Implement BE8 support for ARM.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2017 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_short;
66
67 template<bool big_endian>
68 class Output_data_plt_arm_long;
69
70 template<bool big_endian>
71 class Stub_table;
72
73 template<bool big_endian>
74 class Arm_input_section;
75
76 class Arm_exidx_cantunwind;
77
78 class Arm_exidx_merged_section;
79
80 class Arm_exidx_fixup;
81
82 template<bool big_endian>
83 class Arm_output_section;
84
85 class Arm_exidx_input_section;
86
87 template<bool big_endian>
88 class Arm_relobj;
89
90 template<bool big_endian>
91 class Arm_relocate_functions;
92
93 template<bool big_endian>
94 class Arm_output_data_got;
95
96 template<bool big_endian>
97 class Target_arm;
98
99 // For convenience.
100 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
101
102 // Maximum branch offsets for ARM, THUMB and THUMB2.
103 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
104 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
105 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
106 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
107 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
108 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
109
110 // Thread Control Block size.
111 const size_t ARM_TCB_SIZE = 8;
112
113 // The arm target class.
114 //
115 // This is a very simple port of gold for ARM-EABI. It is intended for
116 // supporting Android only for the time being.
117 //
118 // TODOs:
119 // - Implement all static relocation types documented in arm-reloc.def.
120 // - Make PLTs more flexible for different architecture features like
121 // Thumb-2 and BE8.
122 // There are probably a lot more.
123
124 // Ideally we would like to avoid using global variables but this is used
125 // very in many places and sometimes in loops. If we use a function
126 // returning a static instance of Arm_reloc_property_table, it will be very
127 // slow in an threaded environment since the static instance needs to be
128 // locked. The pointer is below initialized in the
129 // Target::do_select_as_default_target() hook so that we do not spend time
130 // building the table if we are not linking ARM objects.
131 //
132 // An alternative is to process the information in arm-reloc.def in
133 // compilation time and generate a representation of it in PODs only. That
134 // way we can avoid initialization when the linker starts.
135
136 Arm_reloc_property_table* arm_reloc_property_table = NULL;
137
138 // Instruction template class. This class is similar to the insn_sequence
139 // struct in bfd/elf32-arm.c.
140
141 class Insn_template
142 {
143 public:
144 // Types of instruction templates.
145 enum Type
146 {
147 THUMB16_TYPE = 1,
148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
149 // templates with class-specific semantics. Currently this is used
150 // only by the Cortex_a8_stub class for handling condition codes in
151 // conditional branches.
152 THUMB16_SPECIAL_TYPE,
153 THUMB32_TYPE,
154 ARM_TYPE,
155 DATA_TYPE
156 };
157
158 // Factory methods to create instruction templates in different formats.
159
160 static const Insn_template
161 thumb16_insn(uint32_t data)
162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
163
164 // A Thumb conditional branch, in which the proper condition is inserted
165 // when we build the stub.
166 static const Insn_template
167 thumb16_bcond_insn(uint32_t data)
168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
169
170 static const Insn_template
171 thumb32_insn(uint32_t data)
172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
173
174 static const Insn_template
175 thumb32_b_insn(uint32_t data, int reloc_addend)
176 {
177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 reloc_addend);
179 }
180
181 static const Insn_template
182 arm_insn(uint32_t data)
183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
184
185 static const Insn_template
186 arm_rel_insn(unsigned data, int reloc_addend)
187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
188
189 static const Insn_template
190 data_word(unsigned data, unsigned int r_type, int reloc_addend)
191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
192
193 // Accessors. This class is used for read-only objects so no modifiers
194 // are provided.
195
196 uint32_t
197 data() const
198 { return this->data_; }
199
200 // Return the instruction sequence type of this.
201 Type
202 type() const
203 { return this->type_; }
204
205 // Return the ARM relocation type of this.
206 unsigned int
207 r_type() const
208 { return this->r_type_; }
209
210 int32_t
211 reloc_addend() const
212 { return this->reloc_addend_; }
213
214 // Return size of instruction template in bytes.
215 size_t
216 size() const;
217
218 // Return byte-alignment of instruction template.
219 unsigned
220 alignment() const;
221
222 private:
223 // We make the constructor private to ensure that only the factory
224 // methods are used.
225 inline
226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
228 { }
229
230 // Instruction specific data. This is used to store information like
231 // some of the instruction bits.
232 uint32_t data_;
233 // Instruction template type.
234 Type type_;
235 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
236 unsigned int r_type_;
237 // Relocation addend.
238 int32_t reloc_addend_;
239 };
240
241 // Macro for generating code to stub types. One entry per long/short
242 // branch stub
243
244 #define DEF_STUBS \
245 DEF_STUB(long_branch_any_any) \
246 DEF_STUB(long_branch_v4t_arm_thumb) \
247 DEF_STUB(long_branch_thumb_only) \
248 DEF_STUB(long_branch_v4t_thumb_thumb) \
249 DEF_STUB(long_branch_v4t_thumb_arm) \
250 DEF_STUB(short_branch_v4t_thumb_arm) \
251 DEF_STUB(long_branch_any_arm_pic) \
252 DEF_STUB(long_branch_any_thumb_pic) \
253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
256 DEF_STUB(long_branch_thumb_only_pic) \
257 DEF_STUB(a8_veneer_b_cond) \
258 DEF_STUB(a8_veneer_b) \
259 DEF_STUB(a8_veneer_bl) \
260 DEF_STUB(a8_veneer_blx) \
261 DEF_STUB(v4_veneer_bx)
262
263 // Stub types.
264
265 #define DEF_STUB(x) arm_stub_##x,
266 typedef enum
267 {
268 arm_stub_none,
269 DEF_STUBS
270
271 // First reloc stub type.
272 arm_stub_reloc_first = arm_stub_long_branch_any_any,
273 // Last reloc stub type.
274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
275
276 // First Cortex-A8 stub type.
277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
278 // Last Cortex-A8 stub type.
279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
280
281 // Last stub type.
282 arm_stub_type_last = arm_stub_v4_veneer_bx
283 } Stub_type;
284 #undef DEF_STUB
285
286 // Stub template class. Templates are meant to be read-only objects.
287 // A stub template for a stub type contains all read-only attributes
288 // common to all stubs of the same type.
289
290 class Stub_template
291 {
292 public:
293 Stub_template(Stub_type, const Insn_template*, size_t);
294
295 ~Stub_template()
296 { }
297
298 // Return stub type.
299 Stub_type
300 type() const
301 { return this->type_; }
302
303 // Return an array of instruction templates.
304 const Insn_template*
305 insns() const
306 { return this->insns_; }
307
308 // Return size of template in number of instructions.
309 size_t
310 insn_count() const
311 { return this->insn_count_; }
312
313 // Return size of template in bytes.
314 size_t
315 size() const
316 { return this->size_; }
317
318 // Return alignment of the stub template.
319 unsigned
320 alignment() const
321 { return this->alignment_; }
322
323 // Return whether entry point is in thumb mode.
324 bool
325 entry_in_thumb_mode() const
326 { return this->entry_in_thumb_mode_; }
327
328 // Return number of relocations in this template.
329 size_t
330 reloc_count() const
331 { return this->relocs_.size(); }
332
333 // Return index of the I-th instruction with relocation.
334 size_t
335 reloc_insn_index(size_t i) const
336 {
337 gold_assert(i < this->relocs_.size());
338 return this->relocs_[i].first;
339 }
340
341 // Return the offset of the I-th instruction with relocation from the
342 // beginning of the stub.
343 section_size_type
344 reloc_offset(size_t i) const
345 {
346 gold_assert(i < this->relocs_.size());
347 return this->relocs_[i].second;
348 }
349
350 private:
351 // This contains information about an instruction template with a relocation
352 // and its offset from start of stub.
353 typedef std::pair<size_t, section_size_type> Reloc;
354
355 // A Stub_template may not be copied. We want to share templates as much
356 // as possible.
357 Stub_template(const Stub_template&);
358 Stub_template& operator=(const Stub_template&);
359
360 // Stub type.
361 Stub_type type_;
362 // Points to an array of Insn_templates.
363 const Insn_template* insns_;
364 // Number of Insn_templates in insns_[].
365 size_t insn_count_;
366 // Size of templated instructions in bytes.
367 size_t size_;
368 // Alignment of templated instructions.
369 unsigned alignment_;
370 // Flag to indicate if entry is in thumb mode.
371 bool entry_in_thumb_mode_;
372 // A table of reloc instruction indices and offsets. We can find these by
373 // looking at the instruction templates but we pre-compute and then stash
374 // them here for speed.
375 std::vector<Reloc> relocs_;
376 };
377
378 //
379 // A class for code stubs. This is a base class for different type of
380 // stubs used in the ARM target.
381 //
382
383 class Stub
384 {
385 private:
386 static const section_offset_type invalid_offset =
387 static_cast<section_offset_type>(-1);
388
389 public:
390 Stub(const Stub_template* stub_template)
391 : stub_template_(stub_template), offset_(invalid_offset)
392 { }
393
394 virtual
395 ~Stub()
396 { }
397
398 // Return the stub template.
399 const Stub_template*
400 stub_template() const
401 { return this->stub_template_; }
402
403 // Return offset of code stub from beginning of its containing stub table.
404 section_offset_type
405 offset() const
406 {
407 gold_assert(this->offset_ != invalid_offset);
408 return this->offset_;
409 }
410
411 // Set offset of code stub from beginning of its containing stub table.
412 void
413 set_offset(section_offset_type offset)
414 { this->offset_ = offset; }
415
416 // Return the relocation target address of the i-th relocation in the
417 // stub. This must be defined in a child class.
418 Arm_address
419 reloc_target(size_t i)
420 { return this->do_reloc_target(i); }
421
422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
423 void
424 write(unsigned char* view, section_size_type view_size, bool big_endian)
425 { this->do_write(view, view_size, big_endian); }
426
427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
428 // for the i-th instruction.
429 uint16_t
430 thumb16_special(size_t i)
431 { return this->do_thumb16_special(i); }
432
433 protected:
434 // This must be defined in the child class.
435 virtual Arm_address
436 do_reloc_target(size_t) = 0;
437
438 // This may be overridden in the child class.
439 virtual void
440 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
441 {
442 if (big_endian)
443 this->do_fixed_endian_write<true>(view, view_size);
444 else
445 this->do_fixed_endian_write<false>(view, view_size);
446 }
447
448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
449 // instruction template.
450 virtual uint16_t
451 do_thumb16_special(size_t)
452 { gold_unreachable(); }
453
454 private:
455 // A template to implement do_write.
456 template<bool big_endian>
457 void inline
458 do_fixed_endian_write(unsigned char*, section_size_type);
459
460 // Its template.
461 const Stub_template* stub_template_;
462 // Offset within the section of containing this stub.
463 section_offset_type offset_;
464 };
465
466 // Reloc stub class. These are stubs we use to fix up relocation because
467 // of limited branch ranges.
468
469 class Reloc_stub : public Stub
470 {
471 public:
472 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
473 // We assume we never jump to this address.
474 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
475
476 // Return destination address.
477 Arm_address
478 destination_address() const
479 {
480 gold_assert(this->destination_address_ != this->invalid_address);
481 return this->destination_address_;
482 }
483
484 // Set destination address.
485 void
486 set_destination_address(Arm_address address)
487 {
488 gold_assert(address != this->invalid_address);
489 this->destination_address_ = address;
490 }
491
492 // Reset destination address.
493 void
494 reset_destination_address()
495 { this->destination_address_ = this->invalid_address; }
496
497 // Determine stub type for a branch of a relocation of R_TYPE going
498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
499 // the branch target is a thumb instruction. TARGET is used for look
500 // up ARM-specific linker settings.
501 static Stub_type
502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
503 Arm_address branch_target, bool target_is_thumb);
504
505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
506 // and an addend. Since we treat global and local symbol differently, we
507 // use a Symbol object for a global symbol and a object-index pair for
508 // a local symbol.
509 class Key
510 {
511 public:
512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
514 // and R_SYM must not be invalid_index.
515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
516 unsigned int r_sym, int32_t addend)
517 : stub_type_(stub_type), addend_(addend)
518 {
519 if (symbol != NULL)
520 {
521 this->r_sym_ = Reloc_stub::invalid_index;
522 this->u_.symbol = symbol;
523 }
524 else
525 {
526 gold_assert(relobj != NULL && r_sym != invalid_index);
527 this->r_sym_ = r_sym;
528 this->u_.relobj = relobj;
529 }
530 }
531
532 ~Key()
533 { }
534
535 // Accessors: Keys are meant to be read-only object so no modifiers are
536 // provided.
537
538 // Return stub type.
539 Stub_type
540 stub_type() const
541 { return this->stub_type_; }
542
543 // Return the local symbol index or invalid_index.
544 unsigned int
545 r_sym() const
546 { return this->r_sym_; }
547
548 // Return the symbol if there is one.
549 const Symbol*
550 symbol() const
551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
552
553 // Return the relobj if there is one.
554 const Relobj*
555 relobj() const
556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
557
558 // Whether this equals to another key k.
559 bool
560 eq(const Key& k) const
561 {
562 return ((this->stub_type_ == k.stub_type_)
563 && (this->r_sym_ == k.r_sym_)
564 && ((this->r_sym_ != Reloc_stub::invalid_index)
565 ? (this->u_.relobj == k.u_.relobj)
566 : (this->u_.symbol == k.u_.symbol))
567 && (this->addend_ == k.addend_));
568 }
569
570 // Return a hash value.
571 size_t
572 hash_value() const
573 {
574 return (this->stub_type_
575 ^ this->r_sym_
576 ^ gold::string_hash<char>(
577 (this->r_sym_ != Reloc_stub::invalid_index)
578 ? this->u_.relobj->name().c_str()
579 : this->u_.symbol->name())
580 ^ this->addend_);
581 }
582
583 // Functors for STL associative containers.
584 struct hash
585 {
586 size_t
587 operator()(const Key& k) const
588 { return k.hash_value(); }
589 };
590
591 struct equal_to
592 {
593 bool
594 operator()(const Key& k1, const Key& k2) const
595 { return k1.eq(k2); }
596 };
597
598 // Name of key. This is mainly for debugging.
599 std::string
600 name() const ATTRIBUTE_UNUSED;
601
602 private:
603 // Stub type.
604 Stub_type stub_type_;
605 // If this is a local symbol, this is the index in the defining object.
606 // Otherwise, it is invalid_index for a global symbol.
607 unsigned int r_sym_;
608 // If r_sym_ is an invalid index, this points to a global symbol.
609 // Otherwise, it points to a relobj. We used the unsized and target
610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
611 // Arm_relobj, in order to avoid making the stub class a template
612 // as most of the stub machinery is endianness-neutral. However, it
613 // may require a bit of casting done by users of this class.
614 union
615 {
616 const Symbol* symbol;
617 const Relobj* relobj;
618 } u_;
619 // Addend associated with a reloc.
620 int32_t addend_;
621 };
622
623 protected:
624 // Reloc_stubs are created via a stub factory. So these are protected.
625 Reloc_stub(const Stub_template* stub_template)
626 : Stub(stub_template), destination_address_(invalid_address)
627 { }
628
629 ~Reloc_stub()
630 { }
631
632 friend class Stub_factory;
633
634 // Return the relocation target address of the i-th relocation in the
635 // stub.
636 Arm_address
637 do_reloc_target(size_t i)
638 {
639 // All reloc stub have only one relocation.
640 gold_assert(i == 0);
641 return this->destination_address_;
642 }
643
644 private:
645 // Address of destination.
646 Arm_address destination_address_;
647 };
648
649 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
650 // THUMB branch that meets the following conditions:
651 //
652 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
653 // branch address is 0xffe.
654 // 2. The branch target address is in the same page as the first word of the
655 // branch.
656 // 3. The branch follows a 32-bit instruction which is not a branch.
657 //
658 // To do the fix up, we need to store the address of the branch instruction
659 // and its target at least. We also need to store the original branch
660 // instruction bits for the condition code in a conditional branch. The
661 // condition code is used in a special instruction template. We also want
662 // to identify input sections needing Cortex-A8 workaround quickly. We store
663 // extra information about object and section index of the code section
664 // containing a branch being fixed up. The information is used to mark
665 // the code section when we finalize the Cortex-A8 stubs.
666 //
667
668 class Cortex_a8_stub : public Stub
669 {
670 public:
671 ~Cortex_a8_stub()
672 { }
673
674 // Return the object of the code section containing the branch being fixed
675 // up.
676 Relobj*
677 relobj() const
678 { return this->relobj_; }
679
680 // Return the section index of the code section containing the branch being
681 // fixed up.
682 unsigned int
683 shndx() const
684 { return this->shndx_; }
685
686 // Return the source address of stub. This is the address of the original
687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
688 // instruction.
689 Arm_address
690 source_address() const
691 { return this->source_address_; }
692
693 // Return the destination address of the stub. This is the branch taken
694 // address of the original branch instruction. LSB is 1 if it is a THUMB
695 // instruction address.
696 Arm_address
697 destination_address() const
698 { return this->destination_address_; }
699
700 // Return the instruction being fixed up.
701 uint32_t
702 original_insn() const
703 { return this->original_insn_; }
704
705 protected:
706 // Cortex_a8_stubs are created via a stub factory. So these are protected.
707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
708 unsigned int shndx, Arm_address source_address,
709 Arm_address destination_address, uint32_t original_insn)
710 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
711 source_address_(source_address | 1U),
712 destination_address_(destination_address),
713 original_insn_(original_insn)
714 { }
715
716 friend class Stub_factory;
717
718 // Return the relocation target address of the i-th relocation in the
719 // stub.
720 Arm_address
721 do_reloc_target(size_t i)
722 {
723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
724 {
725 // The conditional branch veneer has two relocations.
726 gold_assert(i < 2);
727 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 }
729 else
730 {
731 // All other Cortex-A8 stubs have only one relocation.
732 gold_assert(i == 0);
733 return this->destination_address_;
734 }
735 }
736
737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
738 uint16_t
739 do_thumb16_special(size_t);
740
741 private:
742 // Object of the code section containing the branch being fixed up.
743 Relobj* relobj_;
744 // Section index of the code section containing the branch begin fixed up.
745 unsigned int shndx_;
746 // Source address of original branch.
747 Arm_address source_address_;
748 // Destination address of the original branch.
749 Arm_address destination_address_;
750 // Original branch instruction. This is needed for copying the condition
751 // code from a condition branch to its stub.
752 uint32_t original_insn_;
753 };
754
755 // ARMv4 BX Rx branch relocation stub class.
756 class Arm_v4bx_stub : public Stub
757 {
758 public:
759 ~Arm_v4bx_stub()
760 { }
761
762 // Return the associated register.
763 uint32_t
764 reg() const
765 { return this->reg_; }
766
767 protected:
768 // Arm V4BX stubs are created via a stub factory. So these are protected.
769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
770 : Stub(stub_template), reg_(reg)
771 { }
772
773 friend class Stub_factory;
774
775 // Return the relocation target address of the i-th relocation in the
776 // stub.
777 Arm_address
778 do_reloc_target(size_t)
779 { gold_unreachable(); }
780
781 // This may be overridden in the child class.
782 virtual void
783 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
784 {
785 if (big_endian)
786 this->do_fixed_endian_v4bx_write<true>(view, view_size);
787 else
788 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 }
790
791 private:
792 // A template to implement do_write.
793 template<bool big_endian>
794 void inline
795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
796 {
797 const Insn_template* insns = this->stub_template()->insns();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[0].data()
800 + (this->reg_ << 16)));
801 view += insns[0].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[1].data() + this->reg_));
804 view += insns[1].size();
805 elfcpp::Swap<32, big_endian>::writeval(view,
806 (insns[2].data() + this->reg_));
807 }
808
809 // A register index (r0-r14), which is associated with the stub.
810 uint32_t reg_;
811 };
812
813 // Stub factory class.
814
815 class Stub_factory
816 {
817 public:
818 // Return the unique instance of this class.
819 static const Stub_factory&
820 get_instance()
821 {
822 static Stub_factory singleton;
823 return singleton;
824 }
825
826 // Make a relocation stub.
827 Reloc_stub*
828 make_reloc_stub(Stub_type stub_type) const
829 {
830 gold_assert(stub_type >= arm_stub_reloc_first
831 && stub_type <= arm_stub_reloc_last);
832 return new Reloc_stub(this->stub_templates_[stub_type]);
833 }
834
835 // Make a Cortex-A8 stub.
836 Cortex_a8_stub*
837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
838 Arm_address source, Arm_address destination,
839 uint32_t original_insn) const
840 {
841 gold_assert(stub_type >= arm_stub_cortex_a8_first
842 && stub_type <= arm_stub_cortex_a8_last);
843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
844 source, destination, original_insn);
845 }
846
847 // Make an ARM V4BX relocation stub.
848 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
849 Arm_v4bx_stub*
850 make_arm_v4bx_stub(uint32_t reg) const
851 {
852 gold_assert(reg < 0xf);
853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
854 reg);
855 }
856
857 private:
858 // Constructor and destructor are protected since we only return a single
859 // instance created in Stub_factory::get_instance().
860
861 Stub_factory();
862
863 // A Stub_factory may not be copied since it is a singleton.
864 Stub_factory(const Stub_factory&);
865 Stub_factory& operator=(Stub_factory&);
866
867 // Stub templates. These are initialized in the constructor.
868 const Stub_template* stub_templates_[arm_stub_type_last+1];
869 };
870
871 // A class to hold stubs for the ARM target.
872
873 template<bool big_endian>
874 class Stub_table : public Output_data
875 {
876 public:
877 Stub_table(Arm_input_section<big_endian>* owner)
878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
880 prev_data_size_(0), prev_addralign_(1)
881 { }
882
883 ~Stub_table()
884 { }
885
886 // Owner of this stub table.
887 Arm_input_section<big_endian>*
888 owner() const
889 { return this->owner_; }
890
891 // Whether this stub table is empty.
892 bool
893 empty() const
894 {
895 return (this->reloc_stubs_.empty()
896 && this->cortex_a8_stubs_.empty()
897 && this->arm_v4bx_stubs_.empty());
898 }
899
900 // Return the current data size.
901 off_t
902 current_data_size() const
903 { return this->current_data_size_for_child(); }
904
905 // Add a STUB using KEY. The caller is responsible for avoiding addition
906 // if a STUB with the same key has already been added.
907 void
908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
909 {
910 const Stub_template* stub_template = stub->stub_template();
911 gold_assert(stub_template->type() == key.stub_type());
912 this->reloc_stubs_[key] = stub;
913
914 // Assign stub offset early. We can do this because we never remove
915 // reloc stubs and they are in the beginning of the stub table.
916 uint64_t align = stub_template->alignment();
917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
918 stub->set_offset(this->reloc_stubs_size_);
919 this->reloc_stubs_size_ += stub_template->size();
920 this->reloc_stubs_addralign_ =
921 std::max(this->reloc_stubs_addralign_, align);
922 }
923
924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
925 // The caller is responsible for avoiding addition if a STUB with the same
926 // address has already been added.
927 void
928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
929 {
930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
931 this->cortex_a8_stubs_.insert(value);
932 }
933
934 // Add an ARM V4BX relocation stub. A register index will be retrieved
935 // from the stub.
936 void
937 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
938 {
939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
940 this->arm_v4bx_stubs_[stub->reg()] = stub;
941 }
942
943 // Remove all Cortex-A8 stubs.
944 void
945 remove_all_cortex_a8_stubs();
946
947 // Look up a relocation stub using KEY. Return NULL if there is none.
948 Reloc_stub*
949 find_reloc_stub(const Reloc_stub::Key& key) const
950 {
951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
952 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
953 }
954
955 // Look up an arm v4bx relocation stub using the register index.
956 // Return NULL if there is none.
957 Arm_v4bx_stub*
958 find_arm_v4bx_stub(const uint32_t reg) const
959 {
960 gold_assert(reg < 0xf);
961 return this->arm_v4bx_stubs_[reg];
962 }
963
964 // Relocate stubs in this stub table.
965 void
966 relocate_stubs(const Relocate_info<32, big_endian>*,
967 Target_arm<big_endian>*, Output_section*,
968 unsigned char*, Arm_address, section_size_type);
969
970 // Update data size and alignment at the end of a relaxation pass. Return
971 // true if either data size or alignment is different from that of the
972 // previous relaxation pass.
973 bool
974 update_data_size_and_addralign();
975
976 // Finalize stubs. Set the offsets of all stubs and mark input sections
977 // needing the Cortex-A8 workaround.
978 void
979 finalize_stubs();
980
981 // Apply Cortex-A8 workaround to an address range.
982 void
983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
984 unsigned char*, Arm_address,
985 section_size_type);
986
987 protected:
988 // Write out section contents.
989 void
990 do_write(Output_file*);
991
992 // Return the required alignment.
993 uint64_t
994 do_addralign() const
995 { return this->prev_addralign_; }
996
997 // Reset address and file offset.
998 void
999 do_reset_address_and_file_offset()
1000 { this->set_current_data_size_for_child(this->prev_data_size_); }
1001
1002 // Set final data size.
1003 void
1004 set_final_data_size()
1005 { this->set_data_size(this->current_data_size()); }
1006
1007 private:
1008 // Relocate one stub.
1009 void
1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1011 Target_arm<big_endian>*, Output_section*,
1012 unsigned char*, Arm_address, section_size_type);
1013
1014 // Unordered map of relocation stubs.
1015 typedef
1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1017 Reloc_stub::Key::equal_to>
1018 Reloc_stub_map;
1019
1020 // List of Cortex-A8 stubs ordered by addresses of branches being
1021 // fixed up in output.
1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1023 // List of Arm V4BX relocation stubs ordered by associated registers.
1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1025
1026 // Owner of this stub table.
1027 Arm_input_section<big_endian>* owner_;
1028 // The relocation stubs.
1029 Reloc_stub_map reloc_stubs_;
1030 // Size of reloc stubs.
1031 off_t reloc_stubs_size_;
1032 // Maximum address alignment of reloc stubs.
1033 uint64_t reloc_stubs_addralign_;
1034 // The cortex_a8_stubs.
1035 Cortex_a8_stub_list cortex_a8_stubs_;
1036 // The Arm V4BX relocation stubs.
1037 Arm_v4bx_stub_list arm_v4bx_stubs_;
1038 // data size of this in the previous pass.
1039 off_t prev_data_size_;
1040 // address alignment of this in the previous pass.
1041 uint64_t prev_addralign_;
1042 };
1043
1044 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1045 // we add to the end of an EXIDX input section that goes into the output.
1046
1047 class Arm_exidx_cantunwind : public Output_section_data
1048 {
1049 public:
1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1052 { }
1053
1054 // Return the object containing the section pointed by this.
1055 Relobj*
1056 relobj() const
1057 { return this->relobj_; }
1058
1059 // Return the section index of the section pointed by this.
1060 unsigned int
1061 shndx() const
1062 { return this->shndx_; }
1063
1064 protected:
1065 void
1066 do_write(Output_file* of)
1067 {
1068 if (parameters->target().is_big_endian())
1069 this->do_fixed_endian_write<true>(of);
1070 else
1071 this->do_fixed_endian_write<false>(of);
1072 }
1073
1074 // Write to a map file.
1075 void
1076 do_print_to_mapfile(Mapfile* mapfile) const
1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1078
1079 private:
1080 // Implement do_write for a given endianness.
1081 template<bool big_endian>
1082 void inline
1083 do_fixed_endian_write(Output_file*);
1084
1085 // The object containing the section pointed by this.
1086 Relobj* relobj_;
1087 // The section index of the section pointed by this.
1088 unsigned int shndx_;
1089 };
1090
1091 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1092 // Offset map is used to map input section offset within the EXIDX section
1093 // to the output offset from the start of this EXIDX section.
1094
1095 typedef std::map<section_offset_type, section_offset_type>
1096 Arm_exidx_section_offset_map;
1097
1098 // Arm_exidx_merged_section class. This represents an EXIDX input section
1099 // with some of its entries merged.
1100
1101 class Arm_exidx_merged_section : public Output_relaxed_input_section
1102 {
1103 public:
1104 // Constructor for Arm_exidx_merged_section.
1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1106 // SECTION_OFFSET_MAP points to a section offset map describing how
1107 // parts of the input section are mapped to output. DELETED_BYTES is
1108 // the number of bytes deleted from the EXIDX input section.
1109 Arm_exidx_merged_section(
1110 const Arm_exidx_input_section& exidx_input_section,
1111 const Arm_exidx_section_offset_map& section_offset_map,
1112 uint32_t deleted_bytes);
1113
1114 // Build output contents.
1115 void
1116 build_contents(const unsigned char*, section_size_type);
1117
1118 // Return the original EXIDX input section.
1119 const Arm_exidx_input_section&
1120 exidx_input_section() const
1121 { return this->exidx_input_section_; }
1122
1123 // Return the section offset map.
1124 const Arm_exidx_section_offset_map&
1125 section_offset_map() const
1126 { return this->section_offset_map_; }
1127
1128 protected:
1129 // Write merged section into file OF.
1130 void
1131 do_write(Output_file* of);
1132
1133 bool
1134 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1135 section_offset_type*) const;
1136
1137 private:
1138 // Original EXIDX input section.
1139 const Arm_exidx_input_section& exidx_input_section_;
1140 // Section offset map.
1141 const Arm_exidx_section_offset_map& section_offset_map_;
1142 // Merged section contents. We need to keep build the merged section
1143 // and save it here to avoid accessing the original EXIDX section when
1144 // we cannot lock the sections' object.
1145 unsigned char* section_contents_;
1146 };
1147
1148 // A class to wrap an ordinary input section containing executable code.
1149
1150 template<bool big_endian>
1151 class Arm_input_section : public Output_relaxed_input_section
1152 {
1153 public:
1154 Arm_input_section(Relobj* relobj, unsigned int shndx)
1155 : Output_relaxed_input_section(relobj, shndx, 1),
1156 original_addralign_(1), original_size_(0), stub_table_(NULL),
1157 original_contents_(NULL)
1158 { }
1159
1160 ~Arm_input_section()
1161 { delete[] this->original_contents_; }
1162
1163 // Initialize.
1164 void
1165 init();
1166
1167 // Whether this is a stub table owner.
1168 bool
1169 is_stub_table_owner() const
1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1171
1172 // Return the stub table.
1173 Stub_table<big_endian>*
1174 stub_table() const
1175 { return this->stub_table_; }
1176
1177 // Set the stub_table.
1178 void
1179 set_stub_table(Stub_table<big_endian>* stub_table)
1180 { this->stub_table_ = stub_table; }
1181
1182 // Downcast a base pointer to an Arm_input_section pointer. This is
1183 // not type-safe but we only use Arm_input_section not the base class.
1184 static Arm_input_section<big_endian>*
1185 as_arm_input_section(Output_relaxed_input_section* poris)
1186 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1187
1188 // Return the original size of the section.
1189 uint32_t
1190 original_size() const
1191 { return this->original_size_; }
1192
1193 protected:
1194 // Write data to output file.
1195 void
1196 do_write(Output_file*);
1197
1198 // Return required alignment of this.
1199 uint64_t
1200 do_addralign() const
1201 {
1202 if (this->is_stub_table_owner())
1203 return std::max(this->stub_table_->addralign(),
1204 static_cast<uint64_t>(this->original_addralign_));
1205 else
1206 return this->original_addralign_;
1207 }
1208
1209 // Finalize data size.
1210 void
1211 set_final_data_size();
1212
1213 // Reset address and file offset.
1214 void
1215 do_reset_address_and_file_offset();
1216
1217 // Output offset.
1218 bool
1219 do_output_offset(const Relobj* object, unsigned int shndx,
1220 section_offset_type offset,
1221 section_offset_type* poutput) const
1222 {
1223 if ((object == this->relobj())
1224 && (shndx == this->shndx())
1225 && (offset >= 0)
1226 && (offset <=
1227 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1228 {
1229 *poutput = offset;
1230 return true;
1231 }
1232 else
1233 return false;
1234 }
1235
1236 private:
1237 // Copying is not allowed.
1238 Arm_input_section(const Arm_input_section&);
1239 Arm_input_section& operator=(const Arm_input_section&);
1240
1241 // Address alignment of the original input section.
1242 uint32_t original_addralign_;
1243 // Section size of the original input section.
1244 uint32_t original_size_;
1245 // Stub table.
1246 Stub_table<big_endian>* stub_table_;
1247 // Original section contents. We have to make a copy here since the file
1248 // containing the original section may not be locked when we need to access
1249 // the contents.
1250 unsigned char* original_contents_;
1251 };
1252
1253 // Arm_exidx_fixup class. This is used to define a number of methods
1254 // and keep states for fixing up EXIDX coverage.
1255
1256 class Arm_exidx_fixup
1257 {
1258 public:
1259 Arm_exidx_fixup(Output_section* exidx_output_section,
1260 bool merge_exidx_entries = true)
1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1262 last_inlined_entry_(0), last_input_section_(NULL),
1263 section_offset_map_(NULL), first_output_text_section_(NULL),
1264 merge_exidx_entries_(merge_exidx_entries)
1265 { }
1266
1267 ~Arm_exidx_fixup()
1268 { delete this->section_offset_map_; }
1269
1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1272 // number of bytes to be deleted in output. If parts of the input EXIDX
1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1275 // responsible for releasing it.
1276 template<bool big_endian>
1277 uint32_t
1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1279 const unsigned char* section_contents,
1280 section_size_type section_size,
1281 Arm_exidx_section_offset_map** psection_offset_map);
1282
1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1284 // input section, if there is not one already.
1285 void
1286 add_exidx_cantunwind_as_needed();
1287
1288 // Return the output section for the text section which is linked to the
1289 // first exidx input in output.
1290 Output_section*
1291 first_output_text_section() const
1292 { return this->first_output_text_section_; }
1293
1294 private:
1295 // Copying is not allowed.
1296 Arm_exidx_fixup(const Arm_exidx_fixup&);
1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1298
1299 // Type of EXIDX unwind entry.
1300 enum Unwind_type
1301 {
1302 // No type.
1303 UT_NONE,
1304 // EXIDX_CANTUNWIND.
1305 UT_EXIDX_CANTUNWIND,
1306 // Inlined entry.
1307 UT_INLINED_ENTRY,
1308 // Normal entry.
1309 UT_NORMAL_ENTRY,
1310 };
1311
1312 // Process an EXIDX entry. We only care about the second word of the
1313 // entry. Return true if the entry can be deleted.
1314 bool
1315 process_exidx_entry(uint32_t second_word);
1316
1317 // Update the current section offset map during EXIDX section fix-up.
1318 // If there is no map, create one. INPUT_OFFSET is the offset of a
1319 // reference point, DELETED_BYTES is the number of deleted by in the
1320 // section so far. If DELETE_ENTRY is true, the reference point and
1321 // all offsets after the previous reference point are discarded.
1322 void
1323 update_offset_map(section_offset_type input_offset,
1324 section_size_type deleted_bytes, bool delete_entry);
1325
1326 // EXIDX output section.
1327 Output_section* exidx_output_section_;
1328 // Unwind type of the last EXIDX entry processed.
1329 Unwind_type last_unwind_type_;
1330 // Last seen inlined EXIDX entry.
1331 uint32_t last_inlined_entry_;
1332 // Last processed EXIDX input section.
1333 const Arm_exidx_input_section* last_input_section_;
1334 // Section offset map created in process_exidx_section.
1335 Arm_exidx_section_offset_map* section_offset_map_;
1336 // Output section for the text section which is linked to the first exidx
1337 // input in output.
1338 Output_section* first_output_text_section_;
1339
1340 bool merge_exidx_entries_;
1341 };
1342
1343 // Arm output section class. This is defined mainly to add a number of
1344 // stub generation methods.
1345
1346 template<bool big_endian>
1347 class Arm_output_section : public Output_section
1348 {
1349 public:
1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1351
1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1353 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1354 elfcpp::Elf_Xword flags)
1355 : Output_section(name, type,
1356 (type == elfcpp::SHT_ARM_EXIDX
1357 ? flags | elfcpp::SHF_LINK_ORDER
1358 : flags))
1359 {
1360 if (type == elfcpp::SHT_ARM_EXIDX)
1361 this->set_always_keeps_input_sections();
1362 }
1363
1364 ~Arm_output_section()
1365 { }
1366
1367 // Group input sections for stub generation.
1368 void
1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1370
1371 // Downcast a base pointer to an Arm_output_section pointer. This is
1372 // not type-safe but we only use Arm_output_section not the base class.
1373 static Arm_output_section<big_endian>*
1374 as_arm_output_section(Output_section* os)
1375 { return static_cast<Arm_output_section<big_endian>*>(os); }
1376
1377 // Append all input text sections in this into LIST.
1378 void
1379 append_text_sections_to_list(Text_section_list* list);
1380
1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1382 // is a list of text input sections sorted in ascending order of their
1383 // output addresses.
1384 void
1385 fix_exidx_coverage(Layout* layout,
1386 const Text_section_list& sorted_text_section,
1387 Symbol_table* symtab,
1388 bool merge_exidx_entries,
1389 const Task* task);
1390
1391 // Link an EXIDX section into its corresponding text section.
1392 void
1393 set_exidx_section_link();
1394
1395 private:
1396 // For convenience.
1397 typedef Output_section::Input_section Input_section;
1398 typedef Output_section::Input_section_list Input_section_list;
1399
1400 // Create a stub group.
1401 void create_stub_group(Input_section_list::const_iterator,
1402 Input_section_list::const_iterator,
1403 Input_section_list::const_iterator,
1404 Target_arm<big_endian>*,
1405 std::vector<Output_relaxed_input_section*>*,
1406 const Task* task);
1407 };
1408
1409 // Arm_exidx_input_section class. This represents an EXIDX input section.
1410
1411 class Arm_exidx_input_section
1412 {
1413 public:
1414 static const section_offset_type invalid_offset =
1415 static_cast<section_offset_type>(-1);
1416
1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1418 unsigned int link, uint32_t size,
1419 uint32_t addralign, uint32_t text_size)
1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1421 addralign_(addralign), text_size_(text_size), has_errors_(false)
1422 { }
1423
1424 ~Arm_exidx_input_section()
1425 { }
1426
1427 // Accessors: This is a read-only class.
1428
1429 // Return the object containing this EXIDX input section.
1430 Relobj*
1431 relobj() const
1432 { return this->relobj_; }
1433
1434 // Return the section index of this EXIDX input section.
1435 unsigned int
1436 shndx() const
1437 { return this->shndx_; }
1438
1439 // Return the section index of linked text section in the same object.
1440 unsigned int
1441 link() const
1442 { return this->link_; }
1443
1444 // Return size of the EXIDX input section.
1445 uint32_t
1446 size() const
1447 { return this->size_; }
1448
1449 // Return address alignment of EXIDX input section.
1450 uint32_t
1451 addralign() const
1452 { return this->addralign_; }
1453
1454 // Return size of the associated text input section.
1455 uint32_t
1456 text_size() const
1457 { return this->text_size_; }
1458
1459 // Whether there are any errors in the EXIDX input section.
1460 bool
1461 has_errors() const
1462 { return this->has_errors_; }
1463
1464 // Set has-errors flag.
1465 void
1466 set_has_errors()
1467 { this->has_errors_ = true; }
1468
1469 private:
1470 // Object containing this.
1471 Relobj* relobj_;
1472 // Section index of this.
1473 unsigned int shndx_;
1474 // text section linked to this in the same object.
1475 unsigned int link_;
1476 // Size of this. For ARM 32-bit is sufficient.
1477 uint32_t size_;
1478 // Address alignment of this. For ARM 32-bit is sufficient.
1479 uint32_t addralign_;
1480 // Size of associated text section.
1481 uint32_t text_size_;
1482 // Whether this has any errors.
1483 bool has_errors_;
1484 };
1485
1486 // Arm_relobj class.
1487
1488 template<bool big_endian>
1489 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1490 {
1491 public:
1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1493
1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1497 stub_tables_(), local_symbol_is_thumb_function_(),
1498 attributes_section_data_(NULL), mapping_symbols_info_(),
1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1500 output_local_symbol_count_needs_update_(false),
1501 merge_flags_and_attributes_(true)
1502 { }
1503
1504 ~Arm_relobj()
1505 { delete this->attributes_section_data_; }
1506
1507 // Return the stub table of the SHNDX-th section if there is one.
