* configure.ac (ENABLE_GOLD): Consider *-*-nacl* targets ELF.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 // Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
155 // Factory methods to create instruction templates in different formats.
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
176 }
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
211 // Return size of instruction template in bytes.
212 size_t
213 size() const;
214
215 // Return byte-alignment of instruction template.
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278 // Last stub type.
279 arm_stub_type_last = arm_stub_v4_veneer_bx
280 } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
319
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
356
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
412
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
435 // This may be overridden in the child class.
436 virtual void
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
444
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
451 private:
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461 };
462
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
515 {
516 if (symbol != NULL)
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
520 }
521 else
522 {
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
557 eq(const Key& k) const
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 // branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
857
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
863
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873 public:
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
904 void
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
977
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
988
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
992 { return this->prev_addralign_; }
993
994 // Reset address and file offset.
995 void
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1003
1004 private:
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076 private:
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
1081
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150 public:
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1155 { }
1156
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1159
1160 // Initialize.
1161 void
1162 init();
1163
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1178
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1219 {
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225 {
1226 *poutput = offset;
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255 public:
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1279
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
1336
1337 bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346 public:
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
1360
1361 ~Arm_output_section()
1362 { }
1363
1364 // Group input sections for stub generation.
1365 void
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1386 const Task* task);
1387
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
1423
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
1446 // Return address alignment of EXIDX input section.
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1480 bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1499 { }
1500
1501 ~Arm_relobj()
1502 { delete this->attributes_section_data_; }
1503
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1507 {
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515 {
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
1528
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
1576
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1585 {
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
1589
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1632
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1641
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1656 }
1657
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1675
1676 void
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690 private:
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1697
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1702
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1728 void
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770 public:
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1775 { }
1776
1777 ~Arm_dynobj()
1778 { delete this->attributes_section_data_; }
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
1869
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
1874 { return this->reloc_stub_; }
1875
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129 { }
2130
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2140
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2166 }
2167
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179 }
2180
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191 }
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2203
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221 }
2222
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2225 void
2226 gc_process_relocs(Symbol_table* symtab,
2227 Layout* layout,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
2240 scan_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256 // Return the value to use for a dynamic symbol which requires special
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2273
2274 // Scan the relocs during a relocatable link.
2275 void
2276 scan_relocatable_relocs(Symbol_table* symtab,
2277 Layout* layout,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
2289 // Relocate a section during a relocatable link.
2290 void
2291 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 off_t offset_in_output_section,
2297 const Relocatable_relocs*,
2298 unsigned char* view,
2299 Arm_address view_address,
2300 section_size_type view_size,
2301 unsigned char* reloc_view,
2302 section_size_type reloc_view_size);
2303
2304 // Perform target-specific processing in a relocatable link. This is
2305 // only used if we use the relocation strategy RELOC_SPECIAL.
2306 void
2307 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2308 unsigned int sh_type,
2309 const unsigned char* preloc_in,
2310 size_t relnum,
2311 Output_section* output_section,
2312 off_t offset_in_output_section,
2313 unsigned char* view,
2314 typename elfcpp::Elf_types<32>::Elf_Addr
2315 view_address,
2316 section_size_type view_size,
2317 unsigned char* preloc_out);
2318
2319 // Return whether SYM is defined by the ABI.
2320 bool
2321 do_is_defined_by_abi(const Symbol* sym) const
2322 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2323
2324 // Return whether there is a GOT section.
2325 bool
2326 has_got_section() const
2327 { return this->got_ != NULL; }
2328
2329 // Return the size of the GOT section.
2330 section_size_type
2331 got_size() const
2332 {
2333 gold_assert(this->got_ != NULL);
2334 return this->got_->data_size();
2335 }
2336
2337 // Return the number of entries in the GOT.
2338 unsigned int
2339 got_entry_count() const
2340 {
2341 if (!this->has_got_section())
2342 return 0;
2343 return this->got_size() / 4;
2344 }
2345
2346 // Return the number of entries in the PLT.
2347 unsigned int
2348 plt_entry_count() const;
2349
2350 // Return the offset of the first non-reserved PLT entry.
2351 unsigned int
2352 first_plt_entry_offset() const;
2353
2354 // Return the size of each PLT entry.
2355 unsigned int
2356 plt_entry_size() const;
2357
2358 // Map platform-specific reloc types
2359 static unsigned int
2360 get_real_reloc_type(unsigned int r_type);
2361
2362 //
2363 // Methods to support stub-generations.
2364 //
2365
2366 // Return the stub factory
2367 const Stub_factory&
2368 stub_factory() const
2369 { return this->stub_factory_; }
2370
2371 // Make a new Arm_input_section object.
2372 Arm_input_section<big_endian>*
2373 new_arm_input_section(Relobj*, unsigned int);
2374
2375 // Find the Arm_input_section object corresponding to the SHNDX-th input
2376 // section of RELOBJ.
2377 Arm_input_section<big_endian>*
2378 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2379
2380 // Make a new Stub_table
2381 Stub_table<big_endian>*
2382 new_stub_table(Arm_input_section<big_endian>*);
2383
2384 // Scan a section for stub generation.
2385 void
2386 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2387 const unsigned char*, size_t, Output_section*,
2388 bool, const unsigned char*, Arm_address,
2389 section_size_type);
2390
2391 // Relocate a stub.
2392 void
2393 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2394 Output_section*, unsigned char*, Arm_address,
2395 section_size_type);
2396
2397 // Get the default ARM target.
2398 static Target_arm<big_endian>*
2399 default_target()
2400 {
2401 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2402 && parameters->target().is_big_endian() == big_endian);
2403 return static_cast<Target_arm<big_endian>*>(
2404 parameters->sized_target<32, big_endian>());
2405 }
2406
2407 // Whether NAME belongs to a mapping symbol.
2408 static bool
2409 is_mapping_symbol_name(const char* name)
2410 {
2411 return (name
2412 && name[0] == '$'
2413 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2414 && (name[2] == '\0' || name[2] == '.'));
2415 }
2416
2417 // Whether we work around the Cortex-A8 erratum.
2418 bool
2419 fix_cortex_a8() const
2420 { return this->fix_cortex_a8_; }
2421
2422 // Whether we merge exidx entries in debuginfo.
2423 bool
2424 merge_exidx_entries() const
2425 { return parameters->options().merge_exidx_entries(); }
2426
2427 // Whether we fix R_ARM_V4BX relocation.
2428 // 0 - do not fix
2429 // 1 - replace with MOV instruction (armv4 target)
2430 // 2 - make interworking veneer (>= armv4t targets only)
2431 General_options::Fix_v4bx
2432 fix_v4bx() const
2433 { return parameters->options().fix_v4bx(); }
2434
2435 // Scan a span of THUMB code section for Cortex-A8 erratum.
2436 void
2437 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2438 section_size_type, section_size_type,
2439 const unsigned char*, Arm_address);
2440
2441 // Apply Cortex-A8 workaround to a branch.
2442 void
2443 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2444 unsigned char*, Arm_address);
2445
2446 protected:
2447 // Make the PLT-generator object.
2448 Output_data_plt_arm<big_endian>*
2449 make_data_plt(Layout* layout, Output_data_space* got_plt)
2450 { return this->do_make_data_plt(layout, got_plt); }
2451
2452 // Make an ELF object.
2453 Object*
2454 do_make_elf_object(const std::string&, Input_file*, off_t,
2455 const elfcpp::Ehdr<32, big_endian>& ehdr);
2456
2457 Object*
2458 do_make_elf_object(const std::string&, Input_file*, off_t,
2459 const elfcpp::Ehdr<32, !big_endian>&)
2460 { gold_unreachable(); }
2461
2462 Object*
2463 do_make_elf_object(const std::string&, Input_file*, off_t,
2464 const elfcpp::Ehdr<64, false>&)
2465 { gold_unreachable(); }
2466
2467 Object*
2468 do_make_elf_object(const std::string&, Input_file*, off_t,
2469 const elfcpp::Ehdr<64, true>&)
2470 { gold_unreachable(); }
2471
2472 // Make an output section.
2473 Output_section*
2474 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2475 elfcpp::Elf_Xword flags)
2476 { return new Arm_output_section<big_endian>(name, type, flags); }
2477
2478 void
2479 do_adjust_elf_header(unsigned char* view, int len) const;
2480
2481 // We only need to generate stubs, and hence perform relaxation if we are
2482 // not doing relocatable linking.
2483 bool
2484 do_may_relax() const
2485 { return !parameters->options().relocatable(); }
2486
2487 bool
2488 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2489
2490 // Determine whether an object attribute tag takes an integer, a
2491 // string or both.
2492 int
2493 do_attribute_arg_type(int tag) const;
2494
2495 // Reorder tags during output.
2496 int
2497 do_attributes_order(int num) const;
2498
2499 // This is called when the target is selected as the default.
2500 void
2501 do_select_as_default_target()
2502 {
2503 // No locking is required since there should only be one default target.
2504 // We cannot have both the big-endian and little-endian ARM targets
2505 // as the default.
2506 gold_assert(arm_reloc_property_table == NULL);
2507 arm_reloc_property_table = new Arm_reloc_property_table();
2508 }
2509
2510 // Virtual function which is set to return true by a target if
2511 // it can use relocation types to determine if a function's
2512 // pointer is taken.
2513 virtual bool
2514 do_can_check_for_function_pointers() const
2515 { return true; }
2516
2517 // Whether a section called SECTION_NAME may have function pointers to
2518 // sections not eligible for safe ICF folding.
2519 virtual bool
2520 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2521 {
2522 return (!is_prefix_of(".ARM.exidx", section_name)
2523 && !is_prefix_of(".ARM.extab", section_name)
2524 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2525 }
2526
2527 virtual void
2528 do_define_standard_symbols(Symbol_table*, Layout*);
2529
2530 virtual Output_data_plt_arm<big_endian>*
2531 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2532 {
2533 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2534 }
2535
2536 private:
2537 // The class which scans relocations.
2538 class Scan
2539 {
2540 public:
2541 Scan()
2542 : issued_non_pic_error_(false)
2543 { }
2544
2545 static inline int
2546 get_reference_flags(unsigned int r_type);
2547
2548 inline void
2549 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2550 Sized_relobj_file<32, big_endian>* object,
2551 unsigned int data_shndx,
2552 Output_section* output_section,
2553 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2554 const elfcpp::Sym<32, big_endian>& lsym);
2555
2556 inline void
2557 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2558 Sized_relobj_file<32, big_endian>* object,
2559 unsigned int data_shndx,
2560 Output_section* output_section,
2561 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2562 Symbol* gsym);
2563
2564 inline bool
2565 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2566 Sized_relobj_file<32, big_endian>* ,
2567 unsigned int ,
2568 Output_section* ,
2569 const elfcpp::Rel<32, big_endian>& ,
2570 unsigned int ,
2571 const elfcpp::Sym<32, big_endian>&);
2572
2573 inline bool
2574 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2575 Sized_relobj_file<32, big_endian>* ,
2576 unsigned int ,
2577 Output_section* ,
2578 const elfcpp::Rel<32, big_endian>& ,
2579 unsigned int , Symbol*);
2580
2581 private:
2582 static void
2583 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2584 unsigned int r_type);
2585
2586 static void
2587 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2588 unsigned int r_type, Symbol*);
2589
2590 void
2591 check_non_pic(Relobj*, unsigned int r_type);
2592
2593 // Almost identical to Symbol::needs_plt_entry except that it also
2594 // handles STT_ARM_TFUNC.
2595 static bool
2596 symbol_needs_plt_entry(const Symbol* sym)
2597 {
2598 // An undefined symbol from an executable does not need a PLT entry.
2599 if (sym->is_undefined() && !parameters->options().shared())
2600 return false;
2601
2602 return (!parameters->doing_static_link()
2603 && (sym->type() == elfcpp::STT_FUNC
2604 || sym->type() == elfcpp::STT_ARM_TFUNC)
2605 && (sym->is_from_dynobj()
2606 || sym->is_undefined()
2607 || sym->is_preemptible()));
2608 }
2609
2610 inline bool
2611 possible_function_pointer_reloc(unsigned int r_type);
2612
2613 // Whether we have issued an error about a non-PIC compilation.
2614 bool issued_non_pic_error_;
2615 };
2616
2617 // The class which implements relocation.
2618 class Relocate
2619 {
2620 public:
2621 Relocate()
2622 { }
2623
2624 ~Relocate()
2625 { }
2626
2627 // Return whether the static relocation needs to be applied.
2628 inline bool
2629 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2630 unsigned int r_type,
2631 bool is_32bit,
2632 Output_section* output_section);
2633
2634 // Do a relocation. Return false if the caller should not issue
2635 // any warnings about this relocation.
2636 inline bool
2637 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2638 Output_section*, size_t relnum,
2639 const elfcpp::Rel<32, big_endian>&,
2640 unsigned int r_type, const Sized_symbol<32>*,
2641 const Symbol_value<32>*,
2642 unsigned char*, Arm_address,
2643 section_size_type);
2644
2645 // Return whether we want to pass flag NON_PIC_REF for this
2646 // reloc. This means the relocation type accesses a symbol not via
2647 // GOT or PLT.
2648 static inline bool
2649 reloc_is_non_pic(unsigned int r_type)
2650 {
2651 switch (r_type)
2652 {
2653 // These relocation types reference GOT or PLT entries explicitly.
2654 case elfcpp::R_ARM_GOT_BREL:
2655 case elfcpp::R_ARM_GOT_ABS:
2656 case elfcpp::R_ARM_GOT_PREL:
2657 case elfcpp::R_ARM_GOT_BREL12:
2658 case elfcpp::R_ARM_PLT32_ABS:
2659 case elfcpp::R_ARM_TLS_GD32:
2660 case elfcpp::R_ARM_TLS_LDM32:
2661 case elfcpp::R_ARM_TLS_IE32:
2662 case elfcpp::R_ARM_TLS_IE12GP:
2663
2664 // These relocate types may use PLT entries.
2665 case elfcpp::R_ARM_CALL:
2666 case elfcpp::R_ARM_THM_CALL:
2667 case elfcpp::R_ARM_JUMP24:
2668 case elfcpp::R_ARM_THM_JUMP24:
2669 case elfcpp::R_ARM_THM_JUMP19:
2670 case elfcpp::R_ARM_PLT32:
2671 case elfcpp::R_ARM_THM_XPC22:
2672 case elfcpp::R_ARM_PREL31:
2673 case elfcpp::R_ARM_SBREL31:
2674 return false;
2675
2676 default:
2677 return true;
2678 }
2679 }
2680
2681 private:
2682 // Do a TLS relocation.
2683 inline typename Arm_relocate_functions<big_endian>::Status
2684 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2685 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2686 const Sized_symbol<32>*, const Symbol_value<32>*,
2687 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2688 section_size_type);
2689
2690 };
2691
2692 // A class which returns the size required for a relocation type,
2693 // used while scanning relocs during a relocatable link.
2694 class Relocatable_size_for_reloc
2695 {
2696 public:
2697 unsigned int
2698 get_size_for_reloc(unsigned int, Relobj*);
2699 };
2700
2701 // Adjust TLS relocation type based on the options and whether this
2702 // is a local symbol.
2703 static tls::Tls_optimization
2704 optimize_tls_reloc(bool is_final, int r_type);
2705
2706 // Get the GOT section, creating it if necessary.
2707 Arm_output_data_got<big_endian>*
2708 got_section(Symbol_table*, Layout*);
2709
2710 // Get the GOT PLT section.
2711 Output_data_space*
2712 got_plt_section() const
2713 {
2714 gold_assert(this->got_plt_ != NULL);
2715 return this->got_plt_;
2716 }
2717
2718 // Create a PLT entry for a global symbol.
2719 void
2720 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2721
2722 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2723 void
2724 define_tls_base_symbol(Symbol_table*, Layout*);
2725
2726 // Create a GOT entry for the TLS module index.
2727 unsigned int
2728 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2729 Sized_relobj_file<32, big_endian>* object);
2730
2731 // Get the PLT section.
2732 const Output_data_plt_arm<big_endian>*
2733 plt_section() const
2734 {
2735 gold_assert(this->plt_ != NULL);
2736 return this->plt_;
2737 }
2738
2739 // Get the dynamic reloc section, creating it if necessary.
2740 Reloc_section*
2741 rel_dyn_section(Layout*);
2742
2743 // Get the section to use for TLS_DESC relocations.
2744 Reloc_section*
2745 rel_tls_desc_section(Layout*) const;
2746
2747 // Return true if the symbol may need a COPY relocation.
2748 // References from an executable object to non-function symbols
2749 // defined in a dynamic object may need a COPY relocation.
2750 bool
2751 may_need_copy_reloc(Symbol* gsym)
2752 {
2753 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2754 && gsym->may_need_copy_reloc());
2755 }
2756
2757 // Add a potential copy relocation.
2758 void
2759 copy_reloc(Symbol_table* symtab, Layout* layout,
2760 Sized_relobj_file<32, big_endian>* object,
2761 unsigned int shndx, Output_section* output_section,
2762 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2763 {
2764 this->copy_relocs_.copy_reloc(symtab, layout,
2765 symtab->get_sized_symbol<32>(sym),
2766 object, shndx, output_section, reloc,
2767 this->rel_dyn_section(layout));
2768 }
2769
2770 // Whether two EABI versions are compatible.
2771 static bool
2772 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2773
2774 // Merge processor-specific flags from input object and those in the ELF
2775 // header of the output.
2776 void
2777 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2778
2779 // Get the secondary compatible architecture.
2780 static int
2781 get_secondary_compatible_arch(const Attributes_section_data*);
2782
2783 // Set the secondary compatible architecture.
2784 static void
2785 set_secondary_compatible_arch(Attributes_section_data*, int);
2786
2787 static int
2788 tag_cpu_arch_combine(const char*, int, int*, int, int);
2789
2790 // Helper to print AEABI enum tag value.
2791 static std::string
2792 aeabi_enum_name(unsigned int);
2793
2794 // Return string value for TAG_CPU_name.
2795 static std::string
2796 tag_cpu_name_value(unsigned int);
2797
2798 // Merge object attributes from input object and those in the output.
2799 void
2800 merge_object_attributes(const char*, const Attributes_section_data*);
2801
2802 // Helper to get an AEABI object attribute
2803 Object_attribute*
2804 get_aeabi_object_attribute(int tag) const
2805 {
2806 Attributes_section_data* pasd = this->attributes_section_data_;
2807 gold_assert(pasd != NULL);
2808 Object_attribute* attr =
2809 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2810 gold_assert(attr != NULL);
2811 return attr;
2812 }
2813
2814 //
2815 // Methods to support stub-generations.
2816 //
2817
2818 // Group input sections for stub generation.
2819 void
2820 group_sections(Layout*, section_size_type, bool, const Task*);
2821
2822 // Scan a relocation for stub generation.
2823 void
2824 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2825 const Sized_symbol<32>*, unsigned int,
2826 const Symbol_value<32>*,
2827 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2828
2829 // Scan a relocation section for stub.
2830 template<int sh_type>
2831 void
2832 scan_reloc_section_for_stubs(
2833 const Relocate_info<32, big_endian>* relinfo,
2834 const unsigned char* prelocs,
2835 size_t reloc_count,
2836 Output_section* output_section,
2837 bool needs_special_offset_handling,
2838 const unsigned char* view,
2839 elfcpp::Elf_types<32>::Elf_Addr view_address,
2840 section_size_type);
2841
2842 // Fix .ARM.exidx section coverage.
2843 void
2844 fix_exidx_coverage(Layout*, const Input_objects*,
2845 Arm_output_section<big_endian>*, Symbol_table*,
2846 const Task*);
2847
2848 // Functors for STL set.
2849 struct output_section_address_less_than
2850 {
2851 bool
2852 operator()(const Output_section* s1, const Output_section* s2) const
2853 { return s1->address() < s2->address(); }
2854 };
2855
2856 // Information about this specific target which we pass to the
2857 // general Target structure.
2858 static const Target::Target_info arm_info;
2859
2860 // The types of GOT entries needed for this platform.
2861 // These values are exposed to the ABI in an incremental link.
2862 // Do not renumber existing values without changing the version
2863 // number of the .gnu_incremental_inputs section.
2864 enum Got_type
2865 {
2866 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2867 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2868 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2869 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2870 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2871 };
2872
2873 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2874
2875 // Map input section to Arm_input_section.
2876 typedef Unordered_map<Section_id,
2877 Arm_input_section<big_endian>*,
2878 Section_id_hash>
2879 Arm_input_section_map;
2880
2881 // Map output addresses to relocs for Cortex-A8 erratum.
2882 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2883 Cortex_a8_relocs_info;
2884
2885 // The GOT section.
2886 Arm_output_data_got<big_endian>* got_;
2887 // The PLT section.
2888 Output_data_plt_arm<big_endian>* plt_;
2889 // The GOT PLT section.
2890 Output_data_space* got_plt_;
2891 // The dynamic reloc section.
2892 Reloc_section* rel_dyn_;
2893 // Relocs saved to avoid a COPY reloc.
2894 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2895 // Space for variables copied with a COPY reloc.
2896 Output_data_space* dynbss_;
2897 // Offset of the GOT entry for the TLS module index.
2898 unsigned int got_mod_index_offset_;
2899 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2900 bool tls_base_symbol_defined_;
2901 // Vector of Stub_tables created.
2902 Stub_table_list stub_tables_;
2903 // Stub factory.
2904 const Stub_factory &stub_factory_;
2905 // Whether we force PIC branch veneers.
2906 bool should_force_pic_veneer_;
2907 // Map for locating Arm_input_sections.
2908 Arm_input_section_map arm_input_section_map_;
2909 // Attributes section data in output.
2910 Attributes_section_data* attributes_section_data_;
2911 // Whether we want to fix code for Cortex-A8 erratum.
2912 bool fix_cortex_a8_;
2913 // Map addresses to relocs for Cortex-A8 erratum.
2914 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2915 };
2916
2917 template<bool big_endian>
2918 const Target::Target_info Target_arm<big_endian>::arm_info =
2919 {
2920 32, // size
2921 big_endian, // is_big_endian
2922 elfcpp::EM_ARM, // machine_code
2923 false, // has_make_symbol
2924 false, // has_resolve
2925 false, // has_code_fill
2926 true, // is_default_stack_executable
2927 false, // can_icf_inline_merge_sections
2928 '\0', // wrap_char
2929 "/usr/lib/libc.so.1", // dynamic_linker
2930 0x8000, // default_text_segment_address
2931 0x1000, // abi_pagesize (overridable by -z max-page-size)
2932 0x1000, // common_pagesize (overridable by -z common-page-size)
2933 false, // isolate_execinstr
2934 0, // rosegment_gap
2935 elfcpp::SHN_UNDEF, // small_common_shndx
2936 elfcpp::SHN_UNDEF, // large_common_shndx
2937 0, // small_common_section_flags
2938 0, // large_common_section_flags
2939 ".ARM.attributes", // attributes_section
2940 "aeabi" // attributes_vendor
2941 };
2942
2943 // Arm relocate functions class
2944 //
2945
2946 template<bool big_endian>
2947 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2948 {
2949 public:
2950 typedef enum
2951 {
2952 STATUS_OKAY, // No error during relocation.
2953 STATUS_OVERFLOW, // Relocation overflow.
2954 STATUS_BAD_RELOC // Relocation cannot be applied.
2955 } Status;
2956
2957 private:
2958 typedef Relocate_functions<32, big_endian> Base;
2959 typedef Arm_relocate_functions<big_endian> This;
2960
2961 // Encoding of imm16 argument for movt and movw ARM instructions
2962 // from ARM ARM:
2963 //
2964 // imm16 := imm4 | imm12
2965 //
2966 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2967 // +-------+---------------+-------+-------+-----------------------+
2968 // | | |imm4 | |imm12 |
2969 // +-------+---------------+-------+-------+-----------------------+
2970
2971 // Extract the relocation addend from VAL based on the ARM
2972 // instruction encoding described above.
2973 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2974 extract_arm_movw_movt_addend(
2975 typename elfcpp::Swap<32, big_endian>::Valtype val)
2976 {
2977 // According to the Elf ABI for ARM Architecture the immediate
2978 // field is sign-extended to form the addend.
2979 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2980 }
2981
2982 // Insert X into VAL based on the ARM instruction encoding described
2983 // above.
2984 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2985 insert_val_arm_movw_movt(
2986 typename elfcpp::Swap<32, big_endian>::Valtype val,
2987 typename elfcpp::Swap<32, big_endian>::Valtype x)
2988 {
2989 val &= 0xfff0f000;
2990 val |= x & 0x0fff;
2991 val |= (x & 0xf000) << 4;
2992 return val;
2993 }
2994
2995 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2996 // from ARM ARM:
2997 //
2998 // imm16 := imm4 | i | imm3 | imm8
2999 //
3000 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3001 // +---------+-+-----------+-------++-+-----+-------+---------------+
3002 // | |i| |imm4 || |imm3 | |imm8 |
3003 // +---------+-+-----------+-------++-+-----+-------+---------------+
3004
3005 // Extract the relocation addend from VAL based on the Thumb2
3006 // instruction encoding described above.
3007 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3008 extract_thumb_movw_movt_addend(
3009 typename elfcpp::Swap<32, big_endian>::Valtype val)
3010 {
3011 // According to the Elf ABI for ARM Architecture the immediate
3012 // field is sign-extended to form the addend.
3013 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3014 | ((val >> 15) & 0x0800)
3015 | ((val >> 4) & 0x0700)
3016 | (val & 0x00ff));
3017 }
3018
3019 // Insert X into VAL based on the Thumb2 instruction encoding
3020 // described above.
3021 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3022 insert_val_thumb_movw_movt(
3023 typename elfcpp::Swap<32, big_endian>::Valtype val,
3024 typename elfcpp::Swap<32, big_endian>::Valtype x)
3025 {
3026 val &= 0xfbf08f00;
3027 val |= (x & 0xf000) << 4;
3028 val |= (x & 0x0800) << 15;
3029 val |= (x & 0x0700) << 4;
3030 val |= (x & 0x00ff);
3031 return val;
3032 }
3033
3034 // Calculate the smallest constant Kn for the specified residual.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036 static uint32_t
3037 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3038 {
3039 int32_t msb;
3040
3041 if (residual == 0)
3042 return 0;
3043 // Determine the most significant bit in the residual and
3044 // align the resulting value to a 2-bit boundary.
3045 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3046 ;
3047 // The desired shift is now (msb - 6), or zero, whichever
3048 // is the greater.
3049 return (((msb - 6) < 0) ? 0 : (msb - 6));
3050 }
3051
3052 // Calculate the final residual for the specified group index.
3053 // If the passed group index is less than zero, the method will return
3054 // the value of the specified residual without any change.
3055 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3056 static typename elfcpp::Swap<32, big_endian>::Valtype
3057 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3058 const int group)
3059 {
3060 for (int n = 0; n <= group; n++)
3061 {
3062 // Calculate which part of the value to mask.
3063 uint32_t shift = calc_grp_kn(residual);
3064 // Calculate the residual for the next time around.
3065 residual &= ~(residual & (0xff << shift));
3066 }
3067
3068 return residual;
3069 }
3070
3071 // Calculate the value of Gn for the specified group index.
3072 // We return it in the form of an encoded constant-and-rotation.
3073 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3074 static typename elfcpp::Swap<32, big_endian>::Valtype
3075 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3076 const int group)
3077 {
3078 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3079 uint32_t shift = 0;
3080
3081 for (int n = 0; n <= group; n++)
3082 {
3083 // Calculate which part of the value to mask.
3084 shift = calc_grp_kn(residual);
3085 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3086 gn = residual & (0xff << shift);
3087 // Calculate the residual for the next time around.
3088 residual &= ~gn;
3089 }
3090 // Return Gn in the form of an encoded constant-and-rotation.
3091 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3092 }
3093
3094 public:
3095 // Handle ARM long branches.
3096 static typename This::Status
3097 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3098 unsigned char*, const Sized_symbol<32>*,
3099 const Arm_relobj<big_endian>*, unsigned int,
3100 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3101
3102 // Handle THUMB long branches.
3103 static typename This::Status
3104 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3105 unsigned char*, const Sized_symbol<32>*,
3106 const Arm_relobj<big_endian>*, unsigned int,
3107 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3108
3109
3110 // Return the branch offset of a 32-bit THUMB branch.
3111 static inline int32_t
3112 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3113 {
3114 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3115 // involving the J1 and J2 bits.
3116 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3117 uint32_t upper = upper_insn & 0x3ffU;
3118 uint32_t lower = lower_insn & 0x7ffU;
3119 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3120 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3121 uint32_t i1 = j1 ^ s ? 0 : 1;
3122 uint32_t i2 = j2 ^ s ? 0 : 1;
3123
3124 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3125 | (upper << 12) | (lower << 1));
3126 }
3127
3128 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3129 // UPPER_INSN is the original upper instruction of the branch. Caller is
3130 // responsible for overflow checking and BLX offset adjustment.
3131 static inline uint16_t
3132 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3133 {
3134 uint32_t s = offset < 0 ? 1 : 0;
3135 uint32_t bits = static_cast<uint32_t>(offset);
3136 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3137 }
3138
3139 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3140 // LOWER_INSN is the original lower instruction of the branch. Caller is
3141 // responsible for overflow checking and BLX offset adjustment.
3142 static inline uint16_t
3143 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3144 {
3145 uint32_t s = offset < 0 ? 1 : 0;
3146 uint32_t bits = static_cast<uint32_t>(offset);
3147 return ((lower_insn & ~0x2fffU)
3148 | ((((bits >> 23) & 1) ^ !s) << 13)
3149 | ((((bits >> 22) & 1) ^ !s) << 11)
3150 | ((bits >> 1) & 0x7ffU));
3151 }
3152
3153 // Return the branch offset of a 32-bit THUMB conditional branch.
3154 static inline int32_t
3155 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3156 {
3157 uint32_t s = (upper_insn & 0x0400U) >> 10;
3158 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3159 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3160 uint32_t lower = (lower_insn & 0x07ffU);
3161 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3162
3163 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3164 }
3165
3166 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3167 // instruction. UPPER_INSN is the original upper instruction of the branch.
3168 // Caller is responsible for overflow checking.
3169 static inline uint16_t
3170 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3171 {
3172 uint32_t s = offset < 0 ? 1 : 0;
3173 uint32_t bits = static_cast<uint32_t>(offset);
3174 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3175 }
3176
3177 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3178 // instruction. LOWER_INSN is the original lower instruction of the branch.
3179 // The caller is responsible for overflow checking.
3180 static inline uint16_t
3181 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3182 {
3183 uint32_t bits = static_cast<uint32_t>(offset);
3184 uint32_t j2 = (bits & 0x00080000U) >> 19;
3185 uint32_t j1 = (bits & 0x00040000U) >> 18;
3186 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3187
3188 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3189 }
3190
3191 // R_ARM_ABS8: S + A
3192 static inline typename This::Status
3193 abs8(unsigned char* view,
3194 const Sized_relobj_file<32, big_endian>* object,
3195 const Symbol_value<32>* psymval)
3196 {
3197 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3198 Valtype* wv = reinterpret_cast<Valtype*>(view);
3199 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3200 int32_t addend = Bits<8>::sign_extend32(val);
3201 Arm_address x = psymval->value(object, addend);
3202 val = Bits<32>::bit_select32(val, x, 0xffU);
3203 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3204
3205 // R_ARM_ABS8 permits signed or unsigned results.
3206 return (Bits<8>::has_signed_unsigned_overflow32(x)
3207 ? This::STATUS_OVERFLOW
3208 : This::STATUS_OKAY);
3209 }
3210
3211 // R_ARM_THM_ABS5: S + A
3212 static inline typename This::Status
3213 thm_abs5(unsigned char* view,
3214 const Sized_relobj_file<32, big_endian>* object,
3215 const Symbol_value<32>* psymval)
3216 {
3217 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3218 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3219 Valtype* wv = reinterpret_cast<Valtype*>(view);
3220 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3221 Reltype addend = (val & 0x7e0U) >> 6;
3222 Reltype x = psymval->value(object, addend);
3223 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3224 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3225 return (Bits<5>::has_overflow32(x)
3226 ? This::STATUS_OVERFLOW
3227 : This::STATUS_OKAY);
3228 }
3229
3230 // R_ARM_ABS12: S + A
3231 static inline typename This::Status
3232 abs12(unsigned char* view,
3233 const Sized_relobj_file<32, big_endian>* object,
3234 const Symbol_value<32>* psymval)
3235 {
3236 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3237 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3238 Valtype* wv = reinterpret_cast<Valtype*>(view);
3239 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3240 Reltype addend = val & 0x0fffU;
3241 Reltype x = psymval->value(object, addend);
3242 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3243 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3244 return (Bits<12>::has_overflow32(x)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3247 }
3248
3249 // R_ARM_ABS16: S + A
3250 static inline typename This::Status
3251 abs16(unsigned char* view,
3252 const Sized_relobj_file<32, big_endian>* object,
3253 const Symbol_value<32>* psymval)
3254 {
3255 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3256 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3257 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3258 int32_t addend = Bits<16>::sign_extend32(val);
3259 Arm_address x = psymval->value(object, addend);
3260 val = Bits<32>::bit_select32(val, x, 0xffffU);
3261 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3262
3263 // R_ARM_ABS16 permits signed or unsigned results.
3264 return (Bits<16>::has_signed_unsigned_overflow32(x)
3265 ? This::STATUS_OVERFLOW
3266 : This::STATUS_OKAY);
3267 }
3268
3269 // R_ARM_ABS32: (S + A) | T
3270 static inline typename This::Status
3271 abs32(unsigned char* view,
3272 const Sized_relobj_file<32, big_endian>* object,
3273 const Symbol_value<32>* psymval,
3274 Arm_address thumb_bit)
3275 {
3276 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3277 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3278 Valtype x = psymval->value(object, addend) | thumb_bit;
3279 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3280 return This::STATUS_OKAY;
3281 }
3282
3283 // R_ARM_REL32: (S + A) | T - P
3284 static inline typename This::Status
3285 rel32(unsigned char* view,
3286 const Sized_relobj_file<32, big_endian>* object,
3287 const Symbol_value<32>* psymval,
3288 Arm_address address,
3289 Arm_address thumb_bit)
3290 {
3291 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3292 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3293 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3294 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3295 return This::STATUS_OKAY;
3296 }
3297
3298 // R_ARM_THM_JUMP24: (S + A) | T - P
3299 static typename This::Status
3300 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3301 const Symbol_value<32>* psymval, Arm_address address,
3302 Arm_address thumb_bit);
3303
3304 // R_ARM_THM_JUMP6: S + A – P
3305 static inline typename This::Status
3306 thm_jump6(unsigned char* view,
3307 const Sized_relobj_file<32, big_endian>* object,
3308 const Symbol_value<32>* psymval,
3309 Arm_address address)
3310 {
3311 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3312 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3313 Valtype* wv = reinterpret_cast<Valtype*>(view);
3314 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3315 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3316 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3317 Reltype x = (psymval->value(object, addend) - address);
3318 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3319 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3320 // CZB does only forward jumps.
3321 return ((x > 0x007e)
3322 ? This::STATUS_OVERFLOW
3323 : This::STATUS_OKAY);
3324 }
3325
3326 // R_ARM_THM_JUMP8: S + A – P
3327 static inline typename This::Status
3328 thm_jump8(unsigned char* view,
3329 const Sized_relobj_file<32, big_endian>* object,
3330 const Symbol_value<32>* psymval,
3331 Arm_address address)
3332 {
3333 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3334 Valtype* wv = reinterpret_cast<Valtype*>(view);
3335 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3336 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3337 int32_t x = (psymval->value(object, addend) - address);
3338 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3339 | ((x & 0x01fe) >> 1)));
3340 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3341 return (Bits<9>::has_overflow32(x)
3342 ? This::STATUS_OVERFLOW
3343 : This::STATUS_OKAY);
3344 }
3345
3346 // R_ARM_THM_JUMP11: S + A – P
3347 static inline typename This::Status
3348 thm_jump11(unsigned char* view,
3349 const Sized_relobj_file<32, big_endian>* object,
3350 const Symbol_value<32>* psymval,
3351 Arm_address address)
3352 {
3353 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3354 Valtype* wv = reinterpret_cast<Valtype*>(view);
3355 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3356 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3357 int32_t x = (psymval->value(object, addend) - address);
3358 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3359 | ((x & 0x0ffe) >> 1)));
3360 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3361 return (Bits<12>::has_overflow32(x)
3362 ? This::STATUS_OVERFLOW
3363 : This::STATUS_OKAY);
3364 }
3365
3366 // R_ARM_BASE_PREL: B(S) + A - P
3367 static inline typename This::Status
3368 base_prel(unsigned char* view,
3369 Arm_address origin,
3370 Arm_address address)
3371 {
3372 Base::rel32(view, origin - address);
3373 return STATUS_OKAY;
3374 }
3375
3376 // R_ARM_BASE_ABS: B(S) + A
3377 static inline typename This::Status
3378 base_abs(unsigned char* view,
3379 Arm_address origin)
3380 {
3381 Base::rel32(view, origin);
3382 return STATUS_OKAY;
3383 }
3384
3385 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3386 static inline typename This::Status
3387 got_brel(unsigned char* view,
3388 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3389 {
3390 Base::rel32(view, got_offset);
3391 return This::STATUS_OKAY;
3392 }
3393
3394 // R_ARM_GOT_PREL: GOT(S) + A - P
3395 static inline typename This::Status
3396 got_prel(unsigned char* view,
3397 Arm_address got_entry,
3398 Arm_address address)
3399 {
3400 Base::rel32(view, got_entry - address);
3401 return This::STATUS_OKAY;
3402 }
3403
3404 // R_ARM_PREL: (S + A) | T - P
3405 static inline typename This::Status
3406 prel31(unsigned char* view,
3407 const Sized_relobj_file<32, big_endian>* object,
3408 const Symbol_value<32>* psymval,
3409 Arm_address address,
3410 Arm_address thumb_bit)
3411 {
3412 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3413 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3414 Valtype addend = Bits<31>::sign_extend32(val);
3415 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3416 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3417 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3418 return (Bits<31>::has_overflow32(x)
3419 ? This::STATUS_OVERFLOW
3420 : This::STATUS_OKAY);
3421 }
3422
3423 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3424 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3425 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3426 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3427 static inline typename This::Status
3428 movw(unsigned char* view,
3429 const Sized_relobj_file<32, big_endian>* object,
3430 const Symbol_value<32>* psymval,
3431 Arm_address relative_address_base,
3432 Arm_address thumb_bit,
3433 bool check_overflow)
3434 {
3435 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3436 Valtype* wv = reinterpret_cast<Valtype*>(view);
3437 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3438 Valtype addend = This::extract_arm_movw_movt_addend(val);
3439 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3440 - relative_address_base);
3441 val = This::insert_val_arm_movw_movt(val, x);
3442 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3443 return ((check_overflow && Bits<16>::has_overflow32(x))
3444 ? This::STATUS_OVERFLOW
3445 : This::STATUS_OKAY);
3446 }
3447
3448 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3449 // R_ARM_MOVT_PREL: S + A - P
3450 // R_ARM_MOVT_BREL: S + A - B(S)
3451 static inline typename This::Status
3452 movt(unsigned char* view,
3453 const Sized_relobj_file<32, big_endian>* object,
3454 const Symbol_value<32>* psymval,
3455 Arm_address relative_address_base)
3456 {
3457 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3458 Valtype* wv = reinterpret_cast<Valtype*>(view);
3459 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3460 Valtype addend = This::extract_arm_movw_movt_addend(val);
3461 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3462 val = This::insert_val_arm_movw_movt(val, x);
3463 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3464 // FIXME: IHI0044D says that we should check for overflow.
