }
4474 this->size_ = offset;
4475 }
4476
4477 // Stub methods.
4478
4479 // Template to implement do_write for a specific target endianness.
4480
4481 template<bool big_endian>
4482 void inline
4483 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4484 {
4485 const Stub_template* stub_template = this->stub_template();
4486 const Insn_template* insns = stub_template->insns();
4487
4488 // FIXME: We do not handle BE8 encoding yet.
4489 unsigned char* pov = view;
4490 for (size_t i = 0; i < stub_template->insn_count(); i++)
4491 {
4492 switch (insns[i].type())
4493 {
4494 case Insn_template::THUMB16_TYPE:
4495 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4496 break;
4497 case Insn_template::THUMB16_SPECIAL_TYPE:
4498 elfcpp::Swap<16, big_endian>::writeval(
4499 pov,
4500 this->thumb16_special(i));
4501 break;
4502 case Insn_template::THUMB32_TYPE:
4503 {
4504 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4505 uint32_t lo = insns[i].data() & 0xffff;
4506 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4507 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4508 }
4509 break;
4510 case Insn_template::ARM_TYPE:
4511 case Insn_template::DATA_TYPE:
4512 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4513 break;
4514 default:
4515 gold_unreachable();
4516 }
4517 pov += insns[i].size();
4518 }
4519 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4520 }
4521
4522 // Reloc_stub::Key methods.
4523
4524 // Dump a Key as a string for debugging.
4525
4526 std::string
4527 Reloc_stub::Key::name() const
4528 {
4529 if (this->r_sym_ == invalid_index)
4530 {
4531 // Global symbol key name
4532 // <stub-type>:<symbol name>:<addend>.
4533 const std::string sym_name = this->u_.symbol->name();
4534 // We need to print two hex number and two colons. So just add 100 bytes
4535 // to the symbol name size.
4536 size_t len = sym_name.size() + 100;
4537 char* buffer = new char[len];
4538 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4539 sym_name.c_str(), this->addend_);
4540 gold_assert(c > 0 && c < static_cast<int>(len));
4541 delete[] buffer;
4542 return std::string(buffer);
4543 }
4544 else
4545 {
4546 // local symbol key name
4547 // <stub-type>:<object>:<r_sym>:<addend>.
4548 const size_t len = 200;
4549 char buffer[len];
4550 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4551 this->u_.relobj, this->r_sym_, this->addend_);
4552 gold_assert(c > 0 && c < static_cast<int>(len));
4553 return std::string(buffer);
4554 }
4555 }
4556
4557 // Reloc_stub methods.
4558
4559 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4560 // LOCATION to DESTINATION.
4561 // This code is based on the arm_type_of_stub function in
4562 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4563 // class simple.
4564
4565 Stub_type
4566 Reloc_stub::stub_type_for_reloc(
4567 unsigned int r_type,
4568 Arm_address location,
4569 Arm_address destination,
4570 bool target_is_thumb)
4571 {
4572 Stub_type stub_type = arm_stub_none;
4573
4574 // This is a bit ugly but we want to avoid using a templated class for
4575 // big and little endianities.
4576 bool may_use_blx;
4577 bool should_force_pic_veneer = parameters->options().pic_veneer();
4578 bool thumb2;
4579 bool thumb_only;
4580 if (parameters->target().is_big_endian())
4581 {
4582 const Target_arm<true>* big_endian_target =
4583 Target_arm<true>::default_target();
4584 may_use_blx = big_endian_target->may_use_v5t_interworking();
4585 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4586 thumb2 = big_endian_target->using_thumb2();
4587 thumb_only = big_endian_target->using_thumb_only();
4588 }
4589 else
4590 {
4591 const Target_arm<false>* little_endian_target =
4592 Target_arm<false>::default_target();
4593 may_use_blx = little_endian_target->may_use_v5t_interworking();
4594 should_force_pic_veneer |=
4595 little_endian_target->should_force_pic_veneer();
4596 thumb2 = little_endian_target->using_thumb2();
4597 thumb_only = little_endian_target->using_thumb_only();
4598 }
4599
4600 int64_t branch_offset;
4601 bool output_is_position_independent =
4602 parameters->options().output_is_position_independent();
4603 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4604 {
4605 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4606 // base address (instruction address + 4).
4607 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4608 destination = Bits<32>::bit_select32(destination, location, 0x2);
4609 branch_offset = static_cast<int64_t>(destination) - location;
4610
4611 // Handle cases where:
4612 // - this call goes too far (different Thumb/Thumb2 max
4613 // distance)
4614 // - it's a Thumb->Arm call and blx is not available, or it's a
4615 // Thumb->Arm branch (not bl). A stub is needed in this case.
4616 if ((!thumb2
4617 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4618 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4619 || (thumb2
4620 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4621 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4622 || ((!target_is_thumb)
4623 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4624 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4625 {
4626 if (target_is_thumb)
4627 {
4628 // Thumb to thumb.
4629 if (!thumb_only)
4630 {
4631 stub_type = (output_is_position_independent
4632 || should_force_pic_veneer)
4633 // PIC stubs.
4634 ? ((may_use_blx
4635 && (r_type == elfcpp::R_ARM_THM_CALL))
4636 // V5T and above. Stub starts with ARM code, so
4637 // we must be able to switch mode before
4638 // reaching it, which is only possible for 'bl'
4639 // (ie R_ARM_THM_CALL relocation).
4640 ? arm_stub_long_branch_any_thumb_pic
4641 // On V4T, use Thumb code only.
4642 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4643
4644 // non-PIC stubs.
4645 : ((may_use_blx
4646 && (r_type == elfcpp::R_ARM_THM_CALL))
4647 ? arm_stub_long_branch_any_any // V5T and above.
4648 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4649 }
4650 else
4651 {
4652 stub_type = (output_is_position_independent
4653 || should_force_pic_veneer)
4654 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4655 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4656 }
4657 }
4658 else
4659 {
4660 // Thumb to arm.
4661
4662 // FIXME: We should check that the input section is from an
4663 // object that has interwork enabled.
4664
4665 stub_type = (output_is_position_independent
4666 || should_force_pic_veneer)
4667 // PIC stubs.
4668 ? ((may_use_blx
4669 && (r_type == elfcpp::R_ARM_THM_CALL))
4670 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4671 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4672
4673 // non-PIC stubs.
4674 : ((may_use_blx
4675 && (r_type == elfcpp::R_ARM_THM_CALL))
4676 ? arm_stub_long_branch_any_any // V5T and above.
4677 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4678
4679 // Handle v4t short branches.
4680 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4681 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4682 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4683 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4684 }
4685 }
4686 }
4687 else if (r_type == elfcpp::R_ARM_CALL
4688 || r_type == elfcpp::R_ARM_JUMP24
4689 || r_type == elfcpp::R_ARM_PLT32)
4690 {
4691 branch_offset = static_cast<int64_t>(destination) - location;
4692 if (target_is_thumb)
4693 {
4694 // Arm to thumb.
4695
4696 // FIXME: We should check that the input section is from an
4697 // object that has interwork enabled.
4698
4699 // We have an extra 2-bytes reach because of
4700 // the mode change (bit 24 (H) of BLX encoding).
4701 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4702 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4703 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4704 || (r_type == elfcpp::R_ARM_JUMP24)
4705 || (r_type == elfcpp::R_ARM_PLT32))
4706 {
4707 stub_type = (output_is_position_independent
4708 || should_force_pic_veneer)
4709 // PIC stubs.
4710 ? (may_use_blx
4711 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4712 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4713
4714 // non-PIC stubs.
4715 : (may_use_blx
4716 ? arm_stub_long_branch_any_any // V5T and above.
4717 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4718 }
4719 }
4720 else
4721 {
4722 // Arm to arm.
4723 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4724 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4725 {
4726 stub_type = (output_is_position_independent
4727 || should_force_pic_veneer)
4728 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4729 : arm_stub_long_branch_any_any; /// non-PIC.
4730 }
4731 }
4732 }
4733
4734 return stub_type;
4735 }
4736
4737 // Cortex_a8_stub methods.
4738
4739 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4740 // I is the position of the instruction template in the stub template.
4741
4742 uint16_t
4743 Cortex_a8_stub::do_thumb16_special(size_t i)
4744 {
4745 // The only use of this is to copy condition code from a conditional
4746 // branch being worked around to the corresponding conditional branch in
4747 // to the stub.
4748 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4749 && i == 0);
4750 uint16_t data = this->stub_template()->insns()[i].data();
4751 gold_assert((data & 0xff00U) == 0xd000U);
4752 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4753 return data;
4754 }
4755
4756 // Stub_factory methods.
4757
4758 Stub_factory::Stub_factory()
4759 {
4760 // The instruction template sequences are declared as static
4761 // objects and initialized first time the constructor runs.
4762
4763 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4764 // to reach the stub if necessary.
4765 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4766 {
4767 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4768 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4769 // dcd R_ARM_ABS32(X)
4770 };
4771
4772 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4773 // available.
4774 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4775 {
4776 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4777 Insn_template::arm_insn(0xe12fff1c), // bx ip
4778 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4779 // dcd R_ARM_ABS32(X)
4780 };
4781
4782 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4783 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4784 {
4785 Insn_template::thumb16_insn(0xb401), // push {r0}
4786 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4787 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4788 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4789 Insn_template::thumb16_insn(0x4760), // bx ip
4790 Insn_template::thumb16_insn(0xbf00), // nop
4791 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4792 // dcd R_ARM_ABS32(X)
4793 };
4794
4795 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4796 // allowed.
4797 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4798 {
4799 Insn_template::thumb16_insn(0x4778), // bx pc
4800 Insn_template::thumb16_insn(0x46c0), // nop
4801 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4802 Insn_template::arm_insn(0xe12fff1c), // bx ip
4803 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4804 // dcd R_ARM_ABS32(X)
4805 };
4806
4807 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4808 // available.
4809 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4810 {
4811 Insn_template::thumb16_insn(0x4778), // bx pc
4812 Insn_template::thumb16_insn(0x46c0), // nop
4813 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4814 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4815 // dcd R_ARM_ABS32(X)
4816 };
4817
4818 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4819 // one, when the destination is close enough.
4820 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4821 {
4822 Insn_template::thumb16_insn(0x4778), // bx pc
4823 Insn_template::thumb16_insn(0x46c0), // nop
4824 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4825 };
4826
4827 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4828 // blx to reach the stub if necessary.
4829 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4830 {
4831 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4832 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4833 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4834 // dcd R_ARM_REL32(X-4)
4835 };
4836
4837 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4838 // blx to reach the stub if necessary. We can not add into pc;
4839 // it is not guaranteed to mode switch (different in ARMv6 and
4840 // ARMv7).
4841 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4842 {
4843 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4844 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4845 Insn_template::arm_insn(0xe12fff1c), // bx ip
4846 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4847 // dcd R_ARM_REL32(X)
4848 };
4849
4850 // V4T ARM -> ARM long branch stub, PIC.
4851 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4852 {
4853 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4854 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4855 Insn_template::arm_insn(0xe12fff1c), // bx ip
4856 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4857 // dcd R_ARM_REL32(X)
4858 };
4859
4860 // V4T Thumb -> ARM long branch stub, PIC.
4861 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4862 {
4863 Insn_template::thumb16_insn(0x4778), // bx pc
4864 Insn_template::thumb16_insn(0x46c0), // nop
4865 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4866 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4867 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4868 // dcd R_ARM_REL32(X)
4869 };
4870
4871 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4872 // architectures.
4873 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4874 {
4875 Insn_template::thumb16_insn(0xb401), // push {r0}
4876 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4877 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4878 Insn_template::thumb16_insn(0x4484), // add ip, r0
4879 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4880 Insn_template::thumb16_insn(0x4760), // bx ip
4881 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4882 // dcd R_ARM_REL32(X)
4883 };
4884
4885 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4886 // allowed.
4887 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4888 {
4889 Insn_template::thumb16_insn(0x4778), // bx pc
4890 Insn_template::thumb16_insn(0x46c0), // nop
4891 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4892 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4893 Insn_template::arm_insn(0xe12fff1c), // bx ip
4894 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4895 // dcd R_ARM_REL32(X)
4896 };
4897
4898 // Cortex-A8 erratum-workaround stubs.
4899
4900 // Stub used for conditional branches (which may be beyond +/-1MB away,
4901 // so we can't use a conditional branch to reach this stub).
4902
4903 // original code:
4904 //
4905 // b<cond> X
4906 // after:
4907 //
4908 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4909 {
4910 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4911 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4912 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4913 // b.w X
4914 };
4915
4916 // Stub used for b.w and bl.w instructions.
4917
4918 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4919 {
4920 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4921 };
4922
4923 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4924 {
4925 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4926 };
4927
4928 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4929 // instruction (which switches to ARM mode) to point to this stub. Jump to
4930 // the real destination using an ARM-mode branch.
4931 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4932 {
4933 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4934 };
4935
4936 // Stub used to provide an interworking for R_ARM_V4BX relocation
4937 // (bx r[n] instruction).
4938 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4939 {
4940 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4941 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4942 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4943 };
4944
4945 // Fill in the stub template look-up table. Stub templates are constructed
4946 // per instance of Stub_factory for fast look-up without locking
4947 // in a thread-enabled environment.
4948
4949 this->stub_templates_[arm_stub_none] =
4950 new Stub_template(arm_stub_none, NULL, 0);
4951
4952 #define DEF_STUB(x) \
4953 do \
4954 { \
4955 size_t array_size \
4956 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4957 Stub_type type = arm_stub_##x; \
4958 this->stub_templates_[type] = \
4959 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4960 } \
4961 while (0);
4962
4963 DEF_STUBS
4964 #undef DEF_STUB
4965 }
4966
4967 // Stub_table methods.
4968
4969 // Remove all Cortex-A8 stub.
4970
4971 template<bool big_endian>
4972 void
4973 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4974 {
4975 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4976 p != this->cortex_a8_stubs_.end();
4977 ++p)
4978 delete p->second;
4979 this->cortex_a8_stubs_.clear();
4980 }
4981
4982 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4983
4984 template<bool big_endian>
4985 void
4986 Stub_table<big_endian>::relocate_stub(
4987 Stub* stub,
4988 const Relocate_info<32, big_endian>* relinfo,
4989 Target_arm<big_endian>* arm_target,
4990 Output_section* output_section,
4991 unsigned char* view,
4992 Arm_address address,
4993 section_size_type view_size)
4994 {
4995 const Stub_template* stub_template = stub->stub_template();
4996 if (stub_template->reloc_count() != 0)
4997 {
4998 // Adjust view to cover the stub only.
4999 section_size_type offset = stub->offset();
5000 section_size_type stub_size = stub_template->size();
5001 gold_assert(offset + stub_size <= view_size);
5002
5003 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
5004 address + offset, stub_size);
5005 }
5006 }
5007
5008 // Relocate all stubs in this stub table.
5009
5010 template<bool big_endian>
5011 void
5012 Stub_table<big_endian>::relocate_stubs(
5013 const Relocate_info<32, big_endian>* relinfo,
5014 Target_arm<big_endian>* arm_target,
5015 Output_section* output_section,
5016 unsigned char* view,
5017 Arm_address address,
5018 section_size_type view_size)
5019 {
5020 // If we are passed a view bigger than the stub table's. we need to
5021 // adjust the view.
5022 gold_assert(address == this->address()
5023 && (view_size
5024 == static_cast<section_size_type>(this->data_size())));
5025
5026 // Relocate all relocation stubs.
5027 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5028 p != this->reloc_stubs_.end();
5029 ++p)
5030 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5031 address, view_size);
5032
5033 // Relocate all Cortex-A8 stubs.
5034 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5035 p != this->cortex_a8_stubs_.end();
5036 ++p)
5037 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5038 address, view_size);
5039
5040 // Relocate all ARM V4BX stubs.
5041 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5042 p != this->arm_v4bx_stubs_.end();
5043 ++p)
5044 {
5045 if (*p != NULL)
5046 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5047 address, view_size);
5048 }
5049 }
5050
5051 // Write out the stubs to file.
5052
5053 template<bool big_endian>
5054 void
5055 Stub_table<big_endian>::do_write(Output_file* of)
5056 {
5057 off_t offset = this->offset();
5058 const section_size_type oview_size =
5059 convert_to_section_size_type(this->data_size());
5060 unsigned char* const oview = of->get_output_view(offset, oview_size);
5061
5062 // Write relocation stubs.
5063 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5064 p != this->reloc_stubs_.end();
5065 ++p)
5066 {
5067 Reloc_stub* stub = p->second;
5068 Arm_address address = this->address() + stub->offset();
5069 gold_assert(address
5070 == align_address(address,
5071 stub->stub_template()->alignment()));
5072 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5073 big_endian);
5074 }
5075
5076 // Write Cortex-A8 stubs.
5077 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5078 p != this->cortex_a8_stubs_.end();
5079 ++p)
5080 {
5081 Cortex_a8_stub* stub = p->second;
5082 Arm_address address = this->address() + stub->offset();
5083 gold_assert(address
5084 == align_address(address,
5085 stub->stub_template()->alignment()));
5086 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5087 big_endian);
5088 }
5089
5090 // Write ARM V4BX relocation stubs.
5091 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5092 p != this->arm_v4bx_stubs_.end();
5093 ++p)
5094 {
5095 if (*p == NULL)
5096 continue;
5097
5098 Arm_address address = this->address() + (*p)->offset();
5099 gold_assert(address
5100 == align_address(address,
5101 (*p)->stub_template()->alignment()));
5102 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5103 big_endian);
5104 }
5105
5106 of->write_output_view(this->offset(), oview_size, oview);
5107 }
5108
5109 // Update the data size and address alignment of the stub table at the end
5110 // of a relaxation pass. Return true if either the data size or the
5111 // alignment changed in this relaxation pass.
5112
5113 template<bool big_endian>
5114 bool
5115 Stub_table<big_endian>::update_data_size_and_addralign()
5116 {
5117 // Go over all stubs in table to compute data size and address alignment.
5118 off_t size = this->reloc_stubs_size_;
5119 unsigned addralign = this->reloc_stubs_addralign_;
5120
5121 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5122 p != this->cortex_a8_stubs_.end();
5123 ++p)
5124 {
5125 const Stub_template* stub_template = p->second->stub_template();
5126 addralign = std::max(addralign, stub_template->alignment());
5127 size = (align_address(size, stub_template->alignment())
5128 + stub_template->size());
5129 }
5130
5131 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5132 p != this->arm_v4bx_stubs_.end();
5133 ++p)
5134 {
5135 if (*p == NULL)
5136 continue;
5137
5138 const Stub_template* stub_template = (*p)->stub_template();
5139 addralign = std::max(addralign, stub_template->alignment());
5140 size = (align_address(size, stub_template->alignment())
5141 + stub_template->size());
5142 }
5143
5144 // Check if either data size or alignment changed in this pass.
5145 // Update prev_data_size_ and prev_addralign_. These will be used
5146 // as the current data size and address alignment for the next pass.
5147 bool changed = size != this->prev_data_size_;
5148 this->prev_data_size_ = size;
5149
5150 if (addralign != this->prev_addralign_)
5151 changed = true;
5152 this->prev_addralign_ = addralign;
5153
5154 return changed;
5155 }
5156
5157 // Finalize the stubs. This sets the offsets of the stubs within the stub
5158 // table. It also marks all input sections needing Cortex-A8 workaround.
5159
5160 template<bool big_endian>
5161 void
5162 Stub_table<big_endian>::finalize_stubs()
5163 {
5164 off_t off = this->reloc_stubs_size_;
5165 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5166 p != this->cortex_a8_stubs_.end();
5167 ++p)
5168 {
5169 Cortex_a8_stub* stub = p->second;
5170 const Stub_template* stub_template = stub->stub_template();
5171 uint64_t stub_addralign = stub_template->alignment();
5172 off = align_address(off, stub_addralign);
5173 stub->set_offset(off);
5174 off += stub_template->size();
5175
5176 // Mark input section so that we can determine later if a code section
5177 // needs the Cortex-A8 workaround quickly.
5178 Arm_relobj<big_endian>* arm_relobj =
5179 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5180 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5181 }
5182
5183 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5184 p != this->arm_v4bx_stubs_.end();
5185 ++p)
5186 {
5187 if (*p == NULL)
5188 continue;
5189
5190 const Stub_template* stub_template = (*p)->stub_template();
5191 uint64_t stub_addralign = stub_template->alignment();
5192 off = align_address(off, stub_addralign);
5193 (*p)->set_offset(off);
5194 off += stub_template->size();
5195 }
5196
5197 gold_assert(off <= this->prev_data_size_);
5198 }
5199
5200 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5201 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5202 // of the address range seen by the linker.
5203
5204 template<bool big_endian>
5205 void
5206 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5207 Target_arm<big_endian>* arm_target,
5208 unsigned char* view,
5209 Arm_address view_address,
5210 section_size_type view_size)
5211 {
5212 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5213 for (Cortex_a8_stub_list::const_iterator p =
5214 this->cortex_a8_stubs_.lower_bound(view_address);
5215 ((p != this->cortex_a8_stubs_.end())
5216 && (p->first < (view_address + view_size)));
5217 ++p)
5218 {
5219 // We do not store the THUMB bit in the LSB of either the branch address
5220 // or the stub offset. There is no need to strip the LSB.
5221 Arm_address branch_address = p->first;
5222 const Cortex_a8_stub* stub = p->second;
5223 Arm_address stub_address = this->address() + stub->offset();
5224
5225 // Offset of the branch instruction relative to this view.
5226 section_size_type offset =
5227 convert_to_section_size_type(branch_address - view_address);
5228 gold_assert((offset + 4) <= view_size);
5229
5230 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5231 view + offset, branch_address);
5232 }
5233 }
5234
5235 // Arm_input_section methods.
5236
5237 // Initialize an Arm_input_section.
5238
5239 template<bool big_endian>
5240 void
5241 Arm_input_section<big_endian>::init()
5242 {
5243 Relobj* relobj = this->relobj();
5244 unsigned int shndx = this->shndx();
5245
5246 // We have to cache original size, alignment and contents to avoid locking
5247 // the original file.
5248 this->original_addralign_ =
5249 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5250
5251 // This is not efficient but we expect only a small number of relaxed
5252 // input sections for stubs.
5253 section_size_type section_size;
5254 const unsigned char* section_contents =
5255 relobj->section_contents(shndx, &section_size, false);
5256 this->original_size_ =
5257 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5258
5259 gold_assert(this->original_contents_ == NULL);
5260 this->original_contents_ = new unsigned char[section_size];
5261 memcpy(this->original_contents_, section_contents, section_size);
5262
5263 // We want to make this look like the original input section after
5264 // output sections are finalized.
5265 Output_section* os = relobj->output_section(shndx);
5266 off_t offset = relobj->output_section_offset(shndx);
5267 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5268 this->set_address(os->address() + offset);
5269 this->set_file_offset(os->offset() + offset);
5270
5271 this->set_current_data_size(this->original_size_);
5272 this->finalize_data_size();
5273 }
5274
5275 template<bool big_endian>
5276 void
5277 Arm_input_section<big_endian>::do_write(Output_file* of)
5278 {
5279 // We have to write out the original section content.
5280 gold_assert(this->original_contents_ != NULL);
5281 of->write(this->offset(), this->original_contents_,
5282 this->original_size_);
5283
5284 // If this owns a stub table and it is not empty, write it.
5285 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5286 this->stub_table_->write(of);
5287 }
5288
5289 // Finalize data size.
5290
5291 template<bool big_endian>
5292 void
5293 Arm_input_section<big_endian>::set_final_data_size()
5294 {
5295 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5296
5297 if (this->is_stub_table_owner())
5298 {
5299 this->stub_table_->finalize_data_size();
5300 off = align_address(off, this->stub_table_->addralign());
5301 off += this->stub_table_->data_size();
5302 }
5303 this->set_data_size(off);
5304 }
5305
5306 // Reset address and file offset.
5307
5308 template<bool big_endian>
5309 void
5310 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5311 {
5312 // Size of the original input section contents.
5313 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5314
5315 // If this is a stub table owner, account for the stub table size.
5316 if (this->is_stub_table_owner())
5317 {
5318 Stub_table<big_endian>* stub_table = this->stub_table_;
5319
5320 // Reset the stub table's address and file offset. The
5321 // current data size for child will be updated after that.
5322 stub_table_->reset_address_and_file_offset();
5323 off = align_address(off, stub_table_->addralign());
5324 off += stub_table->current_data_size();
5325 }
5326
5327 this->set_current_data_size(off);
5328 }
5329
5330 // Arm_exidx_cantunwind methods.
5331
5332 // Write this to Output file OF for a fixed endianness.
5333
5334 template<bool big_endian>
5335 void
5336 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5337 {
5338 off_t offset = this->offset();
5339 const section_size_type oview_size = 8;
5340 unsigned char* const oview = of->get_output_view(offset, oview_size);
5341
5342 Output_section* os = this->relobj_->output_section(this->shndx_);
5343 gold_assert(os != NULL);
5344
5345 Arm_relobj<big_endian>* arm_relobj =
5346 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5347 Arm_address output_offset =
5348 arm_relobj->get_output_section_offset(this->shndx_);
5349 Arm_address section_start;
5350 section_size_type section_size;
5351
5352 // Find out the end of the text section referred by this.
5353 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5354 {
5355 section_start = os->address() + output_offset;
5356 const Arm_exidx_input_section* exidx_input_section =
5357 arm_relobj->exidx_input_section_by_link(this->shndx_);
5358 gold_assert(exidx_input_section != NULL);
5359 section_size =
5360 convert_to_section_size_type(exidx_input_section->text_size());
5361 }
5362 else
5363 {
5364 // Currently this only happens for a relaxed section.
5365 const Output_relaxed_input_section* poris =
5366 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5367 gold_assert(poris != NULL);
5368 section_start = poris->address();
5369 section_size = convert_to_section_size_type(poris->data_size());
5370 }
5371
5372 // We always append this to the end of an EXIDX section.
5373 Arm_address output_address = section_start + section_size;
5374
5375 // Write out the entry. The first word either points to the beginning
5376 // or after the end of a text section. The second word is the special
5377 // EXIDX_CANTUNWIND value.
5378 uint32_t prel31_offset = output_address - this->address();
5379 if (Bits<31>::has_overflow32(offset))
5380 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5381 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5382 prel31_offset & 0x7fffffffU);
5383 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5384 elfcpp::EXIDX_CANTUNWIND);
5385
5386 of->write_output_view(this->offset(), oview_size, oview);
5387 }
5388
5389 // Arm_exidx_merged_section methods.
5390
5391 // Constructor for Arm_exidx_merged_section.
5392 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5393 // SECTION_OFFSET_MAP points to a section offset map describing how
5394 // parts of the input section are mapped to output. DELETED_BYTES is
5395 // the number of bytes deleted from the EXIDX input section.
5396
5397 Arm_exidx_merged_section::Arm_exidx_merged_section(
5398 const Arm_exidx_input_section& exidx_input_section,
5399 const Arm_exidx_section_offset_map& section_offset_map,
5400 uint32_t deleted_bytes)
5401 : Output_relaxed_input_section(exidx_input_section.relobj(),
5402 exidx_input_section.shndx(),
5403 exidx_input_section.addralign()),
5404 exidx_input_section_(exidx_input_section),
5405 section_offset_map_(section_offset_map)
5406 {
5407 // If we retain or discard the whole EXIDX input section, we would
5408 // not be here.
5409 gold_assert(deleted_bytes != 0
5410 && deleted_bytes != this->exidx_input_section_.size());
5411
5412 // Fix size here so that we do not need to implement set_final_data_size.
5413 uint32_t size = exidx_input_section.size() - deleted_bytes;
5414 this->set_data_size(size);
5415 this->fix_data_size();
5416
5417 // Allocate buffer for section contents and build contents.
5418 this->section_contents_ = new unsigned char[size];
5419 }
5420
5421 // Build the contents of a merged EXIDX output section.
5422
5423 void
5424 Arm_exidx_merged_section::build_contents(
5425 const unsigned char* original_contents,
5426 section_size_type original_size)
5427 {
5428 // Go over spans of input offsets and write only those that are not
5429 // discarded.
5430 section_offset_type in_start = 0;
5431 section_offset_type out_start = 0;
5432 section_offset_type in_max =
5433 convert_types<section_offset_type>(original_size);
5434 section_offset_type out_max =
5435 convert_types<section_offset_type>(this->data_size());
5436 for (Arm_exidx_section_offset_map::const_iterator p =
5437 this->section_offset_map_.begin();
5438 p != this->section_offset_map_.end();
5439 ++p)
5440 {
5441 section_offset_type in_end = p->first;
5442 gold_assert(in_end >= in_start);
5443 section_offset_type out_end = p->second;
5444 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5445 if (out_end != -1)
5446 {
5447 size_t out_chunk_size =
5448 convert_types<size_t>(out_end - out_start + 1);
5449
5450 gold_assert(out_chunk_size == in_chunk_size
5451 && in_end < in_max && out_end < out_max);
5452
5453 memcpy(this->section_contents_ + out_start,
5454 original_contents + in_start,
5455 out_chunk_size);
5456 out_start += out_chunk_size;
5457 }
5458 in_start += in_chunk_size;
5459 }
5460 }
5461
5462 // Given an input OBJECT, an input section index SHNDX within that
5463 // object, and an OFFSET relative to the start of that input
5464 // section, return whether or not the corresponding offset within
5465 // the output section is known. If this function returns true, it
5466 // sets *POUTPUT to the output offset. The value -1 indicates that
5467 // this input offset is being discarded.
5468
5469 bool
5470 Arm_exidx_merged_section::do_output_offset(
5471 const Relobj* relobj,
5472 unsigned int shndx,
5473 section_offset_type offset,
5474 section_offset_type* poutput) const
5475 {
5476 // We only handle offsets for the original EXIDX input section.
5477 if (relobj != this->exidx_input_section_.relobj()
5478 || shndx != this->exidx_input_section_.shndx())
5479 return false;
5480
5481 section_offset_type section_size =
5482 convert_types<section_offset_type>(this->exidx_input_section_.size());
5483 if (offset < 0 || offset >= section_size)
5484 // Input offset is out of valid range.
5485 *poutput = -1;
5486 else
5487 {
5488 // We need to look up the section offset map to determine the output
5489 // offset. Find the reference point in map that is first offset
5490 // bigger than or equal to this offset.
5491 Arm_exidx_section_offset_map::const_iterator p =
5492 this->section_offset_map_.lower_bound(offset);
5493
5494 // The section offset maps are build such that this should not happen if
5495 // input offset is in the valid range.
5496 gold_assert(p != this->section_offset_map_.end());
5497
5498 // We need to check if this is dropped.
5499 section_offset_type ref = p->first;
5500 section_offset_type mapped_ref = p->second;
5501
5502 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5503 // Offset is present in output.
5504 *poutput = mapped_ref + (offset - ref);
5505 else
5506 // Offset is discarded owing to EXIDX entry merging.
5507 *poutput = -1;
5508 }
5509
5510 return true;
5511 }
5512
5513 // Write this to output file OF.
5514
5515 void
5516 Arm_exidx_merged_section::do_write(Output_file* of)
5517 {
5518 off_t offset = this->offset();
5519 const section_size_type oview_size = this->data_size();
5520 unsigned char* const oview = of->get_output_view(offset, oview_size);
5521
5522 Output_section* os = this->relobj()->output_section(this->shndx());
5523 gold_assert(os != NULL);
5524
5525 memcpy(oview, this->section_contents_, oview_size);
5526 of->write_output_view(this->offset(), oview_size, oview);
5527 }
5528
5529 // Arm_exidx_fixup methods.
5530
5531 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5532 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5533 // points to the end of the last seen EXIDX section.
5534
5535 void
5536 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5537 {
5538 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5539 && this->last_input_section_ != NULL)
5540 {
5541 Relobj* relobj = this->last_input_section_->relobj();
5542 unsigned int text_shndx = this->last_input_section_->link();
5543 Arm_exidx_cantunwind* cantunwind =
5544 new Arm_exidx_cantunwind(relobj, text_shndx);
5545 this->exidx_output_section_->add_output_section_data(cantunwind);
5546 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5547 }
5548 }
5549
5550 // Process an EXIDX section entry in input. Return whether this entry
5551 // can be deleted in the output. SECOND_WORD in the second word of the
5552 // EXIDX entry.
5553
5554 bool
5555 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5556 {
5557 bool delete_entry;
5558 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5559 {
5560 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5561 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5562 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5563 }
5564 else if ((second_word & 0x80000000) != 0)
5565 {
5566 // Inlined unwinding data. Merge if equal to previous.
5567 delete_entry = (merge_exidx_entries_
5568 && this->last_unwind_type_ == UT_INLINED_ENTRY
5569 && this->last_inlined_entry_ == second_word);
5570 this->last_unwind_type_ = UT_INLINED_ENTRY;
5571 this->last_inlined_entry_ = second_word;
5572 }
5573 else
5574 {
5575 // Normal table entry. In theory we could merge these too,
5576 // but duplicate entries are likely to be much less common.
5577 delete_entry = false;
5578 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5579 }
5580 return delete_entry;
5581 }
5582
5583 // Update the current section offset map during EXIDX section fix-up.
5584 // If there is no map, create one. INPUT_OFFSET is the offset of a
5585 // reference point, DELETED_BYTES is the number of deleted by in the
5586 // section so far. If DELETE_ENTRY is true, the reference point and
5587 // all offsets after the previous reference point are discarded.
5588
5589 void
5590 Arm_exidx_fixup::update_offset_map(
5591 section_offset_type input_offset,
5592 section_size_type deleted_bytes,
5593 bool delete_entry)
5594 {
5595 if (this->section_offset_map_ == NULL)
5596 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5597 section_offset_type output_offset;
5598 if (delete_entry)
5599 output_offset = Arm_exidx_input_section::invalid_offset;
5600 else
5601 output_offset = input_offset - deleted_bytes;
5602 (*this->section_offset_map_)[input_offset] = output_offset;
5603 }
5604
5605 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5606 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5607 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5608 // If some entries are merged, also store a pointer to a newly created
5609 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5610 // owns the map and is responsible for releasing it after use.