1508 Stub_table<big_endian>*
1509 stub_table(unsigned int shndx) const
1510 {
1511 gold_assert(shndx < this->stub_tables_.size());
1512 return this->stub_tables_[shndx];
1513 }
1514
1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1516 void
1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1518 {
1519 gold_assert(shndx < this->stub_tables_.size());
1520 this->stub_tables_[shndx] = stub_table;
1521 }
1522
1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1524 // index. This is only valid after do_count_local_symbol is called.
1525 bool
1526 local_symbol_is_thumb_function(unsigned int r_sym) const
1527 {
1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1529 return this->local_symbol_is_thumb_function_[r_sym];
1530 }
1531
1532 // Scan all relocation sections for stub generation.
1533 void
1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1535 const Layout*);
1536
1537 // Convert regular input section with index SHNDX to a relaxed section.
1538 void
1539 convert_input_section_to_relaxed_section(unsigned shndx)
1540 {
1541 // The stubs have relocations and we need to process them after writing
1542 // out the stubs. So relocation now must follow section write.
1543 this->set_section_offset(shndx, -1ULL);
1544 this->set_relocs_must_follow_section_writes();
1545 }
1546
1547 // Downcast a base pointer to an Arm_relobj pointer. This is
1548 // not type-safe but we only use Arm_relobj not the base class.
1549 static Arm_relobj<big_endian>*
1550 as_arm_relobj(Relobj* relobj)
1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1552
1553 // Processor-specific flags in ELF file header. This is valid only after
1554 // reading symbols.
1555 elfcpp::Elf_Word
1556 processor_specific_flags() const
1557 { return this->processor_specific_flags_; }
1558
1559 // Attribute section data This is the contents of the .ARM.attribute section
1560 // if there is one.
1561 const Attributes_section_data*
1562 attributes_section_data() const
1563 { return this->attributes_section_data_; }
1564
1565 // Mapping symbol location.
1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1567
1568 // Functor for STL container.
1569 struct Mapping_symbol_position_less
1570 {
1571 bool
1572 operator()(const Mapping_symbol_position& p1,
1573 const Mapping_symbol_position& p2) const
1574 {
1575 return (p1.first < p2.first
1576 || (p1.first == p2.first && p1.second < p2.second));
1577 }
1578 };
1579
1580 // We only care about the first character of a mapping symbol, so
1581 // we only store that instead of the whole symbol name.
1582 typedef std::map<Mapping_symbol_position, char,
1583 Mapping_symbol_position_less> Mapping_symbols_info;
1584
1585 // Whether a section contains any Cortex-A8 workaround.
1586 bool
1587 section_has_cortex_a8_workaround(unsigned int shndx) const
1588 {
1589 return (this->section_has_cortex_a8_workaround_ != NULL
1590 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1591 }
1592
1593 // Mark a section that has Cortex-A8 workaround.
1594 void
1595 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1596 {
1597 if (this->section_has_cortex_a8_workaround_ == NULL)
1598 this->section_has_cortex_a8_workaround_ =
1599 new std::vector<bool>(this->shnum(), false);
1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1601 }
1602
1603 // Return the EXIDX section of an text section with index SHNDX or NULL
1604 // if the text section has no associated EXIDX section.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_link(unsigned int shndx) const
1607 {
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->link() == shndx)
1611 ? p->second
1612 : NULL);
1613 }
1614
1615 // Return the EXIDX section with index SHNDX or NULL if there is none.
1616 const Arm_exidx_input_section*
1617 exidx_input_section_by_shndx(unsigned shndx) const
1618 {
1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1620 return ((p != this->exidx_section_map_.end()
1621 && p->second->shndx() == shndx)
1622 ? p->second
1623 : NULL);
1624 }
1625
1626 // Whether output local symbol count needs updating.
1627 bool
1628 output_local_symbol_count_needs_update() const
1629 { return this->output_local_symbol_count_needs_update_; }
1630
1631 // Set output_local_symbol_count_needs_update flag to be true.
1632 void
1633 set_output_local_symbol_count_needs_update()
1634 { this->output_local_symbol_count_needs_update_ = true; }
1635
1636 // Update output local symbol count at the end of relaxation.
1637 void
1638 update_output_local_symbol_count();
1639
1640 // Whether we want to merge processor-specific flags and attributes.
1641 bool
1642 merge_flags_and_attributes() const
1643 { return this->merge_flags_and_attributes_; }
1644
1645 // Export list of EXIDX section indices.
1646 void
1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1648 {
1649 list->clear();
1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1651 p != this->exidx_section_map_.end();
1652 ++p)
1653 {
1654 if (p->second->shndx() == p->first)
1655 list->push_back(p->first);
1656 }
1657 // Sort list to make result independent of implementation of map.
1658 std::sort(list->begin(), list->end());
1659 }
1660
1661 protected:
1662 // Post constructor setup.
1663 void
1664 do_setup()
1665 {
1666 // Call parent's setup method.
1667 Sized_relobj_file<32, big_endian>::do_setup();
1668
1669 // Initialize look-up tables.
1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1671 this->stub_tables_.swap(empty_stub_table_list);
1672 }
1673
1674 // Count the local symbols.
1675 void
1676 do_count_local_symbols(Stringpool_template<char>*,
1677 Stringpool_template<char>*);
1678
1679 void
1680 do_relocate_sections(
1681 const Symbol_table* symtab, const Layout* layout,
1682 const unsigned char* pshdrs, Output_file* of,
1683 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1684
1685 // Read the symbol information.
1686 void
1687 do_read_symbols(Read_symbols_data* sd);
1688
1689 // Process relocs for garbage collection.
1690 void
1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692
1693 private:
1694
1695 // Whether a section needs to be scanned for relocation stubs.
1696 bool
1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1698 const Relobj::Output_sections&,
1699 const Symbol_table*, const unsigned char*);
1700
1701 // Whether a section is a scannable text section.
1702 bool
1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1704 const Output_section*, const Symbol_table*);
1705
1706 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1707 bool
1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1709 unsigned int, Output_section*,
1710 const Symbol_table*);
1711
1712 // Scan a section for the Cortex-A8 erratum.
1713 void
1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1715 unsigned int, Output_section*,
1716 Target_arm<big_endian>*);
1717
1718 // Find the linked text section of an EXIDX section by looking at the
1719 // first relocation of the EXIDX section. PSHDR points to the section
1720 // headers of a relocation section and PSYMS points to the local symbols.
1721 // PSHNDX points to a location storing the text section index if found.
1722 // Return whether we can find the linked section.
1723 bool
1724 find_linked_text_section(const unsigned char* pshdr,
1725 const unsigned char* psyms, unsigned int* pshndx);
1726
1727 //
1728 // Make a new Arm_exidx_input_section object for EXIDX section with
1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1730 // index of the linked text section.
1731 void
1732 make_exidx_input_section(unsigned int shndx,
1733 const elfcpp::Shdr<32, big_endian>& shdr,
1734 unsigned int text_shndx,
1735 const elfcpp::Shdr<32, big_endian>& text_shdr);
1736
1737 // Return the output address of either a plain input section or a
1738 // relaxed input section. SHNDX is the section index.
1739 Arm_address
1740 simple_input_section_output_address(unsigned int, Output_section*);
1741
1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1744 Exidx_section_map;
1745
1746 // List of stub tables.
1747 Stub_table_list stub_tables_;
1748 // Bit vector to tell if a local symbol is a thumb function or not.
1749 // This is only valid after do_count_local_symbol is called.
1750 std::vector<bool> local_symbol_is_thumb_function_;
1751 // processor-specific flags in ELF file header.
1752 elfcpp::Elf_Word processor_specific_flags_;
1753 // Object attributes if there is an .ARM.attributes section or NULL.
1754 Attributes_section_data* attributes_section_data_;
1755 // Mapping symbols information.
1756 Mapping_symbols_info mapping_symbols_info_;
1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1758 std::vector<bool>* section_has_cortex_a8_workaround_;
1759 // Map a text section to its associated .ARM.exidx section, if there is one.
1760 Exidx_section_map exidx_section_map_;
1761 // Whether output local symbol count needs updating.
1762 bool output_local_symbol_count_needs_update_;
1763 // Whether we merge processor flags and attributes of this object to
1764 // output.
1765 bool merge_flags_and_attributes_;
1766 };
1767
1768 // Arm_dynobj class.
1769
1770 template<bool big_endian>
1771 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1772 {
1773 public:
1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1775 const elfcpp::Ehdr<32, big_endian>& ehdr)
1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1777 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { }
1779
1780 ~Arm_dynobj()
1781 { delete this->attributes_section_data_; }
1782
1783 // Downcast a base pointer to an Arm_relobj pointer. This is
1784 // not type-safe but we only use Arm_relobj not the base class.
1785 static Arm_dynobj<big_endian>*
1786 as_arm_dynobj(Dynobj* dynobj)
1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1788
1789 // Processor-specific flags in ELF file header. This is valid only after
1790 // reading symbols.
1791 elfcpp::Elf_Word
1792 processor_specific_flags() const
1793 { return this->processor_specific_flags_; }
1794
1795 // Attributes section data.
1796 const Attributes_section_data*
1797 attributes_section_data() const
1798 { return this->attributes_section_data_; }
1799
1800 protected:
1801 // Read the symbol information.
1802 void
1803 do_read_symbols(Read_symbols_data* sd);
1804
1805 private:
1806 // processor-specific flags in ELF file header.
1807 elfcpp::Elf_Word processor_specific_flags_;
1808 // Object attributes if there is an .ARM.attributes section or NULL.
1809 Attributes_section_data* attributes_section_data_;
1810 };
1811
1812 // Functor to read reloc addends during stub generation.
1813
1814 template<int sh_type, bool big_endian>
1815 struct Stub_addend_reader
1816 {
1817 // Return the addend for a relocation of a particular type. Depending
1818 // on whether this is a REL or RELA relocation, read the addend from a
1819 // view or from a Reloc object.
1820 elfcpp::Elf_types<32>::Elf_Swxword
1821 operator()(
1822 unsigned int /* r_type */,
1823 const unsigned char* /* view */,
1824 const typename Reloc_types<sh_type,
1825 32, big_endian>::Reloc& /* reloc */) const;
1826 };
1827
1828 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1829
1830 template<bool big_endian>
1831 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1832 {
1833 elfcpp::Elf_types<32>::Elf_Swxword
1834 operator()(
1835 unsigned int,
1836 const unsigned char*,
1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1838 };
1839
1840 // Specialized Stub_addend_reader for RELA type relocation sections.
1841 // We currently do not handle RELA type relocation sections but it is trivial
1842 // to implement the addend reader. This is provided for completeness and to
1843 // make it easier to add support for RELA relocation sections in the future.
1844
1845 template<bool big_endian>
1846 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1847 {
1848 elfcpp::Elf_types<32>::Elf_Swxword
1849 operator()(
1850 unsigned int,
1851 const unsigned char*,
1852 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1853 big_endian>::Reloc& reloc) const
1854 { return reloc.get_r_addend(); }
1855 };
1856
1857 // Cortex_a8_reloc class. We keep record of relocation that may need
1858 // the Cortex-A8 erratum workaround.
1859
1860 class Cortex_a8_reloc
1861 {
1862 public:
1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1864 Arm_address destination)
1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1866 { }
1867
1868 ~Cortex_a8_reloc()
1869 { }
1870
1871 // Accessors: This is a read-only class.
1872
1873 // Return the relocation stub associated with this relocation if there is
1874 // one.
1875 const Reloc_stub*
1876 reloc_stub() const
1877 { return this->reloc_stub_; }
1878
1879 // Return the relocation type.
1880 unsigned int
1881 r_type() const
1882 { return this->r_type_; }
1883
1884 // Return the destination address of the relocation. LSB stores the THUMB
1885 // bit.
1886 Arm_address
1887 destination() const
1888 { return this->destination_; }
1889
1890 private:
1891 // Associated relocation stub if there is one, or NULL.
1892 const Reloc_stub* reloc_stub_;
1893 // Relocation type.
1894 unsigned int r_type_;
1895 // Destination address of this relocation. LSB is used to distinguish
1896 // ARM/THUMB mode.
1897 Arm_address destination_;
1898 };
1899
1900 // Arm_output_data_got class. We derive this from Output_data_got to add
1901 // extra methods to handle TLS relocations in a static link.
1902
1903 template<bool big_endian>
1904 class Arm_output_data_got : public Output_data_got<32, big_endian>
1905 {
1906 public:
1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1909 { }
1910
1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1913 // applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1917
1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1920 // relocation that needs to be applied in a static link.
1921 void
1922 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1923 Sized_relobj_file<32, big_endian>* relobj,
1924 unsigned int index)
1925 {
1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 index));
1928 }
1929
1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1931 // The first one is initialized to be 1, which is the module index for
1932 // the main executable and the second one 0. A reloc of the type
1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1934 // be applied by gold. GSYM is a global symbol.
1935 void
1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1937
1938 // Same as the above but for a local symbol in OBJECT with INDEX.
1939 void
1940 add_tls_gd32_with_static_reloc(unsigned int got_type,
1941 Sized_relobj_file<32, big_endian>* object,
1942 unsigned int index);
1943
1944 protected:
1945 // Write out the GOT table.
1946 void
1947 do_write(Output_file*);
1948
1949 private:
1950 // This class represent dynamic relocations that need to be applied by
1951 // gold because we are using TLS relocations in a static link.
1952 class Static_reloc
1953 {
1954 public:
1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1957 { this->u_.global.symbol = gsym; }
1958
1959 Static_reloc(unsigned int got_offset, unsigned int r_type,
1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1962 {
1963 this->u_.local.relobj = relobj;
1964 this->u_.local.index = index;
1965 }
1966
1967 // Return the GOT offset.
1968 unsigned int
1969 got_offset() const
1970 { return this->got_offset_; }
1971
1972 // Relocation type.
1973 unsigned int
1974 r_type() const
1975 { return this->r_type_; }
1976
1977 // Whether the symbol is global or not.
1978 bool
1979 symbol_is_global() const
1980 { return this->symbol_is_global_; }
1981
1982 // For a relocation against a global symbol, the global symbol.
1983 Symbol*
1984 symbol() const
1985 {
1986 gold_assert(this->symbol_is_global_);
1987 return this->u_.global.symbol;
1988 }
1989
1990 // For a relocation against a local symbol, the defining object.
1991 Sized_relobj_file<32, big_endian>*
1992 relobj() const
1993 {
1994 gold_assert(!this->symbol_is_global_);
1995 return this->u_.local.relobj;
1996 }
1997
1998 // For a relocation against a local symbol, the local symbol index.
1999 unsigned int
2000 index() const
2001 {
2002 gold_assert(!this->symbol_is_global_);
2003 return this->u_.local.index;
2004 }
2005
2006 private:
2007 // GOT offset of the entry to which this relocation is applied.
2008 unsigned int got_offset_;
2009 // Type of relocation.
2010 unsigned int r_type_;
2011 // Whether this relocation is against a global symbol.
2012 bool symbol_is_global_;
2013 // A global or local symbol.
2014 union
2015 {
2016 struct
2017 {
2018 // For a global symbol, the symbol itself.
2019 Symbol* symbol;
2020 } global;
2021 struct
2022 {
2023 // For a local symbol, the object defining object.
2024 Sized_relobj_file<32, big_endian>* relobj;
2025 // For a local symbol, the symbol index.
2026 unsigned int index;
2027 } local;
2028 } u_;
2029 };
2030
2031 // Symbol table of the output object.
2032 Symbol_table* symbol_table_;
2033 // Layout of the output object.
2034 Layout* layout_;
2035 // Static relocs to be applied to the GOT.
2036 std::vector<Static_reloc> static_relocs_;
2037 };
2038
2039 // The ARM target has many relocation types with odd-sizes or noncontiguous
2040 // bits. The default handling of relocatable relocation cannot process these
2041 // relocations. So we have to extend the default code.
2042
2043 template<bool big_endian, typename Classify_reloc>
2044 class Arm_scan_relocatable_relocs :
2045 public Default_scan_relocatable_relocs<Classify_reloc>
2046 {
2047 public:
2048 // Return the strategy to use for a local symbol which is a section
2049 // symbol, given the relocation type.
2050 inline Relocatable_relocs::Reloc_strategy
2051 local_section_strategy(unsigned int r_type, Relobj*)
2052 {
2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2055 else
2056 {
2057 if (r_type == elfcpp::R_ARM_TARGET1
2058 || r_type == elfcpp::R_ARM_TARGET2)
2059 {
2060 const Target_arm<big_endian>* arm_target =
2061 Target_arm<big_endian>::default_target();
2062 r_type = arm_target->get_real_reloc_type(r_type);
2063 }
2064
2065 switch(r_type)
2066 {
2067 // Relocations that write nothing. These exclude R_ARM_TARGET1
2068 // and R_ARM_TARGET2.
2069 case elfcpp::R_ARM_NONE:
2070 case elfcpp::R_ARM_V4BX:
2071 case elfcpp::R_ARM_TLS_GOTDESC:
2072 case elfcpp::R_ARM_TLS_CALL:
2073 case elfcpp::R_ARM_TLS_DESCSEQ:
2074 case elfcpp::R_ARM_THM_TLS_CALL:
2075 case elfcpp::R_ARM_GOTRELAX:
2076 case elfcpp::R_ARM_GNU_VTENTRY:
2077 case elfcpp::R_ARM_GNU_VTINHERIT:
2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2081 // These should have been converted to something else above.
2082 case elfcpp::R_ARM_TARGET1:
2083 case elfcpp::R_ARM_TARGET2:
2084 gold_unreachable();
2085 // Relocations that write full 32 bits and
2086 // have alignment of 1.
2087 case elfcpp::R_ARM_ABS32:
2088 case elfcpp::R_ARM_REL32:
2089 case elfcpp::R_ARM_SBREL32:
2090 case elfcpp::R_ARM_GOTOFF32:
2091 case elfcpp::R_ARM_BASE_PREL:
2092 case elfcpp::R_ARM_GOT_BREL:
2093 case elfcpp::R_ARM_BASE_ABS:
2094 case elfcpp::R_ARM_ABS32_NOI:
2095 case elfcpp::R_ARM_REL32_NOI:
2096 case elfcpp::R_ARM_PLT32_ABS:
2097 case elfcpp::R_ARM_GOT_ABS:
2098 case elfcpp::R_ARM_GOT_PREL:
2099 case elfcpp::R_ARM_TLS_GD32:
2100 case elfcpp::R_ARM_TLS_LDM32:
2101 case elfcpp::R_ARM_TLS_LDO32:
2102 case elfcpp::R_ARM_TLS_IE32:
2103 case elfcpp::R_ARM_TLS_LE32:
2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2105 default:
2106 // For all other static relocations, return RELOC_SPECIAL.
2107 return Relocatable_relocs::RELOC_SPECIAL;
2108 }
2109 }
2110 }
2111 };
2112
2113 template<bool big_endian>
2114 class Target_arm : public Sized_target<32, big_endian>
2115 {
2116 public:
2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2118 Reloc_section;
2119
2120 // When were are relocating a stub, we pass this as the relocation number.
2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2122
2123 Target_arm(const Target::Target_info* info = &arm_info)
2124 : Sized_target<32, big_endian>(info),
2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2129 should_force_pic_veneer_(false),
2130 arm_input_section_map_(), attributes_section_data_(NULL),
2131 fix_cortex_a8_(false), cortex_a8_relocs_info_(),
2132 target1_reloc_(elfcpp::R_ARM_ABS32),
2133 // This can be any reloc type but usually is R_ARM_GOT_PREL.
2134 target2_reloc_(elfcpp::R_ARM_GOT_PREL)
2135 { }
2136
2137 // Whether we force PCI branch veneers.
2138 bool
2139 should_force_pic_veneer() const
2140 { return this->should_force_pic_veneer_; }
2141
2142 // Set PIC veneer flag.
2143 void
2144 set_should_force_pic_veneer(bool value)
2145 { this->should_force_pic_veneer_ = value; }
2146
2147 // Whether we use THUMB-2 instructions.
2148 bool
2149 using_thumb2() const
2150 {
2151 Object_attribute* attr =
2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2153 int arch = attr->int_value();
2154 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2155 }
2156
2157 // Whether we use THUMB/THUMB-2 instructions only.
2158 bool
2159 using_thumb_only() const
2160 {
2161 Object_attribute* attr =
2162 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2163
2164 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2165 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2166 return true;
2167 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2168 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2169 return false;
2170 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2171 return attr->int_value() == 'M';
2172 }
2173
2174 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2175 bool
2176 may_use_arm_nop() const
2177 {
2178 Object_attribute* attr =
2179 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2180 int arch = attr->int_value();
2181 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2182 || arch == elfcpp::TAG_CPU_ARCH_V6K
2183 || arch == elfcpp::TAG_CPU_ARCH_V7
2184 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2185 }
2186
2187 // Whether we have THUMB-2 NOP.W instruction.
2188 bool
2189 may_use_thumb2_nop() const
2190 {
2191 Object_attribute* attr =
2192 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2193 int arch = attr->int_value();
2194 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2195 || arch == elfcpp::TAG_CPU_ARCH_V7
2196 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2197 }
2198
2199 // Whether we have v4T interworking instructions available.
2200 bool
2201 may_use_v4t_interworking() const
2202 {
2203 Object_attribute* attr =
2204 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2205 int arch = attr->int_value();
2206 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2207 && arch != elfcpp::TAG_CPU_ARCH_V4);
2208 }
2209
2210 // Whether we have v5T interworking instructions available.
2211 bool
2212 may_use_v5t_interworking() const
2213 {
2214 Object_attribute* attr =
2215 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2216 int arch = attr->int_value();
2217 if (parameters->options().fix_arm1176())
2218 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2219 || arch == elfcpp::TAG_CPU_ARCH_V7
2220 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2221 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2222 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2223 else
2224 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2225 && arch != elfcpp::TAG_CPU_ARCH_V4
2226 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2227 }
2228
2229 // Process the relocations to determine unreferenced sections for
2230 // garbage collection.
2231 void
2232 gc_process_relocs(Symbol_table* symtab,
2233 Layout* layout,
2234 Sized_relobj_file<32, big_endian>* object,
2235 unsigned int data_shndx,
2236 unsigned int sh_type,
2237 const unsigned char* prelocs,
2238 size_t reloc_count,
2239 Output_section* output_section,
2240 bool needs_special_offset_handling,
2241 size_t local_symbol_count,
2242 const unsigned char* plocal_symbols);
2243
2244 // Scan the relocations to look for symbol adjustments.
2245 void
2246 scan_relocs(Symbol_table* symtab,
2247 Layout* layout,
2248 Sized_relobj_file<32, big_endian>* object,
2249 unsigned int data_shndx,
2250 unsigned int sh_type,
2251 const unsigned char* prelocs,
2252 size_t reloc_count,
2253 Output_section* output_section,
2254 bool needs_special_offset_handling,
2255 size_t local_symbol_count,
2256 const unsigned char* plocal_symbols);
2257
2258 // Finalize the sections.
2259 void
2260 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2261
2262 // Return the value to use for a dynamic symbol which requires special
2263 // treatment.
2264 uint64_t
2265 do_dynsym_value(const Symbol*) const;
2266
2267 // Return the plt address for globals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_global(const Symbol* gsym) const
2271 { return this->plt_section()->address_for_global(gsym); }
2272
2273 // Return the plt address for locals. Since we have irelative plt entries,
2274 // address calculation is not as straightforward as plt_address + plt_offset.
2275 uint64_t
2276 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2277 { return this->plt_section()->address_for_local(relobj, symndx); }
2278
2279 // Relocate a section.
2280 void
2281 relocate_section(const Relocate_info<32, big_endian>*,
2282 unsigned int sh_type,
2283 const unsigned char* prelocs,
2284 size_t reloc_count,
2285 Output_section* output_section,
2286 bool needs_special_offset_handling,
2287 unsigned char* view,
2288 Arm_address view_address,
2289 section_size_type view_size,
2290 const Reloc_symbol_changes*);
2291
2292 // Scan the relocs during a relocatable link.
2293 void
2294 scan_relocatable_relocs(Symbol_table* symtab,
2295 Layout* layout,
2296 Sized_relobj_file<32, big_endian>* object,
2297 unsigned int data_shndx,
2298 unsigned int sh_type,
2299 const unsigned char* prelocs,
2300 size_t reloc_count,
2301 Output_section* output_section,
2302 bool needs_special_offset_handling,
2303 size_t local_symbol_count,
2304 const unsigned char* plocal_symbols,
2305 Relocatable_relocs*);
2306
2307 // Scan the relocs for --emit-relocs.
2308 void
2309 emit_relocs_scan(Symbol_table* symtab,
2310 Layout* layout,
2311 Sized_relobj_file<32, big_endian>* object,
2312 unsigned int data_shndx,
2313 unsigned int sh_type,
2314 const unsigned char* prelocs,
2315 size_t reloc_count,
2316 Output_section* output_section,
2317 bool needs_special_offset_handling,
2318 size_t local_symbol_count,
2319 const unsigned char* plocal_syms,
2320 Relocatable_relocs* rr);
2321
2322 // Emit relocations for a section.
2323 void
2324 relocate_relocs(const Relocate_info<32, big_endian>*,
2325 unsigned int sh_type,
2326 const unsigned char* prelocs,
2327 size_t reloc_count,
2328 Output_section* output_section,
2329 typename elfcpp::Elf_types<32>::Elf_Off
2330 offset_in_output_section,
2331 unsigned char* view,
2332 Arm_address view_address,
2333 section_size_type view_size,
2334 unsigned char* reloc_view,
2335 section_size_type reloc_view_size);
2336
2337 // Perform target-specific processing in a relocatable link. This is
2338 // only used if we use the relocation strategy RELOC_SPECIAL.
2339 void
2340 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2341 unsigned int sh_type,
2342 const unsigned char* preloc_in,
2343 size_t relnum,
2344 Output_section* output_section,
2345 typename elfcpp::Elf_types<32>::Elf_Off
2346 offset_in_output_section,
2347 unsigned char* view,
2348 typename elfcpp::Elf_types<32>::Elf_Addr
2349 view_address,
2350 section_size_type view_size,
2351 unsigned char* preloc_out);
2352
2353 // Return whether SYM is defined by the ABI.
2354 bool
2355 do_is_defined_by_abi(const Symbol* sym) const
2356 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2357
2358 // Return whether there is a GOT section.
2359 bool
2360 has_got_section() const
2361 { return this->got_ != NULL; }
2362
2363 // Return the size of the GOT section.
2364 section_size_type
2365 got_size() const
2366 {
2367 gold_assert(this->got_ != NULL);
2368 return this->got_->data_size();
2369 }
2370
2371 // Return the number of entries in the GOT.
2372 unsigned int
2373 got_entry_count() const
2374 {
2375 if (!this->has_got_section())
2376 return 0;
2377 return this->got_size() / 4;
2378 }
2379
2380 // Return the number of entries in the PLT.
2381 unsigned int
2382 plt_entry_count() const;
2383
2384 // Return the offset of the first non-reserved PLT entry.
2385 unsigned int
2386 first_plt_entry_offset() const;
2387
2388 // Return the size of each PLT entry.
2389 unsigned int
2390 plt_entry_size() const;
2391
2392 // Get the section to use for IRELATIVE relocations, create it if necessary.
2393 Reloc_section*
2394 rel_irelative_section(Layout*);
2395
2396 // Map platform-specific reloc types
2397 unsigned int
2398 get_real_reloc_type(unsigned int r_type) const;
2399
2400 //
2401 // Methods to support stub-generations.
2402 //
2403
2404 // Return the stub factory
2405 const Stub_factory&
2406 stub_factory() const
2407 { return this->stub_factory_; }
2408
2409 // Make a new Arm_input_section object.
2410 Arm_input_section<big_endian>*
2411 new_arm_input_section(Relobj*, unsigned int);
2412
2413 // Find the Arm_input_section object corresponding to the SHNDX-th input
2414 // section of RELOBJ.
2415 Arm_input_section<big_endian>*
2416 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2417
2418 // Make a new Stub_table
2419 Stub_table<big_endian>*
2420 new_stub_table(Arm_input_section<big_endian>*);
2421
2422 // Scan a section for stub generation.
2423 void
2424 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2425 const unsigned char*, size_t, Output_section*,
2426 bool, const unsigned char*, Arm_address,
2427 section_size_type);
2428
2429 // Relocate a stub.
2430 void
2431 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2432 Output_section*, unsigned char*, Arm_address,
2433 section_size_type);
2434
2435 // Get the default ARM target.
2436 static Target_arm<big_endian>*
2437 default_target()
2438 {
2439 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2440 && parameters->target().is_big_endian() == big_endian);
2441 return static_cast<Target_arm<big_endian>*>(
2442 parameters->sized_target<32, big_endian>());
2443 }
2444
2445 // Whether NAME belongs to a mapping symbol.
2446 static bool
2447 is_mapping_symbol_name(const char* name)
2448 {
2449 return (name
2450 && name[0] == '$'
2451 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2452 && (name[2] == '\0' || name[2] == '.'));
2453 }
2454
2455 // Whether we work around the Cortex-A8 erratum.
2456 bool
2457 fix_cortex_a8() const
2458 { return this->fix_cortex_a8_; }
2459
2460 // Whether we merge exidx entries in debuginfo.
2461 bool
2462 merge_exidx_entries() const
2463 { return parameters->options().merge_exidx_entries(); }
2464
2465 // Whether we fix R_ARM_V4BX relocation.
2466 // 0 - do not fix
2467 // 1 - replace with MOV instruction (armv4 target)
2468 // 2 - make interworking veneer (>= armv4t targets only)
2469 General_options::Fix_v4bx
2470 fix_v4bx() const
2471 { return parameters->options().fix_v4bx(); }
2472
2473 // Scan a span of THUMB code section for Cortex-A8 erratum.
2474 void
2475 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2476 section_size_type, section_size_type,
2477 const unsigned char*, Arm_address);
2478
2479 // Apply Cortex-A8 workaround to a branch.
2480 void
2481 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2482 unsigned char*, Arm_address);
2483
2484 protected:
2485 // Make the PLT-generator object.
2486 Output_data_plt_arm<big_endian>*
2487 make_data_plt(Layout* layout,
2488 Arm_output_data_got<big_endian>* got,
2489 Output_data_space* got_plt,
2490 Output_data_space* got_irelative)
2491 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2492
2493 // Make an ELF object.
2494 Object*
2495 do_make_elf_object(const std::string&, Input_file*, off_t,
2496 const elfcpp::Ehdr<32, big_endian>& ehdr);
2497
2498 Object*
2499 do_make_elf_object(const std::string&, Input_file*, off_t,
2500 const elfcpp::Ehdr<32, !big_endian>&)
2501 { gold_unreachable(); }
2502
2503 Object*
2504 do_make_elf_object(const std::string&, Input_file*, off_t,
2505 const elfcpp::Ehdr<64, false>&)
2506 { gold_unreachable(); }
2507
2508 Object*
2509 do_make_elf_object(const std::string&, Input_file*, off_t,
2510 const elfcpp::Ehdr<64, true>&)
2511 { gold_unreachable(); }
2512
2513 // Make an output section.
2514 Output_section*
2515 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2516 elfcpp::Elf_Xword flags)
2517 { return new Arm_output_section<big_endian>(name, type, flags); }
2518
2519 void
2520 do_adjust_elf_header(unsigned char* view, int len);
2521
2522 // We only need to generate stubs, and hence perform relaxation if we are
2523 // not doing relocatable linking.
2524 bool
2525 do_may_relax() const
2526 { return !parameters->options().relocatable(); }
2527
2528 bool
2529 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2530
2531 // Determine whether an object attribute tag takes an integer, a
2532 // string or both.
2533 int
2534 do_attribute_arg_type(int tag) const;
2535
2536 // Reorder tags during output.
2537 int
2538 do_attributes_order(int num) const;
2539
2540 // This is called when the target is selected as the default.
2541 void
2542 do_select_as_default_target()
2543 {
2544 // No locking is required since there should only be one default target.
2545 // We cannot have both the big-endian and little-endian ARM targets
2546 // as the default.
2547 gold_assert(arm_reloc_property_table == NULL);
2548 arm_reloc_property_table = new Arm_reloc_property_table();
2549 if (parameters->options().user_set_target1_rel())
2550 {
2551 // FIXME: This is not strictly compatible with ld, which allows both
2552 // --target1-abs and --target-rel to be given.
2553 if (parameters->options().user_set_target1_abs())
2554 gold_error(_("Cannot use both --target1-abs and --target1-rel."));
2555 else
2556 this->target1_reloc_ = elfcpp::R_ARM_REL32;
2557 }
2558 // We don't need to handle --target1-abs because target1_reloc_ is set
2559 // to elfcpp::R_ARM_ABS32 in the member initializer list.
2560
2561 if (parameters->options().user_set_target2())
2562 {
2563 const char* target2 = parameters->options().target2();
2564 if (strcmp(target2, "rel") == 0)
2565 this->target2_reloc_ = elfcpp::R_ARM_REL32;
2566 else if (strcmp(target2, "abs") == 0)
2567 this->target2_reloc_ = elfcpp::R_ARM_ABS32;
2568 else if (strcmp(target2, "got-rel") == 0)
2569 this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL;
2570 else
2571 gold_unreachable();
2572 }
2573 }
2574
2575 // Virtual function which is set to return true by a target if
2576 // it can use relocation types to determine if a function's
2577 // pointer is taken.
2578 virtual bool
2579 do_can_check_for_function_pointers() const
2580 { return true; }
2581
2582 // Whether a section called SECTION_NAME may have function pointers to
2583 // sections not eligible for safe ICF folding.
2584 virtual bool
2585 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2586 {
2587 return (!is_prefix_of(".ARM.exidx", section_name)
2588 && !is_prefix_of(".ARM.extab", section_name)
2589 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2590 }
2591
2592 virtual void
2593 do_define_standard_symbols(Symbol_table*, Layout*);
2594
2595 virtual Output_data_plt_arm<big_endian>*
2596 do_make_data_plt(Layout* layout,
2597 Arm_output_data_got<big_endian>* got,
2598 Output_data_space* got_plt,
2599 Output_data_space* got_irelative)
2600 {
2601 gold_assert(got_plt != NULL && got_irelative != NULL);
2602 if (parameters->options().long_plt())
2603 return new Output_data_plt_arm_long<big_endian>(
2604 layout, got, got_plt, got_irelative);
2605 else
2606 return new Output_data_plt_arm_short<big_endian>(
2607 layout, got, got_plt, got_irelative);
2608 }
2609
2610 private:
2611 // The class which scans relocations.
2612 class Scan
2613 {
2614 public:
2615 Scan()
2616 : issued_non_pic_error_(false)
2617 { }
2618
2619 static inline int
2620 get_reference_flags(unsigned int r_type);
2621
2622 inline void
2623 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2624 Sized_relobj_file<32, big_endian>* object,
2625 unsigned int data_shndx,
2626 Output_section* output_section,
2627 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2628 const elfcpp::Sym<32, big_endian>& lsym,
2629 bool is_discarded);
2630
2631 inline void
2632 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2633 Sized_relobj_file<32, big_endian>* object,
2634 unsigned int data_shndx,
2635 Output_section* output_section,
2636 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2637 Symbol* gsym);
2638
2639 inline bool
2640 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2641 Sized_relobj_file<32, big_endian>* ,
2642 unsigned int ,
2643 Output_section* ,
2644 const elfcpp::Rel<32, big_endian>& ,
2645 unsigned int ,
2646 const elfcpp::Sym<32, big_endian>&);
2647
2648 inline bool
2649 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2650 Sized_relobj_file<32, big_endian>* ,
2651 unsigned int ,
2652 Output_section* ,
2653 const elfcpp::Rel<32, big_endian>& ,
2654 unsigned int , Symbol*);
2655
2656 private:
2657 static void
2658 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2659 unsigned int r_type);
2660
2661 static void
2662 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2663 unsigned int r_type, Symbol*);
2664
2665 void
2666 check_non_pic(Relobj*, unsigned int r_type);
2667
2668 // Almost identical to Symbol::needs_plt_entry except that it also
2669 // handles STT_ARM_TFUNC.
2670 static bool
2671 symbol_needs_plt_entry(const Symbol* sym)
2672 {
2673 // An undefined symbol from an executable does not need a PLT entry.
2674 if (sym->is_undefined() && !parameters->options().shared())
2675 return false;
2676
2677 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2678 return true;
2679
2680 return (!parameters->doing_static_link()
2681 && (sym->type() == elfcpp::STT_FUNC
2682 || sym->type() == elfcpp::STT_ARM_TFUNC)
2683 && (sym->is_from_dynobj()
2684 || sym->is_undefined()
2685 || sym->is_preemptible()));
2686 }
2687
2688 inline bool
2689 possible_function_pointer_reloc(unsigned int r_type);
2690
2691 // Whether a plt entry is needed for ifunc.
2692 bool
2693 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2694 unsigned int r_type);
2695
2696 // Whether we have issued an error about a non-PIC compilation.
2697 bool issued_non_pic_error_;
2698 };
2699
2700 // The class which implements relocation.
2701 class Relocate
2702 {
2703 public:
2704 Relocate()
2705 { }
2706
2707 ~Relocate()
2708 { }
2709
2710 // Return whether the static relocation needs to be applied.
2711 inline bool
2712 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2713 unsigned int r_type,
2714 bool is_32bit,
2715 Output_section* output_section);
2716
2717 // Do a relocation. Return false if the caller should not issue
2718 // any warnings about this relocation.
2719 inline bool
2720 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2721 Target_arm*, Output_section*, size_t, const unsigned char*,
2722 const Sized_symbol<32>*, const Symbol_value<32>*,
2723 unsigned char*, Arm_address, section_size_type);
2724
2725 // Return whether we want to pass flag NON_PIC_REF for this
2726 // reloc. This means the relocation type accesses a symbol not via
2727 // GOT or PLT.
2728 static inline bool
2729 reloc_is_non_pic(unsigned int r_type)
2730 {
2731 switch (r_type)
2732 {
2733 // These relocation types reference GOT or PLT entries explicitly.
2734 case elfcpp::R_ARM_GOT_BREL:
2735 case elfcpp::R_ARM_GOT_ABS:
2736 case elfcpp::R_ARM_GOT_PREL:
2737 case elfcpp::R_ARM_GOT_BREL12:
2738 case elfcpp::R_ARM_PLT32_ABS:
2739 case elfcpp::R_ARM_TLS_GD32:
2740 case elfcpp::R_ARM_TLS_LDM32:
2741 case elfcpp::R_ARM_TLS_IE32:
2742 case elfcpp::R_ARM_TLS_IE12GP:
2743
2744 // These relocate types may use PLT entries.
2745 case elfcpp::R_ARM_CALL:
2746 case elfcpp::R_ARM_THM_CALL:
2747 case elfcpp::R_ARM_JUMP24:
2748 case elfcpp::R_ARM_THM_JUMP24:
2749 case elfcpp::R_ARM_THM_JUMP19:
2750 case elfcpp::R_ARM_PLT32:
2751 case elfcpp::R_ARM_THM_XPC22:
2752 case elfcpp::R_ARM_PREL31:
2753 case elfcpp::R_ARM_SBREL31:
2754 return false;
2755
2756 default:
2757 return true;
2758 }
2759 }
2760
2761 private:
2762 // Do a TLS relocation.
2763 inline typename Arm_relocate_functions<big_endian>::Status
2764 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2765 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2766 const Sized_symbol<32>*, const Symbol_value<32>*,
2767 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2768 section_size_type);
2769
2770 };
2771
2772 // A class for inquiring about properties of a relocation,
2773 // used while scanning relocs during a relocatable link and
2774 // garbage collection.
2775 class Classify_reloc :
2776 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
2777 {
2778 public:
2779 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
2780 Reltype;
2781
2782 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2783 static typename elfcpp::Elf_types<32>::Elf_Swxword
2784 get_r_addend(const Reltype*)
2785 { return 0; }
2786
2787 // Return the size of the addend of the relocation (only used for SHT_REL).
2788 static unsigned int
2789 get_size_for_reloc(unsigned int, Relobj*);
2790 };
2791
2792 // Adjust TLS relocation type based on the options and whether this
2793 // is a local symbol.