3465 return This::STATUS_OKAY;
3466 }
3467
3468 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3469 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3470 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3471 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3472 static inline typename This::Status
3473 thm_movw(unsigned char* view,
3474 const Sized_relobj_file<32, big_endian>* object,
3475 const Symbol_value<32>* psymval,
3476 Arm_address relative_address_base,
3477 Arm_address thumb_bit,
3478 bool check_overflow)
3479 {
3480 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3481 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3482 Valtype* wv = reinterpret_cast<Valtype*>(view);
3483 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3484 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3485 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3486 Reltype x =
3487 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3488 val = This::insert_val_thumb_movw_movt(val, x);
3489 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3490 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3491 return ((check_overflow && Bits<16>::has_overflow32(x))
3492 ? This::STATUS_OVERFLOW
3493 : This::STATUS_OKAY);
3494 }
3495
3496 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3497 // R_ARM_THM_MOVT_PREL: S + A - P
3498 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3499 static inline typename This::Status
3500 thm_movt(unsigned char* view,
3501 const Sized_relobj_file<32, big_endian>* object,
3502 const Symbol_value<32>* psymval,
3503 Arm_address relative_address_base)
3504 {
3505 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3506 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3507 Valtype* wv = reinterpret_cast<Valtype*>(view);
3508 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3509 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3510 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3511 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3512 val = This::insert_val_thumb_movw_movt(val, x);
3513 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3514 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3515 return This::STATUS_OKAY;
3516 }
3517
3518 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3519 static inline typename This::Status
3520 thm_alu11(unsigned char* view,
3521 const Sized_relobj_file<32, big_endian>* object,
3522 const Symbol_value<32>* psymval,
3523 Arm_address address,
3524 Arm_address thumb_bit)
3525 {
3526 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3527 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3528 Valtype* wv = reinterpret_cast<Valtype*>(view);
3529 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3530 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3531
3532 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3533 // -----------------------------------------------------------------------
3534 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3535 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3536 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3537 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3538 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3539 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3540
3541 // Determine a sign for the addend.
3542 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3543 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3544 // Thumb2 addend encoding:
3545 // imm12 := i | imm3 | imm8
3546 int32_t addend = (insn & 0xff)
3547 | ((insn & 0x00007000) >> 4)
3548 | ((insn & 0x04000000) >> 15);
3549 // Apply a sign to the added.
3550 addend *= sign;
3551
3552 int32_t x = (psymval->value(object, addend) | thumb_bit)
3553 - (address & 0xfffffffc);
3554 Reltype val = abs(x);
3555 // Mask out the value and a distinct part of the ADD/SUB opcode
3556 // (bits 7:5 of opword).
3557 insn = (insn & 0xfb0f8f00)
3558 | (val & 0xff)
3559 | ((val & 0x700) << 4)
3560 | ((val & 0x800) << 15);
3561 // Set the opcode according to whether the value to go in the
3562 // place is negative.
3563 if (x < 0)
3564 insn |= 0x00a00000;
3565
3566 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3567 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3568 return ((val > 0xfff) ?
3569 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3570 }
3571
3572 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3573 static inline typename This::Status
3574 thm_pc8(unsigned char* view,
3575 const Sized_relobj_file<32, big_endian>* object,
3576 const Symbol_value<32>* psymval,
3577 Arm_address address)
3578 {
3579 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3580 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3581 Valtype* wv = reinterpret_cast<Valtype*>(view);
3582 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3583 Reltype addend = ((insn & 0x00ff) << 2);
3584 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3585 Reltype val = abs(x);
3586 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3587
3588 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3589 return ((val > 0x03fc)
3590 ? This::STATUS_OVERFLOW
3591 : This::STATUS_OKAY);
3592 }
3593
3594 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3595 static inline typename This::Status
3596 thm_pc12(unsigned char* view,
3597 const Sized_relobj_file<32, big_endian>* object,
3598 const Symbol_value<32>* psymval,
3599 Arm_address address)
3600 {
3601 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3602 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3603 Valtype* wv = reinterpret_cast<Valtype*>(view);
3604 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3605 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3606 // Determine a sign for the addend (positive if the U bit is 1).
3607 const int sign = (insn & 0x00800000) ? 1 : -1;
3608 int32_t addend = (insn & 0xfff);
3609 // Apply a sign to the added.
3610 addend *= sign;
3611
3612 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3613 Reltype val = abs(x);
3614 // Mask out and apply the value and the U bit.
3615 insn = (insn & 0xff7ff000) | (val & 0xfff);
3616 // Set the U bit according to whether the value to go in the
3617 // place is positive.
3618 if (x >= 0)
3619 insn |= 0x00800000;
3620
3621 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3622 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3623 return ((val > 0xfff) ?
3624 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3625 }
3626
3627 // R_ARM_V4BX
3628 static inline typename This::Status
3629 v4bx(const Relocate_info<32, big_endian>* relinfo,
3630 unsigned char* view,
3631 const Arm_relobj<big_endian>* object,
3632 const Arm_address address,
3633 const bool is_interworking)
3634 {
3635
3636 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3637 Valtype* wv = reinterpret_cast<Valtype*>(view);
3638 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3639
3640 // Ensure that we have a BX instruction.
3641 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3642 const uint32_t reg = (val & 0xf);
3643 if (is_interworking && reg != 0xf)
3644 {
3645 Stub_table<big_endian>* stub_table =
3646 object->stub_table(relinfo->data_shndx);
3647 gold_assert(stub_table != NULL);
3648
3649 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3650 gold_assert(stub != NULL);
3651
3652 int32_t veneer_address =
3653 stub_table->address() + stub->offset() - 8 - address;
3654 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3655 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3656 // Replace with a branch to veneer (B <addr>)
3657 val = (val & 0xf0000000) | 0x0a000000
3658 | ((veneer_address >> 2) & 0x00ffffff);
3659 }
3660 else
3661 {
3662 // Preserve Rm (lowest four bits) and the condition code
3663 // (highest four bits). Other bits encode MOV PC,Rm.
3664 val = (val & 0xf000000f) | 0x01a0f000;
3665 }
3666 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3667 return This::STATUS_OKAY;
3668 }
3669
3670 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3671 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3672 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3673 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3674 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3675 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3676 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3677 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3678 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3679 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3680 static inline typename This::Status
3681 arm_grp_alu(unsigned char* view,
3682 const Sized_relobj_file<32, big_endian>* object,
3683 const Symbol_value<32>* psymval,
3684 const int group,
3685 Arm_address address,
3686 Arm_address thumb_bit,
3687 bool check_overflow)
3688 {
3689 gold_assert(group >= 0 && group < 3);
3690 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3691 Valtype* wv = reinterpret_cast<Valtype*>(view);
3692 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3693
3694 // ALU group relocations are allowed only for the ADD/SUB instructions.
3695 // (0x00800000 - ADD, 0x00400000 - SUB)
3696 const Valtype opcode = insn & 0x01e00000;
3697 if (opcode != 0x00800000 && opcode != 0x00400000)
3698 return This::STATUS_BAD_RELOC;
3699
3700 // Determine a sign for the addend.
3701 const int sign = (opcode == 0x00800000) ? 1 : -1;
3702 // shifter = rotate_imm * 2
3703 const uint32_t shifter = (insn & 0xf00) >> 7;
3704 // Initial addend value.
3705 int32_t addend = insn & 0xff;
3706 // Rotate addend right by shifter.
3707 addend = (addend >> shifter) | (addend << (32 - shifter));
3708 // Apply a sign to the added.
3709 addend *= sign;
3710
3711 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3712 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3713 // Check for overflow if required
3714 if (check_overflow
3715 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3716 return This::STATUS_OVERFLOW;
3717
3718 // Mask out the value and the ADD/SUB part of the opcode; take care
3719 // not to destroy the S bit.
3720 insn &= 0xff1ff000;
3721 // Set the opcode according to whether the value to go in the
3722 // place is negative.
3723 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3724 // Encode the offset (encoded Gn).
3725 insn |= gn;
3726
3727 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3728 return This::STATUS_OKAY;
3729 }
3730
3731 // R_ARM_LDR_PC_G0: S + A - P
3732 // R_ARM_LDR_PC_G1: S + A - P
3733 // R_ARM_LDR_PC_G2: S + A - P
3734 // R_ARM_LDR_SB_G0: S + A - B(S)
3735 // R_ARM_LDR_SB_G1: S + A - B(S)
3736 // R_ARM_LDR_SB_G2: S + A - B(S)
3737 static inline typename This::Status
3738 arm_grp_ldr(unsigned char* view,
3739 const Sized_relobj_file<32, big_endian>* object,
3740 const Symbol_value<32>* psymval,
3741 const int group,
3742 Arm_address address)
3743 {
3744 gold_assert(group >= 0 && group < 3);
3745 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3746 Valtype* wv = reinterpret_cast<Valtype*>(view);
3747 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3748
3749 const int sign = (insn & 0x00800000) ? 1 : -1;
3750 int32_t addend = (insn & 0xfff) * sign;
3751 int32_t x = (psymval->value(object, addend) - address);
3752 // Calculate the relevant G(n-1) value to obtain this stage residual.
3753 Valtype residual =
3754 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3755 if (residual >= 0x1000)
3756 return This::STATUS_OVERFLOW;
3757
3758 // Mask out the value and U bit.
3759 insn &= 0xff7ff000;
3760 // Set the U bit for non-negative values.
3761 if (x >= 0)
3762 insn |= 0x00800000;
3763 insn |= residual;
3764
3765 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3766 return This::STATUS_OKAY;
3767 }
3768
3769 // R_ARM_LDRS_PC_G0: S + A - P
3770 // R_ARM_LDRS_PC_G1: S + A - P
3771 // R_ARM_LDRS_PC_G2: S + A - P
3772 // R_ARM_LDRS_SB_G0: S + A - B(S)
3773 // R_ARM_LDRS_SB_G1: S + A - B(S)
3774 // R_ARM_LDRS_SB_G2: S + A - B(S)
3775 static inline typename This::Status
3776 arm_grp_ldrs(unsigned char* view,
3777 const Sized_relobj_file<32, big_endian>* object,
3778 const Symbol_value<32>* psymval,
3779 const int group,
3780 Arm_address address)
3781 {
3782 gold_assert(group >= 0 && group < 3);
3783 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3784 Valtype* wv = reinterpret_cast<Valtype*>(view);
3785 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3786
3787 const int sign = (insn & 0x00800000) ? 1 : -1;
3788 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3789 int32_t x = (psymval->value(object, addend) - address);
3790 // Calculate the relevant G(n-1) value to obtain this stage residual.
3791 Valtype residual =
3792 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3793 if (residual >= 0x100)
3794 return This::STATUS_OVERFLOW;
3795
3796 // Mask out the value and U bit.
3797 insn &= 0xff7ff0f0;
3798 // Set the U bit for non-negative values.
3799 if (x >= 0)
3800 insn |= 0x00800000;
3801 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3802
3803 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3804 return This::STATUS_OKAY;
3805 }
3806
3807 // R_ARM_LDC_PC_G0: S + A - P
3808 // R_ARM_LDC_PC_G1: S + A - P
3809 // R_ARM_LDC_PC_G2: S + A - P
3810 // R_ARM_LDC_SB_G0: S + A - B(S)
3811 // R_ARM_LDC_SB_G1: S + A - B(S)
3812 // R_ARM_LDC_SB_G2: S + A - B(S)
3813 static inline typename This::Status
3814 arm_grp_ldc(unsigned char* view,
3815 const Sized_relobj_file<32, big_endian>* object,
3816 const Symbol_value<32>* psymval,
3817 const int group,
3818 Arm_address address)
3819 {
3820 gold_assert(group >= 0 && group < 3);
3821 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3822 Valtype* wv = reinterpret_cast<Valtype*>(view);
3823 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3824
3825 const int sign = (insn & 0x00800000) ? 1 : -1;
3826 int32_t addend = ((insn & 0xff) << 2) * sign;
3827 int32_t x = (psymval->value(object, addend) - address);
3828 // Calculate the relevant G(n-1) value to obtain this stage residual.
3829 Valtype residual =
3830 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3831 if ((residual & 0x3) != 0 || residual >= 0x400)
3832 return This::STATUS_OVERFLOW;
3833
3834 // Mask out the value and U bit.
3835 insn &= 0xff7fff00;
3836 // Set the U bit for non-negative values.
3837 if (x >= 0)
3838 insn |= 0x00800000;
3839 insn |= (residual >> 2);
3840
3841 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3842 return This::STATUS_OKAY;
3843 }
3844 };
3845
3846 // Relocate ARM long branches. This handles relocation types
3847 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3848 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3849 // undefined and we do not use PLT in this relocation. In such a case,
3850 // the branch is converted into an NOP.
3851
3852 template<bool big_endian>
3853 typename Arm_relocate_functions<big_endian>::Status
3854 Arm_relocate_functions<big_endian>::arm_branch_common(
3855 unsigned int r_type,
3856 const Relocate_info<32, big_endian>* relinfo,
3857 unsigned char* view,
3858 const Sized_symbol<32>* gsym,
3859 const Arm_relobj<big_endian>* object,
3860 unsigned int r_sym,
3861 const Symbol_value<32>* psymval,
3862 Arm_address address,
3863 Arm_address thumb_bit,
3864 bool is_weakly_undefined_without_plt)
3865 {
3866 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3867 Valtype* wv = reinterpret_cast<Valtype*>(view);
3868 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3869
3870 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3871 && ((val & 0x0f000000UL) == 0x0a000000UL);
3872 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3873 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3874 && ((val & 0x0f000000UL) == 0x0b000000UL);
3875 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3876 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3877
3878 // Check that the instruction is valid.
3879 if (r_type == elfcpp::R_ARM_CALL)
3880 {
3881 if (!insn_is_uncond_bl && !insn_is_blx)
3882 return This::STATUS_BAD_RELOC;
3883 }
3884 else if (r_type == elfcpp::R_ARM_JUMP24)
3885 {
3886 if (!insn_is_b && !insn_is_cond_bl)
3887 return This::STATUS_BAD_RELOC;
3888 }
3889 else if (r_type == elfcpp::R_ARM_PLT32)
3890 {
3891 if (!insn_is_any_branch)
3892 return This::STATUS_BAD_RELOC;
3893 }
3894 else if (r_type == elfcpp::R_ARM_XPC25)
3895 {
3896 // FIXME: AAELF document IH0044C does not say much about it other
3897 // than it being obsolete.
3898 if (!insn_is_any_branch)
3899 return This::STATUS_BAD_RELOC;
3900 }
3901 else
3902 gold_unreachable();
3903
3904 // A branch to an undefined weak symbol is turned into a jump to
3905 // the next instruction unless a PLT entry will be created.
3906 // Do the same for local undefined symbols.
3907 // The jump to the next instruction is optimized as a NOP depending
3908 // on the architecture.
3909 const Target_arm<big_endian>* arm_target =
3910 Target_arm<big_endian>::default_target();
3911 if (is_weakly_undefined_without_plt)
3912 {
3913 gold_assert(!parameters->options().relocatable());
3914 Valtype cond = val & 0xf0000000U;
3915 if (arm_target->may_use_arm_nop())
3916 val = cond | 0x0320f000;
3917 else
3918 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3919 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3920 return This::STATUS_OKAY;
3921 }
3922
3923 Valtype addend = Bits<26>::sign_extend32(val << 2);
3924 Valtype branch_target = psymval->value(object, addend);
3925 int32_t branch_offset = branch_target - address;
3926
3927 // We need a stub if the branch offset is too large or if we need
3928 // to switch mode.
3929 bool may_use_blx = arm_target->may_use_v5t_interworking();
3930 Reloc_stub* stub = NULL;
3931
3932 if (!parameters->options().relocatable()
3933 && (Bits<26>::has_overflow32(branch_offset)
3934 || ((thumb_bit != 0)
3935 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3936 {
3937 Valtype unadjusted_branch_target = psymval->value(object, 0);
3938
3939 Stub_type stub_type =
3940 Reloc_stub::stub_type_for_reloc(r_type, address,
3941 unadjusted_branch_target,
3942 (thumb_bit != 0));
3943 if (stub_type != arm_stub_none)
3944 {
3945 Stub_table<big_endian>* stub_table =
3946 object->stub_table(relinfo->data_shndx);
3947 gold_assert(stub_table != NULL);
3948
3949 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3950 stub = stub_table->find_reloc_stub(stub_key);
3951 gold_assert(stub != NULL);
3952 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3953 branch_target = stub_table->address() + stub->offset() + addend;
3954 branch_offset = branch_target - address;
3955 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3956 }
3957 }
3958
3959 // At this point, if we still need to switch mode, the instruction
3960 // must either be a BLX or a BL that can be converted to a BLX.
3961 if (thumb_bit != 0)
3962 {
3963 // Turn BL to BLX.
3964 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3965 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3966 }
3967
3968 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3969 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3970 return (Bits<26>::has_overflow32(branch_offset)
3971 ? This::STATUS_OVERFLOW
3972 : This::STATUS_OKAY);
3973 }
3974
3975 // Relocate THUMB long branches. This handles relocation types
3976 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3977 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3978 // undefined and we do not use PLT in this relocation. In such a case,
3979 // the branch is converted into an NOP.
3980
3981 template<bool big_endian>
3982 typename Arm_relocate_functions<big_endian>::Status
3983 Arm_relocate_functions<big_endian>::thumb_branch_common(
3984 unsigned int r_type,
3985 const Relocate_info<32, big_endian>* relinfo,
3986 unsigned char* view,
3987 const Sized_symbol<32>* gsym,
3988 const Arm_relobj<big_endian>* object,
3989 unsigned int r_sym,
3990 const Symbol_value<32>* psymval,
3991 Arm_address address,
3992 Arm_address thumb_bit,
3993 bool is_weakly_undefined_without_plt)
3994 {
3995 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3996 Valtype* wv = reinterpret_cast<Valtype*>(view);
3997 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3998 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3999
4000 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4001 // into account.
4002 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4003 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4004
4005 // Check that the instruction is valid.
4006 if (r_type == elfcpp::R_ARM_THM_CALL)
4007 {
4008 if (!is_bl_insn && !is_blx_insn)
4009 return This::STATUS_BAD_RELOC;
4010 }
4011 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4012 {
4013 // This cannot be a BLX.
4014 if (!is_bl_insn)
4015 return This::STATUS_BAD_RELOC;
4016 }
4017 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4018 {
4019 // Check for Thumb to Thumb call.
4020 if (!is_blx_insn)
4021 return This::STATUS_BAD_RELOC;
4022 if (thumb_bit != 0)
4023 {
4024 gold_warning(_("%s: Thumb BLX instruction targets "
4025 "thumb function '%s'."),
4026 object->name().c_str(),
4027 (gsym ? gsym->name() : "(local)"));
4028 // Convert BLX to BL.
4029 lower_insn |= 0x1000U;
4030 }
4031 }
4032 else
4033 gold_unreachable();
4034
4035 // A branch to an undefined weak symbol is turned into a jump to
4036 // the next instruction unless a PLT entry will be created.
4037 // The jump to the next instruction is optimized as a NOP.W for
4038 // Thumb-2 enabled architectures.
4039 const Target_arm<big_endian>* arm_target =
4040 Target_arm<big_endian>::default_target();
4041 if (is_weakly_undefined_without_plt)
4042 {
4043 gold_assert(!parameters->options().relocatable());
4044 if (arm_target->may_use_thumb2_nop())
4045 {
4046 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4047 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4048 }
4049 else
4050 {
4051 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4052 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4053 }
4054 return This::STATUS_OKAY;
4055 }
4056
4057 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4058 Arm_address branch_target = psymval->value(object, addend);
4059
4060 // For BLX, bit 1 of target address comes from bit 1 of base address.
4061 bool may_use_blx = arm_target->may_use_v5t_interworking();
4062 if (thumb_bit == 0 && may_use_blx)
4063 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4064
4065 int32_t branch_offset = branch_target - address;
4066
4067 // We need a stub if the branch offset is too large or if we need
4068 // to switch mode.
4069 bool thumb2 = arm_target->using_thumb2();
4070 if (!parameters->options().relocatable()
4071 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4072 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4073 || ((thumb_bit == 0)
4074 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4075 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4076 {
4077 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4078
4079 Stub_type stub_type =
4080 Reloc_stub::stub_type_for_reloc(r_type, address,
4081 unadjusted_branch_target,
4082 (thumb_bit != 0));
4083
4084 if (stub_type != arm_stub_none)
4085 {
4086 Stub_table<big_endian>* stub_table =
4087 object->stub_table(relinfo->data_shndx);
4088 gold_assert(stub_table != NULL);
4089
4090 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4091 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4092 gold_assert(stub != NULL);
4093 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4094 branch_target = stub_table->address() + stub->offset() + addend;
4095 if (thumb_bit == 0 && may_use_blx)
4096 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4097 branch_offset = branch_target - address;
4098 }
4099 }
4100
4101 // At this point, if we still need to switch mode, the instruction
4102 // must either be a BLX or a BL that can be converted to a BLX.
4103 if (thumb_bit == 0)
4104 {
4105 gold_assert(may_use_blx
4106 && (r_type == elfcpp::R_ARM_THM_CALL
4107 || r_type == elfcpp::R_ARM_THM_XPC22));
4108 // Make sure this is a BLX.
4109 lower_insn &= ~0x1000U;
4110 }
4111 else
4112 {
4113 // Make sure this is a BL.
4114 lower_insn |= 0x1000U;
4115 }
4116
4117 // For a BLX instruction, make sure that the relocation is rounded up
4118 // to a word boundary. This follows the semantics of the instruction
4119 // which specifies that bit 1 of the target address will come from bit
4120 // 1 of the base address.
4121 if ((lower_insn & 0x5000U) == 0x4000U)
4122 gold_assert((branch_offset & 3) == 0);
4123
4124 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4125 // We use the Thumb-2 encoding, which is safe even if dealing with
4126 // a Thumb-1 instruction by virtue of our overflow check above. */
4127 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4128 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4129
4130 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4131 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4132
4133 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4134
4135 return ((thumb2
4136 ? Bits<25>::has_overflow32(branch_offset)
4137 : Bits<23>::has_overflow32(branch_offset))
4138 ? This::STATUS_OVERFLOW
4139 : This::STATUS_OKAY);
4140 }
4141
4142 // Relocate THUMB-2 long conditional branches.
4143 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4144 // undefined and we do not use PLT in this relocation. In such a case,
4145 // the branch is converted into an NOP.
4146
4147 template<bool big_endian>
4148 typename Arm_relocate_functions<big_endian>::Status
4149 Arm_relocate_functions<big_endian>::thm_jump19(
4150 unsigned char* view,
4151 const Arm_relobj<big_endian>* object,
4152 const Symbol_value<32>* psymval,
4153 Arm_address address,
4154 Arm_address thumb_bit)
4155 {
4156 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4157 Valtype* wv = reinterpret_cast<Valtype*>(view);
4158 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4159 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4160 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4161
4162 Arm_address branch_target = psymval->value(object, addend);
4163 int32_t branch_offset = branch_target - address;
4164
4165 // ??? Should handle interworking? GCC might someday try to
4166 // use this for tail calls.
4167 // FIXME: We do support thumb entry to PLT yet.
4168 if (thumb_bit == 0)
4169 {
4170 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4171 return This::STATUS_BAD_RELOC;
4172 }
4173
4174 // Put RELOCATION back into the insn.
4175 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4176 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4177
4178 // Put the relocated value back in the object file:
4179 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4180 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4181
4182 return (Bits<21>::has_overflow32(branch_offset)
4183 ? This::STATUS_OVERFLOW
4184 : This::STATUS_OKAY);
4185 }
4186
4187 // Get the GOT section, creating it if necessary.
4188
4189 template<bool big_endian>
4190 Arm_output_data_got<big_endian>*
4191 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4192 {
4193 if (this->got_ == NULL)
4194 {
4195 gold_assert(symtab != NULL && layout != NULL);
4196
4197 // When using -z now, we can treat .got as a relro section.
4198 // Without -z now, it is modified after program startup by lazy
4199 // PLT relocations.
4200 bool is_got_relro = parameters->options().now();
4201 Output_section_order got_order = (is_got_relro
4202 ? ORDER_RELRO_LAST
4203 : ORDER_DATA);
4204
4205 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4206 // .got.plt sections in output. The output .got section contains both
4207 // PLT and non-PLT GOT entries.
4208 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4209
4210 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4211 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4212 this->got_, got_order, is_got_relro);
4213
4214 // The old GNU linker creates a .got.plt section. We just
4215 // create another set of data in the .got section. Note that we
4216 // always create a PLT if we create a GOT, although the PLT
4217 // might be empty.
4218 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4219 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4220 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4221 this->got_plt_, got_order, is_got_relro);
4222
4223 // The first three entries are reserved.
4224 this->got_plt_->set_current_data_size(3 * 4);
4225
4226 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4227 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4228 Symbol_table::PREDEFINED,
4229 this->got_plt_,
4230 0, 0, elfcpp::STT_OBJECT,
4231 elfcpp::STB_LOCAL,
4232 elfcpp::STV_HIDDEN, 0,
4233 false, false);
4234 }
4235 return this->got_;
4236 }
4237
4238 // Get the dynamic reloc section, creating it if necessary.
4239
4240 template<bool big_endian>
4241 typename Target_arm<big_endian>::Reloc_section*
4242 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4243 {
4244 if (this->rel_dyn_ == NULL)
4245 {
4246 gold_assert(layout != NULL);
4247 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4248 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4249 elfcpp::SHF_ALLOC, this->rel_dyn_,
4250 ORDER_DYNAMIC_RELOCS, false);
4251 }
4252 return this->rel_dyn_;
4253 }
4254
4255 // Insn_template methods.
4256
4257 // Return byte size of an instruction template.
4258
4259 size_t
4260 Insn_template::size() const
4261 {
4262 switch (this->type())
4263 {
4264 case THUMB16_TYPE:
4265 case THUMB16_SPECIAL_TYPE:
4266 return 2;
4267 case ARM_TYPE:
4268 case THUMB32_TYPE:
4269 case DATA_TYPE:
4270 return 4;
4271 default:
4272 gold_unreachable();
4273 }
4274 }
4275
4276 // Return alignment of an instruction template.
4277
4278 unsigned
4279 Insn_template::alignment() const
4280 {
4281 switch (this->type())
4282 {
4283 case THUMB16_TYPE:
4284 case THUMB16_SPECIAL_TYPE:
4285 case THUMB32_TYPE:
4286 return 2;
4287 case ARM_TYPE:
4288 case DATA_TYPE:
4289 return 4;
4290 default:
4291 gold_unreachable();
4292 }
4293 }
4294
4295 // Stub_template methods.
4296
4297 Stub_template::Stub_template(
4298 Stub_type type, const Insn_template* insns,
4299 size_t insn_count)
4300 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4301 entry_in_thumb_mode_(false), relocs_()
4302 {
4303 off_t offset = 0;
4304
4305 // Compute byte size and alignment of stub template.
4306 for (size_t i = 0; i < insn_count; i++)
4307 {
4308 unsigned insn_alignment = insns[i].alignment();
4309 size_t insn_size = insns[i].size();
4310 gold_assert((offset & (insn_alignment - 1)) == 0);
4311 this->alignment_ = std::max(this->alignment_, insn_alignment);
4312 switch (insns[i].type())
4313 {
4314 case Insn_template::THUMB16_TYPE:
4315 case Insn_template::THUMB16_SPECIAL_TYPE:
4316 if (i == 0)
4317 this->entry_in_thumb_mode_ = true;
4318 break;
4319
4320 case Insn_template::THUMB32_TYPE:
4321 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4322 this->relocs_.push_back(Reloc(i, offset));
4323 if (i == 0)
4324 this->entry_in_thumb_mode_ = true;
4325 break;
4326
4327 case Insn_template::ARM_TYPE:
4328 // Handle cases where the target is encoded within the
4329 // instruction.
4330 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4331 this->relocs_.push_back(Reloc(i, offset));
4332 break;
4333
4334 case Insn_template::DATA_TYPE:
4335 // Entry point cannot be data.
4336 gold_assert(i != 0);
4337 this->relocs_.push_back(Reloc(i, offset));
4338 break;
4339
4340 default:
4341 gold_unreachable();
4342 }
4343 offset += insn_size;
4344 }
4345 this->size_ = offset;
4346 }
4347
4348 // Stub methods.
4349
4350 // Template to implement do_write for a specific target endianness.
4351
4352 template<bool big_endian>
4353 void inline
4354 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4355 {
4356 const Stub_template* stub_template = this->stub_template();
4357 const Insn_template* insns = stub_template->insns();
4358
4359 // FIXME: We do not handle BE8 encoding yet.
4360 unsigned char* pov = view;
4361 for (size_t i = 0; i < stub_template->insn_count(); i++)
4362 {
4363 switch (insns[i].type())
4364 {
4365 case Insn_template::THUMB16_TYPE:
4366 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4367 break;
4368 case Insn_template::THUMB16_SPECIAL_TYPE:
4369 elfcpp::Swap<16, big_endian>::writeval(
4370 pov,
4371 this->thumb16_special(i));
4372 break;
4373 case Insn_template::THUMB32_TYPE:
4374 {
4375 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4376 uint32_t lo = insns[i].data() & 0xffff;
4377 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4378 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4379 }
4380 break;
4381 case Insn_template::ARM_TYPE:
4382 case Insn_template::DATA_TYPE:
4383 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4384 break;
4385 default:
4386 gold_unreachable();
4387 }
4388 pov += insns[i].size();
4389 }
4390 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4391 }
4392
4393 // Reloc_stub::Key methods.
4394
4395 // Dump a Key as a string for debugging.
4396
4397 std::string
4398 Reloc_stub::Key::name() const
4399 {
4400 if (this->r_sym_ == invalid_index)
4401 {
4402 // Global symbol key name
4403 // <stub-type>:<symbol name>:<addend>.
4404 const std::string sym_name = this->u_.symbol->name();
4405 // We need to print two hex number and two colons. So just add 100 bytes
4406 // to the symbol name size.
4407 size_t len = sym_name.size() + 100;
4408 char* buffer = new char[len];
4409 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4410 sym_name.c_str(), this->addend_);
4411 gold_assert(c > 0 && c < static_cast<int>(len));
4412 delete[] buffer;
4413 return std::string(buffer);
4414 }
4415 else
4416 {
4417 // local symbol key name
4418 // <stub-type>:<object>:<r_sym>:<addend>.
4419 const size_t len = 200;
4420 char buffer[len];
4421 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4422 this->u_.relobj, this->r_sym_, this->addend_);
4423 gold_assert(c > 0 && c < static_cast<int>(len));
4424 return std::string(buffer);
4425 }
4426 }
4427
4428 // Reloc_stub methods.
4429
4430 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4431 // LOCATION to DESTINATION.
4432 // This code is based on the arm_type_of_stub function in
4433 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4434 // class simple.
4435
4436 Stub_type
4437 Reloc_stub::stub_type_for_reloc(
4438 unsigned int r_type,
4439 Arm_address location,
4440 Arm_address destination,
4441 bool target_is_thumb)
4442 {
4443 Stub_type stub_type = arm_stub_none;
4444
4445 // This is a bit ugly but we want to avoid using a templated class for
4446 // big and little endianities.
4447 bool may_use_blx;
4448 bool should_force_pic_veneer;
4449 bool thumb2;
4450 bool thumb_only;
4451 if (parameters->target().is_big_endian())
4452 {
4453 const Target_arm<true>* big_endian_target =
4454 Target_arm<true>::default_target();
4455 may_use_blx = big_endian_target->may_use_v5t_interworking();
4456 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4457 thumb2 = big_endian_target->using_thumb2();
4458 thumb_only = big_endian_target->using_thumb_only();
4459 }
4460 else
4461 {
4462 const Target_arm<false>* little_endian_target =
4463 Target_arm<false>::default_target();
4464 may_use_blx = little_endian_target->may_use_v5t_interworking();
4465 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4466 thumb2 = little_endian_target->using_thumb2();
4467 thumb_only = little_endian_target->using_thumb_only();
4468 }
4469
4470 int64_t branch_offset;
4471 bool output_is_position_independent =
4472 parameters->options().output_is_position_independent();
4473 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4474 {
4475 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4476 // base address (instruction address + 4).
4477 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4478 destination = Bits<32>::bit_select32(destination, location, 0x2);
4479 branch_offset = static_cast<int64_t>(destination) - location;
4480
4481 // Handle cases where:
4482 // - this call goes too far (different Thumb/Thumb2 max
4483 // distance)
4484 // - it's a Thumb->Arm call and blx is not available, or it's a
4485 // Thumb->Arm branch (not bl). A stub is needed in this case.
4486 if ((!thumb2
4487 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4488 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4489 || (thumb2
4490 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4491 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4492 || ((!target_is_thumb)
4493 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4494 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4495 {
4496 if (target_is_thumb)
4497 {
4498 // Thumb to thumb.
4499 if (!thumb_only)
4500 {
4501 stub_type = (output_is_position_independent
4502 || should_force_pic_veneer)
4503 // PIC stubs.
4504 ? ((may_use_blx
4505 && (r_type == elfcpp::R_ARM_THM_CALL))
4506 // V5T and above. Stub starts with ARM code, so
4507 // we must be able to switch mode before
4508 // reaching it, which is only possible for 'bl'
4509 // (ie R_ARM_THM_CALL relocation).
4510 ? arm_stub_long_branch_any_thumb_pic
4511 // On V4T, use Thumb code only.
4512 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4513
4514 // non-PIC stubs.
4515 : ((may_use_blx
4516 && (r_type == elfcpp::R_ARM_THM_CALL))
4517 ? arm_stub_long_branch_any_any // V5T and above.
4518 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4519 }
4520 else
4521 {
4522 stub_type = (output_is_position_independent
4523 || should_force_pic_veneer)
4524 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4525 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4526 }
4527 }
4528 else
4529 {
4530 // Thumb to arm.
4531
4532 // FIXME: We should check that the input section is from an
4533 // object that has interwork enabled.
4534
4535 stub_type = (output_is_position_independent
4536 || should_force_pic_veneer)
4537 // PIC stubs.
4538 ? ((may_use_blx
4539 && (r_type == elfcpp::R_ARM_THM_CALL))
4540 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4541 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4542
4543 // non-PIC stubs.
4544 : ((may_use_blx
4545 && (r_type == elfcpp::R_ARM_THM_CALL))
4546 ? arm_stub_long_branch_any_any // V5T and above.
4547 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4548
4549 // Handle v4t short branches.
4550 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4551 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4552 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4553 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4554 }
4555 }
4556 }
4557 else if (r_type == elfcpp::R_ARM_CALL
4558 || r_type == elfcpp::R_ARM_JUMP24
4559 || r_type == elfcpp::R_ARM_PLT32)
4560 {
4561 branch_offset = static_cast<int64_t>(destination) - location;
4562 if (target_is_thumb)
4563 {
4564 // Arm to thumb.
4565
4566 // FIXME: We should check that the input section is from an
4567 // object that has interwork enabled.
4568
4569 // We have an extra 2-bytes reach because of
4570 // the mode change (bit 24 (H) of BLX encoding).
4571 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4572 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4573 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4574 || (r_type == elfcpp::R_ARM_JUMP24)
4575 || (r_type == elfcpp::R_ARM_PLT32))
4576 {
4577 stub_type = (output_is_position_independent
4578 || should_force_pic_veneer)
4579 // PIC stubs.
4580 ? (may_use_blx
4581 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4582 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4583
4584 // non-PIC stubs.
4585 : (may_use_blx
4586 ? arm_stub_long_branch_any_any // V5T and above.
4587 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4588 }
4589 }
4590 else
4591 {
4592 // Arm to arm.
4593 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4594 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4595 {
4596 stub_type = (output_is_position_independent
4597 || should_force_pic_veneer)
4598 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4599 : arm_stub_long_branch_any_any; /// non-PIC.
4600 }
4601 }
4602 }
4603
4604 return stub_type;
4605 }
4606
4607 // Cortex_a8_stub methods.
4608
4609 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4610 // I is the position of the instruction template in the stub template.
4611
4612 uint16_t
4613 Cortex_a8_stub::do_thumb16_special(size_t i)
4614 {
4615 // The only use of this is to copy condition code from a conditional
4616 // branch being worked around to the corresponding conditional branch in
4617 // to the stub.
4618 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4619 && i == 0);
4620 uint16_t data = this->stub_template()->insns()[i].data();
4621 gold_assert((data & 0xff00U) == 0xd000U);
4622 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4623 return data;
4624 }
4625
4626 // Stub_factory methods.
4627
4628 Stub_factory::Stub_factory()
4629 {
4630 // The instruction template sequences are declared as static
4631 // objects and initialized first time the constructor runs.
4632
4633 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4634 // to reach the stub if necessary.
4635 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4636 {
4637 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4638 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4639 // dcd R_ARM_ABS32(X)
4640 };
4641
4642 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4643 // available.
4644 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4645 {
4646 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4647 Insn_template::arm_insn(0xe12fff1c), // bx ip
4648 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4649 // dcd R_ARM_ABS32(X)
4650 };
4651
4652 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4653 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4654 {
4655 Insn_template::thumb16_insn(0xb401), // push {r0}
4656 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4657 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4658 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4659 Insn_template::thumb16_insn(0x4760), // bx ip
4660 Insn_template::thumb16_insn(0xbf00), // nop
4661 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4662 // dcd R_ARM_ABS32(X)
4663 };
4664
4665 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4666 // allowed.
4667 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4668 {
4669 Insn_template::thumb16_insn(0x4778), // bx pc
4670 Insn_template::thumb16_insn(0x46c0), // nop
4671 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4672 Insn_template::arm_insn(0xe12fff1c), // bx ip
4673 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4674 // dcd R_ARM_ABS32(X)
4675 };
4676
4677 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4678 // available.
4679 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4680 {
4681 Insn_template::thumb16_insn(0x4778), // bx pc
4682 Insn_template::thumb16_insn(0x46c0), // nop
4683 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4684 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4685 // dcd R_ARM_ABS32(X)
4686 };
4687
4688 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4689 // one, when the destination is close enough.
4690 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4691 {
4692 Insn_template::thumb16_insn(0x4778), // bx pc
4693 Insn_template::thumb16_insn(0x46c0), // nop
4694 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4695 };
4696
4697 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4698 // blx to reach the stub if necessary.
4699 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4700 {
4701 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4702 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4703 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4704 // dcd R_ARM_REL32(X-4)
4705 };
4706
4707 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4708 // blx to reach the stub if necessary. We can not add into pc;
4709 // it is not guaranteed to mode switch (different in ARMv6 and
4710 // ARMv7).
4711 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4712 {
4713 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4714 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4715 Insn_template::arm_insn(0xe12fff1c), // bx ip
4716 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4717 // dcd R_ARM_REL32(X)
4718 };
4719
4720 // V4T ARM -> ARM long branch stub, PIC.
4721 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4722 {
4723 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4724 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4725 Insn_template::arm_insn(0xe12fff1c), // bx ip
4726 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4727 // dcd R_ARM_REL32(X)
4728 };
4729
4730 // V4T Thumb -> ARM long branch stub, PIC.
4731 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4732 {
4733 Insn_template::thumb16_insn(0x4778), // bx pc
4734 Insn_template::thumb16_insn(0x46c0), // nop
4735 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4736 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4737 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4738 // dcd R_ARM_REL32(X)
4739 };
4740
4741 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4742 // architectures.
4743 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4744 {
4745 Insn_template::thumb16_insn(0xb401), // push {r0}
4746 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4747 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4748 Insn_template::thumb16_insn(0x4484), // add ip, r0
4749 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4750 Insn_template::thumb16_insn(0x4760), // bx ip
4751 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4752 // dcd R_ARM_REL32(X)
4753 };
4754
4755 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4756 // allowed.
4757 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4758 {
4759 Insn_template::thumb16_insn(0x4778), // bx pc
4760 Insn_template::thumb16_insn(0x46c0), // nop
4761 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4762 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4763 Insn_template::arm_insn(0xe12fff1c), // bx ip
4764 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4765 // dcd R_ARM_REL32(X)
4766 };
4767
4768 // Cortex-A8 erratum-workaround stubs.
4769
4770 // Stub used for conditional branches (which may be beyond +/-1MB away,
4771 // so we can't use a conditional branch to reach this stub).
4772
4773 // original code:
4774 //
4775 // b<cond> X
4776 // after:
4777 //
4778 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4779 {
4780 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4781 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4782 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4783 // b.w X
4784 };
4785
4786 // Stub used for b.w and bl.w instructions.
4787
4788 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4789 {
4790 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4791 };
4792
4793 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4794 {
4795 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4796 };
4797
4798 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4799 // instruction (which switches to ARM mode) to point to this stub. Jump to
4800 // the real destination using an ARM-mode branch.