5611
5612 template<bool big_endian>
5613 uint32_t
5614 Arm_exidx_fixup::process_exidx_section(
5615 const Arm_exidx_input_section* exidx_input_section,
5616 const unsigned char* section_contents,
5617 section_size_type section_size,
5618 Arm_exidx_section_offset_map** psection_offset_map)
5619 {
5620 Relobj* relobj = exidx_input_section->relobj();
5621 unsigned shndx = exidx_input_section->shndx();
5622
5623 if ((section_size % 8) != 0)
5624 {
5625 // Something is wrong with this section. Better not touch it.
5626 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5627 relobj->name().c_str(), shndx);
5628 this->last_input_section_ = exidx_input_section;
5629 this->last_unwind_type_ = UT_NONE;
5630 return 0;
5631 }
5632
5633 uint32_t deleted_bytes = 0;
5634 bool prev_delete_entry = false;
5635 gold_assert(this->section_offset_map_ == NULL);
5636
5637 for (section_size_type i = 0; i < section_size; i += 8)
5638 {
5639 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5640 const Valtype* wv =
5641 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5642 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5643
5644 bool delete_entry = this->process_exidx_entry(second_word);
5645
5646 // Entry deletion causes changes in output offsets. We use a std::map
5647 // to record these. And entry (x, y) means input offset x
5648 // is mapped to output offset y. If y is invalid_offset, then x is
5649 // dropped in the output. Because of the way std::map::lower_bound
5650 // works, we record the last offset in a region w.r.t to keeping or
5651 // dropping. If there is no entry (x0, y0) for an input offset x0,
5652 // the output offset y0 of it is determined by the output offset y1 of
5653 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5654 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5655 // y0 is also -1.
5656 if (delete_entry != prev_delete_entry && i != 0)
5657 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5658
5659 // Update total deleted bytes for this entry.
5660 if (delete_entry)
5661 deleted_bytes += 8;
5662
5663 prev_delete_entry = delete_entry;
5664 }
5665
5666 // If section offset map is not NULL, make an entry for the end of
5667 // section.
5668 if (this->section_offset_map_ != NULL)
5669 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5670
5671 *psection_offset_map = this->section_offset_map_;
5672 this->section_offset_map_ = NULL;
5673 this->last_input_section_ = exidx_input_section;
5674
5675 // Set the first output text section so that we can link the EXIDX output
5676 // section to it. Ignore any EXIDX input section that is completely merged.
5677 if (this->first_output_text_section_ == NULL
5678 && deleted_bytes != section_size)
5679 {
5680 unsigned int link = exidx_input_section->link();
5681 Output_section* os = relobj->output_section(link);
5682 gold_assert(os != NULL);
5683 this->first_output_text_section_ = os;
5684 }
5685
5686 return deleted_bytes;
5687 }
5688
5689 // Arm_output_section methods.
5690
5691 // Create a stub group for input sections from BEGIN to END. OWNER
5692 // points to the input section to be the owner a new stub table.
5693
5694 template<bool big_endian>
5695 void
5696 Arm_output_section<big_endian>::create_stub_group(
5697 Input_section_list::const_iterator begin,
5698 Input_section_list::const_iterator end,
5699 Input_section_list::const_iterator owner,
5700 Target_arm<big_endian>* target,
5701 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5702 const Task* task)
5703 {
5704 // We use a different kind of relaxed section in an EXIDX section.
5705 // The static casting from Output_relaxed_input_section to
5706 // Arm_input_section is invalid in an EXIDX section. We are okay
5707 // because we should not be calling this for an EXIDX section.
5708 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5709
5710 // Currently we convert ordinary input sections into relaxed sections only
5711 // at this point but we may want to support creating relaxed input section
5712 // very early. So we check here to see if owner is already a relaxed
5713 // section.
5714
5715 Arm_input_section<big_endian>* arm_input_section;
5716 if (owner->is_relaxed_input_section())
5717 {
5718 arm_input_section =
5719 Arm_input_section<big_endian>::as_arm_input_section(
5720 owner->relaxed_input_section());
5721 }
5722 else
5723 {
5724 gold_assert(owner->is_input_section());
5725 // Create a new relaxed input section. We need to lock the original
5726 // file.
5727 Task_lock_obj<Object> tl(task, owner->relobj());
5728 arm_input_section =
5729 target->new_arm_input_section(owner->relobj(), owner->shndx());
5730 new_relaxed_sections->push_back(arm_input_section);
5731 }
5732
5733 // Create a stub table.
5734 Stub_table<big_endian>* stub_table =
5735 target->new_stub_table(arm_input_section);
5736
5737 arm_input_section->set_stub_table(stub_table);
5738
5739 Input_section_list::const_iterator p = begin;
5740 Input_section_list::const_iterator prev_p;
5741
5742 // Look for input sections or relaxed input sections in [begin ... end].
5743 do
5744 {
5745 if (p->is_input_section() || p->is_relaxed_input_section())
5746 {
5747 // The stub table information for input sections live
5748 // in their objects.
5749 Arm_relobj<big_endian>* arm_relobj =
5750 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5751 arm_relobj->set_stub_table(p->shndx(), stub_table);
5752 }
5753 prev_p = p++;
5754 }
5755 while (prev_p != end);
5756 }
5757
5758 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5759 // of stub groups. We grow a stub group by adding input section until the
5760 // size is just below GROUP_SIZE. The last input section will be converted
5761 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5762 // input section after the stub table, effectively double the group size.
5763 //
5764 // This is similar to the group_sections() function in elf32-arm.c but is
5765 // implemented differently.
5766
5767 template<bool big_endian>
5768 void
5769 Arm_output_section<big_endian>::group_sections(
5770 section_size_type group_size,
5771 bool stubs_always_after_branch,
5772 Target_arm<big_endian>* target,
5773 const Task* task)
5774 {
5775 // States for grouping.
5776 typedef enum
5777 {
5778 // No group is being built.
5779 NO_GROUP,
5780 // A group is being built but the stub table is not found yet.
5781 // We keep group a stub group until the size is just under GROUP_SIZE.
5782 // The last input section in the group will be used as the stub table.
5783 FINDING_STUB_SECTION,
5784 // A group is being built and we have already found a stub table.
5785 // We enter this state to grow a stub group by adding input section
5786 // after the stub table. This effectively doubles the group size.
5787 HAS_STUB_SECTION
5788 } State;
5789
5790 // Any newly created relaxed sections are stored here.
5791 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5792
5793 State state = NO_GROUP;
5794 section_size_type off = 0;
5795 section_size_type group_begin_offset = 0;
5796 section_size_type group_end_offset = 0;
5797 section_size_type stub_table_end_offset = 0;
5798 Input_section_list::const_iterator group_begin =
5799 this->input_sections().end();
5800 Input_section_list::const_iterator stub_table =
5801 this->input_sections().end();
5802 Input_section_list::const_iterator group_end = this->input_sections().end();
5803 for (Input_section_list::const_iterator p = this->input_sections().begin();
5804 p != this->input_sections().end();
5805 ++p)
5806 {
5807 section_size_type section_begin_offset =
5808 align_address(off, p->addralign());
5809 section_size_type section_end_offset =
5810 section_begin_offset + p->data_size();
5811
5812 // Check to see if we should group the previously seen sections.
5813 switch (state)
5814 {
5815 case NO_GROUP:
5816 break;
5817
5818 case FINDING_STUB_SECTION:
5819 // Adding this section makes the group larger than GROUP_SIZE.
5820 if (section_end_offset - group_begin_offset >= group_size)
5821 {
5822 if (stubs_always_after_branch)
5823 {
5824 gold_assert(group_end != this->input_sections().end());
5825 this->create_stub_group(group_begin, group_end, group_end,
5826 target, &new_relaxed_sections,
5827 task);
5828 state = NO_GROUP;
5829 }
5830 else
5831 {
5832 // But wait, there's more! Input sections up to
5833 // stub_group_size bytes after the stub table can be
5834 // handled by it too.
5835 state = HAS_STUB_SECTION;
5836 stub_table = group_end;
5837 stub_table_end_offset = group_end_offset;
5838 }
5839 }
5840 break;
5841
5842 case HAS_STUB_SECTION:
5843 // Adding this section makes the post stub-section group larger
5844 // than GROUP_SIZE.
5845 if (section_end_offset - stub_table_end_offset >= group_size)
5846 {
5847 gold_assert(group_end != this->input_sections().end());
5848 this->create_stub_group(group_begin, group_end, stub_table,
5849 target, &new_relaxed_sections, task);
5850 state = NO_GROUP;
5851 }
5852 break;
5853
5854 default:
5855 gold_unreachable();
5856 }
5857
5858 // If we see an input section and currently there is no group, start
5859 // a new one. Skip any empty sections. We look at the data size
5860 // instead of calling p->relobj()->section_size() to avoid locking.
5861 if ((p->is_input_section() || p->is_relaxed_input_section())
5862 && (p->data_size() != 0))
5863 {
5864 if (state == NO_GROUP)
5865 {
5866 state = FINDING_STUB_SECTION;
5867 group_begin = p;
5868 group_begin_offset = section_begin_offset;
5869 }
5870
5871 // Keep track of the last input section seen.
5872 group_end = p;
5873 group_end_offset = section_end_offset;
5874 }
5875
5876 off = section_end_offset;
5877 }
5878
5879 // Create a stub group for any ungrouped sections.
5880 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5881 {
5882 gold_assert(group_end != this->input_sections().end());
5883 this->create_stub_group(group_begin, group_end,
5884 (state == FINDING_STUB_SECTION
5885 ? group_end
5886 : stub_table),
5887 target, &new_relaxed_sections, task);
5888 }
5889
5890 // Convert input section into relaxed input section in a batch.
5891 if (!new_relaxed_sections.empty())
5892 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5893
5894 // Update the section offsets
5895 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5896 {
5897 Arm_relobj<big_endian>* arm_relobj =
5898 Arm_relobj<big_endian>::as_arm_relobj(
5899 new_relaxed_sections[i]->relobj());
5900 unsigned int shndx = new_relaxed_sections[i]->shndx();
5901 // Tell Arm_relobj that this input section is converted.
5902 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5903 }
5904 }
5905
5906 // Append non empty text sections in this to LIST in ascending
5907 // order of their position in this.
5908
5909 template<bool big_endian>
5910 void
5911 Arm_output_section<big_endian>::append_text_sections_to_list(
5912 Text_section_list* list)
5913 {
5914 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5915
5916 for (Input_section_list::const_iterator p = this->input_sections().begin();
5917 p != this->input_sections().end();
5918 ++p)
5919 {
5920 // We only care about plain or relaxed input sections. We also
5921 // ignore any merged sections.
5922 if (p->is_input_section() || p->is_relaxed_input_section())
5923 list->push_back(Text_section_list::value_type(p->relobj(),
5924 p->shndx()));
5925 }
5926 }
5927
5928 template<bool big_endian>
5929 void
5930 Arm_output_section<big_endian>::fix_exidx_coverage(
5931 Layout* layout,
5932 const Text_section_list& sorted_text_sections,
5933 Symbol_table* symtab,
5934 bool merge_exidx_entries,
5935 const Task* task)
5936 {
5937 // We should only do this for the EXIDX output section.
5938 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5939
5940 // We don't want the relaxation loop to undo these changes, so we discard
5941 // the current saved states and take another one after the fix-up.
5942 this->discard_states();
5943
5944 // Remove all input sections.
5945 uint64_t address = this->address();
5946 typedef std::list<Output_section::Input_section> Input_section_list;
5947 Input_section_list input_sections;
5948 this->reset_address_and_file_offset();
5949 this->get_input_sections(address, std::string(""), &input_sections);
5950
5951 if (!this->input_sections().empty())
5952 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5953
5954 // Go through all the known input sections and record them.
5955 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5956 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5957 Section_id_hash> Text_to_exidx_map;
5958 Text_to_exidx_map text_to_exidx_map;
5959 for (Input_section_list::const_iterator p = input_sections.begin();
5960 p != input_sections.end();
5961 ++p)
5962 {
5963 // This should never happen. At this point, we should only see
5964 // plain EXIDX input sections.
5965 gold_assert(!p->is_relaxed_input_section());
5966 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5967 }
5968
5969 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5970
5971 // Go over the sorted text sections.
5972 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5973 Section_id_set processed_input_sections;
5974 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5975 p != sorted_text_sections.end();
5976 ++p)
5977 {
5978 Relobj* relobj = p->first;
5979 unsigned int shndx = p->second;
5980
5981 Arm_relobj<big_endian>* arm_relobj =
5982 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5983 const Arm_exidx_input_section* exidx_input_section =
5984 arm_relobj->exidx_input_section_by_link(shndx);
5985
5986 // If this text section has no EXIDX section or if the EXIDX section
5987 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5988 // of the last seen EXIDX section.
5989 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5990 {
5991 exidx_fixup.add_exidx_cantunwind_as_needed();
5992 continue;
5993 }
5994
5995 Relobj* exidx_relobj = exidx_input_section->relobj();
5996 unsigned int exidx_shndx = exidx_input_section->shndx();
5997 Section_id sid(exidx_relobj, exidx_shndx);
5998 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5999 if (iter == text_to_exidx_map.end())
6000 {
6001 // This is odd. We have not seen this EXIDX input section before.
6002 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
6003 // issue a warning instead. We assume the user knows what he
6004 // or she is doing. Otherwise, this is an error.
6005 if (layout->script_options()->saw_sections_clause())
6006 gold_warning(_("unwinding may not work because EXIDX input section"
6007 " %u of %s is not in EXIDX output section"),
6008 exidx_shndx, exidx_relobj->name().c_str());
6009 else
6010 gold_error(_("unwinding may not work because EXIDX input section"
6011 " %u of %s is not in EXIDX output section"),
6012 exidx_shndx, exidx_relobj->name().c_str());
6013
6014 exidx_fixup.add_exidx_cantunwind_as_needed();
6015 continue;
6016 }
6017
6018 // We need to access the contents of the EXIDX section, lock the
6019 // object here.
6020 Task_lock_obj<Object> tl(task, exidx_relobj);
6021 section_size_type exidx_size;
6022 const unsigned char* exidx_contents =
6023 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
6024
6025 // Fix up coverage and append input section to output data list.
6026 Arm_exidx_section_offset_map* section_offset_map = NULL;
6027 uint32_t deleted_bytes =
6028 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
6029 exidx_contents,
6030 exidx_size,
6031 &section_offset_map);
6032
6033 if (deleted_bytes == exidx_input_section->size())
6034 {
6035 // The whole EXIDX section got merged. Remove it from output.
6036 gold_assert(section_offset_map == NULL);
6037 exidx_relobj->set_output_section(exidx_shndx, NULL);
6038
6039 // All local symbols defined in this input section will be dropped.
6040 // We need to adjust output local symbol count.
6041 arm_relobj->set_output_local_symbol_count_needs_update();
6042 }
6043 else if (deleted_bytes > 0)
6044 {
6045 // Some entries are merged. We need to convert this EXIDX input
6046 // section into a relaxed section.
6047 gold_assert(section_offset_map != NULL);
6048
6049 Arm_exidx_merged_section* merged_section =
6050 new Arm_exidx_merged_section(*exidx_input_section,
6051 *section_offset_map, deleted_bytes);
6052 merged_section->build_contents(exidx_contents, exidx_size);
6053
6054 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6055 this->add_relaxed_input_section(layout, merged_section, secname);
6056 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6057
6058 // All local symbols defined in discarded portions of this input
6059 // section will be dropped. We need to adjust output local symbol
6060 // count.
6061 arm_relobj->set_output_local_symbol_count_needs_update();
6062 }
6063 else
6064 {
6065 // Just add back the EXIDX input section.
6066 gold_assert(section_offset_map == NULL);
6067 const Output_section::Input_section* pis = iter->second;
6068 gold_assert(pis->is_input_section());
6069 this->add_script_input_section(*pis);
6070 }
6071
6072 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6073 }
6074
6075 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6076 exidx_fixup.add_exidx_cantunwind_as_needed();
6077
6078 // Remove any known EXIDX input sections that are not processed.
6079 for (Input_section_list::const_iterator p = input_sections.begin();
6080 p != input_sections.end();
6081 ++p)
6082 {
6083 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6084 == processed_input_sections.end())
6085 {
6086 // We discard a known EXIDX section because its linked
6087 // text section has been folded by ICF. We also discard an
6088 // EXIDX section with error, the output does not matter in this
6089 // case. We do this to avoid triggering asserts.
6090 Arm_relobj<big_endian>* arm_relobj =
6091 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6092 const Arm_exidx_input_section* exidx_input_section =
6093 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6094 gold_assert(exidx_input_section != NULL);
6095 if (!exidx_input_section->has_errors())
6096 {
6097 unsigned int text_shndx = exidx_input_section->link();
6098 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6099 }
6100
6101 // Remove this from link. We also need to recount the
6102 // local symbols.
6103 p->relobj()->set_output_section(p->shndx(), NULL);
6104 arm_relobj->set_output_local_symbol_count_needs_update();
6105 }
6106 }
6107
6108 // Link exidx output section to the first seen output section and
6109 // set correct entry size.
6110 this->set_link_section(exidx_fixup.first_output_text_section());
6111 this->set_entsize(8);
6112
6113 // Make changes permanent.
6114 this->save_states();
6115 this->set_section_offsets_need_adjustment();
6116 }
6117
6118 // Link EXIDX output sections to text output sections.
6119
6120 template<bool big_endian>
6121 void
6122 Arm_output_section<big_endian>::set_exidx_section_link()
6123 {
6124 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6125 if (!this->input_sections().empty())
6126 {
6127 Input_section_list::const_iterator p = this->input_sections().begin();
6128 Arm_relobj<big_endian>* arm_relobj =
6129 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6130 unsigned exidx_shndx = p->shndx();
6131 const Arm_exidx_input_section* exidx_input_section =
6132 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6133 gold_assert(exidx_input_section != NULL);
6134 unsigned int text_shndx = exidx_input_section->link();
6135 Output_section* os = arm_relobj->output_section(text_shndx);
6136 this->set_link_section(os);
6137 }
6138 }
6139
6140 // Arm_relobj methods.
6141
6142 // Determine if an input section is scannable for stub processing. SHDR is
6143 // the header of the section and SHNDX is the section index. OS is the output
6144 // section for the input section and SYMTAB is the global symbol table used to
6145 // look up ICF information.
6146
6147 template<bool big_endian>
6148 bool
6149 Arm_relobj<big_endian>::section_is_scannable(
6150 const elfcpp::Shdr<32, big_endian>& shdr,
6151 unsigned int shndx,
6152 const Output_section* os,
6153 const Symbol_table* symtab)
6154 {
6155 // Skip any empty sections, unallocated sections or sections whose
6156 // type are not SHT_PROGBITS.
6157 if (shdr.get_sh_size() == 0
6158 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6159 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6160 return false;
6161
6162 // Skip any discarded or ICF'ed sections.
6163 if (os == NULL || symtab->is_section_folded(this, shndx))
6164 return false;
6165
6166 // If this requires special offset handling, check to see if it is
6167 // a relaxed section. If this is not, then it is a merged section that
6168 // we cannot handle.
6169 if (this->is_output_section_offset_invalid(shndx))
6170 {
6171 const Output_relaxed_input_section* poris =
6172 os->find_relaxed_input_section(this, shndx);
6173 if (poris == NULL)
6174 return false;
6175 }
6176
6177 return true;
6178 }
6179
6180 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6181 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6182
6183 template<bool big_endian>
6184 bool
6185 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6186 const elfcpp::Shdr<32, big_endian>& shdr,
6187 const Relobj::Output_sections& out_sections,
6188 const Symbol_table* symtab,
6189 const unsigned char* pshdrs)
6190 {
6191 unsigned int sh_type = shdr.get_sh_type();
6192 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6193 return false;
6194
6195 // Ignore empty section.
6196 off_t sh_size = shdr.get_sh_size();
6197 if (sh_size == 0)
6198 return false;
6199
6200 // Ignore reloc section with unexpected symbol table. The
6201 // error will be reported in the final link.
6202 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6203 return false;
6204
6205 unsigned int reloc_size;
6206 if (sh_type == elfcpp::SHT_REL)
6207 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6208 else
6209 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6210
6211 // Ignore reloc section with unexpected entsize or uneven size.
6212 // The error will be reported in the final link.
6213 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6214 return false;
6215
6216 // Ignore reloc section with bad info. This error will be
6217 // reported in the final link.
6218 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6219 if (index >= this->shnum())
6220 return false;
6221
6222 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6223 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6224 return this->section_is_scannable(text_shdr, index,
6225 out_sections[index], symtab);
6226 }
6227
6228 // Return the output address of either a plain input section or a relaxed
6229 // input section. SHNDX is the section index. We define and use this
6230 // instead of calling Output_section::output_address because that is slow
6231 // for large output.
6232
6233 template<bool big_endian>
6234 Arm_address
6235 Arm_relobj<big_endian>::simple_input_section_output_address(
6236 unsigned int shndx,
6237 Output_section* os)
6238 {
6239 if (this->is_output_section_offset_invalid(shndx))
6240 {
6241 const Output_relaxed_input_section* poris =
6242 os->find_relaxed_input_section(this, shndx);
6243 // We do not handle merged sections here.
6244 gold_assert(poris != NULL);
6245 return poris->address();
6246 }
6247 else
6248 return os->address() + this->get_output_section_offset(shndx);
6249 }
6250
6251 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6252 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6253
6254 template<bool big_endian>
6255 bool
6256 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6257 const elfcpp::Shdr<32, big_endian>& shdr,
6258 unsigned int shndx,
6259 Output_section* os,
6260 const Symbol_table* symtab)
6261 {
6262 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6263 return false;
6264
6265 // If the section does not cross any 4K-boundaries, it does not need to
6266 // be scanned.
6267 Arm_address address = this->simple_input_section_output_address(shndx, os);
6268 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6269 return false;
6270
6271 return true;
6272 }
6273
6274 // Scan a section for Cortex-A8 workaround.
6275
6276 template<bool big_endian>
6277 void
6278 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6279 const elfcpp::Shdr<32, big_endian>& shdr,
6280 unsigned int shndx,
6281 Output_section* os,
6282 Target_arm<big_endian>* arm_target)
6283 {
6284 // Look for the first mapping symbol in this section. It should be
6285 // at (shndx, 0).
6286 Mapping_symbol_position section_start(shndx, 0);
6287 typename Mapping_symbols_info::const_iterator p =
6288 this->mapping_symbols_info_.lower_bound(section_start);
6289
6290 // There are no mapping symbols for this section. Treat it as a data-only
6291 // section.
6292 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6293 return;
6294
6295 Arm_address output_address =
6296 this->simple_input_section_output_address(shndx, os);
6297
6298 // Get the section contents.
6299 section_size_type input_view_size = 0;
6300 const unsigned char* input_view =
6301 this->section_contents(shndx, &input_view_size, false);
6302
6303 // We need to go through the mapping symbols to determine what to
6304 // scan. There are two reasons. First, we should look at THUMB code and
6305 // THUMB code only. Second, we only want to look at the 4K-page boundary
6306 // to speed up the scanning.
6307
6308 while (p != this->mapping_symbols_info_.end()
6309 && p->first.first == shndx)
6310 {
6311 typename Mapping_symbols_info::const_iterator next =
6312 this->mapping_symbols_info_.upper_bound(p->first);
6313
6314 // Only scan part of a section with THUMB code.
6315 if (p->second == 't')
6316 {
6317 // Determine the end of this range.
6318 section_size_type span_start =
6319 convert_to_section_size_type(p->first.second);
6320 section_size_type span_end;
6321 if (next != this->mapping_symbols_info_.end()
6322 && next->first.first == shndx)
6323 span_end = convert_to_section_size_type(next->first.second);
6324 else
6325 span_end = convert_to_section_size_type(shdr.get_sh_size());
6326
6327 if (((span_start + output_address) & ~0xfffUL)
6328 != ((span_end + output_address - 1) & ~0xfffUL))
6329 {
6330 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6331 span_start, span_end,
6332 input_view,
6333 output_address);
6334 }
6335 }
6336
6337 p = next;
6338 }
6339 }
6340
6341 // Scan relocations for stub generation.
6342
6343 template<bool big_endian>
6344 void
6345 Arm_relobj<big_endian>::scan_sections_for_stubs(
6346 Target_arm<big_endian>* arm_target,
6347 const Symbol_table* symtab,
6348 const Layout* layout)
6349 {
6350 unsigned int shnum = this->shnum();
6351 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6352
6353 // Read the section headers.
6354 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6355 shnum * shdr_size,
6356 true, true);
6357
6358 // To speed up processing, we set up hash tables for fast lookup of
6359 // input offsets to output addresses.
6360 this->initialize_input_to_output_maps();
6361
6362 const Relobj::Output_sections& out_sections(this->output_sections());
6363
6364 Relocate_info<32, big_endian> relinfo;
6365 relinfo.symtab = symtab;
6366 relinfo.layout = layout;
6367 relinfo.object = this;
6368
6369 // Do relocation stubs scanning.
6370 const unsigned char* p = pshdrs + shdr_size;
6371 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6372 {
6373 const elfcpp::Shdr<32, big_endian> shdr(p);
6374 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6375 pshdrs))
6376 {
6377 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6378 Arm_address output_offset = this->get_output_section_offset(index);
6379 Arm_address output_address;
6380 if (output_offset != invalid_address)
6381 output_address = out_sections[index]->address() + output_offset;
6382 else
6383 {
6384 // Currently this only happens for a relaxed section.
6385 const Output_relaxed_input_section* poris =
6386 out_sections[index]->find_relaxed_input_section(this, index);
6387 gold_assert(poris != NULL);
6388 output_address = poris->address();
6389 }
6390
6391 // Get the relocations.
6392 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6393 shdr.get_sh_size(),
6394 true, false);
6395
6396 // Get the section contents. This does work for the case in which
6397 // we modify the contents of an input section. We need to pass the
6398 // output view under such circumstances.
6399 section_size_type input_view_size = 0;
6400 const unsigned char* input_view =
6401 this->section_contents(index, &input_view_size, false);
6402
6403 relinfo.reloc_shndx = i;
6404 relinfo.data_shndx = index;
6405 unsigned int sh_type = shdr.get_sh_type();
6406 unsigned int reloc_size;
6407 if (sh_type == elfcpp::SHT_REL)
6408 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6409 else
6410 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6411
6412 Output_section* os = out_sections[index];
6413 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6414 shdr.get_sh_size() / reloc_size,
6415 os,
6416 output_offset == invalid_address,
6417 input_view, output_address,
6418 input_view_size);
6419 }
6420 }
6421
6422 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6423 // after its relocation section, if there is one, is processed for
6424 // relocation stubs. Merging this loop with the one above would have been
6425 // complicated since we would have had to make sure that relocation stub
6426 // scanning is done first.
6427 if (arm_target->fix_cortex_a8())
6428 {
6429 const unsigned char* p = pshdrs + shdr_size;
6430 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6431 {
6432 const elfcpp::Shdr<32, big_endian> shdr(p);
6433 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6434 out_sections[i],
6435 symtab))
6436 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6437 arm_target);
6438 }
6439 }
6440
6441 // After we've done the relocations, we release the hash tables,
6442 // since we no longer need them.
6443 this->free_input_to_output_maps();
6444 }
6445
6446 // Count the local symbols. The ARM backend needs to know if a symbol
6447 // is a THUMB function or not. For global symbols, it is easy because
6448 // the Symbol object keeps the ELF symbol type. For local symbol it is
6449 // harder because we cannot access this information. So we override the
6450 // do_count_local_symbol in parent and scan local symbols to mark
6451 // THUMB functions. This is not the most efficient way but I do not want to
6452 // slow down other ports by calling a per symbol target hook inside
6453 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6454
6455 template<bool big_endian>
6456 void
6457 Arm_relobj<big_endian>::do_count_local_symbols(
6458 Stringpool_template<char>* pool,
6459 Stringpool_template<char>* dynpool)
6460 {
6461 // We need to fix-up the values of any local symbols whose type are
6462 // STT_ARM_TFUNC.
6463
6464 // Ask parent to count the local symbols.
6465 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6466 const unsigned int loccount = this->local_symbol_count();
6467 if (loccount == 0)
6468 return;
6469
6470 // Initialize the thumb function bit-vector.
6471 std::vector<bool> empty_vector(loccount, false);
6472 this->local_symbol_is_thumb_function_.swap(empty_vector);
6473
6474 // Read the symbol table section header.
6475 const unsigned int symtab_shndx = this->symtab_shndx();
6476 elfcpp::Shdr<32, big_endian>
6477 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6478 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6479
6480 // Read the local symbols.
6481 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6482 gold_assert(loccount == symtabshdr.get_sh_info());
6483 off_t locsize = loccount * sym_size;
6484 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6485 locsize, true, true);
6486
6487 // For mapping symbol processing, we need to read the symbol names.
6488 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6489 if (strtab_shndx >= this->shnum())
6490 {
6491 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6492 return;
6493 }
6494
6495 elfcpp::Shdr<32, big_endian>
6496 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6497 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6498 {
6499 this->error(_("symbol table name section has wrong type: %u"),
6500 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6501 return;
6502 }
6503 const char* pnames =
6504 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6505 strtabshdr.get_sh_size(),
6506 false, false));
6507
6508 // Loop over the local symbols and mark any local symbols pointing
6509 // to THUMB functions.
6510
6511 // Skip the first dummy symbol.
6512 psyms += sym_size;
6513 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6514 this->local_values();
6515 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6516 {
6517 elfcpp::Sym<32, big_endian> sym(psyms);
6518 elfcpp::STT st_type = sym.get_st_type();
6519 Symbol_value<32>& lv((*plocal_values)[i]);
6520 Arm_address input_value = lv.input_value();
6521
6522 // Check to see if this is a mapping symbol.
6523 const char* sym_name = pnames + sym.get_st_name();
6524 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6525 {
6526 bool is_ordinary;
6527 unsigned int input_shndx =
6528 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6529 gold_assert(is_ordinary);
6530
6531 // Strip of LSB in case this is a THUMB symbol.
6532 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6533 this->mapping_symbols_info_[msp] = sym_name[1];
6534 }
6535
6536 if (st_type == elfcpp::STT_ARM_TFUNC
6537 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6538 {
6539 // This is a THUMB function. Mark this and canonicalize the
6540 // symbol value by setting LSB.
6541 this->local_symbol_is_thumb_function_[i] = true;
6542 if ((input_value & 1) == 0)
6543 lv.set_input_value(input_value | 1);
6544 }
6545 }
6546 }
6547
6548 // Relocate sections.
6549 template<bool big_endian>
6550 void
6551 Arm_relobj<big_endian>::do_relocate_sections(
6552 const Symbol_table* symtab,
6553 const Layout* layout,
6554 const unsigned char* pshdrs,
6555 Output_file* of,
6556 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6557 {
6558 // Call parent to relocate sections.
6559 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6560 pshdrs, of, pviews);
6561
6562 // We do not generate stubs if doing a relocatable link.
6563 if (parameters->options().relocatable())
6564 return;
6565
6566 // Relocate stub tables.
6567 unsigned int shnum = this->shnum();
6568
6569 Target_arm<big_endian>* arm_target =
6570 Target_arm<big_endian>::default_target();
6571
6572 Relocate_info<32, big_endian> relinfo;
6573 relinfo.symtab = symtab;
6574 relinfo.layout = layout;
6575 relinfo.object = this;
6576
6577 for (unsigned int i = 1; i < shnum; ++i)
6578 {
6579 Arm_input_section<big_endian>* arm_input_section =
6580 arm_target->find_arm_input_section(this, i);
6581
6582 if (arm_input_section != NULL
6583 && arm_input_section->is_stub_table_owner()
6584 && !arm_input_section->stub_table()->empty())
6585 {
6586 // We cannot discard a section if it owns a stub table.
6587 Output_section* os = this->output_section(i);
6588 gold_assert(os != NULL);
6589
6590 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6591 relinfo.reloc_shdr = NULL;
6592 relinfo.data_shndx = i;
6593 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6594
6595 gold_assert((*pviews)[i].view != NULL);
6596
6597 // We are passed the output section view. Adjust it to cover the
6598 // stub table only.
6599 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6600 gold_assert((stub_table->address() >= (*pviews)[i].address)
6601 && ((stub_table->address() + stub_table->data_size())
6602 <= (*pviews)[i].address + (*pviews)[i].view_size));
6603
6604 off_t offset = stub_table->address() - (*pviews)[i].address;
6605 unsigned char* view = (*pviews)[i].view + offset;
6606 Arm_address address = stub_table->address();
6607 section_size_type view_size = stub_table->data_size();
6608
6609 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6610 view_size);
6611 }
6612
6613 // Apply Cortex A8 workaround if applicable.
6614 if (this->section_has_cortex_a8_workaround(i))
6615 {
6616 unsigned char* view = (*pviews)[i].view;
6617 Arm_address view_address = (*pviews)[i].address;
6618 section_size_type view_size = (*pviews)[i].view_size;
6619 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6620
6621 // Adjust view to cover section.
6622 Output_section* os = this->output_section(i);
6623 gold_assert(os != NULL);
6624 Arm_address section_address =
6625 this->simple_input_section_output_address(i, os);
6626 uint64_t section_size = this->section_size(i);
6627
6628 gold_assert(section_address >= view_address
6629 && ((section_address + section_size)
6630 <= (view_address + view_size)));
6631
6632 unsigned char* section_view = view + (section_address - view_address);
6633
6634 // Apply the Cortex-A8 workaround to the output address range
6635 // corresponding to this input section.
6636 stub_table->apply_cortex_a8_workaround_to_address_range(
6637 arm_target,
6638 section_view,
6639 section_address,
6640 section_size);
6641 }
6642 }
6643 }
6644
6645 // Find the linked text section of an EXIDX section by looking at the first
6646 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6647 // must be linked to its associated code section via the sh_link field of
6648 // its section header. However, some tools are broken and the link is not
6649 // always set. LD just drops such an EXIDX section silently, causing the
6650 // associated code not unwindabled. Here we try a little bit harder to
6651 // discover the linked code section.
6652 //
6653 // PSHDR points to the section header of a relocation section of an EXIDX
6654 // section. If we can find a linked text section, return true and
6655 // store the text section index in the location PSHNDX. Otherwise
6656 // return false.
6657
6658 template<bool big_endian>
6659 bool
6660 Arm_relobj<big_endian>::find_linked_text_section(
6661 const unsigned char* pshdr,
6662 const unsigned char* psyms,
6663 unsigned int* pshndx)
6664 {
6665 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6666
6667 // If there is no relocation, we cannot find the linked text section.