2794 static tls::Tls_optimization
2795 optimize_tls_reloc(bool is_final, int r_type);
2796
2797 // Get the GOT section, creating it if necessary.
2798 Arm_output_data_got<big_endian>*
2799 got_section(Symbol_table*, Layout*);
2800
2801 // Get the GOT PLT section.
2802 Output_data_space*
2803 got_plt_section() const
2804 {
2805 gold_assert(this->got_plt_ != NULL);
2806 return this->got_plt_;
2807 }
2808
2809 // Create the PLT section.
2810 void
2811 make_plt_section(Symbol_table* symtab, Layout* layout);
2812
2813 // Create a PLT entry for a global symbol.
2814 void
2815 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2816
2817 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2818 void
2819 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2820 Sized_relobj_file<32, big_endian>* relobj,
2821 unsigned int local_sym_index);
2822
2823 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2824 void
2825 define_tls_base_symbol(Symbol_table*, Layout*);
2826
2827 // Create a GOT entry for the TLS module index.
2828 unsigned int
2829 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2830 Sized_relobj_file<32, big_endian>* object);
2831
2832 // Get the PLT section.
2833 const Output_data_plt_arm<big_endian>*
2834 plt_section() const
2835 {
2836 gold_assert(this->plt_ != NULL);
2837 return this->plt_;
2838 }
2839
2840 // Get the dynamic reloc section, creating it if necessary.
2841 Reloc_section*
2842 rel_dyn_section(Layout*);
2843
2844 // Get the section to use for TLS_DESC relocations.
2845 Reloc_section*
2846 rel_tls_desc_section(Layout*) const;
2847
2848 // Return true if the symbol may need a COPY relocation.
2849 // References from an executable object to non-function symbols
2850 // defined in a dynamic object may need a COPY relocation.
2851 bool
2852 may_need_copy_reloc(Symbol* gsym)
2853 {
2854 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2855 && gsym->may_need_copy_reloc());
2856 }
2857
2858 // Add a potential copy relocation.
2859 void
2860 copy_reloc(Symbol_table* symtab, Layout* layout,
2861 Sized_relobj_file<32, big_endian>* object,
2862 unsigned int shndx, Output_section* output_section,
2863 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2864 {
2865 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2866 this->copy_relocs_.copy_reloc(symtab, layout,
2867 symtab->get_sized_symbol<32>(sym),
2868 object, shndx, output_section,
2869 r_type, reloc.get_r_offset(), 0,
2870 this->rel_dyn_section(layout));
2871 }
2872
2873 // Whether two EABI versions are compatible.
2874 static bool
2875 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2876
2877 // Merge processor-specific flags from input object and those in the ELF
2878 // header of the output.
2879 void
2880 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2881
2882 // Get the secondary compatible architecture.
2883 static int
2884 get_secondary_compatible_arch(const Attributes_section_data*);
2885
2886 // Set the secondary compatible architecture.
2887 static void
2888 set_secondary_compatible_arch(Attributes_section_data*, int);
2889
2890 static int
2891 tag_cpu_arch_combine(const char*, int, int*, int, int);
2892
2893 // Helper to print AEABI enum tag value.
2894 static std::string
2895 aeabi_enum_name(unsigned int);
2896
2897 // Return string value for TAG_CPU_name.
2898 static std::string
2899 tag_cpu_name_value(unsigned int);
2900
2901 // Query attributes object to see if integer divide instructions may be
2902 // present in an object.
2903 static bool
2904 attributes_accept_div(int arch, int profile,
2905 const Object_attribute* div_attr);
2906
2907 // Query attributes object to see if integer divide instructions are
2908 // forbidden to be in the object. This is not the inverse of
2909 // attributes_accept_div.
2910 static bool
2911 attributes_forbid_div(const Object_attribute* div_attr);
2912
2913 // Merge object attributes from input object and those in the output.
2914 void
2915 merge_object_attributes(const char*, const Attributes_section_data*);
2916
2917 // Helper to get an AEABI object attribute
2918 Object_attribute*
2919 get_aeabi_object_attribute(int tag) const
2920 {
2921 Attributes_section_data* pasd = this->attributes_section_data_;
2922 gold_assert(pasd != NULL);
2923 Object_attribute* attr =
2924 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2925 gold_assert(attr != NULL);
2926 return attr;
2927 }
2928
2929 //
2930 // Methods to support stub-generations.
2931 //
2932
2933 // Group input sections for stub generation.
2934 void
2935 group_sections(Layout*, section_size_type, bool, const Task*);
2936
2937 // Scan a relocation for stub generation.
2938 void
2939 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2940 const Sized_symbol<32>*, unsigned int,
2941 const Symbol_value<32>*,
2942 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2943
2944 // Scan a relocation section for stub.
2945 template<int sh_type>
2946 void
2947 scan_reloc_section_for_stubs(
2948 const Relocate_info<32, big_endian>* relinfo,
2949 const unsigned char* prelocs,
2950 size_t reloc_count,
2951 Output_section* output_section,
2952 bool needs_special_offset_handling,
2953 const unsigned char* view,
2954 elfcpp::Elf_types<32>::Elf_Addr view_address,
2955 section_size_type);
2956
2957 // Fix .ARM.exidx section coverage.
2958 void
2959 fix_exidx_coverage(Layout*, const Input_objects*,
2960 Arm_output_section<big_endian>*, Symbol_table*,
2961 const Task*);
2962
2963 // Functors for STL set.
2964 struct output_section_address_less_than
2965 {
2966 bool
2967 operator()(const Output_section* s1, const Output_section* s2) const
2968 { return s1->address() < s2->address(); }
2969 };
2970
2971 // Information about this specific target which we pass to the
2972 // general Target structure.
2973 static const Target::Target_info arm_info;
2974
2975 // The types of GOT entries needed for this platform.
2976 // These values are exposed to the ABI in an incremental link.
2977 // Do not renumber existing values without changing the version
2978 // number of the .gnu_incremental_inputs section.
2979 enum Got_type
2980 {
2981 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2982 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2983 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2984 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2985 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2986 };
2987
2988 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2989
2990 // Map input section to Arm_input_section.
2991 typedef Unordered_map<Section_id,
2992 Arm_input_section<big_endian>*,
2993 Section_id_hash>
2994 Arm_input_section_map;
2995
2996 // Map output addresses to relocs for Cortex-A8 erratum.
2997 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2998 Cortex_a8_relocs_info;
2999
3000 // The GOT section.
3001 Arm_output_data_got<big_endian>* got_;
3002 // The PLT section.
3003 Output_data_plt_arm<big_endian>* plt_;
3004 // The GOT PLT section.
3005 Output_data_space* got_plt_;
3006 // The GOT section for IRELATIVE relocations.
3007 Output_data_space* got_irelative_;
3008 // The dynamic reloc section.
3009 Reloc_section* rel_dyn_;
3010 // The section to use for IRELATIVE relocs.
3011 Reloc_section* rel_irelative_;
3012 // Relocs saved to avoid a COPY reloc.
3013 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
3014 // Offset of the GOT entry for the TLS module index.
3015 unsigned int got_mod_index_offset_;
3016 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3017 bool tls_base_symbol_defined_;
3018 // Vector of Stub_tables created.
3019 Stub_table_list stub_tables_;
3020 // Stub factory.
3021 const Stub_factory &stub_factory_;
3022 // Whether we force PIC branch veneers.
3023 bool should_force_pic_veneer_;
3024 // Map for locating Arm_input_sections.
3025 Arm_input_section_map arm_input_section_map_;
3026 // Attributes section data in output.
3027 Attributes_section_data* attributes_section_data_;
3028 // Whether we want to fix code for Cortex-A8 erratum.
3029 bool fix_cortex_a8_;
3030 // Map addresses to relocs for Cortex-A8 erratum.
3031 Cortex_a8_relocs_info cortex_a8_relocs_info_;
3032 // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32.
3033 unsigned int target1_reloc_;
3034 // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32
3035 // and R_ARM_GOT_PREL.
3036 unsigned int target2_reloc_;
3037 };
3038
3039 template<bool big_endian>
3040 const Target::Target_info Target_arm<big_endian>::arm_info =
3041 {
3042 32, // size
3043 big_endian, // is_big_endian
3044 elfcpp::EM_ARM, // machine_code
3045 false, // has_make_symbol
3046 false, // has_resolve
3047 false, // has_code_fill
3048 true, // is_default_stack_executable
3049 false, // can_icf_inline_merge_sections
3050 '\0', // wrap_char
3051 "/usr/lib/libc.so.1", // dynamic_linker
3052 0x8000, // default_text_segment_address
3053 0x1000, // abi_pagesize (overridable by -z max-page-size)
3054 0x1000, // common_pagesize (overridable by -z common-page-size)
3055 false, // isolate_execinstr
3056 0, // rosegment_gap
3057 elfcpp::SHN_UNDEF, // small_common_shndx
3058 elfcpp::SHN_UNDEF, // large_common_shndx
3059 0, // small_common_section_flags
3060 0, // large_common_section_flags
3061 ".ARM.attributes", // attributes_section
3062 "aeabi", // attributes_vendor
3063 "_start", // entry_symbol_name
3064 32, // hash_entry_size
3065 };
3066
3067 // Arm relocate functions class
3068 //
3069
3070 template<bool big_endian>
3071 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3072 {
3073 public:
3074 typedef enum
3075 {
3076 STATUS_OKAY, // No error during relocation.
3077 STATUS_OVERFLOW, // Relocation overflow.
3078 STATUS_BAD_RELOC // Relocation cannot be applied.
3079 } Status;
3080
3081 private:
3082 typedef Relocate_functions<32, big_endian> Base;
3083 typedef Arm_relocate_functions<big_endian> This;
3084
3085 // Encoding of imm16 argument for movt and movw ARM instructions
3086 // from ARM ARM:
3087 //
3088 // imm16 := imm4 | imm12
3089 //
3090 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3091 // +-------+---------------+-------+-------+-----------------------+
3092 // | | |imm4 | |imm12 |
3093 // +-------+---------------+-------+-------+-----------------------+
3094
3095 // Extract the relocation addend from VAL based on the ARM
3096 // instruction encoding described above.
3097 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3098 extract_arm_movw_movt_addend(
3099 typename elfcpp::Swap<32, big_endian>::Valtype val)
3100 {
3101 // According to the Elf ABI for ARM Architecture the immediate
3102 // field is sign-extended to form the addend.
3103 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3104 }
3105
3106 // Insert X into VAL based on the ARM instruction encoding described
3107 // above.
3108 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3109 insert_val_arm_movw_movt(
3110 typename elfcpp::Swap<32, big_endian>::Valtype val,
3111 typename elfcpp::Swap<32, big_endian>::Valtype x)
3112 {
3113 val &= 0xfff0f000;
3114 val |= x & 0x0fff;
3115 val |= (x & 0xf000) << 4;
3116 return val;
3117 }
3118
3119 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3120 // from ARM ARM:
3121 //
3122 // imm16 := imm4 | i | imm3 | imm8
3123 //
3124 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3125 // +---------+-+-----------+-------++-+-----+-------+---------------+
3126 // | |i| |imm4 || |imm3 | |imm8 |
3127 // +---------+-+-----------+-------++-+-----+-------+---------------+
3128
3129 // Extract the relocation addend from VAL based on the Thumb2
3130 // instruction encoding described above.
3131 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3132 extract_thumb_movw_movt_addend(
3133 typename elfcpp::Swap<32, big_endian>::Valtype val)
3134 {
3135 // According to the Elf ABI for ARM Architecture the immediate
3136 // field is sign-extended to form the addend.
3137 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3138 | ((val >> 15) & 0x0800)
3139 | ((val >> 4) & 0x0700)
3140 | (val & 0x00ff));
3141 }
3142
3143 // Insert X into VAL based on the Thumb2 instruction encoding
3144 // described above.
3145 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3146 insert_val_thumb_movw_movt(
3147 typename elfcpp::Swap<32, big_endian>::Valtype val,
3148 typename elfcpp::Swap<32, big_endian>::Valtype x)
3149 {
3150 val &= 0xfbf08f00;
3151 val |= (x & 0xf000) << 4;
3152 val |= (x & 0x0800) << 15;
3153 val |= (x & 0x0700) << 4;
3154 val |= (x & 0x00ff);
3155 return val;
3156 }
3157
3158 // Calculate the smallest constant Kn for the specified residual.
3159 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3160 static uint32_t
3161 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3162 {
3163 int32_t msb;
3164
3165 if (residual == 0)
3166 return 0;
3167 // Determine the most significant bit in the residual and
3168 // align the resulting value to a 2-bit boundary.
3169 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3170 ;
3171 // The desired shift is now (msb - 6), or zero, whichever
3172 // is the greater.
3173 return (((msb - 6) < 0) ? 0 : (msb - 6));
3174 }
3175
3176 // Calculate the final residual for the specified group index.
3177 // If the passed group index is less than zero, the method will return
3178 // the value of the specified residual without any change.
3179 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3180 static typename elfcpp::Swap<32, big_endian>::Valtype
3181 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3182 const int group)
3183 {
3184 for (int n = 0; n <= group; n++)
3185 {
3186 // Calculate which part of the value to mask.
3187 uint32_t shift = calc_grp_kn(residual);
3188 // Calculate the residual for the next time around.
3189 residual &= ~(residual & (0xff << shift));
3190 }
3191
3192 return residual;
3193 }
3194
3195 // Calculate the value of Gn for the specified group index.
3196 // We return it in the form of an encoded constant-and-rotation.
3197 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3198 static typename elfcpp::Swap<32, big_endian>::Valtype
3199 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3200 const int group)
3201 {
3202 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3203 uint32_t shift = 0;
3204
3205 for (int n = 0; n <= group; n++)
3206 {
3207 // Calculate which part of the value to mask.
3208 shift = calc_grp_kn(residual);
3209 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3210 gn = residual & (0xff << shift);
3211 // Calculate the residual for the next time around.
3212 residual &= ~gn;
3213 }
3214 // Return Gn in the form of an encoded constant-and-rotation.
3215 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3216 }
3217
3218 public:
3219 // Handle ARM long branches.
3220 static typename This::Status
3221 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3222 unsigned char*, const Sized_symbol<32>*,
3223 const Arm_relobj<big_endian>*, unsigned int,
3224 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3225
3226 // Handle THUMB long branches.
3227 static typename This::Status
3228 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3229 unsigned char*, const Sized_symbol<32>*,
3230 const Arm_relobj<big_endian>*, unsigned int,
3231 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3232
3233
3234 // Return the branch offset of a 32-bit THUMB branch.
3235 static inline int32_t
3236 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3237 {
3238 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3239 // involving the J1 and J2 bits.
3240 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3241 uint32_t upper = upper_insn & 0x3ffU;
3242 uint32_t lower = lower_insn & 0x7ffU;
3243 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3244 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3245 uint32_t i1 = j1 ^ s ? 0 : 1;
3246 uint32_t i2 = j2 ^ s ? 0 : 1;
3247
3248 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3249 | (upper << 12) | (lower << 1));
3250 }
3251
3252 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3253 // UPPER_INSN is the original upper instruction of the branch. Caller is
3254 // responsible for overflow checking and BLX offset adjustment.
3255 static inline uint16_t
3256 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3257 {
3258 uint32_t s = offset < 0 ? 1 : 0;
3259 uint32_t bits = static_cast<uint32_t>(offset);
3260 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3261 }
3262
3263 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3264 // LOWER_INSN is the original lower instruction of the branch. Caller is
3265 // responsible for overflow checking and BLX offset adjustment.
3266 static inline uint16_t
3267 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3268 {
3269 uint32_t s = offset < 0 ? 1 : 0;
3270 uint32_t bits = static_cast<uint32_t>(offset);
3271 return ((lower_insn & ~0x2fffU)
3272 | ((((bits >> 23) & 1) ^ !s) << 13)
3273 | ((((bits >> 22) & 1) ^ !s) << 11)
3274 | ((bits >> 1) & 0x7ffU));
3275 }
3276
3277 // Return the branch offset of a 32-bit THUMB conditional branch.
3278 static inline int32_t
3279 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3280 {
3281 uint32_t s = (upper_insn & 0x0400U) >> 10;
3282 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3283 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3284 uint32_t lower = (lower_insn & 0x07ffU);
3285 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3286
3287 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3288 }
3289
3290 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3291 // instruction. UPPER_INSN is the original upper instruction of the branch.
3292 // Caller is responsible for overflow checking.
3293 static inline uint16_t
3294 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3295 {
3296 uint32_t s = offset < 0 ? 1 : 0;
3297 uint32_t bits = static_cast<uint32_t>(offset);
3298 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3299 }
3300
3301 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3302 // instruction. LOWER_INSN is the original lower instruction of the branch.
3303 // The caller is responsible for overflow checking.
3304 static inline uint16_t
3305 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3306 {
3307 uint32_t bits = static_cast<uint32_t>(offset);
3308 uint32_t j2 = (bits & 0x00080000U) >> 19;
3309 uint32_t j1 = (bits & 0x00040000U) >> 18;
3310 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3311
3312 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3313 }
3314
3315 // R_ARM_ABS8: S + A
3316 static inline typename This::Status
3317 abs8(unsigned char* view,
3318 const Sized_relobj_file<32, big_endian>* object,
3319 const Symbol_value<32>* psymval)
3320 {
3321 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3322 Valtype* wv = reinterpret_cast<Valtype*>(view);
3323 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3324 int32_t addend = Bits<8>::sign_extend32(val);
3325 Arm_address x = psymval->value(object, addend);
3326 val = Bits<32>::bit_select32(val, x, 0xffU);
3327 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3328
3329 // R_ARM_ABS8 permits signed or unsigned results.
3330 return (Bits<8>::has_signed_unsigned_overflow32(x)
3331 ? This::STATUS_OVERFLOW
3332 : This::STATUS_OKAY);
3333 }
3334
3335 // R_ARM_THM_ABS5: S + A
3336 static inline typename This::Status
3337 thm_abs5(unsigned char* view,
3338 const Sized_relobj_file<32, big_endian>* object,
3339 const Symbol_value<32>* psymval)
3340 {
3341 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3342 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3343 Valtype* wv = reinterpret_cast<Valtype*>(view);
3344 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3345 Reltype addend = (val & 0x7e0U) >> 6;
3346 Reltype x = psymval->value(object, addend);
3347 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3348 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3349 return (Bits<5>::has_overflow32(x)
3350 ? This::STATUS_OVERFLOW
3351 : This::STATUS_OKAY);
3352 }
3353
3354 // R_ARM_ABS12: S + A
3355 static inline typename This::Status
3356 abs12(unsigned char* view,
3357 const Sized_relobj_file<32, big_endian>* object,
3358 const Symbol_value<32>* psymval)
3359 {
3360 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3361 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3362 Valtype* wv = reinterpret_cast<Valtype*>(view);
3363 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3364 Reltype addend = val & 0x0fffU;
3365 Reltype x = psymval->value(object, addend);
3366 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3367 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3368 return (Bits<12>::has_overflow32(x)
3369 ? This::STATUS_OVERFLOW
3370 : This::STATUS_OKAY);
3371 }
3372
3373 // R_ARM_ABS16: S + A
3374 static inline typename This::Status
3375 abs16(unsigned char* view,
3376 const Sized_relobj_file<32, big_endian>* object,
3377 const Symbol_value<32>* psymval)
3378 {
3379 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3380 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3381 int32_t addend = Bits<16>::sign_extend32(val);
3382 Arm_address x = psymval->value(object, addend);
3383 val = Bits<32>::bit_select32(val, x, 0xffffU);
3384 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3385
3386 // R_ARM_ABS16 permits signed or unsigned results.
3387 return (Bits<16>::has_signed_unsigned_overflow32(x)
3388 ? This::STATUS_OVERFLOW
3389 : This::STATUS_OKAY);
3390 }
3391
3392 // R_ARM_ABS32: (S + A) | T
3393 static inline typename This::Status
3394 abs32(unsigned char* view,
3395 const Sized_relobj_file<32, big_endian>* object,
3396 const Symbol_value<32>* psymval,
3397 Arm_address thumb_bit)
3398 {
3399 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3400 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3401 Valtype x = psymval->value(object, addend) | thumb_bit;
3402 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3403 return This::STATUS_OKAY;
3404 }
3405
3406 // R_ARM_REL32: (S + A) | T - P
3407 static inline typename This::Status
3408 rel32(unsigned char* view,
3409 const Sized_relobj_file<32, big_endian>* object,
3410 const Symbol_value<32>* psymval,
3411 Arm_address address,
3412 Arm_address thumb_bit)
3413 {
3414 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3415 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3416 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3417 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3418 return This::STATUS_OKAY;
3419 }
3420
3421 // R_ARM_THM_JUMP24: (S + A) | T - P
3422 static typename This::Status
3423 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3424 const Symbol_value<32>* psymval, Arm_address address,
3425 Arm_address thumb_bit);
3426
3427 // R_ARM_THM_JUMP6: S + A - P
3428 static inline typename This::Status
3429 thm_jump6(unsigned char* view,
3430 const Sized_relobj_file<32, big_endian>* object,
3431 const Symbol_value<32>* psymval,
3432 Arm_address address)
3433 {
3434 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3435 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3436 Valtype* wv = reinterpret_cast<Valtype*>(view);
3437 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3438 // bit[9]:bit[7:3]:'0' (mask: 0x02f8)
3439 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3440 Reltype x = (psymval->value(object, addend) - address);
3441 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3442 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3443 // CZB does only forward jumps.
3444 return ((x > 0x007e)
3445 ? This::STATUS_OVERFLOW
3446 : This::STATUS_OKAY);
3447 }
3448
3449 // R_ARM_THM_JUMP8: S + A - P
3450 static inline typename This::Status
3451 thm_jump8(unsigned char* view,
3452 const Sized_relobj_file<32, big_endian>* object,
3453 const Symbol_value<32>* psymval,
3454 Arm_address address)
3455 {
3456 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3457 Valtype* wv = reinterpret_cast<Valtype*>(view);
3458 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3459 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3460 int32_t x = (psymval->value(object, addend) - address);
3461 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3462 | ((x & 0x01fe) >> 1)));
3463 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3464 return (Bits<9>::has_overflow32(x)
3465 ? This::STATUS_OVERFLOW
3466 : This::STATUS_OKAY);
3467 }
3468
3469 // R_ARM_THM_JUMP11: S + A - P
3470 static inline typename This::Status
3471 thm_jump11(unsigned char* view,
3472 const Sized_relobj_file<32, big_endian>* object,
3473 const Symbol_value<32>* psymval,
3474 Arm_address address)
3475 {
3476 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3477 Valtype* wv = reinterpret_cast<Valtype*>(view);
3478 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3479 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3480 int32_t x = (psymval->value(object, addend) - address);
3481 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3482 | ((x & 0x0ffe) >> 1)));
3483 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3484 return (Bits<12>::has_overflow32(x)
3485 ? This::STATUS_OVERFLOW
3486 : This::STATUS_OKAY);
3487 }
3488
3489 // R_ARM_BASE_PREL: B(S) + A - P
3490 static inline typename This::Status
3491 base_prel(unsigned char* view,
3492 Arm_address origin,
3493 Arm_address address)
3494 {
3495 Base::rel32(view, origin - address);
3496 return STATUS_OKAY;
3497 }
3498
3499 // R_ARM_BASE_ABS: B(S) + A
3500 static inline typename This::Status
3501 base_abs(unsigned char* view,
3502 Arm_address origin)
3503 {
3504 Base::rel32(view, origin);
3505 return STATUS_OKAY;
3506 }
3507
3508 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3509 static inline typename This::Status
3510 got_brel(unsigned char* view,
3511 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3512 {
3513 Base::rel32(view, got_offset);
3514 return This::STATUS_OKAY;
3515 }
3516
3517 // R_ARM_GOT_PREL: GOT(S) + A - P
3518 static inline typename This::Status
3519 got_prel(unsigned char* view,
3520 Arm_address got_entry,
3521 Arm_address address)
3522 {
3523 Base::rel32(view, got_entry - address);
3524 return This::STATUS_OKAY;
3525 }
3526
3527 // R_ARM_PREL: (S + A) | T - P
3528 static inline typename This::Status
3529 prel31(unsigned char* view,
3530 const Sized_relobj_file<32, big_endian>* object,
3531 const Symbol_value<32>* psymval,
3532 Arm_address address,
3533 Arm_address thumb_bit)
3534 {
3535 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3536 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3537 Valtype addend = Bits<31>::sign_extend32(val);
3538 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3539 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3540 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3541 return (Bits<31>::has_overflow32(x)
3542 ? This::STATUS_OVERFLOW
3543 : This::STATUS_OKAY);
3544 }
3545
3546 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3547 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3548 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3549 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3550 static inline typename This::Status
3551 movw(unsigned char* view,
3552 const Sized_relobj_file<32, big_endian>* object,
3553 const Symbol_value<32>* psymval,
3554 Arm_address relative_address_base,
3555 Arm_address thumb_bit,
3556 bool check_overflow)
3557 {
3558 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3559 Valtype* wv = reinterpret_cast<Valtype*>(view);
3560 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3561 Valtype addend = This::extract_arm_movw_movt_addend(val);
3562 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3563 - relative_address_base);
3564 val = This::insert_val_arm_movw_movt(val, x);
3565 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3566 return ((check_overflow && Bits<16>::has_overflow32(x))
3567 ? This::STATUS_OVERFLOW
3568 : This::STATUS_OKAY);
3569 }
3570
3571 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3572 // R_ARM_MOVT_PREL: S + A - P
3573 // R_ARM_MOVT_BREL: S + A - B(S)
3574 static inline typename This::Status
3575 movt(unsigned char* view,
3576 const Sized_relobj_file<32, big_endian>* object,
3577 const Symbol_value<32>* psymval,
3578 Arm_address relative_address_base)
3579 {
3580 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3581 Valtype* wv = reinterpret_cast<Valtype*>(view);
3582 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3583 Valtype addend = This::extract_arm_movw_movt_addend(val);
3584 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3585 val = This::insert_val_arm_movw_movt(val, x);
3586 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3587 // FIXME: IHI0044D says that we should check for overflow.
3588 return This::STATUS_OKAY;
3589 }
3590
3591 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3592 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3593 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3594 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3595 static inline typename This::Status
3596 thm_movw(unsigned char* view,
3597 const Sized_relobj_file<32, big_endian>* object,
3598 const Symbol_value<32>* psymval,
3599 Arm_address relative_address_base,
3600 Arm_address thumb_bit,
3601 bool check_overflow)
3602 {
3603 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3604 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3605 Valtype* wv = reinterpret_cast<Valtype*>(view);
3606 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3607 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3608 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3609 Reltype x =
3610 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3611 val = This::insert_val_thumb_movw_movt(val, x);
3612 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3613 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3614 return ((check_overflow && Bits<16>::has_overflow32(x))
3615 ? This::STATUS_OVERFLOW
3616 : This::STATUS_OKAY);
3617 }
3618
3619 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3620 // R_ARM_THM_MOVT_PREL: S + A - P
3621 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3622 static inline typename This::Status
3623 thm_movt(unsigned char* view,
3624 const Sized_relobj_file<32, big_endian>* object,
3625 const Symbol_value<32>* psymval,
3626 Arm_address relative_address_base)
3627 {
3628 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3629 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3630 Valtype* wv = reinterpret_cast<Valtype*>(view);
3631 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3632 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3633 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3634 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3635 val = This::insert_val_thumb_movw_movt(val, x);
3636 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3637 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3638 return This::STATUS_OKAY;
3639 }
3640
3641 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3642 static inline typename This::Status
3643 thm_alu11(unsigned char* view,
3644 const Sized_relobj_file<32, big_endian>* object,
3645 const Symbol_value<32>* psymval,
3646 Arm_address address,
3647 Arm_address thumb_bit)
3648 {
3649 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3650 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3651 Valtype* wv = reinterpret_cast<Valtype*>(view);
3652 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3653 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3654
3655 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3656 // -----------------------------------------------------------------------
3657 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3658 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3659 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3660 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3661 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3662 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3663
3664 // Determine a sign for the addend.
3665 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3666 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3667 // Thumb2 addend encoding:
3668 // imm12 := i | imm3 | imm8
3669 int32_t addend = (insn & 0xff)
3670 | ((insn & 0x00007000) >> 4)
3671 | ((insn & 0x04000000) >> 15);
3672 // Apply a sign to the added.
3673 addend *= sign;
3674
3675 int32_t x = (psymval->value(object, addend) | thumb_bit)
3676 - (address & 0xfffffffc);
3677 Reltype val = abs(x);
3678 // Mask out the value and a distinct part of the ADD/SUB opcode
3679 // (bits 7:5 of opword).
3680 insn = (insn & 0xfb0f8f00)
3681 | (val & 0xff)
3682 | ((val & 0x700) << 4)
3683 | ((val & 0x800) << 15);
3684 // Set the opcode according to whether the value to go in the
3685 // place is negative.
3686 if (x < 0)
3687 insn |= 0x00a00000;
3688
3689 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3690 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3691 return ((val > 0xfff) ?
3692 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3693 }
3694
3695 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3696 static inline typename This::Status
3697 thm_pc8(unsigned char* view,
3698 const Sized_relobj_file<32, big_endian>* object,
3699 const Symbol_value<32>* psymval,
3700 Arm_address address)
3701 {
3702 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3703 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3704 Valtype* wv = reinterpret_cast<Valtype*>(view);
3705 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3706 Reltype addend = ((insn & 0x00ff) << 2);
3707 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3708 Reltype val = abs(x);
3709 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3710
3711 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3712 return ((val > 0x03fc)
3713 ? This::STATUS_OVERFLOW
3714 : This::STATUS_OKAY);
3715 }
3716
3717 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3718 static inline typename This::Status
3719 thm_pc12(unsigned char* view,
3720 const Sized_relobj_file<32, big_endian>* object,
3721 const Symbol_value<32>* psymval,
3722 Arm_address address)
3723 {
3724 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3726 Valtype* wv = reinterpret_cast<Valtype*>(view);
3727 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3728 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3729 // Determine a sign for the addend (positive if the U bit is 1).
3730 const int sign = (insn & 0x00800000) ? 1 : -1;
3731 int32_t addend = (insn & 0xfff);
3732 // Apply a sign to the added.
3733 addend *= sign;
3734
3735 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3736 Reltype val = abs(x);
3737 // Mask out and apply the value and the U bit.
3738 insn = (insn & 0xff7ff000) | (val & 0xfff);
3739 // Set the U bit according to whether the value to go in the
3740 // place is positive.
3741 if (x >= 0)
3742 insn |= 0x00800000;
3743
3744 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3745 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3746 return ((val > 0xfff) ?
3747 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3748 }
3749
3750 // R_ARM_V4BX
3751 static inline typename This::Status
3752 v4bx(const Relocate_info<32, big_endian>* relinfo,
3753 unsigned char* view,
3754 const Arm_relobj<big_endian>* object,
3755 const Arm_address address,
3756 const bool is_interworking)
3757 {
3758
3759 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3760 Valtype* wv = reinterpret_cast<Valtype*>(view);
3761 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3762
3763 // Ensure that we have a BX instruction.
3764 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3765 const uint32_t reg = (val & 0xf);
3766 if (is_interworking && reg != 0xf)
3767 {
3768 Stub_table<big_endian>* stub_table =
3769 object->stub_table(relinfo->data_shndx);
3770 gold_assert(stub_table != NULL);
3771
3772 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3773 gold_assert(stub != NULL);
3774
3775 int32_t veneer_address =
3776 stub_table->address() + stub->offset() - 8 - address;
3777 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3778 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3779 // Replace with a branch to veneer (B <addr>)
3780 val = (val & 0xf0000000) | 0x0a000000
3781 | ((veneer_address >> 2) & 0x00ffffff);
3782 }
3783 else
3784 {
3785 // Preserve Rm (lowest four bits) and the condition code
3786 // (highest four bits). Other bits encode MOV PC,Rm.
3787 val = (val & 0xf000000f) | 0x01a0f000;
3788 }
3789 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3790 return This::STATUS_OKAY;
3791 }
3792
3793 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3794 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3795 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3796 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3797 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3798 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3799 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3800 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3801 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3802 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3803 static inline typename This::Status
3804 arm_grp_alu(unsigned char* view,
3805 const Sized_relobj_file<32, big_endian>* object,
3806 const Symbol_value<32>* psymval,
3807 const int group,
3808 Arm_address address,
3809 Arm_address thumb_bit,
3810 bool check_overflow)
3811 {
3812 gold_assert(group >= 0 && group < 3);
3813 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3814 Valtype* wv = reinterpret_cast<Valtype*>(view);
3815 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3816
3817 // ALU group relocations are allowed only for the ADD/SUB instructions.
3818 // (0x00800000 - ADD, 0x00400000 - SUB)
3819 const Valtype opcode = insn & 0x01e00000;
3820 if (opcode != 0x00800000 && opcode != 0x00400000)
3821 return This::STATUS_BAD_RELOC;
3822
3823 // Determine a sign for the addend.
3824 const int sign = (opcode == 0x00800000) ? 1 : -1;
3825 // shifter = rotate_imm * 2
3826 const uint32_t shifter = (insn & 0xf00) >> 7;
3827 // Initial addend value.
3828 int32_t addend = insn & 0xff;
3829 // Rotate addend right by shifter.
3830 addend = (addend >> shifter) | (addend << (32 - shifter));
3831 // Apply a sign to the added.
3832 addend *= sign;
3833
3834 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3835 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3836 // Check for overflow if required
3837 if (check_overflow
3838 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3839 return This::STATUS_OVERFLOW;
3840
3841 // Mask out the value and the ADD/SUB part of the opcode; take care
3842 // not to destroy the S bit.
3843 insn &= 0xff1ff000;
3844 // Set the opcode according to whether the value to go in the
3845 // place is negative.
3846 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3847 // Encode the offset (encoded Gn).
3848 insn |= gn;
3849
3850 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3851 return This::STATUS_OKAY;
3852 }
3853
3854 // R_ARM_LDR_PC_G0: S + A - P
3855 // R_ARM_LDR_PC_G1: S + A - P
3856 // R_ARM_LDR_PC_G2: S + A - P
3857 // R_ARM_LDR_SB_G0: S + A - B(S)
3858 // R_ARM_LDR_SB_G1: S + A - B(S)
3859 // R_ARM_LDR_SB_G2: S + A - B(S)
3860 static inline typename This::Status
3861 arm_grp_ldr(unsigned char* view,
3862 const Sized_relobj_file<32, big_endian>* object,
3863 const Symbol_value<32>* psymval,
3864 const int group,
3865 Arm_address address)
3866 {
3867 gold_assert(group >= 0 && group < 3);
3868 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3869 Valtype* wv = reinterpret_cast<Valtype*>(view);
3870 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3871
3872 const int sign = (insn & 0x00800000) ? 1 : -1;
3873 int32_t addend = (insn & 0xfff) * sign;
3874 int32_t x = (psymval->value(object, addend) - address);
3875 // Calculate the relevant G(n-1) value to obtain this stage residual.
3876 Valtype residual =
3877 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3878 if (residual >= 0x1000)
3879 return This::STATUS_OVERFLOW;
3880
3881 // Mask out the value and U bit.
3882 insn &= 0xff7ff000;
3883 // Set the U bit for non-negative values.
3884 if (x >= 0)
3885 insn |= 0x00800000;
3886 insn |= residual;
3887
3888 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3889 return This::STATUS_OKAY;
3890 }
3891
3892 // R_ARM_LDRS_PC_G0: S + A - P
3893 // R_ARM_LDRS_PC_G1: S + A - P
3894 // R_ARM_LDRS_PC_G2: S + A - P
3895 // R_ARM_LDRS_SB_G0: S + A - B(S)
3896 // R_ARM_LDRS_SB_G1: S + A - B(S)
3897 // R_ARM_LDRS_SB_G2: S + A - B(S)
3898 static inline typename This::Status
3899 arm_grp_ldrs(unsigned char* view,
3900 const Sized_relobj_file<32, big_endian>* object,
3901 const Symbol_value<32>* psymval,
3902 const int group,
3903 Arm_address address)
3904 {
3905 gold_assert(group >= 0 && group < 3);
3906 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3907 Valtype* wv = reinterpret_cast<Valtype*>(view);
3908 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3909
3910 const int sign = (insn & 0x00800000) ? 1 : -1;
3911 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3912 int32_t x = (psymval->value(object, addend) - address);
3913 // Calculate the relevant G(n-1) value to obtain this stage residual.
3914 Valtype residual =
3915 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3916 if (residual >= 0x100)
3917 return This::STATUS_OVERFLOW;
3918
3919 // Mask out the value and U bit.
3920 insn &= 0xff7ff0f0;
3921 // Set the U bit for non-negative values.
3922 if (x >= 0)
3923 insn |= 0x00800000;
3924 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3925
3926 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3927 return This::STATUS_OKAY;
3928 }
3929
3930 // R_ARM_LDC_PC_G0: S + A - P
3931 // R_ARM_LDC_PC_G1: S + A - P
3932 // R_ARM_LDC_PC_G2: S + A - P
3933 // R_ARM_LDC_SB_G0: S + A - B(S)
3934 // R_ARM_LDC_SB_G1: S + A - B(S)
3935 // R_ARM_LDC_SB_G2: S + A - B(S)
3936 static inline typename This::Status
3937 arm_grp_ldc(unsigned char* view,
3938 const Sized_relobj_file<32, big_endian>* object,
3939 const Symbol_value<32>* psymval,
3940 const int group,
3941 Arm_address address)
3942 {
3943 gold_assert(group >= 0 && group < 3);
3944 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3945 Valtype* wv = reinterpret_cast<Valtype*>(view);
3946 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3947
3948 const int sign = (insn & 0x00800000) ? 1 : -1;
3949 int32_t addend = ((insn & 0xff) << 2) * sign;
3950 int32_t x = (psymval->value(object, addend) - address);
3951 // Calculate the relevant G(n-1) value to obtain this stage residual.
3952 Valtype residual =
3953 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3954 if ((residual & 0x3) != 0 || residual >= 0x400)
3955 return This::STATUS_OVERFLOW;
3956
3957 // Mask out the value and U bit.
3958 insn &= 0xff7fff00;
3959 // Set the U bit for non-negative values.
3960 if (x >= 0)
3961 insn |= 0x00800000;
3962 insn |= (residual >> 2);
3963
3964 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3965 return This::STATUS_OKAY;
3966 }
3967 };
3968
3969 // Relocate ARM long branches. This handles relocation types
3970 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3971 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3972 // undefined and we do not use PLT in this relocation. In such a case,
3973 // the branch is converted into an NOP.
3974
3975 template<bool big_endian>
3976 typename Arm_relocate_functions<big_endian>::Status
3977 Arm_relocate_functions<big_endian>::arm_branch_common(
3978 unsigned int r_type,
3979 const Relocate_info<32, big_endian>* relinfo,
3980 unsigned char* view,
3981 const Sized_symbol<32>* gsym,
3982 const Arm_relobj<big_endian>* object,
3983 unsigned int r_sym,
3984 const Symbol_value<32>* psymval,
3985 Arm_address address,
3986 Arm_address thumb_bit,
3987 bool is_weakly_undefined_without_plt)
3988 {
3989 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3990 Valtype* wv = reinterpret_cast<Valtype*>(view);
3991 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3992
3993 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3994 && ((val & 0x0f000000UL) == 0x0a000000UL);
3995 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3996 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3997 && ((val & 0x0f000000UL) == 0x0b000000UL);
3998 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3999 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
4000
4001 // Check that the instruction is valid.
4002 if (r_type == elfcpp::R_ARM_CALL)
4003 {
4004 if (!insn_is_uncond_bl && !insn_is_blx)
4005 return This::STATUS_BAD_RELOC;
4006 }
4007 else if (r_type == elfcpp::R_ARM_JUMP24)
4008 {
4009 if (!insn_is_b && !insn_is_cond_bl)
4010 return This::STATUS_BAD_RELOC;
4011 }
4012 else if (r_type == elfcpp::R_ARM_PLT32)
4013 {
4014 if (!insn_is_any_branch)
4015 return This::STATUS_BAD_RELOC;
4016 }
4017 else if (r_type == elfcpp::R_ARM_XPC25)
4018 {
4019 // FIXME: AAELF document IH0044C does not say much about it other
4020 // than it being obsolete.