4801 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4802 {
4803 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4804 };
4805
4806 // Stub used to provide an interworking for R_ARM_V4BX relocation
4807 // (bx r[n] instruction).
4808 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4809 {
4810 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4811 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4812 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4813 };
4814
4815 // Fill in the stub template look-up table. Stub templates are constructed
4816 // per instance of Stub_factory for fast look-up without locking
4817 // in a thread-enabled environment.
4818
4819 this->stub_templates_[arm_stub_none] =
4820 new Stub_template(arm_stub_none, NULL, 0);
4821
4822 #define DEF_STUB(x) \
4823 do \
4824 { \
4825 size_t array_size \
4826 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4827 Stub_type type = arm_stub_##x; \
4828 this->stub_templates_[type] = \
4829 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4830 } \
4831 while (0);
4832
4833 DEF_STUBS
4834 #undef DEF_STUB
4835 }
4836
4837 // Stub_table methods.
4838
4839 // Remove all Cortex-A8 stub.
4840
4841 template<bool big_endian>
4842 void
4843 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4844 {
4845 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4846 p != this->cortex_a8_stubs_.end();
4847 ++p)
4848 delete p->second;
4849 this->cortex_a8_stubs_.clear();
4850 }
4851
4852 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4853
4854 template<bool big_endian>
4855 void
4856 Stub_table<big_endian>::relocate_stub(
4857 Stub* stub,
4858 const Relocate_info<32, big_endian>* relinfo,
4859 Target_arm<big_endian>* arm_target,
4860 Output_section* output_section,
4861 unsigned char* view,
4862 Arm_address address,
4863 section_size_type view_size)
4864 {
4865 const Stub_template* stub_template = stub->stub_template();
4866 if (stub_template->reloc_count() != 0)
4867 {
4868 // Adjust view to cover the stub only.
4869 section_size_type offset = stub->offset();
4870 section_size_type stub_size = stub_template->size();
4871 gold_assert(offset + stub_size <= view_size);
4872
4873 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4874 address + offset, stub_size);
4875 }
4876 }
4877
4878 // Relocate all stubs in this stub table.
4879
4880 template<bool big_endian>
4881 void
4882 Stub_table<big_endian>::relocate_stubs(
4883 const Relocate_info<32, big_endian>* relinfo,
4884 Target_arm<big_endian>* arm_target,
4885 Output_section* output_section,
4886 unsigned char* view,
4887 Arm_address address,
4888 section_size_type view_size)
4889 {
4890 // If we are passed a view bigger than the stub table's. we need to
4891 // adjust the view.
4892 gold_assert(address == this->address()
4893 && (view_size
4894 == static_cast<section_size_type>(this->data_size())));
4895
4896 // Relocate all relocation stubs.
4897 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4898 p != this->reloc_stubs_.end();
4899 ++p)
4900 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4901 address, view_size);
4902
4903 // Relocate all Cortex-A8 stubs.
4904 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4905 p != this->cortex_a8_stubs_.end();
4906 ++p)
4907 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4908 address, view_size);
4909
4910 // Relocate all ARM V4BX stubs.
4911 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4912 p != this->arm_v4bx_stubs_.end();
4913 ++p)
4914 {
4915 if (*p != NULL)
4916 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4917 address, view_size);
4918 }
4919 }
4920
4921 // Write out the stubs to file.
4922
4923 template<bool big_endian>
4924 void
4925 Stub_table<big_endian>::do_write(Output_file* of)
4926 {
4927 off_t offset = this->offset();
4928 const section_size_type oview_size =
4929 convert_to_section_size_type(this->data_size());
4930 unsigned char* const oview = of->get_output_view(offset, oview_size);
4931
4932 // Write relocation stubs.
4933 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4934 p != this->reloc_stubs_.end();
4935 ++p)
4936 {
4937 Reloc_stub* stub = p->second;
4938 Arm_address address = this->address() + stub->offset();
4939 gold_assert(address
4940 == align_address(address,
4941 stub->stub_template()->alignment()));
4942 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4943 big_endian);
4944 }
4945
4946 // Write Cortex-A8 stubs.
4947 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4948 p != this->cortex_a8_stubs_.end();
4949 ++p)
4950 {
4951 Cortex_a8_stub* stub = p->second;
4952 Arm_address address = this->address() + stub->offset();
4953 gold_assert(address
4954 == align_address(address,
4955 stub->stub_template()->alignment()));
4956 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4957 big_endian);
4958 }
4959
4960 // Write ARM V4BX relocation stubs.
4961 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4962 p != this->arm_v4bx_stubs_.end();
4963 ++p)
4964 {
4965 if (*p == NULL)
4966 continue;
4967
4968 Arm_address address = this->address() + (*p)->offset();
4969 gold_assert(address
4970 == align_address(address,
4971 (*p)->stub_template()->alignment()));
4972 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4973 big_endian);
4974 }
4975
4976 of->write_output_view(this->offset(), oview_size, oview);
4977 }
4978
4979 // Update the data size and address alignment of the stub table at the end
4980 // of a relaxation pass. Return true if either the data size or the
4981 // alignment changed in this relaxation pass.
4982
4983 template<bool big_endian>
4984 bool
4985 Stub_table<big_endian>::update_data_size_and_addralign()
4986 {
4987 // Go over all stubs in table to compute data size and address alignment.
4988 off_t size = this->reloc_stubs_size_;
4989 unsigned addralign = this->reloc_stubs_addralign_;
4990
4991 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4992 p != this->cortex_a8_stubs_.end();
4993 ++p)
4994 {
4995 const Stub_template* stub_template = p->second->stub_template();
4996 addralign = std::max(addralign, stub_template->alignment());
4997 size = (align_address(size, stub_template->alignment())
4998 + stub_template->size());
4999 }
5000
5001 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5002 p != this->arm_v4bx_stubs_.end();
5003 ++p)
5004 {
5005 if (*p == NULL)
5006 continue;
5007
5008 const Stub_template* stub_template = (*p)->stub_template();
5009 addralign = std::max(addralign, stub_template->alignment());
5010 size = (align_address(size, stub_template->alignment())
5011 + stub_template->size());
5012 }
5013
5014 // Check if either data size or alignment changed in this pass.
5015 // Update prev_data_size_ and prev_addralign_. These will be used
5016 // as the current data size and address alignment for the next pass.
5017 bool changed = size != this->prev_data_size_;
5018 this->prev_data_size_ = size;
5019
5020 if (addralign != this->prev_addralign_)
5021 changed = true;
5022 this->prev_addralign_ = addralign;
5023
5024 return changed;
5025 }
5026
5027 // Finalize the stubs. This sets the offsets of the stubs within the stub
5028 // table. It also marks all input sections needing Cortex-A8 workaround.
5029
5030 template<bool big_endian>
5031 void
5032 Stub_table<big_endian>::finalize_stubs()
5033 {
5034 off_t off = this->reloc_stubs_size_;
5035 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5036 p != this->cortex_a8_stubs_.end();
5037 ++p)
5038 {
5039 Cortex_a8_stub* stub = p->second;
5040 const Stub_template* stub_template = stub->stub_template();
5041 uint64_t stub_addralign = stub_template->alignment();
5042 off = align_address(off, stub_addralign);
5043 stub->set_offset(off);
5044 off += stub_template->size();
5045
5046 // Mark input section so that we can determine later if a code section
5047 // needs the Cortex-A8 workaround quickly.
5048 Arm_relobj<big_endian>* arm_relobj =
5049 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5050 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5051 }
5052
5053 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5054 p != this->arm_v4bx_stubs_.end();
5055 ++p)
5056 {
5057 if (*p == NULL)
5058 continue;
5059
5060 const Stub_template* stub_template = (*p)->stub_template();
5061 uint64_t stub_addralign = stub_template->alignment();
5062 off = align_address(off, stub_addralign);
5063 (*p)->set_offset(off);
5064 off += stub_template->size();
5065 }
5066
5067 gold_assert(off <= this->prev_data_size_);
5068 }
5069
5070 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5071 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5072 // of the address range seen by the linker.
5073
5074 template<bool big_endian>
5075 void
5076 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5077 Target_arm<big_endian>* arm_target,
5078 unsigned char* view,
5079 Arm_address view_address,
5080 section_size_type view_size)
5081 {
5082 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5083 for (Cortex_a8_stub_list::const_iterator p =
5084 this->cortex_a8_stubs_.lower_bound(view_address);
5085 ((p != this->cortex_a8_stubs_.end())
5086 && (p->first < (view_address + view_size)));
5087 ++p)
5088 {
5089 // We do not store the THUMB bit in the LSB of either the branch address
5090 // or the stub offset. There is no need to strip the LSB.
5091 Arm_address branch_address = p->first;
5092 const Cortex_a8_stub* stub = p->second;
5093 Arm_address stub_address = this->address() + stub->offset();
5094
5095 // Offset of the branch instruction relative to this view.
5096 section_size_type offset =
5097 convert_to_section_size_type(branch_address - view_address);
5098 gold_assert((offset + 4) <= view_size);
5099
5100 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5101 view + offset, branch_address);
5102 }
5103 }
5104
5105 // Arm_input_section methods.
5106
5107 // Initialize an Arm_input_section.
5108
5109 template<bool big_endian>
5110 void
5111 Arm_input_section<big_endian>::init()
5112 {
5113 Relobj* relobj = this->relobj();
5114 unsigned int shndx = this->shndx();
5115
5116 // We have to cache original size, alignment and contents to avoid locking
5117 // the original file.
5118 this->original_addralign_ =
5119 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5120
5121 // This is not efficient but we expect only a small number of relaxed
5122 // input sections for stubs.
5123 section_size_type section_size;
5124 const unsigned char* section_contents =
5125 relobj->section_contents(shndx, &section_size, false);
5126 this->original_size_ =
5127 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5128
5129 gold_assert(this->original_contents_ == NULL);
5130 this->original_contents_ = new unsigned char[section_size];
5131 memcpy(this->original_contents_, section_contents, section_size);
5132
5133 // We want to make this look like the original input section after
5134 // output sections are finalized.
5135 Output_section* os = relobj->output_section(shndx);
5136 off_t offset = relobj->output_section_offset(shndx);
5137 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5138 this->set_address(os->address() + offset);
5139 this->set_file_offset(os->offset() + offset);
5140
5141 this->set_current_data_size(this->original_size_);
5142 this->finalize_data_size();
5143 }
5144
5145 template<bool big_endian>
5146 void
5147 Arm_input_section<big_endian>::do_write(Output_file* of)
5148 {
5149 // We have to write out the original section content.
5150 gold_assert(this->original_contents_ != NULL);
5151 of->write(this->offset(), this->original_contents_,
5152 this->original_size_);
5153
5154 // If this owns a stub table and it is not empty, write it.
5155 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5156 this->stub_table_->write(of);
5157 }
5158
5159 // Finalize data size.
5160
5161 template<bool big_endian>
5162 void
5163 Arm_input_section<big_endian>::set_final_data_size()
5164 {
5165 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5166
5167 if (this->is_stub_table_owner())
5168 {
5169 this->stub_table_->finalize_data_size();
5170 off = align_address(off, this->stub_table_->addralign());
5171 off += this->stub_table_->data_size();
5172 }
5173 this->set_data_size(off);
5174 }
5175
5176 // Reset address and file offset.
5177
5178 template<bool big_endian>
5179 void
5180 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5181 {
5182 // Size of the original input section contents.
5183 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5184
5185 // If this is a stub table owner, account for the stub table size.
5186 if (this->is_stub_table_owner())
5187 {
5188 Stub_table<big_endian>* stub_table = this->stub_table_;
5189
5190 // Reset the stub table's address and file offset. The
5191 // current data size for child will be updated after that.
5192 stub_table_->reset_address_and_file_offset();
5193 off = align_address(off, stub_table_->addralign());
5194 off += stub_table->current_data_size();
5195 }
5196
5197 this->set_current_data_size(off);
5198 }
5199
5200 // Arm_exidx_cantunwind methods.
5201
5202 // Write this to Output file OF for a fixed endianness.
5203
5204 template<bool big_endian>
5205 void
5206 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5207 {
5208 off_t offset = this->offset();
5209 const section_size_type oview_size = 8;
5210 unsigned char* const oview = of->get_output_view(offset, oview_size);
5211
5212 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5213
5214 Output_section* os = this->relobj_->output_section(this->shndx_);
5215 gold_assert(os != NULL);
5216
5217 Arm_relobj<big_endian>* arm_relobj =
5218 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5219 Arm_address output_offset =
5220 arm_relobj->get_output_section_offset(this->shndx_);
5221 Arm_address section_start;
5222 section_size_type section_size;
5223
5224 // Find out the end of the text section referred by this.
5225 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5226 {
5227 section_start = os->address() + output_offset;
5228 const Arm_exidx_input_section* exidx_input_section =
5229 arm_relobj->exidx_input_section_by_link(this->shndx_);
5230 gold_assert(exidx_input_section != NULL);
5231 section_size =
5232 convert_to_section_size_type(exidx_input_section->text_size());
5233 }
5234 else
5235 {
5236 // Currently this only happens for a relaxed section.
5237 const Output_relaxed_input_section* poris =
5238 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5239 gold_assert(poris != NULL);
5240 section_start = poris->address();
5241 section_size = convert_to_section_size_type(poris->data_size());
5242 }
5243
5244 // We always append this to the end of an EXIDX section.
5245 Arm_address output_address = section_start + section_size;
5246
5247 // Write out the entry. The first word either points to the beginning
5248 // or after the end of a text section. The second word is the special
5249 // EXIDX_CANTUNWIND value.
5250 uint32_t prel31_offset = output_address - this->address();
5251 if (Bits<31>::has_overflow32(offset))
5252 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5253 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5254 prel31_offset & 0x7fffffffU);
5255 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5256 elfcpp::EXIDX_CANTUNWIND);
5257
5258 of->write_output_view(this->offset(), oview_size, oview);
5259 }
5260
5261 // Arm_exidx_merged_section methods.
5262
5263 // Constructor for Arm_exidx_merged_section.
5264 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5265 // SECTION_OFFSET_MAP points to a section offset map describing how
5266 // parts of the input section are mapped to output. DELETED_BYTES is
5267 // the number of bytes deleted from the EXIDX input section.
5268
5269 Arm_exidx_merged_section::Arm_exidx_merged_section(
5270 const Arm_exidx_input_section& exidx_input_section,
5271 const Arm_exidx_section_offset_map& section_offset_map,
5272 uint32_t deleted_bytes)
5273 : Output_relaxed_input_section(exidx_input_section.relobj(),
5274 exidx_input_section.shndx(),
5275 exidx_input_section.addralign()),
5276 exidx_input_section_(exidx_input_section),
5277 section_offset_map_(section_offset_map)
5278 {
5279 // If we retain or discard the whole EXIDX input section, we would
5280 // not be here.
5281 gold_assert(deleted_bytes != 0
5282 && deleted_bytes != this->exidx_input_section_.size());
5283
5284 // Fix size here so that we do not need to implement set_final_data_size.
5285 uint32_t size = exidx_input_section.size() - deleted_bytes;
5286 this->set_data_size(size);
5287 this->fix_data_size();
5288
5289 // Allocate buffer for section contents and build contents.
5290 this->section_contents_ = new unsigned char[size];
5291 }
5292
5293 // Build the contents of a merged EXIDX output section.
5294
5295 void
5296 Arm_exidx_merged_section::build_contents(
5297 const unsigned char* original_contents,
5298 section_size_type original_size)
5299 {
5300 // Go over spans of input offsets and write only those that are not
5301 // discarded.
5302 section_offset_type in_start = 0;
5303 section_offset_type out_start = 0;
5304 section_offset_type in_max =
5305 convert_types<section_offset_type>(original_size);
5306 section_offset_type out_max =
5307 convert_types<section_offset_type>(this->data_size());
5308 for (Arm_exidx_section_offset_map::const_iterator p =
5309 this->section_offset_map_.begin();
5310 p != this->section_offset_map_.end();
5311 ++p)
5312 {
5313 section_offset_type in_end = p->first;
5314 gold_assert(in_end >= in_start);
5315 section_offset_type out_end = p->second;
5316 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5317 if (out_end != -1)
5318 {
5319 size_t out_chunk_size =
5320 convert_types<size_t>(out_end - out_start + 1);
5321
5322 gold_assert(out_chunk_size == in_chunk_size
5323 && in_end < in_max && out_end < out_max);
5324
5325 memcpy(this->section_contents_ + out_start,
5326 original_contents + in_start,
5327 out_chunk_size);
5328 out_start += out_chunk_size;
5329 }
5330 in_start += in_chunk_size;
5331 }
5332 }
5333
5334 // Given an input OBJECT, an input section index SHNDX within that
5335 // object, and an OFFSET relative to the start of that input
5336 // section, return whether or not the corresponding offset within
5337 // the output section is known. If this function returns true, it
5338 // sets *POUTPUT to the output offset. The value -1 indicates that
5339 // this input offset is being discarded.
5340
5341 bool
5342 Arm_exidx_merged_section::do_output_offset(
5343 const Relobj* relobj,
5344 unsigned int shndx,
5345 section_offset_type offset,
5346 section_offset_type* poutput) const
5347 {
5348 // We only handle offsets for the original EXIDX input section.
5349 if (relobj != this->exidx_input_section_.relobj()
5350 || shndx != this->exidx_input_section_.shndx())
5351 return false;
5352
5353 section_offset_type section_size =
5354 convert_types<section_offset_type>(this->exidx_input_section_.size());
5355 if (offset < 0 || offset >= section_size)
5356 // Input offset is out of valid range.
5357 *poutput = -1;
5358 else
5359 {
5360 // We need to look up the section offset map to determine the output
5361 // offset. Find the reference point in map that is first offset
5362 // bigger than or equal to this offset.
5363 Arm_exidx_section_offset_map::const_iterator p =
5364 this->section_offset_map_.lower_bound(offset);
5365
5366 // The section offset maps are build such that this should not happen if
5367 // input offset is in the valid range.
5368 gold_assert(p != this->section_offset_map_.end());
5369
5370 // We need to check if this is dropped.
5371 section_offset_type ref = p->first;
5372 section_offset_type mapped_ref = p->second;
5373
5374 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5375 // Offset is present in output.
5376 *poutput = mapped_ref + (offset - ref);
5377 else
5378 // Offset is discarded owing to EXIDX entry merging.
5379 *poutput = -1;
5380 }
5381
5382 return true;
5383 }
5384
5385 // Write this to output file OF.
5386
5387 void
5388 Arm_exidx_merged_section::do_write(Output_file* of)
5389 {
5390 off_t offset = this->offset();
5391 const section_size_type oview_size = this->data_size();
5392 unsigned char* const oview = of->get_output_view(offset, oview_size);
5393
5394 Output_section* os = this->relobj()->output_section(this->shndx());
5395 gold_assert(os != NULL);
5396
5397 memcpy(oview, this->section_contents_, oview_size);
5398 of->write_output_view(this->offset(), oview_size, oview);
5399 }
5400
5401 // Arm_exidx_fixup methods.
5402
5403 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5404 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5405 // points to the end of the last seen EXIDX section.
5406
5407 void
5408 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5409 {
5410 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5411 && this->last_input_section_ != NULL)
5412 {
5413 Relobj* relobj = this->last_input_section_->relobj();
5414 unsigned int text_shndx = this->last_input_section_->link();
5415 Arm_exidx_cantunwind* cantunwind =
5416 new Arm_exidx_cantunwind(relobj, text_shndx);
5417 this->exidx_output_section_->add_output_section_data(cantunwind);
5418 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5419 }
5420 }
5421
5422 // Process an EXIDX section entry in input. Return whether this entry
5423 // can be deleted in the output. SECOND_WORD in the second word of the
5424 // EXIDX entry.
5425
5426 bool
5427 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5428 {
5429 bool delete_entry;
5430 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5431 {
5432 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5433 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5434 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5435 }
5436 else if ((second_word & 0x80000000) != 0)
5437 {
5438 // Inlined unwinding data. Merge if equal to previous.
5439 delete_entry = (merge_exidx_entries_
5440 && this->last_unwind_type_ == UT_INLINED_ENTRY
5441 && this->last_inlined_entry_ == second_word);
5442 this->last_unwind_type_ = UT_INLINED_ENTRY;
5443 this->last_inlined_entry_ = second_word;
5444 }
5445 else
5446 {
5447 // Normal table entry. In theory we could merge these too,
5448 // but duplicate entries are likely to be much less common.
5449 delete_entry = false;
5450 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5451 }
5452 return delete_entry;
5453 }
5454
5455 // Update the current section offset map during EXIDX section fix-up.
5456 // If there is no map, create one. INPUT_OFFSET is the offset of a
5457 // reference point, DELETED_BYTES is the number of deleted by in the
5458 // section so far. If DELETE_ENTRY is true, the reference point and
5459 // all offsets after the previous reference point are discarded.
5460
5461 void
5462 Arm_exidx_fixup::update_offset_map(
5463 section_offset_type input_offset,
5464 section_size_type deleted_bytes,
5465 bool delete_entry)
5466 {
5467 if (this->section_offset_map_ == NULL)
5468 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5469 section_offset_type output_offset;
5470 if (delete_entry)
5471 output_offset = Arm_exidx_input_section::invalid_offset;
5472 else
5473 output_offset = input_offset - deleted_bytes;
5474 (*this->section_offset_map_)[input_offset] = output_offset;
5475 }
5476
5477 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5478 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5479 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5480 // If some entries are merged, also store a pointer to a newly created
5481 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5482 // owns the map and is responsible for releasing it after use.
5483
5484 template<bool big_endian>
5485 uint32_t
5486 Arm_exidx_fixup::process_exidx_section(
5487 const Arm_exidx_input_section* exidx_input_section,
5488 const unsigned char* section_contents,
5489 section_size_type section_size,
5490 Arm_exidx_section_offset_map** psection_offset_map)
5491 {
5492 Relobj* relobj = exidx_input_section->relobj();
5493 unsigned shndx = exidx_input_section->shndx();
5494
5495 if ((section_size % 8) != 0)
5496 {
5497 // Something is wrong with this section. Better not touch it.
5498 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5499 relobj->name().c_str(), shndx);
5500 this->last_input_section_ = exidx_input_section;
5501 this->last_unwind_type_ = UT_NONE;
5502 return 0;
5503 }
5504
5505 uint32_t deleted_bytes = 0;
5506 bool prev_delete_entry = false;
5507 gold_assert(this->section_offset_map_ == NULL);
5508
5509 for (section_size_type i = 0; i < section_size; i += 8)
5510 {
5511 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5512 const Valtype* wv =
5513 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5514 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5515
5516 bool delete_entry = this->process_exidx_entry(second_word);
5517
5518 // Entry deletion causes changes in output offsets. We use a std::map
5519 // to record these. And entry (x, y) means input offset x
5520 // is mapped to output offset y. If y is invalid_offset, then x is
5521 // dropped in the output. Because of the way std::map::lower_bound
5522 // works, we record the last offset in a region w.r.t to keeping or
5523 // dropping. If there is no entry (x0, y0) for an input offset x0,
5524 // the output offset y0 of it is determined by the output offset y1 of
5525 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5526 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5527 // y0 is also -1.
5528 if (delete_entry != prev_delete_entry && i != 0)
5529 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5530
5531 // Update total deleted bytes for this entry.
5532 if (delete_entry)
5533 deleted_bytes += 8;
5534
5535 prev_delete_entry = delete_entry;
5536 }
5537
5538 // If section offset map is not NULL, make an entry for the end of
5539 // section.
5540 if (this->section_offset_map_ != NULL)
5541 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5542
5543 *psection_offset_map = this->section_offset_map_;
5544 this->section_offset_map_ = NULL;
5545 this->last_input_section_ = exidx_input_section;
5546
5547 // Set the first output text section so that we can link the EXIDX output
5548 // section to it. Ignore any EXIDX input section that is completely merged.
5549 if (this->first_output_text_section_ == NULL
5550 && deleted_bytes != section_size)
5551 {
5552 unsigned int link = exidx_input_section->link();
5553 Output_section* os = relobj->output_section(link);
5554 gold_assert(os != NULL);
5555 this->first_output_text_section_ = os;
5556 }
5557
5558 return deleted_bytes;
5559 }
5560
5561 // Arm_output_section methods.
5562
5563 // Create a stub group for input sections from BEGIN to END. OWNER
5564 // points to the input section to be the owner a new stub table.
5565
5566 template<bool big_endian>
5567 void
5568 Arm_output_section<big_endian>::create_stub_group(
5569 Input_section_list::const_iterator begin,
5570 Input_section_list::const_iterator end,
5571 Input_section_list::const_iterator owner,
5572 Target_arm<big_endian>* target,
5573 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5574 const Task* task)
5575 {
5576 // We use a different kind of relaxed section in an EXIDX section.
5577 // The static casting from Output_relaxed_input_section to
5578 // Arm_input_section is invalid in an EXIDX section. We are okay
5579 // because we should not be calling this for an EXIDX section.
5580 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5581
5582 // Currently we convert ordinary input sections into relaxed sections only
5583 // at this point but we may want to support creating relaxed input section
5584 // very early. So we check here to see if owner is already a relaxed
5585 // section.
5586
5587 Arm_input_section<big_endian>* arm_input_section;
5588 if (owner->is_relaxed_input_section())
5589 {
5590 arm_input_section =
5591 Arm_input_section<big_endian>::as_arm_input_section(
5592 owner->relaxed_input_section());
5593 }
5594 else
5595 {
5596 gold_assert(owner->is_input_section());
5597 // Create a new relaxed input section. We need to lock the original
5598 // file.
5599 Task_lock_obj<Object> tl(task, owner->relobj());
5600 arm_input_section =
5601 target->new_arm_input_section(owner->relobj(), owner->shndx());
5602 new_relaxed_sections->push_back(arm_input_section);
5603 }
5604
5605 // Create a stub table.
5606 Stub_table<big_endian>* stub_table =
5607 target->new_stub_table(arm_input_section);
5608
5609 arm_input_section->set_stub_table(stub_table);
5610
5611 Input_section_list::const_iterator p = begin;
5612 Input_section_list::const_iterator prev_p;
5613
5614 // Look for input sections or relaxed input sections in [begin ... end].
5615 do
5616 {
5617 if (p->is_input_section() || p->is_relaxed_input_section())
5618 {
5619 // The stub table information for input sections live
5620 // in their objects.
5621 Arm_relobj<big_endian>* arm_relobj =
5622 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5623 arm_relobj->set_stub_table(p->shndx(), stub_table);
5624 }
5625 prev_p = p++;
5626 }
5627 while (prev_p != end);
5628 }
5629
5630 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5631 // of stub groups. We grow a stub group by adding input section until the
5632 // size is just below GROUP_SIZE. The last input section will be converted
5633 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5634 // input section after the stub table, effectively double the group size.
5635 //
5636 // This is similar to the group_sections() function in elf32-arm.c but is
5637 // implemented differently.
5638
5639 template<bool big_endian>
5640 void
5641 Arm_output_section<big_endian>::group_sections(
5642 section_size_type group_size,
5643 bool stubs_always_after_branch,
5644 Target_arm<big_endian>* target,
5645 const Task* task)
5646 {
5647 // We only care about sections containing code.
5648 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5649 return;
5650
5651 // States for grouping.
5652 typedef enum
5653 {
5654 // No group is being built.
5655 NO_GROUP,
5656 // A group is being built but the stub table is not found yet.
5657 // We keep group a stub group until the size is just under GROUP_SIZE.
5658 // The last input section in the group will be used as the stub table.
5659 FINDING_STUB_SECTION,
5660 // A group is being built and we have already found a stub table.
5661 // We enter this state to grow a stub group by adding input section
5662 // after the stub table. This effectively doubles the group size.
5663 HAS_STUB_SECTION
5664 } State;
5665
5666 // Any newly created relaxed sections are stored here.
5667 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5668
5669 State state = NO_GROUP;
5670 section_size_type off = 0;
5671 section_size_type group_begin_offset = 0;
5672 section_size_type group_end_offset = 0;
5673 section_size_type stub_table_end_offset = 0;
5674 Input_section_list::const_iterator group_begin =
5675 this->input_sections().end();
5676 Input_section_list::const_iterator stub_table =
5677 this->input_sections().end();
5678 Input_section_list::const_iterator group_end = this->input_sections().end();
5679 for (Input_section_list::const_iterator p = this->input_sections().begin();
5680 p != this->input_sections().end();
5681 ++p)
5682 {
5683 section_size_type section_begin_offset =
5684 align_address(off, p->addralign());
5685 section_size_type section_end_offset =
5686 section_begin_offset + p->data_size();
5687
5688 // Check to see if we should group the previously seen sections.
5689 switch (state)
5690 {
5691 case NO_GROUP:
5692 break;
5693
5694 case FINDING_STUB_SECTION:
5695 // Adding this section makes the group larger than GROUP_SIZE.
5696 if (section_end_offset - group_begin_offset >= group_size)
5697 {
5698 if (stubs_always_after_branch)
5699 {
5700 gold_assert(group_end != this->input_sections().end());
5701 this->create_stub_group(group_begin, group_end, group_end,
5702 target, &new_relaxed_sections,
5703 task);
5704 state = NO_GROUP;
5705 }
5706 else
5707 {
5708 // But wait, there's more! Input sections up to
5709 // stub_group_size bytes after the stub table can be
5710 // handled by it too.
5711 state = HAS_STUB_SECTION;
5712 stub_table = group_end;
5713 stub_table_end_offset = group_end_offset;
5714 }
5715 }
5716 break;
5717
5718 case HAS_STUB_SECTION:
5719 // Adding this section makes the post stub-section group larger
5720 // than GROUP_SIZE.
5721 if (section_end_offset - stub_table_end_offset >= group_size)
5722 {
5723 gold_assert(group_end != this->input_sections().end());
5724 this->create_stub_group(group_begin, group_end, stub_table,
5725 target, &new_relaxed_sections, task);
5726 state = NO_GROUP;
5727 }
5728 break;
5729
5730 default:
5731 gold_unreachable();
5732 }
5733
5734 // If we see an input section and currently there is no group, start
5735 // a new one. Skip any empty sections. We look at the data size
5736 // instead of calling p->relobj()->section_size() to avoid locking.
5737 if ((p->is_input_section() || p->is_relaxed_input_section())
5738 && (p->data_size() != 0))
5739 {
5740 if (state == NO_GROUP)
5741 {
5742 state = FINDING_STUB_SECTION;
5743 group_begin = p;
5744 group_begin_offset = section_begin_offset;
5745 }
5746
5747 // Keep track of the last input section seen.
5748 group_end = p;
5749 group_end_offset = section_end_offset;
5750 }
5751
5752 off = section_end_offset;
5753 }
5754
5755 // Create a stub group for any ungrouped sections.
5756 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5757 {
5758 gold_assert(group_end != this->input_sections().end());
5759 this->create_stub_group(group_begin, group_end,
5760 (state == FINDING_STUB_SECTION
5761 ? group_end
5762 : stub_table),
5763 target, &new_relaxed_sections, task);
5764 }
5765
5766 // Convert input section into relaxed input section in a batch.
5767 if (!new_relaxed_sections.empty())
5768 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5769
5770 // Update the section offsets
5771 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5772 {
5773 Arm_relobj<big_endian>* arm_relobj =
5774 Arm_relobj<big_endian>::as_arm_relobj(
5775 new_relaxed_sections[i]->relobj());
5776 unsigned int shndx = new_relaxed_sections[i]->shndx();
5777 // Tell Arm_relobj that this input section is converted.
5778 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5779 }
5780 }
5781
5782 // Append non empty text sections in this to LIST in ascending
5783 // order of their position in this.
5784
5785 template<bool big_endian>
5786 void
5787 Arm_output_section<big_endian>::append_text_sections_to_list(
5788 Text_section_list* list)
5789 {
5790 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5791
5792 for (Input_section_list::const_iterator p = this->input_sections().begin();
5793 p != this->input_sections().end();
5794 ++p)
5795 {
5796 // We only care about plain or relaxed input sections. We also
5797 // ignore any merged sections.
5798 if (p->is_input_section() || p->is_relaxed_input_section())
5799 list->push_back(Text_section_list::value_type(p->relobj(),
5800 p->shndx()));
5801 }
5802 }
5803
5804 template<bool big_endian>
5805 void
5806 Arm_output_section<big_endian>::fix_exidx_coverage(
5807 Layout* layout,
5808 const Text_section_list& sorted_text_sections,
5809 Symbol_table* symtab,
5810 bool merge_exidx_entries,
5811 const Task* task)
5812 {
5813 // We should only do this for the EXIDX output section.
5814 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5815
5816 // We don't want the relaxation loop to undo these changes, so we discard
5817 // the current saved states and take another one after the fix-up.
5818 this->discard_states();
5819
5820 // Remove all input sections.
5821 uint64_t address = this->address();
5822 typedef std::list<Output_section::Input_section> Input_section_list;
5823 Input_section_list input_sections;
5824 this->reset_address_and_file_offset();
5825 this->get_input_sections(address, std::string(""), &input_sections);
5826
5827 if (!this->input_sections().empty())
5828 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5829
5830 // Go through all the known input sections and record them.
5831 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5832 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5833 Section_id_hash> Text_to_exidx_map;
5834 Text_to_exidx_map text_to_exidx_map;
5835 for (Input_section_list::const_iterator p = input_sections.begin();
5836 p != input_sections.end();
5837 ++p)
5838 {
5839 // This should never happen. At this point, we should only see
5840 // plain EXIDX input sections.
5841 gold_assert(!p->is_relaxed_input_section());
5842 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5843 }
5844
5845 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5846
5847 // Go over the sorted text sections.
5848 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5849 Section_id_set processed_input_sections;
5850 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5851 p != sorted_text_sections.end();
5852 ++p)
5853 {
5854 Relobj* relobj = p->first;
5855 unsigned int shndx = p->second;
5856
5857 Arm_relobj<big_endian>* arm_relobj =
5858 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5859 const Arm_exidx_input_section* exidx_input_section =
5860 arm_relobj->exidx_input_section_by_link(shndx);
5861
5862 // If this text section has no EXIDX section or if the EXIDX section
5863 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5864 // of the last seen EXIDX section.
5865 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5866 {
5867 exidx_fixup.add_exidx_cantunwind_as_needed();
5868 continue;
5869 }
5870
5871 Relobj* exidx_relobj = exidx_input_section->relobj();
5872 unsigned int exidx_shndx = exidx_input_section->shndx();
5873 Section_id sid(exidx_relobj, exidx_shndx);
5874 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5875 if (iter == text_to_exidx_map.end())
5876 {
5877 // This is odd. We have not seen this EXIDX input section before.
5878 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5879 // issue a warning instead. We assume the user knows what he
5880 // or she is doing. Otherwise, this is an error.
5881 if (layout->script_options()->saw_sections_clause())
5882 gold_warning(_("unwinding may not work because EXIDX input section"
5883 " %u of %s is not in EXIDX output section"),
5884 exidx_shndx, exidx_relobj->name().c_str());
5885 else
5886 gold_error(_("unwinding may not work because EXIDX input section"
5887 " %u of %s is not in EXIDX output section"),
5888 exidx_shndx, exidx_relobj->name().c_str());
5889
5890 exidx_fixup.add_exidx_cantunwind_as_needed();
5891 continue;
5892 }
5893
5894 // We need to access the contents of the EXIDX section, lock the
5895 // object here.
5896 Task_lock_obj<Object> tl(task, exidx_relobj);
5897 section_size_type exidx_size;
5898 const unsigned char* exidx_contents =
5899 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5900
5901 // Fix up coverage and append input section to output data list.
5902 Arm_exidx_section_offset_map* section_offset_map = NULL;
5903 uint32_t deleted_bytes =
5904 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5905 exidx_contents,
5906 exidx_size,
5907 &section_offset_map);
5908
5909 if (deleted_bytes == exidx_input_section->size())
5910 {
5911 // The whole EXIDX section got merged. Remove it from output.
5912 gold_assert(section_offset_map == NULL);
5913 exidx_relobj->set_output_section(exidx_shndx, NULL);
5914
5915 // All local symbols defined in this input section will be dropped.
5916 // We need to adjust output local symbol count.
5917 arm_relobj->set_output_local_symbol_count_needs_update();
5918 }
5919 else if (deleted_bytes > 0)
5920 {
5921 // Some entries are merged. We need to convert this EXIDX input
5922 // section into a relaxed section.
5923 gold_assert(section_offset_map != NULL);
5924
5925 Arm_exidx_merged_section* merged_section =
5926 new Arm_exidx_merged_section(*exidx_input_section,
5927 *section_offset_map, deleted_bytes);
5928 merged_section->build_contents(exidx_contents, exidx_size);
5929
5930 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5931 this->add_relaxed_input_section(layout, merged_section, secname);
5932 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5933
5934 // All local symbols defined in discarded portions of this input
5935 // section will be dropped. We need to adjust output local symbol
5936 // count.
5937 arm_relobj->set_output_local_symbol_count_needs_update();
5938 }
5939 else
5940 {
5941 // Just add back the EXIDX input section.
5942 gold_assert(section_offset_map == NULL);
5943 const Output_section::Input_section* pis = iter->second;
5944 gold_assert(pis->is_input_section());
5945 this->add_script_input_section(*pis);
5946 }
5947
5948 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5949 }
5950
5951 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5952 exidx_fixup.add_exidx_cantunwind_as_needed();
5953
5954 // Remove any known EXIDX input sections that are not processed.
5955 for (Input_section_list::const_iterator p = input_sections.begin();
5956 p != input_sections.end();
5957 ++p)
5958 {
5959 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5960 == processed_input_sections.end())
5961 {
5962 // We discard a known EXIDX section because its linked
5963 // text section has been folded by ICF. We also discard an
5964 // EXIDX section with error, the output does not matter in this
5965 // case. We do this to avoid triggering asserts.
5966 Arm_relobj<big_endian>* arm_relobj =
5967 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5968 const Arm_exidx_input_section* exidx_input_section =
5969 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5970 gold_assert(exidx_input_section != NULL);
5971 if (!exidx_input_section->has_errors())
5972 {
5973 unsigned int text_shndx = exidx_input_section->link();
5974 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5975 }
5976
5977 // Remove this from link. We also need to recount the
5978 // local symbols.
5979 p->relobj()->set_output_section(p->shndx(), NULL);
5980 arm_relobj->set_output_local_symbol_count_needs_update();
5981 }
5982 }
5983
5984 // Link exidx output section to the first seen output section and
5985 // set correct entry size.
5986 this->set_link_section(exidx_fixup.first_output_text_section());
5987 this->set_entsize(8);
5988
5989 // Make changes permanent.
5990 this->save_states();
5991 this->set_section_offsets_need_adjustment();
5992 }
5993
5994 // Link EXIDX output sections to text output sections.
5995
5996 template<bool big_endian>
5997 void
5998 Arm_output_section<big_endian>::set_exidx_section_link()
5999 {
6000 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6001 if (!this->input_sections().empty())
6002 {
6003 Input_section_list::const_iterator p = this->input_sections().begin();
6004 Arm_relobj<big_endian>* arm_relobj =
6005 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6006 unsigned exidx_shndx = p->shndx();
6007 const Arm_exidx_input_section* exidx_input_section =
6008 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6009 gold_assert(exidx_input_section != NULL);
6010 unsigned int text_shndx = exidx_input_section->link();
6011 Output_section* os = arm_relobj->output_section(text_shndx);
6012 this->set_link_section(os);
6013 }
6014 }
6015
6016 // Arm_relobj methods.
6017
6018 // Determine if an input section is scannable for stub processing. SHDR is
6019 // the header of the section and SHNDX is the section index. OS is the output
6020 // section for the input section and SYMTAB is the global symbol table used to
6021 // look up ICF information.
6022
6023 template<bool big_endian>
6024 bool
6025 Arm_relobj<big_endian>::section_is_scannable(
6026 const elfcpp::Shdr<32, big_endian>& shdr,
6027 unsigned int shndx,
6028 const Output_section* os,
6029 const Symbol_table* symtab)
6030 {
6031 // Skip any empty sections, unallocated sections or sections whose
6032 // type are not SHT_PROGBITS.
6033 if (shdr.get_sh_size() == 0
6034 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6035 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6036 return false;
6037
6038 // Skip any discarded or ICF'ed sections.