6668 size_t reloc_size;
6669 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6670 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6671 else
6672 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6673 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6674
6675 // Get the relocations.
6676 const unsigned char* prelocs =
6677 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6678
6679 // Find the REL31 relocation for the first word of the first EXIDX entry.
6680 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6681 {
6682 Arm_address r_offset;
6683 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6684 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6685 {
6686 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6687 r_info = reloc.get_r_info();
6688 r_offset = reloc.get_r_offset();
6689 }
6690 else
6691 {
6692 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6693 r_info = reloc.get_r_info();
6694 r_offset = reloc.get_r_offset();
6695 }
6696
6697 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6698 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6699 continue;
6700
6701 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6702 if (r_sym == 0
6703 || r_sym >= this->local_symbol_count()
6704 || r_offset != 0)
6705 continue;
6706
6707 // This is the relocation for the first word of the first EXIDX entry.
6708 // We expect to see a local section symbol.
6709 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6710 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6711 if (sym.get_st_type() == elfcpp::STT_SECTION)
6712 {
6713 bool is_ordinary;
6714 *pshndx =
6715 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6716 gold_assert(is_ordinary);
6717 return true;
6718 }
6719 else
6720 return false;
6721 }
6722
6723 return false;
6724 }
6725
6726 // Make an EXIDX input section object for an EXIDX section whose index is
6727 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6728 // is the section index of the linked text section.
6729
6730 template<bool big_endian>
6731 void
6732 Arm_relobj<big_endian>::make_exidx_input_section(
6733 unsigned int shndx,
6734 const elfcpp::Shdr<32, big_endian>& shdr,
6735 unsigned int text_shndx,
6736 const elfcpp::Shdr<32, big_endian>& text_shdr)
6737 {
6738 // Create an Arm_exidx_input_section object for this EXIDX section.
6739 Arm_exidx_input_section* exidx_input_section =
6740 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6741 shdr.get_sh_addralign(),
6742 text_shdr.get_sh_size());
6743
6744 gold_assert(this->exidx_section_map_[shndx] == NULL);
6745 this->exidx_section_map_[shndx] = exidx_input_section;
6746
6747 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6748 {
6749 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6750 this->section_name(shndx).c_str(), shndx, text_shndx,
6751 this->name().c_str());
6752 exidx_input_section->set_has_errors();
6753 }
6754 else if (this->exidx_section_map_[text_shndx] != NULL)
6755 {
6756 unsigned other_exidx_shndx =
6757 this->exidx_section_map_[text_shndx]->shndx();
6758 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6759 "%s(%u) in %s"),
6760 this->section_name(shndx).c_str(), shndx,
6761 this->section_name(other_exidx_shndx).c_str(),
6762 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6763 text_shndx, this->name().c_str());
6764 exidx_input_section->set_has_errors();
6765 }
6766 else
6767 this->exidx_section_map_[text_shndx] = exidx_input_section;
6768
6769 // Check section flags of text section.
6770 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6771 {
6772 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6773 " in %s"),
6774 this->section_name(shndx).c_str(), shndx,
6775 this->section_name(text_shndx).c_str(), text_shndx,
6776 this->name().c_str());
6777 exidx_input_section->set_has_errors();
6778 }
6779 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6780 // I would like to make this an error but currently ld just ignores
6781 // this.
6782 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6783 "%s(%u) in %s"),
6784 this->section_name(shndx).c_str(), shndx,
6785 this->section_name(text_shndx).c_str(), text_shndx,
6786 this->name().c_str());
6787 }
6788
6789 // Read the symbol information.
6790
6791 template<bool big_endian>
6792 void
6793 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6794 {
6795 // Call parent class to read symbol information.
6796 this->base_read_symbols(sd);
6797
6798 // If this input file is a binary file, it has no processor
6799 // specific flags and attributes section.
6800 Input_file::Format format = this->input_file()->format();
6801 if (format != Input_file::FORMAT_ELF)
6802 {
6803 gold_assert(format == Input_file::FORMAT_BINARY);
6804 this->merge_flags_and_attributes_ = false;
6805 return;
6806 }
6807
6808 // Read processor-specific flags in ELF file header.
6809 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6810 elfcpp::Elf_sizes<32>::ehdr_size,
6811 true, false);
6812 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6813 this->processor_specific_flags_ = ehdr.get_e_flags();
6814
6815 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6816 // sections.
6817 std::vector<unsigned int> deferred_exidx_sections;
6818 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6819 const unsigned char* pshdrs = sd->section_headers->data();
6820 const unsigned char* ps = pshdrs + shdr_size;
6821 bool must_merge_flags_and_attributes = false;
6822 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6823 {
6824 elfcpp::Shdr<32, big_endian> shdr(ps);
6825
6826 // Sometimes an object has no contents except the section name string
6827 // table and an empty symbol table with the undefined symbol. We
6828 // don't want to merge processor-specific flags from such an object.
6829 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6830 {
6831 // Symbol table is not empty.
6832 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6833 elfcpp::Elf_sizes<32>::sym_size;
6834 if (shdr.get_sh_size() > sym_size)
6835 must_merge_flags_and_attributes = true;
6836 }
6837 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6838 // If this is neither an empty symbol table nor a string table,
6839 // be conservative.
6840 must_merge_flags_and_attributes = true;
6841
6842 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6843 {
6844 gold_assert(this->attributes_section_data_ == NULL);
6845 section_offset_type section_offset = shdr.get_sh_offset();
6846 section_size_type section_size =
6847 convert_to_section_size_type(shdr.get_sh_size());
6848 const unsigned char* view =
6849 this->get_view(section_offset, section_size, true, false);
6850 this->attributes_section_data_ =
6851 new Attributes_section_data(view, section_size);
6852 }
6853 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6854 {
6855 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6856 if (text_shndx == elfcpp::SHN_UNDEF)
6857 deferred_exidx_sections.push_back(i);
6858 else
6859 {
6860 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6861 + text_shndx * shdr_size);
6862 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6863 }
6864 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6865 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6866 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6867 this->section_name(i).c_str(), this->name().c_str());
6868 }
6869 }
6870
6871 // This is rare.
6872 if (!must_merge_flags_and_attributes)
6873 {
6874 gold_assert(deferred_exidx_sections.empty());
6875 this->merge_flags_and_attributes_ = false;
6876 return;
6877 }
6878
6879 // Some tools are broken and they do not set the link of EXIDX sections.
6880 // We look at the first relocation to figure out the linked sections.
6881 if (!deferred_exidx_sections.empty())
6882 {
6883 // We need to go over the section headers again to find the mapping
6884 // from sections being relocated to their relocation sections. This is
6885 // a bit inefficient as we could do that in the loop above. However,
6886 // we do not expect any deferred EXIDX sections normally. So we do not
6887 // want to slow down the most common path.
6888 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6889 Reloc_map reloc_map;
6890 ps = pshdrs + shdr_size;
6891 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6892 {
6893 elfcpp::Shdr<32, big_endian> shdr(ps);
6894 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6895 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6896 {
6897 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6898 if (info_shndx >= this->shnum())
6899 gold_error(_("relocation section %u has invalid info %u"),
6900 i, info_shndx);
6901 Reloc_map::value_type value(info_shndx, i);
6902 std::pair<Reloc_map::iterator, bool> result =
6903 reloc_map.insert(value);
6904 if (!result.second)
6905 gold_error(_("section %u has multiple relocation sections "
6906 "%u and %u"),
6907 info_shndx, i, reloc_map[info_shndx]);
6908 }
6909 }
6910
6911 // Read the symbol table section header.
6912 const unsigned int symtab_shndx = this->symtab_shndx();
6913 elfcpp::Shdr<32, big_endian>
6914 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6915 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6916
6917 // Read the local symbols.
6918 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6919 const unsigned int loccount = this->local_symbol_count();
6920 gold_assert(loccount == symtabshdr.get_sh_info());
6921 off_t locsize = loccount * sym_size;
6922 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6923 locsize, true, true);
6924
6925 // Process the deferred EXIDX sections.
6926 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6927 {
6928 unsigned int shndx = deferred_exidx_sections[i];
6929 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6930 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6931 Reloc_map::const_iterator it = reloc_map.find(shndx);
6932 if (it != reloc_map.end())
6933 find_linked_text_section(pshdrs + it->second * shdr_size,
6934 psyms, &text_shndx);
6935 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6936 + text_shndx * shdr_size);
6937 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6938 }
6939 }
6940 }
6941
6942 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6943 // sections for unwinding. These sections are referenced implicitly by
6944 // text sections linked in the section headers. If we ignore these implicit
6945 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6946 // will be garbage-collected incorrectly. Hence we override the same function
6947 // in the base class to handle these implicit references.
6948
6949 template<bool big_endian>
6950 void
6951 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6952 Layout* layout,
6953 Read_relocs_data* rd)
6954 {
6955 // First, call base class method to process relocations in this object.
6956 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6957
6958 // If --gc-sections is not specified, there is nothing more to do.
6959 // This happens when --icf is used but --gc-sections is not.
6960 if (!parameters->options().gc_sections())
6961 return;
6962
6963 unsigned int shnum = this->shnum();
6964 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6965 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6966 shnum * shdr_size,
6967 true, true);
6968
6969 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6970 // to these from the linked text sections.
6971 const unsigned char* ps = pshdrs + shdr_size;
6972 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6973 {
6974 elfcpp::Shdr<32, big_endian> shdr(ps);
6975 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6976 {
6977 // Found an .ARM.exidx section, add it to the set of reachable
6978 // sections from its linked text section.
6979 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6980 symtab->gc()->add_reference(this, text_shndx, this, i);
6981 }
6982 }
6983 }
6984
6985 // Update output local symbol count. Owing to EXIDX entry merging, some local
6986 // symbols will be removed in output. Adjust output local symbol count
6987 // accordingly. We can only changed the static output local symbol count. It
6988 // is too late to change the dynamic symbols.
6989
6990 template<bool big_endian>
6991 void
6992 Arm_relobj<big_endian>::update_output_local_symbol_count()
6993 {
6994 // Caller should check that this needs updating. We want caller checking
6995 // because output_local_symbol_count_needs_update() is most likely inlined.
6996 gold_assert(this->output_local_symbol_count_needs_update_);
6997
6998 gold_assert(this->symtab_shndx() != -1U);
6999 if (this->symtab_shndx() == 0)
7000 {
7001 // This object has no symbols. Weird but legal.
7002 return;
7003 }
7004
7005 // Read the symbol table section header.
7006 const unsigned int symtab_shndx = this->symtab_shndx();
7007 elfcpp::Shdr<32, big_endian>
7008 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7009 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7010
7011 // Read the local symbols.
7012 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
7013 const unsigned int loccount = this->local_symbol_count();
7014 gold_assert(loccount == symtabshdr.get_sh_info());
7015 off_t locsize = loccount * sym_size;
7016 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7017 locsize, true, true);
7018
7019 // Loop over the local symbols.
7020
7021 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
7022 Output_sections;
7023 const Output_sections& out_sections(this->output_sections());
7024 unsigned int shnum = this->shnum();
7025 unsigned int count = 0;
7026 // Skip the first, dummy, symbol.
7027 psyms += sym_size;
7028 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7029 {
7030 elfcpp::Sym<32, big_endian> sym(psyms);
7031
7032 Symbol_value<32>& lv((*this->local_values())[i]);
7033
7034 // This local symbol was already discarded by do_count_local_symbols.
7035 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7036 continue;
7037
7038 bool is_ordinary;
7039 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7040 &is_ordinary);
7041
7042 if (shndx < shnum)
7043 {
7044 Output_section* os = out_sections[shndx];
7045
7046 // This local symbol no longer has an output section. Discard it.
7047 if (os == NULL)
7048 {
7049 lv.set_no_output_symtab_entry();
7050 continue;
7051 }
7052
7053 // Currently we only discard parts of EXIDX input sections.
7054 // We explicitly check for a merged EXIDX input section to avoid
7055 // calling Output_section_data::output_offset unless necessary.
7056 if ((this->get_output_section_offset(shndx) == invalid_address)
7057 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7058 {
7059 section_offset_type output_offset =
7060 os->output_offset(this, shndx, lv.input_value());
7061 if (output_offset == -1)
7062 {
7063 // This symbol is defined in a part of an EXIDX input section
7064 // that is discarded due to entry merging.
7065 lv.set_no_output_symtab_entry();
7066 continue;
7067 }
7068 }
7069 }
7070
7071 ++count;
7072 }
7073
7074 this->set_output_local_symbol_count(count);
7075 this->output_local_symbol_count_needs_update_ = false;
7076 }
7077
7078 // Arm_dynobj methods.
7079
7080 // Read the symbol information.
7081
7082 template<bool big_endian>
7083 void
7084 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7085 {
7086 // Call parent class to read symbol information.
7087 this->base_read_symbols(sd);
7088
7089 // Read processor-specific flags in ELF file header.
7090 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7091 elfcpp::Elf_sizes<32>::ehdr_size,
7092 true, false);
7093 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7094 this->processor_specific_flags_ = ehdr.get_e_flags();
7095
7096 // Read the attributes section if there is one.
7097 // We read from the end because gas seems to put it near the end of
7098 // the section headers.
7099 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7100 const unsigned char* ps =
7101 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7102 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7103 {
7104 elfcpp::Shdr<32, big_endian> shdr(ps);
7105 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7106 {
7107 section_offset_type section_offset = shdr.get_sh_offset();
7108 section_size_type section_size =
7109 convert_to_section_size_type(shdr.get_sh_size());
7110 const unsigned char* view =
7111 this->get_view(section_offset, section_size, true, false);
7112 this->attributes_section_data_ =
7113 new Attributes_section_data(view, section_size);
7114 break;
7115 }
7116 }
7117 }
7118
7119 // Stub_addend_reader methods.
7120
7121 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7122
7123 template<bool big_endian>
7124 elfcpp::Elf_types<32>::Elf_Swxword
7125 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7126 unsigned int r_type,
7127 const unsigned char* view,
7128 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7129 {
7130 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7131
7132 switch (r_type)
7133 {
7134 case elfcpp::R_ARM_CALL:
7135 case elfcpp::R_ARM_JUMP24:
7136 case elfcpp::R_ARM_PLT32:
7137 {
7138 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7139 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7140 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7141 return Bits<26>::sign_extend32(val << 2);
7142 }
7143
7144 case elfcpp::R_ARM_THM_CALL:
7145 case elfcpp::R_ARM_THM_JUMP24:
7146 case elfcpp::R_ARM_THM_XPC22:
7147 {
7148 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7149 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7150 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7151 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7152 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7153 }
7154
7155 case elfcpp::R_ARM_THM_JUMP19:
7156 {
7157 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7158 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7159 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7160 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7161 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7162 }
7163
7164 default:
7165 gold_unreachable();
7166 }
7167 }
7168
7169 // Arm_output_data_got methods.
7170
7171 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7172 // The first one is initialized to be 1, which is the module index for
7173 // the main executable and the second one 0. A reloc of the type
7174 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7175 // be applied by gold. GSYM is a global symbol.
7176 //
7177 template<bool big_endian>
7178 void
7179 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7180 unsigned int got_type,
7181 Symbol* gsym)
7182 {
7183 if (gsym->has_got_offset(got_type))
7184 return;
7185
7186 // We are doing a static link. Just mark it as belong to module 1,
7187 // the executable.
7188 unsigned int got_offset = this->add_constant(1);
7189 gsym->set_got_offset(got_type, got_offset);
7190 got_offset = this->add_constant(0);
7191 this->static_relocs_.push_back(Static_reloc(got_offset,
7192 elfcpp::R_ARM_TLS_DTPOFF32,
7193 gsym));
7194 }
7195
7196 // Same as the above but for a local symbol.
7197
7198 template<bool big_endian>
7199 void
7200 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7201 unsigned int got_type,
7202 Sized_relobj_file<32, big_endian>* object,
7203 unsigned int index)
7204 {
7205 if (object->local_has_got_offset(index, got_type))
7206 return;
7207
7208 // We are doing a static link. Just mark it as belong to module 1,
7209 // the executable.
7210 unsigned int got_offset = this->add_constant(1);
7211 object->set_local_got_offset(index, got_type, got_offset);
7212 got_offset = this->add_constant(0);
7213 this->static_relocs_.push_back(Static_reloc(got_offset,
7214 elfcpp::R_ARM_TLS_DTPOFF32,
7215 object, index));
7216 }
7217
7218 template<bool big_endian>
7219 void
7220 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7221 {
7222 // Call parent to write out GOT.
7223 Output_data_got<32, big_endian>::do_write(of);
7224
7225 // We are done if there is no fix up.
7226 if (this->static_relocs_.empty())
7227 return;
7228
7229 gold_assert(parameters->doing_static_link());
7230
7231 const off_t offset = this->offset();
7232 const section_size_type oview_size =
7233 convert_to_section_size_type(this->data_size());
7234 unsigned char* const oview = of->get_output_view(offset, oview_size);
7235
7236 Output_segment* tls_segment = this->layout_->tls_segment();
7237 gold_assert(tls_segment != NULL);
7238
7239 // The thread pointer $tp points to the TCB, which is followed by the
7240 // TLS. So we need to adjust $tp relative addressing by this amount.
7241 Arm_address aligned_tcb_size =
7242 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7243
7244 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7245 {
7246 Static_reloc& reloc(this->static_relocs_[i]);
7247
7248 Arm_address value;
7249 if (!reloc.symbol_is_global())
7250 {
7251 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7252 const Symbol_value<32>* psymval =
7253 reloc.relobj()->local_symbol(reloc.index());
7254
7255 // We are doing static linking. Issue an error and skip this
7256 // relocation if the symbol is undefined or in a discarded_section.
7257 bool is_ordinary;
7258 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7259 if ((shndx == elfcpp::SHN_UNDEF)
7260 || (is_ordinary
7261 && shndx != elfcpp::SHN_UNDEF
7262 && !object->is_section_included(shndx)
7263 && !this->symbol_table_->is_section_folded(object, shndx)))
7264 {
7265 gold_error(_("undefined or discarded local symbol %u from "
7266 " object %s in GOT"),
7267 reloc.index(), reloc.relobj()->name().c_str());
7268 continue;
7269 }
7270
7271 value = psymval->value(object, 0);
7272 }
7273 else
7274 {
7275 const Symbol* gsym = reloc.symbol();
7276 gold_assert(gsym != NULL);
7277 if (gsym->is_forwarder())
7278 gsym = this->symbol_table_->resolve_forwards(gsym);
7279
7280 // We are doing static linking. Issue an error and skip this
7281 // relocation if the symbol is undefined or in a discarded_section
7282 // unless it is a weakly_undefined symbol.
7283 if ((gsym->is_defined_in_discarded_section()
7284 || gsym->is_undefined())
7285 && !gsym->is_weak_undefined())
7286 {
7287 gold_error(_("undefined or discarded symbol %s in GOT"),
7288 gsym->name());
7289 continue;
7290 }
7291
7292 if (!gsym->is_weak_undefined())
7293 {
7294 const Sized_symbol<32>* sym =
7295 static_cast<const Sized_symbol<32>*>(gsym);
7296 value = sym->value();
7297 }
7298 else
7299 value = 0;
7300 }
7301
7302 unsigned got_offset = reloc.got_offset();
7303 gold_assert(got_offset < oview_size);
7304
7305 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7306 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7307 Valtype x;
7308 switch (reloc.r_type())
7309 {
7310 case elfcpp::R_ARM_TLS_DTPOFF32:
7311 x = value;
7312 break;
7313 case elfcpp::R_ARM_TLS_TPOFF32:
7314 x = value + aligned_tcb_size;
7315 break;
7316 default:
7317 gold_unreachable();
7318 }
7319 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7320 }
7321
7322 of->write_output_view(offset, oview_size, oview);
7323 }
7324
7325 // A class to handle the PLT data.
7326 // This is an abstract base class that handles most of the linker details
7327 // but does not know the actual contents of PLT entries. The derived
7328 // classes below fill in those details.
7329
7330 template<bool big_endian>
7331 class Output_data_plt_arm : public Output_section_data
7332 {
7333 public:
7334 // Unlike aarch64, which records symbol value in "addend" field of relocations
7335 // and could be done at the same time an IRelative reloc is created for the
7336 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7337 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7338 // to keep necessary symbol information for later use in do_write. We usually
7339 // have only a very limited number of ifuncs, so the extra data required here
7340 // is also limited.
7341
7342 struct IRelative_data
7343 {
7344 IRelative_data(Sized_symbol<32>* sized_symbol)
7345 : symbol_is_global_(true)
7346 {
7347 u_.global = sized_symbol;
7348 }
7349
7350 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7351 unsigned int index)
7352 : symbol_is_global_(false)
7353 {
7354 u_.local.relobj = relobj;
7355 u_.local.index = index;
7356 }
7357
7358 union
7359 {
7360 Sized_symbol<32>* global;
7361
7362 struct
7363 {
7364 Sized_relobj_file<32, big_endian>* relobj;
7365 unsigned int index;
7366 } local;
7367 } u_;
7368
7369 bool symbol_is_global_;
7370 };
7371
7372 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7373 Reloc_section;
7374
7375 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7376 Arm_output_data_got<big_endian>* got,
7377 Output_data_space* got_plt,
7378 Output_data_space* got_irelative);
7379
7380 // Add an entry to the PLT.
7381 void
7382 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7383
7384 // Add the relocation for a plt entry.
7385 void
7386 add_relocation(Symbol_table* symtab, Layout* layout,
7387 Symbol* gsym, unsigned int got_offset);
7388
7389 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7390 unsigned int
7391 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7392 Sized_relobj_file<32, big_endian>* relobj,
7393 unsigned int local_sym_index);
7394
7395 // Return the .rel.plt section data.
7396 const Reloc_section*
7397 rel_plt() const
7398 { return this->rel_; }
7399
7400 // Return the PLT relocation container for IRELATIVE.
7401 Reloc_section*
7402 rel_irelative(Symbol_table*, Layout*);
7403
7404 // Return the number of PLT entries.
7405 unsigned int
7406 entry_count() const
7407 { return this->count_ + this->irelative_count_; }
7408
7409 // Return the offset of the first non-reserved PLT entry.
7410 unsigned int
7411 first_plt_entry_offset() const
7412 { return this->do_first_plt_entry_offset(); }
7413
7414 // Return the size of a PLT entry.
7415 unsigned int
7416 get_plt_entry_size() const
7417 { return this->do_get_plt_entry_size(); }
7418
7419 // Return the PLT address for globals.
7420 uint32_t
7421 address_for_global(const Symbol*) const;
7422
7423 // Return the PLT address for locals.
7424 uint32_t
7425 address_for_local(const Relobj*, unsigned int symndx) const;
7426
7427 protected:
7428 // Fill in the first PLT entry.
7429 void
7430 fill_first_plt_entry(unsigned char* pov,
7431 Arm_address got_address,
7432 Arm_address plt_address)
7433 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7434
7435 void
7436 fill_plt_entry(unsigned char* pov,
7437 Arm_address got_address,
7438 Arm_address plt_address,
7439 unsigned int got_offset,
7440 unsigned int plt_offset)
7441 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7442
7443 virtual unsigned int
7444 do_first_plt_entry_offset() const = 0;
7445
7446 virtual unsigned int
7447 do_get_plt_entry_size() const = 0;
7448
7449 virtual void
7450 do_fill_first_plt_entry(unsigned char* pov,
7451 Arm_address got_address,
7452 Arm_address plt_address) = 0;
7453
7454 virtual void
7455 do_fill_plt_entry(unsigned char* pov,
7456 Arm_address got_address,
7457 Arm_address plt_address,
7458 unsigned int got_offset,
7459 unsigned int plt_offset) = 0;
7460
7461 void
7462 do_adjust_output_section(Output_section* os);
7463
7464 // Write to a map file.
7465 void
7466 do_print_to_mapfile(Mapfile* mapfile) const
7467 { mapfile->print_output_data(this, _("** PLT")); }
7468
7469 private:
7470 // Set the final size.
7471 void
7472 set_final_data_size()
7473 {
7474 this->set_data_size(this->first_plt_entry_offset()
7475 + ((this->count_ + this->irelative_count_)
7476 * this->get_plt_entry_size()));
7477 }
7478
7479 // Write out the PLT data.
7480 void
7481 do_write(Output_file*);
7482
7483 // Record irelative symbol data.
7484 void insert_irelative_data(const IRelative_data& idata)
7485 { irelative_data_vec_.push_back(idata); }
7486
7487 // The reloc section.
7488 Reloc_section* rel_;
7489 // The IRELATIVE relocs, if necessary. These must follow the
7490 // regular PLT relocations.
7491 Reloc_section* irelative_rel_;
7492 // The .got section.
7493 Arm_output_data_got<big_endian>* got_;
7494 // The .got.plt section.
7495 Output_data_space* got_plt_;
7496 // The part of the .got.plt section used for IRELATIVE relocs.
7497 Output_data_space* got_irelative_;
7498 // The number of PLT entries.
7499 unsigned int count_;
7500 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7501 // follow the regular PLT entries.
7502 unsigned int irelative_count_;
7503 // Vector for irelative data.
7504 typedef std::vector<IRelative_data> IRelative_data_vec;
7505 IRelative_data_vec irelative_data_vec_;
7506 };
7507
7508 // Create the PLT section. The ordinary .got section is an argument,
7509 // since we need to refer to the start. We also create our own .got
7510 // section just for PLT entries.
7511
7512 template<bool big_endian>
7513 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7514 Layout* layout, uint64_t addralign,
7515 Arm_output_data_got<big_endian>* got,
7516 Output_data_space* got_plt,
7517 Output_data_space* got_irelative)
7518 : Output_section_data(addralign), irelative_rel_(NULL),
7519 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7520 count_(0), irelative_count_(0)
7521 {
7522 this->rel_ = new Reloc_section(false);
7523 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7524 elfcpp::SHF_ALLOC, this->rel_,
7525 ORDER_DYNAMIC_PLT_RELOCS, false);
7526 }
7527
7528 template<bool big_endian>
7529 void
7530 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7531 {
7532 os->set_entsize(0);
7533 }
7534
7535 // Add an entry to the PLT.
7536
7537 template<bool big_endian>
7538 void
7539 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7540 Layout* layout,
7541 Symbol* gsym)
7542 {
7543 gold_assert(!gsym->has_plt_offset());
7544
7545 unsigned int* entry_count;
7546 Output_section_data_build* got;
7547
7548 // We have 2 different types of plt entry here, normal and ifunc.
7549
7550 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7551 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7552
7553 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7554 // second 12, third 24 ... etc.
7555
7556 // IFunc plt entries *always* come after *normal* plt entries.
7557
7558 // Notice, when computing the plt address of a certain symbol, "plt_address +
7559 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7560 // target->plt_address_for_local() instead.
7561
7562 int begin_offset = 0;
7563 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7564 && gsym->can_use_relative_reloc(false))
7565 {
7566 entry_count = &this->irelative_count_;
7567 got = this->got_irelative_;
7568 // For irelative plt entries, offset is relative to the end of normal plt
7569 // entries, so it starts from 0.
7570 begin_offset = 0;
7571 // Record symbol information.
7572 this->insert_irelative_data(
7573 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7574 }
7575 else
7576 {
7577 entry_count = &this->count_;
7578 got = this->got_plt_;
7579 // Note that for normal plt entries, when setting the PLT offset we skip
7580 // the initial reserved PLT entry.
7581 begin_offset = this->first_plt_entry_offset();
7582 }
7583
7584 gsym->set_plt_offset(begin_offset
7585 + (*entry_count) * this->get_plt_entry_size());
7586
7587 ++(*entry_count);
7588
7589 section_offset_type got_offset = got->current_data_size();
7590
7591 // Every PLT entry needs a GOT entry which points back to the PLT
7592 // entry (this will be changed by the dynamic linker, normally
7593 // lazily when the function is called).
7594 got->set_current_data_size(got_offset + 4);
7595
7596 // Every PLT entry needs a reloc.
7597 this->add_relocation(symtab, layout, gsym, got_offset);
7598
7599 // Note that we don't need to save the symbol. The contents of the
7600 // PLT are independent of which symbols are used. The symbols only
7601 // appear in the relocations.
7602 }
7603
7604 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7605 // the PLT offset.
7606
7607 template<bool big_endian>
7608 unsigned int
7609 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7610 Symbol_table* symtab,
7611 Layout* layout,
7612 Sized_relobj_file<32, big_endian>* relobj,
7613 unsigned int local_sym_index)
7614 {
7615 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7616
7617 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7618 // no longer correct. Use target->plt_address_for_local() instead.
7619 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7620 ++this->irelative_count_;
7621
7622 section_offset_type got_offset = this->got_irelative_->current_data_size();
7623
7624 // Every PLT entry needs a GOT entry which points back to the PLT
7625 // entry.
7626 this->got_irelative_->set_current_data_size(got_offset + 4);
7627
7628
7629 // Every PLT entry needs a reloc.
7630 Reloc_section* rel = this->rel_irelative(symtab, layout);
7631 rel->add_symbolless_local_addend(relobj, local_sym_index,
7632 elfcpp::R_ARM_IRELATIVE,
7633 this->got_irelative_, got_offset);
7634 return plt_offset;
7635 }
7636
7637
7638 // Add the relocation for a PLT entry.
7639
7640 template<bool big_endian>
7641 void
7642 Output_data_plt_arm<big_endian>::add_relocation(
7643 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7644 {
7645 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7646 && gsym->can_use_relative_reloc(false))
7647 {
7648 Reloc_section* rel = this->rel_irelative(symtab, layout);
7649 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7650 this->got_irelative_, got_offset);
7651 }
7652 else
7653 {
7654 gsym->set_needs_dynsym_entry();
7655 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7656 got_offset);
7657 }
7658 }
7659
7660
7661 // Create the irelative relocation data.
7662
7663 template<bool big_endian>
7664 typename Output_data_plt_arm<big_endian>::Reloc_section*
7665 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7666 Layout* layout)
7667 {
7668 if (this->irelative_rel_ == NULL)
7669 {
7670 // Since irelative relocations goes into 'rel.dyn', we delegate the
7671 // creation of irelative_rel_ to where rel_dyn section gets created.
7672 Target_arm<big_endian>* arm_target =
7673 Target_arm<big_endian>::default_target();
7674 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7675
7676 // Make sure we have a place for the TLSDESC relocations, in
7677 // case we see any later on.
7678 // this->rel_tlsdesc(layout);
7679 if (parameters->doing_static_link())
7680 {
7681 // A statically linked executable will only have a .rel.plt section to
7682 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7683 // will use these symbols to locate the IRELATIVE relocs at program
7684 // startup time.
7685 symtab->define_in_output_data("__rel_iplt_start", NULL,
7686 Symbol_table::PREDEFINED,
7687 this->irelative_rel_, 0, 0,
7688 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7689 elfcpp::STV_HIDDEN, 0, false, true);
7690 symtab->define_in_output_data("__rel_iplt_end", NULL,
7691 Symbol_table::PREDEFINED,
7692 this->irelative_rel_, 0, 0,
7693 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7694 elfcpp::STV_HIDDEN, 0, true, true);
7695 }
7696 }
7697 return this->irelative_rel_;
7698 }
7699
7700
7701 // Return the PLT address for a global symbol.
7702
7703 template<bool big_endian>
7704 uint32_t
7705 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7706 {
7707 uint64_t begin_offset = 0;
7708 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7709 && gsym->can_use_relative_reloc(false))
7710 {
7711 begin_offset = (this->first_plt_entry_offset() +
7712 this->count_ * this->get_plt_entry_size());
7713 }
7714 return this->address() + begin_offset + gsym->plt_offset();
7715 }
7716
7717
7718 // Return the PLT address for a local symbol. These are always
7719 // IRELATIVE relocs.
7720
7721 template<bool big_endian>
7722 uint32_t
7723 Output_data_plt_arm<big_endian>::address_for_local(
7724 const Relobj* object,
7725 unsigned int r_sym) const
7726 {
7727 return (this->address()
7728 + this->first_plt_entry_offset()
7729 + this->count_ * this->get_plt_entry_size()
7730 + object->local_plt_offset(r_sym));
7731 }
7732
7733
7734 template<bool big_endian>
7735 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7736 {
7737 public:
7738 Output_data_plt_arm_standard(Layout* layout,
7739 Arm_output_data_got<big_endian>* got,
7740 Output_data_space* got_plt,
7741 Output_data_space* got_irelative)
7742 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7743 { }
7744
7745 protected:
7746 // Return the offset of the first non-reserved PLT entry.
7747 virtual unsigned int
7748 do_first_plt_entry_offset() const
7749 { return sizeof(first_plt_entry); }
7750
7751 virtual void
7752 do_fill_first_plt_entry(unsigned char* pov,
7753 Arm_address got_address,
7754 Arm_address plt_address);
7755
7756 private:
7757 // Template for the first PLT entry.
7758 static const uint32_t first_plt_entry[5];
7759 };
7760
7761 // ARM PLTs.
7762 // FIXME: This is not very flexible. Right now this has only been tested
7763 // on armv5te. If we are to support additional architecture features like
7764 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7765
7766 // The first entry in the PLT.
7767 template<bool big_endian>
7768 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7769 {
7770 0xe52de004, // str lr, [sp, #-4]!
7771 0xe59fe004, // ldr lr, [pc, #4]
7772 0xe08fe00e, // add lr, pc, lr
7773 0xe5bef008, // ldr pc, [lr, #8]!
7774 0x00000000, // &GOT[0] - .
7775 };
7776
7777 template<bool big_endian>
7778 void
7779 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7780 unsigned char* pov,
7781 Arm_address got_address,
7782 Arm_address plt_address)
7783 {
7784 // Write first PLT entry. All but the last word are constants.
7785 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7786 / sizeof(first_plt_entry[0]));
7787 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7788 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7789 // Last word in first PLT entry is &GOT[0] - .
7790 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7791 got_address - (plt_address + 16));
7792 }
7793
7794 // Subsequent entries in the PLT.
7795 // This class generates short (12-byte) entries, for displacements up to 2^28.