4021 if (!insn_is_any_branch)
4022 return This::STATUS_BAD_RELOC;
4023 }
4024 else
4025 gold_unreachable();
4026
4027 // A branch to an undefined weak symbol is turned into a jump to
4028 // the next instruction unless a PLT entry will be created.
4029 // Do the same for local undefined symbols.
4030 // The jump to the next instruction is optimized as a NOP depending
4031 // on the architecture.
4032 const Target_arm<big_endian>* arm_target =
4033 Target_arm<big_endian>::default_target();
4034 if (is_weakly_undefined_without_plt)
4035 {
4036 gold_assert(!parameters->options().relocatable());
4037 Valtype cond = val & 0xf0000000U;
4038 if (arm_target->may_use_arm_nop())
4039 val = cond | 0x0320f000;
4040 else
4041 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
4042 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4043 return This::STATUS_OKAY;
4044 }
4045
4046 Valtype addend = Bits<26>::sign_extend32(val << 2);
4047 Valtype branch_target = psymval->value(object, addend);
4048 int32_t branch_offset = branch_target - address;
4049
4050 // We need a stub if the branch offset is too large or if we need
4051 // to switch mode.
4052 bool may_use_blx = arm_target->may_use_v5t_interworking();
4053 Reloc_stub* stub = NULL;
4054
4055 if (!parameters->options().relocatable()
4056 && (Bits<26>::has_overflow32(branch_offset)
4057 || ((thumb_bit != 0)
4058 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
4059 {
4060 Valtype unadjusted_branch_target = psymval->value(object, 0);
4061
4062 Stub_type stub_type =
4063 Reloc_stub::stub_type_for_reloc(r_type, address,
4064 unadjusted_branch_target,
4065 (thumb_bit != 0));
4066 if (stub_type != arm_stub_none)
4067 {
4068 Stub_table<big_endian>* stub_table =
4069 object->stub_table(relinfo->data_shndx);
4070 gold_assert(stub_table != NULL);
4071
4072 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4073 stub = stub_table->find_reloc_stub(stub_key);
4074 gold_assert(stub != NULL);
4075 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4076 branch_target = stub_table->address() + stub->offset() + addend;
4077 branch_offset = branch_target - address;
4078 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4079 }
4080 }
4081
4082 // At this point, if we still need to switch mode, the instruction
4083 // must either be a BLX or a BL that can be converted to a BLX.
4084 if (thumb_bit != 0)
4085 {
4086 // Turn BL to BLX.
4087 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4088 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4089 }
4090
4091 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4092 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4093 return (Bits<26>::has_overflow32(branch_offset)
4094 ? This::STATUS_OVERFLOW
4095 : This::STATUS_OKAY);
4096 }
4097
4098 // Relocate THUMB long branches. This handles relocation types
4099 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4100 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4101 // undefined and we do not use PLT in this relocation. In such a case,
4102 // the branch is converted into an NOP.
4103
4104 template<bool big_endian>
4105 typename Arm_relocate_functions<big_endian>::Status
4106 Arm_relocate_functions<big_endian>::thumb_branch_common(
4107 unsigned int r_type,
4108 const Relocate_info<32, big_endian>* relinfo,
4109 unsigned char* view,
4110 const Sized_symbol<32>* gsym,
4111 const Arm_relobj<big_endian>* object,
4112 unsigned int r_sym,
4113 const Symbol_value<32>* psymval,
4114 Arm_address address,
4115 Arm_address thumb_bit,
4116 bool is_weakly_undefined_without_plt)
4117 {
4118 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4119 Valtype* wv = reinterpret_cast<Valtype*>(view);
4120 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4121 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4122
4123 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4124 // into account.
4125 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4126 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4127
4128 // Check that the instruction is valid.
4129 if (r_type == elfcpp::R_ARM_THM_CALL)
4130 {
4131 if (!is_bl_insn && !is_blx_insn)
4132 return This::STATUS_BAD_RELOC;
4133 }
4134 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4135 {
4136 // This cannot be a BLX.
4137 if (!is_bl_insn)
4138 return This::STATUS_BAD_RELOC;
4139 }
4140 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4141 {
4142 // Check for Thumb to Thumb call.
4143 if (!is_blx_insn)
4144 return This::STATUS_BAD_RELOC;
4145 if (thumb_bit != 0)
4146 {
4147 gold_warning(_("%s: Thumb BLX instruction targets "
4148 "thumb function '%s'."),
4149 object->name().c_str(),
4150 (gsym ? gsym->name() : "(local)"));
4151 // Convert BLX to BL.
4152 lower_insn |= 0x1000U;
4153 }
4154 }
4155 else
4156 gold_unreachable();
4157
4158 // A branch to an undefined weak symbol is turned into a jump to
4159 // the next instruction unless a PLT entry will be created.
4160 // The jump to the next instruction is optimized as a NOP.W for
4161 // Thumb-2 enabled architectures.
4162 const Target_arm<big_endian>* arm_target =
4163 Target_arm<big_endian>::default_target();
4164 if (is_weakly_undefined_without_plt)
4165 {
4166 gold_assert(!parameters->options().relocatable());
4167 if (arm_target->may_use_thumb2_nop())
4168 {
4169 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4170 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4171 }
4172 else
4173 {
4174 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4175 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4176 }
4177 return This::STATUS_OKAY;
4178 }
4179
4180 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4181 Arm_address branch_target = psymval->value(object, addend);
4182
4183 // For BLX, bit 1 of target address comes from bit 1 of base address.
4184 bool may_use_blx = arm_target->may_use_v5t_interworking();
4185 if (thumb_bit == 0 && may_use_blx)
4186 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4187
4188 int32_t branch_offset = branch_target - address;
4189
4190 // We need a stub if the branch offset is too large or if we need
4191 // to switch mode.
4192 bool thumb2 = arm_target->using_thumb2();
4193 if (!parameters->options().relocatable()
4194 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4195 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4196 || ((thumb_bit == 0)
4197 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4198 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4199 {
4200 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4201
4202 Stub_type stub_type =
4203 Reloc_stub::stub_type_for_reloc(r_type, address,
4204 unadjusted_branch_target,
4205 (thumb_bit != 0));
4206
4207 if (stub_type != arm_stub_none)
4208 {
4209 Stub_table<big_endian>* stub_table =
4210 object->stub_table(relinfo->data_shndx);
4211 gold_assert(stub_table != NULL);
4212
4213 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4214 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4215 gold_assert(stub != NULL);
4216 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4217 branch_target = stub_table->address() + stub->offset() + addend;
4218 if (thumb_bit == 0 && may_use_blx)
4219 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4220 branch_offset = branch_target - address;
4221 }
4222 }
4223
4224 // At this point, if we still need to switch mode, the instruction
4225 // must either be a BLX or a BL that can be converted to a BLX.
4226 if (thumb_bit == 0)
4227 {
4228 gold_assert(may_use_blx
4229 && (r_type == elfcpp::R_ARM_THM_CALL
4230 || r_type == elfcpp::R_ARM_THM_XPC22));
4231 // Make sure this is a BLX.
4232 lower_insn &= ~0x1000U;
4233 }
4234 else
4235 {
4236 // Make sure this is a BL.
4237 lower_insn |= 0x1000U;
4238 }
4239
4240 // For a BLX instruction, make sure that the relocation is rounded up
4241 // to a word boundary. This follows the semantics of the instruction
4242 // which specifies that bit 1 of the target address will come from bit
4243 // 1 of the base address.
4244 if ((lower_insn & 0x5000U) == 0x4000U)
4245 gold_assert((branch_offset & 3) == 0);
4246
4247 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4248 // We use the Thumb-2 encoding, which is safe even if dealing with
4249 // a Thumb-1 instruction by virtue of our overflow check above. */
4250 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4251 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4252
4253 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4254 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4255
4256 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4257
4258 return ((thumb2
4259 ? Bits<25>::has_overflow32(branch_offset)
4260 : Bits<23>::has_overflow32(branch_offset))
4261 ? This::STATUS_OVERFLOW
4262 : This::STATUS_OKAY);
4263 }
4264
4265 // Relocate THUMB-2 long conditional branches.
4266 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4267 // undefined and we do not use PLT in this relocation. In such a case,
4268 // the branch is converted into an NOP.
4269
4270 template<bool big_endian>
4271 typename Arm_relocate_functions<big_endian>::Status
4272 Arm_relocate_functions<big_endian>::thm_jump19(
4273 unsigned char* view,
4274 const Arm_relobj<big_endian>* object,
4275 const Symbol_value<32>* psymval,
4276 Arm_address address,
4277 Arm_address thumb_bit)
4278 {
4279 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4280 Valtype* wv = reinterpret_cast<Valtype*>(view);
4281 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4282 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4283 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4284
4285 Arm_address branch_target = psymval->value(object, addend);
4286 int32_t branch_offset = branch_target - address;
4287
4288 // ??? Should handle interworking? GCC might someday try to
4289 // use this for tail calls.
4290 // FIXME: We do support thumb entry to PLT yet.
4291 if (thumb_bit == 0)
4292 {
4293 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4294 return This::STATUS_BAD_RELOC;
4295 }
4296
4297 // Put RELOCATION back into the insn.
4298 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4299 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4300
4301 // Put the relocated value back in the object file:
4302 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4303 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4304
4305 return (Bits<21>::has_overflow32(branch_offset)
4306 ? This::STATUS_OVERFLOW
4307 : This::STATUS_OKAY);
4308 }
4309
4310 // Get the GOT section, creating it if necessary.
4311
4312 template<bool big_endian>
4313 Arm_output_data_got<big_endian>*
4314 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4315 {
4316 if (this->got_ == NULL)
4317 {
4318 gold_assert(symtab != NULL && layout != NULL);
4319
4320 // When using -z now, we can treat .got as a relro section.
4321 // Without -z now, it is modified after program startup by lazy
4322 // PLT relocations.
4323 bool is_got_relro = parameters->options().now();
4324 Output_section_order got_order = (is_got_relro
4325 ? ORDER_RELRO_LAST
4326 : ORDER_DATA);
4327
4328 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4329 // .got.plt sections in output. The output .got section contains both
4330 // PLT and non-PLT GOT entries.
4331 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4332
4333 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4334 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4335 this->got_, got_order, is_got_relro);
4336
4337 // The old GNU linker creates a .got.plt section. We just
4338 // create another set of data in the .got section. Note that we
4339 // always create a PLT if we create a GOT, although the PLT
4340 // might be empty.
4341 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4342 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4343 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4344 this->got_plt_, got_order, is_got_relro);
4345
4346 // The first three entries are reserved.
4347 this->got_plt_->set_current_data_size(3 * 4);
4348
4349 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4350 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4351 Symbol_table::PREDEFINED,
4352 this->got_plt_,
4353 0, 0, elfcpp::STT_OBJECT,
4354 elfcpp::STB_LOCAL,
4355 elfcpp::STV_HIDDEN, 0,
4356 false, false);
4357
4358 // If there are any IRELATIVE relocations, they get GOT entries
4359 // in .got.plt after the jump slot entries.
4360 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4361 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4362 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4363 this->got_irelative_,
4364 got_order, is_got_relro);
4365
4366 }
4367 return this->got_;
4368 }
4369
4370 // Get the dynamic reloc section, creating it if necessary.
4371
4372 template<bool big_endian>
4373 typename Target_arm<big_endian>::Reloc_section*
4374 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4375 {
4376 if (this->rel_dyn_ == NULL)
4377 {
4378 gold_assert(layout != NULL);
4379 // Create both relocation sections in the same place, so as to ensure
4380 // their relative order in the output section.
4381 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4382 this->rel_irelative_ = new Reloc_section(false);
4383 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4384 elfcpp::SHF_ALLOC, this->rel_dyn_,
4385 ORDER_DYNAMIC_RELOCS, false);
4386 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4387 elfcpp::SHF_ALLOC, this->rel_irelative_,
4388 ORDER_DYNAMIC_RELOCS, false);
4389 }
4390 return this->rel_dyn_;
4391 }
4392
4393
4394 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4395 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4396 // follow the other dynamic relocations so that they can refer to global
4397 // variables initialized by those relocs.
4398
4399 template<bool big_endian>
4400 typename Target_arm<big_endian>::Reloc_section*
4401 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4402 {
4403 if (this->rel_irelative_ == NULL)
4404 {
4405 // Delegate the creation to rel_dyn_section so as to ensure their order in
4406 // the output section.
4407 this->rel_dyn_section(layout);
4408 gold_assert(this->rel_irelative_ != NULL
4409 && (this->rel_dyn_->output_section()
4410 == this->rel_irelative_->output_section()));
4411 }
4412 return this->rel_irelative_;
4413 }
4414
4415
4416 // Insn_template methods.
4417
4418 // Return byte size of an instruction template.
4419
4420 size_t
4421 Insn_template::size() const
4422 {
4423 switch (this->type())
4424 {
4425 case THUMB16_TYPE:
4426 case THUMB16_SPECIAL_TYPE:
4427 return 2;
4428 case ARM_TYPE:
4429 case THUMB32_TYPE:
4430 case DATA_TYPE:
4431 return 4;
4432 default:
4433 gold_unreachable();
4434 }
4435 }
4436
4437 // Return alignment of an instruction template.
4438
4439 unsigned
4440 Insn_template::alignment() const
4441 {
4442 switch (this->type())
4443 {
4444 case THUMB16_TYPE:
4445 case THUMB16_SPECIAL_TYPE:
4446 case THUMB32_TYPE:
4447 return 2;
4448 case ARM_TYPE:
4449 case DATA_TYPE:
4450 return 4;
4451 default:
4452 gold_unreachable();
4453 }
4454 }
4455
4456 // Stub_template methods.
4457
4458 Stub_template::Stub_template(
4459 Stub_type type, const Insn_template* insns,
4460 size_t insn_count)
4461 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4462 entry_in_thumb_mode_(false), relocs_()
4463 {
4464 off_t offset = 0;
4465
4466 // Compute byte size and alignment of stub template.
4467 for (size_t i = 0; i < insn_count; i++)
4468 {
4469 unsigned insn_alignment = insns[i].alignment();
4470 size_t insn_size = insns[i].size();
4471 gold_assert((offset & (insn_alignment - 1)) == 0);
4472 this->alignment_ = std::max(this->alignment_, insn_alignment);
4473 switch (insns[i].type())
4474 {
4475 case Insn_template::THUMB16_TYPE:
4476 case Insn_template::THUMB16_SPECIAL_TYPE:
4477 if (i == 0)
4478 this->entry_in_thumb_mode_ = true;
4479 break;
4480
4481 case Insn_template::THUMB32_TYPE:
4482 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4483 this->relocs_.push_back(Reloc(i, offset));
4484 if (i == 0)
4485 this->entry_in_thumb_mode_ = true;
4486 break;
4487
4488 case Insn_template::ARM_TYPE:
4489 // Handle cases where the target is encoded within the
4490 // instruction.
4491 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4492 this->relocs_.push_back(Reloc(i, offset));
4493 break;
4494
4495 case Insn_template::DATA_TYPE:
4496 // Entry point cannot be data.
4497 gold_assert(i != 0);
4498 this->relocs_.push_back(Reloc(i, offset));
4499 break;
4500
4501 default:
4502 gold_unreachable();
4503 }
4504 offset += insn_size;
4505 }
4506 this->size_ = offset;
4507 }
4508
4509 // Stub methods.
4510
4511 // Template to implement do_write for a specific target endianness.
4512
4513 template<bool big_endian>
4514 void inline
4515 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4516 {
4517 const Stub_template* stub_template = this->stub_template();
4518 const Insn_template* insns = stub_template->insns();
4519 const bool enable_be8 = parameters->options().be8();
4520
4521 unsigned char* pov = view;
4522 for (size_t i = 0; i < stub_template->insn_count(); i++)
4523 {
4524 switch (insns[i].type())
4525 {
4526 case Insn_template::THUMB16_TYPE:
4527 if (enable_be8)
4528 elfcpp::Swap<16, false>::writeval(pov, insns[i].data() & 0xffff);
4529 else
4530 elfcpp::Swap<16, big_endian>::writeval(pov,
4531 insns[i].data() & 0xffff);
4532 break;
4533 case Insn_template::THUMB16_SPECIAL_TYPE:
4534 if (enable_be8)
4535 elfcpp::Swap<16, false>::writeval(pov, this->thumb16_special(i));
4536 else
4537 elfcpp::Swap<16, big_endian>::writeval(pov,
4538 this->thumb16_special(i));
4539 break;
4540 case Insn_template::THUMB32_TYPE:
4541 {
4542 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4543 uint32_t lo = insns[i].data() & 0xffff;
4544 if (enable_be8)
4545 {
4546 elfcpp::Swap<16, false>::writeval(pov, hi);
4547 elfcpp::Swap<16, false>::writeval(pov + 2, lo);
4548 }
4549 else
4550 {
4551 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4552 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4553 }
4554 }
4555 break;
4556 case Insn_template::ARM_TYPE:
4557 if (enable_be8)
4558 elfcpp::Swap<32, false>::writeval(pov, insns[i].data());
4559 else
4560 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4561 break;
4562 case Insn_template::DATA_TYPE:
4563 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4564 break;
4565 default:
4566 gold_unreachable();
4567 }
4568 pov += insns[i].size();
4569 }
4570 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4571 }
4572
4573 // Reloc_stub::Key methods.
4574
4575 // Dump a Key as a string for debugging.
4576
4577 std::string
4578 Reloc_stub::Key::name() const
4579 {
4580 if (this->r_sym_ == invalid_index)
4581 {
4582 // Global symbol key name
4583 // <stub-type>:<symbol name>:<addend>.
4584 const std::string sym_name = this->u_.symbol->name();
4585 // We need to print two hex number and two colons. So just add 100 bytes
4586 // to the symbol name size.
4587 size_t len = sym_name.size() + 100;
4588 char* buffer = new char[len];
4589 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4590 sym_name.c_str(), this->addend_);
4591 gold_assert(c > 0 && c < static_cast<int>(len));
4592 delete[] buffer;
4593 return std::string(buffer);
4594 }
4595 else
4596 {
4597 // local symbol key name
4598 // <stub-type>:<object>:<r_sym>:<addend>.
4599 const size_t len = 200;
4600 char buffer[len];
4601 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4602 this->u_.relobj, this->r_sym_, this->addend_);
4603 gold_assert(c > 0 && c < static_cast<int>(len));
4604 return std::string(buffer);
4605 }
4606 }
4607
4608 // Reloc_stub methods.
4609
4610 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4611 // LOCATION to DESTINATION.
4612 // This code is based on the arm_type_of_stub function in
4613 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4614 // class simple.
4615
4616 Stub_type
4617 Reloc_stub::stub_type_for_reloc(
4618 unsigned int r_type,
4619 Arm_address location,
4620 Arm_address destination,
4621 bool target_is_thumb)
4622 {
4623 Stub_type stub_type = arm_stub_none;
4624
4625 // This is a bit ugly but we want to avoid using a templated class for
4626 // big and little endianities.
4627 bool may_use_blx;
4628 bool should_force_pic_veneer = parameters->options().pic_veneer();
4629 bool thumb2;
4630 bool thumb_only;
4631 if (parameters->target().is_big_endian())
4632 {
4633 const Target_arm<true>* big_endian_target =
4634 Target_arm<true>::default_target();
4635 may_use_blx = big_endian_target->may_use_v5t_interworking();
4636 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4637 thumb2 = big_endian_target->using_thumb2();
4638 thumb_only = big_endian_target->using_thumb_only();
4639 }
4640 else
4641 {
4642 const Target_arm<false>* little_endian_target =
4643 Target_arm<false>::default_target();
4644 may_use_blx = little_endian_target->may_use_v5t_interworking();
4645 should_force_pic_veneer |=
4646 little_endian_target->should_force_pic_veneer();
4647 thumb2 = little_endian_target->using_thumb2();
4648 thumb_only = little_endian_target->using_thumb_only();
4649 }
4650
4651 int64_t branch_offset;
4652 bool output_is_position_independent =
4653 parameters->options().output_is_position_independent();
4654 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4655 {
4656 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4657 // base address (instruction address + 4).
4658 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4659 destination = Bits<32>::bit_select32(destination, location, 0x2);
4660 branch_offset = static_cast<int64_t>(destination) - location;
4661
4662 // Handle cases where:
4663 // - this call goes too far (different Thumb/Thumb2 max
4664 // distance)
4665 // - it's a Thumb->Arm call and blx is not available, or it's a
4666 // Thumb->Arm branch (not bl). A stub is needed in this case.
4667 if ((!thumb2
4668 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4669 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4670 || (thumb2
4671 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4672 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4673 || ((!target_is_thumb)
4674 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4675 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4676 {
4677 if (target_is_thumb)
4678 {
4679 // Thumb to thumb.
4680 if (!thumb_only)
4681 {
4682 stub_type = (output_is_position_independent
4683 || should_force_pic_veneer)
4684 // PIC stubs.
4685 ? ((may_use_blx
4686 && (r_type == elfcpp::R_ARM_THM_CALL))
4687 // V5T and above. Stub starts with ARM code, so
4688 // we must be able to switch mode before
4689 // reaching it, which is only possible for 'bl'
4690 // (ie R_ARM_THM_CALL relocation).
4691 ? arm_stub_long_branch_any_thumb_pic
4692 // On V4T, use Thumb code only.
4693 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4694
4695 // non-PIC stubs.
4696 : ((may_use_blx
4697 && (r_type == elfcpp::R_ARM_THM_CALL))
4698 ? arm_stub_long_branch_any_any // V5T and above.
4699 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4700 }
4701 else
4702 {
4703 stub_type = (output_is_position_independent
4704 || should_force_pic_veneer)
4705 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4706 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4707 }
4708 }
4709 else
4710 {
4711 // Thumb to arm.
4712
4713 // FIXME: We should check that the input section is from an
4714 // object that has interwork enabled.
4715
4716 stub_type = (output_is_position_independent
4717 || should_force_pic_veneer)
4718 // PIC stubs.
4719 ? ((may_use_blx
4720 && (r_type == elfcpp::R_ARM_THM_CALL))
4721 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4722 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4723
4724 // non-PIC stubs.
4725 : ((may_use_blx
4726 && (r_type == elfcpp::R_ARM_THM_CALL))
4727 ? arm_stub_long_branch_any_any // V5T and above.
4728 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4729
4730 // Handle v4t short branches.
4731 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4732 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4733 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4734 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4735 }
4736 }
4737 }
4738 else if (r_type == elfcpp::R_ARM_CALL
4739 || r_type == elfcpp::R_ARM_JUMP24
4740 || r_type == elfcpp::R_ARM_PLT32)
4741 {
4742 branch_offset = static_cast<int64_t>(destination) - location;
4743 if (target_is_thumb)
4744 {
4745 // Arm to thumb.
4746
4747 // FIXME: We should check that the input section is from an
4748 // object that has interwork enabled.
4749
4750 // We have an extra 2-bytes reach because of
4751 // the mode change (bit 24 (H) of BLX encoding).
4752 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4753 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4754 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4755 || (r_type == elfcpp::R_ARM_JUMP24)
4756 || (r_type == elfcpp::R_ARM_PLT32))
4757 {
4758 stub_type = (output_is_position_independent
4759 || should_force_pic_veneer)
4760 // PIC stubs.
4761 ? (may_use_blx
4762 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4763 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4764
4765 // non-PIC stubs.
4766 : (may_use_blx
4767 ? arm_stub_long_branch_any_any // V5T and above.
4768 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4769 }
4770 }
4771 else
4772 {
4773 // Arm to arm.
4774 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4775 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4776 {
4777 stub_type = (output_is_position_independent
4778 || should_force_pic_veneer)
4779 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4780 : arm_stub_long_branch_any_any; /// non-PIC.
4781 }
4782 }
4783 }
4784
4785 return stub_type;
4786 }
4787
4788 // Cortex_a8_stub methods.
4789
4790 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4791 // I is the position of the instruction template in the stub template.
4792
4793 uint16_t
4794 Cortex_a8_stub::do_thumb16_special(size_t i)
4795 {
4796 // The only use of this is to copy condition code from a conditional
4797 // branch being worked around to the corresponding conditional branch in
4798 // to the stub.
4799 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4800 && i == 0);
4801 uint16_t data = this->stub_template()->insns()[i].data();
4802 gold_assert((data & 0xff00U) == 0xd000U);
4803 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4804 return data;
4805 }
4806
4807 // Stub_factory methods.
4808
4809 Stub_factory::Stub_factory()
4810 {
4811 // The instruction template sequences are declared as static
4812 // objects and initialized first time the constructor runs.
4813
4814 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4815 // to reach the stub if necessary.
4816 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4817 {
4818 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4819 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4820 // dcd R_ARM_ABS32(X)
4821 };
4822
4823 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4824 // available.
4825 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4826 {
4827 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4828 Insn_template::arm_insn(0xe12fff1c), // bx ip
4829 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4830 // dcd R_ARM_ABS32(X)
4831 };
4832
4833 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4834 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4835 {
4836 Insn_template::thumb16_insn(0xb401), // push {r0}
4837 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4838 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4839 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4840 Insn_template::thumb16_insn(0x4760), // bx ip
4841 Insn_template::thumb16_insn(0xbf00), // nop
4842 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4843 // dcd R_ARM_ABS32(X)
4844 };
4845
4846 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4847 // allowed.
4848 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4849 {
4850 Insn_template::thumb16_insn(0x4778), // bx pc
4851 Insn_template::thumb16_insn(0x46c0), // nop
4852 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4853 Insn_template::arm_insn(0xe12fff1c), // bx ip
4854 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4855 // dcd R_ARM_ABS32(X)
4856 };
4857
4858 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4859 // available.
4860 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4861 {
4862 Insn_template::thumb16_insn(0x4778), // bx pc
4863 Insn_template::thumb16_insn(0x46c0), // nop
4864 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4865 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4866 // dcd R_ARM_ABS32(X)
4867 };
4868
4869 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4870 // one, when the destination is close enough.
4871 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4872 {
4873 Insn_template::thumb16_insn(0x4778), // bx pc
4874 Insn_template::thumb16_insn(0x46c0), // nop
4875 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4876 };
4877
4878 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4879 // blx to reach the stub if necessary.
4880 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4881 {
4882 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4883 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4884 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4885 // dcd R_ARM_REL32(X-4)
4886 };
4887
4888 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4889 // blx to reach the stub if necessary. We can not add into pc;
4890 // it is not guaranteed to mode switch (different in ARMv6 and
4891 // ARMv7).
4892 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4893 {
4894 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4895 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4896 Insn_template::arm_insn(0xe12fff1c), // bx ip
4897 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4898 // dcd R_ARM_REL32(X)
4899 };
4900
4901 // V4T ARM -> ARM long branch stub, PIC.
4902 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4903 {
4904 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4905 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4906 Insn_template::arm_insn(0xe12fff1c), // bx ip
4907 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4908 // dcd R_ARM_REL32(X)
4909 };
4910
4911 // V4T Thumb -> ARM long branch stub, PIC.
4912 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4913 {
4914 Insn_template::thumb16_insn(0x4778), // bx pc
4915 Insn_template::thumb16_insn(0x46c0), // nop
4916 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4917 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4918 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4919 // dcd R_ARM_REL32(X)
4920 };
4921
4922 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4923 // architectures.
4924 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4925 {
4926 Insn_template::thumb16_insn(0xb401), // push {r0}
4927 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4928 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4929 Insn_template::thumb16_insn(0x4484), // add ip, r0
4930 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4931 Insn_template::thumb16_insn(0x4760), // bx ip
4932 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4933 // dcd R_ARM_REL32(X)
4934 };
4935
4936 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4937 // allowed.
4938 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4939 {
4940 Insn_template::thumb16_insn(0x4778), // bx pc
4941 Insn_template::thumb16_insn(0x46c0), // nop
4942 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4943 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4944 Insn_template::arm_insn(0xe12fff1c), // bx ip
4945 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4946 // dcd R_ARM_REL32(X)
4947 };
4948
4949 // Cortex-A8 erratum-workaround stubs.
4950
4951 // Stub used for conditional branches (which may be beyond +/-1MB away,
4952 // so we can't use a conditional branch to reach this stub).
4953
4954 // original code:
4955 //
4956 // b<cond> X
4957 // after:
4958 //
4959 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4960 {
4961 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4962 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4963 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4964 // b.w X
4965 };
4966
4967 // Stub used for b.w and bl.w instructions.
4968
4969 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4970 {
4971 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4972 };
4973
4974 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4975 {
4976 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4977 };
4978
4979 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4980 // instruction (which switches to ARM mode) to point to this stub. Jump to
4981 // the real destination using an ARM-mode branch.
4982 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4983 {
4984 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4985 };
4986
4987 // Stub used to provide an interworking for R_ARM_V4BX relocation
4988 // (bx r[n] instruction).
4989 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4990 {
4991 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4992 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4993 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4994 };
4995
4996 // Fill in the stub template look-up table. Stub templates are constructed
4997 // per instance of Stub_factory for fast look-up without locking
4998 // in a thread-enabled environment.
4999
5000 this->stub_templates_[arm_stub_none] =
5001 new Stub_template(arm_stub_none, NULL, 0);
5002
5003 #define DEF_STUB(x) \
5004 do \
5005 { \
5006 size_t array_size \
5007 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
5008 Stub_type type = arm_stub_##x; \
5009 this->stub_templates_[type] = \
5010 new Stub_template(type, elf32_arm_stub_##x, array_size); \
5011 } \
5012 while (0);
5013
5014 DEF_STUBS
5015 #undef DEF_STUB
5016 }
5017
5018 // Stub_table methods.
5019
5020 // Remove all Cortex-A8 stub.
5021
5022 template<bool big_endian>
5023 void
5024 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
5025 {
5026 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5027 p != this->cortex_a8_stubs_.end();
5028 ++p)
5029 delete p->second;
5030 this->cortex_a8_stubs_.clear();
5031 }
5032
5033 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
5034
5035 template<bool big_endian>
5036 void
5037 Stub_table<big_endian>::relocate_stub(
5038 Stub* stub,
5039 const Relocate_info<32, big_endian>* relinfo,
5040 Target_arm<big_endian>* arm_target,
5041 Output_section* output_section,
5042 unsigned char* view,
5043 Arm_address address,
5044 section_size_type view_size)
5045 {
5046 const Stub_template* stub_template = stub->stub_template();
5047 if (stub_template->reloc_count() != 0)
5048 {
5049 // Adjust view to cover the stub only.
5050 section_size_type offset = stub->offset();
5051 section_size_type stub_size = stub_template->size();
5052 gold_assert(offset + stub_size <= view_size);
5053
5054 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
5055 address + offset, stub_size);
5056 }
5057 }
5058
5059 // Relocate all stubs in this stub table.
5060
5061 template<bool big_endian>
5062 void
5063 Stub_table<big_endian>::relocate_stubs(
5064 const Relocate_info<32, big_endian>* relinfo,
5065 Target_arm<big_endian>* arm_target,
5066 Output_section* output_section,
5067 unsigned char* view,
5068 Arm_address address,
5069 section_size_type view_size)
5070 {
5071 // If we are passed a view bigger than the stub table's. we need to
5072 // adjust the view.
5073 gold_assert(address == this->address()
5074 && (view_size
5075 == static_cast<section_size_type>(this->data_size())));
5076
5077 // Relocate all relocation stubs.
5078 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5079 p != this->reloc_stubs_.end();
5080 ++p)
5081 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5082 address, view_size);
5083
5084 // Relocate all Cortex-A8 stubs.
5085 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5086 p != this->cortex_a8_stubs_.end();
5087 ++p)
5088 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5089 address, view_size);
5090
5091 // Relocate all ARM V4BX stubs.
5092 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5093 p != this->arm_v4bx_stubs_.end();
5094 ++p)
5095 {
5096 if (*p != NULL)
5097 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5098 address, view_size);
5099 }
5100 }
5101
5102 // Write out the stubs to file.
5103
5104 template<bool big_endian>
5105 void
5106 Stub_table<big_endian>::do_write(Output_file* of)
5107 {
5108 off_t offset = this->offset();
5109 const section_size_type oview_size =
5110 convert_to_section_size_type(this->data_size());
5111 unsigned char* const oview = of->get_output_view(offset, oview_size);
5112
5113 // Write relocation stubs.
5114 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5115 p != this->reloc_stubs_.end();
5116 ++p)
5117 {
5118 Reloc_stub* stub = p->second;
5119 Arm_address address = this->address() + stub->offset();
5120 gold_assert(address
5121 == align_address(address,
5122 stub->stub_template()->alignment()));
5123 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5124 big_endian);
5125 }
5126
5127 // Write Cortex-A8 stubs.
5128 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5129 p != this->cortex_a8_stubs_.end();
5130 ++p)
5131 {
5132 Cortex_a8_stub* stub = p->second;
5133 Arm_address address = this->address() + stub->offset();
5134 gold_assert(address
5135 == align_address(address,
5136 stub->stub_template()->alignment()));
5137 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5138 big_endian);
5139 }
5140
5141 // Write ARM V4BX relocation stubs.
5142 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5143 p != this->arm_v4bx_stubs_.end();
5144 ++p)
5145 {
5146 if (*p == NULL)
5147 continue;
5148
5149 Arm_address address = this->address() + (*p)->offset();
5150 gold_assert(address
5151 == align_address(address,
5152 (*p)->stub_template()->alignment()));
5153 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5154 big_endian);
5155 }
5156
5157 of->write_output_view(this->offset(), oview_size, oview);
5158 }
5159
5160 // Update the data size and address alignment of the stub table at the end
5161 // of a relaxation pass. Return true if either the data size or the
5162 // alignment changed in this relaxation pass.
5163
5164 template<bool big_endian>
5165 bool
5166 Stub_table<big_endian>::update_data_size_and_addralign()
5167 {
5168 // Go over all stubs in table to compute data size and address alignment.
5169 off_t size = this->reloc_stubs_size_;
5170 unsigned addralign = this->reloc_stubs_addralign_;
5171
5172 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5173 p != this->cortex_a8_stubs_.end();
5174 ++p)
5175 {
5176 const Stub_template* stub_template = p->second->stub_template();
5177 addralign = std::max(addralign, stub_template->alignment());
5178 size = (align_address(size, stub_template->alignment())
5179 + stub_template->size());
5180 }
5181
5182 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5183 p != this->arm_v4bx_stubs_.end();
5184 ++p)
5185 {
5186 if (*p == NULL)
5187 continue;
5188
5189 const Stub_template* stub_template = (*p)->stub_template();
5190 addralign = std::max(addralign, stub_template->alignment());
5191 size = (align_address(size, stub_template->alignment())
5192 + stub_template->size());
5193 }
5194
5195 // Check if either data size or alignment changed in this pass.
5196 // Update prev_data_size_ and prev_addralign_. These will be used
5197 // as the current data size and address alignment for the next pass.
5198 bool changed = size != this->prev_data_size_;
5199 this->prev_data_size_ = size;
5200
5201 if (addralign != this->prev_addralign_)
5202 changed = true;
5203 this->prev_addralign_ = addralign;
5204
5205 return changed;
5206 }
5207
5208 // Finalize the stubs. This sets the offsets of the stubs within the stub
5209 // table. It also marks all input sections needing Cortex-A8 workaround.
5210
5211 template<bool big_endian>
5212 void
5213 Stub_table<big_endian>::finalize_stubs()
5214 {
5215 off_t off = this->reloc_stubs_size_;
5216 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5217 p != this->cortex_a8_stubs_.end();
5218 ++p)
5219 {
5220 Cortex_a8_stub* stub = p->second;
5221 const Stub_template* stub_template = stub->stub_template();
5222 uint64_t stub_addralign = stub_template->alignment();
5223 off = align_address(off, stub_addralign);
5224 stub->set_offset(off);
5225 off += stub_template->size();
5226
5227 // Mark input section so that we can determine later if a code section
5228 // needs the Cortex-A8 workaround quickly.
5229 Arm_relobj<big_endian>* arm_relobj =
5230 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5231 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5232 }
5233
5234 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5235 p != this->arm_v4bx_stubs_.end();
5236 ++p)
5237 {
5238 if (*p == NULL)
5239 continue;
5240
5241 const Stub_template* stub_template = (*p)->stub_template();
5242 uint64_t stub_addralign = stub_template->alignment();
5243 off = align_address(off, stub_addralign);
5244 (*p)->set_offset(off);
5245 off += stub_template->size();
5246 }
5247
5248 gold_assert(off <= this->prev_data_size_);
5249 }
5250
5251 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5252 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5253 // of the address range seen by the linker.
5254
5255 template<bool big_endian>
5256 void
5257 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5258 Target_arm<big_endian>* arm_target,
5259 unsigned char* view,
5260 Arm_address view_address,
5261 section_size_type view_size)
5262 {
5263 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5264 for (Cortex_a8_stub_list::const_iterator p =
5265 this->cortex_a8_stubs_.lower_bound(view_address);
5266 ((p != this->cortex_a8_stubs_.end())
5267 && (p->first < (view_address + view_size)));
5268 ++p)
5269 {
5270 // We do not store the THUMB bit in the LSB of either the branch address
5271 // or the stub offset. There is no need to strip the LSB.
5272 Arm_address branch_address = p->first;
5273 const Cortex_a8_stub* stub = p->second;
5274 Arm_address stub_address = this->address() + stub->offset();
5275
5276 // Offset of the branch instruction relative to this view.
5277 section_size_type offset =
5278 convert_to_section_size_type(branch_address - view_address);
5279 gold_assert((offset + 4) <= view_size);
5280
5281 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5282 view + offset, branch_address);
5283 }
5284 }
5285
5286 // Arm_input_section methods.
5287
5288 // Initialize an Arm_input_section.
5289
5290 template<bool big_endian>
5291 void
5292 Arm_input_section<big_endian>::init()
5293 {
5294 Relobj* relobj = this->relobj();
5295 unsigned int shndx = this->shndx();
5296
5297 // We have to cache original size, alignment and contents to avoid locking
5298 // the original file.
5299 this->original_addralign_ =
5300 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5301
5302 // This is not efficient but we expect only a small number of relaxed
5303 // input sections for stubs.
5304 section_size_type section_size;
5305 const unsigned char* section_contents =
5306 relobj->section_contents(shndx, &section_size, false);
5307 this->original_size_ =
5308 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5309
5310 gold_assert(this->original_contents_ == NULL);
5311 this->original_contents_ = new unsigned char[section_size];
5312 memcpy(this->original_contents_, section_contents, section_size);
5313
5314 // We want to make this look like the original input section after
5315 // output sections are finalized.
5316 Output_section* os = relobj->output_section(shndx);
5317 off_t offset = relobj->output_section_offset(shndx);
5318 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5319 this->set_address(os->address() + offset);
5320 this->set_file_offset(os->offset() + offset);
5321
5322 this->set_current_data_size(this->original_size_);
5323 this->finalize_data_size();
5324 }
5325
5326 template<bool big_endian>
5327 void
5328 Arm_input_section<big_endian>::do_write(Output_file* of)
5329 {
5330 // We have to write out the original section content.
5331 gold_assert(this->original_contents_ != NULL);
5332 of->write(this->offset(), this->original_contents_,
5333 this->original_size_);
5334
5335 // If this owns a stub table and it is not empty, write it.
5336 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5337 this->stub_table_->write(of);
5338 }
5339
5340 // Finalize data size.
5341
5342 template<bool big_endian>
5343 void
5344 Arm_input_section<big_endian>::set_final_data_size()
5345 {
5346 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5347
5348 if (this->is_stub_table_owner())
5349 {
5350 this->stub_table_->finalize_data_size();
5351 off = align_address(off, this->stub_table_->addralign());
5352 off += this->stub_table_->data_size();
5353 }
5354 this->set_data_size(off);
5355 }
5356
5357 // Reset address and file offset.
5358
5359 template<bool big_endian>
5360 void
5361 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5362 {
5363 // Size of the original input section contents.
5364 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5365
5366 // If this is a stub table owner, account for the stub table size.
5367 if (this->is_stub_table_owner())
5368 {
5369 Stub_table<big_endian>* stub_table = this->stub_table_;
5370
5371 // Reset the stub table's address and file offset. The
5372 // current data size for child will be updated after that.