6039 if (os == NULL || symtab->is_section_folded(this, shndx))
6040 return false;
6041
6042 // If this requires special offset handling, check to see if it is
6043 // a relaxed section. If this is not, then it is a merged section that
6044 // we cannot handle.
6045 if (this->is_output_section_offset_invalid(shndx))
6046 {
6047 const Output_relaxed_input_section* poris =
6048 os->find_relaxed_input_section(this, shndx);
6049 if (poris == NULL)
6050 return false;
6051 }
6052
6053 return true;
6054 }
6055
6056 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6057 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6058
6059 template<bool big_endian>
6060 bool
6061 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6062 const elfcpp::Shdr<32, big_endian>& shdr,
6063 const Relobj::Output_sections& out_sections,
6064 const Symbol_table* symtab,
6065 const unsigned char* pshdrs)
6066 {
6067 unsigned int sh_type = shdr.get_sh_type();
6068 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6069 return false;
6070
6071 // Ignore empty section.
6072 off_t sh_size = shdr.get_sh_size();
6073 if (sh_size == 0)
6074 return false;
6075
6076 // Ignore reloc section with unexpected symbol table. The
6077 // error will be reported in the final link.
6078 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6079 return false;
6080
6081 unsigned int reloc_size;
6082 if (sh_type == elfcpp::SHT_REL)
6083 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6084 else
6085 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6086
6087 // Ignore reloc section with unexpected entsize or uneven size.
6088 // The error will be reported in the final link.
6089 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6090 return false;
6091
6092 // Ignore reloc section with bad info. This error will be
6093 // reported in the final link.
6094 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6095 if (index >= this->shnum())
6096 return false;
6097
6098 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6099 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6100 return this->section_is_scannable(text_shdr, index,
6101 out_sections[index], symtab);
6102 }
6103
6104 // Return the output address of either a plain input section or a relaxed
6105 // input section. SHNDX is the section index. We define and use this
6106 // instead of calling Output_section::output_address because that is slow
6107 // for large output.
6108
6109 template<bool big_endian>
6110 Arm_address
6111 Arm_relobj<big_endian>::simple_input_section_output_address(
6112 unsigned int shndx,
6113 Output_section* os)
6114 {
6115 if (this->is_output_section_offset_invalid(shndx))
6116 {
6117 const Output_relaxed_input_section* poris =
6118 os->find_relaxed_input_section(this, shndx);
6119 // We do not handle merged sections here.
6120 gold_assert(poris != NULL);
6121 return poris->address();
6122 }
6123 else
6124 return os->address() + this->get_output_section_offset(shndx);
6125 }
6126
6127 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6128 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6129
6130 template<bool big_endian>
6131 bool
6132 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6133 const elfcpp::Shdr<32, big_endian>& shdr,
6134 unsigned int shndx,
6135 Output_section* os,
6136 const Symbol_table* symtab)
6137 {
6138 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6139 return false;
6140
6141 // If the section does not cross any 4K-boundaries, it does not need to
6142 // be scanned.
6143 Arm_address address = this->simple_input_section_output_address(shndx, os);
6144 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6145 return false;
6146
6147 return true;
6148 }
6149
6150 // Scan a section for Cortex-A8 workaround.
6151
6152 template<bool big_endian>
6153 void
6154 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6155 const elfcpp::Shdr<32, big_endian>& shdr,
6156 unsigned int shndx,
6157 Output_section* os,
6158 Target_arm<big_endian>* arm_target)
6159 {
6160 // Look for the first mapping symbol in this section. It should be
6161 // at (shndx, 0).
6162 Mapping_symbol_position section_start(shndx, 0);
6163 typename Mapping_symbols_info::const_iterator p =
6164 this->mapping_symbols_info_.lower_bound(section_start);
6165
6166 // There are no mapping symbols for this section. Treat it as a data-only
6167 // section. Issue a warning if section is marked as containing
6168 // instructions.
6169 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6170 {
6171 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6172 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6173 "erratum because it has no mapping symbols."),
6174 shndx, this->name().c_str());
6175 return;
6176 }
6177
6178 Arm_address output_address =
6179 this->simple_input_section_output_address(shndx, os);
6180
6181 // Get the section contents.
6182 section_size_type input_view_size = 0;
6183 const unsigned char* input_view =
6184 this->section_contents(shndx, &input_view_size, false);
6185
6186 // We need to go through the mapping symbols to determine what to
6187 // scan. There are two reasons. First, we should look at THUMB code and
6188 // THUMB code only. Second, we only want to look at the 4K-page boundary
6189 // to speed up the scanning.
6190
6191 while (p != this->mapping_symbols_info_.end()
6192 && p->first.first == shndx)
6193 {
6194 typename Mapping_symbols_info::const_iterator next =
6195 this->mapping_symbols_info_.upper_bound(p->first);
6196
6197 // Only scan part of a section with THUMB code.
6198 if (p->second == 't')
6199 {
6200 // Determine the end of this range.
6201 section_size_type span_start =
6202 convert_to_section_size_type(p->first.second);
6203 section_size_type span_end;
6204 if (next != this->mapping_symbols_info_.end()
6205 && next->first.first == shndx)
6206 span_end = convert_to_section_size_type(next->first.second);
6207 else
6208 span_end = convert_to_section_size_type(shdr.get_sh_size());
6209
6210 if (((span_start + output_address) & ~0xfffUL)
6211 != ((span_end + output_address - 1) & ~0xfffUL))
6212 {
6213 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6214 span_start, span_end,
6215 input_view,
6216 output_address);
6217 }
6218 }
6219
6220 p = next;
6221 }
6222 }
6223
6224 // Scan relocations for stub generation.
6225
6226 template<bool big_endian>
6227 void
6228 Arm_relobj<big_endian>::scan_sections_for_stubs(
6229 Target_arm<big_endian>* arm_target,
6230 const Symbol_table* symtab,
6231 const Layout* layout)
6232 {
6233 unsigned int shnum = this->shnum();
6234 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6235
6236 // Read the section headers.
6237 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6238 shnum * shdr_size,
6239 true, true);
6240
6241 // To speed up processing, we set up hash tables for fast lookup of
6242 // input offsets to output addresses.
6243 this->initialize_input_to_output_maps();
6244
6245 const Relobj::Output_sections& out_sections(this->output_sections());
6246
6247 Relocate_info<32, big_endian> relinfo;
6248 relinfo.symtab = symtab;
6249 relinfo.layout = layout;
6250 relinfo.object = this;
6251
6252 // Do relocation stubs scanning.
6253 const unsigned char* p = pshdrs + shdr_size;
6254 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6255 {
6256 const elfcpp::Shdr<32, big_endian> shdr(p);
6257 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6258 pshdrs))
6259 {
6260 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6261 Arm_address output_offset = this->get_output_section_offset(index);
6262 Arm_address output_address;
6263 if (output_offset != invalid_address)
6264 output_address = out_sections[index]->address() + output_offset;
6265 else
6266 {
6267 // Currently this only happens for a relaxed section.
6268 const Output_relaxed_input_section* poris =
6269 out_sections[index]->find_relaxed_input_section(this, index);
6270 gold_assert(poris != NULL);
6271 output_address = poris->address();
6272 }
6273
6274 // Get the relocations.
6275 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6276 shdr.get_sh_size(),
6277 true, false);
6278
6279 // Get the section contents. This does work for the case in which
6280 // we modify the contents of an input section. We need to pass the
6281 // output view under such circumstances.
6282 section_size_type input_view_size = 0;
6283 const unsigned char* input_view =
6284 this->section_contents(index, &input_view_size, false);
6285
6286 relinfo.reloc_shndx = i;
6287 relinfo.data_shndx = index;
6288 unsigned int sh_type = shdr.get_sh_type();
6289 unsigned int reloc_size;
6290 if (sh_type == elfcpp::SHT_REL)
6291 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6292 else
6293 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6294
6295 Output_section* os = out_sections[index];
6296 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6297 shdr.get_sh_size() / reloc_size,
6298 os,
6299 output_offset == invalid_address,
6300 input_view, output_address,
6301 input_view_size);
6302 }
6303 }
6304
6305 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6306 // after its relocation section, if there is one, is processed for
6307 // relocation stubs. Merging this loop with the one above would have been
6308 // complicated since we would have had to make sure that relocation stub
6309 // scanning is done first.
6310 if (arm_target->fix_cortex_a8())
6311 {
6312 const unsigned char* p = pshdrs + shdr_size;
6313 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6314 {
6315 const elfcpp::Shdr<32, big_endian> shdr(p);
6316 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6317 out_sections[i],
6318 symtab))
6319 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6320 arm_target);
6321 }
6322 }
6323
6324 // After we've done the relocations, we release the hash tables,
6325 // since we no longer need them.
6326 this->free_input_to_output_maps();
6327 }
6328
6329 // Count the local symbols. The ARM backend needs to know if a symbol
6330 // is a THUMB function or not. For global symbols, it is easy because
6331 // the Symbol object keeps the ELF symbol type. For local symbol it is
6332 // harder because we cannot access this information. So we override the
6333 // do_count_local_symbol in parent and scan local symbols to mark
6334 // THUMB functions. This is not the most efficient way but I do not want to
6335 // slow down other ports by calling a per symbol target hook inside
6336 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6337
6338 template<bool big_endian>
6339 void
6340 Arm_relobj<big_endian>::do_count_local_symbols(
6341 Stringpool_template<char>* pool,
6342 Stringpool_template<char>* dynpool)
6343 {
6344 // We need to fix-up the values of any local symbols whose type are
6345 // STT_ARM_TFUNC.
6346
6347 // Ask parent to count the local symbols.
6348 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6349 const unsigned int loccount = this->local_symbol_count();
6350 if (loccount == 0)
6351 return;
6352
6353 // Initialize the thumb function bit-vector.
6354 std::vector<bool> empty_vector(loccount, false);
6355 this->local_symbol_is_thumb_function_.swap(empty_vector);
6356
6357 // Read the symbol table section header.
6358 const unsigned int symtab_shndx = this->symtab_shndx();
6359 elfcpp::Shdr<32, big_endian>
6360 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6361 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6362
6363 // Read the local symbols.
6364 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6365 gold_assert(loccount == symtabshdr.get_sh_info());
6366 off_t locsize = loccount * sym_size;
6367 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6368 locsize, true, true);
6369
6370 // For mapping symbol processing, we need to read the symbol names.
6371 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6372 if (strtab_shndx >= this->shnum())
6373 {
6374 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6375 return;
6376 }
6377
6378 elfcpp::Shdr<32, big_endian>
6379 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6380 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6381 {
6382 this->error(_("symbol table name section has wrong type: %u"),
6383 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6384 return;
6385 }
6386 const char* pnames =
6387 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6388 strtabshdr.get_sh_size(),
6389 false, false));
6390
6391 // Loop over the local symbols and mark any local symbols pointing
6392 // to THUMB functions.
6393
6394 // Skip the first dummy symbol.
6395 psyms += sym_size;
6396 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6397 this->local_values();
6398 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6399 {
6400 elfcpp::Sym<32, big_endian> sym(psyms);
6401 elfcpp::STT st_type = sym.get_st_type();
6402 Symbol_value<32>& lv((*plocal_values)[i]);
6403 Arm_address input_value = lv.input_value();
6404
6405 // Check to see if this is a mapping symbol.
6406 const char* sym_name = pnames + sym.get_st_name();
6407 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6408 {
6409 bool is_ordinary;
6410 unsigned int input_shndx =
6411 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6412 gold_assert(is_ordinary);
6413
6414 // Strip of LSB in case this is a THUMB symbol.
6415 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6416 this->mapping_symbols_info_[msp] = sym_name[1];
6417 }
6418
6419 if (st_type == elfcpp::STT_ARM_TFUNC
6420 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6421 {
6422 // This is a THUMB function. Mark this and canonicalize the
6423 // symbol value by setting LSB.
6424 this->local_symbol_is_thumb_function_[i] = true;
6425 if ((input_value & 1) == 0)
6426 lv.set_input_value(input_value | 1);
6427 }
6428 }
6429 }
6430
6431 // Relocate sections.
6432 template<bool big_endian>
6433 void
6434 Arm_relobj<big_endian>::do_relocate_sections(
6435 const Symbol_table* symtab,
6436 const Layout* layout,
6437 const unsigned char* pshdrs,
6438 Output_file* of,
6439 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6440 {
6441 // Call parent to relocate sections.
6442 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6443 pshdrs, of, pviews);
6444
6445 // We do not generate stubs if doing a relocatable link.
6446 if (parameters->options().relocatable())
6447 return;
6448
6449 // Relocate stub tables.
6450 unsigned int shnum = this->shnum();
6451
6452 Target_arm<big_endian>* arm_target =
6453 Target_arm<big_endian>::default_target();
6454
6455 Relocate_info<32, big_endian> relinfo;
6456 relinfo.symtab = symtab;
6457 relinfo.layout = layout;
6458 relinfo.object = this;
6459
6460 for (unsigned int i = 1; i < shnum; ++i)
6461 {
6462 Arm_input_section<big_endian>* arm_input_section =
6463 arm_target->find_arm_input_section(this, i);
6464
6465 if (arm_input_section != NULL
6466 && arm_input_section->is_stub_table_owner()
6467 && !arm_input_section->stub_table()->empty())
6468 {
6469 // We cannot discard a section if it owns a stub table.
6470 Output_section* os = this->output_section(i);
6471 gold_assert(os != NULL);
6472
6473 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6474 relinfo.reloc_shdr = NULL;
6475 relinfo.data_shndx = i;
6476 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6477
6478 gold_assert((*pviews)[i].view != NULL);
6479
6480 // We are passed the output section view. Adjust it to cover the
6481 // stub table only.
6482 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6483 gold_assert((stub_table->address() >= (*pviews)[i].address)
6484 && ((stub_table->address() + stub_table->data_size())
6485 <= (*pviews)[i].address + (*pviews)[i].view_size));
6486
6487 off_t offset = stub_table->address() - (*pviews)[i].address;
6488 unsigned char* view = (*pviews)[i].view + offset;
6489 Arm_address address = stub_table->address();
6490 section_size_type view_size = stub_table->data_size();
6491
6492 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6493 view_size);
6494 }
6495
6496 // Apply Cortex A8 workaround if applicable.
6497 if (this->section_has_cortex_a8_workaround(i))
6498 {
6499 unsigned char* view = (*pviews)[i].view;
6500 Arm_address view_address = (*pviews)[i].address;
6501 section_size_type view_size = (*pviews)[i].view_size;
6502 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6503
6504 // Adjust view to cover section.
6505 Output_section* os = this->output_section(i);
6506 gold_assert(os != NULL);
6507 Arm_address section_address =
6508 this->simple_input_section_output_address(i, os);
6509 uint64_t section_size = this->section_size(i);
6510
6511 gold_assert(section_address >= view_address
6512 && ((section_address + section_size)
6513 <= (view_address + view_size)));
6514
6515 unsigned char* section_view = view + (section_address - view_address);
6516
6517 // Apply the Cortex-A8 workaround to the output address range
6518 // corresponding to this input section.
6519 stub_table->apply_cortex_a8_workaround_to_address_range(
6520 arm_target,
6521 section_view,
6522 section_address,
6523 section_size);
6524 }
6525 }
6526 }
6527
6528 // Find the linked text section of an EXIDX section by looking at the first
6529 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6530 // must be linked to its associated code section via the sh_link field of
6531 // its section header. However, some tools are broken and the link is not
6532 // always set. LD just drops such an EXIDX section silently, causing the
6533 // associated code not unwindabled. Here we try a little bit harder to
6534 // discover the linked code section.
6535 //
6536 // PSHDR points to the section header of a relocation section of an EXIDX
6537 // section. If we can find a linked text section, return true and
6538 // store the text section index in the location PSHNDX. Otherwise
6539 // return false.
6540
6541 template<bool big_endian>
6542 bool
6543 Arm_relobj<big_endian>::find_linked_text_section(
6544 const unsigned char* pshdr,
6545 const unsigned char* psyms,
6546 unsigned int* pshndx)
6547 {
6548 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6549
6550 // If there is no relocation, we cannot find the linked text section.
6551 size_t reloc_size;
6552 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6553 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6554 else
6555 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6556 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6557
6558 // Get the relocations.
6559 const unsigned char* prelocs =
6560 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6561
6562 // Find the REL31 relocation for the first word of the first EXIDX entry.
6563 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6564 {
6565 Arm_address r_offset;
6566 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6567 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6568 {
6569 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6570 r_info = reloc.get_r_info();
6571 r_offset = reloc.get_r_offset();
6572 }
6573 else
6574 {
6575 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6576 r_info = reloc.get_r_info();
6577 r_offset = reloc.get_r_offset();
6578 }
6579
6580 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6581 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6582 continue;
6583
6584 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6585 if (r_sym == 0
6586 || r_sym >= this->local_symbol_count()
6587 || r_offset != 0)
6588 continue;
6589
6590 // This is the relocation for the first word of the first EXIDX entry.
6591 // We expect to see a local section symbol.
6592 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6593 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6594 if (sym.get_st_type() == elfcpp::STT_SECTION)
6595 {
6596 bool is_ordinary;
6597 *pshndx =
6598 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6599 gold_assert(is_ordinary);
6600 return true;
6601 }
6602 else
6603 return false;
6604 }
6605
6606 return false;
6607 }
6608
6609 // Make an EXIDX input section object for an EXIDX section whose index is
6610 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6611 // is the section index of the linked text section.
6612
6613 template<bool big_endian>
6614 void
6615 Arm_relobj<big_endian>::make_exidx_input_section(
6616 unsigned int shndx,
6617 const elfcpp::Shdr<32, big_endian>& shdr,
6618 unsigned int text_shndx,
6619 const elfcpp::Shdr<32, big_endian>& text_shdr)
6620 {
6621 // Create an Arm_exidx_input_section object for this EXIDX section.
6622 Arm_exidx_input_section* exidx_input_section =
6623 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6624 shdr.get_sh_addralign(),
6625 text_shdr.get_sh_size());
6626
6627 gold_assert(this->exidx_section_map_[shndx] == NULL);
6628 this->exidx_section_map_[shndx] = exidx_input_section;
6629
6630 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6631 {
6632 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6633 this->section_name(shndx).c_str(), shndx, text_shndx,
6634 this->name().c_str());
6635 exidx_input_section->set_has_errors();
6636 }
6637 else if (this->exidx_section_map_[text_shndx] != NULL)
6638 {
6639 unsigned other_exidx_shndx =
6640 this->exidx_section_map_[text_shndx]->shndx();
6641 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6642 "%s(%u) in %s"),
6643 this->section_name(shndx).c_str(), shndx,
6644 this->section_name(other_exidx_shndx).c_str(),
6645 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6646 text_shndx, this->name().c_str());
6647 exidx_input_section->set_has_errors();
6648 }
6649 else
6650 this->exidx_section_map_[text_shndx] = exidx_input_section;
6651
6652 // Check section flags of text section.
6653 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6654 {
6655 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6656 " in %s"),
6657 this->section_name(shndx).c_str(), shndx,
6658 this->section_name(text_shndx).c_str(), text_shndx,
6659 this->name().c_str());
6660 exidx_input_section->set_has_errors();
6661 }
6662 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6663 // I would like to make this an error but currently ld just ignores
6664 // this.
6665 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6666 "%s(%u) in %s"),
6667 this->section_name(shndx).c_str(), shndx,
6668 this->section_name(text_shndx).c_str(), text_shndx,
6669 this->name().c_str());
6670 }
6671
6672 // Read the symbol information.
6673
6674 template<bool big_endian>
6675 void
6676 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6677 {
6678 // Call parent class to read symbol information.
6679 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6680
6681 // If this input file is a binary file, it has no processor
6682 // specific flags and attributes section.
6683 Input_file::Format format = this->input_file()->format();
6684 if (format != Input_file::FORMAT_ELF)
6685 {
6686 gold_assert(format == Input_file::FORMAT_BINARY);
6687 this->merge_flags_and_attributes_ = false;
6688 return;
6689 }
6690
6691 // Read processor-specific flags in ELF file header.
6692 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6693 elfcpp::Elf_sizes<32>::ehdr_size,
6694 true, false);
6695 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6696 this->processor_specific_flags_ = ehdr.get_e_flags();
6697
6698 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6699 // sections.
6700 std::vector<unsigned int> deferred_exidx_sections;
6701 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6702 const unsigned char* pshdrs = sd->section_headers->data();
6703 const unsigned char* ps = pshdrs + shdr_size;
6704 bool must_merge_flags_and_attributes = false;
6705 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6706 {
6707 elfcpp::Shdr<32, big_endian> shdr(ps);
6708
6709 // Sometimes an object has no contents except the section name string
6710 // table and an empty symbol table with the undefined symbol. We
6711 // don't want to merge processor-specific flags from such an object.
6712 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6713 {
6714 // Symbol table is not empty.
6715 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6716 elfcpp::Elf_sizes<32>::sym_size;
6717 if (shdr.get_sh_size() > sym_size)
6718 must_merge_flags_and_attributes = true;
6719 }
6720 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6721 // If this is neither an empty symbol table nor a string table,
6722 // be conservative.
6723 must_merge_flags_and_attributes = true;
6724
6725 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6726 {
6727 gold_assert(this->attributes_section_data_ == NULL);
6728 section_offset_type section_offset = shdr.get_sh_offset();
6729 section_size_type section_size =
6730 convert_to_section_size_type(shdr.get_sh_size());
6731 const unsigned char* view =
6732 this->get_view(section_offset, section_size, true, false);
6733 this->attributes_section_data_ =
6734 new Attributes_section_data(view, section_size);
6735 }
6736 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6737 {
6738 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6739 if (text_shndx == elfcpp::SHN_UNDEF)
6740 deferred_exidx_sections.push_back(i);
6741 else
6742 {
6743 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6744 + text_shndx * shdr_size);
6745 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6746 }
6747 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6748 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6749 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6750 this->section_name(i).c_str(), this->name().c_str());
6751 }
6752 }
6753
6754 // This is rare.
6755 if (!must_merge_flags_and_attributes)
6756 {
6757 gold_assert(deferred_exidx_sections.empty());
6758 this->merge_flags_and_attributes_ = false;
6759 return;
6760 }
6761
6762 // Some tools are broken and they do not set the link of EXIDX sections.
6763 // We look at the first relocation to figure out the linked sections.
6764 if (!deferred_exidx_sections.empty())
6765 {
6766 // We need to go over the section headers again to find the mapping
6767 // from sections being relocated to their relocation sections. This is
6768 // a bit inefficient as we could do that in the loop above. However,
6769 // we do not expect any deferred EXIDX sections normally. So we do not
6770 // want to slow down the most common path.
6771 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6772 Reloc_map reloc_map;
6773 ps = pshdrs + shdr_size;
6774 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6775 {
6776 elfcpp::Shdr<32, big_endian> shdr(ps);
6777 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6778 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6779 {
6780 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6781 if (info_shndx >= this->shnum())
6782 gold_error(_("relocation section %u has invalid info %u"),
6783 i, info_shndx);
6784 Reloc_map::value_type value(info_shndx, i);
6785 std::pair<Reloc_map::iterator, bool> result =
6786 reloc_map.insert(value);
6787 if (!result.second)
6788 gold_error(_("section %u has multiple relocation sections "
6789 "%u and %u"),
6790 info_shndx, i, reloc_map[info_shndx]);
6791 }
6792 }
6793
6794 // Read the symbol table section header.
6795 const unsigned int symtab_shndx = this->symtab_shndx();
6796 elfcpp::Shdr<32, big_endian>
6797 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6798 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6799
6800 // Read the local symbols.
6801 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6802 const unsigned int loccount = this->local_symbol_count();
6803 gold_assert(loccount == symtabshdr.get_sh_info());
6804 off_t locsize = loccount * sym_size;
6805 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6806 locsize, true, true);
6807
6808 // Process the deferred EXIDX sections.
6809 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6810 {
6811 unsigned int shndx = deferred_exidx_sections[i];
6812 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6813 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6814 Reloc_map::const_iterator it = reloc_map.find(shndx);
6815 if (it != reloc_map.end())
6816 find_linked_text_section(pshdrs + it->second * shdr_size,
6817 psyms, &text_shndx);
6818 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6819 + text_shndx * shdr_size);
6820 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6821 }
6822 }
6823 }
6824
6825 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6826 // sections for unwinding. These sections are referenced implicitly by
6827 // text sections linked in the section headers. If we ignore these implicit
6828 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6829 // will be garbage-collected incorrectly. Hence we override the same function
6830 // in the base class to handle these implicit references.
6831
6832 template<bool big_endian>
6833 void
6834 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6835 Layout* layout,
6836 Read_relocs_data* rd)
6837 {
6838 // First, call base class method to process relocations in this object.
6839 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6840
6841 // If --gc-sections is not specified, there is nothing more to do.
6842 // This happens when --icf is used but --gc-sections is not.
6843 if (!parameters->options().gc_sections())
6844 return;
6845
6846 unsigned int shnum = this->shnum();
6847 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6848 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6849 shnum * shdr_size,
6850 true, true);
6851
6852 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6853 // to these from the linked text sections.
6854 const unsigned char* ps = pshdrs + shdr_size;
6855 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6856 {
6857 elfcpp::Shdr<32, big_endian> shdr(ps);
6858 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6859 {
6860 // Found an .ARM.exidx section, add it to the set of reachable
6861 // sections from its linked text section.
6862 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6863 symtab->gc()->add_reference(this, text_shndx, this, i);
6864 }
6865 }
6866 }
6867
6868 // Update output local symbol count. Owing to EXIDX entry merging, some local
6869 // symbols will be removed in output. Adjust output local symbol count
6870 // accordingly. We can only changed the static output local symbol count. It
6871 // is too late to change the dynamic symbols.
6872
6873 template<bool big_endian>
6874 void
6875 Arm_relobj<big_endian>::update_output_local_symbol_count()
6876 {
6877 // Caller should check that this needs updating. We want caller checking
6878 // because output_local_symbol_count_needs_update() is most likely inlined.
6879 gold_assert(this->output_local_symbol_count_needs_update_);
6880
6881 gold_assert(this->symtab_shndx() != -1U);
6882 if (this->symtab_shndx() == 0)
6883 {
6884 // This object has no symbols. Weird but legal.
6885 return;
6886 }
6887
6888 // Read the symbol table section header.
6889 const unsigned int symtab_shndx = this->symtab_shndx();
6890 elfcpp::Shdr<32, big_endian>
6891 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6892 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6893
6894 // Read the local symbols.
6895 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6896 const unsigned int loccount = this->local_symbol_count();
6897 gold_assert(loccount == symtabshdr.get_sh_info());
6898 off_t locsize = loccount * sym_size;
6899 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6900 locsize, true, true);
6901
6902 // Loop over the local symbols.
6903
6904 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6905 Output_sections;
6906 const Output_sections& out_sections(this->output_sections());
6907 unsigned int shnum = this->shnum();
6908 unsigned int count = 0;
6909 // Skip the first, dummy, symbol.
6910 psyms += sym_size;
6911 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6912 {
6913 elfcpp::Sym<32, big_endian> sym(psyms);
6914
6915 Symbol_value<32>& lv((*this->local_values())[i]);
6916
6917 // This local symbol was already discarded by do_count_local_symbols.
6918 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6919 continue;
6920
6921 bool is_ordinary;
6922 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6923 &is_ordinary);
6924
6925 if (shndx < shnum)
6926 {
6927 Output_section* os = out_sections[shndx];
6928
6929 // This local symbol no longer has an output section. Discard it.
6930 if (os == NULL)
6931 {
6932 lv.set_no_output_symtab_entry();
6933 continue;
6934 }
6935
6936 // Currently we only discard parts of EXIDX input sections.
6937 // We explicitly check for a merged EXIDX input section to avoid
6938 // calling Output_section_data::output_offset unless necessary.
6939 if ((this->get_output_section_offset(shndx) == invalid_address)
6940 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6941 {
6942 section_offset_type output_offset =
6943 os->output_offset(this, shndx, lv.input_value());
6944 if (output_offset == -1)
6945 {
6946 // This symbol is defined in a part of an EXIDX input section
6947 // that is discarded due to entry merging.
6948 lv.set_no_output_symtab_entry();
6949 continue;
6950 }
6951 }
6952 }
6953
6954 ++count;
6955 }
6956
6957 this->set_output_local_symbol_count(count);
6958 this->output_local_symbol_count_needs_update_ = false;
6959 }
6960
6961 // Arm_dynobj methods.
6962
6963 // Read the symbol information.
6964
6965 template<bool big_endian>
6966 void
6967 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6968 {
6969 // Call parent class to read symbol information.
6970 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6971
6972 // Read processor-specific flags in ELF file header.
6973 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6974 elfcpp::Elf_sizes<32>::ehdr_size,
6975 true, false);
6976 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6977 this->processor_specific_flags_ = ehdr.get_e_flags();
6978
6979 // Read the attributes section if there is one.
6980 // We read from the end because gas seems to put it near the end of
6981 // the section headers.
6982 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6983 const unsigned char* ps =
6984 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6985 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6986 {
6987 elfcpp::Shdr<32, big_endian> shdr(ps);
6988 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6989 {
6990 section_offset_type section_offset = shdr.get_sh_offset();
6991 section_size_type section_size =
6992 convert_to_section_size_type(shdr.get_sh_size());
6993 const unsigned char* view =
6994 this->get_view(section_offset, section_size, true, false);
6995 this->attributes_section_data_ =
6996 new Attributes_section_data(view, section_size);
6997 break;
6998 }
6999 }
7000 }
7001
7002 // Stub_addend_reader methods.
7003
7004 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7005
7006 template<bool big_endian>
7007 elfcpp::Elf_types<32>::Elf_Swxword
7008 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7009 unsigned int r_type,
7010 const unsigned char* view,
7011 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7012 {
7013 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7014
7015 switch (r_type)
7016 {
7017 case elfcpp::R_ARM_CALL:
7018 case elfcpp::R_ARM_JUMP24:
7019 case elfcpp::R_ARM_PLT32:
7020 {
7021 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7022 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7023 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7024 return Bits<26>::sign_extend32(val << 2);
7025 }
7026
7027 case elfcpp::R_ARM_THM_CALL:
7028 case elfcpp::R_ARM_THM_JUMP24:
7029 case elfcpp::R_ARM_THM_XPC22:
7030 {
7031 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7032 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7033 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7034 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7035 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7036 }
7037
7038 case elfcpp::R_ARM_THM_JUMP19:
7039 {
7040 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7041 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7042 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7043 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7044 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7045 }
7046
7047 default:
7048 gold_unreachable();
7049 }
7050 }
7051
7052 // Arm_output_data_got methods.
7053
7054 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7055 // The first one is initialized to be 1, which is the module index for
7056 // the main executable and the second one 0. A reloc of the type
7057 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7058 // be applied by gold. GSYM is a global symbol.
7059 //
7060 template<bool big_endian>
7061 void
7062 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7063 unsigned int got_type,
7064 Symbol* gsym)
7065 {
7066 if (gsym->has_got_offset(got_type))
7067 return;
7068
7069 // We are doing a static link. Just mark it as belong to module 1,
7070 // the executable.
7071 unsigned int got_offset = this->add_constant(1);
7072 gsym->set_got_offset(got_type, got_offset);
7073 got_offset = this->add_constant(0);
7074 this->static_relocs_.push_back(Static_reloc(got_offset,
7075 elfcpp::R_ARM_TLS_DTPOFF32,
7076 gsym));
7077 }
7078
7079 // Same as the above but for a local symbol.
7080
7081 template<bool big_endian>
7082 void
7083 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7084 unsigned int got_type,
7085 Sized_relobj_file<32, big_endian>* object,
7086 unsigned int index)
7087 {
7088 if (object->local_has_got_offset(index, got_type))
7089 return;
7090
7091 // We are doing a static link. Just mark it as belong to module 1,
7092 // the executable.
7093 unsigned int got_offset = this->add_constant(1);
7094 object->set_local_got_offset(index, got_type, got_offset);
7095 got_offset = this->add_constant(0);
7096 this->static_relocs_.push_back(Static_reloc(got_offset,
7097 elfcpp::R_ARM_TLS_DTPOFF32,
7098 object, index));
7099 }
7100
7101 template<bool big_endian>
7102 void
7103 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7104 {
7105 // Call parent to write out GOT.
7106 Output_data_got<32, big_endian>::do_write(of);
7107
7108 // We are done if there is no fix up.
7109 if (this->static_relocs_.empty())
7110 return;
7111
7112 gold_assert(parameters->doing_static_link());
7113
7114 const off_t offset = this->offset();
7115 const section_size_type oview_size =
7116 convert_to_section_size_type(this->data_size());
7117 unsigned char* const oview = of->get_output_view(offset, oview_size);
7118
7119 Output_segment* tls_segment = this->layout_->tls_segment();
7120 gold_assert(tls_segment != NULL);
7121
7122 // The thread pointer $tp points to the TCB, which is followed by the
7123 // TLS. So we need to adjust $tp relative addressing by this amount.
7124 Arm_address aligned_tcb_size =
7125 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7126
7127 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7128 {
7129 Static_reloc& reloc(this->static_relocs_[i]);
7130
7131 Arm_address value;
7132 if (!reloc.symbol_is_global())
7133 {
7134 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7135 const Symbol_value<32>* psymval =
7136 reloc.relobj()->local_symbol(reloc.index());
7137
7138 // We are doing static linking. Issue an error and skip this
7139 // relocation if the symbol is undefined or in a discarded_section.
7140 bool is_ordinary;
7141 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7142 if ((shndx == elfcpp::SHN_UNDEF)
7143 || (is_ordinary
7144 && shndx != elfcpp::SHN_UNDEF
7145 && !object->is_section_included(shndx)
7146 && !this->symbol_table_->is_section_folded(object, shndx)))
7147 {
7148 gold_error(_("undefined or discarded local symbol %u from "
7149 " object %s in GOT"),
7150 reloc.index(), reloc.relobj()->name().c_str());
7151 continue;
7152 }
7153
7154 value = psymval->value(object, 0);
7155 }
7156 else
7157 {
7158 const Symbol* gsym = reloc.symbol();
7159 gold_assert(gsym != NULL);
7160 if (gsym->is_forwarder())
7161 gsym = this->symbol_table_->resolve_forwards(gsym);
7162
7163 // We are doing static linking. Issue an error and skip this
7164 // relocation if the symbol is undefined or in a discarded_section
7165 // unless it is a weakly_undefined symbol.
7166 if ((gsym->is_defined_in_discarded_section()
7167 || gsym->is_undefined())
7168 && !gsym->is_weak_undefined())
7169 {
7170 gold_error(_("undefined or discarded symbol %s in GOT"),
7171 gsym->name());
7172 continue;
7173 }
7174
7175 if (!gsym->is_weak_undefined())
7176 {
7177 const Sized_symbol<32>* sym =
7178 static_cast<const Sized_symbol<32>*>(gsym);
7179 value = sym->value();
7180 }
7181 else
7182 value = 0;
7183 }
7184
7185 unsigned got_offset = reloc.got_offset();
7186 gold_assert(got_offset < oview_size);
7187
7188 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7189 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7190 Valtype x;
7191 switch (reloc.r_type())
7192 {
7193 case elfcpp::R_ARM_TLS_DTPOFF32:
7194 x = value;
7195 break;
7196 case elfcpp::R_ARM_TLS_TPOFF32:
7197 x = value + aligned_tcb_size;
7198 break;
7199 default:
7200 gold_unreachable();
7201 }
7202 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7203 }
7204
7205 of->write_output_view(offset, oview_size, oview);
7206 }
7207
7208 // A class to handle the PLT data.
7209 // This is an abstract base class that handles most of the linker details
7210 // but does not know the actual contents of PLT entries. The derived
7211 // classes below fill in those details.
7212
7213 template<bool big_endian>
7214 class Output_data_plt_arm : public Output_section_data
7215 {
7216 public:
7217 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7218 Reloc_section;
7219
7220 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7221
7222 // Add an entry to the PLT.
7223 void
7224 add_entry(Symbol* gsym);
7225
7226 // Return the .rel.plt section data.
7227 const Reloc_section*
7228 rel_plt() const
7229 { return this->rel_; }
7230
7231 // Return the number of PLT entries.
7232 unsigned int
7233 entry_count() const
7234 { return this->count_; }
7235
7236 // Return the offset of the first non-reserved PLT entry.
7237 unsigned int
7238 first_plt_entry_offset() const
7239 { return this->do_first_plt_entry_offset(); }
7240
7241 // Return the size of a PLT entry.
7242 unsigned int
7243 get_plt_entry_size() const
7244 { return this->do_get_plt_entry_size(); }
7245
7246 protected:
7247 // Fill in the first PLT entry.
7248 void
7249 fill_first_plt_entry(unsigned char* pov,
7250 Arm_address got_address,
7251 Arm_address plt_address)
7252 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7253
7254 void
7255 fill_plt_entry(unsigned char* pov,
7256 Arm_address got_address,
7257 Arm_address plt_address,
7258 unsigned int got_offset,
7259 unsigned int plt_offset)
7260 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7261
7262 virtual unsigned int
7263 do_first_plt_entry_offset() const = 0;
7264
7265 virtual unsigned int
7266 do_get_plt_entry_size() const = 0;
7267
7268 virtual void
7269 do_fill_first_plt_entry(unsigned char* pov,
7270 Arm_address got_address,
7271 Arm_address plt_address) = 0;
7272
7273 virtual void
7274 do_fill_plt_entry(unsigned char* pov,
7275 Arm_address got_address,
7276 Arm_address plt_address,
7277 unsigned int got_offset,
7278 unsigned int plt_offset) = 0;
7279
7280 void
7281 do_adjust_output_section(Output_section* os);
7282
7283 // Write to a map file.
7284 void
7285 do_print_to_mapfile(Mapfile* mapfile) const
7286 { mapfile->print_output_data(this, _("** PLT")); }
7287
7288 private:
7289 // Set the final size.
7290 void
7291 set_final_data_size()
7292 {
7293 this->set_data_size(this->first_plt_entry_offset()
7294 + this->count_ * this->get_plt_entry_size());
7295 }
7296
7297 // Write out the PLT data.
7298 void
7299 do_write(Output_file*);
7300
7301 // The reloc section.
7302 Reloc_section* rel_;
7303 // The .got.plt section.
7304 Output_data_space* got_plt_;
7305 // The number of PLT entries.
7306 unsigned int count_;
7307 };
7308
7309 // Create the PLT section. The ordinary .got section is an argument,
7310 // since we need to refer to the start. We also create our own .got
7311 // section just for PLT entries.
7312
7313 template<bool big_endian>
7314 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7315 uint64_t addralign,
7316 Output_data_space* got_plt)
7317 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7318 {
7319 this->rel_ = new Reloc_section(false);
7320 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7321 elfcpp::SHF_ALLOC, this->rel_,
7322 ORDER_DYNAMIC_PLT_RELOCS, false);
7323 }
7324
7325 template<bool big_endian>
7326 void
7327 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7328 {
7329 os->set_entsize(0);
7330 }
7331
7332 // Add an entry to the PLT.
7333
7334 template<bool big_endian>
7335 void
7336 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7337 {
7338 gold_assert(!gsym->has_plt_offset());
7339
7340 // Note that when setting the PLT offset we skip the initial
7341 // reserved PLT entry.
7342 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7343 + this->first_plt_entry_offset());
7344
7345 ++this->count_;
7346
7347 section_offset_type got_offset = this->got_plt_->current_data_size();
7348
7349 // Every PLT entry needs a GOT entry which points back to the PLT
7350 // entry (this will be changed by the dynamic linker, normally
7351 // lazily when the function is called).
7352 this->got_plt_->set_current_data_size(got_offset + 4);
7353
7354 // Every PLT entry needs a reloc.
7355 gsym->set_needs_dynsym_entry();
7356 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7357 got_offset);
7358
7359 // Note that we don't need to save the symbol. The contents of the
7360 // PLT are independent of which symbols are used. The symbols only
7361 // appear in the relocations.
7362 }
7363
7364 template<bool big_endian>
7365 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7366 {
7367 public:
7368 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7369 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7370 { }
7371
7372 protected:
7373 // Return the offset of the first non-reserved PLT entry.
7374 virtual unsigned int
7375 do_first_plt_entry_offset() const
7376 { return sizeof(first_plt_entry); }
7377
7378 // Return the size of a PLT entry.