7796
7797 template<bool big_endian>
7798 class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
7799 {
7800 public:
7801 Output_data_plt_arm_short(Layout* layout,
7802 Arm_output_data_got<big_endian>* got,
7803 Output_data_space* got_plt,
7804 Output_data_space* got_irelative)
7805 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7806 { }
7807
7808 protected:
7809 // Return the size of a PLT entry.
7810 virtual unsigned int
7811 do_get_plt_entry_size() const
7812 { return sizeof(plt_entry); }
7813
7814 virtual void
7815 do_fill_plt_entry(unsigned char* pov,
7816 Arm_address got_address,
7817 Arm_address plt_address,
7818 unsigned int got_offset,
7819 unsigned int plt_offset);
7820
7821 private:
7822 // Template for subsequent PLT entries.
7823 static const uint32_t plt_entry[3];
7824 };
7825
7826 template<bool big_endian>
7827 const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
7828 {
7829 0xe28fc600, // add ip, pc, #0xNN00000
7830 0xe28cca00, // add ip, ip, #0xNN000
7831 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7832 };
7833
7834 template<bool big_endian>
7835 void
7836 Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
7837 unsigned char* pov,
7838 Arm_address got_address,
7839 Arm_address plt_address,
7840 unsigned int got_offset,
7841 unsigned int plt_offset)
7842 {
7843 int32_t offset = ((got_address + got_offset)
7844 - (plt_address + plt_offset + 8));
7845 if (offset < 0 || offset > 0x0fffffff)
7846 gold_error(_("PLT offset too large, try linking with --long-plt"));
7847
7848 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7849 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7850 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7851 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7852 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7853 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7854 }
7855
7856 // This class generates long (16-byte) entries, for arbitrary displacements.
7857
7858 template<bool big_endian>
7859 class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
7860 {
7861 public:
7862 Output_data_plt_arm_long(Layout* layout,
7863 Arm_output_data_got<big_endian>* got,
7864 Output_data_space* got_plt,
7865 Output_data_space* got_irelative)
7866 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7867 { }
7868
7869 protected:
7870 // Return the size of a PLT entry.
7871 virtual unsigned int
7872 do_get_plt_entry_size() const
7873 { return sizeof(plt_entry); }
7874
7875 virtual void
7876 do_fill_plt_entry(unsigned char* pov,
7877 Arm_address got_address,
7878 Arm_address plt_address,
7879 unsigned int got_offset,
7880 unsigned int plt_offset);
7881
7882 private:
7883 // Template for subsequent PLT entries.
7884 static const uint32_t plt_entry[4];
7885 };
7886
7887 template<bool big_endian>
7888 const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
7889 {
7890 0xe28fc200, // add ip, pc, #0xN0000000
7891 0xe28cc600, // add ip, ip, #0xNN00000
7892 0xe28cca00, // add ip, ip, #0xNN000
7893 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7894 };
7895
7896 template<bool big_endian>
7897 void
7898 Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
7899 unsigned char* pov,
7900 Arm_address got_address,
7901 Arm_address plt_address,
7902 unsigned int got_offset,
7903 unsigned int plt_offset)
7904 {
7905 int32_t offset = ((got_address + got_offset)
7906 - (plt_address + plt_offset + 8));
7907
7908 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
7909 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7910 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
7911 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7912 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
7913 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7914 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
7915 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
7916 }
7917
7918 // Write out the PLT. This uses the hand-coded instructions above,
7919 // and adjusts them as needed. This is all specified by the arm ELF
7920 // Processor Supplement.
7921
7922 template<bool big_endian>
7923 void
7924 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7925 {
7926 const off_t offset = this->offset();
7927 const section_size_type oview_size =
7928 convert_to_section_size_type(this->data_size());
7929 unsigned char* const oview = of->get_output_view(offset, oview_size);
7930
7931 const off_t got_file_offset = this->got_plt_->offset();
7932 gold_assert(got_file_offset + this->got_plt_->data_size()
7933 == this->got_irelative_->offset());
7934 const section_size_type got_size =
7935 convert_to_section_size_type(this->got_plt_->data_size()
7936 + this->got_irelative_->data_size());
7937 unsigned char* const got_view = of->get_output_view(got_file_offset,
7938 got_size);
7939 unsigned char* pov = oview;
7940
7941 Arm_address plt_address = this->address();
7942 Arm_address got_address = this->got_plt_->address();
7943
7944 // Write first PLT entry.
7945 this->fill_first_plt_entry(pov, got_address, plt_address);
7946 pov += this->first_plt_entry_offset();
7947
7948 unsigned char* got_pov = got_view;
7949
7950 memset(got_pov, 0, 12);
7951 got_pov += 12;
7952
7953 unsigned int plt_offset = this->first_plt_entry_offset();
7954 unsigned int got_offset = 12;
7955 const unsigned int count = this->count_ + this->irelative_count_;
7956 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7957 for (unsigned int i = 0;
7958 i < count;
7959 ++i,
7960 pov += this->get_plt_entry_size(),
7961 got_pov += 4,
7962 plt_offset += this->get_plt_entry_size(),
7963 got_offset += 4)
7964 {
7965 // Set and adjust the PLT entry itself.
7966 this->fill_plt_entry(pov, got_address, plt_address,
7967 got_offset, plt_offset);
7968
7969 Arm_address value;
7970 if (i < this->count_)
7971 {
7972 // For non-irelative got entries, the value is the beginning of plt.
7973 value = plt_address;
7974 }
7975 else
7976 {
7977 // For irelative got entries, the value is the (global/local) symbol
7978 // address.
7979 const IRelative_data& idata =
7980 this->irelative_data_vec_[i - this->count_];
7981 if (idata.symbol_is_global_)
7982 {
7983 // Set the entry in the GOT for irelative symbols. The content is
7984 // the address of the ifunc, not the address of plt start.
7985 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7986 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7987 value = sized_symbol->value();
7988 }
7989 else
7990 {
7991 value = idata.u_.local.relobj->local_symbol_value(
7992 idata.u_.local.index, 0);
7993 }
7994 }
7995 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7996 }
7997
7998 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7999 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
8000
8001 of->write_output_view(offset, oview_size, oview);
8002 of->write_output_view(got_file_offset, got_size, got_view);
8003 }
8004
8005
8006 // Create a PLT entry for a global symbol.
8007
8008 template<bool big_endian>
8009 void
8010 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
8011 Symbol* gsym)
8012 {
8013 if (gsym->has_plt_offset())
8014 return;
8015
8016 if (this->plt_ == NULL)
8017 this->make_plt_section(symtab, layout);
8018
8019 this->plt_->add_entry(symtab, layout, gsym);
8020 }
8021
8022
8023 // Create the PLT section.
8024 template<bool big_endian>
8025 void
8026 Target_arm<big_endian>::make_plt_section(
8027 Symbol_table* symtab, Layout* layout)
8028 {
8029 if (this->plt_ == NULL)
8030 {
8031 // Create the GOT section first.
8032 this->got_section(symtab, layout);
8033
8034 // GOT for irelatives is create along with got.plt.
8035 gold_assert(this->got_ != NULL
8036 && this->got_plt_ != NULL
8037 && this->got_irelative_ != NULL);
8038 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
8039 this->got_irelative_);
8040
8041 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8042 (elfcpp::SHF_ALLOC
8043 | elfcpp::SHF_EXECINSTR),
8044 this->plt_, ORDER_PLT, false);
8045 symtab->define_in_output_data("$a", NULL,
8046 Symbol_table::PREDEFINED,
8047 this->plt_,
8048 0, 0, elfcpp::STT_NOTYPE,
8049 elfcpp::STB_LOCAL,
8050 elfcpp::STV_DEFAULT, 0,
8051 false, false);
8052 }
8053 }
8054
8055
8056 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
8057
8058 template<bool big_endian>
8059 void
8060 Target_arm<big_endian>::make_local_ifunc_plt_entry(
8061 Symbol_table* symtab, Layout* layout,
8062 Sized_relobj_file<32, big_endian>* relobj,
8063 unsigned int local_sym_index)
8064 {
8065 if (relobj->local_has_plt_offset(local_sym_index))
8066 return;
8067 if (this->plt_ == NULL)
8068 this->make_plt_section(symtab, layout);
8069 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
8070 relobj,
8071 local_sym_index);
8072 relobj->set_local_plt_offset(local_sym_index, plt_offset);
8073 }
8074
8075
8076 // Return the number of entries in the PLT.
8077
8078 template<bool big_endian>
8079 unsigned int
8080 Target_arm<big_endian>::plt_entry_count() const
8081 {
8082 if (this->plt_ == NULL)
8083 return 0;
8084 return this->plt_->entry_count();
8085 }
8086
8087 // Return the offset of the first non-reserved PLT entry.
8088
8089 template<bool big_endian>
8090 unsigned int
8091 Target_arm<big_endian>::first_plt_entry_offset() const
8092 {
8093 return this->plt_->first_plt_entry_offset();
8094 }
8095
8096 // Return the size of each PLT entry.
8097
8098 template<bool big_endian>
8099 unsigned int
8100 Target_arm<big_endian>::plt_entry_size() const
8101 {
8102 return this->plt_->get_plt_entry_size();
8103 }
8104
8105 // Get the section to use for TLS_DESC relocations.
8106
8107 template<bool big_endian>
8108 typename Target_arm<big_endian>::Reloc_section*
8109 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8110 {
8111 return this->plt_section()->rel_tls_desc(layout);
8112 }
8113
8114 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8115
8116 template<bool big_endian>
8117 void
8118 Target_arm<big_endian>::define_tls_base_symbol(
8119 Symbol_table* symtab,
8120 Layout* layout)
8121 {
8122 if (this->tls_base_symbol_defined_)
8123 return;
8124
8125 Output_segment* tls_segment = layout->tls_segment();
8126 if (tls_segment != NULL)
8127 {
8128 bool is_exec = parameters->options().output_is_executable();
8129 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8130 Symbol_table::PREDEFINED,
8131 tls_segment, 0, 0,
8132 elfcpp::STT_TLS,
8133 elfcpp::STB_LOCAL,
8134 elfcpp::STV_HIDDEN, 0,
8135 (is_exec
8136 ? Symbol::SEGMENT_END
8137 : Symbol::SEGMENT_START),
8138 true);
8139 }
8140 this->tls_base_symbol_defined_ = true;
8141 }
8142
8143 // Create a GOT entry for the TLS module index.
8144
8145 template<bool big_endian>
8146 unsigned int
8147 Target_arm<big_endian>::got_mod_index_entry(
8148 Symbol_table* symtab,
8149 Layout* layout,
8150 Sized_relobj_file<32, big_endian>* object)
8151 {
8152 if (this->got_mod_index_offset_ == -1U)
8153 {
8154 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8155 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8156 unsigned int got_offset;
8157 if (!parameters->doing_static_link())
8158 {
8159 got_offset = got->add_constant(0);
8160 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8161 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8162 got_offset);
8163 }
8164 else
8165 {
8166 // We are doing a static link. Just mark it as belong to module 1,
8167 // the executable.
8168 got_offset = got->add_constant(1);
8169 }
8170
8171 got->add_constant(0);
8172 this->got_mod_index_offset_ = got_offset;
8173 }
8174 return this->got_mod_index_offset_;
8175 }
8176
8177 // Optimize the TLS relocation type based on what we know about the
8178 // symbol. IS_FINAL is true if the final address of this symbol is
8179 // known at link time.
8180
8181 template<bool big_endian>
8182 tls::Tls_optimization
8183 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8184 {
8185 // FIXME: Currently we do not do any TLS optimization.
8186 return tls::TLSOPT_NONE;
8187 }
8188
8189 // Get the Reference_flags for a particular relocation.
8190
8191 template<bool big_endian>
8192 int
8193 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8194 {
8195 switch (r_type)
8196 {
8197 case elfcpp::R_ARM_NONE:
8198 case elfcpp::R_ARM_V4BX:
8199 case elfcpp::R_ARM_GNU_VTENTRY:
8200 case elfcpp::R_ARM_GNU_VTINHERIT:
8201 // No symbol reference.
8202 return 0;
8203
8204 case elfcpp::R_ARM_ABS32:
8205 case elfcpp::R_ARM_ABS16:
8206 case elfcpp::R_ARM_ABS12:
8207 case elfcpp::R_ARM_THM_ABS5:
8208 case elfcpp::R_ARM_ABS8:
8209 case elfcpp::R_ARM_BASE_ABS:
8210 case elfcpp::R_ARM_MOVW_ABS_NC:
8211 case elfcpp::R_ARM_MOVT_ABS:
8212 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8213 case elfcpp::R_ARM_THM_MOVT_ABS:
8214 case elfcpp::R_ARM_ABS32_NOI:
8215 return Symbol::ABSOLUTE_REF;
8216
8217 case elfcpp::R_ARM_REL32:
8218 case elfcpp::R_ARM_LDR_PC_G0:
8219 case elfcpp::R_ARM_SBREL32:
8220 case elfcpp::R_ARM_THM_PC8:
8221 case elfcpp::R_ARM_BASE_PREL:
8222 case elfcpp::R_ARM_MOVW_PREL_NC:
8223 case elfcpp::R_ARM_MOVT_PREL:
8224 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8225 case elfcpp::R_ARM_THM_MOVT_PREL:
8226 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8227 case elfcpp::R_ARM_THM_PC12:
8228 case elfcpp::R_ARM_REL32_NOI:
8229 case elfcpp::R_ARM_ALU_PC_G0_NC:
8230 case elfcpp::R_ARM_ALU_PC_G0:
8231 case elfcpp::R_ARM_ALU_PC_G1_NC:
8232 case elfcpp::R_ARM_ALU_PC_G1:
8233 case elfcpp::R_ARM_ALU_PC_G2:
8234 case elfcpp::R_ARM_LDR_PC_G1:
8235 case elfcpp::R_ARM_LDR_PC_G2:
8236 case elfcpp::R_ARM_LDRS_PC_G0:
8237 case elfcpp::R_ARM_LDRS_PC_G1:
8238 case elfcpp::R_ARM_LDRS_PC_G2:
8239 case elfcpp::R_ARM_LDC_PC_G0:
8240 case elfcpp::R_ARM_LDC_PC_G1:
8241 case elfcpp::R_ARM_LDC_PC_G2:
8242 case elfcpp::R_ARM_ALU_SB_G0_NC:
8243 case elfcpp::R_ARM_ALU_SB_G0:
8244 case elfcpp::R_ARM_ALU_SB_G1_NC:
8245 case elfcpp::R_ARM_ALU_SB_G1:
8246 case elfcpp::R_ARM_ALU_SB_G2:
8247 case elfcpp::R_ARM_LDR_SB_G0:
8248 case elfcpp::R_ARM_LDR_SB_G1:
8249 case elfcpp::R_ARM_LDR_SB_G2:
8250 case elfcpp::R_ARM_LDRS_SB_G0:
8251 case elfcpp::R_ARM_LDRS_SB_G1:
8252 case elfcpp::R_ARM_LDRS_SB_G2:
8253 case elfcpp::R_ARM_LDC_SB_G0:
8254 case elfcpp::R_ARM_LDC_SB_G1:
8255 case elfcpp::R_ARM_LDC_SB_G2:
8256 case elfcpp::R_ARM_MOVW_BREL_NC:
8257 case elfcpp::R_ARM_MOVT_BREL:
8258 case elfcpp::R_ARM_MOVW_BREL:
8259 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8260 case elfcpp::R_ARM_THM_MOVT_BREL:
8261 case elfcpp::R_ARM_THM_MOVW_BREL:
8262 case elfcpp::R_ARM_GOTOFF32:
8263 case elfcpp::R_ARM_GOTOFF12:
8264 case elfcpp::R_ARM_SBREL31:
8265 return Symbol::RELATIVE_REF;
8266
8267 case elfcpp::R_ARM_PLT32:
8268 case elfcpp::R_ARM_CALL:
8269 case elfcpp::R_ARM_JUMP24:
8270 case elfcpp::R_ARM_THM_CALL:
8271 case elfcpp::R_ARM_THM_JUMP24:
8272 case elfcpp::R_ARM_THM_JUMP19:
8273 case elfcpp::R_ARM_THM_JUMP6:
8274 case elfcpp::R_ARM_THM_JUMP11:
8275 case elfcpp::R_ARM_THM_JUMP8:
8276 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8277 // in unwind tables. It may point to functions via PLTs.
8278 // So we treat it like call/jump relocations above.
8279 case elfcpp::R_ARM_PREL31:
8280 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8281
8282 case elfcpp::R_ARM_GOT_BREL:
8283 case elfcpp::R_ARM_GOT_ABS:
8284 case elfcpp::R_ARM_GOT_PREL:
8285 // Absolute in GOT.
8286 return Symbol::ABSOLUTE_REF;
8287
8288 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8289 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8290 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8291 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8292 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8293 return Symbol::TLS_REF;
8294
8295 case elfcpp::R_ARM_TARGET1:
8296 case elfcpp::R_ARM_TARGET2:
8297 case elfcpp::R_ARM_COPY:
8298 case elfcpp::R_ARM_GLOB_DAT:
8299 case elfcpp::R_ARM_JUMP_SLOT:
8300 case elfcpp::R_ARM_RELATIVE:
8301 case elfcpp::R_ARM_PC24:
8302 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8303 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8304 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8305 default:
8306 // Not expected. We will give an error later.
8307 return 0;
8308 }
8309 }
8310
8311 // Report an unsupported relocation against a local symbol.
8312
8313 template<bool big_endian>
8314 void
8315 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8316 Sized_relobj_file<32, big_endian>* object,
8317 unsigned int r_type)
8318 {
8319 gold_error(_("%s: unsupported reloc %u against local symbol"),
8320 object->name().c_str(), r_type);
8321 }
8322
8323 // We are about to emit a dynamic relocation of type R_TYPE. If the
8324 // dynamic linker does not support it, issue an error. The GNU linker
8325 // only issues a non-PIC error for an allocated read-only section.
8326 // Here we know the section is allocated, but we don't know that it is
8327 // read-only. But we check for all the relocation types which the
8328 // glibc dynamic linker supports, so it seems appropriate to issue an
8329 // error even if the section is not read-only.
8330
8331 template<bool big_endian>
8332 void
8333 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8334 unsigned int r_type)
8335 {
8336 switch (r_type)
8337 {
8338 // These are the relocation types supported by glibc for ARM.
8339 case elfcpp::R_ARM_RELATIVE:
8340 case elfcpp::R_ARM_COPY:
8341 case elfcpp::R_ARM_GLOB_DAT:
8342 case elfcpp::R_ARM_JUMP_SLOT:
8343 case elfcpp::R_ARM_ABS32:
8344 case elfcpp::R_ARM_ABS32_NOI:
8345 case elfcpp::R_ARM_IRELATIVE:
8346 case elfcpp::R_ARM_PC24:
8347 // FIXME: The following 3 types are not supported by Android's dynamic
8348 // linker.
8349 case elfcpp::R_ARM_TLS_DTPMOD32:
8350 case elfcpp::R_ARM_TLS_DTPOFF32:
8351 case elfcpp::R_ARM_TLS_TPOFF32:
8352 return;
8353
8354 default:
8355 {
8356 // This prevents us from issuing more than one error per reloc
8357 // section. But we can still wind up issuing more than one
8358 // error per object file.
8359 if (this->issued_non_pic_error_)
8360 return;
8361 const Arm_reloc_property* reloc_property =
8362 arm_reloc_property_table->get_reloc_property(r_type);
8363 gold_assert(reloc_property != NULL);
8364 object->error(_("requires unsupported dynamic reloc %s; "
8365 "recompile with -fPIC"),
8366 reloc_property->name().c_str());
8367 this->issued_non_pic_error_ = true;
8368 return;
8369 }
8370
8371 case elfcpp::R_ARM_NONE:
8372 gold_unreachable();
8373 }
8374 }
8375
8376
8377 // Return whether we need to make a PLT entry for a relocation of the
8378 // given type against a STT_GNU_IFUNC symbol.
8379
8380 template<bool big_endian>
8381 bool
8382 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8383 Sized_relobj_file<32, big_endian>* object,
8384 unsigned int r_type)
8385 {
8386 int flags = Scan::get_reference_flags(r_type);
8387 if (flags & Symbol::TLS_REF)
8388 {
8389 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8390 object->name().c_str(), r_type);
8391 return false;
8392 }
8393 return flags != 0;
8394 }
8395
8396
8397 // Scan a relocation for a local symbol.
8398 // FIXME: This only handles a subset of relocation types used by Android
8399 // on ARM v5te devices.
8400
8401 template<bool big_endian>
8402 inline void
8403 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8404 Layout* layout,
8405 Target_arm* target,
8406 Sized_relobj_file<32, big_endian>* object,
8407 unsigned int data_shndx,
8408 Output_section* output_section,
8409 const elfcpp::Rel<32, big_endian>& reloc,
8410 unsigned int r_type,
8411 const elfcpp::Sym<32, big_endian>& lsym,
8412 bool is_discarded)
8413 {
8414 if (is_discarded)
8415 return;
8416
8417 r_type = get_real_reloc_type(r_type);
8418
8419 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8420 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8421 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8422 {
8423 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8424 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8425 }
8426
8427 switch (r_type)
8428 {
8429 case elfcpp::R_ARM_NONE:
8430 case elfcpp::R_ARM_V4BX:
8431 case elfcpp::R_ARM_GNU_VTENTRY:
8432 case elfcpp::R_ARM_GNU_VTINHERIT:
8433 break;
8434
8435 case elfcpp::R_ARM_ABS32:
8436 case elfcpp::R_ARM_ABS32_NOI:
8437 // If building a shared library (or a position-independent
8438 // executable), we need to create a dynamic relocation for
8439 // this location. The relocation applied at link time will
8440 // apply the link-time value, so we flag the location with
8441 // an R_ARM_RELATIVE relocation so the dynamic loader can
8442 // relocate it easily.
8443 if (parameters->options().output_is_position_independent())
8444 {
8445 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8446 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8447 // If we are to add more other reloc types than R_ARM_ABS32,
8448 // we need to add check_non_pic(object, r_type) here.
8449 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8450 output_section, data_shndx,
8451 reloc.get_r_offset(), is_ifunc);
8452 }
8453 break;
8454
8455 case elfcpp::R_ARM_ABS16:
8456 case elfcpp::R_ARM_ABS12:
8457 case elfcpp::R_ARM_THM_ABS5:
8458 case elfcpp::R_ARM_ABS8:
8459 case elfcpp::R_ARM_BASE_ABS:
8460 case elfcpp::R_ARM_MOVW_ABS_NC:
8461 case elfcpp::R_ARM_MOVT_ABS:
8462 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8463 case elfcpp::R_ARM_THM_MOVT_ABS:
8464 // If building a shared library (or a position-independent
8465 // executable), we need to create a dynamic relocation for
8466 // this location. Because the addend needs to remain in the
8467 // data section, we need to be careful not to apply this
8468 // relocation statically.
8469 if (parameters->options().output_is_position_independent())
8470 {
8471 check_non_pic(object, r_type);
8472 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8473 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8474 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8475 rel_dyn->add_local(object, r_sym, r_type, output_section,
8476 data_shndx, reloc.get_r_offset());
8477 else
8478 {
8479 gold_assert(lsym.get_st_value() == 0);
8480 unsigned int shndx = lsym.get_st_shndx();
8481 bool is_ordinary;
8482 shndx = object->adjust_sym_shndx(r_sym, shndx,
8483 &is_ordinary);
8484 if (!is_ordinary)
8485 object->error(_("section symbol %u has bad shndx %u"),
8486 r_sym, shndx);
8487 else
8488 rel_dyn->add_local_section(object, shndx,
8489 r_type, output_section,
8490 data_shndx, reloc.get_r_offset());
8491 }
8492 }
8493 break;
8494
8495 case elfcpp::R_ARM_REL32:
8496 case elfcpp::R_ARM_LDR_PC_G0:
8497 case elfcpp::R_ARM_SBREL32:
8498 case elfcpp::R_ARM_THM_CALL:
8499 case elfcpp::R_ARM_THM_PC8:
8500 case elfcpp::R_ARM_BASE_PREL:
8501 case elfcpp::R_ARM_PLT32:
8502 case elfcpp::R_ARM_CALL:
8503 case elfcpp::R_ARM_JUMP24:
8504 case elfcpp::R_ARM_THM_JUMP24:
8505 case elfcpp::R_ARM_SBREL31:
8506 case elfcpp::R_ARM_PREL31:
8507 case elfcpp::R_ARM_MOVW_PREL_NC:
8508 case elfcpp::R_ARM_MOVT_PREL:
8509 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8510 case elfcpp::R_ARM_THM_MOVT_PREL:
8511 case elfcpp::R_ARM_THM_JUMP19:
8512 case elfcpp::R_ARM_THM_JUMP6:
8513 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8514 case elfcpp::R_ARM_THM_PC12:
8515 case elfcpp::R_ARM_REL32_NOI:
8516 case elfcpp::R_ARM_ALU_PC_G0_NC:
8517 case elfcpp::R_ARM_ALU_PC_G0:
8518 case elfcpp::R_ARM_ALU_PC_G1_NC:
8519 case elfcpp::R_ARM_ALU_PC_G1:
8520 case elfcpp::R_ARM_ALU_PC_G2:
8521 case elfcpp::R_ARM_LDR_PC_G1:
8522 case elfcpp::R_ARM_LDR_PC_G2:
8523 case elfcpp::R_ARM_LDRS_PC_G0:
8524 case elfcpp::R_ARM_LDRS_PC_G1:
8525 case elfcpp::R_ARM_LDRS_PC_G2:
8526 case elfcpp::R_ARM_LDC_PC_G0:
8527 case elfcpp::R_ARM_LDC_PC_G1:
8528 case elfcpp::R_ARM_LDC_PC_G2:
8529 case elfcpp::R_ARM_ALU_SB_G0_NC:
8530 case elfcpp::R_ARM_ALU_SB_G0:
8531 case elfcpp::R_ARM_ALU_SB_G1_NC:
8532 case elfcpp::R_ARM_ALU_SB_G1:
8533 case elfcpp::R_ARM_ALU_SB_G2:
8534 case elfcpp::R_ARM_LDR_SB_G0:
8535 case elfcpp::R_ARM_LDR_SB_G1:
8536 case elfcpp::R_ARM_LDR_SB_G2:
8537 case elfcpp::R_ARM_LDRS_SB_G0:
8538 case elfcpp::R_ARM_LDRS_SB_G1:
8539 case elfcpp::R_ARM_LDRS_SB_G2:
8540 case elfcpp::R_ARM_LDC_SB_G0:
8541 case elfcpp::R_ARM_LDC_SB_G1:
8542 case elfcpp::R_ARM_LDC_SB_G2:
8543 case elfcpp::R_ARM_MOVW_BREL_NC:
8544 case elfcpp::R_ARM_MOVT_BREL:
8545 case elfcpp::R_ARM_MOVW_BREL:
8546 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8547 case elfcpp::R_ARM_THM_MOVT_BREL:
8548 case elfcpp::R_ARM_THM_MOVW_BREL:
8549 case elfcpp::R_ARM_THM_JUMP11:
8550 case elfcpp::R_ARM_THM_JUMP8:
8551 // We don't need to do anything for a relative addressing relocation
8552 // against a local symbol if it does not reference the GOT.
8553 break;
8554
8555 case elfcpp::R_ARM_GOTOFF32:
8556 case elfcpp::R_ARM_GOTOFF12:
8557 // We need a GOT section:
8558 target->got_section(symtab, layout);
8559 break;
8560
8561 case elfcpp::R_ARM_GOT_BREL:
8562 case elfcpp::R_ARM_GOT_PREL:
8563 {
8564 // The symbol requires a GOT entry.
8565 Arm_output_data_got<big_endian>* got =
8566 target->got_section(symtab, layout);
8567 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8568 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8569 {
8570 // If we are generating a shared object, we need to add a
8571 // dynamic RELATIVE relocation for this symbol's GOT entry.
8572 if (parameters->options().output_is_position_independent())
8573 {
8574 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8575 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8576 rel_dyn->add_local_relative(
8577 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8578 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8579 }
8580 }
8581 }
8582 break;
8583
8584 case elfcpp::R_ARM_TARGET1:
8585 case elfcpp::R_ARM_TARGET2:
8586 // This should have been mapped to another type already.
8587 // Fall through.
8588 case elfcpp::R_ARM_COPY:
8589 case elfcpp::R_ARM_GLOB_DAT:
8590 case elfcpp::R_ARM_JUMP_SLOT:
8591 case elfcpp::R_ARM_RELATIVE:
8592 // These are relocations which should only be seen by the
8593 // dynamic linker, and should never be seen here.
8594 gold_error(_("%s: unexpected reloc %u in object file"),
8595 object->name().c_str(), r_type);
8596 break;
8597
8598
8599 // These are initial TLS relocs, which are expected when
8600 // linking.
8601 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8602 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8603 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8604 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8605 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8606 {
8607 bool output_is_shared = parameters->options().shared();
8608 const tls::Tls_optimization optimized_type
8609 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8610 r_type);
8611 switch (r_type)
8612 {
8613 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8614 if (optimized_type == tls::TLSOPT_NONE)
8615 {
8616 // Create a pair of GOT entries for the module index and
8617 // dtv-relative offset.
8618 Arm_output_data_got<big_endian>* got
8619 = target->got_section(symtab, layout);
8620 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8621 unsigned int shndx = lsym.get_st_shndx();
8622 bool is_ordinary;
8623 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8624 if (!is_ordinary)
8625 {
8626 object->error(_("local symbol %u has bad shndx %u"),
8627 r_sym, shndx);
8628 break;
8629 }
8630
8631 if (!parameters->doing_static_link())
8632 got->add_local_pair_with_rel(object, r_sym, shndx,
8633 GOT_TYPE_TLS_PAIR,
8634 target->rel_dyn_section(layout),
8635 elfcpp::R_ARM_TLS_DTPMOD32);
8636 else
8637 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8638 object, r_sym);
8639 }
8640 else
8641 // FIXME: TLS optimization not supported yet.
8642 gold_unreachable();
8643 break;
8644
8645 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8646 if (optimized_type == tls::TLSOPT_NONE)
8647 {
8648 // Create a GOT entry for the module index.
8649 target->got_mod_index_entry(symtab, layout, object);
8650 }
8651 else
8652 // FIXME: TLS optimization not supported yet.
8653 gold_unreachable();
8654 break;
8655
8656 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8657 break;
8658
8659 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8660 layout->set_has_static_tls();
8661 if (optimized_type == tls::TLSOPT_NONE)
8662 {
8663 // Create a GOT entry for the tp-relative offset.
8664 Arm_output_data_got<big_endian>* got
8665 = target->got_section(symtab, layout);
8666 unsigned int r_sym =
8667 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8668 if (!parameters->doing_static_link())
8669 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8670 target->rel_dyn_section(layout),
8671 elfcpp::R_ARM_TLS_TPOFF32);
8672 else if (!object->local_has_got_offset(r_sym,
8673 GOT_TYPE_TLS_OFFSET))
8674 {
8675 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8676 unsigned int got_offset =
8677 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8678 got->add_static_reloc(got_offset,
8679 elfcpp::R_ARM_TLS_TPOFF32, object,
8680 r_sym);
8681 }
8682 }
8683 else
8684 // FIXME: TLS optimization not supported yet.
8685 gold_unreachable();
8686 break;
8687
8688 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8689 layout->set_has_static_tls();
8690 if (output_is_shared)
8691 {
8692 // We need to create a dynamic relocation.
8693 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8694 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8695 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8696 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8697 output_section, data_shndx,
8698 reloc.get_r_offset());
8699 }
8700 break;
8701
8702 default:
8703 gold_unreachable();
8704 }
8705 }
8706 break;
8707
8708 case elfcpp::R_ARM_PC24:
8709 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8710 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8711 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8712 default:
8713 unsupported_reloc_local(object, r_type);
8714 break;
8715 }
8716 }
8717
8718 // Report an unsupported relocation against a global symbol.
8719
8720 template<bool big_endian>
8721 void
8722 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8723 Sized_relobj_file<32, big_endian>* object,
8724 unsigned int r_type,
8725 Symbol* gsym)
8726 {
8727 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8728 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8729 }
8730
8731 template<bool big_endian>
8732 inline bool
8733 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8734 unsigned int r_type)
8735 {
8736 switch (r_type)
8737 {
8738 case elfcpp::R_ARM_PC24:
8739 case elfcpp::R_ARM_THM_CALL:
8740 case elfcpp::R_ARM_PLT32:
8741 case elfcpp::R_ARM_CALL:
8742 case elfcpp::R_ARM_JUMP24:
8743 case elfcpp::R_ARM_THM_JUMP24:
8744 case elfcpp::R_ARM_SBREL31:
8745 case elfcpp::R_ARM_PREL31:
8746 case elfcpp::R_ARM_THM_JUMP19:
8747 case elfcpp::R_ARM_THM_JUMP6:
8748 case elfcpp::R_ARM_THM_JUMP11:
8749 case elfcpp::R_ARM_THM_JUMP8:
8750 // All the relocations above are branches except SBREL31 and PREL31.
8751 return false;
8752
8753 default:
8754 // Be conservative and assume this is a function pointer.
8755 return true;
8756 }
8757 }
8758
8759 template<bool big_endian>
8760 inline bool
8761 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8762 Symbol_table*,
8763 Layout*,
8764 Target_arm<big_endian>* target,
8765 Sized_relobj_file<32, big_endian>*,
8766 unsigned int,
8767 Output_section*,
8768 const elfcpp::Rel<32, big_endian>&,
8769 unsigned int r_type,
8770 const elfcpp::Sym<32, big_endian>&)
8771 {
8772 r_type = target->get_real_reloc_type(r_type);
8773 return possible_function_pointer_reloc(r_type);
8774 }
8775
8776 template<bool big_endian>
8777 inline bool
8778 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8779 Symbol_table*,
8780 Layout*,
8781 Target_arm<big_endian>* target,
8782 Sized_relobj_file<32, big_endian>*,
8783 unsigned int,
8784 Output_section*,
8785 const elfcpp::Rel<32, big_endian>&,
8786 unsigned int r_type,
8787 Symbol* gsym)
8788 {
8789 // GOT is not a function.
8790 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8791 return false;
8792
8793 r_type = target->get_real_reloc_type(r_type);
8794 return possible_function_pointer_reloc(r_type);
8795 }
8796
8797 // Scan a relocation for a global symbol.