5373 stub_table_->reset_address_and_file_offset();
5374 off = align_address(off, stub_table_->addralign());
5375 off += stub_table->current_data_size();
5376 }
5377
5378 this->set_current_data_size(off);
5379 }
5380
5381 // Arm_exidx_cantunwind methods.
5382
5383 // Write this to Output file OF for a fixed endianness.
5384
5385 template<bool big_endian>
5386 void
5387 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5388 {
5389 off_t offset = this->offset();
5390 const section_size_type oview_size = 8;
5391 unsigned char* const oview = of->get_output_view(offset, oview_size);
5392
5393 Output_section* os = this->relobj_->output_section(this->shndx_);
5394 gold_assert(os != NULL);
5395
5396 Arm_relobj<big_endian>* arm_relobj =
5397 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5398 Arm_address output_offset =
5399 arm_relobj->get_output_section_offset(this->shndx_);
5400 Arm_address section_start;
5401 section_size_type section_size;
5402
5403 // Find out the end of the text section referred by this.
5404 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5405 {
5406 section_start = os->address() + output_offset;
5407 const Arm_exidx_input_section* exidx_input_section =
5408 arm_relobj->exidx_input_section_by_link(this->shndx_);
5409 gold_assert(exidx_input_section != NULL);
5410 section_size =
5411 convert_to_section_size_type(exidx_input_section->text_size());
5412 }
5413 else
5414 {
5415 // Currently this only happens for a relaxed section.
5416 const Output_relaxed_input_section* poris =
5417 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5418 gold_assert(poris != NULL);
5419 section_start = poris->address();
5420 section_size = convert_to_section_size_type(poris->data_size());
5421 }
5422
5423 // We always append this to the end of an EXIDX section.
5424 Arm_address output_address = section_start + section_size;
5425
5426 // Write out the entry. The first word either points to the beginning
5427 // or after the end of a text section. The second word is the special
5428 // EXIDX_CANTUNWIND value.
5429 uint32_t prel31_offset = output_address - this->address();
5430 if (Bits<31>::has_overflow32(offset))
5431 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5432 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5433 prel31_offset & 0x7fffffffU);
5434 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5435 elfcpp::EXIDX_CANTUNWIND);
5436
5437 of->write_output_view(this->offset(), oview_size, oview);
5438 }
5439
5440 // Arm_exidx_merged_section methods.
5441
5442 // Constructor for Arm_exidx_merged_section.
5443 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5444 // SECTION_OFFSET_MAP points to a section offset map describing how
5445 // parts of the input section are mapped to output. DELETED_BYTES is
5446 // the number of bytes deleted from the EXIDX input section.
5447
5448 Arm_exidx_merged_section::Arm_exidx_merged_section(
5449 const Arm_exidx_input_section& exidx_input_section,
5450 const Arm_exidx_section_offset_map& section_offset_map,
5451 uint32_t deleted_bytes)
5452 : Output_relaxed_input_section(exidx_input_section.relobj(),
5453 exidx_input_section.shndx(),
5454 exidx_input_section.addralign()),
5455 exidx_input_section_(exidx_input_section),
5456 section_offset_map_(section_offset_map)
5457 {
5458 // If we retain or discard the whole EXIDX input section, we would
5459 // not be here.
5460 gold_assert(deleted_bytes != 0
5461 && deleted_bytes != this->exidx_input_section_.size());
5462
5463 // Fix size here so that we do not need to implement set_final_data_size.
5464 uint32_t size = exidx_input_section.size() - deleted_bytes;
5465 this->set_data_size(size);
5466 this->fix_data_size();
5467
5468 // Allocate buffer for section contents and build contents.
5469 this->section_contents_ = new unsigned char[size];
5470 }
5471
5472 // Build the contents of a merged EXIDX output section.
5473
5474 void
5475 Arm_exidx_merged_section::build_contents(
5476 const unsigned char* original_contents,
5477 section_size_type original_size)
5478 {
5479 // Go over spans of input offsets and write only those that are not
5480 // discarded.
5481 section_offset_type in_start = 0;
5482 section_offset_type out_start = 0;
5483 section_offset_type in_max =
5484 convert_types<section_offset_type>(original_size);
5485 section_offset_type out_max =
5486 convert_types<section_offset_type>(this->data_size());
5487 for (Arm_exidx_section_offset_map::const_iterator p =
5488 this->section_offset_map_.begin();
5489 p != this->section_offset_map_.end();
5490 ++p)
5491 {
5492 section_offset_type in_end = p->first;
5493 gold_assert(in_end >= in_start);
5494 section_offset_type out_end = p->second;
5495 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5496 if (out_end != -1)
5497 {
5498 size_t out_chunk_size =
5499 convert_types<size_t>(out_end - out_start + 1);
5500
5501 gold_assert(out_chunk_size == in_chunk_size
5502 && in_end < in_max && out_end < out_max);
5503
5504 memcpy(this->section_contents_ + out_start,
5505 original_contents + in_start,
5506 out_chunk_size);
5507 out_start += out_chunk_size;
5508 }
5509 in_start += in_chunk_size;
5510 }
5511 }
5512
5513 // Given an input OBJECT, an input section index SHNDX within that
5514 // object, and an OFFSET relative to the start of that input
5515 // section, return whether or not the corresponding offset within
5516 // the output section is known. If this function returns true, it
5517 // sets *POUTPUT to the output offset. The value -1 indicates that
5518 // this input offset is being discarded.
5519
5520 bool
5521 Arm_exidx_merged_section::do_output_offset(
5522 const Relobj* relobj,
5523 unsigned int shndx,
5524 section_offset_type offset,
5525 section_offset_type* poutput) const
5526 {
5527 // We only handle offsets for the original EXIDX input section.
5528 if (relobj != this->exidx_input_section_.relobj()
5529 || shndx != this->exidx_input_section_.shndx())
5530 return false;
5531
5532 section_offset_type section_size =
5533 convert_types<section_offset_type>(this->exidx_input_section_.size());
5534 if (offset < 0 || offset >= section_size)
5535 // Input offset is out of valid range.
5536 *poutput = -1;
5537 else
5538 {
5539 // We need to look up the section offset map to determine the output
5540 // offset. Find the reference point in map that is first offset
5541 // bigger than or equal to this offset.
5542 Arm_exidx_section_offset_map::const_iterator p =
5543 this->section_offset_map_.lower_bound(offset);
5544
5545 // The section offset maps are build such that this should not happen if
5546 // input offset is in the valid range.
5547 gold_assert(p != this->section_offset_map_.end());
5548
5549 // We need to check if this is dropped.
5550 section_offset_type ref = p->first;
5551 section_offset_type mapped_ref = p->second;
5552
5553 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5554 // Offset is present in output.
5555 *poutput = mapped_ref + (offset - ref);
5556 else
5557 // Offset is discarded owing to EXIDX entry merging.
5558 *poutput = -1;
5559 }
5560
5561 return true;
5562 }
5563
5564 // Write this to output file OF.
5565
5566 void
5567 Arm_exidx_merged_section::do_write(Output_file* of)
5568 {
5569 off_t offset = this->offset();
5570 const section_size_type oview_size = this->data_size();
5571 unsigned char* const oview = of->get_output_view(offset, oview_size);
5572
5573 Output_section* os = this->relobj()->output_section(this->shndx());
5574 gold_assert(os != NULL);
5575
5576 memcpy(oview, this->section_contents_, oview_size);
5577 of->write_output_view(this->offset(), oview_size, oview);
5578 }
5579
5580 // Arm_exidx_fixup methods.
5581
5582 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5583 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5584 // points to the end of the last seen EXIDX section.
5585
5586 void
5587 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5588 {
5589 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5590 && this->last_input_section_ != NULL)
5591 {
5592 Relobj* relobj = this->last_input_section_->relobj();
5593 unsigned int text_shndx = this->last_input_section_->link();
5594 Arm_exidx_cantunwind* cantunwind =
5595 new Arm_exidx_cantunwind(relobj, text_shndx);
5596 this->exidx_output_section_->add_output_section_data(cantunwind);
5597 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5598 }
5599 }
5600
5601 // Process an EXIDX section entry in input. Return whether this entry
5602 // can be deleted in the output. SECOND_WORD in the second word of the
5603 // EXIDX entry.
5604
5605 bool
5606 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5607 {
5608 bool delete_entry;
5609 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5610 {
5611 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5612 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5613 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5614 }
5615 else if ((second_word & 0x80000000) != 0)
5616 {
5617 // Inlined unwinding data. Merge if equal to previous.
5618 delete_entry = (merge_exidx_entries_
5619 && this->last_unwind_type_ == UT_INLINED_ENTRY
5620 && this->last_inlined_entry_ == second_word);
5621 this->last_unwind_type_ = UT_INLINED_ENTRY;
5622 this->last_inlined_entry_ = second_word;
5623 }
5624 else
5625 {
5626 // Normal table entry. In theory we could merge these too,
5627 // but duplicate entries are likely to be much less common.
5628 delete_entry = false;
5629 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5630 }
5631 return delete_entry;
5632 }
5633
5634 // Update the current section offset map during EXIDX section fix-up.
5635 // If there is no map, create one. INPUT_OFFSET is the offset of a
5636 // reference point, DELETED_BYTES is the number of deleted by in the
5637 // section so far. If DELETE_ENTRY is true, the reference point and
5638 // all offsets after the previous reference point are discarded.
5639
5640 void
5641 Arm_exidx_fixup::update_offset_map(
5642 section_offset_type input_offset,
5643 section_size_type deleted_bytes,
5644 bool delete_entry)
5645 {
5646 if (this->section_offset_map_ == NULL)
5647 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5648 section_offset_type output_offset;
5649 if (delete_entry)
5650 output_offset = Arm_exidx_input_section::invalid_offset;
5651 else
5652 output_offset = input_offset - deleted_bytes;
5653 (*this->section_offset_map_)[input_offset] = output_offset;
5654 }
5655
5656 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5657 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5658 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5659 // If some entries are merged, also store a pointer to a newly created
5660 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5661 // owns the map and is responsible for releasing it after use.
5662
5663 template<bool big_endian>
5664 uint32_t
5665 Arm_exidx_fixup::process_exidx_section(
5666 const Arm_exidx_input_section* exidx_input_section,
5667 const unsigned char* section_contents,
5668 section_size_type section_size,
5669 Arm_exidx_section_offset_map** psection_offset_map)
5670 {
5671 Relobj* relobj = exidx_input_section->relobj();
5672 unsigned shndx = exidx_input_section->shndx();
5673
5674 if ((section_size % 8) != 0)
5675 {
5676 // Something is wrong with this section. Better not touch it.
5677 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5678 relobj->name().c_str(), shndx);
5679 this->last_input_section_ = exidx_input_section;
5680 this->last_unwind_type_ = UT_NONE;
5681 return 0;
5682 }
5683
5684 uint32_t deleted_bytes = 0;
5685 bool prev_delete_entry = false;
5686 gold_assert(this->section_offset_map_ == NULL);
5687
5688 for (section_size_type i = 0; i < section_size; i += 8)
5689 {
5690 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5691 const Valtype* wv =
5692 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5693 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5694
5695 bool delete_entry = this->process_exidx_entry(second_word);
5696
5697 // Entry deletion causes changes in output offsets. We use a std::map
5698 // to record these. And entry (x, y) means input offset x
5699 // is mapped to output offset y. If y is invalid_offset, then x is
5700 // dropped in the output. Because of the way std::map::lower_bound
5701 // works, we record the last offset in a region w.r.t to keeping or
5702 // dropping. If there is no entry (x0, y0) for an input offset x0,
5703 // the output offset y0 of it is determined by the output offset y1 of
5704 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5705 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5706 // y0 is also -1.
5707 if (delete_entry != prev_delete_entry && i != 0)
5708 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5709
5710 // Update total deleted bytes for this entry.
5711 if (delete_entry)
5712 deleted_bytes += 8;
5713
5714 prev_delete_entry = delete_entry;
5715 }
5716
5717 // If section offset map is not NULL, make an entry for the end of
5718 // section.
5719 if (this->section_offset_map_ != NULL)
5720 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5721
5722 *psection_offset_map = this->section_offset_map_;
5723 this->section_offset_map_ = NULL;
5724 this->last_input_section_ = exidx_input_section;
5725
5726 // Set the first output text section so that we can link the EXIDX output
5727 // section to it. Ignore any EXIDX input section that is completely merged.
5728 if (this->first_output_text_section_ == NULL
5729 && deleted_bytes != section_size)
5730 {
5731 unsigned int link = exidx_input_section->link();
5732 Output_section* os = relobj->output_section(link);
5733 gold_assert(os != NULL);
5734 this->first_output_text_section_ = os;
5735 }
5736
5737 return deleted_bytes;
5738 }
5739
5740 // Arm_output_section methods.
5741
5742 // Create a stub group for input sections from BEGIN to END. OWNER
5743 // points to the input section to be the owner a new stub table.
5744
5745 template<bool big_endian>
5746 void
5747 Arm_output_section<big_endian>::create_stub_group(
5748 Input_section_list::const_iterator begin,
5749 Input_section_list::const_iterator end,
5750 Input_section_list::const_iterator owner,
5751 Target_arm<big_endian>* target,
5752 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5753 const Task* task)
5754 {
5755 // We use a different kind of relaxed section in an EXIDX section.
5756 // The static casting from Output_relaxed_input_section to
5757 // Arm_input_section is invalid in an EXIDX section. We are okay
5758 // because we should not be calling this for an EXIDX section.
5759 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5760
5761 // Currently we convert ordinary input sections into relaxed sections only
5762 // at this point but we may want to support creating relaxed input section
5763 // very early. So we check here to see if owner is already a relaxed
5764 // section.
5765
5766 Arm_input_section<big_endian>* arm_input_section;
5767 if (owner->is_relaxed_input_section())
5768 {
5769 arm_input_section =
5770 Arm_input_section<big_endian>::as_arm_input_section(
5771 owner->relaxed_input_section());
5772 }
5773 else
5774 {
5775 gold_assert(owner->is_input_section());
5776 // Create a new relaxed input section. We need to lock the original
5777 // file.
5778 Task_lock_obj<Object> tl(task, owner->relobj());
5779 arm_input_section =
5780 target->new_arm_input_section(owner->relobj(), owner->shndx());
5781 new_relaxed_sections->push_back(arm_input_section);
5782 }
5783
5784 // Create a stub table.
5785 Stub_table<big_endian>* stub_table =
5786 target->new_stub_table(arm_input_section);
5787
5788 arm_input_section->set_stub_table(stub_table);
5789
5790 Input_section_list::const_iterator p = begin;
5791 Input_section_list::const_iterator prev_p;
5792
5793 // Look for input sections or relaxed input sections in [begin ... end].
5794 do
5795 {
5796 if (p->is_input_section() || p->is_relaxed_input_section())
5797 {
5798 // The stub table information for input sections live
5799 // in their objects.
5800 Arm_relobj<big_endian>* arm_relobj =
5801 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5802 arm_relobj->set_stub_table(p->shndx(), stub_table);
5803 }
5804 prev_p = p++;
5805 }
5806 while (prev_p != end);
5807 }
5808
5809 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5810 // of stub groups. We grow a stub group by adding input section until the
5811 // size is just below GROUP_SIZE. The last input section will be converted
5812 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5813 // input section after the stub table, effectively double the group size.
5814 //
5815 // This is similar to the group_sections() function in elf32-arm.c but is
5816 // implemented differently.
5817
5818 template<bool big_endian>
5819 void
5820 Arm_output_section<big_endian>::group_sections(
5821 section_size_type group_size,
5822 bool stubs_always_after_branch,
5823 Target_arm<big_endian>* target,
5824 const Task* task)
5825 {
5826 // States for grouping.
5827 typedef enum
5828 {
5829 // No group is being built.
5830 NO_GROUP,
5831 // A group is being built but the stub table is not found yet.
5832 // We keep group a stub group until the size is just under GROUP_SIZE.
5833 // The last input section in the group will be used as the stub table.
5834 FINDING_STUB_SECTION,
5835 // A group is being built and we have already found a stub table.
5836 // We enter this state to grow a stub group by adding input section
5837 // after the stub table. This effectively doubles the group size.
5838 HAS_STUB_SECTION
5839 } State;
5840
5841 // Any newly created relaxed sections are stored here.
5842 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5843
5844 State state = NO_GROUP;
5845 section_size_type off = 0;
5846 section_size_type group_begin_offset = 0;
5847 section_size_type group_end_offset = 0;
5848 section_size_type stub_table_end_offset = 0;
5849 Input_section_list::const_iterator group_begin =
5850 this->input_sections().end();
5851 Input_section_list::const_iterator stub_table =
5852 this->input_sections().end();
5853 Input_section_list::const_iterator group_end = this->input_sections().end();
5854 for (Input_section_list::const_iterator p = this->input_sections().begin();
5855 p != this->input_sections().end();
5856 ++p)
5857 {
5858 section_size_type section_begin_offset =
5859 align_address(off, p->addralign());
5860 section_size_type section_end_offset =
5861 section_begin_offset + p->data_size();
5862
5863 // Check to see if we should group the previously seen sections.
5864 switch (state)
5865 {
5866 case NO_GROUP:
5867 break;
5868
5869 case FINDING_STUB_SECTION:
5870 // Adding this section makes the group larger than GROUP_SIZE.
5871 if (section_end_offset - group_begin_offset >= group_size)
5872 {
5873 if (stubs_always_after_branch)
5874 {
5875 gold_assert(group_end != this->input_sections().end());
5876 this->create_stub_group(group_begin, group_end, group_end,
5877 target, &new_relaxed_sections,
5878 task);
5879 state = NO_GROUP;
5880 }
5881 else
5882 {
5883 // But wait, there's more! Input sections up to
5884 // stub_group_size bytes after the stub table can be
5885 // handled by it too.
5886 state = HAS_STUB_SECTION;
5887 stub_table = group_end;
5888 stub_table_end_offset = group_end_offset;
5889 }
5890 }
5891 break;
5892
5893 case HAS_STUB_SECTION:
5894 // Adding this section makes the post stub-section group larger
5895 // than GROUP_SIZE.
5896 if (section_end_offset - stub_table_end_offset >= group_size)
5897 {
5898 gold_assert(group_end != this->input_sections().end());
5899 this->create_stub_group(group_begin, group_end, stub_table,
5900 target, &new_relaxed_sections, task);
5901 state = NO_GROUP;
5902 }
5903 break;
5904
5905 default:
5906 gold_unreachable();
5907 }
5908
5909 // If we see an input section and currently there is no group, start
5910 // a new one. Skip any empty sections. We look at the data size
5911 // instead of calling p->relobj()->section_size() to avoid locking.
5912 if ((p->is_input_section() || p->is_relaxed_input_section())
5913 && (p->data_size() != 0))
5914 {
5915 if (state == NO_GROUP)
5916 {
5917 state = FINDING_STUB_SECTION;
5918 group_begin = p;
5919 group_begin_offset = section_begin_offset;
5920 }
5921
5922 // Keep track of the last input section seen.
5923 group_end = p;
5924 group_end_offset = section_end_offset;
5925 }
5926
5927 off = section_end_offset;
5928 }
5929
5930 // Create a stub group for any ungrouped sections.
5931 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5932 {
5933 gold_assert(group_end != this->input_sections().end());
5934 this->create_stub_group(group_begin, group_end,
5935 (state == FINDING_STUB_SECTION
5936 ? group_end
5937 : stub_table),
5938 target, &new_relaxed_sections, task);
5939 }
5940
5941 // Convert input section into relaxed input section in a batch.
5942 if (!new_relaxed_sections.empty())
5943 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5944
5945 // Update the section offsets
5946 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5947 {
5948 Arm_relobj<big_endian>* arm_relobj =
5949 Arm_relobj<big_endian>::as_arm_relobj(
5950 new_relaxed_sections[i]->relobj());
5951 unsigned int shndx = new_relaxed_sections[i]->shndx();
5952 // Tell Arm_relobj that this input section is converted.
5953 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5954 }
5955 }
5956
5957 // Append non empty text sections in this to LIST in ascending
5958 // order of their position in this.
5959
5960 template<bool big_endian>
5961 void
5962 Arm_output_section<big_endian>::append_text_sections_to_list(
5963 Text_section_list* list)
5964 {
5965 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5966
5967 for (Input_section_list::const_iterator p = this->input_sections().begin();
5968 p != this->input_sections().end();
5969 ++p)
5970 {
5971 // We only care about plain or relaxed input sections. We also
5972 // ignore any merged sections.
5973 if (p->is_input_section() || p->is_relaxed_input_section())
5974 list->push_back(Text_section_list::value_type(p->relobj(),
5975 p->shndx()));
5976 }
5977 }
5978
5979 template<bool big_endian>
5980 void
5981 Arm_output_section<big_endian>::fix_exidx_coverage(
5982 Layout* layout,
5983 const Text_section_list& sorted_text_sections,
5984 Symbol_table* symtab,
5985 bool merge_exidx_entries,
5986 const Task* task)
5987 {
5988 // We should only do this for the EXIDX output section.
5989 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5990
5991 // We don't want the relaxation loop to undo these changes, so we discard
5992 // the current saved states and take another one after the fix-up.
5993 this->discard_states();
5994
5995 // Remove all input sections.
5996 uint64_t address = this->address();
5997 typedef std::list<Output_section::Input_section> Input_section_list;
5998 Input_section_list input_sections;
5999 this->reset_address_and_file_offset();
6000 this->get_input_sections(address, std::string(""), &input_sections);
6001
6002 if (!this->input_sections().empty())
6003 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
6004
6005 // Go through all the known input sections and record them.
6006 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6007 typedef Unordered_map<Section_id, const Output_section::Input_section*,
6008 Section_id_hash> Text_to_exidx_map;
6009 Text_to_exidx_map text_to_exidx_map;
6010 for (Input_section_list::const_iterator p = input_sections.begin();
6011 p != input_sections.end();
6012 ++p)
6013 {
6014 // This should never happen. At this point, we should only see
6015 // plain EXIDX input sections.
6016 gold_assert(!p->is_relaxed_input_section());
6017 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
6018 }
6019
6020 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
6021
6022 // Go over the sorted text sections.
6023 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6024 Section_id_set processed_input_sections;
6025 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
6026 p != sorted_text_sections.end();
6027 ++p)
6028 {
6029 Relobj* relobj = p->first;
6030 unsigned int shndx = p->second;
6031
6032 Arm_relobj<big_endian>* arm_relobj =
6033 Arm_relobj<big_endian>::as_arm_relobj(relobj);
6034 const Arm_exidx_input_section* exidx_input_section =
6035 arm_relobj->exidx_input_section_by_link(shndx);
6036
6037 // If this text section has no EXIDX section or if the EXIDX section
6038 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
6039 // of the last seen EXIDX section.
6040 if (exidx_input_section == NULL || exidx_input_section->has_errors())
6041 {
6042 exidx_fixup.add_exidx_cantunwind_as_needed();
6043 continue;
6044 }
6045
6046 Relobj* exidx_relobj = exidx_input_section->relobj();
6047 unsigned int exidx_shndx = exidx_input_section->shndx();
6048 Section_id sid(exidx_relobj, exidx_shndx);
6049 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
6050 if (iter == text_to_exidx_map.end())
6051 {
6052 // This is odd. We have not seen this EXIDX input section before.
6053 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
6054 // issue a warning instead. We assume the user knows what he
6055 // or she is doing. Otherwise, this is an error.
6056 if (layout->script_options()->saw_sections_clause())
6057 gold_warning(_("unwinding may not work because EXIDX input section"
6058 " %u of %s is not in EXIDX output section"),
6059 exidx_shndx, exidx_relobj->name().c_str());
6060 else
6061 gold_error(_("unwinding may not work because EXIDX input section"
6062 " %u of %s is not in EXIDX output section"),
6063 exidx_shndx, exidx_relobj->name().c_str());
6064
6065 exidx_fixup.add_exidx_cantunwind_as_needed();
6066 continue;
6067 }
6068
6069 // We need to access the contents of the EXIDX section, lock the
6070 // object here.
6071 Task_lock_obj<Object> tl(task, exidx_relobj);
6072 section_size_type exidx_size;
6073 const unsigned char* exidx_contents =
6074 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
6075
6076 // Fix up coverage and append input section to output data list.
6077 Arm_exidx_section_offset_map* section_offset_map = NULL;
6078 uint32_t deleted_bytes =
6079 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
6080 exidx_contents,
6081 exidx_size,
6082 &section_offset_map);
6083
6084 if (deleted_bytes == exidx_input_section->size())
6085 {
6086 // The whole EXIDX section got merged. Remove it from output.
6087 gold_assert(section_offset_map == NULL);
6088 exidx_relobj->set_output_section(exidx_shndx, NULL);
6089
6090 // All local symbols defined in this input section will be dropped.
6091 // We need to adjust output local symbol count.
6092 arm_relobj->set_output_local_symbol_count_needs_update();
6093 }
6094 else if (deleted_bytes > 0)
6095 {
6096 // Some entries are merged. We need to convert this EXIDX input
6097 // section into a relaxed section.
6098 gold_assert(section_offset_map != NULL);
6099
6100 Arm_exidx_merged_section* merged_section =
6101 new Arm_exidx_merged_section(*exidx_input_section,
6102 *section_offset_map, deleted_bytes);
6103 merged_section->build_contents(exidx_contents, exidx_size);
6104
6105 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6106 this->add_relaxed_input_section(layout, merged_section, secname);
6107 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6108
6109 // All local symbols defined in discarded portions of this input
6110 // section will be dropped. We need to adjust output local symbol
6111 // count.
6112 arm_relobj->set_output_local_symbol_count_needs_update();
6113 }
6114 else
6115 {
6116 // Just add back the EXIDX input section.
6117 gold_assert(section_offset_map == NULL);
6118 const Output_section::Input_section* pis = iter->second;
6119 gold_assert(pis->is_input_section());
6120 this->add_script_input_section(*pis);
6121 }
6122
6123 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6124 }
6125
6126 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6127 exidx_fixup.add_exidx_cantunwind_as_needed();
6128
6129 // Remove any known EXIDX input sections that are not processed.
6130 for (Input_section_list::const_iterator p = input_sections.begin();
6131 p != input_sections.end();
6132 ++p)
6133 {
6134 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6135 == processed_input_sections.end())
6136 {
6137 // We discard a known EXIDX section because its linked
6138 // text section has been folded by ICF. We also discard an
6139 // EXIDX section with error, the output does not matter in this
6140 // case. We do this to avoid triggering asserts.
6141 Arm_relobj<big_endian>* arm_relobj =
6142 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6143 const Arm_exidx_input_section* exidx_input_section =
6144 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6145 gold_assert(exidx_input_section != NULL);
6146 if (!exidx_input_section->has_errors())
6147 {
6148 unsigned int text_shndx = exidx_input_section->link();
6149 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6150 }
6151
6152 // Remove this from link. We also need to recount the
6153 // local symbols.
6154 p->relobj()->set_output_section(p->shndx(), NULL);
6155 arm_relobj->set_output_local_symbol_count_needs_update();
6156 }
6157 }
6158
6159 // Link exidx output section to the first seen output section and
6160 // set correct entry size.
6161 this->set_link_section(exidx_fixup.first_output_text_section());
6162 this->set_entsize(8);
6163
6164 // Make changes permanent.
6165 this->save_states();
6166 this->set_section_offsets_need_adjustment();
6167 }
6168
6169 // Link EXIDX output sections to text output sections.
6170
6171 template<bool big_endian>
6172 void
6173 Arm_output_section<big_endian>::set_exidx_section_link()
6174 {
6175 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6176 if (!this->input_sections().empty())
6177 {
6178 Input_section_list::const_iterator p = this->input_sections().begin();
6179 Arm_relobj<big_endian>* arm_relobj =
6180 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6181 unsigned exidx_shndx = p->shndx();
6182 const Arm_exidx_input_section* exidx_input_section =
6183 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6184 gold_assert(exidx_input_section != NULL);
6185 unsigned int text_shndx = exidx_input_section->link();
6186 Output_section* os = arm_relobj->output_section(text_shndx);
6187 this->set_link_section(os);
6188 }
6189 }
6190
6191 // Arm_relobj methods.
6192
6193 // Determine if an input section is scannable for stub processing. SHDR is
6194 // the header of the section and SHNDX is the section index. OS is the output
6195 // section for the input section and SYMTAB is the global symbol table used to
6196 // look up ICF information.
6197
6198 template<bool big_endian>
6199 bool
6200 Arm_relobj<big_endian>::section_is_scannable(
6201 const elfcpp::Shdr<32, big_endian>& shdr,
6202 unsigned int shndx,
6203 const Output_section* os,
6204 const Symbol_table* symtab)
6205 {
6206 // Skip any empty sections, unallocated sections or sections whose
6207 // type are not SHT_PROGBITS.
6208 if (shdr.get_sh_size() == 0
6209 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6210 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6211 return false;
6212
6213 // Skip any discarded or ICF'ed sections.
6214 if (os == NULL || symtab->is_section_folded(this, shndx))
6215 return false;
6216
6217 // If this requires special offset handling, check to see if it is
6218 // a relaxed section. If this is not, then it is a merged section that
6219 // we cannot handle.
6220 if (this->is_output_section_offset_invalid(shndx))
6221 {
6222 const Output_relaxed_input_section* poris =
6223 os->find_relaxed_input_section(this, shndx);
6224 if (poris == NULL)
6225 return false;
6226 }
6227
6228 return true;
6229 }
6230
6231 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6232 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6233
6234 template<bool big_endian>
6235 bool
6236 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6237 const elfcpp::Shdr<32, big_endian>& shdr,
6238 const Relobj::Output_sections& out_sections,
6239 const Symbol_table* symtab,
6240 const unsigned char* pshdrs)
6241 {
6242 unsigned int sh_type = shdr.get_sh_type();
6243 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6244 return false;
6245
6246 // Ignore empty section.
6247 off_t sh_size = shdr.get_sh_size();
6248 if (sh_size == 0)
6249 return false;
6250
6251 // Ignore reloc section with unexpected symbol table. The
6252 // error will be reported in the final link.
6253 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6254 return false;
6255
6256 unsigned int reloc_size;
6257 if (sh_type == elfcpp::SHT_REL)
6258 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6259 else
6260 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6261
6262 // Ignore reloc section with unexpected entsize or uneven size.
6263 // The error will be reported in the final link.
6264 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6265 return false;
6266
6267 // Ignore reloc section with bad info. This error will be
6268 // reported in the final link.
6269 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6270 if (index >= this->shnum())
6271 return false;
6272
6273 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6274 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6275 return this->section_is_scannable(text_shdr, index,
6276 out_sections[index], symtab);
6277 }
6278
6279 // Return the output address of either a plain input section or a relaxed
6280 // input section. SHNDX is the section index. We define and use this
6281 // instead of calling Output_section::output_address because that is slow
6282 // for large output.
6283
6284 template<bool big_endian>
6285 Arm_address
6286 Arm_relobj<big_endian>::simple_input_section_output_address(
6287 unsigned int shndx,
6288 Output_section* os)
6289 {
6290 if (this->is_output_section_offset_invalid(shndx))
6291 {
6292 const Output_relaxed_input_section* poris =
6293 os->find_relaxed_input_section(this, shndx);
6294 // We do not handle merged sections here.
6295 gold_assert(poris != NULL);
6296 return poris->address();
6297 }
6298 else
6299 return os->address() + this->get_output_section_offset(shndx);
6300 }
6301
6302 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6303 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6304
6305 template<bool big_endian>
6306 bool
6307 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6308 const elfcpp::Shdr<32, big_endian>& shdr,
6309 unsigned int shndx,
6310 Output_section* os,
6311 const Symbol_table* symtab)
6312 {
6313 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6314 return false;
6315
6316 // If the section does not cross any 4K-boundaries, it does not need to
6317 // be scanned.
6318 Arm_address address = this->simple_input_section_output_address(shndx, os);
6319 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6320 return false;
6321
6322 return true;
6323 }
6324
6325 // Scan a section for Cortex-A8 workaround.
6326
6327 template<bool big_endian>
6328 void
6329 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6330 const elfcpp::Shdr<32, big_endian>& shdr,
6331 unsigned int shndx,
6332 Output_section* os,
6333 Target_arm<big_endian>* arm_target)
6334 {
6335 // Look for the first mapping symbol in this section. It should be
6336 // at (shndx, 0).
6337 Mapping_symbol_position section_start(shndx, 0);
6338 typename Mapping_symbols_info::const_iterator p =
6339 this->mapping_symbols_info_.lower_bound(section_start);
6340
6341 // There are no mapping symbols for this section. Treat it as a data-only
6342 // section.
6343 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6344 return;
6345
6346 Arm_address output_address =
6347 this->simple_input_section_output_address(shndx, os);
6348
6349 // Get the section contents.
6350 section_size_type input_view_size = 0;
6351 const unsigned char* input_view =
6352 this->section_contents(shndx, &input_view_size, false);
6353
6354 // We need to go through the mapping symbols to determine what to
6355 // scan. There are two reasons. First, we should look at THUMB code and
6356 // THUMB code only. Second, we only want to look at the 4K-page boundary
6357 // to speed up the scanning.
6358
6359 while (p != this->mapping_symbols_info_.end()
6360 && p->first.first == shndx)
6361 {
6362 typename Mapping_symbols_info::const_iterator next =
6363 this->mapping_symbols_info_.upper_bound(p->first);
6364
6365 // Only scan part of a section with THUMB code.
6366 if (p->second == 't')
6367 {
6368 // Determine the end of this range.
6369 section_size_type span_start =
6370 convert_to_section_size_type(p->first.second);
6371 section_size_type span_end;
6372 if (next != this->mapping_symbols_info_.end()
6373 && next->first.first == shndx)
6374 span_end = convert_to_section_size_type(next->first.second);
6375 else
6376 span_end = convert_to_section_size_type(shdr.get_sh_size());
6377
6378 if (((span_start + output_address) & ~0xfffUL)
6379 != ((span_end + output_address - 1) & ~0xfffUL))
6380 {
6381 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6382 span_start, span_end,
6383 input_view,
6384 output_address);
6385 }
6386 }
6387
6388 p = next;
6389 }
6390 }
6391
6392 // Scan relocations for stub generation.
6393
6394 template<bool big_endian>
6395 void
6396 Arm_relobj<big_endian>::scan_sections_for_stubs(
6397 Target_arm<big_endian>* arm_target,
6398 const Symbol_table* symtab,
6399 const Layout* layout)
6400 {
6401 unsigned int shnum = this->shnum();
6402 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6403
6404 // Read the section headers.
6405 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6406 shnum * shdr_size,
6407 true, true);
6408
6409 // To speed up processing, we set up hash tables for fast lookup of
6410 // input offsets to output addresses.
6411 this->initialize_input_to_output_maps();
6412
6413 const Relobj::Output_sections& out_sections(this->output_sections());
6414
6415 Relocate_info<32, big_endian> relinfo;
6416 relinfo.symtab = symtab;
6417 relinfo.layout = layout;
6418 relinfo.object = this;
6419
6420 // Do relocation stubs scanning.
6421 const unsigned char* p = pshdrs + shdr_size;
6422 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6423 {
6424 const elfcpp::Shdr<32, big_endian> shdr(p);
6425 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6426 pshdrs))
6427 {
6428 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6429 Arm_address output_offset = this->get_output_section_offset(index);
6430 Arm_address output_address;
6431 if (output_offset != invalid_address)
6432 output_address = out_sections[index]->address() + output_offset;
6433 else
6434 {
6435 // Currently this only happens for a relaxed section.
6436 const Output_relaxed_input_section* poris =
6437 out_sections[index]->find_relaxed_input_section(this, index);
6438 gold_assert(poris != NULL);
6439 output_address = poris->address();
6440 }
6441
6442 // Get the relocations.
6443 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6444 shdr.get_sh_size(),
6445 true, false);
6446
6447 // Get the section contents. This does work for the case in which
6448 // we modify the contents of an input section. We need to pass the
6449 // output view under such circumstances.
6450 section_size_type input_view_size = 0;
6451 const unsigned char* input_view =
6452 this->section_contents(index, &input_view_size, false);
6453
6454 relinfo.reloc_shndx = i;
6455 relinfo.data_shndx = index;
6456 unsigned int sh_type = shdr.get_sh_type();
6457 unsigned int reloc_size;
6458 if (sh_type == elfcpp::SHT_REL)
6459 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6460 else
6461 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6462
6463 Output_section* os = out_sections[index];
6464 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6465 shdr.get_sh_size() / reloc_size,
6466 os,
6467 output_offset == invalid_address,
6468 input_view, output_address,
6469 input_view_size);
6470 }
6471 }
6472
6473 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6474 // after its relocation section, if there is one, is processed for
6475 // relocation stubs. Merging this loop with the one above would have been
6476 // complicated since we would have had to make sure that relocation stub
6477 // scanning is done first.
6478 if (arm_target->fix_cortex_a8())
6479 {
6480 const unsigned char* p = pshdrs + shdr_size;
6481 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6482 {
6483 const elfcpp::Shdr<32, big_endian> shdr(p);
6484 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6485 out_sections[i],
6486 symtab))
6487 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6488 arm_target);
6489 }
6490 }
6491
6492 // After we've done the relocations, we release the hash tables,
6493 // since we no longer need them.
6494 this->free_input_to_output_maps();
6495 }
6496
6497 // Count the local symbols. The ARM backend needs to know if a symbol
6498 // is a THUMB function or not. For global symbols, it is easy because
6499 // the Symbol object keeps the ELF symbol type. For local symbol it is
6500 // harder because we cannot access this information. So we override the
6501 // do_count_local_symbol in parent and scan local symbols to mark
6502 // THUMB functions. This is not the most efficient way but I do not want to
6503 // slow down other ports by calling a per symbol target hook inside
6504 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6505
6506 template<bool big_endian>
6507 void
6508 Arm_relobj<big_endian>::do_count_local_symbols(
6509 Stringpool_template<char>* pool,
6510 Stringpool_template<char>* dynpool)
6511 {
6512 // We need to fix-up the values of any local symbols whose type are
6513 // STT_ARM_TFUNC.
6514
6515 // Ask parent to count the local symbols.
6516 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6517 const unsigned int loccount = this->local_symbol_count();
6518 if (loccount == 0)
6519 return;
6520
6521 // Initialize the thumb function bit-vector.
6522 std::vector<bool> empty_vector(loccount, false);
6523 this->local_symbol_is_thumb_function_.swap(empty_vector);
6524
6525 // Read the symbol table section header.
6526 const unsigned int symtab_shndx = this->symtab_shndx();
6527 elfcpp::Shdr<32, big_endian>
6528 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6529 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6530
6531 // Read the local symbols.
6532 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6533 gold_assert(loccount == symtabshdr.get_sh_info());
6534 off_t locsize = loccount * sym_size;
6535 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6536 locsize, true, true);
6537
6538 // For mapping symbol processing, we need to read the symbol names.
6539 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6540 if (strtab_shndx >= this->shnum())
6541 {
6542 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6543 return;
6544 }
6545
6546 elfcpp::Shdr<32, big_endian>
6547 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6548 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6549 {
6550 this->error(_("symbol table name section has wrong type: %u"),
6551 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6552 return;
6553 }
6554 const char* pnames =
6555 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6556 strtabshdr.get_sh_size(),
6557 false, false));
6558
6559 // Loop over the local symbols and mark any local symbols pointing
6560 // to THUMB functions.
6561
6562 // Skip the first dummy symbol.
6563 psyms += sym_size;
6564 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6565 this->local_values();
6566 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6567 {
6568 elfcpp::Sym<32, big_endian> sym(psyms);
6569 elfcpp::STT st_type = sym.get_st_type();
6570 Symbol_value<32>& lv((*plocal_values)[i]);
6571 Arm_address input_value = lv.input_value();
6572
6573 // Check to see if this is a mapping symbol.
6574 const char* sym_name = pnames + sym.get_st_name();
6575 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6576 {
6577 bool is_ordinary;
6578 unsigned int input_shndx =
6579 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6580 gold_assert(is_ordinary);
6581
6582 // Strip of LSB in case this is a THUMB symbol.
6583 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6584 this->mapping_symbols_info_[msp] = sym_name[1];
6585 }
6586
6587 if (st_type == elfcpp::STT_ARM_TFUNC
6588 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6589 {
6590 // This is a THUMB function. Mark this and canonicalize the
6591 // symbol value by setting LSB.