7379 virtual unsigned int
7380 do_get_plt_entry_size() const
7381 { return sizeof(plt_entry); }
7382
7383 virtual void
7384 do_fill_first_plt_entry(unsigned char* pov,
7385 Arm_address got_address,
7386 Arm_address plt_address);
7387
7388 virtual void
7389 do_fill_plt_entry(unsigned char* pov,
7390 Arm_address got_address,
7391 Arm_address plt_address,
7392 unsigned int got_offset,
7393 unsigned int plt_offset);
7394
7395 private:
7396 // Template for the first PLT entry.
7397 static const uint32_t first_plt_entry[5];
7398
7399 // Template for subsequent PLT entries.
7400 static const uint32_t plt_entry[3];
7401 };
7402
7403 // ARM PLTs.
7404 // FIXME: This is not very flexible. Right now this has only been tested
7405 // on armv5te. If we are to support additional architecture features like
7406 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7407
7408 // The first entry in the PLT.
7409 template<bool big_endian>
7410 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7411 {
7412 0xe52de004, // str lr, [sp, #-4]!
7413 0xe59fe004, // ldr lr, [pc, #4]
7414 0xe08fe00e, // add lr, pc, lr
7415 0xe5bef008, // ldr pc, [lr, #8]!
7416 0x00000000, // &GOT[0] - .
7417 };
7418
7419 template<bool big_endian>
7420 void
7421 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7422 unsigned char* pov,
7423 Arm_address got_address,
7424 Arm_address plt_address)
7425 {
7426 // Write first PLT entry. All but the last word are constants.
7427 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7428 / sizeof(plt_entry[0]));
7429 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7430 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7431 // Last word in first PLT entry is &GOT[0] - .
7432 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7433 got_address - (plt_address + 16));
7434 }
7435
7436 // Subsequent entries in the PLT.
7437
7438 template<bool big_endian>
7439 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7440 {
7441 0xe28fc600, // add ip, pc, #0xNN00000
7442 0xe28cca00, // add ip, ip, #0xNN000
7443 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7444 };
7445
7446 template<bool big_endian>
7447 void
7448 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7449 unsigned char* pov,
7450 Arm_address got_address,
7451 Arm_address plt_address,
7452 unsigned int got_offset,
7453 unsigned int plt_offset)
7454 {
7455 int32_t offset = ((got_address + got_offset)
7456 - (plt_address + plt_offset + 8));
7457
7458 gold_assert(offset >= 0 && offset < 0x0fffffff);
7459 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7460 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7461 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7462 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7463 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7464 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7465 }
7466
7467 // Write out the PLT. This uses the hand-coded instructions above,
7468 // and adjusts them as needed. This is all specified by the arm ELF
7469 // Processor Supplement.
7470
7471 template<bool big_endian>
7472 void
7473 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7474 {
7475 const off_t offset = this->offset();
7476 const section_size_type oview_size =
7477 convert_to_section_size_type(this->data_size());
7478 unsigned char* const oview = of->get_output_view(offset, oview_size);
7479
7480 const off_t got_file_offset = this->got_plt_->offset();
7481 const section_size_type got_size =
7482 convert_to_section_size_type(this->got_plt_->data_size());
7483 unsigned char* const got_view = of->get_output_view(got_file_offset,
7484 got_size);
7485 unsigned char* pov = oview;
7486
7487 Arm_address plt_address = this->address();
7488 Arm_address got_address = this->got_plt_->address();
7489
7490 // Write first PLT entry.
7491 this->fill_first_plt_entry(pov, got_address, plt_address);
7492 pov += this->first_plt_entry_offset();
7493
7494 unsigned char* got_pov = got_view;
7495
7496 memset(got_pov, 0, 12);
7497 got_pov += 12;
7498
7499 unsigned int plt_offset = this->first_plt_entry_offset();
7500 unsigned int got_offset = 12;
7501 const unsigned int count = this->count_;
7502 for (unsigned int i = 0;
7503 i < count;
7504 ++i,
7505 pov += this->get_plt_entry_size(),
7506 got_pov += 4,
7507 plt_offset += this->get_plt_entry_size(),
7508 got_offset += 4)
7509 {
7510 // Set and adjust the PLT entry itself.
7511 this->fill_plt_entry(pov, got_address, plt_address,
7512 got_offset, plt_offset);
7513
7514 // Set the entry in the GOT.
7515 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7516 }
7517
7518 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7519 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7520
7521 of->write_output_view(offset, oview_size, oview);
7522 of->write_output_view(got_file_offset, got_size, got_view);
7523 }
7524
7525 // Create a PLT entry for a global symbol.
7526
7527 template<bool big_endian>
7528 void
7529 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7530 Symbol* gsym)
7531 {
7532 if (gsym->has_plt_offset())
7533 return;
7534
7535 if (this->plt_ == NULL)
7536 {
7537 // Create the GOT sections first.
7538 this->got_section(symtab, layout);
7539
7540 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7541
7542 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7543 (elfcpp::SHF_ALLOC
7544 | elfcpp::SHF_EXECINSTR),
7545 this->plt_, ORDER_PLT, false);
7546 }
7547 this->plt_->add_entry(gsym);
7548 }
7549
7550 // Return the number of entries in the PLT.
7551
7552 template<bool big_endian>
7553 unsigned int
7554 Target_arm<big_endian>::plt_entry_count() const
7555 {
7556 if (this->plt_ == NULL)
7557 return 0;
7558 return this->plt_->entry_count();
7559 }
7560
7561 // Return the offset of the first non-reserved PLT entry.
7562
7563 template<bool big_endian>
7564 unsigned int
7565 Target_arm<big_endian>::first_plt_entry_offset() const
7566 {
7567 return this->plt_->first_plt_entry_offset();
7568 }
7569
7570 // Return the size of each PLT entry.
7571
7572 template<bool big_endian>
7573 unsigned int
7574 Target_arm<big_endian>::plt_entry_size() const
7575 {
7576 return this->plt_->get_plt_entry_size();
7577 }
7578
7579 // Get the section to use for TLS_DESC relocations.
7580
7581 template<bool big_endian>
7582 typename Target_arm<big_endian>::Reloc_section*
7583 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7584 {
7585 return this->plt_section()->rel_tls_desc(layout);
7586 }
7587
7588 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7589
7590 template<bool big_endian>
7591 void
7592 Target_arm<big_endian>::define_tls_base_symbol(
7593 Symbol_table* symtab,
7594 Layout* layout)
7595 {
7596 if (this->tls_base_symbol_defined_)
7597 return;
7598
7599 Output_segment* tls_segment = layout->tls_segment();
7600 if (tls_segment != NULL)
7601 {
7602 bool is_exec = parameters->options().output_is_executable();
7603 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7604 Symbol_table::PREDEFINED,
7605 tls_segment, 0, 0,
7606 elfcpp::STT_TLS,
7607 elfcpp::STB_LOCAL,
7608 elfcpp::STV_HIDDEN, 0,
7609 (is_exec
7610 ? Symbol::SEGMENT_END
7611 : Symbol::SEGMENT_START),
7612 true);
7613 }
7614 this->tls_base_symbol_defined_ = true;
7615 }
7616
7617 // Create a GOT entry for the TLS module index.
7618
7619 template<bool big_endian>
7620 unsigned int
7621 Target_arm<big_endian>::got_mod_index_entry(
7622 Symbol_table* symtab,
7623 Layout* layout,
7624 Sized_relobj_file<32, big_endian>* object)
7625 {
7626 if (this->got_mod_index_offset_ == -1U)
7627 {
7628 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7629 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7630 unsigned int got_offset;
7631 if (!parameters->doing_static_link())
7632 {
7633 got_offset = got->add_constant(0);
7634 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7635 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7636 got_offset);
7637 }
7638 else
7639 {
7640 // We are doing a static link. Just mark it as belong to module 1,
7641 // the executable.
7642 got_offset = got->add_constant(1);
7643 }
7644
7645 got->add_constant(0);
7646 this->got_mod_index_offset_ = got_offset;
7647 }
7648 return this->got_mod_index_offset_;
7649 }
7650
7651 // Optimize the TLS relocation type based on what we know about the
7652 // symbol. IS_FINAL is true if the final address of this symbol is
7653 // known at link time.
7654
7655 template<bool big_endian>
7656 tls::Tls_optimization
7657 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7658 {
7659 // FIXME: Currently we do not do any TLS optimization.
7660 return tls::TLSOPT_NONE;
7661 }
7662
7663 // Get the Reference_flags for a particular relocation.
7664
7665 template<bool big_endian>
7666 int
7667 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7668 {
7669 switch (r_type)
7670 {
7671 case elfcpp::R_ARM_NONE:
7672 case elfcpp::R_ARM_V4BX:
7673 case elfcpp::R_ARM_GNU_VTENTRY:
7674 case elfcpp::R_ARM_GNU_VTINHERIT:
7675 // No symbol reference.
7676 return 0;
7677
7678 case elfcpp::R_ARM_ABS32:
7679 case elfcpp::R_ARM_ABS16:
7680 case elfcpp::R_ARM_ABS12:
7681 case elfcpp::R_ARM_THM_ABS5:
7682 case elfcpp::R_ARM_ABS8:
7683 case elfcpp::R_ARM_BASE_ABS:
7684 case elfcpp::R_ARM_MOVW_ABS_NC:
7685 case elfcpp::R_ARM_MOVT_ABS:
7686 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7687 case elfcpp::R_ARM_THM_MOVT_ABS:
7688 case elfcpp::R_ARM_ABS32_NOI:
7689 return Symbol::ABSOLUTE_REF;
7690
7691 case elfcpp::R_ARM_REL32:
7692 case elfcpp::R_ARM_LDR_PC_G0:
7693 case elfcpp::R_ARM_SBREL32:
7694 case elfcpp::R_ARM_THM_PC8:
7695 case elfcpp::R_ARM_BASE_PREL:
7696 case elfcpp::R_ARM_MOVW_PREL_NC:
7697 case elfcpp::R_ARM_MOVT_PREL:
7698 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7699 case elfcpp::R_ARM_THM_MOVT_PREL:
7700 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7701 case elfcpp::R_ARM_THM_PC12:
7702 case elfcpp::R_ARM_REL32_NOI:
7703 case elfcpp::R_ARM_ALU_PC_G0_NC:
7704 case elfcpp::R_ARM_ALU_PC_G0:
7705 case elfcpp::R_ARM_ALU_PC_G1_NC:
7706 case elfcpp::R_ARM_ALU_PC_G1:
7707 case elfcpp::R_ARM_ALU_PC_G2:
7708 case elfcpp::R_ARM_LDR_PC_G1:
7709 case elfcpp::R_ARM_LDR_PC_G2:
7710 case elfcpp::R_ARM_LDRS_PC_G0:
7711 case elfcpp::R_ARM_LDRS_PC_G1:
7712 case elfcpp::R_ARM_LDRS_PC_G2:
7713 case elfcpp::R_ARM_LDC_PC_G0:
7714 case elfcpp::R_ARM_LDC_PC_G1:
7715 case elfcpp::R_ARM_LDC_PC_G2:
7716 case elfcpp::R_ARM_ALU_SB_G0_NC:
7717 case elfcpp::R_ARM_ALU_SB_G0:
7718 case elfcpp::R_ARM_ALU_SB_G1_NC:
7719 case elfcpp::R_ARM_ALU_SB_G1:
7720 case elfcpp::R_ARM_ALU_SB_G2:
7721 case elfcpp::R_ARM_LDR_SB_G0:
7722 case elfcpp::R_ARM_LDR_SB_G1:
7723 case elfcpp::R_ARM_LDR_SB_G2:
7724 case elfcpp::R_ARM_LDRS_SB_G0:
7725 case elfcpp::R_ARM_LDRS_SB_G1:
7726 case elfcpp::R_ARM_LDRS_SB_G2:
7727 case elfcpp::R_ARM_LDC_SB_G0:
7728 case elfcpp::R_ARM_LDC_SB_G1:
7729 case elfcpp::R_ARM_LDC_SB_G2:
7730 case elfcpp::R_ARM_MOVW_BREL_NC:
7731 case elfcpp::R_ARM_MOVT_BREL:
7732 case elfcpp::R_ARM_MOVW_BREL:
7733 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7734 case elfcpp::R_ARM_THM_MOVT_BREL:
7735 case elfcpp::R_ARM_THM_MOVW_BREL:
7736 case elfcpp::R_ARM_GOTOFF32:
7737 case elfcpp::R_ARM_GOTOFF12:
7738 case elfcpp::R_ARM_SBREL31:
7739 return Symbol::RELATIVE_REF;
7740
7741 case elfcpp::R_ARM_PLT32:
7742 case elfcpp::R_ARM_CALL:
7743 case elfcpp::R_ARM_JUMP24:
7744 case elfcpp::R_ARM_THM_CALL:
7745 case elfcpp::R_ARM_THM_JUMP24:
7746 case elfcpp::R_ARM_THM_JUMP19:
7747 case elfcpp::R_ARM_THM_JUMP6:
7748 case elfcpp::R_ARM_THM_JUMP11:
7749 case elfcpp::R_ARM_THM_JUMP8:
7750 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7751 // in unwind tables. It may point to functions via PLTs.
7752 // So we treat it like call/jump relocations above.
7753 case elfcpp::R_ARM_PREL31:
7754 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7755
7756 case elfcpp::R_ARM_GOT_BREL:
7757 case elfcpp::R_ARM_GOT_ABS:
7758 case elfcpp::R_ARM_GOT_PREL:
7759 // Absolute in GOT.
7760 return Symbol::ABSOLUTE_REF;
7761
7762 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7763 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7764 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7765 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7766 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7767 return Symbol::TLS_REF;
7768
7769 case elfcpp::R_ARM_TARGET1:
7770 case elfcpp::R_ARM_TARGET2:
7771 case elfcpp::R_ARM_COPY:
7772 case elfcpp::R_ARM_GLOB_DAT:
7773 case elfcpp::R_ARM_JUMP_SLOT:
7774 case elfcpp::R_ARM_RELATIVE:
7775 case elfcpp::R_ARM_PC24:
7776 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7777 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7778 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7779 default:
7780 // Not expected. We will give an error later.
7781 return 0;
7782 }
7783 }
7784
7785 // Report an unsupported relocation against a local symbol.
7786
7787 template<bool big_endian>
7788 void
7789 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7790 Sized_relobj_file<32, big_endian>* object,
7791 unsigned int r_type)
7792 {
7793 gold_error(_("%s: unsupported reloc %u against local symbol"),
7794 object->name().c_str(), r_type);
7795 }
7796
7797 // We are about to emit a dynamic relocation of type R_TYPE. If the
7798 // dynamic linker does not support it, issue an error. The GNU linker
7799 // only issues a non-PIC error for an allocated read-only section.
7800 // Here we know the section is allocated, but we don't know that it is
7801 // read-only. But we check for all the relocation types which the
7802 // glibc dynamic linker supports, so it seems appropriate to issue an
7803 // error even if the section is not read-only.
7804
7805 template<bool big_endian>
7806 void
7807 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7808 unsigned int r_type)
7809 {
7810 switch (r_type)
7811 {
7812 // These are the relocation types supported by glibc for ARM.
7813 case elfcpp::R_ARM_RELATIVE:
7814 case elfcpp::R_ARM_COPY:
7815 case elfcpp::R_ARM_GLOB_DAT:
7816 case elfcpp::R_ARM_JUMP_SLOT:
7817 case elfcpp::R_ARM_ABS32:
7818 case elfcpp::R_ARM_ABS32_NOI:
7819 case elfcpp::R_ARM_PC24:
7820 // FIXME: The following 3 types are not supported by Android's dynamic
7821 // linker.
7822 case elfcpp::R_ARM_TLS_DTPMOD32:
7823 case elfcpp::R_ARM_TLS_DTPOFF32:
7824 case elfcpp::R_ARM_TLS_TPOFF32:
7825 return;
7826
7827 default:
7828 {
7829 // This prevents us from issuing more than one error per reloc
7830 // section. But we can still wind up issuing more than one
7831 // error per object file.
7832 if (this->issued_non_pic_error_)
7833 return;
7834 const Arm_reloc_property* reloc_property =
7835 arm_reloc_property_table->get_reloc_property(r_type);
7836 gold_assert(reloc_property != NULL);
7837 object->error(_("requires unsupported dynamic reloc %s; "
7838 "recompile with -fPIC"),
7839 reloc_property->name().c_str());
7840 this->issued_non_pic_error_ = true;
7841 return;
7842 }
7843
7844 case elfcpp::R_ARM_NONE:
7845 gold_unreachable();
7846 }
7847 }
7848
7849 // Scan a relocation for a local symbol.
7850 // FIXME: This only handles a subset of relocation types used by Android
7851 // on ARM v5te devices.
7852
7853 template<bool big_endian>
7854 inline void
7855 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7856 Layout* layout,
7857 Target_arm* target,
7858 Sized_relobj_file<32, big_endian>* object,
7859 unsigned int data_shndx,
7860 Output_section* output_section,
7861 const elfcpp::Rel<32, big_endian>& reloc,
7862 unsigned int r_type,
7863 const elfcpp::Sym<32, big_endian>& lsym)
7864 {
7865 r_type = get_real_reloc_type(r_type);
7866 switch (r_type)
7867 {
7868 case elfcpp::R_ARM_NONE:
7869 case elfcpp::R_ARM_V4BX:
7870 case elfcpp::R_ARM_GNU_VTENTRY:
7871 case elfcpp::R_ARM_GNU_VTINHERIT:
7872 break;
7873
7874 case elfcpp::R_ARM_ABS32:
7875 case elfcpp::R_ARM_ABS32_NOI:
7876 // If building a shared library (or a position-independent
7877 // executable), we need to create a dynamic relocation for
7878 // this location. The relocation applied at link time will
7879 // apply the link-time value, so we flag the location with
7880 // an R_ARM_RELATIVE relocation so the dynamic loader can
7881 // relocate it easily.
7882 if (parameters->options().output_is_position_independent())
7883 {
7884 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7885 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7886 // If we are to add more other reloc types than R_ARM_ABS32,
7887 // we need to add check_non_pic(object, r_type) here.
7888 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7889 output_section, data_shndx,
7890 reloc.get_r_offset());
7891 }
7892 break;
7893
7894 case elfcpp::R_ARM_ABS16:
7895 case elfcpp::R_ARM_ABS12:
7896 case elfcpp::R_ARM_THM_ABS5:
7897 case elfcpp::R_ARM_ABS8:
7898 case elfcpp::R_ARM_BASE_ABS:
7899 case elfcpp::R_ARM_MOVW_ABS_NC:
7900 case elfcpp::R_ARM_MOVT_ABS:
7901 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7902 case elfcpp::R_ARM_THM_MOVT_ABS:
7903 // If building a shared library (or a position-independent
7904 // executable), we need to create a dynamic relocation for
7905 // this location. Because the addend needs to remain in the
7906 // data section, we need to be careful not to apply this
7907 // relocation statically.
7908 if (parameters->options().output_is_position_independent())
7909 {
7910 check_non_pic(object, r_type);
7911 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7912 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7913 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7914 rel_dyn->add_local(object, r_sym, r_type, output_section,
7915 data_shndx, reloc.get_r_offset());
7916 else
7917 {
7918 gold_assert(lsym.get_st_value() == 0);
7919 unsigned int shndx = lsym.get_st_shndx();
7920 bool is_ordinary;
7921 shndx = object->adjust_sym_shndx(r_sym, shndx,
7922 &is_ordinary);
7923 if (!is_ordinary)
7924 object->error(_("section symbol %u has bad shndx %u"),
7925 r_sym, shndx);
7926 else
7927 rel_dyn->add_local_section(object, shndx,
7928 r_type, output_section,
7929 data_shndx, reloc.get_r_offset());
7930 }
7931 }
7932 break;
7933
7934 case elfcpp::R_ARM_REL32:
7935 case elfcpp::R_ARM_LDR_PC_G0:
7936 case elfcpp::R_ARM_SBREL32:
7937 case elfcpp::R_ARM_THM_CALL:
7938 case elfcpp::R_ARM_THM_PC8:
7939 case elfcpp::R_ARM_BASE_PREL:
7940 case elfcpp::R_ARM_PLT32:
7941 case elfcpp::R_ARM_CALL:
7942 case elfcpp::R_ARM_JUMP24:
7943 case elfcpp::R_ARM_THM_JUMP24:
7944 case elfcpp::R_ARM_SBREL31:
7945 case elfcpp::R_ARM_PREL31:
7946 case elfcpp::R_ARM_MOVW_PREL_NC:
7947 case elfcpp::R_ARM_MOVT_PREL:
7948 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7949 case elfcpp::R_ARM_THM_MOVT_PREL:
7950 case elfcpp::R_ARM_THM_JUMP19:
7951 case elfcpp::R_ARM_THM_JUMP6:
7952 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7953 case elfcpp::R_ARM_THM_PC12:
7954 case elfcpp::R_ARM_REL32_NOI:
7955 case elfcpp::R_ARM_ALU_PC_G0_NC:
7956 case elfcpp::R_ARM_ALU_PC_G0:
7957 case elfcpp::R_ARM_ALU_PC_G1_NC:
7958 case elfcpp::R_ARM_ALU_PC_G1:
7959 case elfcpp::R_ARM_ALU_PC_G2:
7960 case elfcpp::R_ARM_LDR_PC_G1:
7961 case elfcpp::R_ARM_LDR_PC_G2:
7962 case elfcpp::R_ARM_LDRS_PC_G0:
7963 case elfcpp::R_ARM_LDRS_PC_G1:
7964 case elfcpp::R_ARM_LDRS_PC_G2:
7965 case elfcpp::R_ARM_LDC_PC_G0:
7966 case elfcpp::R_ARM_LDC_PC_G1:
7967 case elfcpp::R_ARM_LDC_PC_G2:
7968 case elfcpp::R_ARM_ALU_SB_G0_NC:
7969 case elfcpp::R_ARM_ALU_SB_G0:
7970 case elfcpp::R_ARM_ALU_SB_G1_NC:
7971 case elfcpp::R_ARM_ALU_SB_G1:
7972 case elfcpp::R_ARM_ALU_SB_G2:
7973 case elfcpp::R_ARM_LDR_SB_G0:
7974 case elfcpp::R_ARM_LDR_SB_G1:
7975 case elfcpp::R_ARM_LDR_SB_G2:
7976 case elfcpp::R_ARM_LDRS_SB_G0:
7977 case elfcpp::R_ARM_LDRS_SB_G1:
7978 case elfcpp::R_ARM_LDRS_SB_G2:
7979 case elfcpp::R_ARM_LDC_SB_G0:
7980 case elfcpp::R_ARM_LDC_SB_G1:
7981 case elfcpp::R_ARM_LDC_SB_G2:
7982 case elfcpp::R_ARM_MOVW_BREL_NC:
7983 case elfcpp::R_ARM_MOVT_BREL:
7984 case elfcpp::R_ARM_MOVW_BREL:
7985 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7986 case elfcpp::R_ARM_THM_MOVT_BREL:
7987 case elfcpp::R_ARM_THM_MOVW_BREL:
7988 case elfcpp::R_ARM_THM_JUMP11:
7989 case elfcpp::R_ARM_THM_JUMP8:
7990 // We don't need to do anything for a relative addressing relocation
7991 // against a local symbol if it does not reference the GOT.
7992 break;
7993
7994 case elfcpp::R_ARM_GOTOFF32:
7995 case elfcpp::R_ARM_GOTOFF12:
7996 // We need a GOT section:
7997 target->got_section(symtab, layout);
7998 break;
7999
8000 case elfcpp::R_ARM_GOT_BREL:
8001 case elfcpp::R_ARM_GOT_PREL:
8002 {
8003 // The symbol requires a GOT entry.
8004 Arm_output_data_got<big_endian>* got =
8005 target->got_section(symtab, layout);
8006 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8007 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8008 {
8009 // If we are generating a shared object, we need to add a
8010 // dynamic RELATIVE relocation for this symbol's GOT entry.
8011 if (parameters->options().output_is_position_independent())
8012 {
8013 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8014 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8015 rel_dyn->add_local_relative(
8016 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8017 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8018 }
8019 }
8020 }
8021 break;
8022
8023 case elfcpp::R_ARM_TARGET1:
8024 case elfcpp::R_ARM_TARGET2:
8025 // This should have been mapped to another type already.
8026 // Fall through.
8027 case elfcpp::R_ARM_COPY:
8028 case elfcpp::R_ARM_GLOB_DAT:
8029 case elfcpp::R_ARM_JUMP_SLOT:
8030 case elfcpp::R_ARM_RELATIVE:
8031 // These are relocations which should only be seen by the
8032 // dynamic linker, and should never be seen here.
8033 gold_error(_("%s: unexpected reloc %u in object file"),
8034 object->name().c_str(), r_type);
8035 break;
8036
8037
8038 // These are initial TLS relocs, which are expected when
8039 // linking.
8040 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8041 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8042 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8043 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8044 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8045 {
8046 bool output_is_shared = parameters->options().shared();
8047 const tls::Tls_optimization optimized_type
8048 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8049 r_type);
8050 switch (r_type)
8051 {
8052 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8053 if (optimized_type == tls::TLSOPT_NONE)
8054 {
8055 // Create a pair of GOT entries for the module index and
8056 // dtv-relative offset.
8057 Arm_output_data_got<big_endian>* got
8058 = target->got_section(symtab, layout);
8059 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8060 unsigned int shndx = lsym.get_st_shndx();
8061 bool is_ordinary;
8062 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8063 if (!is_ordinary)
8064 {
8065 object->error(_("local symbol %u has bad shndx %u"),
8066 r_sym, shndx);
8067 break;
8068 }
8069
8070 if (!parameters->doing_static_link())
8071 got->add_local_pair_with_rel(object, r_sym, shndx,
8072 GOT_TYPE_TLS_PAIR,
8073 target->rel_dyn_section(layout),
8074 elfcpp::R_ARM_TLS_DTPMOD32, 0);
8075 else
8076 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8077 object, r_sym);
8078 }
8079 else
8080 // FIXME: TLS optimization not supported yet.
8081 gold_unreachable();
8082 break;
8083
8084 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8085 if (optimized_type == tls::TLSOPT_NONE)
8086 {
8087 // Create a GOT entry for the module index.
8088 target->got_mod_index_entry(symtab, layout, object);
8089 }
8090 else
8091 // FIXME: TLS optimization not supported yet.
8092 gold_unreachable();
8093 break;
8094
8095 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8096 break;
8097
8098 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8099 layout->set_has_static_tls();
8100 if (optimized_type == tls::TLSOPT_NONE)
8101 {
8102 // Create a GOT entry for the tp-relative offset.
8103 Arm_output_data_got<big_endian>* got
8104 = target->got_section(symtab, layout);
8105 unsigned int r_sym =
8106 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8107 if (!parameters->doing_static_link())
8108 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8109 target->rel_dyn_section(layout),
8110 elfcpp::R_ARM_TLS_TPOFF32);
8111 else if (!object->local_has_got_offset(r_sym,
8112 GOT_TYPE_TLS_OFFSET))
8113 {
8114 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8115 unsigned int got_offset =
8116 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8117 got->add_static_reloc(got_offset,
8118 elfcpp::R_ARM_TLS_TPOFF32, object,
8119 r_sym);
8120 }
8121 }
8122 else
8123 // FIXME: TLS optimization not supported yet.
8124 gold_unreachable();
8125 break;
8126
8127 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8128 layout->set_has_static_tls();
8129 if (output_is_shared)
8130 {
8131 // We need to create a dynamic relocation.
8132 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8133 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8134 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8135 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8136 output_section, data_shndx,
8137 reloc.get_r_offset());
8138 }
8139 break;
8140
8141 default:
8142 gold_unreachable();
8143 }
8144 }
8145 break;
8146
8147 case elfcpp::R_ARM_PC24:
8148 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8149 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8150 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8151 default:
8152 unsupported_reloc_local(object, r_type);
8153 break;
8154 }
8155 }
8156
8157 // Report an unsupported relocation against a global symbol.
8158
8159 template<bool big_endian>
8160 void
8161 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8162 Sized_relobj_file<32, big_endian>* object,
8163 unsigned int r_type,
8164 Symbol* gsym)
8165 {
8166 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8167 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8168 }
8169
8170 template<bool big_endian>
8171 inline bool
8172 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8173 unsigned int r_type)
8174 {
8175 switch (r_type)
8176 {
8177 case elfcpp::R_ARM_PC24:
8178 case elfcpp::R_ARM_THM_CALL:
8179 case elfcpp::R_ARM_PLT32:
8180 case elfcpp::R_ARM_CALL:
8181 case elfcpp::R_ARM_JUMP24:
8182 case elfcpp::R_ARM_THM_JUMP24:
8183 case elfcpp::R_ARM_SBREL31:
8184 case elfcpp::R_ARM_PREL31:
8185 case elfcpp::R_ARM_THM_JUMP19:
8186 case elfcpp::R_ARM_THM_JUMP6:
8187 case elfcpp::R_ARM_THM_JUMP11:
8188 case elfcpp::R_ARM_THM_JUMP8:
8189 // All the relocations above are branches except SBREL31 and PREL31.
8190 return false;
8191
8192 default:
8193 // Be conservative and assume this is a function pointer.
8194 return true;
8195 }
8196 }
8197
8198 template<bool big_endian>
8199 inline bool
8200 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8201 Symbol_table*,
8202 Layout*,
8203 Target_arm<big_endian>* target,
8204 Sized_relobj_file<32, big_endian>*,
8205 unsigned int,
8206 Output_section*,
8207 const elfcpp::Rel<32, big_endian>&,
8208 unsigned int r_type,
8209 const elfcpp::Sym<32, big_endian>&)
8210 {
8211 r_type = target->get_real_reloc_type(r_type);
8212 return possible_function_pointer_reloc(r_type);
8213 }
8214
8215 template<bool big_endian>
8216 inline bool
8217 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8218 Symbol_table*,
8219 Layout*,
8220 Target_arm<big_endian>* target,
8221 Sized_relobj_file<32, big_endian>*,
8222 unsigned int,
8223 Output_section*,
8224 const elfcpp::Rel<32, big_endian>&,
8225 unsigned int r_type,
8226 Symbol* gsym)
8227 {
8228 // GOT is not a function.
8229 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8230 return false;
8231
8232 r_type = target->get_real_reloc_type(r_type);
8233 return possible_function_pointer_reloc(r_type);
8234 }
8235
8236 // Scan a relocation for a global symbol.
8237
8238 template<bool big_endian>
8239 inline void
8240 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8241 Layout* layout,
8242 Target_arm* target,
8243 Sized_relobj_file<32, big_endian>* object,
8244 unsigned int data_shndx,
8245 Output_section* output_section,
8246 const elfcpp::Rel<32, big_endian>& reloc,
8247 unsigned int r_type,
8248 Symbol* gsym)
8249 {
8250 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8251 // section. We check here to avoid creating a dynamic reloc against
8252 // _GLOBAL_OFFSET_TABLE_.
8253 if (!target->has_got_section()
8254 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8255 target->got_section(symtab, layout);
8256
8257 r_type = get_real_reloc_type(r_type);
8258 switch (r_type)
8259 {
8260 case elfcpp::R_ARM_NONE:
8261 case elfcpp::R_ARM_V4BX:
8262 case elfcpp::R_ARM_GNU_VTENTRY:
8263 case elfcpp::R_ARM_GNU_VTINHERIT:
8264 break;
8265
8266 case elfcpp::R_ARM_ABS32:
8267 case elfcpp::R_ARM_ABS16:
8268 case elfcpp::R_ARM_ABS12:
8269 case elfcpp::R_ARM_THM_ABS5:
8270 case elfcpp::R_ARM_ABS8:
8271 case elfcpp::R_ARM_BASE_ABS:
8272 case elfcpp::R_ARM_MOVW_ABS_NC:
8273 case elfcpp::R_ARM_MOVT_ABS:
8274 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8275 case elfcpp::R_ARM_THM_MOVT_ABS:
8276 case elfcpp::R_ARM_ABS32_NOI:
8277 // Absolute addressing relocations.
8278 {
8279 // Make a PLT entry if necessary.
8280 if (this->symbol_needs_plt_entry(gsym))
8281 {
8282 target->make_plt_entry(symtab, layout, gsym);
8283 // Since this is not a PC-relative relocation, we may be
8284 // taking the address of a function. In that case we need to
8285 // set the entry in the dynamic symbol table to the address of
8286 // the PLT entry.
8287 if (gsym->is_from_dynobj() && !parameters->options().shared())
8288 gsym->set_needs_dynsym_value();
8289 }
8290 // Make a dynamic relocation if necessary.
8291 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8292 {
8293 if (gsym->may_need_copy_reloc())
8294 {
8295 target->copy_reloc(symtab, layout, object,
8296 data_shndx, output_section, gsym, reloc);
8297 }
8298 else if ((r_type == elfcpp::R_ARM_ABS32
8299 || r_type == elfcpp::R_ARM_ABS32_NOI)
8300 && gsym->can_use_relative_reloc(false))
8301 {
8302 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8303 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8304 output_section, object,
8305 data_shndx, reloc.get_r_offset());
8306 }
8307 else
8308 {
8309 check_non_pic(object, r_type);
8310 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8311 rel_dyn->add_global(gsym, r_type, output_section, object,
8312 data_shndx, reloc.get_r_offset());
8313 }
8314 }
8315 }
8316 break;
8317
8318 case elfcpp::R_ARM_GOTOFF32:
8319 case elfcpp::R_ARM_GOTOFF12:
8320 // We need a GOT section.
8321 target->got_section(symtab, layout);
8322 break;
8323
8324 case elfcpp::R_ARM_REL32:
8325 case elfcpp::R_ARM_LDR_PC_G0:
8326 case elfcpp::R_ARM_SBREL32:
8327 case elfcpp::R_ARM_THM_PC8:
8328 case elfcpp::R_ARM_BASE_PREL:
8329 case elfcpp::R_ARM_MOVW_PREL_NC:
8330 case elfcpp::R_ARM_MOVT_PREL:
8331 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8332 case elfcpp::R_ARM_THM_MOVT_PREL:
8333 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8334 case elfcpp::R_ARM_THM_PC12:
8335 case elfcpp::R_ARM_REL32_NOI:
8336 case elfcpp::R_ARM_ALU_PC_G0_NC:
8337 case elfcpp::R_ARM_ALU_PC_G0:
8338 case elfcpp::R_ARM_ALU_PC_G1_NC:
8339 case elfcpp::R_ARM_ALU_PC_G1:
8340 case elfcpp::R_ARM_ALU_PC_G2:
8341 case elfcpp::R_ARM_LDR_PC_G1:
8342 case elfcpp::R_ARM_LDR_PC_G2:
8343 case elfcpp::R_ARM_LDRS_PC_G0:
8344 case elfcpp::R_ARM_LDRS_PC_G1:
8345 case elfcpp::R_ARM_LDRS_PC_G2:
8346 case elfcpp::R_ARM_LDC_PC_G0:
8347 case elfcpp::R_ARM_LDC_PC_G1:
8348 case elfcpp::R_ARM_LDC_PC_G2:
8349 case elfcpp::R_ARM_ALU_SB_G0_NC:
8350 case elfcpp::R_ARM_ALU_SB_G0:
8351 case elfcpp::R_ARM_ALU_SB_G1_NC:
8352 case elfcpp::R_ARM_ALU_SB_G1:
8353 case elfcpp::R_ARM_ALU_SB_G2:
8354 case elfcpp::R_ARM_LDR_SB_G0:
8355 case elfcpp::R_ARM_LDR_SB_G1:
8356 case elfcpp::R_ARM_LDR_SB_G2:
8357 case elfcpp::R_ARM_LDRS_SB_G0:
8358 case elfcpp::R_ARM_LDRS_SB_G1:
8359 case elfcpp::R_ARM_LDRS_SB_G2:
8360 case elfcpp::R_ARM_LDC_SB_G0:
8361 case elfcpp::R_ARM_LDC_SB_G1:
8362 case elfcpp::R_ARM_LDC_SB_G2:
8363 case elfcpp::R_ARM_MOVW_BREL_NC:
8364 case elfcpp::R_ARM_MOVT_BREL:
8365 case elfcpp::R_ARM_MOVW_BREL:
8366 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8367 case elfcpp::R_ARM_THM_MOVT_BREL:
8368 case elfcpp::R_ARM_THM_MOVW_BREL:
8369 // Relative addressing relocations.
8370 {
8371 // Make a dynamic relocation if necessary.
8372 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8373 {
8374 if (target->may_need_copy_reloc(gsym))
8375 {
8376 target->copy_reloc(symtab, layout, object,
8377 data_shndx, output_section, gsym, reloc);
8378 }
8379 else
8380 {
8381 check_non_pic(object, r_type);
8382 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8383 rel_dyn->add_global(gsym, r_type, output_section, object,
8384 data_shndx, reloc.get_r_offset());
8385 }
8386 }
8387 }
8388 break;
8389
8390 case elfcpp::R_ARM_THM_CALL:
8391 case elfcpp::R_ARM_PLT32:
8392 case elfcpp::R_ARM_CALL:
8393 case elfcpp::R_ARM_JUMP24:
8394 case elfcpp::R_ARM_THM_JUMP24:
8395 case elfcpp::R_ARM_SBREL31:
8396 case elfcpp::R_ARM_PREL31:
8397 case elfcpp::R_ARM_THM_JUMP19:
8398 case elfcpp::R_ARM_THM_JUMP6:
8399 case elfcpp::R_ARM_THM_JUMP11:
8400 case elfcpp::R_ARM_THM_JUMP8:
8401 // All the relocation above are branches except for the PREL31 ones.
8402 // A PREL31 relocation can point to a personality function in a shared
8403 // library. In that case we want to use a PLT because we want to
8404 // call the personality routine and the dynamic linkers we care about
8405 // do not support dynamic PREL31 relocations. An REL31 relocation may
8406 // point to a function whose unwinding behaviour is being described but
8407 // we will not mistakenly generate a PLT for that because we should use
8408 // a local section symbol.
8409
8410 // If the symbol is fully resolved, this is just a relative
8411 // local reloc. Otherwise we need a PLT entry.
8412 if (gsym->final_value_is_known())
8413 break;
8414 // If building a shared library, we can also skip the PLT entry
8415 // if the symbol is defined in the output file and is protected
8416 // or hidden.
8417 if (gsym->is_defined()
8418 && !gsym->is_from_dynobj()
8419 && !gsym->is_preemptible())
8420 break;
8421 target->make_plt_entry(symtab, layout, gsym);
8422 break;
8423
8424 case elfcpp::R_ARM_GOT_BREL:
8425 case elfcpp::R_ARM_GOT_ABS:
8426 case elfcpp::R_ARM_GOT_PREL:
8427 {
8428 // The symbol requires a GOT entry.
8429 Arm_output_data_got<big_endian>* got =
8430 target->got_section(symtab, layout);
8431 if (gsym->final_value_is_known())
8432 got->add_global(gsym, GOT_TYPE_STANDARD);
8433 else
8434 {
8435 // If this symbol is not fully resolved, we need to add a
8436 // GOT entry with a dynamic relocation.
8437 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8438 if (gsym->is_from_dynobj()
8439 || gsym->is_undefined()
8440 || gsym->is_preemptible()
8441 || (gsym->visibility() == elfcpp::STV_PROTECTED
8442 && parameters->options().shared()))
8443 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8444 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8445 else
8446 {
8447 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8448 rel_dyn->add_global_relative(
8449 gsym, elfcpp::R_ARM_RELATIVE, got,
8450 gsym->got_offset(GOT_TYPE_STANDARD));
8451 }
8452 }
8453 }
8454 break;
8455
8456 case elfcpp::R_ARM_TARGET1:
8457 case elfcpp::R_ARM_TARGET2:
8458 // These should have been mapped to other types already.
8459 // Fall through.
8460 case elfcpp::R_ARM_COPY:
8461 case elfcpp::R_ARM_GLOB_DAT:
8462 case elfcpp::R_ARM_JUMP_SLOT:
8463 case elfcpp::R_ARM_RELATIVE:
8464 // These are relocations which should only be seen by the
8465 // dynamic linker, and should never be seen here.