8798
8799 template<bool big_endian>
8800 inline void
8801 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8802 Layout* layout,
8803 Target_arm* target,
8804 Sized_relobj_file<32, big_endian>* object,
8805 unsigned int data_shndx,
8806 Output_section* output_section,
8807 const elfcpp::Rel<32, big_endian>& reloc,
8808 unsigned int r_type,
8809 Symbol* gsym)
8810 {
8811 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8812 // section. We check here to avoid creating a dynamic reloc against
8813 // _GLOBAL_OFFSET_TABLE_.
8814 if (!target->has_got_section()
8815 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8816 target->got_section(symtab, layout);
8817
8818 // A STT_GNU_IFUNC symbol may require a PLT entry.
8819 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8820 && this->reloc_needs_plt_for_ifunc(object, r_type))
8821 target->make_plt_entry(symtab, layout, gsym);
8822
8823 r_type = get_real_reloc_type(r_type);
8824 switch (r_type)
8825 {
8826 case elfcpp::R_ARM_NONE:
8827 case elfcpp::R_ARM_V4BX:
8828 case elfcpp::R_ARM_GNU_VTENTRY:
8829 case elfcpp::R_ARM_GNU_VTINHERIT:
8830 break;
8831
8832 case elfcpp::R_ARM_ABS32:
8833 case elfcpp::R_ARM_ABS16:
8834 case elfcpp::R_ARM_ABS12:
8835 case elfcpp::R_ARM_THM_ABS5:
8836 case elfcpp::R_ARM_ABS8:
8837 case elfcpp::R_ARM_BASE_ABS:
8838 case elfcpp::R_ARM_MOVW_ABS_NC:
8839 case elfcpp::R_ARM_MOVT_ABS:
8840 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8841 case elfcpp::R_ARM_THM_MOVT_ABS:
8842 case elfcpp::R_ARM_ABS32_NOI:
8843 // Absolute addressing relocations.
8844 {
8845 // Make a PLT entry if necessary.
8846 if (this->symbol_needs_plt_entry(gsym))
8847 {
8848 target->make_plt_entry(symtab, layout, gsym);
8849 // Since this is not a PC-relative relocation, we may be
8850 // taking the address of a function. In that case we need to
8851 // set the entry in the dynamic symbol table to the address of
8852 // the PLT entry.
8853 if (gsym->is_from_dynobj() && !parameters->options().shared())
8854 gsym->set_needs_dynsym_value();
8855 }
8856 // Make a dynamic relocation if necessary.
8857 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8858 {
8859 if (!parameters->options().output_is_position_independent()
8860 && gsym->may_need_copy_reloc())
8861 {
8862 target->copy_reloc(symtab, layout, object,
8863 data_shndx, output_section, gsym, reloc);
8864 }
8865 else if ((r_type == elfcpp::R_ARM_ABS32
8866 || r_type == elfcpp::R_ARM_ABS32_NOI)
8867 && gsym->type() == elfcpp::STT_GNU_IFUNC
8868 && gsym->can_use_relative_reloc(false)
8869 && !gsym->is_from_dynobj()
8870 && !gsym->is_undefined()
8871 && !gsym->is_preemptible())
8872 {
8873 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8874 // symbol. This makes a function address in a PIE executable
8875 // match the address in a shared library that it links against.
8876 Reloc_section* rel_irelative =
8877 target->rel_irelative_section(layout);
8878 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8879 rel_irelative->add_symbolless_global_addend(
8880 gsym, r_type, output_section, object,
8881 data_shndx, reloc.get_r_offset());
8882 }
8883 else if ((r_type == elfcpp::R_ARM_ABS32
8884 || r_type == elfcpp::R_ARM_ABS32_NOI)
8885 && gsym->can_use_relative_reloc(false))
8886 {
8887 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8888 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8889 output_section, object,
8890 data_shndx, reloc.get_r_offset());
8891 }
8892 else
8893 {
8894 check_non_pic(object, r_type);
8895 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8896 rel_dyn->add_global(gsym, r_type, output_section, object,
8897 data_shndx, reloc.get_r_offset());
8898 }
8899 }
8900 }
8901 break;
8902
8903 case elfcpp::R_ARM_GOTOFF32:
8904 case elfcpp::R_ARM_GOTOFF12:
8905 // We need a GOT section.
8906 target->got_section(symtab, layout);
8907 break;
8908
8909 case elfcpp::R_ARM_REL32:
8910 case elfcpp::R_ARM_LDR_PC_G0:
8911 case elfcpp::R_ARM_SBREL32:
8912 case elfcpp::R_ARM_THM_PC8:
8913 case elfcpp::R_ARM_BASE_PREL:
8914 case elfcpp::R_ARM_MOVW_PREL_NC:
8915 case elfcpp::R_ARM_MOVT_PREL:
8916 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8917 case elfcpp::R_ARM_THM_MOVT_PREL:
8918 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8919 case elfcpp::R_ARM_THM_PC12:
8920 case elfcpp::R_ARM_REL32_NOI:
8921 case elfcpp::R_ARM_ALU_PC_G0_NC:
8922 case elfcpp::R_ARM_ALU_PC_G0:
8923 case elfcpp::R_ARM_ALU_PC_G1_NC:
8924 case elfcpp::R_ARM_ALU_PC_G1:
8925 case elfcpp::R_ARM_ALU_PC_G2:
8926 case elfcpp::R_ARM_LDR_PC_G1:
8927 case elfcpp::R_ARM_LDR_PC_G2:
8928 case elfcpp::R_ARM_LDRS_PC_G0:
8929 case elfcpp::R_ARM_LDRS_PC_G1:
8930 case elfcpp::R_ARM_LDRS_PC_G2:
8931 case elfcpp::R_ARM_LDC_PC_G0:
8932 case elfcpp::R_ARM_LDC_PC_G1:
8933 case elfcpp::R_ARM_LDC_PC_G2:
8934 case elfcpp::R_ARM_ALU_SB_G0_NC:
8935 case elfcpp::R_ARM_ALU_SB_G0:
8936 case elfcpp::R_ARM_ALU_SB_G1_NC:
8937 case elfcpp::R_ARM_ALU_SB_G1:
8938 case elfcpp::R_ARM_ALU_SB_G2:
8939 case elfcpp::R_ARM_LDR_SB_G0:
8940 case elfcpp::R_ARM_LDR_SB_G1:
8941 case elfcpp::R_ARM_LDR_SB_G2:
8942 case elfcpp::R_ARM_LDRS_SB_G0:
8943 case elfcpp::R_ARM_LDRS_SB_G1:
8944 case elfcpp::R_ARM_LDRS_SB_G2:
8945 case elfcpp::R_ARM_LDC_SB_G0:
8946 case elfcpp::R_ARM_LDC_SB_G1:
8947 case elfcpp::R_ARM_LDC_SB_G2:
8948 case elfcpp::R_ARM_MOVW_BREL_NC:
8949 case elfcpp::R_ARM_MOVT_BREL:
8950 case elfcpp::R_ARM_MOVW_BREL:
8951 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8952 case elfcpp::R_ARM_THM_MOVT_BREL:
8953 case elfcpp::R_ARM_THM_MOVW_BREL:
8954 // Relative addressing relocations.
8955 {
8956 // Make a dynamic relocation if necessary.
8957 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8958 {
8959 if (parameters->options().output_is_executable()
8960 && target->may_need_copy_reloc(gsym))
8961 {
8962 target->copy_reloc(symtab, layout, object,
8963 data_shndx, output_section, gsym, reloc);
8964 }
8965 else
8966 {
8967 check_non_pic(object, r_type);
8968 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8969 rel_dyn->add_global(gsym, r_type, output_section, object,
8970 data_shndx, reloc.get_r_offset());
8971 }
8972 }
8973 }
8974 break;
8975
8976 case elfcpp::R_ARM_THM_CALL:
8977 case elfcpp::R_ARM_PLT32:
8978 case elfcpp::R_ARM_CALL:
8979 case elfcpp::R_ARM_JUMP24:
8980 case elfcpp::R_ARM_THM_JUMP24:
8981 case elfcpp::R_ARM_SBREL31:
8982 case elfcpp::R_ARM_PREL31:
8983 case elfcpp::R_ARM_THM_JUMP19:
8984 case elfcpp::R_ARM_THM_JUMP6:
8985 case elfcpp::R_ARM_THM_JUMP11:
8986 case elfcpp::R_ARM_THM_JUMP8:
8987 // All the relocation above are branches except for the PREL31 ones.
8988 // A PREL31 relocation can point to a personality function in a shared
8989 // library. In that case we want to use a PLT because we want to
8990 // call the personality routine and the dynamic linkers we care about
8991 // do not support dynamic PREL31 relocations. An REL31 relocation may
8992 // point to a function whose unwinding behaviour is being described but
8993 // we will not mistakenly generate a PLT for that because we should use
8994 // a local section symbol.
8995
8996 // If the symbol is fully resolved, this is just a relative
8997 // local reloc. Otherwise we need a PLT entry.
8998 if (gsym->final_value_is_known())
8999 break;
9000 // If building a shared library, we can also skip the PLT entry
9001 // if the symbol is defined in the output file and is protected
9002 // or hidden.
9003 if (gsym->is_defined()
9004 && !gsym->is_from_dynobj()
9005 && !gsym->is_preemptible())
9006 break;
9007 target->make_plt_entry(symtab, layout, gsym);
9008 break;
9009
9010 case elfcpp::R_ARM_GOT_BREL:
9011 case elfcpp::R_ARM_GOT_ABS:
9012 case elfcpp::R_ARM_GOT_PREL:
9013 {
9014 // The symbol requires a GOT entry.
9015 Arm_output_data_got<big_endian>* got =
9016 target->got_section(symtab, layout);
9017 if (gsym->final_value_is_known())
9018 {
9019 // For a STT_GNU_IFUNC symbol we want the PLT address.
9020 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9021 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9022 else
9023 got->add_global(gsym, GOT_TYPE_STANDARD);
9024 }
9025 else
9026 {
9027 // If this symbol is not fully resolved, we need to add a
9028 // GOT entry with a dynamic relocation.
9029 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9030 if (gsym->is_from_dynobj()
9031 || gsym->is_undefined()
9032 || gsym->is_preemptible()
9033 || (gsym->visibility() == elfcpp::STV_PROTECTED
9034 && parameters->options().shared())
9035 || (gsym->type() == elfcpp::STT_GNU_IFUNC
9036 && parameters->options().output_is_position_independent()))
9037 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
9038 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
9039 else
9040 {
9041 // For a STT_GNU_IFUNC symbol we want to write the PLT
9042 // offset into the GOT, so that function pointer
9043 // comparisons work correctly.
9044 bool is_new;
9045 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
9046 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
9047 else
9048 {
9049 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9050 // Tell the dynamic linker to use the PLT address
9051 // when resolving relocations.
9052 if (gsym->is_from_dynobj()
9053 && !parameters->options().shared())
9054 gsym->set_needs_dynsym_value();
9055 }
9056 if (is_new)
9057 rel_dyn->add_global_relative(
9058 gsym, elfcpp::R_ARM_RELATIVE, got,
9059 gsym->got_offset(GOT_TYPE_STANDARD));
9060 }
9061 }
9062 }
9063 break;
9064
9065 case elfcpp::R_ARM_TARGET1:
9066 case elfcpp::R_ARM_TARGET2:
9067 // These should have been mapped to other types already.
9068 // Fall through.
9069 case elfcpp::R_ARM_COPY:
9070 case elfcpp::R_ARM_GLOB_DAT:
9071 case elfcpp::R_ARM_JUMP_SLOT:
9072 case elfcpp::R_ARM_RELATIVE:
9073 // These are relocations which should only be seen by the
9074 // dynamic linker, and should never be seen here.
9075 gold_error(_("%s: unexpected reloc %u in object file"),
9076 object->name().c_str(), r_type);
9077 break;
9078
9079 // These are initial tls relocs, which are expected when
9080 // linking.
9081 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9082 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9083 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9084 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9085 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9086 {
9087 const bool is_final = gsym->final_value_is_known();
9088 const tls::Tls_optimization optimized_type
9089 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9090 switch (r_type)
9091 {
9092 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9093 if (optimized_type == tls::TLSOPT_NONE)
9094 {
9095 // Create a pair of GOT entries for the module index and
9096 // dtv-relative offset.
9097 Arm_output_data_got<big_endian>* got
9098 = target->got_section(symtab, layout);
9099 if (!parameters->doing_static_link())
9100 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
9101 target->rel_dyn_section(layout),
9102 elfcpp::R_ARM_TLS_DTPMOD32,
9103 elfcpp::R_ARM_TLS_DTPOFF32);
9104 else
9105 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9106 }
9107 else
9108 // FIXME: TLS optimization not supported yet.
9109 gold_unreachable();
9110 break;
9111
9112 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9113 if (optimized_type == tls::TLSOPT_NONE)
9114 {
9115 // Create a GOT entry for the module index.
9116 target->got_mod_index_entry(symtab, layout, object);
9117 }
9118 else
9119 // FIXME: TLS optimization not supported yet.
9120 gold_unreachable();
9121 break;
9122
9123 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9124 break;
9125
9126 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9127 layout->set_has_static_tls();
9128 if (optimized_type == tls::TLSOPT_NONE)
9129 {
9130 // Create a GOT entry for the tp-relative offset.
9131 Arm_output_data_got<big_endian>* got
9132 = target->got_section(symtab, layout);
9133 if (!parameters->doing_static_link())
9134 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9135 target->rel_dyn_section(layout),
9136 elfcpp::R_ARM_TLS_TPOFF32);
9137 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9138 {
9139 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9140 unsigned int got_offset =
9141 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9142 got->add_static_reloc(got_offset,
9143 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9144 }
9145 }
9146 else
9147 // FIXME: TLS optimization not supported yet.
9148 gold_unreachable();
9149 break;
9150
9151 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9152 layout->set_has_static_tls();
9153 if (parameters->options().shared())
9154 {
9155 // We need to create a dynamic relocation.
9156 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9157 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9158 output_section, object,
9159 data_shndx, reloc.get_r_offset());
9160 }
9161 break;
9162
9163 default:
9164 gold_unreachable();
9165 }
9166 }
9167 break;
9168
9169 case elfcpp::R_ARM_PC24:
9170 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9171 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9172 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9173 default:
9174 unsupported_reloc_global(object, r_type, gsym);
9175 break;
9176 }
9177 }
9178
9179 // Process relocations for gc.
9180
9181 template<bool big_endian>
9182 void
9183 Target_arm<big_endian>::gc_process_relocs(
9184 Symbol_table* symtab,
9185 Layout* layout,
9186 Sized_relobj_file<32, big_endian>* object,
9187 unsigned int data_shndx,
9188 unsigned int,
9189 const unsigned char* prelocs,
9190 size_t reloc_count,
9191 Output_section* output_section,
9192 bool needs_special_offset_handling,
9193 size_t local_symbol_count,
9194 const unsigned char* plocal_symbols)
9195 {
9196 typedef Target_arm<big_endian> Arm;
9197 typedef typename Target_arm<big_endian>::Scan Scan;
9198
9199 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
9200 symtab,
9201 layout,
9202 this,
9203 object,
9204 data_shndx,
9205 prelocs,
9206 reloc_count,
9207 output_section,
9208 needs_special_offset_handling,
9209 local_symbol_count,
9210 plocal_symbols);
9211 }
9212
9213 // Scan relocations for a section.
9214
9215 template<bool big_endian>
9216 void
9217 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9218 Layout* layout,
9219 Sized_relobj_file<32, big_endian>* object,
9220 unsigned int data_shndx,
9221 unsigned int sh_type,
9222 const unsigned char* prelocs,
9223 size_t reloc_count,
9224 Output_section* output_section,
9225 bool needs_special_offset_handling,
9226 size_t local_symbol_count,
9227 const unsigned char* plocal_symbols)
9228 {
9229 if (sh_type == elfcpp::SHT_RELA)
9230 {
9231 gold_error(_("%s: unsupported RELA reloc section"),
9232 object->name().c_str());
9233 return;
9234 }
9235
9236 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
9237 symtab,
9238 layout,
9239 this,
9240 object,
9241 data_shndx,
9242 prelocs,
9243 reloc_count,
9244 output_section,
9245 needs_special_offset_handling,
9246 local_symbol_count,
9247 plocal_symbols);
9248 }
9249
9250 // Finalize the sections.
9251
9252 template<bool big_endian>
9253 void
9254 Target_arm<big_endian>::do_finalize_sections(
9255 Layout* layout,
9256 const Input_objects* input_objects,
9257 Symbol_table*)
9258 {
9259 bool merged_any_attributes = false;
9260 // Merge processor-specific flags.
9261 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9262 p != input_objects->relobj_end();
9263 ++p)
9264 {
9265 Arm_relobj<big_endian>* arm_relobj =
9266 Arm_relobj<big_endian>::as_arm_relobj(*p);
9267 if (arm_relobj->merge_flags_and_attributes())
9268 {
9269 this->merge_processor_specific_flags(
9270 arm_relobj->name(),
9271 arm_relobj->processor_specific_flags());
9272 this->merge_object_attributes(arm_relobj->name().c_str(),
9273 arm_relobj->attributes_section_data());
9274 merged_any_attributes = true;
9275 }
9276 }
9277
9278 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9279 p != input_objects->dynobj_end();
9280 ++p)
9281 {
9282 Arm_dynobj<big_endian>* arm_dynobj =
9283 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9284 this->merge_processor_specific_flags(
9285 arm_dynobj->name(),
9286 arm_dynobj->processor_specific_flags());
9287 this->merge_object_attributes(arm_dynobj->name().c_str(),
9288 arm_dynobj->attributes_section_data());
9289 merged_any_attributes = true;
9290 }
9291
9292 // Create an empty uninitialized attribute section if we still don't have it
9293 // at this moment. This happens if there is no attributes sections in all
9294 // inputs.
9295 if (this->attributes_section_data_ == NULL)
9296 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9297
9298 const Object_attribute* cpu_arch_attr =
9299 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9300 // Check if we need to use Cortex-A8 workaround.
9301 if (parameters->options().user_set_fix_cortex_a8())
9302 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9303 else
9304 {
9305 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9306 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9307 // profile.
9308 const Object_attribute* cpu_arch_profile_attr =
9309 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9310 this->fix_cortex_a8_ =
9311 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9312 && (cpu_arch_profile_attr->int_value() == 'A'
9313 || cpu_arch_profile_attr->int_value() == 0));
9314 }
9315
9316 // Check if we can use V4BX interworking.
9317 // The V4BX interworking stub contains BX instruction,
9318 // which is not specified for some profiles.
9319 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9320 && !this->may_use_v4t_interworking())
9321 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9322 "the target profile does not support BX instruction"));
9323
9324 // Fill in some more dynamic tags.
9325 const Reloc_section* rel_plt = (this->plt_ == NULL
9326 ? NULL
9327 : this->plt_->rel_plt());
9328 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9329 this->rel_dyn_, true, false);
9330
9331 // Emit any relocs we saved in an attempt to avoid generating COPY
9332 // relocs.
9333 if (this->copy_relocs_.any_saved_relocs())
9334 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9335
9336 // Handle the .ARM.exidx section.
9337 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9338
9339 if (!parameters->options().relocatable())
9340 {
9341 if (exidx_section != NULL
9342 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9343 {
9344 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9345 // the .ARM.exidx section.
9346 if (!layout->script_options()->saw_phdrs_clause())
9347 {
9348 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9349 0)
9350 == NULL);
9351 Output_segment* exidx_segment =
9352 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9353 exidx_segment->add_output_section_to_nonload(exidx_section,
9354 elfcpp::PF_R);
9355 }
9356 }
9357 }
9358
9359 // Create an .ARM.attributes section if we have merged any attributes
9360 // from inputs.
9361 if (merged_any_attributes)
9362 {
9363 Output_attributes_section_data* attributes_section =
9364 new Output_attributes_section_data(*this->attributes_section_data_);
9365 layout->add_output_section_data(".ARM.attributes",
9366 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9367 attributes_section, ORDER_INVALID,
9368 false);
9369 }
9370
9371 // Fix up links in section EXIDX headers.
9372 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9373 p != layout->section_list().end();
9374 ++p)
9375 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9376 {
9377 Arm_output_section<big_endian>* os =
9378 Arm_output_section<big_endian>::as_arm_output_section(*p);
9379 os->set_exidx_section_link();
9380 }
9381 }
9382
9383 // Return whether a direct absolute static relocation needs to be applied.
9384 // In cases where Scan::local() or Scan::global() has created
9385 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9386 // of the relocation is carried in the data, and we must not
9387 // apply the static relocation.
9388
9389 template<bool big_endian>
9390 inline bool
9391 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9392 const Sized_symbol<32>* gsym,
9393 unsigned int r_type,
9394 bool is_32bit,
9395 Output_section* output_section)
9396 {
9397 // If the output section is not allocated, then we didn't call
9398 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9399 // the reloc here.
9400 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9401 return true;
9402
9403 int ref_flags = Scan::get_reference_flags(r_type);
9404
9405 // For local symbols, we will have created a non-RELATIVE dynamic
9406 // relocation only if (a) the output is position independent,
9407 // (b) the relocation is absolute (not pc- or segment-relative), and
9408 // (c) the relocation is not 32 bits wide.
9409 if (gsym == NULL)
9410 return !(parameters->options().output_is_position_independent()
9411 && (ref_flags & Symbol::ABSOLUTE_REF)
9412 && !is_32bit);
9413
9414 // For global symbols, we use the same helper routines used in the
9415 // scan pass. If we did not create a dynamic relocation, or if we
9416 // created a RELATIVE dynamic relocation, we should apply the static
9417 // relocation.
9418 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9419 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9420 && gsym->can_use_relative_reloc(ref_flags
9421 & Symbol::FUNCTION_CALL);
9422 return !has_dyn || is_rel;
9423 }
9424
9425 // Perform a relocation.
9426
9427 template<bool big_endian>
9428 inline bool
9429 Target_arm<big_endian>::Relocate::relocate(
9430 const Relocate_info<32, big_endian>* relinfo,
9431 unsigned int,
9432 Target_arm* target,
9433 Output_section* output_section,
9434 size_t relnum,
9435 const unsigned char* preloc,
9436 const Sized_symbol<32>* gsym,
9437 const Symbol_value<32>* psymval,
9438 unsigned char* view,
9439 Arm_address address,
9440 section_size_type view_size)
9441 {
9442 if (view == NULL)
9443 return true;
9444
9445 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9446
9447 const elfcpp::Rel<32, big_endian> rel(preloc);
9448 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
9449 r_type = get_real_reloc_type(r_type);
9450 const Arm_reloc_property* reloc_property =
9451 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9452 if (reloc_property == NULL)
9453 {
9454 std::string reloc_name =
9455 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9456 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9457 _("cannot relocate %s in object file"),
9458 reloc_name.c_str());
9459 return true;
9460 }
9461
9462 const Arm_relobj<big_endian>* object =
9463 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9464
9465 // If the final branch target of a relocation is THUMB instruction, this
9466 // is 1. Otherwise it is 0.
9467 Arm_address thumb_bit = 0;
9468 Symbol_value<32> symval;
9469 bool is_weakly_undefined_without_plt = false;
9470 bool have_got_offset = false;
9471 unsigned int got_offset = 0;
9472
9473 // If the relocation uses the GOT entry of a symbol instead of the symbol
9474 // itself, we don't care about whether the symbol is defined or what kind
9475 // of symbol it is.
9476 if (reloc_property->uses_got_entry())
9477 {
9478 // Get the GOT offset.
9479 // The GOT pointer points to the end of the GOT section.
9480 // We need to subtract the size of the GOT section to get
9481 // the actual offset to use in the relocation.
9482 // TODO: We should move GOT offset computing code in TLS relocations
9483 // to here.
9484 switch (r_type)
9485 {
9486 case elfcpp::R_ARM_GOT_BREL:
9487 case elfcpp::R_ARM_GOT_PREL:
9488 if (gsym != NULL)
9489 {
9490 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9491 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9492 - target->got_size());
9493 }
9494 else
9495 {
9496 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9497 gold_assert(object->local_has_got_offset(r_sym,
9498 GOT_TYPE_STANDARD));
9499 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9500 - target->got_size());
9501 }
9502 have_got_offset = true;
9503 break;
9504
9505 default:
9506 break;
9507 }
9508 }
9509 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9510 {
9511 if (gsym != NULL)
9512 {
9513 // This is a global symbol. Determine if we use PLT and if the
9514 // final target is THUMB.
9515 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9516 {
9517 // This uses a PLT, change the symbol value.
9518 symval.set_output_value(target->plt_address_for_global(gsym));
9519 psymval = &symval;
9520 }
9521 else if (gsym->is_weak_undefined())
9522 {
9523 // This is a weakly undefined symbol and we do not use PLT
9524 // for this relocation. A branch targeting this symbol will
9525 // be converted into an NOP.
9526 is_weakly_undefined_without_plt = true;
9527 }
9528 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9529 {
9530 // This relocation uses the symbol value but the symbol is
9531 // undefined. Exit early and have the caller reporting an
9532 // error.
9533 return true;
9534 }
9535 else
9536 {
9537 // Set thumb bit if symbol:
9538 // -Has type STT_ARM_TFUNC or
9539 // -Has type STT_FUNC, is defined and with LSB in value set.
9540 thumb_bit =
9541 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9542 || (gsym->type() == elfcpp::STT_FUNC
9543 && !gsym->is_undefined()
9544 && ((psymval->value(object, 0) & 1) != 0)))
9545 ? 1
9546 : 0);
9547 }
9548 }
9549 else
9550 {
9551 // This is a local symbol. Determine if the final target is THUMB.
9552 // We saved this information when all the local symbols were read.
9553 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9554 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9555 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9556
9557 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9558 {
9559 symval.set_output_value(
9560 target->plt_address_for_local(object, r_sym));
9561 psymval = &symval;
9562 }
9563 }
9564 }
9565 else
9566 {
9567 // This is a fake relocation synthesized for a stub. It does not have
9568 // a real symbol. We just look at the LSB of the symbol value to
9569 // determine if the target is THUMB or not.
9570 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9571 }
9572
9573 // Strip LSB if this points to a THUMB target.
9574 if (thumb_bit != 0
9575 && reloc_property->uses_thumb_bit()
9576 && ((psymval->value(object, 0) & 1) != 0))
9577 {
9578 Arm_address stripped_value =
9579 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9580 symval.set_output_value(stripped_value);
9581 psymval = &symval;
9582 }
9583
9584 // To look up relocation stubs, we need to pass the symbol table index of
9585 // a local symbol.
9586 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9587
9588 // Get the addressing origin of the output segment defining the
9589 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9590 Arm_address sym_origin = 0;
9591 if (reloc_property->uses_symbol_base())
9592 {
9593 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9594 // R_ARM_BASE_ABS with the NULL symbol will give the
9595 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9596 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9597 sym_origin = target->got_plt_section()->address();
9598 else if (gsym == NULL)
9599 sym_origin = 0;
9600 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9601 sym_origin = gsym->output_segment()->vaddr();
9602 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9603 sym_origin = gsym->output_data()->address();
9604
9605 // TODO: Assumes the segment base to be zero for the global symbols
9606 // till the proper support for the segment-base-relative addressing
9607 // will be implemented. This is consistent with GNU ld.
9608 }
9609
9610 // For relative addressing relocation, find out the relative address base.
9611 Arm_address relative_address_base = 0;
9612 switch(reloc_property->relative_address_base())
9613 {
9614 case Arm_reloc_property::RAB_NONE:
9615 // Relocations with relative address bases RAB_TLS and RAB_tp are
9616 // handled by relocate_tls. So we do not need to do anything here.
9617 case Arm_reloc_property::RAB_TLS:
9618 case Arm_reloc_property::RAB_tp:
9619 break;
9620 case Arm_reloc_property::RAB_B_S:
9621 relative_address_base = sym_origin;
9622 break;
9623 case Arm_reloc_property::RAB_GOT_ORG:
9624 relative_address_base = target->got_plt_section()->address();
9625 break;
9626 case Arm_reloc_property::RAB_P:
9627 relative_address_base = address;
9628 break;
9629 case Arm_reloc_property::RAB_Pa:
9630 relative_address_base = address & 0xfffffffcU;
9631 break;
9632 default:
9633 gold_unreachable();
9634 }
9635
9636 typename Arm_relocate_functions::Status reloc_status =
9637 Arm_relocate_functions::STATUS_OKAY;
9638 bool check_overflow = reloc_property->checks_overflow();
9639 switch (r_type)
9640 {
9641 case elfcpp::R_ARM_NONE:
9642 break;
9643
9644 case elfcpp::R_ARM_ABS8:
9645 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9646 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9647 break;
9648
9649 case elfcpp::R_ARM_ABS12:
9650 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9651 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9652 break;
9653
9654 case elfcpp::R_ARM_ABS16:
9655 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9656 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9657 break;
9658
9659 case elfcpp::R_ARM_ABS32:
9660 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9661 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9662 thumb_bit);
9663 break;
9664
9665 case elfcpp::R_ARM_ABS32_NOI:
9666 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9667 // No thumb bit for this relocation: (S + A)
9668 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9669 0);
9670 break;
9671
9672 case elfcpp::R_ARM_MOVW_ABS_NC:
9673 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9674 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9675 0, thumb_bit,
9676 check_overflow);
9677 break;
9678
9679 case elfcpp::R_ARM_MOVT_ABS:
9680 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9681 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9682 break;
9683
9684 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9685 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9686 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9687 0, thumb_bit, false);
9688 break;
9689
9690 case elfcpp::R_ARM_THM_MOVT_ABS:
9691 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9692 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9693 psymval, 0);
9694 break;
9695
9696 case elfcpp::R_ARM_MOVW_PREL_NC:
9697 case elfcpp::R_ARM_MOVW_BREL_NC:
9698 case elfcpp::R_ARM_MOVW_BREL:
9699 reloc_status =
9700 Arm_relocate_functions::movw(view, object, psymval,
9701 relative_address_base, thumb_bit,
9702 check_overflow);
9703 break;
9704
9705 case elfcpp::R_ARM_MOVT_PREL:
9706 case elfcpp::R_ARM_MOVT_BREL:
9707 reloc_status =
9708 Arm_relocate_functions::movt(view, object, psymval,
9709 relative_address_base);
9710 break;
9711
9712 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9713 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9714 case elfcpp::R_ARM_THM_MOVW_BREL:
9715 reloc_status =
9716 Arm_relocate_functions::thm_movw(view, object, psymval,
9717 relative_address_base,
9718 thumb_bit, check_overflow);
9719 break;
9720
9721 case elfcpp::R_ARM_THM_MOVT_PREL:
9722 case elfcpp::R_ARM_THM_MOVT_BREL:
9723 reloc_status =
9724 Arm_relocate_functions::thm_movt(view, object, psymval,
9725 relative_address_base);
9726 break;
9727
9728 case elfcpp::R_ARM_REL32:
9729 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9730 address, thumb_bit);
9731 break;
9732
9733 case elfcpp::R_ARM_THM_ABS5:
9734 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9735 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9736 break;
9737
9738 // Thumb long branches.
9739 case elfcpp::R_ARM_THM_CALL:
9740 case elfcpp::R_ARM_THM_XPC22:
9741 case elfcpp::R_ARM_THM_JUMP24:
9742 reloc_status =
9743 Arm_relocate_functions::thumb_branch_common(
9744 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9745 thumb_bit, is_weakly_undefined_without_plt);
9746 break;
9747
9748 case elfcpp::R_ARM_GOTOFF32:
9749 {
9750 Arm_address got_origin;
9751 got_origin = target->got_plt_section()->address();
9752 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9753 got_origin, thumb_bit);
9754 }
9755 break;
9756
9757 case elfcpp::R_ARM_BASE_PREL:
9758 gold_assert(gsym != NULL);
9759 reloc_status =
9760 Arm_relocate_functions::base_prel(view, sym_origin, address);
9761 break;
9762
9763 case elfcpp::R_ARM_BASE_ABS:
9764 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9765 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9766 break;
9767
9768 case elfcpp::R_ARM_GOT_BREL:
9769 gold_assert(have_got_offset);
9770 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9771 break;
9772
9773 case elfcpp::R_ARM_GOT_PREL:
9774 gold_assert(have_got_offset);
9775 // Get the address origin for GOT PLT, which is allocated right
9776 // after the GOT section, to calculate an absolute address of
9777 // the symbol GOT entry (got_origin + got_offset).