6592 this->local_symbol_is_thumb_function_[i] = true;
6593 if ((input_value & 1) == 0)
6594 lv.set_input_value(input_value | 1);
6595 }
6596 }
6597 }
6598
6599 // Relocate sections.
6600 template<bool big_endian>
6601 void
6602 Arm_relobj<big_endian>::do_relocate_sections(
6603 const Symbol_table* symtab,
6604 const Layout* layout,
6605 const unsigned char* pshdrs,
6606 Output_file* of,
6607 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6608 {
6609 // Relocate the section data.
6610 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
6611 1, this->shnum() - 1);
6612
6613 // We do not generate stubs if doing a relocatable link.
6614 if (parameters->options().relocatable())
6615 return;
6616
6617 // Relocate stub tables.
6618 unsigned int shnum = this->shnum();
6619
6620 Target_arm<big_endian>* arm_target =
6621 Target_arm<big_endian>::default_target();
6622
6623 Relocate_info<32, big_endian> relinfo;
6624 relinfo.symtab = symtab;
6625 relinfo.layout = layout;
6626 relinfo.object = this;
6627
6628 for (unsigned int i = 1; i < shnum; ++i)
6629 {
6630 Arm_input_section<big_endian>* arm_input_section =
6631 arm_target->find_arm_input_section(this, i);
6632
6633 if (arm_input_section != NULL
6634 && arm_input_section->is_stub_table_owner()
6635 && !arm_input_section->stub_table()->empty())
6636 {
6637 // We cannot discard a section if it owns a stub table.
6638 Output_section* os = this->output_section(i);
6639 gold_assert(os != NULL);
6640
6641 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6642 relinfo.reloc_shdr = NULL;
6643 relinfo.data_shndx = i;
6644 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6645
6646 gold_assert((*pviews)[i].view != NULL);
6647
6648 // We are passed the output section view. Adjust it to cover the
6649 // stub table only.
6650 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6651 gold_assert((stub_table->address() >= (*pviews)[i].address)
6652 && ((stub_table->address() + stub_table->data_size())
6653 <= (*pviews)[i].address + (*pviews)[i].view_size));
6654
6655 off_t offset = stub_table->address() - (*pviews)[i].address;
6656 unsigned char* view = (*pviews)[i].view + offset;
6657 Arm_address address = stub_table->address();
6658 section_size_type view_size = stub_table->data_size();
6659
6660 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6661 view_size);
6662 }
6663
6664 // Apply Cortex A8 workaround if applicable.
6665 if (this->section_has_cortex_a8_workaround(i))
6666 {
6667 unsigned char* view = (*pviews)[i].view;
6668 Arm_address view_address = (*pviews)[i].address;
6669 section_size_type view_size = (*pviews)[i].view_size;
6670 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6671
6672 // Adjust view to cover section.
6673 Output_section* os = this->output_section(i);
6674 gold_assert(os != NULL);
6675 Arm_address section_address =
6676 this->simple_input_section_output_address(i, os);
6677 uint64_t section_size = this->section_size(i);
6678
6679 gold_assert(section_address >= view_address
6680 && ((section_address + section_size)
6681 <= (view_address + view_size)));
6682
6683 unsigned char* section_view = view + (section_address - view_address);
6684
6685 // Apply the Cortex-A8 workaround to the output address range
6686 // corresponding to this input section.
6687 stub_table->apply_cortex_a8_workaround_to_address_range(
6688 arm_target,
6689 section_view,
6690 section_address,
6691 section_size);
6692 }
6693 // BE8 swapping
6694 if (parameters->options().be8())
6695 {
6696 section_size_type span_start, span_end;
6697 elfcpp::Shdr<32, big_endian>
6698 shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
6699 Mapping_symbol_position section_start(i, 0);
6700 typename Mapping_symbols_info::const_iterator p =
6701 this->mapping_symbols_info_.lower_bound(section_start);
6702 unsigned char* view = (*pviews)[i].view;
6703 Arm_address view_address = (*pviews)[i].address;
6704 section_size_type view_size = (*pviews)[i].view_size;
6705 while (p != this->mapping_symbols_info_.end()
6706 && p->first.first == i)
6707 {
6708 typename Mapping_symbols_info::const_iterator next =
6709 this->mapping_symbols_info_.upper_bound(p->first);
6710
6711 // Only swap arm or thumb code.
6712 if ((p->second == 'a') || (p->second == 't'))
6713 {
6714 Output_section* os = this->output_section(i);
6715 gold_assert(os != NULL);
6716 Arm_address section_address =
6717 this->simple_input_section_output_address(i, os);
6718 span_start = convert_to_section_size_type(p->first.second);
6719 if (next != this->mapping_symbols_info_.end()
6720 && next->first.first == i)
6721 span_end =
6722 convert_to_section_size_type(next->first.second);
6723 else
6724 span_end =
6725 convert_to_section_size_type(shdr.get_sh_size());
6726 unsigned char* section_view =
6727 view + (section_address - view_address);
6728 uint64_t section_size = this->section_size(i);
6729
6730 gold_assert(section_address >= view_address
6731 && ((section_address + section_size)
6732 <= (view_address + view_size)));
6733
6734 // Set Output view for swapping
6735 unsigned char *oview = section_view + span_start;
6736 unsigned int index = 0;
6737 if (p->second == 'a')
6738 {
6739 while (index + 3 < (span_end - span_start))
6740 {
6741 typedef typename elfcpp::Swap<32, big_endian>
6742 ::Valtype Valtype;
6743 Valtype* wv =
6744 reinterpret_cast<Valtype*>(oview+index);
6745 uint32_t val = elfcpp::Swap<32, false>::readval(wv);
6746 elfcpp::Swap<32, true>::writeval(wv, val);
6747 index += 4;
6748 }
6749 }
6750 else if (p->second == 't')
6751 {
6752 while (index + 1 < (span_end - span_start))
6753 {
6754 typedef typename elfcpp::Swap<16, big_endian>
6755 ::Valtype Valtype;
6756 Valtype* wv =
6757 reinterpret_cast<Valtype*>(oview+index);
6758 uint16_t val = elfcpp::Swap<16, false>::readval(wv);
6759 elfcpp::Swap<16, true>::writeval(wv, val);
6760 index += 2;
6761 }
6762 }
6763 }
6764 p = next;
6765 }
6766 }
6767 }
6768 }
6769
6770 // Find the linked text section of an EXIDX section by looking at the first
6771 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6772 // must be linked to its associated code section via the sh_link field of
6773 // its section header. However, some tools are broken and the link is not
6774 // always set. LD just drops such an EXIDX section silently, causing the
6775 // associated code not unwindabled. Here we try a little bit harder to
6776 // discover the linked code section.
6777 //
6778 // PSHDR points to the section header of a relocation section of an EXIDX
6779 // section. If we can find a linked text section, return true and
6780 // store the text section index in the location PSHNDX. Otherwise
6781 // return false.
6782
6783 template<bool big_endian>
6784 bool
6785 Arm_relobj<big_endian>::find_linked_text_section(
6786 const unsigned char* pshdr,
6787 const unsigned char* psyms,
6788 unsigned int* pshndx)
6789 {
6790 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6791
6792 // If there is no relocation, we cannot find the linked text section.
6793 size_t reloc_size;
6794 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6795 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6796 else
6797 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6798 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6799
6800 // Get the relocations.
6801 const unsigned char* prelocs =
6802 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6803
6804 // Find the REL31 relocation for the first word of the first EXIDX entry.
6805 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6806 {
6807 Arm_address r_offset;
6808 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6809 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6810 {
6811 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6812 r_info = reloc.get_r_info();
6813 r_offset = reloc.get_r_offset();
6814 }
6815 else
6816 {
6817 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6818 r_info = reloc.get_r_info();
6819 r_offset = reloc.get_r_offset();
6820 }
6821
6822 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6823 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6824 continue;
6825
6826 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6827 if (r_sym == 0
6828 || r_sym >= this->local_symbol_count()
6829 || r_offset != 0)
6830 continue;
6831
6832 // This is the relocation for the first word of the first EXIDX entry.
6833 // We expect to see a local section symbol.
6834 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6835 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6836 if (sym.get_st_type() == elfcpp::STT_SECTION)
6837 {
6838 bool is_ordinary;
6839 *pshndx =
6840 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6841 gold_assert(is_ordinary);
6842 return true;
6843 }
6844 else
6845 return false;
6846 }
6847
6848 return false;
6849 }
6850
6851 // Make an EXIDX input section object for an EXIDX section whose index is
6852 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6853 // is the section index of the linked text section.
6854
6855 template<bool big_endian>
6856 void
6857 Arm_relobj<big_endian>::make_exidx_input_section(
6858 unsigned int shndx,
6859 const elfcpp::Shdr<32, big_endian>& shdr,
6860 unsigned int text_shndx,
6861 const elfcpp::Shdr<32, big_endian>& text_shdr)
6862 {
6863 // Create an Arm_exidx_input_section object for this EXIDX section.
6864 Arm_exidx_input_section* exidx_input_section =
6865 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6866 shdr.get_sh_addralign(),
6867 text_shdr.get_sh_size());
6868
6869 gold_assert(this->exidx_section_map_[shndx] == NULL);
6870 this->exidx_section_map_[shndx] = exidx_input_section;
6871
6872 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6873 {
6874 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6875 this->section_name(shndx).c_str(), shndx, text_shndx,
6876 this->name().c_str());
6877 exidx_input_section->set_has_errors();
6878 }
6879 else if (this->exidx_section_map_[text_shndx] != NULL)
6880 {
6881 unsigned other_exidx_shndx =
6882 this->exidx_section_map_[text_shndx]->shndx();
6883 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6884 "%s(%u) in %s"),
6885 this->section_name(shndx).c_str(), shndx,
6886 this->section_name(other_exidx_shndx).c_str(),
6887 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6888 text_shndx, this->name().c_str());
6889 exidx_input_section->set_has_errors();
6890 }
6891 else
6892 this->exidx_section_map_[text_shndx] = exidx_input_section;
6893
6894 // Check section flags of text section.
6895 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6896 {
6897 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6898 " in %s"),
6899 this->section_name(shndx).c_str(), shndx,
6900 this->section_name(text_shndx).c_str(), text_shndx,
6901 this->name().c_str());
6902 exidx_input_section->set_has_errors();
6903 }
6904 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6905 // I would like to make this an error but currently ld just ignores
6906 // this.
6907 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6908 "%s(%u) in %s"),
6909 this->section_name(shndx).c_str(), shndx,
6910 this->section_name(text_shndx).c_str(), text_shndx,
6911 this->name().c_str());
6912 }
6913
6914 // Read the symbol information.
6915
6916 template<bool big_endian>
6917 void
6918 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6919 {
6920 // Call parent class to read symbol information.
6921 this->base_read_symbols(sd);
6922
6923 // If this input file is a binary file, it has no processor
6924 // specific flags and attributes section.
6925 Input_file::Format format = this->input_file()->format();
6926 if (format != Input_file::FORMAT_ELF)
6927 {
6928 gold_assert(format == Input_file::FORMAT_BINARY);
6929 this->merge_flags_and_attributes_ = false;
6930 return;
6931 }
6932
6933 // Read processor-specific flags in ELF file header.
6934 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6935 elfcpp::Elf_sizes<32>::ehdr_size,
6936 true, false);
6937 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6938 this->processor_specific_flags_ = ehdr.get_e_flags();
6939
6940 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6941 // sections.
6942 std::vector<unsigned int> deferred_exidx_sections;
6943 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6944 const unsigned char* pshdrs = sd->section_headers->data();
6945 const unsigned char* ps = pshdrs + shdr_size;
6946 bool must_merge_flags_and_attributes = false;
6947 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6948 {
6949 elfcpp::Shdr<32, big_endian> shdr(ps);
6950
6951 // Sometimes an object has no contents except the section name string
6952 // table and an empty symbol table with the undefined symbol. We
6953 // don't want to merge processor-specific flags from such an object.
6954 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6955 {
6956 // Symbol table is not empty.
6957 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6958 elfcpp::Elf_sizes<32>::sym_size;
6959 if (shdr.get_sh_size() > sym_size)
6960 must_merge_flags_and_attributes = true;
6961 }
6962 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6963 // If this is neither an empty symbol table nor a string table,
6964 // be conservative.
6965 must_merge_flags_and_attributes = true;
6966
6967 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6968 {
6969 gold_assert(this->attributes_section_data_ == NULL);
6970 section_offset_type section_offset = shdr.get_sh_offset();
6971 section_size_type section_size =
6972 convert_to_section_size_type(shdr.get_sh_size());
6973 const unsigned char* view =
6974 this->get_view(section_offset, section_size, true, false);
6975 this->attributes_section_data_ =
6976 new Attributes_section_data(view, section_size);
6977 }
6978 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6979 {
6980 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6981 if (text_shndx == elfcpp::SHN_UNDEF)
6982 deferred_exidx_sections.push_back(i);
6983 else
6984 {
6985 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6986 + text_shndx * shdr_size);
6987 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6988 }
6989 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6990 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6991 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6992 this->section_name(i).c_str(), this->name().c_str());
6993 }
6994 }
6995
6996 // This is rare.
6997 if (!must_merge_flags_and_attributes)
6998 {
6999 gold_assert(deferred_exidx_sections.empty());
7000 this->merge_flags_and_attributes_ = false;
7001 return;
7002 }
7003
7004 // Some tools are broken and they do not set the link of EXIDX sections.
7005 // We look at the first relocation to figure out the linked sections.
7006 if (!deferred_exidx_sections.empty())
7007 {
7008 // We need to go over the section headers again to find the mapping
7009 // from sections being relocated to their relocation sections. This is
7010 // a bit inefficient as we could do that in the loop above. However,
7011 // we do not expect any deferred EXIDX sections normally. So we do not
7012 // want to slow down the most common path.
7013 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
7014 Reloc_map reloc_map;
7015 ps = pshdrs + shdr_size;
7016 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
7017 {
7018 elfcpp::Shdr<32, big_endian> shdr(ps);
7019 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
7020 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
7021 {
7022 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
7023 if (info_shndx >= this->shnum())
7024 gold_error(_("relocation section %u has invalid info %u"),
7025 i, info_shndx);
7026 Reloc_map::value_type value(info_shndx, i);
7027 std::pair<Reloc_map::iterator, bool> result =
7028 reloc_map.insert(value);
7029 if (!result.second)
7030 gold_error(_("section %u has multiple relocation sections "
7031 "%u and %u"),
7032 info_shndx, i, reloc_map[info_shndx]);
7033 }
7034 }
7035
7036 // Read the symbol table section header.
7037 const unsigned int symtab_shndx = this->symtab_shndx();
7038 elfcpp::Shdr<32, big_endian>
7039 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7040 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7041
7042 // Read the local symbols.
7043 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
7044 const unsigned int loccount = this->local_symbol_count();
7045 gold_assert(loccount == symtabshdr.get_sh_info());
7046 off_t locsize = loccount * sym_size;
7047 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7048 locsize, true, true);
7049
7050 // Process the deferred EXIDX sections.
7051 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
7052 {
7053 unsigned int shndx = deferred_exidx_sections[i];
7054 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
7055 unsigned int text_shndx = elfcpp::SHN_UNDEF;
7056 Reloc_map::const_iterator it = reloc_map.find(shndx);
7057 if (it != reloc_map.end())
7058 find_linked_text_section(pshdrs + it->second * shdr_size,
7059 psyms, &text_shndx);
7060 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
7061 + text_shndx * shdr_size);
7062 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
7063 }
7064 }
7065 }
7066
7067 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
7068 // sections for unwinding. These sections are referenced implicitly by
7069 // text sections linked in the section headers. If we ignore these implicit
7070 // references, the .ARM.exidx sections and any .ARM.extab sections they use
7071 // will be garbage-collected incorrectly. Hence we override the same function
7072 // in the base class to handle these implicit references.
7073
7074 template<bool big_endian>
7075 void
7076 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
7077 Layout* layout,
7078 Read_relocs_data* rd)
7079 {
7080 // First, call base class method to process relocations in this object.
7081 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
7082
7083 // If --gc-sections is not specified, there is nothing more to do.
7084 // This happens when --icf is used but --gc-sections is not.
7085 if (!parameters->options().gc_sections())
7086 return;
7087
7088 unsigned int shnum = this->shnum();
7089 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7090 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
7091 shnum * shdr_size,
7092 true, true);
7093
7094 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
7095 // to these from the linked text sections.
7096 const unsigned char* ps = pshdrs + shdr_size;
7097 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
7098 {
7099 elfcpp::Shdr<32, big_endian> shdr(ps);
7100 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
7101 {
7102 // Found an .ARM.exidx section, add it to the set of reachable
7103 // sections from its linked text section.
7104 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
7105 symtab->gc()->add_reference(this, text_shndx, this, i);
7106 }
7107 }
7108 }
7109
7110 // Update output local symbol count. Owing to EXIDX entry merging, some local
7111 // symbols will be removed in output. Adjust output local symbol count
7112 // accordingly. We can only changed the static output local symbol count. It
7113 // is too late to change the dynamic symbols.
7114
7115 template<bool big_endian>
7116 void
7117 Arm_relobj<big_endian>::update_output_local_symbol_count()
7118 {
7119 // Caller should check that this needs updating. We want caller checking
7120 // because output_local_symbol_count_needs_update() is most likely inlined.
7121 gold_assert(this->output_local_symbol_count_needs_update_);
7122
7123 gold_assert(this->symtab_shndx() != -1U);
7124 if (this->symtab_shndx() == 0)
7125 {
7126 // This object has no symbols. Weird but legal.
7127 return;
7128 }
7129
7130 // Read the symbol table section header.
7131 const unsigned int symtab_shndx = this->symtab_shndx();
7132 elfcpp::Shdr<32, big_endian>
7133 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7134 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7135
7136 // Read the local symbols.
7137 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
7138 const unsigned int loccount = this->local_symbol_count();
7139 gold_assert(loccount == symtabshdr.get_sh_info());
7140 off_t locsize = loccount * sym_size;
7141 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7142 locsize, true, true);
7143
7144 // Loop over the local symbols.
7145
7146 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
7147 Output_sections;
7148 const Output_sections& out_sections(this->output_sections());
7149 unsigned int shnum = this->shnum();
7150 unsigned int count = 0;
7151 // Skip the first, dummy, symbol.
7152 psyms += sym_size;
7153 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7154 {
7155 elfcpp::Sym<32, big_endian> sym(psyms);
7156
7157 Symbol_value<32>& lv((*this->local_values())[i]);
7158
7159 // This local symbol was already discarded by do_count_local_symbols.
7160 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7161 continue;
7162
7163 bool is_ordinary;
7164 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7165 &is_ordinary);
7166
7167 if (shndx < shnum)
7168 {
7169 Output_section* os = out_sections[shndx];
7170
7171 // This local symbol no longer has an output section. Discard it.
7172 if (os == NULL)
7173 {
7174 lv.set_no_output_symtab_entry();
7175 continue;
7176 }
7177
7178 // Currently we only discard parts of EXIDX input sections.
7179 // We explicitly check for a merged EXIDX input section to avoid
7180 // calling Output_section_data::output_offset unless necessary.
7181 if ((this->get_output_section_offset(shndx) == invalid_address)
7182 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7183 {
7184 section_offset_type output_offset =
7185 os->output_offset(this, shndx, lv.input_value());
7186 if (output_offset == -1)
7187 {
7188 // This symbol is defined in a part of an EXIDX input section
7189 // that is discarded due to entry merging.
7190 lv.set_no_output_symtab_entry();
7191 continue;
7192 }
7193 }
7194 }
7195
7196 ++count;
7197 }
7198
7199 this->set_output_local_symbol_count(count);
7200 this->output_local_symbol_count_needs_update_ = false;
7201 }
7202
7203 // Arm_dynobj methods.
7204
7205 // Read the symbol information.
7206
7207 template<bool big_endian>
7208 void
7209 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7210 {
7211 // Call parent class to read symbol information.
7212 this->base_read_symbols(sd);
7213
7214 // Read processor-specific flags in ELF file header.
7215 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7216 elfcpp::Elf_sizes<32>::ehdr_size,
7217 true, false);
7218 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7219 this->processor_specific_flags_ = ehdr.get_e_flags();
7220
7221 // Read the attributes section if there is one.
7222 // We read from the end because gas seems to put it near the end of
7223 // the section headers.
7224 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7225 const unsigned char* ps =
7226 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7227 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7228 {
7229 elfcpp::Shdr<32, big_endian> shdr(ps);
7230 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7231 {
7232 section_offset_type section_offset = shdr.get_sh_offset();
7233 section_size_type section_size =
7234 convert_to_section_size_type(shdr.get_sh_size());
7235 const unsigned char* view =
7236 this->get_view(section_offset, section_size, true, false);
7237 this->attributes_section_data_ =
7238 new Attributes_section_data(view, section_size);
7239 break;
7240 }
7241 }
7242 }
7243
7244 // Stub_addend_reader methods.
7245
7246 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7247
7248 template<bool big_endian>
7249 elfcpp::Elf_types<32>::Elf_Swxword
7250 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7251 unsigned int r_type,
7252 const unsigned char* view,
7253 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7254 {
7255 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7256
7257 switch (r_type)
7258 {
7259 case elfcpp::R_ARM_CALL:
7260 case elfcpp::R_ARM_JUMP24:
7261 case elfcpp::R_ARM_PLT32:
7262 {
7263 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7264 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7265 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7266 return Bits<26>::sign_extend32(val << 2);
7267 }
7268
7269 case elfcpp::R_ARM_THM_CALL:
7270 case elfcpp::R_ARM_THM_JUMP24:
7271 case elfcpp::R_ARM_THM_XPC22:
7272 {
7273 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7274 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7275 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7276 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7277 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7278 }
7279
7280 case elfcpp::R_ARM_THM_JUMP19:
7281 {
7282 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7283 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7284 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7285 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7286 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7287 }
7288
7289 default:
7290 gold_unreachable();
7291 }
7292 }
7293
7294 // Arm_output_data_got methods.
7295
7296 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7297 // The first one is initialized to be 1, which is the module index for
7298 // the main executable and the second one 0. A reloc of the type
7299 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7300 // be applied by gold. GSYM is a global symbol.
7301 //
7302 template<bool big_endian>
7303 void
7304 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7305 unsigned int got_type,
7306 Symbol* gsym)
7307 {
7308 if (gsym->has_got_offset(got_type))
7309 return;
7310
7311 // We are doing a static link. Just mark it as belong to module 1,
7312 // the executable.
7313 unsigned int got_offset = this->add_constant(1);
7314 gsym->set_got_offset(got_type, got_offset);
7315 got_offset = this->add_constant(0);
7316 this->static_relocs_.push_back(Static_reloc(got_offset,
7317 elfcpp::R_ARM_TLS_DTPOFF32,
7318 gsym));
7319 }
7320
7321 // Same as the above but for a local symbol.
7322
7323 template<bool big_endian>
7324 void
7325 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7326 unsigned int got_type,
7327 Sized_relobj_file<32, big_endian>* object,
7328 unsigned int index)
7329 {
7330 if (object->local_has_got_offset(index, got_type))
7331 return;
7332
7333 // We are doing a static link. Just mark it as belong to module 1,
7334 // the executable.
7335 unsigned int got_offset = this->add_constant(1);
7336 object->set_local_got_offset(index, got_type, got_offset);
7337 got_offset = this->add_constant(0);
7338 this->static_relocs_.push_back(Static_reloc(got_offset,
7339 elfcpp::R_ARM_TLS_DTPOFF32,
7340 object, index));
7341 }
7342
7343 template<bool big_endian>
7344 void
7345 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7346 {
7347 // Call parent to write out GOT.
7348 Output_data_got<32, big_endian>::do_write(of);
7349
7350 // We are done if there is no fix up.
7351 if (this->static_relocs_.empty())
7352 return;
7353
7354 gold_assert(parameters->doing_static_link());
7355
7356 const off_t offset = this->offset();
7357 const section_size_type oview_size =
7358 convert_to_section_size_type(this->data_size());
7359 unsigned char* const oview = of->get_output_view(offset, oview_size);
7360
7361 Output_segment* tls_segment = this->layout_->tls_segment();
7362 gold_assert(tls_segment != NULL);
7363
7364 // The thread pointer $tp points to the TCB, which is followed by the
7365 // TLS. So we need to adjust $tp relative addressing by this amount.
7366 Arm_address aligned_tcb_size =
7367 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7368
7369 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7370 {
7371 Static_reloc& reloc(this->static_relocs_[i]);
7372
7373 Arm_address value;
7374 if (!reloc.symbol_is_global())
7375 {
7376 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7377 const Symbol_value<32>* psymval =
7378 reloc.relobj()->local_symbol(reloc.index());
7379
7380 // We are doing static linking. Issue an error and skip this
7381 // relocation if the symbol is undefined or in a discarded_section.
7382 bool is_ordinary;
7383 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7384 if ((shndx == elfcpp::SHN_UNDEF)
7385 || (is_ordinary
7386 && shndx != elfcpp::SHN_UNDEF
7387 && !object->is_section_included(shndx)
7388 && !this->symbol_table_->is_section_folded(object, shndx)))
7389 {
7390 gold_error(_("undefined or discarded local symbol %u from "
7391 " object %s in GOT"),
7392 reloc.index(), reloc.relobj()->name().c_str());
7393 continue;
7394 }
7395
7396 value = psymval->value(object, 0);
7397 }
7398 else
7399 {
7400 const Symbol* gsym = reloc.symbol();
7401 gold_assert(gsym != NULL);
7402 if (gsym->is_forwarder())
7403 gsym = this->symbol_table_->resolve_forwards(gsym);
7404
7405 // We are doing static linking. Issue an error and skip this
7406 // relocation if the symbol is undefined or in a discarded_section
7407 // unless it is a weakly_undefined symbol.
7408 if ((gsym->is_defined_in_discarded_section()
7409 || gsym->is_undefined())
7410 && !gsym->is_weak_undefined())
7411 {
7412 gold_error(_("undefined or discarded symbol %s in GOT"),
7413 gsym->name());
7414 continue;
7415 }
7416
7417 if (!gsym->is_weak_undefined())
7418 {
7419 const Sized_symbol<32>* sym =
7420 static_cast<const Sized_symbol<32>*>(gsym);
7421 value = sym->value();
7422 }
7423 else
7424 value = 0;
7425 }
7426
7427 unsigned got_offset = reloc.got_offset();
7428 gold_assert(got_offset < oview_size);
7429
7430 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7431 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7432 Valtype x;
7433 switch (reloc.r_type())
7434 {
7435 case elfcpp::R_ARM_TLS_DTPOFF32:
7436 x = value;
7437 break;
7438 case elfcpp::R_ARM_TLS_TPOFF32:
7439 x = value + aligned_tcb_size;
7440 break;
7441 default:
7442 gold_unreachable();
7443 }
7444 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7445 }
7446
7447 of->write_output_view(offset, oview_size, oview);
7448 }
7449
7450 // A class to handle the PLT data.
7451 // This is an abstract base class that handles most of the linker details
7452 // but does not know the actual contents of PLT entries. The derived
7453 // classes below fill in those details.
7454
7455 template<bool big_endian>
7456 class Output_data_plt_arm : public Output_section_data
7457 {
7458 public:
7459 // Unlike aarch64, which records symbol value in "addend" field of relocations
7460 // and could be done at the same time an IRelative reloc is created for the
7461 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7462 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7463 // to keep necessary symbol information for later use in do_write. We usually
7464 // have only a very limited number of ifuncs, so the extra data required here
7465 // is also limited.
7466
7467 struct IRelative_data
7468 {
7469 IRelative_data(Sized_symbol<32>* sized_symbol)
7470 : symbol_is_global_(true)
7471 {
7472 u_.global = sized_symbol;
7473 }
7474
7475 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7476 unsigned int index)
7477 : symbol_is_global_(false)
7478 {
7479 u_.local.relobj = relobj;
7480 u_.local.index = index;
7481 }
7482
7483 union
7484 {
7485 Sized_symbol<32>* global;
7486
7487 struct
7488 {
7489 Sized_relobj_file<32, big_endian>* relobj;
7490 unsigned int index;
7491 } local;
7492 } u_;
7493
7494 bool symbol_is_global_;
7495 };
7496
7497 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7498 Reloc_section;
7499
7500 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7501 Arm_output_data_got<big_endian>* got,
7502 Output_data_space* got_plt,
7503 Output_data_space* got_irelative);
7504
7505 // Add an entry to the PLT.
7506 void
7507 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7508
7509 // Add the relocation for a plt entry.
7510 void
7511 add_relocation(Symbol_table* symtab, Layout* layout,
7512 Symbol* gsym, unsigned int got_offset);
7513
7514 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7515 unsigned int
7516 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7517 Sized_relobj_file<32, big_endian>* relobj,
7518 unsigned int local_sym_index);
7519
7520 // Return the .rel.plt section data.
7521 const Reloc_section*
7522 rel_plt() const
7523 { return this->rel_; }
7524
7525 // Return the PLT relocation container for IRELATIVE.
7526 Reloc_section*
7527 rel_irelative(Symbol_table*, Layout*);
7528
7529 // Return the number of PLT entries.
7530 unsigned int
7531 entry_count() const
7532 { return this->count_ + this->irelative_count_; }
7533
7534 // Return the offset of the first non-reserved PLT entry.
7535 unsigned int
7536 first_plt_entry_offset() const
7537 { return this->do_first_plt_entry_offset(); }
7538
7539 // Return the size of a PLT entry.
7540 unsigned int
7541 get_plt_entry_size() const
7542 { return this->do_get_plt_entry_size(); }
7543
7544 // Return the PLT address for globals.
7545 uint32_t
7546 address_for_global(const Symbol*) const;
7547
7548 // Return the PLT address for locals.
7549 uint32_t
7550 address_for_local(const Relobj*, unsigned int symndx) const;
7551
7552 protected:
7553 // Fill in the first PLT entry.
7554 void
7555 fill_first_plt_entry(unsigned char* pov,
7556 Arm_address got_address,
7557 Arm_address plt_address)
7558 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7559
7560 void
7561 fill_plt_entry(unsigned char* pov,
7562 Arm_address got_address,
7563 Arm_address plt_address,
7564 unsigned int got_offset,
7565 unsigned int plt_offset)
7566 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7567
7568 virtual unsigned int
7569 do_first_plt_entry_offset() const = 0;
7570
7571 virtual unsigned int
7572 do_get_plt_entry_size() const = 0;
7573
7574 virtual void
7575 do_fill_first_plt_entry(unsigned char* pov,
7576 Arm_address got_address,
7577 Arm_address plt_address) = 0;
7578
7579 virtual void
7580 do_fill_plt_entry(unsigned char* pov,
7581 Arm_address got_address,
7582 Arm_address plt_address,
7583 unsigned int got_offset,
7584 unsigned int plt_offset) = 0;
7585
7586 void
7587 do_adjust_output_section(Output_section* os);
7588
7589 // Write to a map file.
7590 void
7591 do_print_to_mapfile(Mapfile* mapfile) const
7592 { mapfile->print_output_data(this, _("** PLT")); }
7593
7594 private:
7595 // Set the final size.
7596 void
7597 set_final_data_size()
7598 {
7599 this->set_data_size(this->first_plt_entry_offset()
7600 + ((this->count_ + this->irelative_count_)
7601 * this->get_plt_entry_size()));
7602 }
7603
7604 // Write out the PLT data.
7605 void
7606 do_write(Output_file*);
7607
7608 // Record irelative symbol data.
7609 void insert_irelative_data(const IRelative_data& idata)
7610 { irelative_data_vec_.push_back(idata); }
7611
7612 // The reloc section.
7613 Reloc_section* rel_;
7614 // The IRELATIVE relocs, if necessary. These must follow the
7615 // regular PLT relocations.
7616 Reloc_section* irelative_rel_;
7617 // The .got section.
7618 Arm_output_data_got<big_endian>* got_;
7619 // The .got.plt section.
7620 Output_data_space* got_plt_;
7621 // The part of the .got.plt section used for IRELATIVE relocs.
7622 Output_data_space* got_irelative_;
7623 // The number of PLT entries.
7624 unsigned int count_;
7625 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7626 // follow the regular PLT entries.
7627 unsigned int irelative_count_;
7628 // Vector for irelative data.
7629 typedef std::vector<IRelative_data> IRelative_data_vec;
7630 IRelative_data_vec irelative_data_vec_;
7631 };
7632
7633 // Create the PLT section. The ordinary .got section is an argument,
7634 // since we need to refer to the start. We also create our own .got
7635 // section just for PLT entries.
7636
7637 template<bool big_endian>
7638 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7639 Layout* layout, uint64_t addralign,
7640 Arm_output_data_got<big_endian>* got,
7641 Output_data_space* got_plt,
7642 Output_data_space* got_irelative)
7643 : Output_section_data(addralign), irelative_rel_(NULL),
7644 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7645 count_(0), irelative_count_(0)
7646 {
7647 this->rel_ = new Reloc_section(false);
7648 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7649 elfcpp::SHF_ALLOC, this->rel_,
7650 ORDER_DYNAMIC_PLT_RELOCS, false);
7651 }
7652
7653 template<bool big_endian>
7654 void
7655 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7656 {
7657 os->set_entsize(0);
7658 }
7659
7660 // Add an entry to the PLT.
7661
7662 template<bool big_endian>
7663 void
7664 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7665 Layout* layout,
7666 Symbol* gsym)
7667 {
7668 gold_assert(!gsym->has_plt_offset());
7669
7670 unsigned int* entry_count;
7671 Output_section_data_build* got;
7672
7673 // We have 2 different types of plt entry here, normal and ifunc.
7674
7675 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7676 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7677
7678 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7679 // second 12, third 24 ... etc.
7680
7681 // IFunc plt entries *always* come after *normal* plt entries.
7682
7683 // Notice, when computing the plt address of a certain symbol, "plt_address +
7684 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7685 // target->plt_address_for_local() instead.
7686
7687 int begin_offset = 0;
7688 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7689 && gsym->can_use_relative_reloc(false))
7690 {
7691 entry_count = &this->irelative_count_;
7692 got = this->got_irelative_;
7693 // For irelative plt entries, offset is relative to the end of normal plt
7694 // entries, so it starts from 0.
7695 begin_offset = 0;
7696 // Record symbol information.
7697 this->insert_irelative_data(
7698 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7699 }
7700 else
7701 {
7702 entry_count = &this->count_;
7703 got = this->got_plt_;
7704 // Note that for normal plt entries, when setting the PLT offset we skip
7705 // the initial reserved PLT entry.
7706 begin_offset = this->first_plt_entry_offset();
7707 }
7708
7709 gsym->set_plt_offset(begin_offset
7710 + (*entry_count) * this->get_plt_entry_size());
7711
7712 ++(*entry_count);
7713
7714 section_offset_type got_offset = got->current_data_size();
7715
7716 // Every PLT entry needs a GOT entry which points back to the PLT
7717 // entry (this will be changed by the dynamic linker, normally
7718 // lazily when the function is called).
7719 got->set_current_data_size(got_offset + 4);
7720
7721 // Every PLT entry needs a reloc.
7722 this->add_relocation(symtab, layout, gsym, got_offset);
7723
7724 // Note that we don't need to save the symbol. The contents of the
7725 // PLT are independent of which symbols are used. The symbols only
7726 // appear in the relocations.
7727 }
7728
7729 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7730 // the PLT offset.
7731
7732 template<bool big_endian>
7733 unsigned int
7734 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7735 Symbol_table* symtab,
7736 Layout* layout,
7737 Sized_relobj_file<32, big_endian>* relobj,
7738 unsigned int local_sym_index)
7739 {
7740 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7741
7742 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7743 // no longer correct. Use target->plt_address_for_local() instead.
7744 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7745 ++this->irelative_count_;
7746
7747 section_offset_type got_offset = this->got_irelative_->current_data_size();
7748
7749 // Every PLT entry needs a GOT entry which points back to the PLT
7750 // entry.
7751 this->got_irelative_->set_current_data_size(got_offset + 4);
7752
7753
7754 // Every PLT entry needs a reloc.
7755 Reloc_section* rel = this->rel_irelative(symtab, layout);
7756 rel->add_symbolless_local_addend(relobj, local_sym_index,
7757 elfcpp::R_ARM_IRELATIVE,
7758 this->got_irelative_, got_offset);
7759 return plt_offset;
7760 }
7761
7762
7763 // Add the relocation for a PLT entry.
7764
7765 template<bool big_endian>
7766 void
7767 Output_data_plt_arm<big_endian>::add_relocation(
7768 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7769 {
7770 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7771 && gsym->can_use_relative_reloc(false))
7772 {
7773 Reloc_section* rel = this->rel_irelative(symtab, layout);
7774 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7775 this->got_irelative_, got_offset);
7776 }
7777 else
7778 {
7779 gsym->set_needs_dynsym_entry();
7780 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7781 got_offset);
7782 }
7783 }
7784
7785
7786 // Create the irelative relocation data.
7787
7788 template<bool big_endian>
7789 typename Output_data_plt_arm<big_endian>::Reloc_section*
7790 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7791 Layout* layout)
7792 {
7793 if (this->irelative_rel_ == NULL)
7794 {
7795 // Since irelative relocations goes into 'rel.dyn', we delegate the
7796 // creation of irelative_rel_ to where rel_dyn section gets created.
7797 Target_arm<big_endian>* arm_target =
7798 Target_arm<big_endian>::default_target();
7799 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7800
7801 // Make sure we have a place for the TLSDESC relocations, in
7802 // case we see any later on.
7803 // this->rel_tlsdesc(layout);
7804 if (parameters->doing_static_link())
7805 {
7806 // A statically linked executable will only have a .rel.plt section to
7807 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7808 // will use these symbols to locate the IRELATIVE relocs at program
7809 // startup time.
7810 symtab->define_in_output_data("__rel_iplt_start", NULL,
7811 Symbol_table::PREDEFINED,
7812 this->irelative_rel_, 0, 0,
7813 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7814 elfcpp::STV_HIDDEN, 0, false, true);
7815 symtab->define_in_output_data("__rel_iplt_end", NULL,
7816 Symbol_table::PREDEFINED,
7817 this->irelative_rel_, 0, 0,
7818 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7819 elfcpp::STV_HIDDEN, 0, true, true);
7820 }
7821 }
7822 return this->irelative_rel_;
7823 }
7824
7825
7826 // Return the PLT address for a global symbol.
7827
7828 template<bool big_endian>
7829 uint32_t
7830 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7831 {
7832 uint64_t begin_offset = 0;
7833 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7834 && gsym->can_use_relative_reloc(false))
7835 {
7836 begin_offset = (this->first_plt_entry_offset() +
7837 this->count_ * this->get_plt_entry_size());
7838 }
7839 return this->address() + begin_offset + gsym->plt_offset();
7840 }
7841
7842
7843 // Return the PLT address for a local symbol. These are always
7844 // IRELATIVE relocs.
7845
7846 template<bool big_endian>
7847 uint32_t
7848 Output_data_plt_arm<big_endian>::address_for_local(
7849 const Relobj* object,
7850 unsigned int r_sym) const
7851 {
7852 return (this->address()
7853 + this->first_plt_entry_offset()
7854 + this->count_ * this->get_plt_entry_size()
7855 + object->local_plt_offset(r_sym));
7856 }
7857
7858
7859 template<bool big_endian>
7860 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7861 {
7862 public:
7863 Output_data_plt_arm_standard(Layout* layout,
7864 Arm_output_data_got<big_endian>* got,
7865 Output_data_space* got_plt,
7866 Output_data_space* got_irelative)
7867 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7868 { }
7869
7870 protected:
7871 // Return the offset of the first non-reserved PLT entry.
7872 virtual unsigned int
7873 do_first_plt_entry_offset() const
7874 { return sizeof(first_plt_entry); }
7875
7876 virtual void
7877 do_fill_first_plt_entry(unsigned char* pov,
7878 Arm_address got_address,
7879 Arm_address plt_address);
7880
7881 private:
7882 // Template for the first PLT entry.
7883 static const uint32_t first_plt_entry[5];
7884 };
7885
7886 // ARM PLTs.