8466 gold_error(_("%s: unexpected reloc %u in object file"),
8467 object->name().c_str(), r_type);
8468 break;
8469
8470 // These are initial tls relocs, which are expected when
8471 // linking.
8472 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8473 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8474 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8475 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8476 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8477 {
8478 const bool is_final = gsym->final_value_is_known();
8479 const tls::Tls_optimization optimized_type
8480 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8481 switch (r_type)
8482 {
8483 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8484 if (optimized_type == tls::TLSOPT_NONE)
8485 {
8486 // Create a pair of GOT entries for the module index and
8487 // dtv-relative offset.
8488 Arm_output_data_got<big_endian>* got
8489 = target->got_section(symtab, layout);
8490 if (!parameters->doing_static_link())
8491 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8492 target->rel_dyn_section(layout),
8493 elfcpp::R_ARM_TLS_DTPMOD32,
8494 elfcpp::R_ARM_TLS_DTPOFF32);
8495 else
8496 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8497 }
8498 else
8499 // FIXME: TLS optimization not supported yet.
8500 gold_unreachable();
8501 break;
8502
8503 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8504 if (optimized_type == tls::TLSOPT_NONE)
8505 {
8506 // Create a GOT entry for the module index.
8507 target->got_mod_index_entry(symtab, layout, object);
8508 }
8509 else
8510 // FIXME: TLS optimization not supported yet.
8511 gold_unreachable();
8512 break;
8513
8514 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8515 break;
8516
8517 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8518 layout->set_has_static_tls();
8519 if (optimized_type == tls::TLSOPT_NONE)
8520 {
8521 // Create a GOT entry for the tp-relative offset.
8522 Arm_output_data_got<big_endian>* got
8523 = target->got_section(symtab, layout);
8524 if (!parameters->doing_static_link())
8525 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8526 target->rel_dyn_section(layout),
8527 elfcpp::R_ARM_TLS_TPOFF32);
8528 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8529 {
8530 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8531 unsigned int got_offset =
8532 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8533 got->add_static_reloc(got_offset,
8534 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8535 }
8536 }
8537 else
8538 // FIXME: TLS optimization not supported yet.
8539 gold_unreachable();
8540 break;
8541
8542 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8543 layout->set_has_static_tls();
8544 if (parameters->options().shared())
8545 {
8546 // We need to create a dynamic relocation.
8547 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8548 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8549 output_section, object,
8550 data_shndx, reloc.get_r_offset());
8551 }
8552 break;
8553
8554 default:
8555 gold_unreachable();
8556 }
8557 }
8558 break;
8559
8560 case elfcpp::R_ARM_PC24:
8561 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8562 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8563 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8564 default:
8565 unsupported_reloc_global(object, r_type, gsym);
8566 break;
8567 }
8568 }
8569
8570 // Process relocations for gc.
8571
8572 template<bool big_endian>
8573 void
8574 Target_arm<big_endian>::gc_process_relocs(
8575 Symbol_table* symtab,
8576 Layout* layout,
8577 Sized_relobj_file<32, big_endian>* object,
8578 unsigned int data_shndx,
8579 unsigned int,
8580 const unsigned char* prelocs,
8581 size_t reloc_count,
8582 Output_section* output_section,
8583 bool needs_special_offset_handling,
8584 size_t local_symbol_count,
8585 const unsigned char* plocal_symbols)
8586 {
8587 typedef Target_arm<big_endian> Arm;
8588 typedef typename Target_arm<big_endian>::Scan Scan;
8589
8590 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8591 typename Target_arm::Relocatable_size_for_reloc>(
8592 symtab,
8593 layout,
8594 this,
8595 object,
8596 data_shndx,
8597 prelocs,
8598 reloc_count,
8599 output_section,
8600 needs_special_offset_handling,
8601 local_symbol_count,
8602 plocal_symbols);
8603 }
8604
8605 // Scan relocations for a section.
8606
8607 template<bool big_endian>
8608 void
8609 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8610 Layout* layout,
8611 Sized_relobj_file<32, big_endian>* object,
8612 unsigned int data_shndx,
8613 unsigned int sh_type,
8614 const unsigned char* prelocs,
8615 size_t reloc_count,
8616 Output_section* output_section,
8617 bool needs_special_offset_handling,
8618 size_t local_symbol_count,
8619 const unsigned char* plocal_symbols)
8620 {
8621 typedef typename Target_arm<big_endian>::Scan Scan;
8622 if (sh_type == elfcpp::SHT_RELA)
8623 {
8624 gold_error(_("%s: unsupported RELA reloc section"),
8625 object->name().c_str());
8626 return;
8627 }
8628
8629 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8630 symtab,
8631 layout,
8632 this,
8633 object,
8634 data_shndx,
8635 prelocs,
8636 reloc_count,
8637 output_section,
8638 needs_special_offset_handling,
8639 local_symbol_count,
8640 plocal_symbols);
8641 }
8642
8643 // Finalize the sections.
8644
8645 template<bool big_endian>
8646 void
8647 Target_arm<big_endian>::do_finalize_sections(
8648 Layout* layout,
8649 const Input_objects* input_objects,
8650 Symbol_table*)
8651 {
8652 bool merged_any_attributes = false;
8653 // Merge processor-specific flags.
8654 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8655 p != input_objects->relobj_end();
8656 ++p)
8657 {
8658 Arm_relobj<big_endian>* arm_relobj =
8659 Arm_relobj<big_endian>::as_arm_relobj(*p);
8660 if (arm_relobj->merge_flags_and_attributes())
8661 {
8662 this->merge_processor_specific_flags(
8663 arm_relobj->name(),
8664 arm_relobj->processor_specific_flags());
8665 this->merge_object_attributes(arm_relobj->name().c_str(),
8666 arm_relobj->attributes_section_data());
8667 merged_any_attributes = true;
8668 }
8669 }
8670
8671 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8672 p != input_objects->dynobj_end();
8673 ++p)
8674 {
8675 Arm_dynobj<big_endian>* arm_dynobj =
8676 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8677 this->merge_processor_specific_flags(
8678 arm_dynobj->name(),
8679 arm_dynobj->processor_specific_flags());
8680 this->merge_object_attributes(arm_dynobj->name().c_str(),
8681 arm_dynobj->attributes_section_data());
8682 merged_any_attributes = true;
8683 }
8684
8685 // Create an empty uninitialized attribute section if we still don't have it
8686 // at this moment. This happens if there is no attributes sections in all
8687 // inputs.
8688 if (this->attributes_section_data_ == NULL)
8689 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8690
8691 const Object_attribute* cpu_arch_attr =
8692 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8693 // Check if we need to use Cortex-A8 workaround.
8694 if (parameters->options().user_set_fix_cortex_a8())
8695 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8696 else
8697 {
8698 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8699 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8700 // profile.
8701 const Object_attribute* cpu_arch_profile_attr =
8702 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8703 this->fix_cortex_a8_ =
8704 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8705 && (cpu_arch_profile_attr->int_value() == 'A'
8706 || cpu_arch_profile_attr->int_value() == 0));
8707 }
8708
8709 // Check if we can use V4BX interworking.
8710 // The V4BX interworking stub contains BX instruction,
8711 // which is not specified for some profiles.
8712 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8713 && !this->may_use_v4t_interworking())
8714 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8715 "the target profile does not support BX instruction"));
8716
8717 // Fill in some more dynamic tags.
8718 const Reloc_section* rel_plt = (this->plt_ == NULL
8719 ? NULL
8720 : this->plt_->rel_plt());
8721 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8722 this->rel_dyn_, true, false);
8723
8724 // Emit any relocs we saved in an attempt to avoid generating COPY
8725 // relocs.
8726 if (this->copy_relocs_.any_saved_relocs())
8727 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8728
8729 // Handle the .ARM.exidx section.
8730 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8731
8732 if (!parameters->options().relocatable())
8733 {
8734 if (exidx_section != NULL
8735 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8736 {
8737 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8738 // the .ARM.exidx section.
8739 if (!layout->script_options()->saw_phdrs_clause())
8740 {
8741 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8742 0)
8743 == NULL);
8744 Output_segment* exidx_segment =
8745 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8746 exidx_segment->add_output_section_to_nonload(exidx_section,
8747 elfcpp::PF_R);
8748 }
8749 }
8750 }
8751
8752 // Create an .ARM.attributes section if we have merged any attributes
8753 // from inputs.
8754 if (merged_any_attributes)
8755 {
8756 Output_attributes_section_data* attributes_section =
8757 new Output_attributes_section_data(*this->attributes_section_data_);
8758 layout->add_output_section_data(".ARM.attributes",
8759 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8760 attributes_section, ORDER_INVALID,
8761 false);
8762 }
8763
8764 // Fix up links in section EXIDX headers.
8765 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8766 p != layout->section_list().end();
8767 ++p)
8768 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8769 {
8770 Arm_output_section<big_endian>* os =
8771 Arm_output_section<big_endian>::as_arm_output_section(*p);
8772 os->set_exidx_section_link();
8773 }
8774 }
8775
8776 // Return whether a direct absolute static relocation needs to be applied.
8777 // In cases where Scan::local() or Scan::global() has created
8778 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8779 // of the relocation is carried in the data, and we must not
8780 // apply the static relocation.
8781
8782 template<bool big_endian>
8783 inline bool
8784 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8785 const Sized_symbol<32>* gsym,
8786 unsigned int r_type,
8787 bool is_32bit,
8788 Output_section* output_section)
8789 {
8790 // If the output section is not allocated, then we didn't call
8791 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8792 // the reloc here.
8793 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8794 return true;
8795
8796 int ref_flags = Scan::get_reference_flags(r_type);
8797
8798 // For local symbols, we will have created a non-RELATIVE dynamic
8799 // relocation only if (a) the output is position independent,
8800 // (b) the relocation is absolute (not pc- or segment-relative), and
8801 // (c) the relocation is not 32 bits wide.
8802 if (gsym == NULL)
8803 return !(parameters->options().output_is_position_independent()
8804 && (ref_flags & Symbol::ABSOLUTE_REF)
8805 && !is_32bit);
8806
8807 // For global symbols, we use the same helper routines used in the
8808 // scan pass. If we did not create a dynamic relocation, or if we
8809 // created a RELATIVE dynamic relocation, we should apply the static
8810 // relocation.
8811 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8812 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8813 && gsym->can_use_relative_reloc(ref_flags
8814 & Symbol::FUNCTION_CALL);
8815 return !has_dyn || is_rel;
8816 }
8817
8818 // Perform a relocation.
8819
8820 template<bool big_endian>
8821 inline bool
8822 Target_arm<big_endian>::Relocate::relocate(
8823 const Relocate_info<32, big_endian>* relinfo,
8824 Target_arm* target,
8825 Output_section* output_section,
8826 size_t relnum,
8827 const elfcpp::Rel<32, big_endian>& rel,
8828 unsigned int r_type,
8829 const Sized_symbol<32>* gsym,
8830 const Symbol_value<32>* psymval,
8831 unsigned char* view,
8832 Arm_address address,
8833 section_size_type view_size)
8834 {
8835 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8836
8837 r_type = get_real_reloc_type(r_type);
8838 const Arm_reloc_property* reloc_property =
8839 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8840 if (reloc_property == NULL)
8841 {
8842 std::string reloc_name =
8843 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8844 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8845 _("cannot relocate %s in object file"),
8846 reloc_name.c_str());
8847 return true;
8848 }
8849
8850 const Arm_relobj<big_endian>* object =
8851 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8852
8853 // If the final branch target of a relocation is THUMB instruction, this
8854 // is 1. Otherwise it is 0.
8855 Arm_address thumb_bit = 0;
8856 Symbol_value<32> symval;
8857 bool is_weakly_undefined_without_plt = false;
8858 bool have_got_offset = false;
8859 unsigned int got_offset = 0;
8860
8861 // If the relocation uses the GOT entry of a symbol instead of the symbol
8862 // itself, we don't care about whether the symbol is defined or what kind
8863 // of symbol it is.
8864 if (reloc_property->uses_got_entry())
8865 {
8866 // Get the GOT offset.
8867 // The GOT pointer points to the end of the GOT section.
8868 // We need to subtract the size of the GOT section to get
8869 // the actual offset to use in the relocation.
8870 // TODO: We should move GOT offset computing code in TLS relocations
8871 // to here.
8872 switch (r_type)
8873 {
8874 case elfcpp::R_ARM_GOT_BREL:
8875 case elfcpp::R_ARM_GOT_PREL:
8876 if (gsym != NULL)
8877 {
8878 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8879 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8880 - target->got_size());
8881 }
8882 else
8883 {
8884 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8885 gold_assert(object->local_has_got_offset(r_sym,
8886 GOT_TYPE_STANDARD));
8887 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8888 - target->got_size());
8889 }
8890 have_got_offset = true;
8891 break;
8892
8893 default:
8894 break;
8895 }
8896 }
8897 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8898 {
8899 if (gsym != NULL)
8900 {
8901 // This is a global symbol. Determine if we use PLT and if the
8902 // final target is THUMB.
8903 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8904 {
8905 // This uses a PLT, change the symbol value.
8906 symval.set_output_value(target->plt_section()->address()
8907 + gsym->plt_offset());
8908 psymval = &symval;
8909 }
8910 else if (gsym->is_weak_undefined())
8911 {
8912 // This is a weakly undefined symbol and we do not use PLT
8913 // for this relocation. A branch targeting this symbol will
8914 // be converted into an NOP.
8915 is_weakly_undefined_without_plt = true;
8916 }
8917 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8918 {
8919 // This relocation uses the symbol value but the symbol is
8920 // undefined. Exit early and have the caller reporting an
8921 // error.
8922 return true;
8923 }
8924 else
8925 {
8926 // Set thumb bit if symbol:
8927 // -Has type STT_ARM_TFUNC or
8928 // -Has type STT_FUNC, is defined and with LSB in value set.
8929 thumb_bit =
8930 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8931 || (gsym->type() == elfcpp::STT_FUNC
8932 && !gsym->is_undefined()
8933 && ((psymval->value(object, 0) & 1) != 0)))
8934 ? 1
8935 : 0);
8936 }
8937 }
8938 else
8939 {
8940 // This is a local symbol. Determine if the final target is THUMB.
8941 // We saved this information when all the local symbols were read.
8942 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8943 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8944 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8945 }
8946 }
8947 else
8948 {
8949 // This is a fake relocation synthesized for a stub. It does not have
8950 // a real symbol. We just look at the LSB of the symbol value to
8951 // determine if the target is THUMB or not.
8952 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8953 }
8954
8955 // Strip LSB if this points to a THUMB target.
8956 if (thumb_bit != 0
8957 && reloc_property->uses_thumb_bit()
8958 && ((psymval->value(object, 0) & 1) != 0))
8959 {
8960 Arm_address stripped_value =
8961 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8962 symval.set_output_value(stripped_value);
8963 psymval = &symval;
8964 }
8965
8966 // To look up relocation stubs, we need to pass the symbol table index of
8967 // a local symbol.
8968 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8969
8970 // Get the addressing origin of the output segment defining the
8971 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8972 Arm_address sym_origin = 0;
8973 if (reloc_property->uses_symbol_base())
8974 {
8975 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8976 // R_ARM_BASE_ABS with the NULL symbol will give the
8977 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8978 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8979 sym_origin = target->got_plt_section()->address();
8980 else if (gsym == NULL)
8981 sym_origin = 0;
8982 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8983 sym_origin = gsym->output_segment()->vaddr();
8984 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8985 sym_origin = gsym->output_data()->address();
8986
8987 // TODO: Assumes the segment base to be zero for the global symbols
8988 // till the proper support for the segment-base-relative addressing
8989 // will be implemented. This is consistent with GNU ld.
8990 }
8991
8992 // For relative addressing relocation, find out the relative address base.
8993 Arm_address relative_address_base = 0;
8994 switch(reloc_property->relative_address_base())
8995 {
8996 case Arm_reloc_property::RAB_NONE:
8997 // Relocations with relative address bases RAB_TLS and RAB_tp are
8998 // handled by relocate_tls. So we do not need to do anything here.
8999 case Arm_reloc_property::RAB_TLS:
9000 case Arm_reloc_property::RAB_tp:
9001 break;
9002 case Arm_reloc_property::RAB_B_S:
9003 relative_address_base = sym_origin;
9004 break;
9005 case Arm_reloc_property::RAB_GOT_ORG:
9006 relative_address_base = target->got_plt_section()->address();
9007 break;
9008 case Arm_reloc_property::RAB_P:
9009 relative_address_base = address;
9010 break;
9011 case Arm_reloc_property::RAB_Pa:
9012 relative_address_base = address & 0xfffffffcU;
9013 break;
9014 default:
9015 gold_unreachable();
9016 }
9017
9018 typename Arm_relocate_functions::Status reloc_status =
9019 Arm_relocate_functions::STATUS_OKAY;
9020 bool check_overflow = reloc_property->checks_overflow();
9021 switch (r_type)
9022 {
9023 case elfcpp::R_ARM_NONE:
9024 break;
9025
9026 case elfcpp::R_ARM_ABS8:
9027 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9028 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9029 break;
9030
9031 case elfcpp::R_ARM_ABS12:
9032 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9033 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9034 break;
9035
9036 case elfcpp::R_ARM_ABS16:
9037 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9038 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9039 break;
9040
9041 case elfcpp::R_ARM_ABS32:
9042 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9043 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9044 thumb_bit);
9045 break;
9046
9047 case elfcpp::R_ARM_ABS32_NOI:
9048 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9049 // No thumb bit for this relocation: (S + A)
9050 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9051 0);
9052 break;
9053
9054 case elfcpp::R_ARM_MOVW_ABS_NC:
9055 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9056 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9057 0, thumb_bit,
9058 check_overflow);
9059 break;
9060
9061 case elfcpp::R_ARM_MOVT_ABS:
9062 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9063 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9064 break;
9065
9066 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9067 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9068 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9069 0, thumb_bit, false);
9070 break;
9071
9072 case elfcpp::R_ARM_THM_MOVT_ABS:
9073 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9074 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9075 psymval, 0);
9076 break;
9077
9078 case elfcpp::R_ARM_MOVW_PREL_NC:
9079 case elfcpp::R_ARM_MOVW_BREL_NC:
9080 case elfcpp::R_ARM_MOVW_BREL:
9081 reloc_status =
9082 Arm_relocate_functions::movw(view, object, psymval,
9083 relative_address_base, thumb_bit,
9084 check_overflow);
9085 break;
9086
9087 case elfcpp::R_ARM_MOVT_PREL:
9088 case elfcpp::R_ARM_MOVT_BREL:
9089 reloc_status =
9090 Arm_relocate_functions::movt(view, object, psymval,
9091 relative_address_base);
9092 break;
9093
9094 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9095 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9096 case elfcpp::R_ARM_THM_MOVW_BREL:
9097 reloc_status =
9098 Arm_relocate_functions::thm_movw(view, object, psymval,
9099 relative_address_base,
9100 thumb_bit, check_overflow);
9101 break;
9102
9103 case elfcpp::R_ARM_THM_MOVT_PREL:
9104 case elfcpp::R_ARM_THM_MOVT_BREL:
9105 reloc_status =
9106 Arm_relocate_functions::thm_movt(view, object, psymval,
9107 relative_address_base);
9108 break;
9109
9110 case elfcpp::R_ARM_REL32:
9111 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9112 address, thumb_bit);
9113 break;
9114
9115 case elfcpp::R_ARM_THM_ABS5:
9116 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9117 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9118 break;
9119
9120 // Thumb long branches.
9121 case elfcpp::R_ARM_THM_CALL:
9122 case elfcpp::R_ARM_THM_XPC22:
9123 case elfcpp::R_ARM_THM_JUMP24:
9124 reloc_status =
9125 Arm_relocate_functions::thumb_branch_common(
9126 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9127 thumb_bit, is_weakly_undefined_without_plt);
9128 break;
9129
9130 case elfcpp::R_ARM_GOTOFF32:
9131 {
9132 Arm_address got_origin;
9133 got_origin = target->got_plt_section()->address();
9134 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9135 got_origin, thumb_bit);
9136 }
9137 break;
9138
9139 case elfcpp::R_ARM_BASE_PREL:
9140 gold_assert(gsym != NULL);
9141 reloc_status =
9142 Arm_relocate_functions::base_prel(view, sym_origin, address);
9143 break;
9144
9145 case elfcpp::R_ARM_BASE_ABS:
9146 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9147 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9148 break;
9149
9150 case elfcpp::R_ARM_GOT_BREL:
9151 gold_assert(have_got_offset);
9152 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9153 break;
9154
9155 case elfcpp::R_ARM_GOT_PREL:
9156 gold_assert(have_got_offset);
9157 // Get the address origin for GOT PLT, which is allocated right
9158 // after the GOT section, to calculate an absolute address of
9159 // the symbol GOT entry (got_origin + got_offset).
9160 Arm_address got_origin;
9161 got_origin = target->got_plt_section()->address();
9162 reloc_status = Arm_relocate_functions::got_prel(view,
9163 got_origin + got_offset,
9164 address);
9165 break;
9166
9167 case elfcpp::R_ARM_PLT32:
9168 case elfcpp::R_ARM_CALL:
9169 case elfcpp::R_ARM_JUMP24:
9170 case elfcpp::R_ARM_XPC25:
9171 gold_assert(gsym == NULL
9172 || gsym->has_plt_offset()
9173 || gsym->final_value_is_known()
9174 || (gsym->is_defined()
9175 && !gsym->is_from_dynobj()
9176 && !gsym->is_preemptible()));
9177 reloc_status =
9178 Arm_relocate_functions::arm_branch_common(
9179 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9180 thumb_bit, is_weakly_undefined_without_plt);
9181 break;
9182
9183 case elfcpp::R_ARM_THM_JUMP19:
9184 reloc_status =
9185 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9186 thumb_bit);
9187 break;
9188
9189 case elfcpp::R_ARM_THM_JUMP6:
9190 reloc_status =
9191 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9192 break;
9193
9194 case elfcpp::R_ARM_THM_JUMP8:
9195 reloc_status =
9196 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9197 break;
9198
9199 case elfcpp::R_ARM_THM_JUMP11:
9200 reloc_status =
9201 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9202 break;
9203
9204 case elfcpp::R_ARM_PREL31:
9205 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9206 address, thumb_bit);
9207 break;
9208
9209 case elfcpp::R_ARM_V4BX:
9210 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9211 {
9212 const bool is_v4bx_interworking =
9213 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9214 reloc_status =
9215 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9216 is_v4bx_interworking);
9217 }
9218 break;
9219
9220 case elfcpp::R_ARM_THM_PC8:
9221 reloc_status =
9222 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9223 break;
9224
9225 case elfcpp::R_ARM_THM_PC12:
9226 reloc_status =
9227 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9228 break;
9229
9230 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9231 reloc_status =
9232 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9233 thumb_bit);
9234 break;
9235
9236 case elfcpp::R_ARM_ALU_PC_G0_NC:
9237 case elfcpp::R_ARM_ALU_PC_G0:
9238 case elfcpp::R_ARM_ALU_PC_G1_NC:
9239 case elfcpp::R_ARM_ALU_PC_G1:
9240 case elfcpp::R_ARM_ALU_PC_G2:
9241 case elfcpp::R_ARM_ALU_SB_G0_NC:
9242 case elfcpp::R_ARM_ALU_SB_G0:
9243 case elfcpp::R_ARM_ALU_SB_G1_NC:
9244 case elfcpp::R_ARM_ALU_SB_G1:
9245 case elfcpp::R_ARM_ALU_SB_G2:
9246 reloc_status =
9247 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9248 reloc_property->group_index(),
9249 relative_address_base,
9250 thumb_bit, check_overflow);
9251 break;
9252
9253 case elfcpp::R_ARM_LDR_PC_G0:
9254 case elfcpp::R_ARM_LDR_PC_G1:
9255 case elfcpp::R_ARM_LDR_PC_G2:
9256 case elfcpp::R_ARM_LDR_SB_G0:
9257 case elfcpp::R_ARM_LDR_SB_G1:
9258 case elfcpp::R_ARM_LDR_SB_G2:
9259 reloc_status =
9260 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9261 reloc_property->group_index(),
9262 relative_address_base);
9263 break;
9264
9265 case elfcpp::R_ARM_LDRS_PC_G0:
9266 case elfcpp::R_ARM_LDRS_PC_G1:
9267 case elfcpp::R_ARM_LDRS_PC_G2:
9268 case elfcpp::R_ARM_LDRS_SB_G0:
9269 case elfcpp::R_ARM_LDRS_SB_G1:
9270 case elfcpp::R_ARM_LDRS_SB_G2:
9271 reloc_status =
9272 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9273 reloc_property->group_index(),
9274 relative_address_base);
9275 break;
9276
9277 case elfcpp::R_ARM_LDC_PC_G0:
9278 case elfcpp::R_ARM_LDC_PC_G1:
9279 case elfcpp::R_ARM_LDC_PC_G2:
9280 case elfcpp::R_ARM_LDC_SB_G0:
9281 case elfcpp::R_ARM_LDC_SB_G1:
9282 case elfcpp::R_ARM_LDC_SB_G2:
9283 reloc_status =
9284 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9285 reloc_property->group_index(),
9286 relative_address_base);
9287 break;
9288
9289 // These are initial tls relocs, which are expected when
9290 // linking.
9291 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9292 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9293 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9294 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9295 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9296 reloc_status =
9297 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9298 view, address, view_size);
9299 break;
9300
9301 // The known and unknown unsupported and/or deprecated relocations.
9302 case elfcpp::R_ARM_PC24:
9303 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9304 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9305 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9306 default:
9307 // Just silently leave the method. We should get an appropriate error
9308 // message in the scan methods.
9309 break;
9310 }
9311
9312 // Report any errors.
9313 switch (reloc_status)
9314 {
9315 case Arm_relocate_functions::STATUS_OKAY:
9316 break;
9317 case Arm_relocate_functions::STATUS_OVERFLOW:
9318 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9319 _("relocation overflow in %s"),
9320 reloc_property->name().c_str());
9321 break;
9322 case Arm_relocate_functions::STATUS_BAD_RELOC:
9323 gold_error_at_location(
9324 relinfo,
9325 relnum,
9326 rel.get_r_offset(),
9327 _("unexpected opcode while processing relocation %s"),
9328 reloc_property->name().c_str());
9329 break;
9330 default:
9331 gold_unreachable();
9332 }
9333
9334 return true;
9335 }
9336
9337 // Perform a TLS relocation.
9338
9339 template<bool big_endian>
9340 inline typename Arm_relocate_functions<big_endian>::Status
9341 Target_arm<big_endian>::Relocate::relocate_tls(
9342 const Relocate_info<32, big_endian>* relinfo,
9343 Target_arm<big_endian>* target,
9344 size_t relnum,
9345 const elfcpp::Rel<32, big_endian>& rel,
9346 unsigned int r_type,
9347 const Sized_symbol<32>* gsym,
9348 const Symbol_value<32>* psymval,
9349 unsigned char* view,
9350 elfcpp::Elf_types<32>::Elf_Addr address,
9351 section_size_type /*view_size*/ )
9352 {
9353 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9354 typedef Relocate_functions<32, big_endian> RelocFuncs;
9355 Output_segment* tls_segment = relinfo->layout->tls_segment();
9356
9357 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9358
9359 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9360
9361 const bool is_final = (gsym == NULL
9362 ? !parameters->options().shared()
9363 : gsym->final_value_is_known());
9364 const tls::Tls_optimization optimized_type
9365 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9366 switch (r_type)
9367 {
9368 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9369 {
9370 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9371 unsigned int got_offset;
9372 if (gsym != NULL)
9373 {
9374 gold_assert(gsym->has_got_offset(got_type));
9375 got_offset = gsym->got_offset(got_type) - target->got_size();
9376 }
9377 else
9378 {
9379 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9380 gold_assert(object->local_has_got_offset(r_sym, got_type));
9381 got_offset = (object->local_got_offset(r_sym, got_type)
9382 - target->got_size());
9383 }
9384 if (optimized_type == tls::TLSOPT_NONE)
9385 {
9386 Arm_address got_entry =
9387 target->got_plt_section()->address() + got_offset;
9388
9389 // Relocate the field with the PC relative offset of the pair of
9390 // GOT entries.
9391 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9392 return ArmRelocFuncs::STATUS_OKAY;
9393 }
9394 }
9395 break;
9396
9397 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9398 if (optimized_type == tls::TLSOPT_NONE)
9399 {
9400 // Relocate the field with the offset of the GOT entry for
9401 // the module index.
9402 unsigned int got_offset;
9403 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9404 - target->got_size());
9405 Arm_address got_entry =
9406 target->got_plt_section()->address() + got_offset;
9407
9408 // Relocate the field with the PC relative offset of the pair of
9409 // GOT entries.
9410 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9411 return ArmRelocFuncs::STATUS_OKAY;
9412 }
9413 break;
9414
9415 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9416 RelocFuncs::rel32_unaligned(view, value);
9417 return ArmRelocFuncs::STATUS_OKAY;
9418
9419 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9420 if (optimized_type == tls::TLSOPT_NONE)
9421 {
9422 // Relocate the field with the offset of the GOT entry for
9423 // the tp-relative offset of the symbol.
9424 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9425 unsigned int got_offset;
9426 if (gsym != NULL)
9427 {
9428 gold_assert(gsym->has_got_offset(got_type));
9429 got_offset = gsym->got_offset(got_type);
9430 }
9431 else
9432 {
9433 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9434 gold_assert(object->local_has_got_offset(r_sym, got_type));
9435 got_offset = object->local_got_offset(r_sym, got_type);
9436 }
9437
9438 // All GOT offsets are relative to the end of the GOT.
9439 got_offset -= target->got_size();
9440
9441 Arm_address got_entry =
9442 target->got_plt_section()->address() + got_offset;
9443
9444 // Relocate the field with the PC relative offset of the GOT entry.
9445 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9446 return ArmRelocFuncs::STATUS_OKAY;
9447 }
9448 break;
9449
9450 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9451 // If we're creating a shared library, a dynamic relocation will
9452 // have been created for this location, so do not apply it now.
9453 if (!parameters->options().shared())
9454 {
9455 gold_assert(tls_segment != NULL);
9456
9457 // $tp points to the TCB, which is followed by the TLS, so we
9458 // need to add TCB size to the offset.
9459 Arm_address aligned_tcb_size =
9460 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9461 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9462
9463 }
9464 return ArmRelocFuncs::STATUS_OKAY;
9465
9466 default:
9467 gold_unreachable();
9468 }
9469
9470 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9471 _("unsupported reloc %u"),
9472 r_type);
9473 return ArmRelocFuncs::STATUS_BAD_RELOC;
9474 }
9475
9476 // Relocate section data.
9477
9478 template<bool big_endian>
9479 void
9480 Target_arm<big_endian>::relocate_section(
9481 const Relocate_info<32, big_endian>* relinfo,
9482 unsigned int sh_type,
9483 const unsigned char* prelocs,
9484 size_t reloc_count,
9485 Output_section* output_section,
9486 bool needs_special_offset_handling,
9487 unsigned char* view,
9488 Arm_address address,
9489 section_size_type view_size,
9490 const Reloc_symbol_changes* reloc_symbol_changes)
9491 {
9492 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9493 gold_assert(sh_type == elfcpp::SHT_REL);
9494
9495 // See if we are relocating a relaxed input section. If so, the view
9496 // covers the whole output section and we need to adjust accordingly.
9497 if (needs_special_offset_handling)
9498 {
9499 const Output_relaxed_input_section* poris =
9500 output_section->find_relaxed_input_section(relinfo->object,
9501 relinfo->data_shndx);
9502 if (poris != NULL)
9503 {
9504 Arm_address section_address = poris->address();
9505 section_size_type section_size = poris->data_size();
9506
9507 gold_assert((section_address >= address)
9508 && ((section_address + section_size)
9509 <= (address + view_size)));
9510
9511 off_t offset = section_address - address;
9512 view += offset;
9513 address += offset;
9514 view_size = section_size;
9515 }
9516 }
9517
9518 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9519 Arm_relocate>(
9520 relinfo,
9521 this,
9522 prelocs,
9523 reloc_count,
9524 output_section,
9525 needs_special_offset_handling,
9526 view,
9527 address,
9528 view_size,
9529 reloc_symbol_changes);
9530 }
9531
9532 // Return the size of a relocation while scanning during a relocatable
9533 // link.
9534
9535 template<bool big_endian>
9536 unsigned int
9537 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9538 unsigned int r_type,
9539 Relobj* object)
9540 {
9541 r_type = get_real_reloc_type(r_type);
9542 const Arm_reloc_property* arp =
9543 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9544 if (arp != NULL)
9545 return arp->size();
9546 else
9547 {
9548 std::string reloc_name =
9549 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9550 gold_error(_("%s: unexpected %s in object file"),
9551 object->name().c_str(), reloc_name.c_str());
9552 return 0;
9553 }
9554 }
9555
9556 // Scan the relocs during a relocatable link.
9557
9558 template<bool big_endian>
9559 void
9560 Target_arm<big_endian>::scan_relocatable_relocs(
9561 Symbol_table* symtab,
9562 Layout* layout,
9563 Sized_relobj_file<32, big_endian>* object,
9564 unsigned int data_shndx,
9565 unsigned int sh_type,
9566 const unsigned char* prelocs,
9567 size_t reloc_count,
9568 Output_section* output_section,
9569 bool needs_special_offset_handling,
9570 size_t local_symbol_count,
9571 const unsigned char* plocal_symbols,
9572 Relocatable_relocs* rr)
9573 {
9574 gold_assert(sh_type == elfcpp::SHT_REL);
9575
9576 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9577 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9578
9579 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9580 Scan_relocatable_relocs>(
9581 symtab,
9582 layout,
9583 object,
9584 data_shndx,
9585 prelocs,
9586 reloc_count,
9587 output_section,
9588 needs_special_offset_handling,
9589 local_symbol_count,
9590 plocal_symbols,
9591 rr);
9592 }
9593
9594 // Relocate a section during a relocatable link.
9595
9596 template<bool big_endian>
9597 void
9598 Target_arm<big_endian>::relocate_for_relocatable(
9599 const Relocate_info<32, big_endian>* relinfo,
9600 unsigned int sh_type,
9601 const unsigned char* prelocs,
9602 size_t reloc_count,
9603 Output_section* output_section,
9604 off_t offset_in_output_section,
9605 const Relocatable_relocs* rr,
9606 unsigned char* view,
9607 Arm_address view_address,
9608 section_size_type view_size,
9609 unsigned char* reloc_view,
9610 section_size_type reloc_view_size)
9611 {
9612 gold_assert(sh_type == elfcpp::SHT_REL);
9613
9614 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9615 relinfo,
9616 prelocs,
9617 reloc_count,
9618 output_section,
9619 offset_in_output_section,
9620 rr,
9621 view,
9622 view_address,
9623 view_size,
9624 reloc_view,
9625 reloc_view_size);
9626 }
9627
9628 // Perform target-specific processing in a relocatable link. This is
9629 // only used if we use the relocation strategy RELOC_SPECIAL.
9630
9631 template<bool big_endian>
9632 void
9633 Target_arm<big_endian>::relocate_special_relocatable(
9634 const Relocate_info<32, big_endian>* relinfo,
9635 unsigned int sh_type,
9636 const unsigned char* preloc_in,
9637 size_t relnum,
9638 Output_section* output_section,
9639 off_t offset_in_output_section,
9640 unsigned char* view,
9641 elfcpp::Elf_types<32>::Elf_Addr view_address,
9642 section_size_type,
9643 unsigned char* preloc_out)
9644 {
9645 // We can only handle REL type relocation sections.
9646 gold_assert(sh_type == elfcpp::SHT_REL);
9647
9648 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9649 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9650 Reltype_write;
9651 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9652
9653 const Arm_relobj<big_endian>* object =
9654 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9655 const unsigned int local_count = object->local_symbol_count();
9656
9657 Reltype reloc(preloc_in);
9658 Reltype_write reloc_write(preloc_out);
9659
9660 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9661 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9662 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9663
9664 const Arm_reloc_property* arp =
9665 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9666 gold_assert(arp != NULL);
9667
9668 // Get the new symbol index.
9669 // We only use RELOC_SPECIAL strategy in local relocations.
9670 gold_assert(r_sym < local_count);
9671
9672 // We are adjusting a section symbol. We need to find
9673 // the symbol table index of the section symbol for
9674 // the output section corresponding to input section
9675 // in which this symbol is defined.
9676 bool is_ordinary;
9677 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9678 gold_assert(is_ordinary);
9679 Output_section* os = object->output_section(shndx);
9680 gold_assert(os != NULL);
9681 gold_assert(os->needs_symtab_index());
9682 unsigned int new_symndx = os->symtab_index();
9683
9684 // Get the new offset--the location in the output section where
9685 // this relocation should be applied.
9686
9687 Arm_address offset = reloc.get_r_offset();
9688 Arm_address new_offset;
9689 if (offset_in_output_section != invalid_address)
9690 new_offset = offset + offset_in_output_section;
9691 else
9692 {
9693 section_offset_type sot_offset =
9694 convert_types<section_offset_type, Arm_address>(offset);
9695 section_offset_type new_sot_offset =
9696 output_section->output_offset(object, relinfo->data_shndx,
9697 sot_offset);
9698 gold_assert(new_sot_offset != -1);
9699 new_offset = new_sot_offset;
9700 }
9701
9702 // In an object file, r_offset is an offset within the section.
9703 // In an executable or dynamic object, generated by
9704 // --emit-relocs, r_offset is an absolute address.
9705 if (!parameters->options().relocatable())
9706 {
9707 new_offset += view_address;
9708 if (offset_in_output_section != invalid_address)
9709 new_offset -= offset_in_output_section;
9710 }
9711
9712 reloc_write.put_r_offset(new_offset);
9713 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9714
9715 // Handle the reloc addend.
9716 // The relocation uses a section symbol in the input file.
9717 // We are adjusting it to use a section symbol in the output
9718 // file. The input section symbol refers to some address in
9719 // the input section. We need the relocation in the output
9720 // file to refer to that same address. This adjustment to
9721 // the addend is the same calculation we use for a simple
9722 // absolute relocation for the input section symbol.
9723
9724 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9725
9726 // Handle THUMB bit.
9727 Symbol_value<32> symval;
9728 Arm_address thumb_bit =
9729 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9730 if (thumb_bit != 0
9731 && arp->uses_thumb_bit()
9732 && ((psymval->value(object, 0) & 1) != 0))
9733 {
9734 Arm_address stripped_value =
9735 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9736 symval.set_output_value(stripped_value);
9737 psymval = &symval;
9738 }
9739
9740 unsigned char* paddend = view + offset;
9741 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9742 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9743 switch (r_type)
9744 {
9745 case elfcpp::R_ARM_ABS8:
9746 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9747 psymval);
9748 break;
9749
9750 case elfcpp::R_ARM_ABS12:
9751 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9752 psymval);
9753 break;
9754
9755 case elfcpp::R_ARM_ABS16:
9756 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9757 psymval);
9758 break;
9759
9760 case elfcpp::R_ARM_THM_ABS5:
9761 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9762 object,
9763 psymval);
9764 break;
9765
9766 case elfcpp::R_ARM_MOVW_ABS_NC:
9767 case elfcpp::R_ARM_MOVW_PREL_NC:
9768 case elfcpp::R_ARM_MOVW_BREL_NC:
9769 case elfcpp::R_ARM_MOVW_BREL:
9770 reloc_status = Arm_relocate_functions<big_endian>::movw(
9771 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9772 break;
9773
9774 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9775 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9776 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9777 case elfcpp::R_ARM_THM_MOVW_BREL:
9778 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9779 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9780 break;
9781
9782 case elfcpp::R_ARM_THM_CALL:
9783 case elfcpp::R_ARM_THM_XPC22:
9784 case elfcpp::R_ARM_THM_JUMP24:
9785 reloc_status =
9786 Arm_relocate_functions<big_endian>::thumb_branch_common(
9787 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9788 false);
9789 break;
9790
9791 case elfcpp::R_ARM_PLT32:
9792 case elfcpp::R_ARM_CALL:
9793 case elfcpp::R_ARM_JUMP24:
9794 case elfcpp::R_ARM_XPC25:
9795 reloc_status =
9796 Arm_relocate_functions<big_endian>::arm_branch_common(
9797 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9798 false);
9799 break;
9800
9801 case elfcpp::R_ARM_THM_JUMP19:
9802 reloc_status =
9803 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9804 psymval, 0, thumb_bit);
9805 break;
9806
9807 case elfcpp::R_ARM_THM_JUMP6:
9808 reloc_status =
9809 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9810 0);
9811 break;
9812
9813 case elfcpp::R_ARM_THM_JUMP8:
9814 reloc_status =
9815 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9816 0);
9817 break;
9818
9819 case elfcpp::R_ARM_THM_JUMP11:
9820 reloc_status =
9821 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9822 0);
9823 break;
9824
9825 case elfcpp::R_ARM_PREL31:
9826 reloc_status =
9827 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9828 thumb_bit);
9829 break;
9830
9831 case elfcpp::R_ARM_THM_PC8:
9832 reloc_status =
9833 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9834 0);
9835 break;
9836
9837 case elfcpp::R_ARM_THM_PC12:
9838 reloc_status =
9839 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9840 0);
9841 break;
9842
9843 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9844 reloc_status =
9845 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9846 0, thumb_bit);
9847 break;
9848
9849 // These relocation truncate relocation results so we cannot handle them
9850 // in a relocatable link.