9778 Arm_address got_origin;
9779 got_origin = target->got_plt_section()->address();
9780 reloc_status = Arm_relocate_functions::got_prel(view,
9781 got_origin + got_offset,
9782 address);
9783 break;
9784
9785 case elfcpp::R_ARM_PLT32:
9786 case elfcpp::R_ARM_CALL:
9787 case elfcpp::R_ARM_JUMP24:
9788 case elfcpp::R_ARM_XPC25:
9789 gold_assert(gsym == NULL
9790 || gsym->has_plt_offset()
9791 || gsym->final_value_is_known()
9792 || (gsym->is_defined()
9793 && !gsym->is_from_dynobj()
9794 && !gsym->is_preemptible()));
9795 reloc_status =
9796 Arm_relocate_functions::arm_branch_common(
9797 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9798 thumb_bit, is_weakly_undefined_without_plt);
9799 break;
9800
9801 case elfcpp::R_ARM_THM_JUMP19:
9802 reloc_status =
9803 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9804 thumb_bit);
9805 break;
9806
9807 case elfcpp::R_ARM_THM_JUMP6:
9808 reloc_status =
9809 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9810 break;
9811
9812 case elfcpp::R_ARM_THM_JUMP8:
9813 reloc_status =
9814 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9815 break;
9816
9817 case elfcpp::R_ARM_THM_JUMP11:
9818 reloc_status =
9819 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9820 break;
9821
9822 case elfcpp::R_ARM_PREL31:
9823 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9824 address, thumb_bit);
9825 break;
9826
9827 case elfcpp::R_ARM_V4BX:
9828 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9829 {
9830 const bool is_v4bx_interworking =
9831 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9832 reloc_status =
9833 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9834 is_v4bx_interworking);
9835 }
9836 break;
9837
9838 case elfcpp::R_ARM_THM_PC8:
9839 reloc_status =
9840 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9841 break;
9842
9843 case elfcpp::R_ARM_THM_PC12:
9844 reloc_status =
9845 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9846 break;
9847
9848 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9849 reloc_status =
9850 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9851 thumb_bit);
9852 break;
9853
9854 case elfcpp::R_ARM_ALU_PC_G0_NC:
9855 case elfcpp::R_ARM_ALU_PC_G0:
9856 case elfcpp::R_ARM_ALU_PC_G1_NC:
9857 case elfcpp::R_ARM_ALU_PC_G1:
9858 case elfcpp::R_ARM_ALU_PC_G2:
9859 case elfcpp::R_ARM_ALU_SB_G0_NC:
9860 case elfcpp::R_ARM_ALU_SB_G0:
9861 case elfcpp::R_ARM_ALU_SB_G1_NC:
9862 case elfcpp::R_ARM_ALU_SB_G1:
9863 case elfcpp::R_ARM_ALU_SB_G2:
9864 reloc_status =
9865 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9866 reloc_property->group_index(),
9867 relative_address_base,
9868 thumb_bit, check_overflow);
9869 break;
9870
9871 case elfcpp::R_ARM_LDR_PC_G0:
9872 case elfcpp::R_ARM_LDR_PC_G1:
9873 case elfcpp::R_ARM_LDR_PC_G2:
9874 case elfcpp::R_ARM_LDR_SB_G0:
9875 case elfcpp::R_ARM_LDR_SB_G1:
9876 case elfcpp::R_ARM_LDR_SB_G2:
9877 reloc_status =
9878 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9879 reloc_property->group_index(),
9880 relative_address_base);
9881 break;
9882
9883 case elfcpp::R_ARM_LDRS_PC_G0:
9884 case elfcpp::R_ARM_LDRS_PC_G1:
9885 case elfcpp::R_ARM_LDRS_PC_G2:
9886 case elfcpp::R_ARM_LDRS_SB_G0:
9887 case elfcpp::R_ARM_LDRS_SB_G1:
9888 case elfcpp::R_ARM_LDRS_SB_G2:
9889 reloc_status =
9890 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9891 reloc_property->group_index(),
9892 relative_address_base);
9893 break;
9894
9895 case elfcpp::R_ARM_LDC_PC_G0:
9896 case elfcpp::R_ARM_LDC_PC_G1:
9897 case elfcpp::R_ARM_LDC_PC_G2:
9898 case elfcpp::R_ARM_LDC_SB_G0:
9899 case elfcpp::R_ARM_LDC_SB_G1:
9900 case elfcpp::R_ARM_LDC_SB_G2:
9901 reloc_status =
9902 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9903 reloc_property->group_index(),
9904 relative_address_base);
9905 break;
9906
9907 // These are initial tls relocs, which are expected when
9908 // linking.
9909 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9910 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9911 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9912 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9913 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9914 reloc_status =
9915 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9916 view, address, view_size);
9917 break;
9918
9919 // The known and unknown unsupported and/or deprecated relocations.
9920 case elfcpp::R_ARM_PC24:
9921 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9922 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9923 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9924 default:
9925 // Just silently leave the method. We should get an appropriate error
9926 // message in the scan methods.
9927 break;
9928 }
9929
9930 // Report any errors.
9931 switch (reloc_status)
9932 {
9933 case Arm_relocate_functions::STATUS_OKAY:
9934 break;
9935 case Arm_relocate_functions::STATUS_OVERFLOW:
9936 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9937 _("relocation overflow in %s"),
9938 reloc_property->name().c_str());
9939 break;
9940 case Arm_relocate_functions::STATUS_BAD_RELOC:
9941 gold_error_at_location(
9942 relinfo,
9943 relnum,
9944 rel.get_r_offset(),
9945 _("unexpected opcode while processing relocation %s"),
9946 reloc_property->name().c_str());
9947 break;
9948 default:
9949 gold_unreachable();
9950 }
9951
9952 return true;
9953 }
9954
9955 // Perform a TLS relocation.
9956
9957 template<bool big_endian>
9958 inline typename Arm_relocate_functions<big_endian>::Status
9959 Target_arm<big_endian>::Relocate::relocate_tls(
9960 const Relocate_info<32, big_endian>* relinfo,
9961 Target_arm<big_endian>* target,
9962 size_t relnum,
9963 const elfcpp::Rel<32, big_endian>& rel,
9964 unsigned int r_type,
9965 const Sized_symbol<32>* gsym,
9966 const Symbol_value<32>* psymval,
9967 unsigned char* view,
9968 elfcpp::Elf_types<32>::Elf_Addr address,
9969 section_size_type /*view_size*/ )
9970 {
9971 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9972 typedef Relocate_functions<32, big_endian> RelocFuncs;
9973 Output_segment* tls_segment = relinfo->layout->tls_segment();
9974
9975 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9976
9977 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9978
9979 const bool is_final = (gsym == NULL
9980 ? !parameters->options().shared()
9981 : gsym->final_value_is_known());
9982 const tls::Tls_optimization optimized_type
9983 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9984 switch (r_type)
9985 {
9986 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9987 {
9988 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9989 unsigned int got_offset;
9990 if (gsym != NULL)
9991 {
9992 gold_assert(gsym->has_got_offset(got_type));
9993 got_offset = gsym->got_offset(got_type) - target->got_size();
9994 }
9995 else
9996 {
9997 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9998 gold_assert(object->local_has_got_offset(r_sym, got_type));
9999 got_offset = (object->local_got_offset(r_sym, got_type)
10000 - target->got_size());
10001 }
10002 if (optimized_type == tls::TLSOPT_NONE)
10003 {
10004 Arm_address got_entry =
10005 target->got_plt_section()->address() + got_offset;
10006
10007 // Relocate the field with the PC relative offset of the pair of
10008 // GOT entries.
10009 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10010 return ArmRelocFuncs::STATUS_OKAY;
10011 }
10012 }
10013 break;
10014
10015 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10016 if (optimized_type == tls::TLSOPT_NONE)
10017 {
10018 // Relocate the field with the offset of the GOT entry for
10019 // the module index.
10020 unsigned int got_offset;
10021 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
10022 - target->got_size());
10023 Arm_address got_entry =
10024 target->got_plt_section()->address() + got_offset;
10025
10026 // Relocate the field with the PC relative offset of the pair of
10027 // GOT entries.
10028 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10029 return ArmRelocFuncs::STATUS_OKAY;
10030 }
10031 break;
10032
10033 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10034 RelocFuncs::rel32_unaligned(view, value);
10035 return ArmRelocFuncs::STATUS_OKAY;
10036
10037 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10038 if (optimized_type == tls::TLSOPT_NONE)
10039 {
10040 // Relocate the field with the offset of the GOT entry for
10041 // the tp-relative offset of the symbol.
10042 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
10043 unsigned int got_offset;
10044 if (gsym != NULL)
10045 {
10046 gold_assert(gsym->has_got_offset(got_type));
10047 got_offset = gsym->got_offset(got_type);
10048 }
10049 else
10050 {
10051 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10052 gold_assert(object->local_has_got_offset(r_sym, got_type));
10053 got_offset = object->local_got_offset(r_sym, got_type);
10054 }
10055
10056 // All GOT offsets are relative to the end of the GOT.
10057 got_offset -= target->got_size();
10058
10059 Arm_address got_entry =
10060 target->got_plt_section()->address() + got_offset;
10061
10062 // Relocate the field with the PC relative offset of the GOT entry.
10063 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10064 return ArmRelocFuncs::STATUS_OKAY;
10065 }
10066 break;
10067
10068 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10069 // If we're creating a shared library, a dynamic relocation will
10070 // have been created for this location, so do not apply it now.
10071 if (!parameters->options().shared())
10072 {
10073 gold_assert(tls_segment != NULL);
10074
10075 // $tp points to the TCB, which is followed by the TLS, so we
10076 // need to add TCB size to the offset.
10077 Arm_address aligned_tcb_size =
10078 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
10079 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
10080
10081 }
10082 return ArmRelocFuncs::STATUS_OKAY;
10083
10084 default:
10085 gold_unreachable();
10086 }
10087
10088 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10089 _("unsupported reloc %u"),
10090 r_type);
10091 return ArmRelocFuncs::STATUS_BAD_RELOC;
10092 }
10093
10094 // Relocate section data.
10095
10096 template<bool big_endian>
10097 void
10098 Target_arm<big_endian>::relocate_section(
10099 const Relocate_info<32, big_endian>* relinfo,
10100 unsigned int sh_type,
10101 const unsigned char* prelocs,
10102 size_t reloc_count,
10103 Output_section* output_section,
10104 bool needs_special_offset_handling,
10105 unsigned char* view,
10106 Arm_address address,
10107 section_size_type view_size,
10108 const Reloc_symbol_changes* reloc_symbol_changes)
10109 {
10110 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10111 gold_assert(sh_type == elfcpp::SHT_REL);
10112
10113 // See if we are relocating a relaxed input section. If so, the view
10114 // covers the whole output section and we need to adjust accordingly.
10115 if (needs_special_offset_handling)
10116 {
10117 const Output_relaxed_input_section* poris =
10118 output_section->find_relaxed_input_section(relinfo->object,
10119 relinfo->data_shndx);
10120 if (poris != NULL)
10121 {
10122 Arm_address section_address = poris->address();
10123 section_size_type section_size = poris->data_size();
10124
10125 gold_assert((section_address >= address)
10126 && ((section_address + section_size)
10127 <= (address + view_size)));
10128
10129 off_t offset = section_address - address;
10130 view += offset;
10131 address += offset;
10132 view_size = section_size;
10133 }
10134 }
10135
10136 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
10137 gold::Default_comdat_behavior, Classify_reloc>(
10138 relinfo,
10139 this,
10140 prelocs,
10141 reloc_count,
10142 output_section,
10143 needs_special_offset_handling,
10144 view,
10145 address,
10146 view_size,
10147 reloc_symbol_changes);
10148 }
10149
10150 // Return the size of a relocation while scanning during a relocatable
10151 // link.
10152
10153 template<bool big_endian>
10154 unsigned int
10155 Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
10156 unsigned int r_type,
10157 Relobj* object)
10158 {
10159 r_type = get_real_reloc_type(r_type);
10160 const Arm_reloc_property* arp =
10161 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10162 if (arp != NULL)
10163 return arp->size();
10164 else
10165 {
10166 std::string reloc_name =
10167 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10168 gold_error(_("%s: unexpected %s in object file"),
10169 object->name().c_str(), reloc_name.c_str());
10170 return 0;
10171 }
10172 }
10173
10174 // Scan the relocs during a relocatable link.
10175
10176 template<bool big_endian>
10177 void
10178 Target_arm<big_endian>::scan_relocatable_relocs(
10179 Symbol_table* symtab,
10180 Layout* layout,
10181 Sized_relobj_file<32, big_endian>* object,
10182 unsigned int data_shndx,
10183 unsigned int sh_type,
10184 const unsigned char* prelocs,
10185 size_t reloc_count,
10186 Output_section* output_section,
10187 bool needs_special_offset_handling,
10188 size_t local_symbol_count,
10189 const unsigned char* plocal_symbols,
10190 Relocatable_relocs* rr)
10191 {
10192 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
10193 Scan_relocatable_relocs;
10194
10195 gold_assert(sh_type == elfcpp::SHT_REL);
10196
10197 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
10198 symtab,
10199 layout,
10200 object,
10201 data_shndx,
10202 prelocs,
10203 reloc_count,
10204 output_section,
10205 needs_special_offset_handling,
10206 local_symbol_count,
10207 plocal_symbols,
10208 rr);
10209 }
10210
10211 // Scan the relocs for --emit-relocs.
10212
10213 template<bool big_endian>
10214 void
10215 Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
10216 Layout* layout,
10217 Sized_relobj_file<32, big_endian>* object,
10218 unsigned int data_shndx,
10219 unsigned int sh_type,
10220 const unsigned char* prelocs,
10221 size_t reloc_count,
10222 Output_section* output_section,
10223 bool needs_special_offset_handling,
10224 size_t local_symbol_count,
10225 const unsigned char* plocal_syms,
10226 Relocatable_relocs* rr)
10227 {
10228 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
10229 Classify_reloc;
10230 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10231 Emit_relocs_strategy;
10232
10233 gold_assert(sh_type == elfcpp::SHT_REL);
10234
10235 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
10236 symtab,
10237 layout,
10238 object,
10239 data_shndx,
10240 prelocs,
10241 reloc_count,
10242 output_section,
10243 needs_special_offset_handling,
10244 local_symbol_count,
10245 plocal_syms,
10246 rr);
10247 }
10248
10249 // Emit relocations for a section.
10250
10251 template<bool big_endian>
10252 void
10253 Target_arm<big_endian>::relocate_relocs(
10254 const Relocate_info<32, big_endian>* relinfo,
10255 unsigned int sh_type,
10256 const unsigned char* prelocs,
10257 size_t reloc_count,
10258 Output_section* output_section,
10259 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10260 unsigned char* view,
10261 Arm_address view_address,
10262 section_size_type view_size,
10263 unsigned char* reloc_view,
10264 section_size_type reloc_view_size)
10265 {
10266 gold_assert(sh_type == elfcpp::SHT_REL);
10267
10268 gold::relocate_relocs<32, big_endian, Classify_reloc>(
10269 relinfo,
10270 prelocs,
10271 reloc_count,
10272 output_section,
10273 offset_in_output_section,
10274 view,
10275 view_address,
10276 view_size,
10277 reloc_view,
10278 reloc_view_size);
10279 }
10280
10281 // Perform target-specific processing in a relocatable link. This is
10282 // only used if we use the relocation strategy RELOC_SPECIAL.
10283
10284 template<bool big_endian>
10285 void
10286 Target_arm<big_endian>::relocate_special_relocatable(
10287 const Relocate_info<32, big_endian>* relinfo,
10288 unsigned int sh_type,
10289 const unsigned char* preloc_in,
10290 size_t relnum,
10291 Output_section* output_section,
10292 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10293 unsigned char* view,
10294 elfcpp::Elf_types<32>::Elf_Addr view_address,
10295 section_size_type,
10296 unsigned char* preloc_out)
10297 {
10298 // We can only handle REL type relocation sections.
10299 gold_assert(sh_type == elfcpp::SHT_REL);
10300
10301 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10302 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10303 Reltype_write;
10304 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10305
10306 const Arm_relobj<big_endian>* object =
10307 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10308 const unsigned int local_count = object->local_symbol_count();
10309
10310 Reltype reloc(preloc_in);
10311 Reltype_write reloc_write(preloc_out);
10312
10313 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10314 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10315 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10316
10317 const Arm_reloc_property* arp =
10318 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10319 gold_assert(arp != NULL);
10320
10321 // Get the new symbol index.
10322 // We only use RELOC_SPECIAL strategy in local relocations.
10323 gold_assert(r_sym < local_count);
10324
10325 // We are adjusting a section symbol. We need to find
10326 // the symbol table index of the section symbol for
10327 // the output section corresponding to input section
10328 // in which this symbol is defined.
10329 bool is_ordinary;
10330 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10331 gold_assert(is_ordinary);
10332 Output_section* os = object->output_section(shndx);
10333 gold_assert(os != NULL);
10334 gold_assert(os->needs_symtab_index());
10335 unsigned int new_symndx = os->symtab_index();
10336
10337 // Get the new offset--the location in the output section where
10338 // this relocation should be applied.
10339
10340 Arm_address offset = reloc.get_r_offset();
10341 Arm_address new_offset;
10342 if (offset_in_output_section != invalid_address)
10343 new_offset = offset + offset_in_output_section;
10344 else
10345 {
10346 section_offset_type sot_offset =
10347 convert_types<section_offset_type, Arm_address>(offset);
10348 section_offset_type new_sot_offset =
10349 output_section->output_offset(object, relinfo->data_shndx,
10350 sot_offset);
10351 gold_assert(new_sot_offset != -1);
10352 new_offset = new_sot_offset;
10353 }
10354
10355 // In an object file, r_offset is an offset within the section.
10356 // In an executable or dynamic object, generated by
10357 // --emit-relocs, r_offset is an absolute address.
10358 if (!parameters->options().relocatable())
10359 {
10360 new_offset += view_address;
10361 if (offset_in_output_section != invalid_address)
10362 new_offset -= offset_in_output_section;
10363 }
10364
10365 reloc_write.put_r_offset(new_offset);
10366 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10367
10368 // Handle the reloc addend.
10369 // The relocation uses a section symbol in the input file.
10370 // We are adjusting it to use a section symbol in the output
10371 // file. The input section symbol refers to some address in
10372 // the input section. We need the relocation in the output
10373 // file to refer to that same address. This adjustment to
10374 // the addend is the same calculation we use for a simple
10375 // absolute relocation for the input section symbol.
10376
10377 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10378
10379 // Handle THUMB bit.
10380 Symbol_value<32> symval;
10381 Arm_address thumb_bit =
10382 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10383 if (thumb_bit != 0
10384 && arp->uses_thumb_bit()
10385 && ((psymval->value(object, 0) & 1) != 0))
10386 {
10387 Arm_address stripped_value =
10388 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10389 symval.set_output_value(stripped_value);
10390 psymval = &symval;
10391 }
10392
10393 unsigned char* paddend = view + offset;
10394 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10395 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10396 switch (r_type)
10397 {
10398 case elfcpp::R_ARM_ABS8:
10399 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10400 psymval);
10401 break;
10402
10403 case elfcpp::R_ARM_ABS12:
10404 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10405 psymval);
10406 break;
10407
10408 case elfcpp::R_ARM_ABS16:
10409 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10410 psymval);
10411 break;
10412
10413 case elfcpp::R_ARM_THM_ABS5:
10414 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10415 object,
10416 psymval);
10417 break;
10418
10419 case elfcpp::R_ARM_MOVW_ABS_NC:
10420 case elfcpp::R_ARM_MOVW_PREL_NC:
10421 case elfcpp::R_ARM_MOVW_BREL_NC:
10422 case elfcpp::R_ARM_MOVW_BREL:
10423 reloc_status = Arm_relocate_functions<big_endian>::movw(
10424 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10425 break;
10426
10427 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10428 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10429 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10430 case elfcpp::R_ARM_THM_MOVW_BREL:
10431 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10432 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10433 break;
10434
10435 case elfcpp::R_ARM_THM_CALL:
10436 case elfcpp::R_ARM_THM_XPC22:
10437 case elfcpp::R_ARM_THM_JUMP24:
10438 reloc_status =
10439 Arm_relocate_functions<big_endian>::thumb_branch_common(
10440 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10441 false);
10442 break;
10443
10444 case elfcpp::R_ARM_PLT32:
10445 case elfcpp::R_ARM_CALL:
10446 case elfcpp::R_ARM_JUMP24:
10447 case elfcpp::R_ARM_XPC25:
10448 reloc_status =
10449 Arm_relocate_functions<big_endian>::arm_branch_common(
10450 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10451 false);
10452 break;
10453
10454 case elfcpp::R_ARM_THM_JUMP19:
10455 reloc_status =
10456 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10457 psymval, 0, thumb_bit);
10458 break;
10459
10460 case elfcpp::R_ARM_THM_JUMP6:
10461 reloc_status =
10462 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10463 0);
10464 break;
10465
10466 case elfcpp::R_ARM_THM_JUMP8:
10467 reloc_status =
10468 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10469 0);
10470 break;
10471
10472 case elfcpp::R_ARM_THM_JUMP11:
10473 reloc_status =
10474 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10475 0);
10476 break;
10477
10478 case elfcpp::R_ARM_PREL31:
10479 reloc_status =
10480 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10481 thumb_bit);
10482 break;
10483
10484 case elfcpp::R_ARM_THM_PC8:
10485 reloc_status =
10486 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10487 0);
10488 break;
10489
10490 case elfcpp::R_ARM_THM_PC12:
10491 reloc_status =
10492 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10493 0);
10494 break;
10495
10496 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10497 reloc_status =
10498 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10499 0, thumb_bit);
10500 break;
10501
10502 // These relocation truncate relocation results so we cannot handle them
10503 // in a relocatable link.
10504 case elfcpp::R_ARM_MOVT_ABS:
10505 case elfcpp::R_ARM_THM_MOVT_ABS:
10506 case elfcpp::R_ARM_MOVT_PREL:
10507 case elfcpp::R_ARM_MOVT_BREL:
10508 case elfcpp::R_ARM_THM_MOVT_PREL:
10509 case elfcpp::R_ARM_THM_MOVT_BREL:
10510 case elfcpp::R_ARM_ALU_PC_G0_NC:
10511 case elfcpp::R_ARM_ALU_PC_G0:
10512 case elfcpp::R_ARM_ALU_PC_G1_NC:
10513 case elfcpp::R_ARM_ALU_PC_G1:
10514 case elfcpp::R_ARM_ALU_PC_G2:
10515 case elfcpp::R_ARM_ALU_SB_G0_NC:
10516 case elfcpp::R_ARM_ALU_SB_G0:
10517 case elfcpp::R_ARM_ALU_SB_G1_NC:
10518 case elfcpp::R_ARM_ALU_SB_G1:
10519 case elfcpp::R_ARM_ALU_SB_G2:
10520 case elfcpp::R_ARM_LDR_PC_G0:
10521 case elfcpp::R_ARM_LDR_PC_G1:
10522 case elfcpp::R_ARM_LDR_PC_G2:
10523 case elfcpp::R_ARM_LDR_SB_G0:
10524 case elfcpp::R_ARM_LDR_SB_G1:
10525 case elfcpp::R_ARM_LDR_SB_G2:
10526 case elfcpp::R_ARM_LDRS_PC_G0:
10527 case elfcpp::R_ARM_LDRS_PC_G1:
10528 case elfcpp::R_ARM_LDRS_PC_G2:
10529 case elfcpp::R_ARM_LDRS_SB_G0:
10530 case elfcpp::R_ARM_LDRS_SB_G1:
10531 case elfcpp::R_ARM_LDRS_SB_G2:
10532 case elfcpp::R_ARM_LDC_PC_G0:
10533 case elfcpp::R_ARM_LDC_PC_G1:
10534 case elfcpp::R_ARM_LDC_PC_G2:
10535 case elfcpp::R_ARM_LDC_SB_G0:
10536 case elfcpp::R_ARM_LDC_SB_G1:
10537 case elfcpp::R_ARM_LDC_SB_G2:
10538 gold_error(_("cannot handle %s in a relocatable link"),
10539 arp->name().c_str());
10540 break;
10541
10542 default:
10543 gold_unreachable();
10544 }
10545
10546 // Report any errors.
10547 switch (reloc_status)
10548 {
10549 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10550 break;
10551 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10552 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10553 _("relocation overflow in %s"),
10554 arp->name().c_str());
10555 break;
10556 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10557 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10558 _("unexpected opcode while processing relocation %s"),
10559 arp->name().c_str());
10560 break;
10561 default:
10562 gold_unreachable();
10563 }
10564 }
10565
10566 // Return the value to use for a dynamic symbol which requires special
10567 // treatment. This is how we support equality comparisons of function
10568 // pointers across shared library boundaries, as described in the
10569 // processor specific ABI supplement.
10570
10571 template<bool big_endian>
10572 uint64_t
10573 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10574 {
10575 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10576 return this->plt_address_for_global(gsym);
10577 }
10578
10579 // Map platform-specific relocs to real relocs
10580 //
10581 template<bool big_endian>
10582 unsigned int
10583 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10584 {
10585 switch (r_type)
10586 {
10587 case elfcpp::R_ARM_TARGET1:
10588 // This is either R_ARM_ABS32 or R_ARM_REL32;
10589 return elfcpp::R_ARM_ABS32;
10590
10591 case elfcpp::R_ARM_TARGET2:
10592 // This can be any reloc type but usually is R_ARM_GOT_PREL
10593 return elfcpp::R_ARM_GOT_PREL;
10594
10595 default:
10596 return r_type;
10597 }
10598 }
10599
10600 // Whether if two EABI versions V1 and V2 are compatible.
10601
10602 template<bool big_endian>
10603 bool
10604 Target_arm<big_endian>::are_eabi_versions_compatible(
10605 elfcpp::Elf_Word v1,
10606 elfcpp::Elf_Word v2)
10607 {
10608 // v4 and v5 are the same spec before and after it was released,
10609 // so allow mixing them.
10610 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10611 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10612 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10613 return true;
10614
10615 return v1 == v2;
10616 }
10617
10618 // Combine FLAGS from an input object called NAME and the processor-specific
10619 // flags in the ELF header of the output. Much of this is adapted from the
10620 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10621 // in bfd/elf32-arm.c.
10622
10623 template<bool big_endian>
10624 void
10625 Target_arm<big_endian>::merge_processor_specific_flags(
10626 const std::string& name,
10627 elfcpp::Elf_Word flags)
10628 {
10629 if (this->are_processor_specific_flags_set())
10630 {
10631 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10632
10633 // Nothing to merge if flags equal to those in output.
10634 if (flags == out_flags)
10635 return;
10636
10637 // Complain about various flag mismatches.
10638 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10639 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10640 if (!this->are_eabi_versions_compatible(version1, version2)
10641 && parameters->options().warn_mismatch())
10642 gold_error(_("Source object %s has EABI version %d but output has "
10643 "EABI version %d."),
10644 name.c_str(),
10645 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10646 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10647 }
10648 else
10649 {
10650 // If the input is the default architecture and had the default
10651 // flags then do not bother setting the flags for the output
10652 // architecture, instead allow future merges to do this. If no
10653 // future merges ever set these flags then they will retain their
10654 // uninitialised values, which surprise surprise, correspond
10655 // to the default values.
10656 if (flags == 0)
10657 return;
10658
10659 // This is the first time, just copy the flags.
10660 // We only copy the EABI version for now.
10661 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10662 }
10663 }
10664
10665 // Adjust ELF file header.
10666 template<bool big_endian>
10667 void
10668 Target_arm<big_endian>::do_adjust_elf_header(
10669 unsigned char* view,
10670 int len)
10671 {
10672 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10673
10674 elfcpp::Ehdr<32, big_endian> ehdr(view);
10675 elfcpp::Elf_Word flags = this->processor_specific_flags();
10676 unsigned char e_ident[elfcpp::EI_NIDENT];
10677 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10678
10679 if (elfcpp::arm_eabi_version(flags)
10680 == elfcpp::EF_ARM_EABI_UNKNOWN)
10681 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10682 else
10683 e_ident[elfcpp::EI_OSABI] = 0;
10684 e_ident[elfcpp::EI_ABIVERSION] = 0;
10685
10686 // FIXME: Do EF_ARM_BE8 adjustment.
10687
10688 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10689 // as appropriate.
10690 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10691 {
10692 elfcpp::Elf_Half type = ehdr.get_e_type();
10693 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10694 {
10695 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10696 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10697 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10698 else
10699 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10700 this->set_processor_specific_flags(flags);
10701 }
10702 }
10703 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10704 oehdr.put_e_ident(e_ident);
10705 oehdr.put_e_flags(this->processor_specific_flags());
10706 }
10707
10708 // do_make_elf_object to override the same function in the base class.
10709 // We need to use a target-specific sub-class of
10710 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10711 // Hence we need to have our own ELF object creation.
10712
10713 template<bool big_endian>
10714 Object*
10715 Target_arm<big_endian>::do_make_elf_object(
10716 const std::string& name,
10717 Input_file* input_file,
10718 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10719 {
10720 int et = ehdr.get_e_type();
10721 // ET_EXEC files are valid input for --just-symbols/-R,
10722 // and we treat them as relocatable objects.
10723 if (et == elfcpp::ET_REL
10724 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10725 {
10726 Arm_relobj<big_endian>* obj =
10727 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10728 obj->setup();
10729 return obj;
10730 }
10731 else if (et == elfcpp::ET_DYN)
10732 {
10733 Sized_dynobj<32, big_endian>* obj =
10734 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10735 obj->setup();
10736 return obj;
10737 }
10738 else
10739 {
10740 gold_error(_("%s: unsupported ELF file type %d"),
10741 name.c_str(), et);
10742 return NULL;
10743 }
10744 }
10745
10746 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10747 // Returns -1 if no architecture could be read.
10748 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10749
10750 template<bool big_endian>
10751 int
10752 Target_arm<big_endian>::get_secondary_compatible_arch(
10753 const Attributes_section_data* pasd)
10754 {
10755 const Object_attribute* known_attributes =
10756 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10757
10758 // Note: the tag and its argument below are uleb128 values, though
10759 // currently-defined values fit in one byte for each.
10760 const std::string& sv =
10761 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10762 if (sv.size() == 2
10763 && sv.data()[0] == elfcpp::Tag_CPU_arch
10764 && (sv.data()[1] & 128) != 128)
10765 return sv.data()[1];
10766
10767 // This tag is "safely ignorable", so don't complain if it looks funny.
10768 return -1;
10769 }
10770
10771 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10772 // The tag is removed if ARCH is -1.
10773 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10774
10775 template<bool big_endian>
10776 void
10777 Target_arm<big_endian>::set_secondary_compatible_arch(
10778 Attributes_section_data* pasd,
10779 int arch)
10780 {
10781 Object_attribute* known_attributes =
10782 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10783
10784 if (arch == -1)
10785 {
10786 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10787 return;
10788 }
10789
10790 // Note: the tag and its argument below are uleb128 values, though
10791 // currently-defined values fit in one byte for each.
10792 char sv[3];
10793 sv[0] = elfcpp::Tag_CPU_arch;
10794 gold_assert(arch != 0);
10795 sv[1] = arch;
10796 sv[2] = '\0';
10797
10798 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10799 }
10800
10801 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10802 // into account.
10803 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10804
10805 template<bool big_endian>
10806 int
10807 Target_arm<big_endian>::tag_cpu_arch_combine(
10808 const char* name,
10809 int oldtag,
10810 int* secondary_compat_out,
10811 int newtag,
10812 int secondary_compat)
10813 {
10814 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10815 static const int v6t2[] =
10816 {
10817 T(V6T2), // PRE_V4.
10818 T(V6T2), // V4.
10819 T(V6T2), // V4T.
10820 T(V6T2), // V5T.
10821 T(V6T2), // V5TE.
10822 T(V6T2), // V5TEJ.
10823 T(V6T2), // V6.
10824 T(V7), // V6KZ.
10825 T(V6T2) // V6T2.
10826 };
10827 static const int v6k[] =
10828 {
10829 T(V6K), // PRE_V4.
10830 T(V6K), // V4.
10831 T(V6K), // V4T.
10832 T(V6K), // V5T.
10833 T(V6K), // V5TE.
10834 T(V6K), // V5TEJ.
10835 T(V6K), // V6.
10836 T(V6KZ), // V6KZ.
10837 T(V7), // V6T2.
10838 T(V6K) // V6K.
10839 };
10840 static const int v7[] =
10841 {
10842 T(V7), // PRE_V4.
10843 T(V7), // V4.
10844 T(V7), // V4T.
10845 T(V7), // V5T.
10846 T(V7), // V5TE.
10847 T(V7), // V5TEJ.
10848 T(V7), // V6.
10849 T(V7), // V6KZ.
10850 T(V7), // V6T2.
10851 T(V7), // V6K.
10852 T(V7) // V7.
10853 };
10854 static const int v6_m[] =
10855 {
10856 -1, // PRE_V4.
10857 -1, // V4.
10858 T(V6K), // V4T.
10859 T(V6K), // V5T.
10860 T(V6K), // V5TE.
10861 T(V6K), // V5TEJ.
10862 T(V6K), // V6.
10863 T(V6KZ), // V6KZ.
10864 T(V7), // V6T2.
10865 T(V6K), // V6K.
10866 T(V7), // V7.
10867 T(V6_M) // V6_M.
10868 };
10869 static const int v6s_m[] =
10870 {
10871 -1, // PRE_V4.
10872 -1, // V4.
10873 T(V6K), // V4T.
10874 T(V6K), // V5T.
10875 T(V6K), // V5TE.
10876 T(V6K), // V5TEJ.
10877 T(V6K), // V6.
10878 T(V6KZ), // V6KZ.
10879 T(V7), // V6T2.
10880 T(V6K), // V6K.
10881 T(V7), // V7.
10882 T(V6S_M), // V6_M.
10883 T(V6S_M) // V6S_M.
10884 };
10885 static const int v7e_m[] =
10886 {
10887 -1, // PRE_V4.
10888 -1, // V4.
10889 T(V7E_M), // V4T.
10890 T(V7E_M), // V5T.
10891 T(V7E_M), // V5TE.
10892 T(V7E_M), // V5TEJ.
10893 T(V7E_M), // V6.
10894 T(V7E_M), // V6KZ.
10895 T(V7E_M), // V6T2.
10896 T(V7E_M), // V6K.
10897 T(V7E_M), // V7.
10898 T(V7E_M), // V6_M.
10899 T(V7E_M), // V6S_M.
10900 T(V7E_M) // V7E_M.
10901 };
10902 static const int v8[] =
10903 {
10904 T(V8), // PRE_V4.
10905 T(V8), // V4.
10906 T(V8), // V4T.
10907 T(V8), // V5T.
10908 T(V8), // V5TE.
10909 T(V8), // V5TEJ.
10910 T(V8), // V6.
10911 T(V8), // V6KZ.
10912 T(V8), // V6T2.
10913 T(V8), // V6K.
10914 T(V8), // V7.
10915 T(V8), // V6_M.
10916 T(V8), // V6S_M.
10917 T(V8), // V7E_M.
10918 T(V8) // V8.
10919 };
10920 static const int v4t_plus_v6_m[] =
10921 {
10922 -1, // PRE_V4.
10923 -1, // V4.
10924 T(V4T), // V4T.
10925 T(V5T), // V5T.
10926 T(V5TE), // V5TE.
10927 T(V5TEJ), // V5TEJ.
10928 T(V6), // V6.
10929 T(V6KZ), // V6KZ.
10930 T(V6T2), // V6T2.
10931 T(V6K), // V6K.
10932 T(V7), // V7.
10933 T(V6_M), // V6_M.
10934 T(V6S_M), // V6S_M.
10935 T(V7E_M), // V7E_M.
10936 T(V8), // V8.
10937 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10938 };
10939 static const int* comb[] =
10940 {
10941 v6t2,
10942 v6k,
10943 v7,
10944 v6_m,
10945 v6s_m,
10946 v7e_m,
10947 v8,
10948 // Pseudo-architecture.
10949 v4t_plus_v6_m
10950 };
10951
10952 // Check we've not got a higher architecture than we know about.