7887 // FIXME: This is not very flexible. Right now this has only been tested
7888 // on armv5te. If we are to support additional architecture features like
7889 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7890
7891 // The first entry in the PLT.
7892 template<bool big_endian>
7893 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7894 {
7895 0xe52de004, // str lr, [sp, #-4]!
7896 0xe59fe004, // ldr lr, [pc, #4]
7897 0xe08fe00e, // add lr, pc, lr
7898 0xe5bef008, // ldr pc, [lr, #8]!
7899 0x00000000, // &GOT[0] - .
7900 };
7901
7902 template<bool big_endian>
7903 void
7904 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7905 unsigned char* pov,
7906 Arm_address got_address,
7907 Arm_address plt_address)
7908 {
7909 // Write first PLT entry. All but the last word are constants.
7910 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7911 / sizeof(first_plt_entry[0]));
7912 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7913 {
7914 if (parameters->options().be8())
7915 {
7916 elfcpp::Swap<32, false>::writeval(pov + i * 4,
7917 first_plt_entry[i]);
7918 }
7919 else
7920 {
7921 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
7922 first_plt_entry[i]);
7923 }
7924 }
7925 // Last word in first PLT entry is &GOT[0] - .
7926 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7927 got_address - (plt_address + 16));
7928 }
7929
7930 // Subsequent entries in the PLT.
7931 // This class generates short (12-byte) entries, for displacements up to 2^28.
7932
7933 template<bool big_endian>
7934 class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
7935 {
7936 public:
7937 Output_data_plt_arm_short(Layout* layout,
7938 Arm_output_data_got<big_endian>* got,
7939 Output_data_space* got_plt,
7940 Output_data_space* got_irelative)
7941 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7942 { }
7943
7944 protected:
7945 // Return the size of a PLT entry.
7946 virtual unsigned int
7947 do_get_plt_entry_size() const
7948 { return sizeof(plt_entry); }
7949
7950 virtual void
7951 do_fill_plt_entry(unsigned char* pov,
7952 Arm_address got_address,
7953 Arm_address plt_address,
7954 unsigned int got_offset,
7955 unsigned int plt_offset);
7956
7957 private:
7958 // Template for subsequent PLT entries.
7959 static const uint32_t plt_entry[3];
7960 };
7961
7962 template<bool big_endian>
7963 const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
7964 {
7965 0xe28fc600, // add ip, pc, #0xNN00000
7966 0xe28cca00, // add ip, ip, #0xNN000
7967 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7968 };
7969
7970 template<bool big_endian>
7971 void
7972 Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
7973 unsigned char* pov,
7974 Arm_address got_address,
7975 Arm_address plt_address,
7976 unsigned int got_offset,
7977 unsigned int plt_offset)
7978 {
7979 int32_t offset = ((got_address + got_offset)
7980 - (plt_address + plt_offset + 8));
7981 if (offset < 0 || offset > 0x0fffffff)
7982 gold_error(_("PLT offset too large, try linking with --long-plt"));
7983
7984 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7985 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7986 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7987
7988 if (parameters->options().be8())
7989 {
7990 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
7991 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
7992 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
7993 }
7994 else
7995 {
7996 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7997 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7998 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7999 }
8000 }
8001
8002 // This class generates long (16-byte) entries, for arbitrary displacements.
8003
8004 template<bool big_endian>
8005 class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
8006 {
8007 public:
8008 Output_data_plt_arm_long(Layout* layout,
8009 Arm_output_data_got<big_endian>* got,
8010 Output_data_space* got_plt,
8011 Output_data_space* got_irelative)
8012 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
8013 { }
8014
8015 protected:
8016 // Return the size of a PLT entry.
8017 virtual unsigned int
8018 do_get_plt_entry_size() const
8019 { return sizeof(plt_entry); }
8020
8021 virtual void
8022 do_fill_plt_entry(unsigned char* pov,
8023 Arm_address got_address,
8024 Arm_address plt_address,
8025 unsigned int got_offset,
8026 unsigned int plt_offset);
8027
8028 private:
8029 // Template for subsequent PLT entries.
8030 static const uint32_t plt_entry[4];
8031 };
8032
8033 template<bool big_endian>
8034 const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
8035 {
8036 0xe28fc200, // add ip, pc, #0xN0000000
8037 0xe28cc600, // add ip, ip, #0xNN00000
8038 0xe28cca00, // add ip, ip, #0xNN000
8039 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
8040 };
8041
8042 template<bool big_endian>
8043 void
8044 Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
8045 unsigned char* pov,
8046 Arm_address got_address,
8047 Arm_address plt_address,
8048 unsigned int got_offset,
8049 unsigned int plt_offset)
8050 {
8051 int32_t offset = ((got_address + got_offset)
8052 - (plt_address + plt_offset + 8));
8053
8054 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
8055 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
8056 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
8057 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
8058
8059 if (parameters->options().be8())
8060 {
8061 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
8062 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
8063 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
8064 elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
8065 }
8066 else
8067 {
8068 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
8069 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
8070 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
8071 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
8072 }
8073 }
8074
8075 // Write out the PLT. This uses the hand-coded instructions above,
8076 // and adjusts them as needed. This is all specified by the arm ELF
8077 // Processor Supplement.
8078
8079 template<bool big_endian>
8080 void
8081 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
8082 {
8083 const off_t offset = this->offset();
8084 const section_size_type oview_size =
8085 convert_to_section_size_type(this->data_size());
8086 unsigned char* const oview = of->get_output_view(offset, oview_size);
8087
8088 const off_t got_file_offset = this->got_plt_->offset();
8089 gold_assert(got_file_offset + this->got_plt_->data_size()
8090 == this->got_irelative_->offset());
8091 const section_size_type got_size =
8092 convert_to_section_size_type(this->got_plt_->data_size()
8093 + this->got_irelative_->data_size());
8094 unsigned char* const got_view = of->get_output_view(got_file_offset,
8095 got_size);
8096 unsigned char* pov = oview;
8097
8098 Arm_address plt_address = this->address();
8099 Arm_address got_address = this->got_plt_->address();
8100
8101 // Write first PLT entry.
8102 this->fill_first_plt_entry(pov, got_address, plt_address);
8103 pov += this->first_plt_entry_offset();
8104
8105 unsigned char* got_pov = got_view;
8106
8107 memset(got_pov, 0, 12);
8108 got_pov += 12;
8109
8110 unsigned int plt_offset = this->first_plt_entry_offset();
8111 unsigned int got_offset = 12;
8112 const unsigned int count = this->count_ + this->irelative_count_;
8113 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
8114 for (unsigned int i = 0;
8115 i < count;
8116 ++i,
8117 pov += this->get_plt_entry_size(),
8118 got_pov += 4,
8119 plt_offset += this->get_plt_entry_size(),
8120 got_offset += 4)
8121 {
8122 // Set and adjust the PLT entry itself.
8123 this->fill_plt_entry(pov, got_address, plt_address,
8124 got_offset, plt_offset);
8125
8126 Arm_address value;
8127 if (i < this->count_)
8128 {
8129 // For non-irelative got entries, the value is the beginning of plt.
8130 value = plt_address;
8131 }
8132 else
8133 {
8134 // For irelative got entries, the value is the (global/local) symbol
8135 // address.
8136 const IRelative_data& idata =
8137 this->irelative_data_vec_[i - this->count_];
8138 if (idata.symbol_is_global_)
8139 {
8140 // Set the entry in the GOT for irelative symbols. The content is
8141 // the address of the ifunc, not the address of plt start.
8142 const Sized_symbol<32>* sized_symbol = idata.u_.global;
8143 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
8144 value = sized_symbol->value();
8145 }
8146 else
8147 {
8148 value = idata.u_.local.relobj->local_symbol_value(
8149 idata.u_.local.index, 0);
8150 }
8151 }
8152 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
8153 }
8154
8155 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
8156 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
8157
8158 of->write_output_view(offset, oview_size, oview);
8159 of->write_output_view(got_file_offset, got_size, got_view);
8160 }
8161
8162
8163 // Create a PLT entry for a global symbol.
8164
8165 template<bool big_endian>
8166 void
8167 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
8168 Symbol* gsym)
8169 {
8170 if (gsym->has_plt_offset())
8171 return;
8172
8173 if (this->plt_ == NULL)
8174 this->make_plt_section(symtab, layout);
8175
8176 this->plt_->add_entry(symtab, layout, gsym);
8177 }
8178
8179
8180 // Create the PLT section.
8181 template<bool big_endian>
8182 void
8183 Target_arm<big_endian>::make_plt_section(
8184 Symbol_table* symtab, Layout* layout)
8185 {
8186 if (this->plt_ == NULL)
8187 {
8188 // Create the GOT section first.
8189 this->got_section(symtab, layout);
8190
8191 // GOT for irelatives is create along with got.plt.
8192 gold_assert(this->got_ != NULL
8193 && this->got_plt_ != NULL
8194 && this->got_irelative_ != NULL);
8195 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
8196 this->got_irelative_);
8197
8198 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8199 (elfcpp::SHF_ALLOC
8200 | elfcpp::SHF_EXECINSTR),
8201 this->plt_, ORDER_PLT, false);
8202 symtab->define_in_output_data("$a", NULL,
8203 Symbol_table::PREDEFINED,
8204 this->plt_,
8205 0, 0, elfcpp::STT_NOTYPE,
8206 elfcpp::STB_LOCAL,
8207 elfcpp::STV_DEFAULT, 0,
8208 false, false);
8209 }
8210 }
8211
8212
8213 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
8214
8215 template<bool big_endian>
8216 void
8217 Target_arm<big_endian>::make_local_ifunc_plt_entry(
8218 Symbol_table* symtab, Layout* layout,
8219 Sized_relobj_file<32, big_endian>* relobj,
8220 unsigned int local_sym_index)
8221 {
8222 if (relobj->local_has_plt_offset(local_sym_index))
8223 return;
8224 if (this->plt_ == NULL)
8225 this->make_plt_section(symtab, layout);
8226 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
8227 relobj,
8228 local_sym_index);
8229 relobj->set_local_plt_offset(local_sym_index, plt_offset);
8230 }
8231
8232
8233 // Return the number of entries in the PLT.
8234
8235 template<bool big_endian>
8236 unsigned int
8237 Target_arm<big_endian>::plt_entry_count() const
8238 {
8239 if (this->plt_ == NULL)
8240 return 0;
8241 return this->plt_->entry_count();
8242 }
8243
8244 // Return the offset of the first non-reserved PLT entry.
8245
8246 template<bool big_endian>
8247 unsigned int
8248 Target_arm<big_endian>::first_plt_entry_offset() const
8249 {
8250 return this->plt_->first_plt_entry_offset();
8251 }
8252
8253 // Return the size of each PLT entry.
8254
8255 template<bool big_endian>
8256 unsigned int
8257 Target_arm<big_endian>::plt_entry_size() const
8258 {
8259 return this->plt_->get_plt_entry_size();
8260 }
8261
8262 // Get the section to use for TLS_DESC relocations.
8263
8264 template<bool big_endian>
8265 typename Target_arm<big_endian>::Reloc_section*
8266 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8267 {
8268 return this->plt_section()->rel_tls_desc(layout);
8269 }
8270
8271 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8272
8273 template<bool big_endian>
8274 void
8275 Target_arm<big_endian>::define_tls_base_symbol(
8276 Symbol_table* symtab,
8277 Layout* layout)
8278 {
8279 if (this->tls_base_symbol_defined_)
8280 return;
8281
8282 Output_segment* tls_segment = layout->tls_segment();
8283 if (tls_segment != NULL)
8284 {
8285 bool is_exec = parameters->options().output_is_executable();
8286 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8287 Symbol_table::PREDEFINED,
8288 tls_segment, 0, 0,
8289 elfcpp::STT_TLS,
8290 elfcpp::STB_LOCAL,
8291 elfcpp::STV_HIDDEN, 0,
8292 (is_exec
8293 ? Symbol::SEGMENT_END
8294 : Symbol::SEGMENT_START),
8295 true);
8296 }
8297 this->tls_base_symbol_defined_ = true;
8298 }
8299
8300 // Create a GOT entry for the TLS module index.
8301
8302 template<bool big_endian>
8303 unsigned int
8304 Target_arm<big_endian>::got_mod_index_entry(
8305 Symbol_table* symtab,
8306 Layout* layout,
8307 Sized_relobj_file<32, big_endian>* object)
8308 {
8309 if (this->got_mod_index_offset_ == -1U)
8310 {
8311 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8312 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8313 unsigned int got_offset;
8314 if (!parameters->doing_static_link())
8315 {
8316 got_offset = got->add_constant(0);
8317 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8318 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8319 got_offset);
8320 }
8321 else
8322 {
8323 // We are doing a static link. Just mark it as belong to module 1,
8324 // the executable.
8325 got_offset = got->add_constant(1);
8326 }
8327
8328 got->add_constant(0);
8329 this->got_mod_index_offset_ = got_offset;
8330 }
8331 return this->got_mod_index_offset_;
8332 }
8333
8334 // Optimize the TLS relocation type based on what we know about the
8335 // symbol. IS_FINAL is true if the final address of this symbol is
8336 // known at link time.
8337
8338 template<bool big_endian>
8339 tls::Tls_optimization
8340 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8341 {
8342 // FIXME: Currently we do not do any TLS optimization.
8343 return tls::TLSOPT_NONE;
8344 }
8345
8346 // Get the Reference_flags for a particular relocation.
8347
8348 template<bool big_endian>
8349 int
8350 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8351 {
8352 switch (r_type)
8353 {
8354 case elfcpp::R_ARM_NONE:
8355 case elfcpp::R_ARM_V4BX:
8356 case elfcpp::R_ARM_GNU_VTENTRY:
8357 case elfcpp::R_ARM_GNU_VTINHERIT:
8358 // No symbol reference.
8359 return 0;
8360
8361 case elfcpp::R_ARM_ABS32:
8362 case elfcpp::R_ARM_ABS16:
8363 case elfcpp::R_ARM_ABS12:
8364 case elfcpp::R_ARM_THM_ABS5:
8365 case elfcpp::R_ARM_ABS8:
8366 case elfcpp::R_ARM_BASE_ABS:
8367 case elfcpp::R_ARM_MOVW_ABS_NC:
8368 case elfcpp::R_ARM_MOVT_ABS:
8369 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8370 case elfcpp::R_ARM_THM_MOVT_ABS:
8371 case elfcpp::R_ARM_ABS32_NOI:
8372 return Symbol::ABSOLUTE_REF;
8373
8374 case elfcpp::R_ARM_REL32:
8375 case elfcpp::R_ARM_LDR_PC_G0:
8376 case elfcpp::R_ARM_SBREL32:
8377 case elfcpp::R_ARM_THM_PC8:
8378 case elfcpp::R_ARM_BASE_PREL:
8379 case elfcpp::R_ARM_MOVW_PREL_NC:
8380 case elfcpp::R_ARM_MOVT_PREL:
8381 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8382 case elfcpp::R_ARM_THM_MOVT_PREL:
8383 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8384 case elfcpp::R_ARM_THM_PC12:
8385 case elfcpp::R_ARM_REL32_NOI:
8386 case elfcpp::R_ARM_ALU_PC_G0_NC:
8387 case elfcpp::R_ARM_ALU_PC_G0:
8388 case elfcpp::R_ARM_ALU_PC_G1_NC:
8389 case elfcpp::R_ARM_ALU_PC_G1:
8390 case elfcpp::R_ARM_ALU_PC_G2:
8391 case elfcpp::R_ARM_LDR_PC_G1:
8392 case elfcpp::R_ARM_LDR_PC_G2:
8393 case elfcpp::R_ARM_LDRS_PC_G0:
8394 case elfcpp::R_ARM_LDRS_PC_G1:
8395 case elfcpp::R_ARM_LDRS_PC_G2:
8396 case elfcpp::R_ARM_LDC_PC_G0:
8397 case elfcpp::R_ARM_LDC_PC_G1:
8398 case elfcpp::R_ARM_LDC_PC_G2:
8399 case elfcpp::R_ARM_ALU_SB_G0_NC:
8400 case elfcpp::R_ARM_ALU_SB_G0:
8401 case elfcpp::R_ARM_ALU_SB_G1_NC:
8402 case elfcpp::R_ARM_ALU_SB_G1:
8403 case elfcpp::R_ARM_ALU_SB_G2:
8404 case elfcpp::R_ARM_LDR_SB_G0:
8405 case elfcpp::R_ARM_LDR_SB_G1:
8406 case elfcpp::R_ARM_LDR_SB_G2:
8407 case elfcpp::R_ARM_LDRS_SB_G0:
8408 case elfcpp::R_ARM_LDRS_SB_G1:
8409 case elfcpp::R_ARM_LDRS_SB_G2:
8410 case elfcpp::R_ARM_LDC_SB_G0:
8411 case elfcpp::R_ARM_LDC_SB_G1:
8412 case elfcpp::R_ARM_LDC_SB_G2:
8413 case elfcpp::R_ARM_MOVW_BREL_NC:
8414 case elfcpp::R_ARM_MOVT_BREL:
8415 case elfcpp::R_ARM_MOVW_BREL:
8416 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8417 case elfcpp::R_ARM_THM_MOVT_BREL:
8418 case elfcpp::R_ARM_THM_MOVW_BREL:
8419 case elfcpp::R_ARM_GOTOFF32:
8420 case elfcpp::R_ARM_GOTOFF12:
8421 case elfcpp::R_ARM_SBREL31:
8422 return Symbol::RELATIVE_REF;
8423
8424 case elfcpp::R_ARM_PLT32:
8425 case elfcpp::R_ARM_CALL:
8426 case elfcpp::R_ARM_JUMP24:
8427 case elfcpp::R_ARM_THM_CALL:
8428 case elfcpp::R_ARM_THM_JUMP24:
8429 case elfcpp::R_ARM_THM_JUMP19:
8430 case elfcpp::R_ARM_THM_JUMP6:
8431 case elfcpp::R_ARM_THM_JUMP11:
8432 case elfcpp::R_ARM_THM_JUMP8:
8433 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8434 // in unwind tables. It may point to functions via PLTs.
8435 // So we treat it like call/jump relocations above.
8436 case elfcpp::R_ARM_PREL31:
8437 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8438
8439 case elfcpp::R_ARM_GOT_BREL:
8440 case elfcpp::R_ARM_GOT_ABS:
8441 case elfcpp::R_ARM_GOT_PREL:
8442 // Absolute in GOT.
8443 return Symbol::ABSOLUTE_REF;
8444
8445 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8446 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8447 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8448 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8449 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8450 return Symbol::TLS_REF;
8451
8452 case elfcpp::R_ARM_TARGET1:
8453 case elfcpp::R_ARM_TARGET2:
8454 case elfcpp::R_ARM_COPY:
8455 case elfcpp::R_ARM_GLOB_DAT:
8456 case elfcpp::R_ARM_JUMP_SLOT:
8457 case elfcpp::R_ARM_RELATIVE:
8458 case elfcpp::R_ARM_PC24:
8459 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8460 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8461 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8462 default:
8463 // Not expected. We will give an error later.
8464 return 0;
8465 }
8466 }
8467
8468 // Report an unsupported relocation against a local symbol.
8469
8470 template<bool big_endian>
8471 void
8472 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8473 Sized_relobj_file<32, big_endian>* object,
8474 unsigned int r_type)
8475 {
8476 gold_error(_("%s: unsupported reloc %u against local symbol"),
8477 object->name().c_str(), r_type);
8478 }
8479
8480 // We are about to emit a dynamic relocation of type R_TYPE. If the
8481 // dynamic linker does not support it, issue an error. The GNU linker
8482 // only issues a non-PIC error for an allocated read-only section.
8483 // Here we know the section is allocated, but we don't know that it is
8484 // read-only. But we check for all the relocation types which the
8485 // glibc dynamic linker supports, so it seems appropriate to issue an
8486 // error even if the section is not read-only.
8487
8488 template<bool big_endian>
8489 void
8490 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8491 unsigned int r_type)
8492 {
8493 switch (r_type)
8494 {
8495 // These are the relocation types supported by glibc for ARM.
8496 case elfcpp::R_ARM_RELATIVE:
8497 case elfcpp::R_ARM_COPY:
8498 case elfcpp::R_ARM_GLOB_DAT:
8499 case elfcpp::R_ARM_JUMP_SLOT:
8500 case elfcpp::R_ARM_ABS32:
8501 case elfcpp::R_ARM_ABS32_NOI:
8502 case elfcpp::R_ARM_IRELATIVE:
8503 case elfcpp::R_ARM_PC24:
8504 // FIXME: The following 3 types are not supported by Android's dynamic
8505 // linker.
8506 case elfcpp::R_ARM_TLS_DTPMOD32:
8507 case elfcpp::R_ARM_TLS_DTPOFF32:
8508 case elfcpp::R_ARM_TLS_TPOFF32:
8509 return;
8510
8511 default:
8512 {
8513 // This prevents us from issuing more than one error per reloc
8514 // section. But we can still wind up issuing more than one
8515 // error per object file.
8516 if (this->issued_non_pic_error_)
8517 return;
8518 const Arm_reloc_property* reloc_property =
8519 arm_reloc_property_table->get_reloc_property(r_type);
8520 gold_assert(reloc_property != NULL);
8521 object->error(_("requires unsupported dynamic reloc %s; "
8522 "recompile with -fPIC"),
8523 reloc_property->name().c_str());
8524 this->issued_non_pic_error_ = true;
8525 return;
8526 }
8527
8528 case elfcpp::R_ARM_NONE:
8529 gold_unreachable();
8530 }
8531 }
8532
8533
8534 // Return whether we need to make a PLT entry for a relocation of the
8535 // given type against a STT_GNU_IFUNC symbol.
8536
8537 template<bool big_endian>
8538 bool
8539 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8540 Sized_relobj_file<32, big_endian>* object,
8541 unsigned int r_type)
8542 {
8543 int flags = Scan::get_reference_flags(r_type);
8544 if (flags & Symbol::TLS_REF)
8545 {
8546 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8547 object->name().c_str(), r_type);
8548 return false;
8549 }
8550 return flags != 0;
8551 }
8552
8553
8554 // Scan a relocation for a local symbol.
8555 // FIXME: This only handles a subset of relocation types used by Android
8556 // on ARM v5te devices.
8557
8558 template<bool big_endian>
8559 inline void
8560 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8561 Layout* layout,
8562 Target_arm* target,
8563 Sized_relobj_file<32, big_endian>* object,
8564 unsigned int data_shndx,
8565 Output_section* output_section,
8566 const elfcpp::Rel<32, big_endian>& reloc,
8567 unsigned int r_type,
8568 const elfcpp::Sym<32, big_endian>& lsym,
8569 bool is_discarded)
8570 {
8571 if (is_discarded)
8572 return;
8573
8574 r_type = target->get_real_reloc_type(r_type);
8575
8576 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8577 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8578 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8579 {
8580 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8581 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8582 }
8583
8584 switch (r_type)
8585 {
8586 case elfcpp::R_ARM_NONE:
8587 case elfcpp::R_ARM_V4BX:
8588 case elfcpp::R_ARM_GNU_VTENTRY:
8589 case elfcpp::R_ARM_GNU_VTINHERIT:
8590 break;
8591
8592 case elfcpp::R_ARM_ABS32:
8593 case elfcpp::R_ARM_ABS32_NOI:
8594 // If building a shared library (or a position-independent
8595 // executable), we need to create a dynamic relocation for
8596 // this location. The relocation applied at link time will
8597 // apply the link-time value, so we flag the location with
8598 // an R_ARM_RELATIVE relocation so the dynamic loader can
8599 // relocate it easily.
8600 if (parameters->options().output_is_position_independent())
8601 {
8602 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8603 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8604 // If we are to add more other reloc types than R_ARM_ABS32,
8605 // we need to add check_non_pic(object, r_type) here.
8606 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8607 output_section, data_shndx,
8608 reloc.get_r_offset(), is_ifunc);
8609 }
8610 break;
8611
8612 case elfcpp::R_ARM_ABS16:
8613 case elfcpp::R_ARM_ABS12:
8614 case elfcpp::R_ARM_THM_ABS5:
8615 case elfcpp::R_ARM_ABS8:
8616 case elfcpp::R_ARM_BASE_ABS:
8617 case elfcpp::R_ARM_MOVW_ABS_NC:
8618 case elfcpp::R_ARM_MOVT_ABS:
8619 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8620 case elfcpp::R_ARM_THM_MOVT_ABS:
8621 // If building a shared library (or a position-independent
8622 // executable), we need to create a dynamic relocation for
8623 // this location. Because the addend needs to remain in the
8624 // data section, we need to be careful not to apply this
8625 // relocation statically.
8626 if (parameters->options().output_is_position_independent())
8627 {
8628 check_non_pic(object, r_type);
8629 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8630 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8631 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8632 rel_dyn->add_local(object, r_sym, r_type, output_section,
8633 data_shndx, reloc.get_r_offset());
8634 else
8635 {
8636 gold_assert(lsym.get_st_value() == 0);
8637 unsigned int shndx = lsym.get_st_shndx();
8638 bool is_ordinary;
8639 shndx = object->adjust_sym_shndx(r_sym, shndx,
8640 &is_ordinary);
8641 if (!is_ordinary)
8642 object->error(_("section symbol %u has bad shndx %u"),
8643 r_sym, shndx);
8644 else
8645 rel_dyn->add_local_section(object, shndx,
8646 r_type, output_section,
8647 data_shndx, reloc.get_r_offset());
8648 }
8649 }
8650 break;
8651
8652 case elfcpp::R_ARM_REL32:
8653 case elfcpp::R_ARM_LDR_PC_G0:
8654 case elfcpp::R_ARM_SBREL32:
8655 case elfcpp::R_ARM_THM_CALL:
8656 case elfcpp::R_ARM_THM_PC8:
8657 case elfcpp::R_ARM_BASE_PREL:
8658 case elfcpp::R_ARM_PLT32:
8659 case elfcpp::R_ARM_CALL:
8660 case elfcpp::R_ARM_JUMP24:
8661 case elfcpp::R_ARM_THM_JUMP24:
8662 case elfcpp::R_ARM_SBREL31:
8663 case elfcpp::R_ARM_PREL31:
8664 case elfcpp::R_ARM_MOVW_PREL_NC:
8665 case elfcpp::R_ARM_MOVT_PREL:
8666 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8667 case elfcpp::R_ARM_THM_MOVT_PREL:
8668 case elfcpp::R_ARM_THM_JUMP19:
8669 case elfcpp::R_ARM_THM_JUMP6:
8670 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8671 case elfcpp::R_ARM_THM_PC12:
8672 case elfcpp::R_ARM_REL32_NOI:
8673 case elfcpp::R_ARM_ALU_PC_G0_NC:
8674 case elfcpp::R_ARM_ALU_PC_G0:
8675 case elfcpp::R_ARM_ALU_PC_G1_NC:
8676 case elfcpp::R_ARM_ALU_PC_G1:
8677 case elfcpp::R_ARM_ALU_PC_G2:
8678 case elfcpp::R_ARM_LDR_PC_G1:
8679 case elfcpp::R_ARM_LDR_PC_G2:
8680 case elfcpp::R_ARM_LDRS_PC_G0:
8681 case elfcpp::R_ARM_LDRS_PC_G1:
8682 case elfcpp::R_ARM_LDRS_PC_G2:
8683 case elfcpp::R_ARM_LDC_PC_G0:
8684 case elfcpp::R_ARM_LDC_PC_G1:
8685 case elfcpp::R_ARM_LDC_PC_G2:
8686 case elfcpp::R_ARM_ALU_SB_G0_NC:
8687 case elfcpp::R_ARM_ALU_SB_G0:
8688 case elfcpp::R_ARM_ALU_SB_G1_NC:
8689 case elfcpp::R_ARM_ALU_SB_G1:
8690 case elfcpp::R_ARM_ALU_SB_G2:
8691 case elfcpp::R_ARM_LDR_SB_G0:
8692 case elfcpp::R_ARM_LDR_SB_G1:
8693 case elfcpp::R_ARM_LDR_SB_G2:
8694 case elfcpp::R_ARM_LDRS_SB_G0:
8695 case elfcpp::R_ARM_LDRS_SB_G1:
8696 case elfcpp::R_ARM_LDRS_SB_G2:
8697 case elfcpp::R_ARM_LDC_SB_G0:
8698 case elfcpp::R_ARM_LDC_SB_G1:
8699 case elfcpp::R_ARM_LDC_SB_G2:
8700 case elfcpp::R_ARM_MOVW_BREL_NC:
8701 case elfcpp::R_ARM_MOVT_BREL:
8702 case elfcpp::R_ARM_MOVW_BREL:
8703 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8704 case elfcpp::R_ARM_THM_MOVT_BREL:
8705 case elfcpp::R_ARM_THM_MOVW_BREL:
8706 case elfcpp::R_ARM_THM_JUMP11:
8707 case elfcpp::R_ARM_THM_JUMP8:
8708 // We don't need to do anything for a relative addressing relocation
8709 // against a local symbol if it does not reference the GOT.
8710 break;
8711
8712 case elfcpp::R_ARM_GOTOFF32:
8713 case elfcpp::R_ARM_GOTOFF12:
8714 // We need a GOT section:
8715 target->got_section(symtab, layout);
8716 break;
8717
8718 case elfcpp::R_ARM_GOT_BREL:
8719 case elfcpp::R_ARM_GOT_PREL:
8720 {
8721 // The symbol requires a GOT entry.
8722 Arm_output_data_got<big_endian>* got =
8723 target->got_section(symtab, layout);
8724 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8725 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8726 {
8727 // If we are generating a shared object, we need to add a
8728 // dynamic RELATIVE relocation for this symbol's GOT entry.
8729 if (parameters->options().output_is_position_independent())
8730 {
8731 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8732 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8733 rel_dyn->add_local_relative(
8734 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8735 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8736 }
8737 }
8738 }
8739 break;
8740
8741 case elfcpp::R_ARM_TARGET1:
8742 case elfcpp::R_ARM_TARGET2:
8743 // This should have been mapped to another type already.
8744 // Fall through.
8745 case elfcpp::R_ARM_COPY:
8746 case elfcpp::R_ARM_GLOB_DAT:
8747 case elfcpp::R_ARM_JUMP_SLOT:
8748 case elfcpp::R_ARM_RELATIVE:
8749 // These are relocations which should only be seen by the
8750 // dynamic linker, and should never be seen here.
8751 gold_error(_("%s: unexpected reloc %u in object file"),
8752 object->name().c_str(), r_type);
8753 break;
8754
8755
8756 // These are initial TLS relocs, which are expected when
8757 // linking.
8758 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8759 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8760 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8761 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8762 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8763 {
8764 bool output_is_shared = parameters->options().shared();
8765 const tls::Tls_optimization optimized_type
8766 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8767 r_type);
8768 switch (r_type)
8769 {
8770 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8771 if (optimized_type == tls::TLSOPT_NONE)
8772 {
8773 // Create a pair of GOT entries for the module index and
8774 // dtv-relative offset.
8775 Arm_output_data_got<big_endian>* got
8776 = target->got_section(symtab, layout);
8777 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8778 unsigned int shndx = lsym.get_st_shndx();
8779 bool is_ordinary;
8780 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8781 if (!is_ordinary)
8782 {
8783 object->error(_("local symbol %u has bad shndx %u"),
8784 r_sym, shndx);
8785 break;
8786 }
8787
8788 if (!parameters->doing_static_link())
8789 got->add_local_pair_with_rel(object, r_sym, shndx,
8790 GOT_TYPE_TLS_PAIR,
8791 target->rel_dyn_section(layout),
8792 elfcpp::R_ARM_TLS_DTPMOD32);
8793 else
8794 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8795 object, r_sym);
8796 }
8797 else
8798 // FIXME: TLS optimization not supported yet.
8799 gold_unreachable();
8800 break;
8801
8802 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8803 if (optimized_type == tls::TLSOPT_NONE)
8804 {
8805 // Create a GOT entry for the module index.
8806 target->got_mod_index_entry(symtab, layout, object);
8807 }
8808 else
8809 // FIXME: TLS optimization not supported yet.
8810 gold_unreachable();
8811 break;
8812
8813 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8814 break;
8815
8816 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8817 layout->set_has_static_tls();
8818 if (optimized_type == tls::TLSOPT_NONE)
8819 {
8820 // Create a GOT entry for the tp-relative offset.
8821 Arm_output_data_got<big_endian>* got
8822 = target->got_section(symtab, layout);
8823 unsigned int r_sym =
8824 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8825 if (!parameters->doing_static_link())
8826 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8827 target->rel_dyn_section(layout),
8828 elfcpp::R_ARM_TLS_TPOFF32);
8829 else if (!object->local_has_got_offset(r_sym,
8830 GOT_TYPE_TLS_OFFSET))
8831 {
8832 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8833 unsigned int got_offset =
8834 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8835 got->add_static_reloc(got_offset,
8836 elfcpp::R_ARM_TLS_TPOFF32, object,
8837 r_sym);
8838 }
8839 }
8840 else
8841 // FIXME: TLS optimization not supported yet.
8842 gold_unreachable();
8843 break;
8844
8845 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8846 layout->set_has_static_tls();
8847 if (output_is_shared)
8848 {
8849 // We need to create a dynamic relocation.
8850 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8851 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8852 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8853 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8854 output_section, data_shndx,
8855 reloc.get_r_offset());
8856 }
8857 break;
8858
8859 default:
8860 gold_unreachable();
8861 }
8862 }
8863 break;
8864
8865 case elfcpp::R_ARM_PC24:
8866 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8867 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8868 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8869 default:
8870 unsupported_reloc_local(object, r_type);
8871 break;
8872 }
8873 }
8874
8875 // Report an unsupported relocation against a global symbol.
8876
8877 template<bool big_endian>
8878 void
8879 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8880 Sized_relobj_file<32, big_endian>* object,
8881 unsigned int r_type,
8882 Symbol* gsym)
8883 {
8884 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8885 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8886 }
8887
8888 template<bool big_endian>
8889 inline bool
8890 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8891 unsigned int r_type)
8892 {
8893 switch (r_type)
8894 {
8895 case elfcpp::R_ARM_PC24:
8896 case elfcpp::R_ARM_THM_CALL:
8897 case elfcpp::R_ARM_PLT32:
8898 case elfcpp::R_ARM_CALL:
8899 case elfcpp::R_ARM_JUMP24:
8900 case elfcpp::R_ARM_THM_JUMP24:
8901 case elfcpp::R_ARM_SBREL31:
8902 case elfcpp::R_ARM_PREL31:
8903 case elfcpp::R_ARM_THM_JUMP19:
8904 case elfcpp::R_ARM_THM_JUMP6:
8905 case elfcpp::R_ARM_THM_JUMP11:
8906 case elfcpp::R_ARM_THM_JUMP8:
8907 // All the relocations above are branches except SBREL31 and PREL31.
8908 return false;
8909
8910 default:
8911 // Be conservative and assume this is a function pointer.
8912 return true;
8913 }
8914 }
8915
8916 template<bool big_endian>
8917 inline bool
8918 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8919 Symbol_table*,
8920 Layout*,
8921 Target_arm<big_endian>* target,
8922 Sized_relobj_file<32, big_endian>*,
8923 unsigned int,
8924 Output_section*,
8925 const elfcpp::Rel<32, big_endian>&,
8926 unsigned int r_type,
8927 const elfcpp::Sym<32, big_endian>&)
8928 {
8929 r_type = target->get_real_reloc_type(r_type);
8930 return possible_function_pointer_reloc(r_type);
8931 }
8932
8933 template<bool big_endian>
8934 inline bool
8935 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8936 Symbol_table*,
8937 Layout*,
8938 Target_arm<big_endian>* target,
8939 Sized_relobj_file<32, big_endian>*,
8940 unsigned int,
8941 Output_section*,
8942 const elfcpp::Rel<32, big_endian>&,
8943 unsigned int r_type,
8944 Symbol* gsym)
8945 {
8946 // GOT is not a function.
8947 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8948 return false;
8949
8950 r_type = target->get_real_reloc_type(r_type);
8951 return possible_function_pointer_reloc(r_type);
8952 }
8953
8954 // Scan a relocation for a global symbol.
8955
8956 template<bool big_endian>
8957 inline void
8958 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8959 Layout* layout,
8960 Target_arm* target,
8961 Sized_relobj_file<32, big_endian>* object,
8962 unsigned int data_shndx,
8963 Output_section* output_section,
8964 const elfcpp::Rel<32, big_endian>& reloc,
8965 unsigned int r_type,
8966 Symbol* gsym)
8967 {
8968 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8969 // section. We check here to avoid creating a dynamic reloc against
8970 // _GLOBAL_OFFSET_TABLE_.
8971 if (!target->has_got_section()
8972 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8973 target->got_section(symtab, layout);
8974
8975 // A STT_GNU_IFUNC symbol may require a PLT entry.
8976 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8977 && this->reloc_needs_plt_for_ifunc(object, r_type))
8978 target->make_plt_entry(symtab, layout, gsym);
8979
8980 r_type = target->get_real_reloc_type(r_type);
8981 switch (r_type)
8982 {
8983 case elfcpp::R_ARM_NONE:
8984 case elfcpp::R_ARM_V4BX:
8985 case elfcpp::R_ARM_GNU_VTENTRY:
8986 case elfcpp::R_ARM_GNU_VTINHERIT:
8987 break;
8988
8989 case elfcpp::R_ARM_ABS32:
8990 case elfcpp::R_ARM_ABS16:
8991 case elfcpp::R_ARM_ABS12:
8992 case elfcpp::R_ARM_THM_ABS5:
8993 case elfcpp::R_ARM_ABS8:
8994 case elfcpp::R_ARM_BASE_ABS:
8995 case elfcpp::R_ARM_MOVW_ABS_NC:
8996 case elfcpp::R_ARM_MOVT_ABS:
8997 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8998 case elfcpp::R_ARM_THM_MOVT_ABS:
8999 case elfcpp::R_ARM_ABS32_NOI:
9000 // Absolute addressing relocations.
9001 {
9002 // Make a PLT entry if necessary.
9003 if (this->symbol_needs_plt_entry(gsym))
9004 {
9005 target->make_plt_entry(symtab, layout, gsym);
9006 // Since this is not a PC-relative relocation, we may be
9007 // taking the address of a function. In that case we need to
9008 // set the entry in the dynamic symbol table to the address of
9009 // the PLT entry.
9010 if (gsym->is_from_dynobj() && !parameters->options().shared())
9011 gsym->set_needs_dynsym_value();
9012 }
9013 // Make a dynamic relocation if necessary.
9014 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9015 {
9016 if (!parameters->options().output_is_position_independent()
9017 && gsym->may_need_copy_reloc())
9018 {
9019 target->copy_reloc(symtab, layout, object,
9020 data_shndx, output_section, gsym, reloc);
9021 }
9022 else if ((r_type == elfcpp::R_ARM_ABS32
9023 || r_type == elfcpp::R_ARM_ABS32_NOI)
9024 && gsym->type() == elfcpp::STT_GNU_IFUNC
9025 && gsym->can_use_relative_reloc(false)
9026 && !gsym->is_from_dynobj()
9027 && !gsym->is_undefined()
9028 && !gsym->is_preemptible())
9029 {
9030 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
9031 // symbol. This makes a function address in a PIE executable
9032 // match the address in a shared library that it links against.
9033 Reloc_section* rel_irelative =
9034 target->rel_irelative_section(layout);
9035 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
9036 rel_irelative->add_symbolless_global_addend(
9037 gsym, r_type, output_section, object,
9038 data_shndx, reloc.get_r_offset());
9039 }
9040 else if ((r_type == elfcpp::R_ARM_ABS32
9041 || r_type == elfcpp::R_ARM_ABS32_NOI)
9042 && gsym->can_use_relative_reloc(false))
9043 {
9044 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9045 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
9046 output_section, object,
9047 data_shndx, reloc.get_r_offset());
9048 }
9049 else
9050 {
9051 check_non_pic(object, r_type);
9052 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9053 rel_dyn->add_global(gsym, r_type, output_section, object,
9054 data_shndx, reloc.get_r_offset());
9055 }
9056 }
9057 }
9058 break;
9059
9060 case elfcpp::R_ARM_GOTOFF32:
9061 case elfcpp::R_ARM_GOTOFF12:
9062 // We need a GOT section.