9851 case elfcpp::R_ARM_MOVT_ABS:
9852 case elfcpp::R_ARM_THM_MOVT_ABS:
9853 case elfcpp::R_ARM_MOVT_PREL:
9854 case elfcpp::R_ARM_MOVT_BREL:
9855 case elfcpp::R_ARM_THM_MOVT_PREL:
9856 case elfcpp::R_ARM_THM_MOVT_BREL:
9857 case elfcpp::R_ARM_ALU_PC_G0_NC:
9858 case elfcpp::R_ARM_ALU_PC_G0:
9859 case elfcpp::R_ARM_ALU_PC_G1_NC:
9860 case elfcpp::R_ARM_ALU_PC_G1:
9861 case elfcpp::R_ARM_ALU_PC_G2:
9862 case elfcpp::R_ARM_ALU_SB_G0_NC:
9863 case elfcpp::R_ARM_ALU_SB_G0:
9864 case elfcpp::R_ARM_ALU_SB_G1_NC:
9865 case elfcpp::R_ARM_ALU_SB_G1:
9866 case elfcpp::R_ARM_ALU_SB_G2:
9867 case elfcpp::R_ARM_LDR_PC_G0:
9868 case elfcpp::R_ARM_LDR_PC_G1:
9869 case elfcpp::R_ARM_LDR_PC_G2:
9870 case elfcpp::R_ARM_LDR_SB_G0:
9871 case elfcpp::R_ARM_LDR_SB_G1:
9872 case elfcpp::R_ARM_LDR_SB_G2:
9873 case elfcpp::R_ARM_LDRS_PC_G0:
9874 case elfcpp::R_ARM_LDRS_PC_G1:
9875 case elfcpp::R_ARM_LDRS_PC_G2:
9876 case elfcpp::R_ARM_LDRS_SB_G0:
9877 case elfcpp::R_ARM_LDRS_SB_G1:
9878 case elfcpp::R_ARM_LDRS_SB_G2:
9879 case elfcpp::R_ARM_LDC_PC_G0:
9880 case elfcpp::R_ARM_LDC_PC_G1:
9881 case elfcpp::R_ARM_LDC_PC_G2:
9882 case elfcpp::R_ARM_LDC_SB_G0:
9883 case elfcpp::R_ARM_LDC_SB_G1:
9884 case elfcpp::R_ARM_LDC_SB_G2:
9885 gold_error(_("cannot handle %s in a relocatable link"),
9886 arp->name().c_str());
9887 break;
9888
9889 default:
9890 gold_unreachable();
9891 }
9892
9893 // Report any errors.
9894 switch (reloc_status)
9895 {
9896 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9897 break;
9898 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9899 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9900 _("relocation overflow in %s"),
9901 arp->name().c_str());
9902 break;
9903 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9904 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9905 _("unexpected opcode while processing relocation %s"),
9906 arp->name().c_str());
9907 break;
9908 default:
9909 gold_unreachable();
9910 }
9911 }
9912
9913 // Return the value to use for a dynamic symbol which requires special
9914 // treatment. This is how we support equality comparisons of function
9915 // pointers across shared library boundaries, as described in the
9916 // processor specific ABI supplement.
9917
9918 template<bool big_endian>
9919 uint64_t
9920 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9921 {
9922 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9923 return this->plt_section()->address() + gsym->plt_offset();
9924 }
9925
9926 // Map platform-specific relocs to real relocs
9927 //
9928 template<bool big_endian>
9929 unsigned int
9930 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9931 {
9932 switch (r_type)
9933 {
9934 case elfcpp::R_ARM_TARGET1:
9935 // This is either R_ARM_ABS32 or R_ARM_REL32;
9936 return elfcpp::R_ARM_ABS32;
9937
9938 case elfcpp::R_ARM_TARGET2:
9939 // This can be any reloc type but usually is R_ARM_GOT_PREL
9940 return elfcpp::R_ARM_GOT_PREL;
9941
9942 default:
9943 return r_type;
9944 }
9945 }
9946
9947 // Whether if two EABI versions V1 and V2 are compatible.
9948
9949 template<bool big_endian>
9950 bool
9951 Target_arm<big_endian>::are_eabi_versions_compatible(
9952 elfcpp::Elf_Word v1,
9953 elfcpp::Elf_Word v2)
9954 {
9955 // v4 and v5 are the same spec before and after it was released,
9956 // so allow mixing them.
9957 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9958 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9959 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9960 return true;
9961
9962 return v1 == v2;
9963 }
9964
9965 // Combine FLAGS from an input object called NAME and the processor-specific
9966 // flags in the ELF header of the output. Much of this is adapted from the
9967 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9968 // in bfd/elf32-arm.c.
9969
9970 template<bool big_endian>
9971 void
9972 Target_arm<big_endian>::merge_processor_specific_flags(
9973 const std::string& name,
9974 elfcpp::Elf_Word flags)
9975 {
9976 if (this->are_processor_specific_flags_set())
9977 {
9978 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9979
9980 // Nothing to merge if flags equal to those in output.
9981 if (flags == out_flags)
9982 return;
9983
9984 // Complain about various flag mismatches.
9985 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9986 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9987 if (!this->are_eabi_versions_compatible(version1, version2)
9988 && parameters->options().warn_mismatch())
9989 gold_error(_("Source object %s has EABI version %d but output has "
9990 "EABI version %d."),
9991 name.c_str(),
9992 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9993 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9994 }
9995 else
9996 {
9997 // If the input is the default architecture and had the default
9998 // flags then do not bother setting the flags for the output
9999 // architecture, instead allow future merges to do this. If no
10000 // future merges ever set these flags then they will retain their
10001 // uninitialised values, which surprise surprise, correspond
10002 // to the default values.
10003 if (flags == 0)
10004 return;
10005
10006 // This is the first time, just copy the flags.
10007 // We only copy the EABI version for now.
10008 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10009 }
10010 }
10011
10012 // Adjust ELF file header.
10013 template<bool big_endian>
10014 void
10015 Target_arm<big_endian>::do_adjust_elf_header(
10016 unsigned char* view,
10017 int len) const
10018 {
10019 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10020
10021 elfcpp::Ehdr<32, big_endian> ehdr(view);
10022 unsigned char e_ident[elfcpp::EI_NIDENT];
10023 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10024
10025 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
10026 == elfcpp::EF_ARM_EABI_UNKNOWN)
10027 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10028 else
10029 e_ident[elfcpp::EI_OSABI] = 0;
10030 e_ident[elfcpp::EI_ABIVERSION] = 0;
10031
10032 // FIXME: Do EF_ARM_BE8 adjustment.
10033
10034 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10035 oehdr.put_e_ident(e_ident);
10036 }
10037
10038 // do_make_elf_object to override the same function in the base class.
10039 // We need to use a target-specific sub-class of
10040 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10041 // Hence we need to have our own ELF object creation.
10042
10043 template<bool big_endian>
10044 Object*
10045 Target_arm<big_endian>::do_make_elf_object(
10046 const std::string& name,
10047 Input_file* input_file,
10048 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10049 {
10050 int et = ehdr.get_e_type();
10051 // ET_EXEC files are valid input for --just-symbols/-R,
10052 // and we treat them as relocatable objects.
10053 if (et == elfcpp::ET_REL
10054 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10055 {
10056 Arm_relobj<big_endian>* obj =
10057 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10058 obj->setup();
10059 return obj;
10060 }
10061 else if (et == elfcpp::ET_DYN)
10062 {
10063 Sized_dynobj<32, big_endian>* obj =
10064 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10065 obj->setup();
10066 return obj;
10067 }
10068 else
10069 {
10070 gold_error(_("%s: unsupported ELF file type %d"),
10071 name.c_str(), et);
10072 return NULL;
10073 }
10074 }
10075
10076 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10077 // Returns -1 if no architecture could be read.
10078 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10079
10080 template<bool big_endian>
10081 int
10082 Target_arm<big_endian>::get_secondary_compatible_arch(
10083 const Attributes_section_data* pasd)
10084 {
10085 const Object_attribute* known_attributes =
10086 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10087
10088 // Note: the tag and its argument below are uleb128 values, though
10089 // currently-defined values fit in one byte for each.
10090 const std::string& sv =
10091 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10092 if (sv.size() == 2
10093 && sv.data()[0] == elfcpp::Tag_CPU_arch
10094 && (sv.data()[1] & 128) != 128)
10095 return sv.data()[1];
10096
10097 // This tag is "safely ignorable", so don't complain if it looks funny.
10098 return -1;
10099 }
10100
10101 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10102 // The tag is removed if ARCH is -1.
10103 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10104
10105 template<bool big_endian>
10106 void
10107 Target_arm<big_endian>::set_secondary_compatible_arch(
10108 Attributes_section_data* pasd,
10109 int arch)
10110 {
10111 Object_attribute* known_attributes =
10112 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10113
10114 if (arch == -1)
10115 {
10116 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10117 return;
10118 }
10119
10120 // Note: the tag and its argument below are uleb128 values, though
10121 // currently-defined values fit in one byte for each.
10122 char sv[3];
10123 sv[0] = elfcpp::Tag_CPU_arch;
10124 gold_assert(arch != 0);
10125 sv[1] = arch;
10126 sv[2] = '\0';
10127
10128 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10129 }
10130
10131 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10132 // into account.
10133 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10134
10135 template<bool big_endian>
10136 int
10137 Target_arm<big_endian>::tag_cpu_arch_combine(
10138 const char* name,
10139 int oldtag,
10140 int* secondary_compat_out,
10141 int newtag,
10142 int secondary_compat)
10143 {
10144 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10145 static const int v6t2[] =
10146 {
10147 T(V6T2), // PRE_V4.
10148 T(V6T2), // V4.
10149 T(V6T2), // V4T.
10150 T(V6T2), // V5T.
10151 T(V6T2), // V5TE.
10152 T(V6T2), // V5TEJ.
10153 T(V6T2), // V6.
10154 T(V7), // V6KZ.
10155 T(V6T2) // V6T2.
10156 };
10157 static const int v6k[] =
10158 {
10159 T(V6K), // PRE_V4.
10160 T(V6K), // V4.
10161 T(V6K), // V4T.
10162 T(V6K), // V5T.
10163 T(V6K), // V5TE.
10164 T(V6K), // V5TEJ.
10165 T(V6K), // V6.
10166 T(V6KZ), // V6KZ.
10167 T(V7), // V6T2.
10168 T(V6K) // V6K.
10169 };
10170 static const int v7[] =
10171 {
10172 T(V7), // PRE_V4.
10173 T(V7), // V4.
10174 T(V7), // V4T.
10175 T(V7), // V5T.
10176 T(V7), // V5TE.
10177 T(V7), // V5TEJ.
10178 T(V7), // V6.
10179 T(V7), // V6KZ.
10180 T(V7), // V6T2.
10181 T(V7), // V6K.
10182 T(V7) // V7.
10183 };
10184 static const int v6_m[] =
10185 {
10186 -1, // PRE_V4.
10187 -1, // V4.
10188 T(V6K), // V4T.
10189 T(V6K), // V5T.
10190 T(V6K), // V5TE.
10191 T(V6K), // V5TEJ.
10192 T(V6K), // V6.
10193 T(V6KZ), // V6KZ.
10194 T(V7), // V6T2.
10195 T(V6K), // V6K.
10196 T(V7), // V7.
10197 T(V6_M) // V6_M.
10198 };
10199 static const int v6s_m[] =
10200 {
10201 -1, // PRE_V4.
10202 -1, // V4.
10203 T(V6K), // V4T.
10204 T(V6K), // V5T.
10205 T(V6K), // V5TE.
10206 T(V6K), // V5TEJ.
10207 T(V6K), // V6.
10208 T(V6KZ), // V6KZ.
10209 T(V7), // V6T2.
10210 T(V6K), // V6K.
10211 T(V7), // V7.
10212 T(V6S_M), // V6_M.
10213 T(V6S_M) // V6S_M.
10214 };
10215 static const int v7e_m[] =
10216 {
10217 -1, // PRE_V4.
10218 -1, // V4.
10219 T(V7E_M), // V4T.
10220 T(V7E_M), // V5T.
10221 T(V7E_M), // V5TE.
10222 T(V7E_M), // V5TEJ.
10223 T(V7E_M), // V6.
10224 T(V7E_M), // V6KZ.
10225 T(V7E_M), // V6T2.
10226 T(V7E_M), // V6K.
10227 T(V7E_M), // V7.
10228 T(V7E_M), // V6_M.
10229 T(V7E_M), // V6S_M.
10230 T(V7E_M) // V7E_M.
10231 };
10232 static const int v4t_plus_v6_m[] =
10233 {
10234 -1, // PRE_V4.
10235 -1, // V4.
10236 T(V4T), // V4T.
10237 T(V5T), // V5T.
10238 T(V5TE), // V5TE.
10239 T(V5TEJ), // V5TEJ.
10240 T(V6), // V6.
10241 T(V6KZ), // V6KZ.
10242 T(V6T2), // V6T2.
10243 T(V6K), // V6K.
10244 T(V7), // V7.
10245 T(V6_M), // V6_M.
10246 T(V6S_M), // V6S_M.
10247 T(V7E_M), // V7E_M.
10248 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10249 };
10250 static const int* comb[] =
10251 {
10252 v6t2,
10253 v6k,
10254 v7,
10255 v6_m,
10256 v6s_m,
10257 v7e_m,
10258 // Pseudo-architecture.
10259 v4t_plus_v6_m
10260 };
10261
10262 // Check we've not got a higher architecture than we know about.
10263
10264 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10265 {
10266 gold_error(_("%s: unknown CPU architecture"), name);
10267 return -1;
10268 }
10269
10270 // Override old tag if we have a Tag_also_compatible_with on the output.
10271
10272 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10273 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10274 oldtag = T(V4T_PLUS_V6_M);
10275
10276 // And override the new tag if we have a Tag_also_compatible_with on the
10277 // input.
10278
10279 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10280 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10281 newtag = T(V4T_PLUS_V6_M);
10282
10283 // Architectures before V6KZ add features monotonically.
10284 int tagh = std::max(oldtag, newtag);
10285 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10286 return tagh;
10287
10288 int tagl = std::min(oldtag, newtag);
10289 int result = comb[tagh - T(V6T2)][tagl];
10290
10291 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10292 // as the canonical version.
10293 if (result == T(V4T_PLUS_V6_M))
10294 {
10295 result = T(V4T);
10296 *secondary_compat_out = T(V6_M);
10297 }
10298 else
10299 *secondary_compat_out = -1;
10300
10301 if (result == -1)
10302 {
10303 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10304 name, oldtag, newtag);
10305 return -1;
10306 }
10307
10308 return result;
10309 #undef T
10310 }
10311
10312 // Helper to print AEABI enum tag value.
10313
10314 template<bool big_endian>
10315 std::string
10316 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10317 {
10318 static const char* aeabi_enum_names[] =
10319 { "", "variable-size", "32-bit", "" };
10320 const size_t aeabi_enum_names_size =
10321 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10322
10323 if (value < aeabi_enum_names_size)
10324 return std::string(aeabi_enum_names[value]);
10325 else
10326 {
10327 char buffer[100];
10328 sprintf(buffer, "<unknown value %u>", value);
10329 return std::string(buffer);
10330 }
10331 }
10332
10333 // Return the string value to store in TAG_CPU_name.
10334
10335 template<bool big_endian>
10336 std::string
10337 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10338 {
10339 static const char* name_table[] = {
10340 // These aren't real CPU names, but we can't guess
10341 // that from the architecture version alone.
10342 "Pre v4",
10343 "ARM v4",
10344 "ARM v4T",
10345 "ARM v5T",
10346 "ARM v5TE",
10347 "ARM v5TEJ",
10348 "ARM v6",
10349 "ARM v6KZ",
10350 "ARM v6T2",
10351 "ARM v6K",
10352 "ARM v7",
10353 "ARM v6-M",
10354 "ARM v6S-M",
10355 "ARM v7E-M"
10356 };
10357 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10358
10359 if (value < name_table_size)
10360 return std::string(name_table[value]);
10361 else
10362 {
10363 char buffer[100];
10364 sprintf(buffer, "<unknown CPU value %u>", value);
10365 return std::string(buffer);
10366 }
10367 }
10368
10369 // Merge object attributes from input file called NAME with those of the
10370 // output. The input object attributes are in the object pointed by PASD.
10371
10372 template<bool big_endian>
10373 void
10374 Target_arm<big_endian>::merge_object_attributes(
10375 const char* name,
10376 const Attributes_section_data* pasd)
10377 {
10378 // Return if there is no attributes section data.
10379 if (pasd == NULL)
10380 return;
10381
10382 // If output has no object attributes, just copy.
10383 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10384 if (this->attributes_section_data_ == NULL)
10385 {
10386 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10387 Object_attribute* out_attr =
10388 this->attributes_section_data_->known_attributes(vendor);
10389
10390 // We do not output objects with Tag_MPextension_use_legacy - we move
10391 // the attribute's value to Tag_MPextension_use. */
10392 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10393 {
10394 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10395 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10396 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10397 {
10398 gold_error(_("%s has both the current and legacy "
10399 "Tag_MPextension_use attributes"),
10400 name);
10401 }
10402
10403 out_attr[elfcpp::Tag_MPextension_use] =
10404 out_attr[elfcpp::Tag_MPextension_use_legacy];
10405 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10406 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10407 }
10408
10409 return;
10410 }
10411
10412 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10413 Object_attribute* out_attr =
10414 this->attributes_section_data_->known_attributes(vendor);
10415
10416 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10417 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10418 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10419 {
10420 // Ignore mismatches if the object doesn't use floating point. */
10421 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10422 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10423 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10424 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10425 && parameters->options().warn_mismatch())
10426 gold_error(_("%s uses VFP register arguments, output does not"),
10427 name);
10428 }
10429
10430 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10431 {
10432 // Merge this attribute with existing attributes.
10433 switch (i)
10434 {
10435 case elfcpp::Tag_CPU_raw_name:
10436 case elfcpp::Tag_CPU_name:
10437 // These are merged after Tag_CPU_arch.
10438 break;
10439
10440 case elfcpp::Tag_ABI_optimization_goals:
10441 case elfcpp::Tag_ABI_FP_optimization_goals:
10442 // Use the first value seen.
10443 break;
10444
10445 case elfcpp::Tag_CPU_arch:
10446 {
10447 unsigned int saved_out_attr = out_attr->int_value();
10448 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10449 int secondary_compat =
10450 this->get_secondary_compatible_arch(pasd);
10451 int secondary_compat_out =
10452 this->get_secondary_compatible_arch(
10453 this->attributes_section_data_);
10454 out_attr[i].set_int_value(
10455 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10456 &secondary_compat_out,
10457 in_attr[i].int_value(),
10458 secondary_compat));
10459 this->set_secondary_compatible_arch(this->attributes_section_data_,
10460 secondary_compat_out);
10461
10462 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10463 if (out_attr[i].int_value() == saved_out_attr)
10464 ; // Leave the names alone.
10465 else if (out_attr[i].int_value() == in_attr[i].int_value())
10466 {
10467 // The output architecture has been changed to match the
10468 // input architecture. Use the input names.
10469 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10470 in_attr[elfcpp::Tag_CPU_name].string_value());
10471 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10472 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10473 }
10474 else
10475 {
10476 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10477 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10478 }
10479
10480 // If we still don't have a value for Tag_CPU_name,
10481 // make one up now. Tag_CPU_raw_name remains blank.
10482 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10483 {
10484 const std::string cpu_name =
10485 this->tag_cpu_name_value(out_attr[i].int_value());
10486 // FIXME: If we see an unknown CPU, this will be set
10487 // to "<unknown CPU n>", where n is the attribute value.
10488 // This is different from BFD, which leaves the name alone.
10489 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10490 }
10491 }
10492 break;
10493
10494 case elfcpp::Tag_ARM_ISA_use:
10495 case elfcpp::Tag_THUMB_ISA_use:
10496 case elfcpp::Tag_WMMX_arch:
10497 case elfcpp::Tag_Advanced_SIMD_arch:
10498 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10499 case elfcpp::Tag_ABI_FP_rounding:
10500 case elfcpp::Tag_ABI_FP_exceptions:
10501 case elfcpp::Tag_ABI_FP_user_exceptions:
10502 case elfcpp::Tag_ABI_FP_number_model:
10503 case elfcpp::Tag_VFP_HP_extension:
10504 case elfcpp::Tag_CPU_unaligned_access:
10505 case elfcpp::Tag_T2EE_use:
10506 case elfcpp::Tag_Virtualization_use:
10507 case elfcpp::Tag_MPextension_use:
10508 // Use the largest value specified.
10509 if (in_attr[i].int_value() > out_attr[i].int_value())
10510 out_attr[i].set_int_value(in_attr[i].int_value());
10511 break;
10512
10513 case elfcpp::Tag_ABI_align8_preserved:
10514 case elfcpp::Tag_ABI_PCS_RO_data:
10515 // Use the smallest value specified.
10516 if (in_attr[i].int_value() < out_attr[i].int_value())
10517 out_attr[i].set_int_value(in_attr[i].int_value());
10518 break;
10519
10520 case elfcpp::Tag_ABI_align8_needed:
10521 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10522 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10523 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10524 == 0)))
10525 {
10526 // This error message should be enabled once all non-conforming
10527 // binaries in the toolchain have had the attributes set
10528 // properly.
10529 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10530 // name);
10531 }
10532 // Fall through.
10533 case elfcpp::Tag_ABI_FP_denormal:
10534 case elfcpp::Tag_ABI_PCS_GOT_use:
10535 {
10536 // These tags have 0 = don't care, 1 = strong requirement,
10537 // 2 = weak requirement.
10538 static const int order_021[3] = {0, 2, 1};
10539
10540 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10541 // value if greater than 2 (for future-proofing).
10542 if ((in_attr[i].int_value() > 2
10543 && in_attr[i].int_value() > out_attr[i].int_value())
10544 || (in_attr[i].int_value() <= 2
10545 && out_attr[i].int_value() <= 2
10546 && (order_021[in_attr[i].int_value()]
10547 > order_021[out_attr[i].int_value()])))
10548 out_attr[i].set_int_value(in_attr[i].int_value());
10549 }
10550 break;
10551
10552 case elfcpp::Tag_CPU_arch_profile:
10553 if (out_attr[i].int_value() != in_attr[i].int_value())
10554 {
10555 // 0 will merge with anything.
10556 // 'A' and 'S' merge to 'A'.
10557 // 'R' and 'S' merge to 'R'.
10558 // 'M' and 'A|R|S' is an error.
10559 if (out_attr[i].int_value() == 0
10560 || (out_attr[i].int_value() == 'S'
10561 && (in_attr[i].int_value() == 'A'
10562 || in_attr[i].int_value() == 'R')))
10563 out_attr[i].set_int_value(in_attr[i].int_value());
10564 else if (in_attr[i].int_value() == 0
10565 || (in_attr[i].int_value() == 'S'
10566 && (out_attr[i].int_value() == 'A'
10567 || out_attr[i].int_value() == 'R')))
10568 ; // Do nothing.
10569 else if (parameters->options().warn_mismatch())
10570 {
10571 gold_error
10572 (_("conflicting architecture profiles %c/%c"),
10573 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10574 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10575 }
10576 }
10577 break;
10578 case elfcpp::Tag_VFP_arch:
10579 {
10580 static const struct
10581 {
10582 int ver;
10583 int regs;
10584 } vfp_versions[7] =
10585 {
10586 {0, 0},
10587 {1, 16},
10588 {2, 16},
10589 {3, 32},
10590 {3, 16},
10591 {4, 32},
10592 {4, 16}
10593 };
10594
10595 // Values greater than 6 aren't defined, so just pick the
10596 // biggest.
10597 if (in_attr[i].int_value() > 6
10598 && in_attr[i].int_value() > out_attr[i].int_value())
10599 {
10600 *out_attr = *in_attr;
10601 break;
10602 }
10603 // The output uses the superset of input features
10604 // (ISA version) and registers.
10605 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10606 vfp_versions[out_attr[i].int_value()].ver);
10607 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10608 vfp_versions[out_attr[i].int_value()].regs);
10609 // This assumes all possible supersets are also a valid
10610 // options.
10611 int newval;
10612 for (newval = 6; newval > 0; newval--)
10613 {
10614 if (regs == vfp_versions[newval].regs
10615 && ver == vfp_versions[newval].ver)
10616 break;
10617 }
10618 out_attr[i].set_int_value(newval);
10619 }
10620 break;
10621 case elfcpp::Tag_PCS_config:
10622 if (out_attr[i].int_value() == 0)
10623 out_attr[i].set_int_value(in_attr[i].int_value());
10624 else if (in_attr[i].int_value() != 0
10625 && out_attr[i].int_value() != 0
10626 && parameters->options().warn_mismatch())
10627 {
10628 // It's sometimes ok to mix different configs, so this is only
10629 // a warning.
10630 gold_warning(_("%s: conflicting platform configuration"), name);
10631 }
10632 break;
10633 case elfcpp::Tag_ABI_PCS_R9_use:
10634 if (in_attr[i].int_value() != out_attr[i].int_value()
10635 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10636 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10637 && parameters->options().warn_mismatch())
10638 {
10639 gold_error(_("%s: conflicting use of R9"), name);
10640 }
10641 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10642 out_attr[i].set_int_value(in_attr[i].int_value());
10643 break;
10644 case elfcpp::Tag_ABI_PCS_RW_data:
10645 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10646 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10647 != elfcpp::AEABI_R9_SB)
10648 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10649 != elfcpp::AEABI_R9_unused)
10650 && parameters->options().warn_mismatch())
10651 {
10652 gold_error(_("%s: SB relative addressing conflicts with use "
10653 "of R9"),
10654 name);
10655 }
10656 // Use the smallest value specified.
10657 if (in_attr[i].int_value() < out_attr[i].int_value())
10658 out_attr[i].set_int_value(in_attr[i].int_value());
10659 break;
10660 case elfcpp::Tag_ABI_PCS_wchar_t:
10661 if (out_attr[i].int_value()
10662 && in_attr[i].int_value()
10663 && out_attr[i].int_value() != in_attr[i].int_value()
10664 && parameters->options().warn_mismatch()
10665 && parameters->options().wchar_size_warning())
10666 {
10667 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10668 "use %u-byte wchar_t; use of wchar_t values "
10669 "across objects may fail"),
10670 name, in_attr[i].int_value(),
10671 out_attr[i].int_value());
10672 }
10673 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10674 out_attr[i].set_int_value(in_attr[i].int_value());
10675 break;
10676 case elfcpp::Tag_ABI_enum_size:
10677 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10678 {
10679 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10680 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10681 {
10682 // The existing object is compatible with anything.
10683 // Use whatever requirements the new object has.
10684 out_attr[i].set_int_value(in_attr[i].int_value());
10685 }
10686 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10687 && out_attr[i].int_value() != in_attr[i].int_value()
10688 && parameters->options().warn_mismatch()
10689 && parameters->options().enum_size_warning())
10690 {
10691 unsigned int in_value = in_attr[i].int_value();
10692 unsigned int out_value = out_attr[i].int_value();
10693 gold_warning(_("%s uses %s enums yet the output is to use "
10694 "%s enums; use of enum values across objects "
10695 "may fail"),
10696 name,
10697 this->aeabi_enum_name(in_value).c_str(),
10698 this->aeabi_enum_name(out_value).c_str());
10699 }
10700 }
10701 break;
10702 case elfcpp::Tag_ABI_VFP_args:
10703 // Already done.
10704 break;
10705 case elfcpp::Tag_ABI_WMMX_args:
10706 if (in_attr[i].int_value() != out_attr[i].int_value()
10707 && parameters->options().warn_mismatch())
10708 {
10709 gold_error(_("%s uses iWMMXt register arguments, output does "
10710 "not"),
10711 name);
10712 }
10713 break;
10714 case Object_attribute::Tag_compatibility:
10715 // Merged in target-independent code.
10716 break;
10717 case elfcpp::Tag_ABI_HardFP_use:
10718 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10719 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10720 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10721 out_attr[i].set_int_value(3);
10722 else if (in_attr[i].int_value() > out_attr[i].int_value())
10723 out_attr[i].set_int_value(in_attr[i].int_value());
10724 break;
10725 case elfcpp::Tag_ABI_FP_16bit_format:
10726 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10727 {
10728 if (in_attr[i].int_value() != out_attr[i].int_value()
10729 && parameters->options().warn_mismatch())
10730 gold_error(_("fp16 format mismatch between %s and output"),
10731 name);
10732 }
10733 if (in_attr[i].int_value() != 0)
10734 out_attr[i].set_int_value(in_attr[i].int_value());
10735 break;
10736
10737 case elfcpp::Tag_DIV_use:
10738 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10739 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10740 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10741 // CPU. We will merge as follows: If the input attribute's value
10742 // is one then the output attribute's value remains unchanged. If
10743 // the input attribute's value is zero or two then if the output
10744 // attribute's value is one the output value is set to the input
10745 // value, otherwise the output value must be the same as the
10746 // inputs. */
10747 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10748 {
10749 if (in_attr[i].int_value() != out_attr[i].int_value())
10750 {
10751 gold_error(_("DIV usage mismatch between %s and output"),
10752 name);
10753 }
10754 }
10755
10756 if (in_attr[i].int_value() != 1)
10757 out_attr[i].set_int_value(in_attr[i].int_value());
10758
10759 break;
10760
10761 case elfcpp::Tag_MPextension_use_legacy:
10762 // We don't output objects with Tag_MPextension_use_legacy - we
10763 // move the value to Tag_MPextension_use.
10764 if (in_attr[i].int_value() != 0
10765 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10766 {
10767 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10768 != in_attr[i].int_value())
10769 {
10770 gold_error(_("%s has has both the current and legacy "
10771 "Tag_MPextension_use attributes"),
10772 name);
10773 }
10774 }
10775
10776 if (in_attr[i].int_value()
10777 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10778 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10779
10780 break;
10781
10782 case elfcpp::Tag_nodefaults:
10783 // This tag is set if it exists, but the value is unused (and is
10784 // typically zero). We don't actually need to do anything here -
10785 // the merge happens automatically when the type flags are merged
10786 // below.
10787 break;
10788 case elfcpp::Tag_also_compatible_with:
10789 // Already done in Tag_CPU_arch.
10790 break;
10791 case elfcpp::Tag_conformance:
10792 // Keep the attribute if it matches. Throw it away otherwise.
10793 // No attribute means no claim to conform.
10794 if (in_attr[i].string_value() != out_attr[i].string_value())
10795 out_attr[i].set_string_value("");
10796 break;
10797
10798 default:
10799 {
10800 const char* err_object = NULL;
10801
10802 // The "known_obj_attributes" table does contain some undefined
10803 // attributes. Ensure that there are unused.
10804 if (out_attr[i].int_value() != 0
10805 || out_attr[i].string_value() != "")
10806 err_object = "output";
10807 else if (in_attr[i].int_value() != 0
10808 || in_attr[i].string_value() != "")
10809 err_object = name;
10810
10811 if (err_object != NULL
10812 && parameters->options().warn_mismatch())
10813 {
10814 // Attribute numbers >=64 (mod 128) can be safely ignored.
10815 if ((i & 127) < 64)
10816 gold_error(_("%s: unknown mandatory EABI object attribute "
10817 "%d"),
10818 err_object, i);
10819 else
10820 gold_warning(_("%s: unknown EABI object attribute %d"),
10821 err_object, i);
10822 }
10823
10824 // Only pass on attributes that match in both inputs.
10825 if (!in_attr[i].matches(out_attr[i]))
10826 {
10827 out_attr[i].set_int_value(0);
10828 out_attr[i].set_string_value("");
10829 }
10830 }
10831 }
10832
10833 // If out_attr was copied from in_attr then it won't have a type yet.
10834 if (in_attr[i].type() && !out_attr[i].type())
10835 out_attr[i].set_type(in_attr[i].type());
10836 }
10837
10838 // Merge Tag_compatibility attributes and any common GNU ones.
10839 this->attributes_section_data_->merge(name, pasd);
10840
10841 // Check for any attributes not known on ARM.
10842 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10843 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10844 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10845 Other_attributes* out_other_attributes =
10846 this->attributes_section_data_->other_attributes(vendor);
10847 Other_attributes::iterator out_iter = out_other_attributes->begin();
10848
10849 while (in_iter != in_other_attributes->end()
10850 || out_iter != out_other_attributes->end())
10851 {
10852 const char* err_object = NULL;
10853 int err_tag = 0;
10854
10855 // The tags for each list are in numerical order.
10856 // If the tags are equal, then merge.
10857 if (out_iter != out_other_attributes->end()
10858 && (in_iter == in_other_attributes->end()
10859 || in_iter->first > out_iter->first))
10860 {
10861 // This attribute only exists in output. We can't merge, and we
10862 // don't know what the tag means, so delete it.
10863 err_object = "output";
10864 err_tag = out_iter->first;
10865 int saved_tag = out_iter->first;
10866 delete out_iter->second;
10867 out_other_attributes->erase(out_iter);
10868 out_iter = out_other_attributes->upper_bound(saved_tag);
10869 }
10870 else if (in_iter != in_other_attributes->end()
10871 && (out_iter != out_other_attributes->end()
10872 || in_iter->first < out_iter->first))
10873 {
10874 // This attribute only exists in input. We can't merge, and we
10875 // don't know what the tag means, so ignore it.
10876 err_object = name;
10877 err_tag = in_iter->first;
10878 ++in_iter;
10879 }
10880 else // The tags are equal.
10881 {
10882 // As present, all attributes in the list are unknown, and
10883 // therefore can't be merged meaningfully.
10884 err_object = "output";
10885 err_tag = out_iter->first;
10886
10887 // Only pass on attributes that match in both inputs.
10888 if (!in_iter->second->matches(*(out_iter->second)))
10889 {
10890 // No match. Delete the attribute.
10891 int saved_tag = out_iter->first;
10892 delete out_iter->second;
10893 out_other_attributes->erase(out_iter);
10894 out_iter = out_other_attributes->upper_bound(saved_tag);
10895 }
10896 else
10897 {
10898 // Matched. Keep the attribute and move to the next.
10899 ++out_iter;
10900 ++in_iter;
10901 }
10902 }
10903
10904 if (err_object && parameters->options().warn_mismatch())
10905 {
10906 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10907 if ((err_tag & 127) < 64)
10908 {
10909 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10910 err_object, err_tag);
10911 }
10912 else
10913 {
10914 gold_warning(_("%s: unknown EABI object attribute %d"),
10915 err_object, err_tag);
10916 }
10917 }
10918 }
10919 }
10920
10921 // Stub-generation methods for Target_arm.
10922
10923 // Make a new Arm_input_section object.
10924
10925 template<bool big_endian>
10926 Arm_input_section<big_endian>*
10927 Target_arm<big_endian>::new_arm_input_section(
10928 Relobj* relobj,
10929 unsigned int shndx)
10930 {
10931 Section_id sid(relobj, shndx);
10932
10933 Arm_input_section<big_endian>* arm_input_section =
10934 new Arm_input_section<big_endian>(relobj, shndx);
10935 arm_input_section->init();
10936
10937 // Register new Arm_input_section in map for look-up.
10938 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10939 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10940
10941 // Make sure that it we have not created another Arm_input_section
10942 // for this input section already.
10943 gold_assert(ins.second);
10944
10945 return arm_input_section;
10946 }
10947
10948 // Find the Arm_input_section object corresponding to the SHNDX-th input
10949 // section of RELOBJ.
10950
10951 template<bool big_endian>
10952 Arm_input_section<big_endian>*
10953 Target_arm<big_endian>::find_arm_input_section(
10954 Relobj* relobj,
10955 unsigned int shndx) const
10956 {
10957 Section_id sid(relobj, shndx);
10958 typename Arm_input_section_map::const_iterator p =
10959 this->arm_input_section_map_.find(sid);
10960 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10961 }
10962
10963 // Make a new stub table.
10964
10965 template<bool big_endian>
10966 Stub_table<big_endian>*
10967 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10968 {
10969 Stub_table<big_endian>* stub_table =
10970 new Stub_table<big_endian>(owner);
10971 this->stub_tables_.push_back(stub_table);
10972
10973 stub_table->set_address(owner->address() + owner->data_size());
10974 stub_table->set_file_offset(owner->offset() + owner->data_size());
10975 stub_table->finalize_data_size();
10976
10977 return stub_table;
10978 }
10979
10980 // Scan a relocation for stub generation.
10981
10982 template<bool big_endian>
10983 void
10984 Target_arm<big_endian>::scan_reloc_for_stub(
10985 const Relocate_info<32, big_endian>* relinfo,
10986 unsigned int r_type,
10987 const Sized_symbol<32>* gsym,
10988 unsigned int r_sym,
10989 const Symbol_value<32>* psymval,
10990 elfcpp::Elf_types<32>::Elf_Swxword addend,
10991 Arm_address address)
10992 {
10993 typedef typename Target_arm<big_endian>::Relocate Relocate;
10994
10995 const Arm_relobj<big_endian>* arm_relobj =
10996 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10997
10998 bool target_is_thumb;
10999 Symbol_value<32> symval;
11000 if (gsym != NULL)
11001 {
11002 // This is a global symbol. Determine if we use PLT and if the
11003 // final target is THUMB.
11004 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11005 {
11006 // This uses a PLT, change the symbol value.
11007 symval.set_output_value(this->plt_section()->address()
11008 + gsym->plt_offset());
11009 psymval = &symval;
11010 target_is_thumb = false;
11011 }
11012 else if (gsym->is_undefined())
11013 // There is no need to generate a stub symbol is undefined.
11014 return;
11015 else
11016 {
11017 target_is_thumb =
11018 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11019 || (gsym->type() == elfcpp::STT_FUNC
11020 && !gsym->is_undefined()
11021 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11022 }
11023 }
11024 else
11025 {
11026 // This is a local symbol. Determine if the final target is THUMB.
11027 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11028 }
11029
11030 // Strip LSB if this points to a THUMB target.
11031 const Arm_reloc_property* reloc_property =
11032 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11033 gold_assert(reloc_property != NULL);
11034 if (target_is_thumb
11035 && reloc_property->uses_thumb_bit()
11036 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11037 {
11038 Arm_address stripped_value =
11039 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11040 symval.set_output_value(stripped_value);
11041 psymval = &symval;
11042 }
11043
11044 // Get the symbol value.
11045 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11046
11047 // Owing to pipelining, the PC relative branches below actually skip
11048 // two instructions when the branch offset is 0.
11049 Arm_address destination;
11050 switch (r_type)
11051 {
11052 case elfcpp::R_ARM_CALL:
11053 case elfcpp::R_ARM_JUMP24:
11054 case elfcpp::R_ARM_PLT32:
11055 // ARM branches.
11056 destination = value + addend + 8;
11057 break;
11058 case elfcpp::R_ARM_THM_CALL:
11059 case elfcpp::R_ARM_THM_XPC22:
11060 case elfcpp::R_ARM_THM_JUMP24:
11061 case elfcpp::R_ARM_THM_JUMP19:
11062 // THUMB branches.