10953
10954 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10955 {
10956 gold_error(_("%s: unknown CPU architecture"), name);
10957 return -1;
10958 }
10959
10960 // Override old tag if we have a Tag_also_compatible_with on the output.
10961
10962 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10963 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10964 oldtag = T(V4T_PLUS_V6_M);
10965
10966 // And override the new tag if we have a Tag_also_compatible_with on the
10967 // input.
10968
10969 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10970 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10971 newtag = T(V4T_PLUS_V6_M);
10972
10973 // Architectures before V6KZ add features monotonically.
10974 int tagh = std::max(oldtag, newtag);
10975 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10976 return tagh;
10977
10978 int tagl = std::min(oldtag, newtag);
10979 int result = comb[tagh - T(V6T2)][tagl];
10980
10981 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10982 // as the canonical version.
10983 if (result == T(V4T_PLUS_V6_M))
10984 {
10985 result = T(V4T);
10986 *secondary_compat_out = T(V6_M);
10987 }
10988 else
10989 *secondary_compat_out = -1;
10990
10991 if (result == -1)
10992 {
10993 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10994 name, oldtag, newtag);
10995 return -1;
10996 }
10997
10998 return result;
10999 #undef T
11000 }
11001
11002 // Helper to print AEABI enum tag value.
11003
11004 template<bool big_endian>
11005 std::string
11006 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
11007 {
11008 static const char* aeabi_enum_names[] =
11009 { "", "variable-size", "32-bit", "" };
11010 const size_t aeabi_enum_names_size =
11011 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
11012
11013 if (value < aeabi_enum_names_size)
11014 return std::string(aeabi_enum_names[value]);
11015 else
11016 {
11017 char buffer[100];
11018 sprintf(buffer, "<unknown value %u>", value);
11019 return std::string(buffer);
11020 }
11021 }
11022
11023 // Return the string value to store in TAG_CPU_name.
11024
11025 template<bool big_endian>
11026 std::string
11027 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
11028 {
11029 static const char* name_table[] = {
11030 // These aren't real CPU names, but we can't guess
11031 // that from the architecture version alone.
11032 "Pre v4",
11033 "ARM v4",
11034 "ARM v4T",
11035 "ARM v5T",
11036 "ARM v5TE",
11037 "ARM v5TEJ",
11038 "ARM v6",
11039 "ARM v6KZ",
11040 "ARM v6T2",
11041 "ARM v6K",
11042 "ARM v7",
11043 "ARM v6-M",
11044 "ARM v6S-M",
11045 "ARM v7E-M",
11046 "ARM v8"
11047 };
11048 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
11049
11050 if (value < name_table_size)
11051 return std::string(name_table[value]);
11052 else
11053 {
11054 char buffer[100];
11055 sprintf(buffer, "<unknown CPU value %u>", value);
11056 return std::string(buffer);
11057 }
11058 }
11059
11060 // Query attributes object to see if integer divide instructions may be
11061 // present in an object.
11062
11063 template<bool big_endian>
11064 bool
11065 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
11066 const Object_attribute* div_attr)
11067 {
11068 switch (div_attr->int_value())
11069 {
11070 case 0:
11071 // Integer divide allowed if instruction contained in
11072 // archetecture.
11073 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11074 return true;
11075 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
11076 return true;
11077 else
11078 return false;
11079
11080 case 1:
11081 // Integer divide explicitly prohibited.
11082 return false;
11083
11084 default:
11085 // Unrecognised case - treat as allowing divide everywhere.
11086 case 2:
11087 // Integer divide allowed in ARM state.
11088 return true;
11089 }
11090 }
11091
11092 // Query attributes object to see if integer divide instructions are
11093 // forbidden to be in the object. This is not the inverse of
11094 // attributes_accept_div.
11095
11096 template<bool big_endian>
11097 bool
11098 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
11099 {
11100 return div_attr->int_value() == 1;
11101 }
11102
11103 // Merge object attributes from input file called NAME with those of the
11104 // output. The input object attributes are in the object pointed by PASD.
11105
11106 template<bool big_endian>
11107 void
11108 Target_arm<big_endian>::merge_object_attributes(
11109 const char* name,
11110 const Attributes_section_data* pasd)
11111 {
11112 // Return if there is no attributes section data.
11113 if (pasd == NULL)
11114 return;
11115
11116 // If output has no object attributes, just copy.
11117 const int vendor = Object_attribute::OBJ_ATTR_PROC;
11118 if (this->attributes_section_data_ == NULL)
11119 {
11120 this->attributes_section_data_ = new Attributes_section_data(*pasd);
11121 Object_attribute* out_attr =
11122 this->attributes_section_data_->known_attributes(vendor);
11123
11124 // We do not output objects with Tag_MPextension_use_legacy - we move
11125 // the attribute's value to Tag_MPextension_use. */
11126 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
11127 {
11128 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
11129 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
11130 != out_attr[elfcpp::Tag_MPextension_use].int_value())
11131 {
11132 gold_error(_("%s has both the current and legacy "
11133 "Tag_MPextension_use attributes"),
11134 name);
11135 }
11136
11137 out_attr[elfcpp::Tag_MPextension_use] =
11138 out_attr[elfcpp::Tag_MPextension_use_legacy];
11139 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11140 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11141 }
11142
11143 return;
11144 }
11145
11146 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11147 Object_attribute* out_attr =
11148 this->attributes_section_data_->known_attributes(vendor);
11149
11150 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11151 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11152 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11153 {
11154 // Ignore mismatches if the object doesn't use floating point. */
11155 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11156 == elfcpp::AEABI_FP_number_model_none
11157 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11158 != elfcpp::AEABI_FP_number_model_none
11159 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11160 == elfcpp::AEABI_VFP_args_compatible))
11161 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11162 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11163 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11164 != elfcpp::AEABI_FP_number_model_none
11165 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11166 != elfcpp::AEABI_VFP_args_compatible
11167 && parameters->options().warn_mismatch())
11168 gold_error(_("%s uses VFP register arguments, output does not"),
11169 name);
11170 }
11171
11172 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11173 {
11174 // Merge this attribute with existing attributes.
11175 switch (i)
11176 {
11177 case elfcpp::Tag_CPU_raw_name:
11178 case elfcpp::Tag_CPU_name:
11179 // These are merged after Tag_CPU_arch.
11180 break;
11181
11182 case elfcpp::Tag_ABI_optimization_goals:
11183 case elfcpp::Tag_ABI_FP_optimization_goals:
11184 // Use the first value seen.
11185 break;
11186
11187 case elfcpp::Tag_CPU_arch:
11188 {
11189 unsigned int saved_out_attr = out_attr->int_value();
11190 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11191 int secondary_compat =
11192 this->get_secondary_compatible_arch(pasd);
11193 int secondary_compat_out =
11194 this->get_secondary_compatible_arch(
11195 this->attributes_section_data_);
11196 out_attr[i].set_int_value(
11197 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11198 &secondary_compat_out,
11199 in_attr[i].int_value(),
11200 secondary_compat));
11201 this->set_secondary_compatible_arch(this->attributes_section_data_,
11202 secondary_compat_out);
11203
11204 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11205 if (out_attr[i].int_value() == saved_out_attr)
11206 ; // Leave the names alone.
11207 else if (out_attr[i].int_value() == in_attr[i].int_value())
11208 {
11209 // The output architecture has been changed to match the
11210 // input architecture. Use the input names.
11211 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11212 in_attr[elfcpp::Tag_CPU_name].string_value());
11213 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11214 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11215 }
11216 else
11217 {
11218 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11219 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11220 }
11221
11222 // If we still don't have a value for Tag_CPU_name,
11223 // make one up now. Tag_CPU_raw_name remains blank.
11224 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11225 {
11226 const std::string cpu_name =
11227 this->tag_cpu_name_value(out_attr[i].int_value());
11228 // FIXME: If we see an unknown CPU, this will be set
11229 // to "<unknown CPU n>", where n is the attribute value.
11230 // This is different from BFD, which leaves the name alone.
11231 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11232 }
11233 }
11234 break;
11235
11236 case elfcpp::Tag_ARM_ISA_use:
11237 case elfcpp::Tag_THUMB_ISA_use:
11238 case elfcpp::Tag_WMMX_arch:
11239 case elfcpp::Tag_Advanced_SIMD_arch:
11240 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11241 case elfcpp::Tag_ABI_FP_rounding:
11242 case elfcpp::Tag_ABI_FP_exceptions:
11243 case elfcpp::Tag_ABI_FP_user_exceptions:
11244 case elfcpp::Tag_ABI_FP_number_model:
11245 case elfcpp::Tag_VFP_HP_extension:
11246 case elfcpp::Tag_CPU_unaligned_access:
11247 case elfcpp::Tag_T2EE_use:
11248 case elfcpp::Tag_Virtualization_use:
11249 case elfcpp::Tag_MPextension_use:
11250 // Use the largest value specified.
11251 if (in_attr[i].int_value() > out_attr[i].int_value())
11252 out_attr[i].set_int_value(in_attr[i].int_value());
11253 break;
11254
11255 case elfcpp::Tag_ABI_align8_preserved:
11256 case elfcpp::Tag_ABI_PCS_RO_data:
11257 // Use the smallest value specified.
11258 if (in_attr[i].int_value() < out_attr[i].int_value())
11259 out_attr[i].set_int_value(in_attr[i].int_value());
11260 break;
11261
11262 case elfcpp::Tag_ABI_align8_needed:
11263 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11264 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11265 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11266 == 0)))
11267 {
11268 // This error message should be enabled once all non-conforming
11269 // binaries in the toolchain have had the attributes set
11270 // properly.
11271 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11272 // name);
11273 }
11274 // Fall through.
11275 case elfcpp::Tag_ABI_FP_denormal:
11276 case elfcpp::Tag_ABI_PCS_GOT_use:
11277 {
11278 // These tags have 0 = don't care, 1 = strong requirement,
11279 // 2 = weak requirement.
11280 static const int order_021[3] = {0, 2, 1};
11281
11282 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11283 // value if greater than 2 (for future-proofing).
11284 if ((in_attr[i].int_value() > 2
11285 && in_attr[i].int_value() > out_attr[i].int_value())
11286 || (in_attr[i].int_value() <= 2
11287 && out_attr[i].int_value() <= 2
11288 && (order_021[in_attr[i].int_value()]
11289 > order_021[out_attr[i].int_value()])))
11290 out_attr[i].set_int_value(in_attr[i].int_value());
11291 }
11292 break;
11293
11294 case elfcpp::Tag_CPU_arch_profile:
11295 if (out_attr[i].int_value() != in_attr[i].int_value())
11296 {
11297 // 0 will merge with anything.
11298 // 'A' and 'S' merge to 'A'.
11299 // 'R' and 'S' merge to 'R'.
11300 // 'M' and 'A|R|S' is an error.
11301 if (out_attr[i].int_value() == 0
11302 || (out_attr[i].int_value() == 'S'
11303 && (in_attr[i].int_value() == 'A'
11304 || in_attr[i].int_value() == 'R')))
11305 out_attr[i].set_int_value(in_attr[i].int_value());
11306 else if (in_attr[i].int_value() == 0
11307 || (in_attr[i].int_value() == 'S'
11308 && (out_attr[i].int_value() == 'A'
11309 || out_attr[i].int_value() == 'R')))
11310 ; // Do nothing.
11311 else if (parameters->options().warn_mismatch())
11312 {
11313 gold_error
11314 (_("conflicting architecture profiles %c/%c"),
11315 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11316 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11317 }
11318 }
11319 break;
11320 case elfcpp::Tag_VFP_arch:
11321 {
11322 static const struct
11323 {
11324 int ver;
11325 int regs;
11326 } vfp_versions[7] =
11327 {
11328 {0, 0},
11329 {1, 16},
11330 {2, 16},
11331 {3, 32},
11332 {3, 16},
11333 {4, 32},
11334 {4, 16}
11335 };
11336
11337 // Values greater than 6 aren't defined, so just pick the
11338 // biggest.
11339 if (in_attr[i].int_value() > 6
11340 && in_attr[i].int_value() > out_attr[i].int_value())
11341 {
11342 *out_attr = *in_attr;
11343 break;
11344 }
11345 // The output uses the superset of input features
11346 // (ISA version) and registers.
11347 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11348 vfp_versions[out_attr[i].int_value()].ver);
11349 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11350 vfp_versions[out_attr[i].int_value()].regs);
11351 // This assumes all possible supersets are also a valid
11352 // options.
11353 int newval;
11354 for (newval = 6; newval > 0; newval--)
11355 {
11356 if (regs == vfp_versions[newval].regs
11357 && ver == vfp_versions[newval].ver)
11358 break;
11359 }
11360 out_attr[i].set_int_value(newval);
11361 }
11362 break;
11363 case elfcpp::Tag_PCS_config:
11364 if (out_attr[i].int_value() == 0)
11365 out_attr[i].set_int_value(in_attr[i].int_value());
11366 else if (in_attr[i].int_value() != 0
11367 && out_attr[i].int_value() != 0
11368 && parameters->options().warn_mismatch())
11369 {
11370 // It's sometimes ok to mix different configs, so this is only
11371 // a warning.
11372 gold_warning(_("%s: conflicting platform configuration"), name);
11373 }
11374 break;
11375 case elfcpp::Tag_ABI_PCS_R9_use:
11376 if (in_attr[i].int_value() != out_attr[i].int_value()
11377 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11378 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11379 && parameters->options().warn_mismatch())
11380 {
11381 gold_error(_("%s: conflicting use of R9"), name);
11382 }
11383 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11384 out_attr[i].set_int_value(in_attr[i].int_value());
11385 break;
11386 case elfcpp::Tag_ABI_PCS_RW_data:
11387 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11388 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11389 != elfcpp::AEABI_R9_SB)
11390 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11391 != elfcpp::AEABI_R9_unused)
11392 && parameters->options().warn_mismatch())
11393 {
11394 gold_error(_("%s: SB relative addressing conflicts with use "
11395 "of R9"),
11396 name);
11397 }
11398 // Use the smallest value specified.
11399 if (in_attr[i].int_value() < out_attr[i].int_value())
11400 out_attr[i].set_int_value(in_attr[i].int_value());
11401 break;
11402 case elfcpp::Tag_ABI_PCS_wchar_t:
11403 if (out_attr[i].int_value()
11404 && in_attr[i].int_value()
11405 && out_attr[i].int_value() != in_attr[i].int_value()
11406 && parameters->options().warn_mismatch()
11407 && parameters->options().wchar_size_warning())
11408 {
11409 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11410 "use %u-byte wchar_t; use of wchar_t values "
11411 "across objects may fail"),
11412 name, in_attr[i].int_value(),
11413 out_attr[i].int_value());
11414 }
11415 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11416 out_attr[i].set_int_value(in_attr[i].int_value());
11417 break;
11418 case elfcpp::Tag_ABI_enum_size:
11419 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11420 {
11421 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11422 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11423 {
11424 // The existing object is compatible with anything.
11425 // Use whatever requirements the new object has.
11426 out_attr[i].set_int_value(in_attr[i].int_value());
11427 }
11428 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11429 && out_attr[i].int_value() != in_attr[i].int_value()
11430 && parameters->options().warn_mismatch()
11431 && parameters->options().enum_size_warning())
11432 {
11433 unsigned int in_value = in_attr[i].int_value();
11434 unsigned int out_value = out_attr[i].int_value();
11435 gold_warning(_("%s uses %s enums yet the output is to use "
11436 "%s enums; use of enum values across objects "
11437 "may fail"),
11438 name,
11439 this->aeabi_enum_name(in_value).c_str(),
11440 this->aeabi_enum_name(out_value).c_str());
11441 }
11442 }
11443 break;
11444 case elfcpp::Tag_ABI_VFP_args:
11445 // Already done.
11446 break;
11447 case elfcpp::Tag_ABI_WMMX_args:
11448 if (in_attr[i].int_value() != out_attr[i].int_value()
11449 && parameters->options().warn_mismatch())
11450 {
11451 gold_error(_("%s uses iWMMXt register arguments, output does "
11452 "not"),
11453 name);
11454 }
11455 break;
11456 case Object_attribute::Tag_compatibility:
11457 // Merged in target-independent code.
11458 break;
11459 case elfcpp::Tag_ABI_HardFP_use:
11460 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11461 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11462 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11463 out_attr[i].set_int_value(3);
11464 else if (in_attr[i].int_value() > out_attr[i].int_value())
11465 out_attr[i].set_int_value(in_attr[i].int_value());
11466 break;
11467 case elfcpp::Tag_ABI_FP_16bit_format:
11468 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11469 {
11470 if (in_attr[i].int_value() != out_attr[i].int_value()
11471 && parameters->options().warn_mismatch())
11472 gold_error(_("fp16 format mismatch between %s and output"),
11473 name);
11474 }
11475 if (in_attr[i].int_value() != 0)
11476 out_attr[i].set_int_value(in_attr[i].int_value());
11477 break;
11478
11479 case elfcpp::Tag_DIV_use:
11480 {
11481 // A value of zero on input means that the divide
11482 // instruction may be used if available in the base
11483 // architecture as specified via Tag_CPU_arch and
11484 // Tag_CPU_arch_profile. A value of 1 means that the user
11485 // did not want divide instructions. A value of 2
11486 // explicitly means that divide instructions were allowed
11487 // in ARM and Thumb state.
11488 int arch = this->
11489 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11490 int_value();
11491 int profile = this->
11492 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11493 int_value();
11494 if (in_attr[i].int_value() == out_attr[i].int_value())
11495 {
11496 // Do nothing.
11497 }
11498 else if (attributes_forbid_div(&in_attr[i])
11499 && !attributes_accept_div(arch, profile, &out_attr[i]))
11500 out_attr[i].set_int_value(1);
11501 else if (attributes_forbid_div(&out_attr[i])
11502 && attributes_accept_div(arch, profile, &in_attr[i]))
11503 out_attr[i].set_int_value(in_attr[i].int_value());
11504 else if (in_attr[i].int_value() == 2)
11505 out_attr[i].set_int_value(in_attr[i].int_value());
11506 }
11507 break;
11508
11509 case elfcpp::Tag_MPextension_use_legacy:
11510 // We don't output objects with Tag_MPextension_use_legacy - we
11511 // move the value to Tag_MPextension_use.
11512 if (in_attr[i].int_value() != 0
11513 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11514 {
11515 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11516 != in_attr[i].int_value())
11517 {
11518 gold_error(_("%s has has both the current and legacy "
11519 "Tag_MPextension_use attributes"),
11520 name);
11521 }
11522 }
11523
11524 if (in_attr[i].int_value()
11525 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11526 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11527
11528 break;
11529
11530 case elfcpp::Tag_nodefaults:
11531 // This tag is set if it exists, but the value is unused (and is
11532 // typically zero). We don't actually need to do anything here -
11533 // the merge happens automatically when the type flags are merged
11534 // below.
11535 break;
11536 case elfcpp::Tag_also_compatible_with:
11537 // Already done in Tag_CPU_arch.
11538 break;
11539 case elfcpp::Tag_conformance:
11540 // Keep the attribute if it matches. Throw it away otherwise.
11541 // No attribute means no claim to conform.
11542 if (in_attr[i].string_value() != out_attr[i].string_value())
11543 out_attr[i].set_string_value("");
11544 break;
11545
11546 default:
11547 {
11548 const char* err_object = NULL;
11549
11550 // The "known_obj_attributes" table does contain some undefined
11551 // attributes. Ensure that there are unused.
11552 if (out_attr[i].int_value() != 0
11553 || out_attr[i].string_value() != "")
11554 err_object = "output";
11555 else if (in_attr[i].int_value() != 0
11556 || in_attr[i].string_value() != "")
11557 err_object = name;
11558
11559 if (err_object != NULL
11560 && parameters->options().warn_mismatch())
11561 {
11562 // Attribute numbers >=64 (mod 128) can be safely ignored.
11563 if ((i & 127) < 64)
11564 gold_error(_("%s: unknown mandatory EABI object attribute "
11565 "%d"),
11566 err_object, i);
11567 else
11568 gold_warning(_("%s: unknown EABI object attribute %d"),
11569 err_object, i);
11570 }
11571
11572 // Only pass on attributes that match in both inputs.
11573 if (!in_attr[i].matches(out_attr[i]))
11574 {
11575 out_attr[i].set_int_value(0);
11576 out_attr[i].set_string_value("");
11577 }
11578 }
11579 }
11580
11581 // If out_attr was copied from in_attr then it won't have a type yet.
11582 if (in_attr[i].type() && !out_attr[i].type())
11583 out_attr[i].set_type(in_attr[i].type());
11584 }
11585
11586 // Merge Tag_compatibility attributes and any common GNU ones.
11587 this->attributes_section_data_->merge(name, pasd);
11588
11589 // Check for any attributes not known on ARM.
11590 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11591 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11592 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11593 Other_attributes* out_other_attributes =
11594 this->attributes_section_data_->other_attributes(vendor);
11595 Other_attributes::iterator out_iter = out_other_attributes->begin();
11596
11597 while (in_iter != in_other_attributes->end()
11598 || out_iter != out_other_attributes->end())
11599 {
11600 const char* err_object = NULL;
11601 int err_tag = 0;
11602
11603 // The tags for each list are in numerical order.
11604 // If the tags are equal, then merge.
11605 if (out_iter != out_other_attributes->end()
11606 && (in_iter == in_other_attributes->end()
11607 || in_iter->first > out_iter->first))
11608 {
11609 // This attribute only exists in output. We can't merge, and we
11610 // don't know what the tag means, so delete it.
11611 err_object = "output";
11612 err_tag = out_iter->first;
11613 int saved_tag = out_iter->first;
11614 delete out_iter->second;
11615 out_other_attributes->erase(out_iter);
11616 out_iter = out_other_attributes->upper_bound(saved_tag);
11617 }
11618 else if (in_iter != in_other_attributes->end()
11619 && (out_iter != out_other_attributes->end()
11620 || in_iter->first < out_iter->first))
11621 {
11622 // This attribute only exists in input. We can't merge, and we
11623 // don't know what the tag means, so ignore it.
11624 err_object = name;
11625 err_tag = in_iter->first;
11626 ++in_iter;
11627 }
11628 else // The tags are equal.
11629 {
11630 // As present, all attributes in the list are unknown, and
11631 // therefore can't be merged meaningfully.
11632 err_object = "output";
11633 err_tag = out_iter->first;
11634
11635 // Only pass on attributes that match in both inputs.
11636 if (!in_iter->second->matches(*(out_iter->second)))
11637 {
11638 // No match. Delete the attribute.
11639 int saved_tag = out_iter->first;
11640 delete out_iter->second;
11641 out_other_attributes->erase(out_iter);
11642 out_iter = out_other_attributes->upper_bound(saved_tag);
11643 }
11644 else
11645 {
11646 // Matched. Keep the attribute and move to the next.
11647 ++out_iter;
11648 ++in_iter;
11649 }
11650 }
11651
11652 if (err_object && parameters->options().warn_mismatch())
11653 {
11654 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11655 if ((err_tag & 127) < 64)
11656 {
11657 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11658 err_object, err_tag);
11659 }
11660 else
11661 {
11662 gold_warning(_("%s: unknown EABI object attribute %d"),
11663 err_object, err_tag);
11664 }
11665 }
11666 }
11667 }
11668
11669 // Stub-generation methods for Target_arm.
11670
11671 // Make a new Arm_input_section object.
11672
11673 template<bool big_endian>
11674 Arm_input_section<big_endian>*
11675 Target_arm<big_endian>::new_arm_input_section(
11676 Relobj* relobj,
11677 unsigned int shndx)
11678 {
11679 Section_id sid(relobj, shndx);
11680
11681 Arm_input_section<big_endian>* arm_input_section =
11682 new Arm_input_section<big_endian>(relobj, shndx);
11683 arm_input_section->init();
11684
11685 // Register new Arm_input_section in map for look-up.
11686 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11687 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11688
11689 // Make sure that it we have not created another Arm_input_section
11690 // for this input section already.
11691 gold_assert(ins.second);
11692
11693 return arm_input_section;
11694 }
11695
11696 // Find the Arm_input_section object corresponding to the SHNDX-th input
11697 // section of RELOBJ.
11698
11699 template<bool big_endian>
11700 Arm_input_section<big_endian>*
11701 Target_arm<big_endian>::find_arm_input_section(
11702 Relobj* relobj,
11703 unsigned int shndx) const
11704 {
11705 Section_id sid(relobj, shndx);
11706 typename Arm_input_section_map::const_iterator p =
11707 this->arm_input_section_map_.find(sid);
11708 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11709 }
11710
11711 // Make a new stub table.
11712
11713 template<bool big_endian>
11714 Stub_table<big_endian>*
11715 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11716 {
11717 Stub_table<big_endian>* stub_table =
11718 new Stub_table<big_endian>(owner);
11719 this->stub_tables_.push_back(stub_table);
11720
11721 stub_table->set_address(owner->address() + owner->data_size());
11722 stub_table->set_file_offset(owner->offset() + owner->data_size());
11723 stub_table->finalize_data_size();
11724
11725 return stub_table;
11726 }
11727
11728 // Scan a relocation for stub generation.
11729
11730 template<bool big_endian>
11731 void
11732 Target_arm<big_endian>::scan_reloc_for_stub(
11733 const Relocate_info<32, big_endian>* relinfo,
11734 unsigned int r_type,
11735 const Sized_symbol<32>* gsym,
11736 unsigned int r_sym,
11737 const Symbol_value<32>* psymval,
11738 elfcpp::Elf_types<32>::Elf_Swxword addend,
11739 Arm_address address)
11740 {
11741 const Arm_relobj<big_endian>* arm_relobj =
11742 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11743
11744 bool target_is_thumb;
11745 Symbol_value<32> symval;
11746 if (gsym != NULL)
11747 {
11748 // This is a global symbol. Determine if we use PLT and if the
11749 // final target is THUMB.
11750 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11751 {
11752 // This uses a PLT, change the symbol value.
11753 symval.set_output_value(this->plt_address_for_global(gsym));
11754 psymval = &symval;
11755 target_is_thumb = false;
11756 }
11757 else if (gsym->is_undefined())
11758 // There is no need to generate a stub symbol is undefined.
11759 return;
11760 else
11761 {
11762 target_is_thumb =
11763 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11764 || (gsym->type() == elfcpp::STT_FUNC
11765 && !gsym->is_undefined()
11766 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11767 }
11768 }
11769 else
11770 {
11771 // This is a local symbol. Determine if the final target is THUMB.
11772 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11773 }
11774
11775 // Strip LSB if this points to a THUMB target.
11776 const Arm_reloc_property* reloc_property =
11777 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11778 gold_assert(reloc_property != NULL);
11779 if (target_is_thumb
11780 && reloc_property->uses_thumb_bit()
11781 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11782 {
11783 Arm_address stripped_value =
11784 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11785 symval.set_output_value(stripped_value);
11786 psymval = &symval;
11787 }
11788
11789 // Get the symbol value.
11790 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11791
11792 // Owing to pipelining, the PC relative branches below actually skip
11793 // two instructions when the branch offset is 0.
11794 Arm_address destination;
11795 switch (r_type)
11796 {
11797 case elfcpp::R_ARM_CALL:
11798 case elfcpp::R_ARM_JUMP24:
11799 case elfcpp::R_ARM_PLT32:
11800 // ARM branches.
11801 destination = value + addend + 8;
11802 break;
11803 case elfcpp::R_ARM_THM_CALL:
11804 case elfcpp::R_ARM_THM_XPC22:
11805 case elfcpp::R_ARM_THM_JUMP24:
11806 case elfcpp::R_ARM_THM_JUMP19:
11807 // THUMB branches.
11808 destination = value + addend + 4;
11809 break;
11810 default:
11811 gold_unreachable();
11812 }
11813
11814 Reloc_stub* stub = NULL;
11815 Stub_type stub_type =
11816 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11817 target_is_thumb);
11818 if (stub_type != arm_stub_none)
11819 {
11820 // Try looking up an existing stub from a stub table.
11821 Stub_table<big_endian>* stub_table =
11822 arm_relobj->stub_table(relinfo->data_shndx);
11823 gold_assert(stub_table != NULL);
11824
11825 // Locate stub by destination.
11826 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11827
11828 // Create a stub if there is not one already
11829 stub = stub_table->find_reloc_stub(stub_key);
11830 if (stub == NULL)
11831 {
11832 // create a new stub and add it to stub table.
11833 stub = this->stub_factory().make_reloc_stub(stub_type);
11834 stub_table->add_reloc_stub(stub, stub_key);
11835 }
11836
11837 // Record the destination address.
11838 stub->set_destination_address(destination
11839 | (target_is_thumb ? 1 : 0));
11840 }
11841
11842 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11843 if (this->fix_cortex_a8_
11844 && (r_type == elfcpp::R_ARM_THM_JUMP24
11845 || r_type == elfcpp::R_ARM_THM_JUMP19
11846 || r_type == elfcpp::R_ARM_THM_CALL
11847 || r_type == elfcpp::R_ARM_THM_XPC22)
11848 && (address & 0xfffU) == 0xffeU)
11849 {
11850 // Found a candidate. Note we haven't checked the destination is
11851 // within 4K here: if we do so (and don't create a record) we can't
11852 // tell that a branch should have been relocated when scanning later.
11853 this->cortex_a8_relocs_info_[address] =
11854 new Cortex_a8_reloc(stub, r_type,
11855 destination | (target_is_thumb ? 1 : 0));
11856 }
11857 }
11858
11859 // This function scans a relocation sections for stub generation.
11860 // The template parameter Relocate must be a class type which provides
11861 // a single function, relocate(), which implements the machine
11862 // specific part of a relocation.
11863
11864 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11865 // SHT_REL or SHT_RELA.
11866
11867 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11868 // of relocs. OUTPUT_SECTION is the output section.
11869 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11870 // mapped to output offsets.
11871
11872 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11873 // VIEW_SIZE is the size. These refer to the input section, unless
11874 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11875 // the output section.
11876
11877 template<bool big_endian>
11878 template<int sh_type>
11879 void inline
11880 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11881 const Relocate_info<32, big_endian>* relinfo,
11882 const unsigned char* prelocs,
11883 size_t reloc_count,
11884 Output_section* output_section,
11885 bool needs_special_offset_handling,
11886 const unsigned char* view,
11887 elfcpp::Elf_types<32>::Elf_Addr view_address,
11888 section_size_type)
11889 {
11890 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11891 const int reloc_size =
11892 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11893
11894 Arm_relobj<big_endian>* arm_object =
11895 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11896 unsigned int local_count = arm_object->local_symbol_count();
11897
11898 gold::Default_comdat_behavior default_comdat_behavior;
11899 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11900
11901 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11902 {
11903 Reltype reloc(prelocs);
11904
11905 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11906 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11907 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11908
11909 r_type = this->get_real_reloc_type(r_type);
11910
11911 // Only a few relocation types need stubs.
11912 if ((r_type != elfcpp::R_ARM_CALL)
11913 && (r_type != elfcpp::R_ARM_JUMP24)
11914 && (r_type != elfcpp::R_ARM_PLT32)
11915 && (r_type != elfcpp::R_ARM_THM_CALL)
11916 && (r_type != elfcpp::R_ARM_THM_XPC22)
11917 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11918 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11919 && (r_type != elfcpp::R_ARM_V4BX))
11920 continue;
11921
11922 section_offset_type offset =
11923 convert_to_section_size_type(reloc.get_r_offset());
11924
11925 if (needs_special_offset_handling)
11926 {
11927 offset = output_section->output_offset(relinfo->object,
11928 relinfo->data_shndx,
11929 offset);
11930 if (offset == -1)
11931 continue;
11932 }
11933
11934 // Create a v4bx stub if --fix-v4bx-interworking is used.
11935 if (r_type == elfcpp::R_ARM_V4BX)
11936 {
11937 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11938 {
11939 // Get the BX instruction.
11940 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11941 const Valtype* wv =
11942 reinterpret_cast<const Valtype*>(view + offset);
11943 elfcpp::Elf_types<32>::Elf_Swxword insn =
11944 elfcpp::Swap<32, big_endian>::readval(wv);
11945 const uint32_t reg = (insn & 0xf);
11946
11947 if (reg < 0xf)
11948 {
11949 // Try looking up an existing stub from a stub table.
11950 Stub_table<big_endian>* stub_table =
11951 arm_object->stub_table(relinfo->data_shndx);
11952 gold_assert(stub_table != NULL);
11953
11954 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11955 {
11956 // create a new stub and add it to stub table.
11957 Arm_v4bx_stub* stub =
11958 this->stub_factory().make_arm_v4bx_stub(reg);
11959 gold_assert(stub != NULL);
11960 stub_table->add_arm_v4bx_stub(stub);
11961 }
11962 }
11963 }
11964 continue;
11965 }
11966
11967 // Get the addend.
11968 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11969 elfcpp::Elf_types<32>::Elf_Swxword addend =
11970 stub_addend_reader(r_type, view + offset, reloc);
11971
11972 const Sized_symbol<32>* sym;
11973
11974 Symbol_value<32> symval;
11975 const Symbol_value<32> *psymval;
11976 bool is_defined_in_discarded_section;
11977 unsigned int shndx;
11978 if (r_sym < local_count)
11979 {
11980 sym = NULL;
11981 psymval = arm_object->local_symbol(r_sym);
11982
11983 // If the local symbol belongs to a section we are discarding,
11984 // and that section is a debug section, try to find the
11985 // corresponding kept section and map this symbol to its
11986 // counterpart in the kept section. The symbol must not
11987 // correspond to a section we are folding.
11988 bool is_ordinary;
11989 shndx = psymval->input_shndx(&is_ordinary);
11990 is_defined_in_discarded_section =
11991 (is_ordinary
11992 && shndx != elfcpp::SHN_UNDEF
11993 && !arm_object->is_section_included(shndx)
11994 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11995
11996 // We need to compute the would-be final value of this local
11997 // symbol.
11998 if (!is_defined_in_discarded_section)
11999 {
12000 typedef Sized_relobj_file<32, big_endian> ObjType;
12001 typename ObjType::Compute_final_local_value_status status =
12002 arm_object->compute_final_local_value(r_sym, psymval, &symval,
12003 relinfo->symtab);
12004 if (status == ObjType::CFLV_OK)
12005 {
12006 // Currently we cannot handle a branch to a target in
12007 // a merged section. If this is the case, issue an error
12008 // and also free the merge symbol value.