11063 destination = value + addend + 4;
11064 break;
11065 default:
11066 gold_unreachable();
11067 }
11068
11069 Reloc_stub* stub = NULL;
11070 Stub_type stub_type =
11071 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11072 target_is_thumb);
11073 if (stub_type != arm_stub_none)
11074 {
11075 // Try looking up an existing stub from a stub table.
11076 Stub_table<big_endian>* stub_table =
11077 arm_relobj->stub_table(relinfo->data_shndx);
11078 gold_assert(stub_table != NULL);
11079
11080 // Locate stub by destination.
11081 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11082
11083 // Create a stub if there is not one already
11084 stub = stub_table->find_reloc_stub(stub_key);
11085 if (stub == NULL)
11086 {
11087 // create a new stub and add it to stub table.
11088 stub = this->stub_factory().make_reloc_stub(stub_type);
11089 stub_table->add_reloc_stub(stub, stub_key);
11090 }
11091
11092 // Record the destination address.
11093 stub->set_destination_address(destination
11094 | (target_is_thumb ? 1 : 0));
11095 }
11096
11097 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11098 if (this->fix_cortex_a8_
11099 && (r_type == elfcpp::R_ARM_THM_JUMP24
11100 || r_type == elfcpp::R_ARM_THM_JUMP19
11101 || r_type == elfcpp::R_ARM_THM_CALL
11102 || r_type == elfcpp::R_ARM_THM_XPC22)
11103 && (address & 0xfffU) == 0xffeU)
11104 {
11105 // Found a candidate. Note we haven't checked the destination is
11106 // within 4K here: if we do so (and don't create a record) we can't
11107 // tell that a branch should have been relocated when scanning later.
11108 this->cortex_a8_relocs_info_[address] =
11109 new Cortex_a8_reloc(stub, r_type,
11110 destination | (target_is_thumb ? 1 : 0));
11111 }
11112 }
11113
11114 // This function scans a relocation sections for stub generation.
11115 // The template parameter Relocate must be a class type which provides
11116 // a single function, relocate(), which implements the machine
11117 // specific part of a relocation.
11118
11119 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11120 // SHT_REL or SHT_RELA.
11121
11122 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11123 // of relocs. OUTPUT_SECTION is the output section.
11124 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11125 // mapped to output offsets.
11126
11127 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11128 // VIEW_SIZE is the size. These refer to the input section, unless
11129 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11130 // the output section.
11131
11132 template<bool big_endian>
11133 template<int sh_type>
11134 void inline
11135 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11136 const Relocate_info<32, big_endian>* relinfo,
11137 const unsigned char* prelocs,
11138 size_t reloc_count,
11139 Output_section* output_section,
11140 bool needs_special_offset_handling,
11141 const unsigned char* view,
11142 elfcpp::Elf_types<32>::Elf_Addr view_address,
11143 section_size_type)
11144 {
11145 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11146 const int reloc_size =
11147 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11148
11149 Arm_relobj<big_endian>* arm_object =
11150 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11151 unsigned int local_count = arm_object->local_symbol_count();
11152
11153 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11154
11155 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11156 {
11157 Reltype reloc(prelocs);
11158
11159 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11160 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11161 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11162
11163 r_type = this->get_real_reloc_type(r_type);
11164
11165 // Only a few relocation types need stubs.
11166 if ((r_type != elfcpp::R_ARM_CALL)
11167 && (r_type != elfcpp::R_ARM_JUMP24)
11168 && (r_type != elfcpp::R_ARM_PLT32)
11169 && (r_type != elfcpp::R_ARM_THM_CALL)
11170 && (r_type != elfcpp::R_ARM_THM_XPC22)
11171 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11172 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11173 && (r_type != elfcpp::R_ARM_V4BX))
11174 continue;
11175
11176 section_offset_type offset =
11177 convert_to_section_size_type(reloc.get_r_offset());
11178
11179 if (needs_special_offset_handling)
11180 {
11181 offset = output_section->output_offset(relinfo->object,
11182 relinfo->data_shndx,
11183 offset);
11184 if (offset == -1)
11185 continue;
11186 }
11187
11188 // Create a v4bx stub if --fix-v4bx-interworking is used.
11189 if (r_type == elfcpp::R_ARM_V4BX)
11190 {
11191 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11192 {
11193 // Get the BX instruction.
11194 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11195 const Valtype* wv =
11196 reinterpret_cast<const Valtype*>(view + offset);
11197 elfcpp::Elf_types<32>::Elf_Swxword insn =
11198 elfcpp::Swap<32, big_endian>::readval(wv);
11199 const uint32_t reg = (insn & 0xf);
11200
11201 if (reg < 0xf)
11202 {
11203 // Try looking up an existing stub from a stub table.
11204 Stub_table<big_endian>* stub_table =
11205 arm_object->stub_table(relinfo->data_shndx);
11206 gold_assert(stub_table != NULL);
11207
11208 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11209 {
11210 // create a new stub and add it to stub table.
11211 Arm_v4bx_stub* stub =
11212 this->stub_factory().make_arm_v4bx_stub(reg);
11213 gold_assert(stub != NULL);
11214 stub_table->add_arm_v4bx_stub(stub);
11215 }
11216 }
11217 }
11218 continue;
11219 }
11220
11221 // Get the addend.
11222 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11223 elfcpp::Elf_types<32>::Elf_Swxword addend =
11224 stub_addend_reader(r_type, view + offset, reloc);
11225
11226 const Sized_symbol<32>* sym;
11227
11228 Symbol_value<32> symval;
11229 const Symbol_value<32> *psymval;
11230 bool is_defined_in_discarded_section;
11231 unsigned int shndx;
11232 if (r_sym < local_count)
11233 {
11234 sym = NULL;
11235 psymval = arm_object->local_symbol(r_sym);
11236
11237 // If the local symbol belongs to a section we are discarding,
11238 // and that section is a debug section, try to find the
11239 // corresponding kept section and map this symbol to its
11240 // counterpart in the kept section. The symbol must not
11241 // correspond to a section we are folding.
11242 bool is_ordinary;
11243 shndx = psymval->input_shndx(&is_ordinary);
11244 is_defined_in_discarded_section =
11245 (is_ordinary
11246 && shndx != elfcpp::SHN_UNDEF
11247 && !arm_object->is_section_included(shndx)
11248 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11249
11250 // We need to compute the would-be final value of this local
11251 // symbol.
11252 if (!is_defined_in_discarded_section)
11253 {
11254 typedef Sized_relobj_file<32, big_endian> ObjType;
11255 typename ObjType::Compute_final_local_value_status status =
11256 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11257 relinfo->symtab);
11258 if (status == ObjType::CFLV_OK)
11259 {
11260 // Currently we cannot handle a branch to a target in
11261 // a merged section. If this is the case, issue an error
11262 // and also free the merge symbol value.
11263 if (!symval.has_output_value())
11264 {
11265 const std::string& section_name =
11266 arm_object->section_name(shndx);
11267 arm_object->error(_("cannot handle branch to local %u "
11268 "in a merged section %s"),
11269 r_sym, section_name.c_str());
11270 }
11271 psymval = &symval;
11272 }
11273 else
11274 {
11275 // We cannot determine the final value.
11276 continue;
11277 }
11278 }
11279 }
11280 else
11281 {
11282 const Symbol* gsym;
11283 gsym = arm_object->global_symbol(r_sym);
11284 gold_assert(gsym != NULL);
11285 if (gsym->is_forwarder())
11286 gsym = relinfo->symtab->resolve_forwards(gsym);
11287
11288 sym = static_cast<const Sized_symbol<32>*>(gsym);
11289 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11290 symval.set_output_symtab_index(sym->symtab_index());
11291 else
11292 symval.set_no_output_symtab_entry();
11293
11294 // We need to compute the would-be final value of this global
11295 // symbol.
11296 const Symbol_table* symtab = relinfo->symtab;
11297 const Sized_symbol<32>* sized_symbol =
11298 symtab->get_sized_symbol<32>(gsym);
11299 Symbol_table::Compute_final_value_status status;
11300 Arm_address value =
11301 symtab->compute_final_value<32>(sized_symbol, &status);
11302
11303 // Skip this if the symbol has not output section.
11304 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11305 continue;
11306 symval.set_output_value(value);
11307
11308 if (gsym->type() == elfcpp::STT_TLS)
11309 symval.set_is_tls_symbol();
11310 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11311 symval.set_is_ifunc_symbol();
11312 psymval = &symval;
11313
11314 is_defined_in_discarded_section =
11315 (gsym->is_defined_in_discarded_section()
11316 && gsym->is_undefined());
11317 shndx = 0;
11318 }
11319
11320 Symbol_value<32> symval2;
11321 if (is_defined_in_discarded_section)
11322 {
11323 if (comdat_behavior == CB_UNDETERMINED)
11324 {
11325 std::string name = arm_object->section_name(relinfo->data_shndx);
11326 comdat_behavior = get_comdat_behavior(name.c_str());
11327 }
11328 if (comdat_behavior == CB_PRETEND)
11329 {
11330 // FIXME: This case does not work for global symbols.
11331 // We have no place to store the original section index.
11332 // Fortunately this does not matter for comdat sections,
11333 // only for sections explicitly discarded by a linker
11334 // script.
11335 bool found;
11336 typename elfcpp::Elf_types<32>::Elf_Addr value =
11337 arm_object->map_to_kept_section(shndx, &found);
11338 if (found)
11339 symval2.set_output_value(value + psymval->input_value());
11340 else
11341 symval2.set_output_value(0);
11342 }
11343 else
11344 {
11345 if (comdat_behavior == CB_WARNING)
11346 gold_warning_at_location(relinfo, i, offset,
11347 _("relocation refers to discarded "
11348 "section"));
11349 symval2.set_output_value(0);
11350 }
11351 symval2.set_no_output_symtab_entry();
11352 psymval = &symval2;
11353 }
11354
11355 // If symbol is a section symbol, we don't know the actual type of
11356 // destination. Give up.
11357 if (psymval->is_section_symbol())
11358 continue;
11359
11360 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11361 addend, view_address + offset);
11362 }
11363 }
11364
11365 // Scan an input section for stub generation.
11366
11367 template<bool big_endian>
11368 void
11369 Target_arm<big_endian>::scan_section_for_stubs(
11370 const Relocate_info<32, big_endian>* relinfo,
11371 unsigned int sh_type,
11372 const unsigned char* prelocs,
11373 size_t reloc_count,
11374 Output_section* output_section,
11375 bool needs_special_offset_handling,
11376 const unsigned char* view,
11377 Arm_address view_address,
11378 section_size_type view_size)
11379 {
11380 if (sh_type == elfcpp::SHT_REL)
11381 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11382 relinfo,
11383 prelocs,
11384 reloc_count,
11385 output_section,
11386 needs_special_offset_handling,
11387 view,
11388 view_address,
11389 view_size);
11390 else if (sh_type == elfcpp::SHT_RELA)
11391 // We do not support RELA type relocations yet. This is provided for
11392 // completeness.
11393 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11394 relinfo,
11395 prelocs,
11396 reloc_count,
11397 output_section,
11398 needs_special_offset_handling,
11399 view,
11400 view_address,
11401 view_size);
11402 else
11403 gold_unreachable();
11404 }
11405
11406 // Group input sections for stub generation.
11407 //
11408 // We group input sections in an output section so that the total size,
11409 // including any padding space due to alignment is smaller than GROUP_SIZE
11410 // unless the only input section in group is bigger than GROUP_SIZE already.
11411 // Then an ARM stub table is created to follow the last input section
11412 // in group. For each group an ARM stub table is created an is placed
11413 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11414 // extend the group after the stub table.
11415
11416 template<bool big_endian>
11417 void
11418 Target_arm<big_endian>::group_sections(
11419 Layout* layout,
11420 section_size_type group_size,
11421 bool stubs_always_after_branch,
11422 const Task* task)
11423 {
11424 // Group input sections and insert stub table
11425 Layout::Section_list section_list;
11426 layout->get_allocated_sections(&section_list);
11427 for (Layout::Section_list::const_iterator p = section_list.begin();
11428 p != section_list.end();
11429 ++p)
11430 {
11431 Arm_output_section<big_endian>* output_section =
11432 Arm_output_section<big_endian>::as_arm_output_section(*p);
11433 output_section->group_sections(group_size, stubs_always_after_branch,
11434 this, task);
11435 }
11436 }
11437
11438 // Relaxation hook. This is where we do stub generation.
11439
11440 template<bool big_endian>
11441 bool
11442 Target_arm<big_endian>::do_relax(
11443 int pass,
11444 const Input_objects* input_objects,
11445 Symbol_table* symtab,
11446 Layout* layout,
11447 const Task* task)
11448 {
11449 // No need to generate stubs if this is a relocatable link.
11450 gold_assert(!parameters->options().relocatable());
11451
11452 // If this is the first pass, we need to group input sections into
11453 // stub groups.
11454 bool done_exidx_fixup = false;
11455 typedef typename Stub_table_list::iterator Stub_table_iterator;
11456 if (pass == 1)
11457 {
11458 // Determine the stub group size. The group size is the absolute
11459 // value of the parameter --stub-group-size. If --stub-group-size
11460 // is passed a negative value, we restrict stubs to be always after
11461 // the stubbed branches.
11462 int32_t stub_group_size_param =
11463 parameters->options().stub_group_size();
11464 bool stubs_always_after_branch = stub_group_size_param < 0;
11465 section_size_type stub_group_size = abs(stub_group_size_param);
11466
11467 if (stub_group_size == 1)
11468 {
11469 // Default value.
11470 // Thumb branch range is +-4MB has to be used as the default
11471 // maximum size (a given section can contain both ARM and Thumb
11472 // code, so the worst case has to be taken into account). If we are
11473 // fixing cortex-a8 errata, the branch range has to be even smaller,
11474 // since wide conditional branch has a range of +-1MB only.
11475 //
11476 // This value is 48K less than that, which allows for 4096
11477 // 12-byte stubs. If we exceed that, then we will fail to link.
11478 // The user will have to relink with an explicit group size
11479 // option.
11480 stub_group_size = 4145152;
11481 }
11482
11483 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11484 // page as the first half of a 32-bit branch straddling two 4K pages.
11485 // This is a crude way of enforcing that. In addition, long conditional
11486 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11487 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11488 // cortex-A8 stubs from long conditional branches.
11489 if (this->fix_cortex_a8_)
11490 {
11491 stubs_always_after_branch = true;
11492 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11493 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11494 }
11495
11496 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11497
11498 // Also fix .ARM.exidx section coverage.
11499 Arm_output_section<big_endian>* exidx_output_section = NULL;
11500 for (Layout::Section_list::const_iterator p =
11501 layout->section_list().begin();
11502 p != layout->section_list().end();
11503 ++p)
11504 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11505 {
11506 if (exidx_output_section == NULL)
11507 exidx_output_section =
11508 Arm_output_section<big_endian>::as_arm_output_section(*p);
11509 else
11510 // We cannot handle this now.
11511 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11512 "non-relocatable link"),
11513 exidx_output_section->name(),
11514 (*p)->name());
11515 }
11516
11517 if (exidx_output_section != NULL)
11518 {
11519 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11520 symtab, task);
11521 done_exidx_fixup = true;
11522 }
11523 }
11524 else
11525 {
11526 // If this is not the first pass, addresses and file offsets have
11527 // been reset at this point, set them here.
11528 for (Stub_table_iterator sp = this->stub_tables_.begin();
11529 sp != this->stub_tables_.end();
11530 ++sp)
11531 {
11532 Arm_input_section<big_endian>* owner = (*sp)->owner();
11533 off_t off = align_address(owner->original_size(),
11534 (*sp)->addralign());
11535 (*sp)->set_address_and_file_offset(owner->address() + off,
11536 owner->offset() + off);
11537 }
11538 }
11539
11540 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11541 // beginning of each relaxation pass, just blow away all the stubs.
11542 // Alternatively, we could selectively remove only the stubs and reloc
11543 // information for code sections that have moved since the last pass.
11544 // That would require more book-keeping.
11545 if (this->fix_cortex_a8_)
11546 {
11547 // Clear all Cortex-A8 reloc information.
11548 for (typename Cortex_a8_relocs_info::const_iterator p =
11549 this->cortex_a8_relocs_info_.begin();
11550 p != this->cortex_a8_relocs_info_.end();
11551 ++p)
11552 delete p->second;
11553 this->cortex_a8_relocs_info_.clear();
11554
11555 // Remove all Cortex-A8 stubs.
11556 for (Stub_table_iterator sp = this->stub_tables_.begin();
11557 sp != this->stub_tables_.end();
11558 ++sp)
11559 (*sp)->remove_all_cortex_a8_stubs();
11560 }
11561
11562 // Scan relocs for relocation stubs
11563 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11564 op != input_objects->relobj_end();
11565 ++op)
11566 {
11567 Arm_relobj<big_endian>* arm_relobj =
11568 Arm_relobj<big_endian>::as_arm_relobj(*op);
11569 // Lock the object so we can read from it. This is only called
11570 // single-threaded from Layout::finalize, so it is OK to lock.
11571 Task_lock_obj<Object> tl(task, arm_relobj);
11572 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11573 }
11574
11575 // Check all stub tables to see if any of them have their data sizes
11576 // or addresses alignments changed. These are the only things that
11577 // matter.
11578 bool any_stub_table_changed = false;
11579 Unordered_set<const Output_section*> sections_needing_adjustment;
11580 for (Stub_table_iterator sp = this->stub_tables_.begin();
11581 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11582 ++sp)
11583 {
11584 if ((*sp)->update_data_size_and_addralign())
11585 {
11586 // Update data size of stub table owner.
11587 Arm_input_section<big_endian>* owner = (*sp)->owner();
11588 uint64_t address = owner->address();
11589 off_t offset = owner->offset();
11590 owner->reset_address_and_file_offset();
11591 owner->set_address_and_file_offset(address, offset);
11592
11593 sections_needing_adjustment.insert(owner->output_section());
11594 any_stub_table_changed = true;
11595 }
11596 }
11597
11598 // Output_section_data::output_section() returns a const pointer but we
11599 // need to update output sections, so we record all output sections needing
11600 // update above and scan the sections here to find out what sections need
11601 // to be updated.
11602 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11603 p != layout->section_list().end();
11604 ++p)
11605 {
11606 if (sections_needing_adjustment.find(*p)
11607 != sections_needing_adjustment.end())
11608 (*p)->set_section_offsets_need_adjustment();
11609 }
11610
11611 // Stop relaxation if no EXIDX fix-up and no stub table change.
11612 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11613
11614 // Finalize the stubs in the last relaxation pass.
11615 if (!continue_relaxation)
11616 {
11617 for (Stub_table_iterator sp = this->stub_tables_.begin();
11618 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11619 ++sp)
11620 (*sp)->finalize_stubs();
11621
11622 // Update output local symbol counts of objects if necessary.
11623 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11624 op != input_objects->relobj_end();
11625 ++op)
11626 {
11627 Arm_relobj<big_endian>* arm_relobj =
11628 Arm_relobj<big_endian>::as_arm_relobj(*op);
11629
11630 // Update output local symbol counts. We need to discard local
11631 // symbols defined in parts of input sections that are discarded by
11632 // relaxation.
11633 if (arm_relobj->output_local_symbol_count_needs_update())
11634 {
11635 // We need to lock the object's file to update it.
11636 Task_lock_obj<Object> tl(task, arm_relobj);
11637 arm_relobj->update_output_local_symbol_count();
11638 }
11639 }
11640 }
11641
11642 return continue_relaxation;
11643 }
11644
11645 // Relocate a stub.
11646
11647 template<bool big_endian>
11648 void
11649 Target_arm<big_endian>::relocate_stub(
11650 Stub* stub,
11651 const Relocate_info<32, big_endian>* relinfo,
11652 Output_section* output_section,
11653 unsigned char* view,
11654 Arm_address address,
11655 section_size_type view_size)
11656 {
11657 Relocate relocate;
11658 const Stub_template* stub_template = stub->stub_template();
11659 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11660 {
11661 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11662 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11663
11664 unsigned int r_type = insn->r_type();
11665 section_size_type reloc_offset = stub_template->reloc_offset(i);
11666 section_size_type reloc_size = insn->size();
11667 gold_assert(reloc_offset + reloc_size <= view_size);
11668
11669 // This is the address of the stub destination.
11670 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11671 Symbol_value<32> symval;
11672 symval.set_output_value(target);
11673
11674 // Synthesize a fake reloc just in case. We don't have a symbol so
11675 // we use 0.
11676 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11677 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11678 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11679 reloc_write.put_r_offset(reloc_offset);
11680 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11681 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11682
11683 relocate.relocate(relinfo, this, output_section,
11684 this->fake_relnum_for_stubs, rel, r_type,
11685 NULL, &symval, view + reloc_offset,
11686 address + reloc_offset, reloc_size);
11687 }
11688 }
11689
11690 // Determine whether an object attribute tag takes an integer, a
11691 // string or both.
11692
11693 template<bool big_endian>
11694 int
11695 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11696 {
11697 if (tag == Object_attribute::Tag_compatibility)
11698 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11699 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11700 else if (tag == elfcpp::Tag_nodefaults)
11701 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11702 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11703 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11704 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11705 else if (tag < 32)
11706 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11707 else
11708 return ((tag & 1) != 0
11709 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11710 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11711 }
11712
11713 // Reorder attributes.
11714 //
11715 // The ABI defines that Tag_conformance should be emitted first, and that
11716 // Tag_nodefaults should be second (if either is defined). This sets those
11717 // two positions, and bumps up the position of all the remaining tags to
11718 // compensate.
11719
11720 template<bool big_endian>
11721 int
11722 Target_arm<big_endian>::do_attributes_order(int num) const
11723 {
11724 // Reorder the known object attributes in output. We want to move
11725 // Tag_conformance to position 4 and Tag_conformance to position 5
11726 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11727 if (num == 4)
11728 return elfcpp::Tag_conformance;
11729 if (num == 5)
11730 return elfcpp::Tag_nodefaults;
11731 if ((num - 2) < elfcpp::Tag_nodefaults)
11732 return num - 2;
11733 if ((num - 1) < elfcpp::Tag_conformance)
11734 return num - 1;
11735 return num;
11736 }
11737
11738 // Scan a span of THUMB code for Cortex-A8 erratum.
11739
11740 template<bool big_endian>
11741 void
11742 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11743 Arm_relobj<big_endian>* arm_relobj,
11744 unsigned int shndx,
11745 section_size_type span_start,
11746 section_size_type span_end,
11747 const unsigned char* view,
11748 Arm_address address)
11749 {
11750 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11751 //
11752 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11753 // The branch target is in the same 4KB region as the
11754 // first half of the branch.
11755 // The instruction before the branch is a 32-bit
11756 // length non-branch instruction.
11757 section_size_type i = span_start;
11758 bool last_was_32bit = false;
11759 bool last_was_branch = false;
11760 while (i < span_end)
11761 {
11762 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11763 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11764 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11765 bool is_blx = false, is_b = false;
11766 bool is_bl = false, is_bcc = false;
11767
11768 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11769 if (insn_32bit)
11770 {
11771 // Load the rest of the insn (in manual-friendly order).
11772 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11773
11774 // Encoding T4: B<c>.W.
11775 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11776 // Encoding T1: BL<c>.W.
11777 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11778 // Encoding T2: BLX<c>.W.
11779 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11780 // Encoding T3: B<c>.W (not permitted in IT block).
11781 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11782 && (insn & 0x07f00000U) != 0x03800000U);
11783 }
11784
11785 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11786
11787 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11788 // page boundary and it follows 32-bit non-branch instruction,
11789 // we need to work around.
11790 if (is_32bit_branch
11791 && ((address + i) & 0xfffU) == 0xffeU
11792 && last_was_32bit
11793 && !last_was_branch)
11794 {
11795 // Check to see if there is a relocation stub for this branch.
11796 bool force_target_arm = false;
11797 bool force_target_thumb = false;
11798 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11799 Cortex_a8_relocs_info::const_iterator p =
11800 this->cortex_a8_relocs_info_.find(address + i);
11801
11802 if (p != this->cortex_a8_relocs_info_.end())
11803 {
11804 cortex_a8_reloc = p->second;
11805 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11806
11807 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11808 && !target_is_thumb)
11809 force_target_arm = true;
11810 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11811 && target_is_thumb)
11812 force_target_thumb = true;
11813 }
11814
11815 off_t offset;
11816 Stub_type stub_type = arm_stub_none;
11817
11818 // Check if we have an offending branch instruction.
11819 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11820 uint16_t lower_insn = insn & 0xffffU;
11821 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11822
11823 if (cortex_a8_reloc != NULL
11824 && cortex_a8_reloc->reloc_stub() != NULL)
11825 // We've already made a stub for this instruction, e.g.
11826 // it's a long branch or a Thumb->ARM stub. Assume that
11827 // stub will suffice to work around the A8 erratum (see
11828 // setting of always_after_branch above).
11829 ;
11830 else if (is_bcc)
11831 {
11832 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11833 lower_insn);
11834 stub_type = arm_stub_a8_veneer_b_cond;
11835 }
11836 else if (is_b || is_bl || is_blx)
11837 {
11838 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11839 lower_insn);
11840 if (is_blx)
11841 offset &= ~3;
11842
11843 stub_type = (is_blx
11844 ? arm_stub_a8_veneer_blx
11845 : (is_bl
11846 ? arm_stub_a8_veneer_bl
11847 : arm_stub_a8_veneer_b));
11848 }
11849
11850 if (stub_type != arm_stub_none)
11851 {
11852 Arm_address pc_for_insn = address + i + 4;
11853
11854 // The original instruction is a BL, but the target is
11855 // an ARM instruction. If we were not making a stub,
11856 // the BL would have been converted to a BLX. Use the
11857 // BLX stub instead in that case.
11858 if (this->may_use_v5t_interworking() && force_target_arm
11859 && stub_type == arm_stub_a8_veneer_bl)
11860 {
11861 stub_type = arm_stub_a8_veneer_blx;
11862 is_blx = true;
11863 is_bl = false;
11864 }
11865 // Conversely, if the original instruction was
11866 // BLX but the target is Thumb mode, use the BL stub.
11867 else if (force_target_thumb
11868 && stub_type == arm_stub_a8_veneer_blx)
11869 {
11870 stub_type = arm_stub_a8_veneer_bl;
11871 is_blx = false;
11872 is_bl = true;
11873 }
11874
11875 if (is_blx)
11876 pc_for_insn &= ~3;
11877
11878 // If we found a relocation, use the proper destination,
11879 // not the offset in the (unrelocated) instruction.
11880 // Note this is always done if we switched the stub type above.
11881 if (cortex_a8_reloc != NULL)
11882 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11883
11884 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11885
11886 // Add a new stub if destination address in in the same page.
11887 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11888 {
11889 Cortex_a8_stub* stub =
11890 this->stub_factory_.make_cortex_a8_stub(stub_type,
11891 arm_relobj, shndx,
11892 address + i,
11893 target, insn);
11894 Stub_table<big_endian>* stub_table =
11895 arm_relobj->stub_table(shndx);
11896 gold_assert(stub_table != NULL);
11897 stub_table->add_cortex_a8_stub(address + i, stub);
11898 }
11899 }
11900 }
11901
11902 i += insn_32bit ? 4 : 2;
11903 last_was_32bit = insn_32bit;
11904 last_was_branch = is_32bit_branch;
11905 }
11906 }
11907
11908 // Apply the Cortex-A8 workaround.
11909
11910 template<bool big_endian>
11911 void
11912 Target_arm<big_endian>::apply_cortex_a8_workaround(
11913 const Cortex_a8_stub* stub,
11914 Arm_address stub_address,
11915 unsigned char* insn_view,
11916 Arm_address insn_address)
11917 {
11918 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11919 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11920 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11921 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11922 off_t branch_offset = stub_address - (insn_address + 4);
11923
11924 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11925 switch (stub->stub_template()->type())
11926 {
11927 case arm_stub_a8_veneer_b_cond:
11928 // For a conditional branch, we re-write it to be an unconditional
11929 // branch to the stub. We use the THUMB-2 encoding here.
11930 upper_insn = 0xf000U;
11931 lower_insn = 0xb800U;
11932 // Fall through
11933 case arm_stub_a8_veneer_b:
11934 case arm_stub_a8_veneer_bl:
11935 case arm_stub_a8_veneer_blx:
11936 if ((lower_insn & 0x5000U) == 0x4000U)
11937 // For a BLX instruction, make sure that the relocation is
11938 // rounded up to a word boundary. This follows the semantics of
11939 // the instruction which specifies that bit 1 of the target
11940 // address will come from bit 1 of the base address.
11941 branch_offset = (branch_offset + 2) & ~3;
11942
11943 // Put BRANCH_OFFSET back into the insn.
11944 gold_assert(!Bits<25>::has_overflow32(branch_offset));
11945 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11946 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11947 break;
11948
11949 default:
11950 gold_unreachable();
11951 }
11952
11953 // Put the relocated value back in the object file:
11954 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11955 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11956 }
11957
11958 // Target selector for ARM. Note this is never instantiated directly.
11959 // It's only used in Target_selector_arm_nacl, below.
11960
11961 template<bool big_endian>
11962 class Target_selector_arm : public Target_selector
11963 {
11964 public:
11965 Target_selector_arm()
11966 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11967 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11968 (big_endian ? "armelfb" : "armelf"))
11969 { }
11970
11971 Target*
11972 do_instantiate_target()
11973 { return new Target_arm<big_endian>(); }
11974 };
11975
11976 // Fix .ARM.exidx section coverage.
11977
11978 template<bool big_endian>
11979 void
11980 Target_arm<big_endian>::fix_exidx_coverage(
11981 Layout* layout,
11982 const Input_objects* input_objects,
11983 Arm_output_section<big_endian>* exidx_section,
11984 Symbol_table* symtab,
11985 const Task* task)
11986 {
11987 // We need to look at all the input sections in output in ascending
11988 // order of of output address. We do that by building a sorted list
11989 // of output sections by addresses. Then we looks at the output sections
11990 // in order. The input sections in an output section are already sorted
11991 // by addresses within the output section.
11992
11993 typedef std::set<Output_section*, output_section_address_less_than>
11994 Sorted_output_section_list;
11995 Sorted_output_section_list sorted_output_sections;
11996
11997 // Find out all the output sections of input sections pointed by
11998 // EXIDX input sections.
11999 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12000 p != input_objects->relobj_end();
12001 ++p)
12002 {
12003 Arm_relobj<big_endian>* arm_relobj =
12004 Arm_relobj<big_endian>::as_arm_relobj(*p);
12005 std::vector<unsigned int> shndx_list;
12006 arm_relobj->get_exidx_shndx_list(&shndx_list);
12007 for (size_t i = 0; i < shndx_list.size(); ++i)
12008 {
12009 const Arm_exidx_input_section* exidx_input_section =
12010 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12011 gold_assert(exidx_input_section != NULL);
12012 if (!exidx_input_section->has_errors())
12013 {
12014 unsigned int text_shndx = exidx_input_section->link();
12015 Output_section* os = arm_relobj->output_section(text_shndx);
12016 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12017 sorted_output_sections.insert(os);
12018 }
12019 }
12020 }
12021
12022 // Go over the output sections in ascending order of output addresses.
12023 typedef typename Arm_output_section<big_endian>::Text_section_list
12024 Text_section_list;
12025 Text_section_list sorted_text_sections;
12026 for (typename Sorted_output_section_list::iterator p =
12027 sorted_output_sections.begin();
12028 p != sorted_output_sections.end();
12029 ++p)
12030 {
12031 Arm_output_section<big_endian>* arm_output_section =
12032 Arm_output_section<big_endian>::as_arm_output_section(*p);
12033 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12034 }
12035
12036 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12037 merge_exidx_entries(), task);
12038 }
12039
12040 template<bool big_endian>
12041 void
12042 Target_arm<big_endian>::do_define_standard_symbols(
12043 Symbol_table* symtab,
12044 Layout* layout)
12045 {
12046 // Handle the .ARM.exidx section.
12047 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12048
12049 if (exidx_section != NULL)
12050 {
12051 // Create __exidx_start and __exidx_end symbols.
12052 symtab->define_in_output_data("__exidx_start",
12053 NULL, // version
12054 Symbol_table::PREDEFINED,
12055 exidx_section,
12056 0, // value
12057 0, // symsize
12058 elfcpp::STT_NOTYPE,
12059 elfcpp::STB_GLOBAL,
12060 elfcpp::STV_HIDDEN,
12061 0, // nonvis
12062 false, // offset_is_from_end
12063 true); // only_if_ref
12064
12065 symtab->define_in_output_data("__exidx_end",
12066 NULL, // version
12067 Symbol_table::PREDEFINED,
12068 exidx_section,
12069 0, // value
12070 0, // symsize
12071 elfcpp::STT_NOTYPE,
12072 elfcpp::STB_GLOBAL,
12073 elfcpp::STV_HIDDEN,
12074 0, // nonvis
12075 true, // offset_is_from_end
12076 true); // only_if_ref
12077 }
12078 else
12079 {
12080 // Define __exidx_start and __exidx_end even when .ARM.exidx
12081 // section is missing to match ld's behaviour.
12082 symtab->define_as_constant("__exidx_start", NULL,
12083 Symbol_table::PREDEFINED,
12084 0, 0, elfcpp::STT_OBJECT,
12085 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12086 true, false);
12087 symtab->define_as_constant("__exidx_end", NULL,
12088 Symbol_table::PREDEFINED,
12089 0, 0, elfcpp::STT_OBJECT,
12090 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12091 true, false);
12092 }
12093 }
12094
12095 // NaCl variant. It uses different PLT contents.
12096
12097 template<bool big_endian>
12098 class Output_data_plt_arm_nacl;
12099
12100 template<bool big_endian>
12101 class Target_arm_nacl : public Target_arm<big_endian>
12102 {
12103 public:
12104 Target_arm_nacl()
12105 : Target_arm<big_endian>(&arm_nacl_info)
12106 { }
12107
12108 protected:
12109 virtual Output_data_plt_arm<big_endian>*
12110 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12111 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12112
12113 private:
12114 static const Target::Target_info arm_nacl_info;
12115 };
12116
12117 template<bool big_endian>
12118 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12119 {
12120 32, // size
12121 big_endian, // is_big_endian
12122 elfcpp::EM_ARM, // machine_code
12123 false, // has_make_symbol
12124 false, // has_resolve
12125 false, // has_code_fill
12126 true, // is_default_stack_executable
12127 false, // can_icf_inline_merge_sections
12128 '\0', // wrap_char
12129 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12130 0x20000, // default_text_segment_address
12131 0x10000, // abi_pagesize (overridable by -z max-page-size)
12132 0x10000, // common_pagesize (overridable by -z common-page-size)
12133 true, // isolate_execinstr
12134 0x10000000, // rosegment_gap
12135 elfcpp::SHN_UNDEF, // small_common_shndx
12136 elfcpp::SHN_UNDEF, // large_common_shndx
12137 0, // small_common_section_flags
12138 0, // large_common_section_flags
12139 ".ARM.attributes", // attributes_section
12140 "aeabi" // attributes_vendor
12141 };
12142
12143 template<bool big_endian>
12144 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12145 {
12146 public:
12147 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12148 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12149 { }
12150
12151 protected:
12152 // Return the offset of the first non-reserved PLT entry.
12153 virtual unsigned int
12154 do_first_plt_entry_offset() const
12155 { return sizeof(first_plt_entry); }
12156
12157 // Return the size of a PLT entry.
12158 virtual unsigned int
12159 do_get_plt_entry_size() const
12160 { return sizeof(plt_entry); }
12161
12162 virtual void
12163 do_fill_first_plt_entry(unsigned char* pov,
12164 Arm_address got_address,
12165 Arm_address plt_address);
12166
12167 virtual void
12168 do_fill_plt_entry(unsigned char* pov,
12169 Arm_address got_address,
12170 Arm_address plt_address,
12171 unsigned int got_offset,
12172 unsigned int plt_offset);
12173
12174 private:
12175 inline uint32_t arm_movw_immediate(uint32_t value)
12176 {
12177 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12178 }
12179
12180 inline uint32_t arm_movt_immediate(uint32_t value)
12181 {
12182 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12183 }
12184
12185 // Template for the first PLT entry.
12186 static const uint32_t first_plt_entry[16];
12187
12188 // Template for subsequent PLT entries.
12189 static const uint32_t plt_entry[4];
12190 };
12191
12192 // The first entry in the PLT.
12193 template<bool big_endian>
12194 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12195 {
12196 // First bundle:
12197 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12198 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12199 0xe08cc00f, // add ip, ip, pc
12200 0xe52dc008, // str ip, [sp, #-8]!
12201 // Second bundle:
12202 0xe7dfcf1f, // bfc ip, #30, #2
12203 0xe59cc000, // ldr ip, [ip]
12204 0xe3ccc13f, // bic ip, ip, #0xc000000f
12205 0xe12fff1c, // bx ip
12206 // Third bundle:
12207 0xe320f000, // nop
12208 0xe320f000, // nop
12209 0xe320f000, // nop
12210 // .Lplt_tail:
12211 0xe50dc004, // str ip, [sp, #-4]
12212 // Fourth bundle:
12213 0xe7dfcf1f, // bfc ip, #30, #2
12214 0xe59cc000, // ldr ip, [ip]
12215 0xe3ccc13f, // bic ip, ip, #0xc000000f
12216 0xe12fff1c, // bx ip
12217 };
12218
12219 template<bool big_endian>
12220 void
12221 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12222 unsigned char* pov,
12223 Arm_address got_address,
12224 Arm_address plt_address)
12225 {
12226 // Write first PLT entry. All but first two words are constants.
12227 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12228 / sizeof(first_plt_entry[0]));
12229
12230 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12231
12232 elfcpp::Swap<32, big_endian>::writeval
12233 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12234 elfcpp::Swap<32, big_endian>::writeval
12235 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12236
12237 for (size_t i = 2; i < num_first_plt_words; ++i)
12238 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12239 }
12240
12241 // Subsequent entries in the PLT.
12242
12243 template<bool big_endian>
12244 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12245 {
12246 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12247 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12248 0xe08cc00f, // add ip, ip, pc
12249 0xea000000, // b .Lplt_tail
12250 };
12251
12252 template<bool big_endian>
12253 void
12254 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12255 unsigned char* pov,
12256 Arm_address got_address,
12257 Arm_address plt_address,
12258 unsigned int got_offset,
12259 unsigned int plt_offset)
12260 {
12261 // Calculate the displacement between the PLT slot and the
12262 // common tail that's part of the special initial PLT slot.
12263 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12264 - (plt_address + plt_offset
12265 + sizeof(plt_entry) + sizeof(uint32_t)));
12266 gold_assert((tail_displacement & 3) == 0);
12267 tail_displacement >>= 2;
12268
12269 gold_assert ((tail_displacement & 0xff000000) == 0
12270 || (-tail_displacement & 0xff000000) == 0);
12271
12272 // Calculate the displacement between the PLT slot and the entry
12273 // in the GOT. The offset accounts for the value produced by
12274 // adding to pc in the penultimate instruction of the PLT stub.
12275 const int32_t got_displacement = (got_address + got_offset
12276 - (plt_address + sizeof(plt_entry)));
12277
12278 elfcpp::Swap<32, big_endian>::writeval
12279 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12280 elfcpp::Swap<32, big_endian>::writeval
12281 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12282 elfcpp::Swap<32, big_endian>::writeval
12283 (pov + 8, plt_entry[2]);
12284 elfcpp::Swap<32, big_endian>::writeval
12285 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12286 }
12287
12288 // Target selectors.
12289
12290 template<bool big_endian>
12291 class Target_selector_arm_nacl
12292 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12293 Target_arm_nacl<big_endian> >
12294 {
12295 public:
12296 Target_selector_arm_nacl()
12297 : Target_selector_nacl<Target_selector_arm<big_endian>,
12298 Target_arm_nacl<big_endian> >(
12299 "arm",
12300 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12301 big_endian ? "armelfb_nacl" : "armelf_nacl")
12302 { }
12303 };
12304
12305 Target_selector_arm_nacl<false> target_selector_arm;
12306 Target_selector_arm_nacl<true> target_selector_armbe;
12307
12308 } // End anonymous namespace.
This page took 0.267579 seconds and 5 git commands to generate.