12009 if (!symval.has_output_value())
12010 {
12011 const std::string& section_name =
12012 arm_object->section_name(shndx);
12013 arm_object->error(_("cannot handle branch to local %u "
12014 "in a merged section %s"),
12015 r_sym, section_name.c_str());
12016 }
12017 psymval = &symval;
12018 }
12019 else
12020 {
12021 // We cannot determine the final value.
12022 continue;
12023 }
12024 }
12025 }
12026 else
12027 {
12028 const Symbol* gsym;
12029 gsym = arm_object->global_symbol(r_sym);
12030 gold_assert(gsym != NULL);
12031 if (gsym->is_forwarder())
12032 gsym = relinfo->symtab->resolve_forwards(gsym);
12033
12034 sym = static_cast<const Sized_symbol<32>*>(gsym);
12035 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
12036 symval.set_output_symtab_index(sym->symtab_index());
12037 else
12038 symval.set_no_output_symtab_entry();
12039
12040 // We need to compute the would-be final value of this global
12041 // symbol.
12042 const Symbol_table* symtab = relinfo->symtab;
12043 const Sized_symbol<32>* sized_symbol =
12044 symtab->get_sized_symbol<32>(gsym);
12045 Symbol_table::Compute_final_value_status status;
12046 Arm_address value =
12047 symtab->compute_final_value<32>(sized_symbol, &status);
12048
12049 // Skip this if the symbol has not output section.
12050 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
12051 continue;
12052 symval.set_output_value(value);
12053
12054 if (gsym->type() == elfcpp::STT_TLS)
12055 symval.set_is_tls_symbol();
12056 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
12057 symval.set_is_ifunc_symbol();
12058 psymval = &symval;
12059
12060 is_defined_in_discarded_section =
12061 (gsym->is_defined_in_discarded_section()
12062 && gsym->is_undefined());
12063 shndx = 0;
12064 }
12065
12066 Symbol_value<32> symval2;
12067 if (is_defined_in_discarded_section)
12068 {
12069 if (comdat_behavior == CB_UNDETERMINED)
12070 {
12071 std::string name = arm_object->section_name(relinfo->data_shndx);
12072 comdat_behavior = default_comdat_behavior.get(name.c_str());
12073 }
12074 if (comdat_behavior == CB_PRETEND)
12075 {
12076 // FIXME: This case does not work for global symbols.
12077 // We have no place to store the original section index.
12078 // Fortunately this does not matter for comdat sections,
12079 // only for sections explicitly discarded by a linker
12080 // script.
12081 bool found;
12082 typename elfcpp::Elf_types<32>::Elf_Addr value =
12083 arm_object->map_to_kept_section(shndx, &found);
12084 if (found)
12085 symval2.set_output_value(value + psymval->input_value());
12086 else
12087 symval2.set_output_value(0);
12088 }
12089 else
12090 {
12091 if (comdat_behavior == CB_WARNING)
12092 gold_warning_at_location(relinfo, i, offset,
12093 _("relocation refers to discarded "
12094 "section"));
12095 symval2.set_output_value(0);
12096 }
12097 symval2.set_no_output_symtab_entry();
12098 psymval = &symval2;
12099 }
12100
12101 // If symbol is a section symbol, we don't know the actual type of
12102 // destination. Give up.
12103 if (psymval->is_section_symbol())
12104 continue;
12105
12106 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
12107 addend, view_address + offset);
12108 }
12109 }
12110
12111 // Scan an input section for stub generation.
12112
12113 template<bool big_endian>
12114 void
12115 Target_arm<big_endian>::scan_section_for_stubs(
12116 const Relocate_info<32, big_endian>* relinfo,
12117 unsigned int sh_type,
12118 const unsigned char* prelocs,
12119 size_t reloc_count,
12120 Output_section* output_section,
12121 bool needs_special_offset_handling,
12122 const unsigned char* view,
12123 Arm_address view_address,
12124 section_size_type view_size)
12125 {
12126 if (sh_type == elfcpp::SHT_REL)
12127 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
12128 relinfo,
12129 prelocs,
12130 reloc_count,
12131 output_section,
12132 needs_special_offset_handling,
12133 view,
12134 view_address,
12135 view_size);
12136 else if (sh_type == elfcpp::SHT_RELA)
12137 // We do not support RELA type relocations yet. This is provided for
12138 // completeness.
12139 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12140 relinfo,
12141 prelocs,
12142 reloc_count,
12143 output_section,
12144 needs_special_offset_handling,
12145 view,
12146 view_address,
12147 view_size);
12148 else
12149 gold_unreachable();
12150 }
12151
12152 // Group input sections for stub generation.
12153 //
12154 // We group input sections in an output section so that the total size,
12155 // including any padding space due to alignment is smaller than GROUP_SIZE
12156 // unless the only input section in group is bigger than GROUP_SIZE already.
12157 // Then an ARM stub table is created to follow the last input section
12158 // in group. For each group an ARM stub table is created an is placed
12159 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12160 // extend the group after the stub table.
12161
12162 template<bool big_endian>
12163 void
12164 Target_arm<big_endian>::group_sections(
12165 Layout* layout,
12166 section_size_type group_size,
12167 bool stubs_always_after_branch,
12168 const Task* task)
12169 {
12170 // Group input sections and insert stub table
12171 Layout::Section_list section_list;
12172 layout->get_executable_sections(&section_list);
12173 for (Layout::Section_list::const_iterator p = section_list.begin();
12174 p != section_list.end();
12175 ++p)
12176 {
12177 Arm_output_section<big_endian>* output_section =
12178 Arm_output_section<big_endian>::as_arm_output_section(*p);
12179 output_section->group_sections(group_size, stubs_always_after_branch,
12180 this, task);
12181 }
12182 }
12183
12184 // Relaxation hook. This is where we do stub generation.
12185
12186 template<bool big_endian>
12187 bool
12188 Target_arm<big_endian>::do_relax(
12189 int pass,
12190 const Input_objects* input_objects,
12191 Symbol_table* symtab,
12192 Layout* layout,
12193 const Task* task)
12194 {
12195 // No need to generate stubs if this is a relocatable link.
12196 gold_assert(!parameters->options().relocatable());
12197
12198 // If this is the first pass, we need to group input sections into
12199 // stub groups.
12200 bool done_exidx_fixup = false;
12201 typedef typename Stub_table_list::iterator Stub_table_iterator;
12202 if (pass == 1)
12203 {
12204 // Determine the stub group size. The group size is the absolute
12205 // value of the parameter --stub-group-size. If --stub-group-size
12206 // is passed a negative value, we restrict stubs to be always after
12207 // the stubbed branches.
12208 int32_t stub_group_size_param =
12209 parameters->options().stub_group_size();
12210 bool stubs_always_after_branch = stub_group_size_param < 0;
12211 section_size_type stub_group_size = abs(stub_group_size_param);
12212
12213 if (stub_group_size == 1)
12214 {
12215 // Default value.
12216 // Thumb branch range is +-4MB has to be used as the default
12217 // maximum size (a given section can contain both ARM and Thumb
12218 // code, so the worst case has to be taken into account). If we are
12219 // fixing cortex-a8 errata, the branch range has to be even smaller,
12220 // since wide conditional branch has a range of +-1MB only.
12221 //
12222 // This value is 48K less than that, which allows for 4096
12223 // 12-byte stubs. If we exceed that, then we will fail to link.
12224 // The user will have to relink with an explicit group size
12225 // option.
12226 stub_group_size = 4145152;
12227 }
12228
12229 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12230 // page as the first half of a 32-bit branch straddling two 4K pages.
12231 // This is a crude way of enforcing that. In addition, long conditional
12232 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12233 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12234 // cortex-A8 stubs from long conditional branches.
12235 if (this->fix_cortex_a8_)
12236 {
12237 stubs_always_after_branch = true;
12238 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12239 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12240 }
12241
12242 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12243
12244 // Also fix .ARM.exidx section coverage.
12245 Arm_output_section<big_endian>* exidx_output_section = NULL;
12246 for (Layout::Section_list::const_iterator p =
12247 layout->section_list().begin();
12248 p != layout->section_list().end();
12249 ++p)
12250 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12251 {
12252 if (exidx_output_section == NULL)
12253 exidx_output_section =
12254 Arm_output_section<big_endian>::as_arm_output_section(*p);
12255 else
12256 // We cannot handle this now.
12257 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12258 "non-relocatable link"),
12259 exidx_output_section->name(),
12260 (*p)->name());
12261 }
12262
12263 if (exidx_output_section != NULL)
12264 {
12265 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12266 symtab, task);
12267 done_exidx_fixup = true;
12268 }
12269 }
12270 else
12271 {
12272 // If this is not the first pass, addresses and file offsets have
12273 // been reset at this point, set them here.
12274 for (Stub_table_iterator sp = this->stub_tables_.begin();
12275 sp != this->stub_tables_.end();
12276 ++sp)
12277 {
12278 Arm_input_section<big_endian>* owner = (*sp)->owner();
12279 off_t off = align_address(owner->original_size(),
12280 (*sp)->addralign());
12281 (*sp)->set_address_and_file_offset(owner->address() + off,
12282 owner->offset() + off);
12283 }
12284 }
12285
12286 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12287 // beginning of each relaxation pass, just blow away all the stubs.
12288 // Alternatively, we could selectively remove only the stubs and reloc
12289 // information for code sections that have moved since the last pass.
12290 // That would require more book-keeping.
12291 if (this->fix_cortex_a8_)
12292 {
12293 // Clear all Cortex-A8 reloc information.
12294 for (typename Cortex_a8_relocs_info::const_iterator p =
12295 this->cortex_a8_relocs_info_.begin();
12296 p != this->cortex_a8_relocs_info_.end();
12297 ++p)
12298 delete p->second;
12299 this->cortex_a8_relocs_info_.clear();
12300
12301 // Remove all Cortex-A8 stubs.
12302 for (Stub_table_iterator sp = this->stub_tables_.begin();
12303 sp != this->stub_tables_.end();
12304 ++sp)
12305 (*sp)->remove_all_cortex_a8_stubs();
12306 }
12307
12308 // Scan relocs for relocation stubs
12309 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12310 op != input_objects->relobj_end();
12311 ++op)
12312 {
12313 Arm_relobj<big_endian>* arm_relobj =
12314 Arm_relobj<big_endian>::as_arm_relobj(*op);
12315 // Lock the object so we can read from it. This is only called
12316 // single-threaded from Layout::finalize, so it is OK to lock.
12317 Task_lock_obj<Object> tl(task, arm_relobj);
12318 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12319 }
12320
12321 // Check all stub tables to see if any of them have their data sizes
12322 // or addresses alignments changed. These are the only things that
12323 // matter.
12324 bool any_stub_table_changed = false;
12325 Unordered_set<const Output_section*> sections_needing_adjustment;
12326 for (Stub_table_iterator sp = this->stub_tables_.begin();
12327 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12328 ++sp)
12329 {
12330 if ((*sp)->update_data_size_and_addralign())
12331 {
12332 // Update data size of stub table owner.
12333 Arm_input_section<big_endian>* owner = (*sp)->owner();
12334 uint64_t address = owner->address();
12335 off_t offset = owner->offset();
12336 owner->reset_address_and_file_offset();
12337 owner->set_address_and_file_offset(address, offset);
12338
12339 sections_needing_adjustment.insert(owner->output_section());
12340 any_stub_table_changed = true;
12341 }
12342 }
12343
12344 // Output_section_data::output_section() returns a const pointer but we
12345 // need to update output sections, so we record all output sections needing
12346 // update above and scan the sections here to find out what sections need
12347 // to be updated.
12348 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12349 p != layout->section_list().end();
12350 ++p)
12351 {
12352 if (sections_needing_adjustment.find(*p)
12353 != sections_needing_adjustment.end())
12354 (*p)->set_section_offsets_need_adjustment();
12355 }
12356
12357 // Stop relaxation if no EXIDX fix-up and no stub table change.
12358 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12359
12360 // Finalize the stubs in the last relaxation pass.
12361 if (!continue_relaxation)
12362 {
12363 for (Stub_table_iterator sp = this->stub_tables_.begin();
12364 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12365 ++sp)
12366 (*sp)->finalize_stubs();
12367
12368 // Update output local symbol counts of objects if necessary.
12369 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12370 op != input_objects->relobj_end();
12371 ++op)
12372 {
12373 Arm_relobj<big_endian>* arm_relobj =
12374 Arm_relobj<big_endian>::as_arm_relobj(*op);
12375
12376 // Update output local symbol counts. We need to discard local
12377 // symbols defined in parts of input sections that are discarded by
12378 // relaxation.
12379 if (arm_relobj->output_local_symbol_count_needs_update())
12380 {
12381 // We need to lock the object's file to update it.
12382 Task_lock_obj<Object> tl(task, arm_relobj);
12383 arm_relobj->update_output_local_symbol_count();
12384 }
12385 }
12386 }
12387
12388 return continue_relaxation;
12389 }
12390
12391 // Relocate a stub.
12392
12393 template<bool big_endian>
12394 void
12395 Target_arm<big_endian>::relocate_stub(
12396 Stub* stub,
12397 const Relocate_info<32, big_endian>* relinfo,
12398 Output_section* output_section,
12399 unsigned char* view,
12400 Arm_address address,
12401 section_size_type view_size)
12402 {
12403 Relocate relocate;
12404 const Stub_template* stub_template = stub->stub_template();
12405 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12406 {
12407 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12408 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12409
12410 unsigned int r_type = insn->r_type();
12411 section_size_type reloc_offset = stub_template->reloc_offset(i);
12412 section_size_type reloc_size = insn->size();
12413 gold_assert(reloc_offset + reloc_size <= view_size);
12414
12415 // This is the address of the stub destination.
12416 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12417 Symbol_value<32> symval;
12418 symval.set_output_value(target);
12419
12420 // Synthesize a fake reloc just in case. We don't have a symbol so
12421 // we use 0.
12422 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12423 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12424 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12425 reloc_write.put_r_offset(reloc_offset);
12426 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12427
12428 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12429 this->fake_relnum_for_stubs, reloc_buffer,
12430 NULL, &symval, view + reloc_offset,
12431 address + reloc_offset, reloc_size);
12432 }
12433 }
12434
12435 // Determine whether an object attribute tag takes an integer, a
12436 // string or both.
12437
12438 template<bool big_endian>
12439 int
12440 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12441 {
12442 if (tag == Object_attribute::Tag_compatibility)
12443 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12444 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12445 else if (tag == elfcpp::Tag_nodefaults)
12446 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12447 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12448 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12449 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12450 else if (tag < 32)
12451 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12452 else
12453 return ((tag & 1) != 0
12454 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12455 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12456 }
12457
12458 // Reorder attributes.
12459 //
12460 // The ABI defines that Tag_conformance should be emitted first, and that
12461 // Tag_nodefaults should be second (if either is defined). This sets those
12462 // two positions, and bumps up the position of all the remaining tags to
12463 // compensate.
12464
12465 template<bool big_endian>
12466 int
12467 Target_arm<big_endian>::do_attributes_order(int num) const
12468 {
12469 // Reorder the known object attributes in output. We want to move
12470 // Tag_conformance to position 4 and Tag_conformance to position 5
12471 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12472 if (num == 4)
12473 return elfcpp::Tag_conformance;
12474 if (num == 5)
12475 return elfcpp::Tag_nodefaults;
12476 if ((num - 2) < elfcpp::Tag_nodefaults)
12477 return num - 2;
12478 if ((num - 1) < elfcpp::Tag_conformance)
12479 return num - 1;
12480 return num;
12481 }
12482
12483 // Scan a span of THUMB code for Cortex-A8 erratum.
12484
12485 template<bool big_endian>
12486 void
12487 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12488 Arm_relobj<big_endian>* arm_relobj,
12489 unsigned int shndx,
12490 section_size_type span_start,
12491 section_size_type span_end,
12492 const unsigned char* view,
12493 Arm_address address)
12494 {
12495 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12496 //
12497 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12498 // The branch target is in the same 4KB region as the
12499 // first half of the branch.
12500 // The instruction before the branch is a 32-bit
12501 // length non-branch instruction.
12502 section_size_type i = span_start;
12503 bool last_was_32bit = false;
12504 bool last_was_branch = false;
12505 while (i < span_end)
12506 {
12507 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12508 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12509 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12510 bool is_blx = false, is_b = false;
12511 bool is_bl = false, is_bcc = false;
12512
12513 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12514 if (insn_32bit)
12515 {
12516 // Load the rest of the insn (in manual-friendly order).
12517 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12518
12519 // Encoding T4: B<c>.W.
12520 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12521 // Encoding T1: BL<c>.W.
12522 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12523 // Encoding T2: BLX<c>.W.
12524 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12525 // Encoding T3: B<c>.W (not permitted in IT block).
12526 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12527 && (insn & 0x07f00000U) != 0x03800000U);
12528 }
12529
12530 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12531
12532 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12533 // page boundary and it follows 32-bit non-branch instruction,
12534 // we need to work around.
12535 if (is_32bit_branch
12536 && ((address + i) & 0xfffU) == 0xffeU
12537 && last_was_32bit
12538 && !last_was_branch)
12539 {
12540 // Check to see if there is a relocation stub for this branch.
12541 bool force_target_arm = false;
12542 bool force_target_thumb = false;
12543 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12544 Cortex_a8_relocs_info::const_iterator p =
12545 this->cortex_a8_relocs_info_.find(address + i);
12546
12547 if (p != this->cortex_a8_relocs_info_.end())
12548 {
12549 cortex_a8_reloc = p->second;
12550 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12551
12552 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12553 && !target_is_thumb)
12554 force_target_arm = true;
12555 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12556 && target_is_thumb)
12557 force_target_thumb = true;
12558 }
12559
12560 off_t offset;
12561 Stub_type stub_type = arm_stub_none;
12562
12563 // Check if we have an offending branch instruction.
12564 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12565 uint16_t lower_insn = insn & 0xffffU;
12566 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12567
12568 if (cortex_a8_reloc != NULL
12569 && cortex_a8_reloc->reloc_stub() != NULL)
12570 // We've already made a stub for this instruction, e.g.
12571 // it's a long branch or a Thumb->ARM stub. Assume that
12572 // stub will suffice to work around the A8 erratum (see
12573 // setting of always_after_branch above).
12574 ;
12575 else if (is_bcc)
12576 {
12577 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12578 lower_insn);
12579 stub_type = arm_stub_a8_veneer_b_cond;
12580 }
12581 else if (is_b || is_bl || is_blx)
12582 {
12583 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12584 lower_insn);
12585 if (is_blx)
12586 offset &= ~3;
12587
12588 stub_type = (is_blx
12589 ? arm_stub_a8_veneer_blx
12590 : (is_bl
12591 ? arm_stub_a8_veneer_bl
12592 : arm_stub_a8_veneer_b));
12593 }
12594
12595 if (stub_type != arm_stub_none)
12596 {
12597 Arm_address pc_for_insn = address + i + 4;
12598
12599 // The original instruction is a BL, but the target is
12600 // an ARM instruction. If we were not making a stub,
12601 // the BL would have been converted to a BLX. Use the
12602 // BLX stub instead in that case.
12603 if (this->may_use_v5t_interworking() && force_target_arm
12604 && stub_type == arm_stub_a8_veneer_bl)
12605 {
12606 stub_type = arm_stub_a8_veneer_blx;
12607 is_blx = true;
12608 is_bl = false;
12609 }
12610 // Conversely, if the original instruction was
12611 // BLX but the target is Thumb mode, use the BL stub.
12612 else if (force_target_thumb
12613 && stub_type == arm_stub_a8_veneer_blx)
12614 {
12615 stub_type = arm_stub_a8_veneer_bl;
12616 is_blx = false;
12617 is_bl = true;
12618 }
12619
12620 if (is_blx)
12621 pc_for_insn &= ~3;
12622
12623 // If we found a relocation, use the proper destination,
12624 // not the offset in the (unrelocated) instruction.
12625 // Note this is always done if we switched the stub type above.
12626 if (cortex_a8_reloc != NULL)
12627 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12628
12629 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12630
12631 // Add a new stub if destination address in in the same page.
12632 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12633 {
12634 Cortex_a8_stub* stub =
12635 this->stub_factory_.make_cortex_a8_stub(stub_type,
12636 arm_relobj, shndx,
12637 address + i,
12638 target, insn);
12639 Stub_table<big_endian>* stub_table =
12640 arm_relobj->stub_table(shndx);
12641 gold_assert(stub_table != NULL);
12642 stub_table->add_cortex_a8_stub(address + i, stub);
12643 }
12644 }
12645 }
12646
12647 i += insn_32bit ? 4 : 2;
12648 last_was_32bit = insn_32bit;
12649 last_was_branch = is_32bit_branch;
12650 }
12651 }
12652
12653 // Apply the Cortex-A8 workaround.
12654
12655 template<bool big_endian>
12656 void
12657 Target_arm<big_endian>::apply_cortex_a8_workaround(
12658 const Cortex_a8_stub* stub,
12659 Arm_address stub_address,
12660 unsigned char* insn_view,
12661 Arm_address insn_address)
12662 {
12663 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12664 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12665 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12666 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12667 off_t branch_offset = stub_address - (insn_address + 4);
12668
12669 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12670 switch (stub->stub_template()->type())
12671 {
12672 case arm_stub_a8_veneer_b_cond:
12673 // For a conditional branch, we re-write it to be an unconditional
12674 // branch to the stub. We use the THUMB-2 encoding here.
12675 upper_insn = 0xf000U;
12676 lower_insn = 0xb800U;
12677 // Fall through
12678 case arm_stub_a8_veneer_b:
12679 case arm_stub_a8_veneer_bl:
12680 case arm_stub_a8_veneer_blx:
12681 if ((lower_insn & 0x5000U) == 0x4000U)
12682 // For a BLX instruction, make sure that the relocation is
12683 // rounded up to a word boundary. This follows the semantics of
12684 // the instruction which specifies that bit 1 of the target
12685 // address will come from bit 1 of the base address.
12686 branch_offset = (branch_offset + 2) & ~3;
12687
12688 // Put BRANCH_OFFSET back into the insn.
12689 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12690 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12691 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12692 break;
12693
12694 default:
12695 gold_unreachable();
12696 }
12697
12698 // Put the relocated value back in the object file:
12699 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12700 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12701 }
12702
12703 // Target selector for ARM. Note this is never instantiated directly.
12704 // It's only used in Target_selector_arm_nacl, below.
12705
12706 template<bool big_endian>
12707 class Target_selector_arm : public Target_selector
12708 {
12709 public:
12710 Target_selector_arm()
12711 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12712 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12713 (big_endian ? "armelfb" : "armelf"))
12714 { }
12715
12716 Target*
12717 do_instantiate_target()
12718 { return new Target_arm<big_endian>(); }
12719 };
12720
12721 // Fix .ARM.exidx section coverage.
12722
12723 template<bool big_endian>
12724 void
12725 Target_arm<big_endian>::fix_exidx_coverage(
12726 Layout* layout,
12727 const Input_objects* input_objects,
12728 Arm_output_section<big_endian>* exidx_section,
12729 Symbol_table* symtab,
12730 const Task* task)
12731 {
12732 // We need to look at all the input sections in output in ascending
12733 // order of of output address. We do that by building a sorted list
12734 // of output sections by addresses. Then we looks at the output sections
12735 // in order. The input sections in an output section are already sorted
12736 // by addresses within the output section.
12737
12738 typedef std::set<Output_section*, output_section_address_less_than>
12739 Sorted_output_section_list;
12740 Sorted_output_section_list sorted_output_sections;
12741
12742 // Find out all the output sections of input sections pointed by
12743 // EXIDX input sections.
12744 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12745 p != input_objects->relobj_end();
12746 ++p)
12747 {
12748 Arm_relobj<big_endian>* arm_relobj =
12749 Arm_relobj<big_endian>::as_arm_relobj(*p);
12750 std::vector<unsigned int> shndx_list;
12751 arm_relobj->get_exidx_shndx_list(&shndx_list);
12752 for (size_t i = 0; i < shndx_list.size(); ++i)
12753 {
12754 const Arm_exidx_input_section* exidx_input_section =
12755 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12756 gold_assert(exidx_input_section != NULL);
12757 if (!exidx_input_section->has_errors())
12758 {
12759 unsigned int text_shndx = exidx_input_section->link();
12760 Output_section* os = arm_relobj->output_section(text_shndx);
12761 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12762 sorted_output_sections.insert(os);
12763 }
12764 }
12765 }
12766
12767 // Go over the output sections in ascending order of output addresses.
12768 typedef typename Arm_output_section<big_endian>::Text_section_list
12769 Text_section_list;
12770 Text_section_list sorted_text_sections;
12771 for (typename Sorted_output_section_list::iterator p =
12772 sorted_output_sections.begin();
12773 p != sorted_output_sections.end();
12774 ++p)
12775 {
12776 Arm_output_section<big_endian>* arm_output_section =
12777 Arm_output_section<big_endian>::as_arm_output_section(*p);
12778 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12779 }
12780
12781 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12782 merge_exidx_entries(), task);
12783 }
12784
12785 template<bool big_endian>
12786 void
12787 Target_arm<big_endian>::do_define_standard_symbols(
12788 Symbol_table* symtab,
12789 Layout* layout)
12790 {
12791 // Handle the .ARM.exidx section.
12792 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12793
12794 if (exidx_section != NULL)
12795 {
12796 // Create __exidx_start and __exidx_end symbols.
12797 symtab->define_in_output_data("__exidx_start",
12798 NULL, // version
12799 Symbol_table::PREDEFINED,
12800 exidx_section,
12801 0, // value
12802 0, // symsize
12803 elfcpp::STT_NOTYPE,
12804 elfcpp::STB_GLOBAL,
12805 elfcpp::STV_HIDDEN,
12806 0, // nonvis
12807 false, // offset_is_from_end
12808 true); // only_if_ref
12809
12810 symtab->define_in_output_data("__exidx_end",
12811 NULL, // version
12812 Symbol_table::PREDEFINED,
12813 exidx_section,
12814 0, // value
12815 0, // symsize
12816 elfcpp::STT_NOTYPE,
12817 elfcpp::STB_GLOBAL,
12818 elfcpp::STV_HIDDEN,
12819 0, // nonvis
12820 true, // offset_is_from_end
12821 true); // only_if_ref
12822 }
12823 else
12824 {
12825 // Define __exidx_start and __exidx_end even when .ARM.exidx
12826 // section is missing to match ld's behaviour.
12827 symtab->define_as_constant("__exidx_start", NULL,
12828 Symbol_table::PREDEFINED,
12829 0, 0, elfcpp::STT_OBJECT,
12830 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12831 true, false);
12832 symtab->define_as_constant("__exidx_end", NULL,
12833 Symbol_table::PREDEFINED,
12834 0, 0, elfcpp::STT_OBJECT,
12835 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12836 true, false);
12837 }
12838 }
12839
12840 // NaCl variant. It uses different PLT contents.
12841
12842 template<bool big_endian>
12843 class Output_data_plt_arm_nacl;
12844
12845 template<bool big_endian>
12846 class Target_arm_nacl : public Target_arm<big_endian>
12847 {
12848 public:
12849 Target_arm_nacl()
12850 : Target_arm<big_endian>(&arm_nacl_info)
12851 { }
12852
12853 protected:
12854 virtual Output_data_plt_arm<big_endian>*
12855 do_make_data_plt(
12856 Layout* layout,
12857 Arm_output_data_got<big_endian>* got,
12858 Output_data_space* got_plt,
12859 Output_data_space* got_irelative)
12860 { return new Output_data_plt_arm_nacl<big_endian>(
12861 layout, got, got_plt, got_irelative); }
12862
12863 private:
12864 static const Target::Target_info arm_nacl_info;
12865 };
12866
12867 template<bool big_endian>
12868 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12869 {
12870 32, // size
12871 big_endian, // is_big_endian
12872 elfcpp::EM_ARM, // machine_code
12873 false, // has_make_symbol
12874 false, // has_resolve
12875 false, // has_code_fill
12876 true, // is_default_stack_executable
12877 false, // can_icf_inline_merge_sections
12878 '\0', // wrap_char
12879 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12880 0x20000, // default_text_segment_address
12881 0x10000, // abi_pagesize (overridable by -z max-page-size)
12882 0x10000, // common_pagesize (overridable by -z common-page-size)
12883 true, // isolate_execinstr
12884 0x10000000, // rosegment_gap
12885 elfcpp::SHN_UNDEF, // small_common_shndx
12886 elfcpp::SHN_UNDEF, // large_common_shndx
12887 0, // small_common_section_flags
12888 0, // large_common_section_flags
12889 ".ARM.attributes", // attributes_section
12890 "aeabi", // attributes_vendor
12891 "_start", // entry_symbol_name
12892 32, // hash_entry_size
12893 };
12894
12895 template<bool big_endian>
12896 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12897 {
12898 public:
12899 Output_data_plt_arm_nacl(
12900 Layout* layout,
12901 Arm_output_data_got<big_endian>* got,
12902 Output_data_space* got_plt,
12903 Output_data_space* got_irelative)
12904 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12905 { }
12906
12907 protected:
12908 // Return the offset of the first non-reserved PLT entry.
12909 virtual unsigned int
12910 do_first_plt_entry_offset() const
12911 { return sizeof(first_plt_entry); }
12912
12913 // Return the size of a PLT entry.
12914 virtual unsigned int
12915 do_get_plt_entry_size() const
12916 { return sizeof(plt_entry); }
12917
12918 virtual void
12919 do_fill_first_plt_entry(unsigned char* pov,
12920 Arm_address got_address,
12921 Arm_address plt_address);
12922
12923 virtual void
12924 do_fill_plt_entry(unsigned char* pov,
12925 Arm_address got_address,
12926 Arm_address plt_address,
12927 unsigned int got_offset,
12928 unsigned int plt_offset);
12929
12930 private:
12931 inline uint32_t arm_movw_immediate(uint32_t value)
12932 {
12933 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12934 }
12935
12936 inline uint32_t arm_movt_immediate(uint32_t value)
12937 {
12938 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12939 }
12940
12941 // Template for the first PLT entry.
12942 static const uint32_t first_plt_entry[16];
12943
12944 // Template for subsequent PLT entries.
12945 static const uint32_t plt_entry[4];
12946 };
12947
12948 // The first entry in the PLT.
12949 template<bool big_endian>
12950 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12951 {
12952 // First bundle:
12953 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12954 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12955 0xe08cc00f, // add ip, ip, pc
12956 0xe52dc008, // str ip, [sp, #-8]!
12957 // Second bundle:
12958 0xe3ccc103, // bic ip, ip, #0xc0000000
12959 0xe59cc000, // ldr ip, [ip]
12960 0xe3ccc13f, // bic ip, ip, #0xc000000f
12961 0xe12fff1c, // bx ip
12962 // Third bundle:
12963 0xe320f000, // nop
12964 0xe320f000, // nop
12965 0xe320f000, // nop
12966 // .Lplt_tail:
12967 0xe50dc004, // str ip, [sp, #-4]
12968 // Fourth bundle:
12969 0xe3ccc103, // bic ip, ip, #0xc0000000
12970 0xe59cc000, // ldr ip, [ip]
12971 0xe3ccc13f, // bic ip, ip, #0xc000000f
12972 0xe12fff1c, // bx ip
12973 };
12974
12975 template<bool big_endian>
12976 void
12977 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12978 unsigned char* pov,
12979 Arm_address got_address,
12980 Arm_address plt_address)
12981 {
12982 // Write first PLT entry. All but first two words are constants.
12983 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12984 / sizeof(first_plt_entry[0]));
12985
12986 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12987
12988 elfcpp::Swap<32, big_endian>::writeval
12989 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12990 elfcpp::Swap<32, big_endian>::writeval
12991 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12992
12993 for (size_t i = 2; i < num_first_plt_words; ++i)
12994 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12995 }
12996
12997 // Subsequent entries in the PLT.
12998
12999 template<bool big_endian>
13000 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
13001 {
13002 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
13003 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
13004 0xe08cc00f, // add ip, ip, pc
13005 0xea000000, // b .Lplt_tail
13006 };
13007
13008 template<bool big_endian>
13009 void
13010 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
13011 unsigned char* pov,
13012 Arm_address got_address,
13013 Arm_address plt_address,
13014 unsigned int got_offset,
13015 unsigned int plt_offset)
13016 {
13017 // Calculate the displacement between the PLT slot and the
13018 // common tail that's part of the special initial PLT slot.
13019 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
13020 - (plt_address + plt_offset
13021 + sizeof(plt_entry) + sizeof(uint32_t)));
13022 gold_assert((tail_displacement & 3) == 0);
13023 tail_displacement >>= 2;
13024
13025 gold_assert ((tail_displacement & 0xff000000) == 0
13026 || (-tail_displacement & 0xff000000) == 0);
13027
13028 // Calculate the displacement between the PLT slot and the entry
13029 // in the GOT. The offset accounts for the value produced by
13030 // adding to pc in the penultimate instruction of the PLT stub.
13031 const int32_t got_displacement = (got_address + got_offset
13032 - (plt_address + sizeof(plt_entry)));
13033
13034 elfcpp::Swap<32, big_endian>::writeval
13035 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
13036 elfcpp::Swap<32, big_endian>::writeval
13037 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
13038 elfcpp::Swap<32, big_endian>::writeval
13039 (pov + 8, plt_entry[2]);
13040 elfcpp::Swap<32, big_endian>::writeval
13041 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
13042 }
13043
13044 // Target selectors.
13045
13046 template<bool big_endian>
13047 class Target_selector_arm_nacl
13048 : public Target_selector_nacl<Target_selector_arm<big_endian>,
13049 Target_arm_nacl<big_endian> >
13050 {
13051 public:
13052 Target_selector_arm_nacl()
13053 : Target_selector_nacl<Target_selector_arm<big_endian>,
13054 Target_arm_nacl<big_endian> >(
13055 "arm",
13056 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
13057 big_endian ? "armelfb_nacl" : "armelf_nacl")
13058 { }
13059 };
13060
13061 Target_selector_arm_nacl<false> target_selector_arm;
13062 Target_selector_arm_nacl<true> target_selector_armbe;
13063
13064 } // End anonymous namespace.
This page took 0.430874 seconds and 5 git commands to generate.