9063 target->got_section(symtab, layout);
9064 break;
9065
9066 case elfcpp::R_ARM_REL32:
9067 case elfcpp::R_ARM_LDR_PC_G0:
9068 case elfcpp::R_ARM_SBREL32:
9069 case elfcpp::R_ARM_THM_PC8:
9070 case elfcpp::R_ARM_BASE_PREL:
9071 case elfcpp::R_ARM_MOVW_PREL_NC:
9072 case elfcpp::R_ARM_MOVT_PREL:
9073 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9074 case elfcpp::R_ARM_THM_MOVT_PREL:
9075 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9076 case elfcpp::R_ARM_THM_PC12:
9077 case elfcpp::R_ARM_REL32_NOI:
9078 case elfcpp::R_ARM_ALU_PC_G0_NC:
9079 case elfcpp::R_ARM_ALU_PC_G0:
9080 case elfcpp::R_ARM_ALU_PC_G1_NC:
9081 case elfcpp::R_ARM_ALU_PC_G1:
9082 case elfcpp::R_ARM_ALU_PC_G2:
9083 case elfcpp::R_ARM_LDR_PC_G1:
9084 case elfcpp::R_ARM_LDR_PC_G2:
9085 case elfcpp::R_ARM_LDRS_PC_G0:
9086 case elfcpp::R_ARM_LDRS_PC_G1:
9087 case elfcpp::R_ARM_LDRS_PC_G2:
9088 case elfcpp::R_ARM_LDC_PC_G0:
9089 case elfcpp::R_ARM_LDC_PC_G1:
9090 case elfcpp::R_ARM_LDC_PC_G2:
9091 case elfcpp::R_ARM_ALU_SB_G0_NC:
9092 case elfcpp::R_ARM_ALU_SB_G0:
9093 case elfcpp::R_ARM_ALU_SB_G1_NC:
9094 case elfcpp::R_ARM_ALU_SB_G1:
9095 case elfcpp::R_ARM_ALU_SB_G2:
9096 case elfcpp::R_ARM_LDR_SB_G0:
9097 case elfcpp::R_ARM_LDR_SB_G1:
9098 case elfcpp::R_ARM_LDR_SB_G2:
9099 case elfcpp::R_ARM_LDRS_SB_G0:
9100 case elfcpp::R_ARM_LDRS_SB_G1:
9101 case elfcpp::R_ARM_LDRS_SB_G2:
9102 case elfcpp::R_ARM_LDC_SB_G0:
9103 case elfcpp::R_ARM_LDC_SB_G1:
9104 case elfcpp::R_ARM_LDC_SB_G2:
9105 case elfcpp::R_ARM_MOVW_BREL_NC:
9106 case elfcpp::R_ARM_MOVT_BREL:
9107 case elfcpp::R_ARM_MOVW_BREL:
9108 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9109 case elfcpp::R_ARM_THM_MOVT_BREL:
9110 case elfcpp::R_ARM_THM_MOVW_BREL:
9111 // Relative addressing relocations.
9112 {
9113 // Make a dynamic relocation if necessary.
9114 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9115 {
9116 if (parameters->options().output_is_executable()
9117 && target->may_need_copy_reloc(gsym))
9118 {
9119 target->copy_reloc(symtab, layout, object,
9120 data_shndx, output_section, gsym, reloc);
9121 }
9122 else
9123 {
9124 check_non_pic(object, r_type);
9125 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9126 rel_dyn->add_global(gsym, r_type, output_section, object,
9127 data_shndx, reloc.get_r_offset());
9128 }
9129 }
9130 }
9131 break;
9132
9133 case elfcpp::R_ARM_THM_CALL:
9134 case elfcpp::R_ARM_PLT32:
9135 case elfcpp::R_ARM_CALL:
9136 case elfcpp::R_ARM_JUMP24:
9137 case elfcpp::R_ARM_THM_JUMP24:
9138 case elfcpp::R_ARM_SBREL31:
9139 case elfcpp::R_ARM_PREL31:
9140 case elfcpp::R_ARM_THM_JUMP19:
9141 case elfcpp::R_ARM_THM_JUMP6:
9142 case elfcpp::R_ARM_THM_JUMP11:
9143 case elfcpp::R_ARM_THM_JUMP8:
9144 // All the relocation above are branches except for the PREL31 ones.
9145 // A PREL31 relocation can point to a personality function in a shared
9146 // library. In that case we want to use a PLT because we want to
9147 // call the personality routine and the dynamic linkers we care about
9148 // do not support dynamic PREL31 relocations. An REL31 relocation may
9149 // point to a function whose unwinding behaviour is being described but
9150 // we will not mistakenly generate a PLT for that because we should use
9151 // a local section symbol.
9152
9153 // If the symbol is fully resolved, this is just a relative
9154 // local reloc. Otherwise we need a PLT entry.
9155 if (gsym->final_value_is_known())
9156 break;
9157 // If building a shared library, we can also skip the PLT entry
9158 // if the symbol is defined in the output file and is protected
9159 // or hidden.
9160 if (gsym->is_defined()
9161 && !gsym->is_from_dynobj()
9162 && !gsym->is_preemptible())
9163 break;
9164 target->make_plt_entry(symtab, layout, gsym);
9165 break;
9166
9167 case elfcpp::R_ARM_GOT_BREL:
9168 case elfcpp::R_ARM_GOT_ABS:
9169 case elfcpp::R_ARM_GOT_PREL:
9170 {
9171 // The symbol requires a GOT entry.
9172 Arm_output_data_got<big_endian>* got =
9173 target->got_section(symtab, layout);
9174 if (gsym->final_value_is_known())
9175 {
9176 // For a STT_GNU_IFUNC symbol we want the PLT address.
9177 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9178 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9179 else
9180 got->add_global(gsym, GOT_TYPE_STANDARD);
9181 }
9182 else
9183 {
9184 // If this symbol is not fully resolved, we need to add a
9185 // GOT entry with a dynamic relocation.
9186 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9187 if (gsym->is_from_dynobj()
9188 || gsym->is_undefined()
9189 || gsym->is_preemptible()
9190 || (gsym->visibility() == elfcpp::STV_PROTECTED
9191 && parameters->options().shared())
9192 || (gsym->type() == elfcpp::STT_GNU_IFUNC
9193 && parameters->options().output_is_position_independent()))
9194 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
9195 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
9196 else
9197 {
9198 // For a STT_GNU_IFUNC symbol we want to write the PLT
9199 // offset into the GOT, so that function pointer
9200 // comparisons work correctly.
9201 bool is_new;
9202 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
9203 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
9204 else
9205 {
9206 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9207 // Tell the dynamic linker to use the PLT address
9208 // when resolving relocations.
9209 if (gsym->is_from_dynobj()
9210 && !parameters->options().shared())
9211 gsym->set_needs_dynsym_value();
9212 }
9213 if (is_new)
9214 rel_dyn->add_global_relative(
9215 gsym, elfcpp::R_ARM_RELATIVE, got,
9216 gsym->got_offset(GOT_TYPE_STANDARD));
9217 }
9218 }
9219 }
9220 break;
9221
9222 case elfcpp::R_ARM_TARGET1:
9223 case elfcpp::R_ARM_TARGET2:
9224 // These should have been mapped to other types already.
9225 // Fall through.
9226 case elfcpp::R_ARM_COPY:
9227 case elfcpp::R_ARM_GLOB_DAT:
9228 case elfcpp::R_ARM_JUMP_SLOT:
9229 case elfcpp::R_ARM_RELATIVE:
9230 // These are relocations which should only be seen by the
9231 // dynamic linker, and should never be seen here.
9232 gold_error(_("%s: unexpected reloc %u in object file"),
9233 object->name().c_str(), r_type);
9234 break;
9235
9236 // These are initial tls relocs, which are expected when
9237 // linking.
9238 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9239 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9240 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9241 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9242 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9243 {
9244 const bool is_final = gsym->final_value_is_known();
9245 const tls::Tls_optimization optimized_type
9246 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9247 switch (r_type)
9248 {
9249 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9250 if (optimized_type == tls::TLSOPT_NONE)
9251 {
9252 // Create a pair of GOT entries for the module index and
9253 // dtv-relative offset.
9254 Arm_output_data_got<big_endian>* got
9255 = target->got_section(symtab, layout);
9256 if (!parameters->doing_static_link())
9257 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
9258 target->rel_dyn_section(layout),
9259 elfcpp::R_ARM_TLS_DTPMOD32,
9260 elfcpp::R_ARM_TLS_DTPOFF32);
9261 else
9262 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9263 }
9264 else
9265 // FIXME: TLS optimization not supported yet.
9266 gold_unreachable();
9267 break;
9268
9269 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9270 if (optimized_type == tls::TLSOPT_NONE)
9271 {
9272 // Create a GOT entry for the module index.
9273 target->got_mod_index_entry(symtab, layout, object);
9274 }
9275 else
9276 // FIXME: TLS optimization not supported yet.
9277 gold_unreachable();
9278 break;
9279
9280 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9281 break;
9282
9283 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9284 layout->set_has_static_tls();
9285 if (optimized_type == tls::TLSOPT_NONE)
9286 {
9287 // Create a GOT entry for the tp-relative offset.
9288 Arm_output_data_got<big_endian>* got
9289 = target->got_section(symtab, layout);
9290 if (!parameters->doing_static_link())
9291 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9292 target->rel_dyn_section(layout),
9293 elfcpp::R_ARM_TLS_TPOFF32);
9294 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9295 {
9296 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9297 unsigned int got_offset =
9298 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9299 got->add_static_reloc(got_offset,
9300 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9301 }
9302 }
9303 else
9304 // FIXME: TLS optimization not supported yet.
9305 gold_unreachable();
9306 break;
9307
9308 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9309 layout->set_has_static_tls();
9310 if (parameters->options().shared())
9311 {
9312 // We need to create a dynamic relocation.
9313 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9314 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9315 output_section, object,
9316 data_shndx, reloc.get_r_offset());
9317 }
9318 break;
9319
9320 default:
9321 gold_unreachable();
9322 }
9323 }
9324 break;
9325
9326 case elfcpp::R_ARM_PC24:
9327 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9328 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9329 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9330 default:
9331 unsupported_reloc_global(object, r_type, gsym);
9332 break;
9333 }
9334 }
9335
9336 // Process relocations for gc.
9337
9338 template<bool big_endian>
9339 void
9340 Target_arm<big_endian>::gc_process_relocs(
9341 Symbol_table* symtab,
9342 Layout* layout,
9343 Sized_relobj_file<32, big_endian>* object,
9344 unsigned int data_shndx,
9345 unsigned int,
9346 const unsigned char* prelocs,
9347 size_t reloc_count,
9348 Output_section* output_section,
9349 bool needs_special_offset_handling,
9350 size_t local_symbol_count,
9351 const unsigned char* plocal_symbols)
9352 {
9353 typedef Target_arm<big_endian> Arm;
9354 typedef typename Target_arm<big_endian>::Scan Scan;
9355
9356 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
9357 symtab,
9358 layout,
9359 this,
9360 object,
9361 data_shndx,
9362 prelocs,
9363 reloc_count,
9364 output_section,
9365 needs_special_offset_handling,
9366 local_symbol_count,
9367 plocal_symbols);
9368 }
9369
9370 // Scan relocations for a section.
9371
9372 template<bool big_endian>
9373 void
9374 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9375 Layout* layout,
9376 Sized_relobj_file<32, big_endian>* object,
9377 unsigned int data_shndx,
9378 unsigned int sh_type,
9379 const unsigned char* prelocs,
9380 size_t reloc_count,
9381 Output_section* output_section,
9382 bool needs_special_offset_handling,
9383 size_t local_symbol_count,
9384 const unsigned char* plocal_symbols)
9385 {
9386 if (sh_type == elfcpp::SHT_RELA)
9387 {
9388 gold_error(_("%s: unsupported RELA reloc section"),
9389 object->name().c_str());
9390 return;
9391 }
9392
9393 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
9394 symtab,
9395 layout,
9396 this,
9397 object,
9398 data_shndx,
9399 prelocs,
9400 reloc_count,
9401 output_section,
9402 needs_special_offset_handling,
9403 local_symbol_count,
9404 plocal_symbols);
9405 }
9406
9407 // Finalize the sections.
9408
9409 template<bool big_endian>
9410 void
9411 Target_arm<big_endian>::do_finalize_sections(
9412 Layout* layout,
9413 const Input_objects* input_objects,
9414 Symbol_table*)
9415 {
9416 bool merged_any_attributes = false;
9417 // Merge processor-specific flags.
9418 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9419 p != input_objects->relobj_end();
9420 ++p)
9421 {
9422 Arm_relobj<big_endian>* arm_relobj =
9423 Arm_relobj<big_endian>::as_arm_relobj(*p);
9424 if (arm_relobj->merge_flags_and_attributes())
9425 {
9426 this->merge_processor_specific_flags(
9427 arm_relobj->name(),
9428 arm_relobj->processor_specific_flags());
9429 this->merge_object_attributes(arm_relobj->name().c_str(),
9430 arm_relobj->attributes_section_data());
9431 merged_any_attributes = true;
9432 }
9433 }
9434
9435 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9436 p != input_objects->dynobj_end();
9437 ++p)
9438 {
9439 Arm_dynobj<big_endian>* arm_dynobj =
9440 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9441 this->merge_processor_specific_flags(
9442 arm_dynobj->name(),
9443 arm_dynobj->processor_specific_flags());
9444 this->merge_object_attributes(arm_dynobj->name().c_str(),
9445 arm_dynobj->attributes_section_data());
9446 merged_any_attributes = true;
9447 }
9448
9449 // Create an empty uninitialized attribute section if we still don't have it
9450 // at this moment. This happens if there is no attributes sections in all
9451 // inputs.
9452 if (this->attributes_section_data_ == NULL)
9453 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9454
9455 const Object_attribute* cpu_arch_attr =
9456 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9457 // Check if we need to use Cortex-A8 workaround.
9458 if (parameters->options().user_set_fix_cortex_a8())
9459 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9460 else
9461 {
9462 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9463 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9464 // profile.
9465 const Object_attribute* cpu_arch_profile_attr =
9466 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9467 this->fix_cortex_a8_ =
9468 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9469 && (cpu_arch_profile_attr->int_value() == 'A'
9470 || cpu_arch_profile_attr->int_value() == 0));
9471 }
9472
9473 // Check if we can use V4BX interworking.
9474 // The V4BX interworking stub contains BX instruction,
9475 // which is not specified for some profiles.
9476 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9477 && !this->may_use_v4t_interworking())
9478 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9479 "the target profile does not support BX instruction"));
9480
9481 // Fill in some more dynamic tags.
9482 const Reloc_section* rel_plt = (this->plt_ == NULL
9483 ? NULL
9484 : this->plt_->rel_plt());
9485 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9486 this->rel_dyn_, true, false);
9487
9488 // Emit any relocs we saved in an attempt to avoid generating COPY
9489 // relocs.
9490 if (this->copy_relocs_.any_saved_relocs())
9491 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9492
9493 // Handle the .ARM.exidx section.
9494 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9495
9496 if (!parameters->options().relocatable())
9497 {
9498 if (exidx_section != NULL
9499 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9500 {
9501 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9502 // the .ARM.exidx section.
9503 if (!layout->script_options()->saw_phdrs_clause())
9504 {
9505 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9506 0)
9507 == NULL);
9508 Output_segment* exidx_segment =
9509 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9510 exidx_segment->add_output_section_to_nonload(exidx_section,
9511 elfcpp::PF_R);
9512 }
9513 }
9514 }
9515
9516 // Create an .ARM.attributes section if we have merged any attributes
9517 // from inputs.
9518 if (merged_any_attributes)
9519 {
9520 Output_attributes_section_data* attributes_section =
9521 new Output_attributes_section_data(*this->attributes_section_data_);
9522 layout->add_output_section_data(".ARM.attributes",
9523 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9524 attributes_section, ORDER_INVALID,
9525 false);
9526 }
9527
9528 // Fix up links in section EXIDX headers.
9529 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9530 p != layout->section_list().end();
9531 ++p)
9532 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9533 {
9534 Arm_output_section<big_endian>* os =
9535 Arm_output_section<big_endian>::as_arm_output_section(*p);
9536 os->set_exidx_section_link();
9537 }
9538 }
9539
9540 // Return whether a direct absolute static relocation needs to be applied.
9541 // In cases where Scan::local() or Scan::global() has created
9542 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9543 // of the relocation is carried in the data, and we must not
9544 // apply the static relocation.
9545
9546 template<bool big_endian>
9547 inline bool
9548 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9549 const Sized_symbol<32>* gsym,
9550 unsigned int r_type,
9551 bool is_32bit,
9552 Output_section* output_section)
9553 {
9554 // If the output section is not allocated, then we didn't call
9555 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9556 // the reloc here.
9557 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9558 return true;
9559
9560 int ref_flags = Scan::get_reference_flags(r_type);
9561
9562 // For local symbols, we will have created a non-RELATIVE dynamic
9563 // relocation only if (a) the output is position independent,
9564 // (b) the relocation is absolute (not pc- or segment-relative), and
9565 // (c) the relocation is not 32 bits wide.
9566 if (gsym == NULL)
9567 return !(parameters->options().output_is_position_independent()
9568 && (ref_flags & Symbol::ABSOLUTE_REF)
9569 && !is_32bit);
9570
9571 // For global symbols, we use the same helper routines used in the
9572 // scan pass. If we did not create a dynamic relocation, or if we
9573 // created a RELATIVE dynamic relocation, we should apply the static
9574 // relocation.
9575 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9576 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9577 && gsym->can_use_relative_reloc(ref_flags
9578 & Symbol::FUNCTION_CALL);
9579 return !has_dyn || is_rel;
9580 }
9581
9582 // Perform a relocation.
9583
9584 template<bool big_endian>
9585 inline bool
9586 Target_arm<big_endian>::Relocate::relocate(
9587 const Relocate_info<32, big_endian>* relinfo,
9588 unsigned int,
9589 Target_arm* target,
9590 Output_section* output_section,
9591 size_t relnum,
9592 const unsigned char* preloc,
9593 const Sized_symbol<32>* gsym,
9594 const Symbol_value<32>* psymval,
9595 unsigned char* view,
9596 Arm_address address,
9597 section_size_type view_size)
9598 {
9599 if (view == NULL)
9600 return true;
9601
9602 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9603
9604 const elfcpp::Rel<32, big_endian> rel(preloc);
9605 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
9606 r_type = target->get_real_reloc_type(r_type);
9607 const Arm_reloc_property* reloc_property =
9608 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9609 if (reloc_property == NULL)
9610 {
9611 std::string reloc_name =
9612 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9613 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9614 _("cannot relocate %s in object file"),
9615 reloc_name.c_str());
9616 return true;
9617 }
9618
9619 const Arm_relobj<big_endian>* object =
9620 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9621
9622 // If the final branch target of a relocation is THUMB instruction, this
9623 // is 1. Otherwise it is 0.
9624 Arm_address thumb_bit = 0;
9625 Symbol_value<32> symval;
9626 bool is_weakly_undefined_without_plt = false;
9627 bool have_got_offset = false;
9628 unsigned int got_offset = 0;
9629
9630 // If the relocation uses the GOT entry of a symbol instead of the symbol
9631 // itself, we don't care about whether the symbol is defined or what kind
9632 // of symbol it is.
9633 if (reloc_property->uses_got_entry())
9634 {
9635 // Get the GOT offset.
9636 // The GOT pointer points to the end of the GOT section.
9637 // We need to subtract the size of the GOT section to get
9638 // the actual offset to use in the relocation.
9639 // TODO: We should move GOT offset computing code in TLS relocations
9640 // to here.
9641 switch (r_type)
9642 {
9643 case elfcpp::R_ARM_GOT_BREL:
9644 case elfcpp::R_ARM_GOT_PREL:
9645 if (gsym != NULL)
9646 {
9647 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9648 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9649 - target->got_size());
9650 }
9651 else
9652 {
9653 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9654 gold_assert(object->local_has_got_offset(r_sym,
9655 GOT_TYPE_STANDARD));
9656 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9657 - target->got_size());
9658 }
9659 have_got_offset = true;
9660 break;
9661
9662 default:
9663 break;
9664 }
9665 }
9666 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9667 {
9668 if (gsym != NULL)
9669 {
9670 // This is a global symbol. Determine if we use PLT and if the
9671 // final target is THUMB.
9672 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9673 {
9674 // This uses a PLT, change the symbol value.
9675 symval.set_output_value(target->plt_address_for_global(gsym));
9676 psymval = &symval;
9677 }
9678 else if (gsym->is_weak_undefined())
9679 {
9680 // This is a weakly undefined symbol and we do not use PLT
9681 // for this relocation. A branch targeting this symbol will
9682 // be converted into an NOP.
9683 is_weakly_undefined_without_plt = true;
9684 }
9685 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9686 {
9687 // This relocation uses the symbol value but the symbol is
9688 // undefined. Exit early and have the caller reporting an
9689 // error.
9690 return true;
9691 }
9692 else
9693 {
9694 // Set thumb bit if symbol:
9695 // -Has type STT_ARM_TFUNC or
9696 // -Has type STT_FUNC, is defined and with LSB in value set.
9697 thumb_bit =
9698 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9699 || (gsym->type() == elfcpp::STT_FUNC
9700 && !gsym->is_undefined()
9701 && ((psymval->value(object, 0) & 1) != 0)))
9702 ? 1
9703 : 0);
9704 }
9705 }
9706 else
9707 {
9708 // This is a local symbol. Determine if the final target is THUMB.
9709 // We saved this information when all the local symbols were read.
9710 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9711 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9712 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9713
9714 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9715 {
9716 symval.set_output_value(
9717 target->plt_address_for_local(object, r_sym));
9718 psymval = &symval;
9719 }
9720 }
9721 }
9722 else
9723 {
9724 // This is a fake relocation synthesized for a stub. It does not have
9725 // a real symbol. We just look at the LSB of the symbol value to
9726 // determine if the target is THUMB or not.
9727 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9728 }
9729
9730 // Strip LSB if this points to a THUMB target.
9731 if (thumb_bit != 0
9732 && reloc_property->uses_thumb_bit()
9733 && ((psymval->value(object, 0) & 1) != 0))
9734 {
9735 Arm_address stripped_value =
9736 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9737 symval.set_output_value(stripped_value);
9738 psymval = &symval;
9739 }
9740
9741 // To look up relocation stubs, we need to pass the symbol table index of
9742 // a local symbol.
9743 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9744
9745 // Get the addressing origin of the output segment defining the
9746 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9747 Arm_address sym_origin = 0;
9748 if (reloc_property->uses_symbol_base())
9749 {
9750 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9751 // R_ARM_BASE_ABS with the NULL symbol will give the
9752 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9753 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9754 sym_origin = target->got_plt_section()->address();
9755 else if (gsym == NULL)
9756 sym_origin = 0;
9757 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9758 sym_origin = gsym->output_segment()->vaddr();
9759 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9760 sym_origin = gsym->output_data()->address();
9761
9762 // TODO: Assumes the segment base to be zero for the global symbols
9763 // till the proper support for the segment-base-relative addressing
9764 // will be implemented. This is consistent with GNU ld.
9765 }
9766
9767 // For relative addressing relocation, find out the relative address base.
9768 Arm_address relative_address_base = 0;
9769 switch(reloc_property->relative_address_base())
9770 {
9771 case Arm_reloc_property::RAB_NONE:
9772 // Relocations with relative address bases RAB_TLS and RAB_tp are
9773 // handled by relocate_tls. So we do not need to do anything here.
9774 case Arm_reloc_property::RAB_TLS:
9775 case Arm_reloc_property::RAB_tp:
9776 break;
9777 case Arm_reloc_property::RAB_B_S:
9778 relative_address_base = sym_origin;
9779 break;
9780 case Arm_reloc_property::RAB_GOT_ORG:
9781 relative_address_base = target->got_plt_section()->address();
9782 break;
9783 case Arm_reloc_property::RAB_P:
9784 relative_address_base = address;
9785 break;
9786 case Arm_reloc_property::RAB_Pa:
9787 relative_address_base = address & 0xfffffffcU;
9788 break;
9789 default:
9790 gold_unreachable();
9791 }
9792
9793 typename Arm_relocate_functions::Status reloc_status =
9794 Arm_relocate_functions::STATUS_OKAY;
9795 bool check_overflow = reloc_property->checks_overflow();
9796 switch (r_type)
9797 {
9798 case elfcpp::R_ARM_NONE:
9799 break;
9800
9801 case elfcpp::R_ARM_ABS8:
9802 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9803 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9804 break;
9805
9806 case elfcpp::R_ARM_ABS12:
9807 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9808 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9809 break;
9810
9811 case elfcpp::R_ARM_ABS16:
9812 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9813 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9814 break;
9815
9816 case elfcpp::R_ARM_ABS32:
9817 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9818 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9819 thumb_bit);
9820 break;
9821
9822 case elfcpp::R_ARM_ABS32_NOI:
9823 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9824 // No thumb bit for this relocation: (S + A)
9825 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9826 0);
9827 break;
9828
9829 case elfcpp::R_ARM_MOVW_ABS_NC:
9830 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9831 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9832 0, thumb_bit,
9833 check_overflow);
9834 break;
9835
9836 case elfcpp::R_ARM_MOVT_ABS:
9837 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9838 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9839 break;
9840
9841 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9842 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9843 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9844 0, thumb_bit, false);
9845 break;
9846
9847 case elfcpp::R_ARM_THM_MOVT_ABS:
9848 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9849 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9850 psymval, 0);
9851 break;
9852
9853 case elfcpp::R_ARM_MOVW_PREL_NC:
9854 case elfcpp::R_ARM_MOVW_BREL_NC:
9855 case elfcpp::R_ARM_MOVW_BREL:
9856 reloc_status =
9857 Arm_relocate_functions::movw(view, object, psymval,
9858 relative_address_base, thumb_bit,
9859 check_overflow);
9860 break;
9861
9862 case elfcpp::R_ARM_MOVT_PREL:
9863 case elfcpp::R_ARM_MOVT_BREL:
9864 reloc_status =
9865 Arm_relocate_functions::movt(view, object, psymval,
9866 relative_address_base);
9867 break;
9868
9869 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9870 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9871 case elfcpp::R_ARM_THM_MOVW_BREL:
9872 reloc_status =
9873 Arm_relocate_functions::thm_movw(view, object, psymval,
9874 relative_address_base,
9875 thumb_bit, check_overflow);
9876 break;
9877
9878 case elfcpp::R_ARM_THM_MOVT_PREL:
9879 case elfcpp::R_ARM_THM_MOVT_BREL:
9880 reloc_status =
9881 Arm_relocate_functions::thm_movt(view, object, psymval,
9882 relative_address_base);
9883 break;
9884
9885 case elfcpp::R_ARM_REL32:
9886 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9887 address, thumb_bit);
9888 break;
9889
9890 case elfcpp::R_ARM_THM_ABS5:
9891 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9892 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9893 break;
9894
9895 // Thumb long branches.
9896 case elfcpp::R_ARM_THM_CALL:
9897 case elfcpp::R_ARM_THM_XPC22:
9898 case elfcpp::R_ARM_THM_JUMP24:
9899 reloc_status =
9900 Arm_relocate_functions::thumb_branch_common(
9901 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9902 thumb_bit, is_weakly_undefined_without_plt);
9903 break;
9904
9905 case elfcpp::R_ARM_GOTOFF32:
9906 {
9907 Arm_address got_origin;
9908 got_origin = target->got_plt_section()->address();
9909 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9910 got_origin, thumb_bit);
9911 }
9912 break;
9913
9914 case elfcpp::R_ARM_BASE_PREL:
9915 gold_assert(gsym != NULL);
9916 reloc_status =
9917 Arm_relocate_functions::base_prel(view, sym_origin, address);
9918 break;
9919
9920 case elfcpp::R_ARM_BASE_ABS:
9921 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9922 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9923 break;
9924
9925 case elfcpp::R_ARM_GOT_BREL:
9926 gold_assert(have_got_offset);
9927 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9928 break;
9929
9930 case elfcpp::R_ARM_GOT_PREL:
9931 gold_assert(have_got_offset);
9932 // Get the address origin for GOT PLT, which is allocated right
9933 // after the GOT section, to calculate an absolute address of
9934 // the symbol GOT entry (got_origin + got_offset).
9935 Arm_address got_origin;
9936 got_origin = target->got_plt_section()->address();
9937 reloc_status = Arm_relocate_functions::got_prel(view,
9938 got_origin + got_offset,
9939 address);
9940 break;
9941
9942 case elfcpp::R_ARM_PLT32:
9943 case elfcpp::R_ARM_CALL:
9944 case elfcpp::R_ARM_JUMP24:
9945 case elfcpp::R_ARM_XPC25:
9946 gold_assert(gsym == NULL
9947 || gsym->has_plt_offset()
9948 || gsym->final_value_is_known()
9949 || (gsym->is_defined()
9950 && !gsym->is_from_dynobj()
9951 && !gsym->is_preemptible()));
9952 reloc_status =
9953 Arm_relocate_functions::arm_branch_common(
9954 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9955 thumb_bit, is_weakly_undefined_without_plt);
9956 break;
9957
9958 case elfcpp::R_ARM_THM_JUMP19:
9959 reloc_status =
9960 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9961 thumb_bit);
9962 break;
9963
9964 case elfcpp::R_ARM_THM_JUMP6:
9965 reloc_status =
9966 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9967 break;
9968
9969 case elfcpp::R_ARM_THM_JUMP8:
9970 reloc_status =
9971 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9972 break;
9973
9974 case elfcpp::R_ARM_THM_JUMP11:
9975 reloc_status =
9976 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9977 break;
9978
9979 case elfcpp::R_ARM_PREL31:
9980 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9981 address, thumb_bit);
9982 break;
9983
9984 case elfcpp::R_ARM_V4BX:
9985 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9986 {
9987 const bool is_v4bx_interworking =
9988 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9989 reloc_status =
9990 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9991 is_v4bx_interworking);
9992 }
9993 break;
9994
9995 case elfcpp::R_ARM_THM_PC8:
9996 reloc_status =
9997 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9998 break;
9999
10000 case elfcpp::R_ARM_THM_PC12:
10001 reloc_status =
10002 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
10003 break;
10004
10005 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10006 reloc_status =
10007 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
10008 thumb_bit);
10009 break;
10010
10011 case elfcpp::R_ARM_ALU_PC_G0_NC:
10012 case elfcpp::R_ARM_ALU_PC_G0:
10013 case elfcpp::R_ARM_ALU_PC_G1_NC:
10014 case elfcpp::R_ARM_ALU_PC_G1:
10015 case elfcpp::R_ARM_ALU_PC_G2:
10016 case elfcpp::R_ARM_ALU_SB_G0_NC:
10017 case elfcpp::R_ARM_ALU_SB_G0:
10018 case elfcpp::R_ARM_ALU_SB_G1_NC:
10019 case elfcpp::R_ARM_ALU_SB_G1:
10020 case elfcpp::R_ARM_ALU_SB_G2:
10021 reloc_status =
10022 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
10023 reloc_property->group_index(),
10024 relative_address_base,
10025 thumb_bit, check_overflow);
10026 break;
10027
10028 case elfcpp::R_ARM_LDR_PC_G0:
10029 case elfcpp::R_ARM_LDR_PC_G1:
10030 case elfcpp::R_ARM_LDR_PC_G2:
10031 case elfcpp::R_ARM_LDR_SB_G0:
10032 case elfcpp::R_ARM_LDR_SB_G1:
10033 case elfcpp::R_ARM_LDR_SB_G2:
10034 reloc_status =
10035 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
10036 reloc_property->group_index(),
10037 relative_address_base);
10038 break;
10039
10040 case elfcpp::R_ARM_LDRS_PC_G0:
10041 case elfcpp::R_ARM_LDRS_PC_G1:
10042 case elfcpp::R_ARM_LDRS_PC_G2:
10043 case elfcpp::R_ARM_LDRS_SB_G0:
10044 case elfcpp::R_ARM_LDRS_SB_G1:
10045 case elfcpp::R_ARM_LDRS_SB_G2:
10046 reloc_status =
10047 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
10048 reloc_property->group_index(),
10049 relative_address_base);
10050 break;
10051
10052 case elfcpp::R_ARM_LDC_PC_G0:
10053 case elfcpp::R_ARM_LDC_PC_G1:
10054 case elfcpp::R_ARM_LDC_PC_G2:
10055 case elfcpp::R_ARM_LDC_SB_G0:
10056 case elfcpp::R_ARM_LDC_SB_G1:
10057 case elfcpp::R_ARM_LDC_SB_G2:
10058 reloc_status =
10059 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
10060 reloc_property->group_index(),
10061 relative_address_base);
10062 break;
10063
10064 // These are initial tls relocs, which are expected when
10065 // linking.
10066 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10067 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10068 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10069 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10070 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10071 reloc_status =
10072 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
10073 view, address, view_size);
10074 break;
10075
10076 // The known and unknown unsupported and/or deprecated relocations.
10077 case elfcpp::R_ARM_PC24:
10078 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
10079 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
10080 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
10081 default:
10082 // Just silently leave the method. We should get an appropriate error
10083 // message in the scan methods.
10084 break;
10085 }
10086
10087 // Report any errors.
10088 switch (reloc_status)
10089 {
10090 case Arm_relocate_functions::STATUS_OKAY:
10091 break;
10092 case Arm_relocate_functions::STATUS_OVERFLOW:
10093 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10094 _("relocation overflow in %s"),
10095 reloc_property->name().c_str());
10096 break;
10097 case Arm_relocate_functions::STATUS_BAD_RELOC:
10098 gold_error_at_location(
10099 relinfo,
10100 relnum,
10101 rel.get_r_offset(),
10102 _("unexpected opcode while processing relocation %s"),
10103 reloc_property->name().c_str());
10104 break;
10105 default:
10106 gold_unreachable();
10107 }
10108
10109 return true;
10110 }
10111
10112 // Perform a TLS relocation.
10113
10114 template<bool big_endian>
10115 inline typename Arm_relocate_functions<big_endian>::Status
10116 Target_arm<big_endian>::Relocate::relocate_tls(
10117 const Relocate_info<32, big_endian>* relinfo,
10118 Target_arm<big_endian>* target,
10119 size_t relnum,
10120 const elfcpp::Rel<32, big_endian>& rel,
10121 unsigned int r_type,
10122 const Sized_symbol<32>* gsym,
10123 const Symbol_value<32>* psymval,
10124 unsigned char* view,
10125 elfcpp::Elf_types<32>::Elf_Addr address,
10126 section_size_type /*view_size*/ )
10127 {
10128 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
10129 typedef Relocate_functions<32, big_endian> RelocFuncs;
10130 Output_segment* tls_segment = relinfo->layout->tls_segment();
10131
10132 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
10133
10134 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
10135
10136 const bool is_final = (gsym == NULL
10137 ? !parameters->options().shared()
10138 : gsym->final_value_is_known());
10139 const tls::Tls_optimization optimized_type
10140 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
10141 switch (r_type)
10142 {
10143 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10144 {
10145 unsigned int got_type = GOT_TYPE_TLS_PAIR;
10146 unsigned int got_offset;
10147 if (gsym != NULL)
10148 {
10149 gold_assert(gsym->has_got_offset(got_type));
10150 got_offset = gsym->got_offset(got_type) - target->got_size();
10151 }
10152 else
10153 {
10154 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10155 gold_assert(object->local_has_got_offset(r_sym, got_type));
10156 got_offset = (object->local_got_offset(r_sym, got_type)
10157 - target->got_size());
10158 }
10159 if (optimized_type == tls::TLSOPT_NONE)
10160 {
10161 Arm_address got_entry =
10162 target->got_plt_section()->address() + got_offset;
10163
10164 // Relocate the field with the PC relative offset of the pair of
10165 // GOT entries.
10166 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10167 return ArmRelocFuncs::STATUS_OKAY;
10168 }
10169 }
10170 break;
10171
10172 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10173 if (optimized_type == tls::TLSOPT_NONE)
10174 {
10175 // Relocate the field with the offset of the GOT entry for
10176 // the module index.
10177 unsigned int got_offset;
10178 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
10179 - target->got_size());
10180 Arm_address got_entry =
10181 target->got_plt_section()->address() + got_offset;
10182
10183 // Relocate the field with the PC relative offset of the pair of
10184 // GOT entries.
10185 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10186 return ArmRelocFuncs::STATUS_OKAY;
10187 }
10188 break;
10189
10190 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10191 RelocFuncs::rel32_unaligned(view, value);
10192 return ArmRelocFuncs::STATUS_OKAY;
10193
10194 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10195 if (optimized_type == tls::TLSOPT_NONE)
10196 {
10197 // Relocate the field with the offset of the GOT entry for
10198 // the tp-relative offset of the symbol.
10199 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
10200 unsigned int got_offset;
10201 if (gsym != NULL)
10202 {
10203 gold_assert(gsym->has_got_offset(got_type));
10204 got_offset = gsym->got_offset(got_type);
10205 }
10206 else
10207 {
10208 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10209 gold_assert(object->local_has_got_offset(r_sym, got_type));
10210 got_offset = object->local_got_offset(r_sym, got_type);
10211 }
10212
10213 // All GOT offsets are relative to the end of the GOT.
10214 got_offset -= target->got_size();
10215
10216 Arm_address got_entry =
10217 target->got_plt_section()->address() + got_offset;
10218
10219 // Relocate the field with the PC relative offset of the GOT entry.
10220 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10221 return ArmRelocFuncs::STATUS_OKAY;
10222 }
10223 break;
10224
10225 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10226 // If we're creating a shared library, a dynamic relocation will
10227 // have been created for this location, so do not apply it now.
10228 if (!parameters->options().shared())
10229 {
10230 gold_assert(tls_segment != NULL);
10231
10232 // $tp points to the TCB, which is followed by the TLS, so we
10233 // need to add TCB size to the offset.
10234 Arm_address aligned_tcb_size =
10235 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
10236 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
10237
10238 }
10239 return ArmRelocFuncs::STATUS_OKAY;
10240
10241 default:
10242 gold_unreachable();
10243 }
10244
10245 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10246 _("unsupported reloc %u"),
10247 r_type);
10248 return ArmRelocFuncs::STATUS_BAD_RELOC;
10249 }
10250
10251 // Relocate section data.
10252
10253 template<bool big_endian>
10254 void
10255 Target_arm<big_endian>::relocate_section(
10256 const Relocate_info<32, big_endian>* relinfo,
10257 unsigned int sh_type,
10258 const unsigned char* prelocs,
10259 size_t reloc_count,
10260 Output_section* output_section,
10261 bool needs_special_offset_handling,
10262 unsigned char* view,
10263 Arm_address address,
10264 section_size_type view_size,
10265 const Reloc_symbol_changes* reloc_symbol_changes)
10266 {
10267 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10268 gold_assert(sh_type == elfcpp::SHT_REL);
10269
10270 // See if we are relocating a relaxed input section. If so, the view
10271 // covers the whole output section and we need to adjust accordingly.
10272 if (needs_special_offset_handling)
10273 {
10274 const Output_relaxed_input_section* poris =
10275 output_section->find_relaxed_input_section(relinfo->object,
10276 relinfo->data_shndx);
10277 if (poris != NULL)
10278 {
10279 Arm_address section_address = poris->address();
10280 section_size_type section_size = poris->data_size();
10281
10282 gold_assert((section_address >= address)
10283 && ((section_address + section_size)
10284 <= (address + view_size)));
10285
10286 off_t offset = section_address - address;
10287 view += offset;
10288 address += offset;
10289 view_size = section_size;
10290 }
10291 }
10292
10293 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
10294 gold::Default_comdat_behavior, Classify_reloc>(
10295 relinfo,
10296 this,
10297 prelocs,
10298 reloc_count,
10299 output_section,
10300 needs_special_offset_handling,
10301 view,
10302 address,
10303 view_size,
10304 reloc_symbol_changes);
10305 }
10306
10307 // Return the size of a relocation while scanning during a relocatable
10308 // link.
10309
10310 template<bool big_endian>
10311 unsigned int
10312 Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
10313 unsigned int r_type,
10314 Relobj* object)
10315 {
10316 Target_arm<big_endian>* arm_target =
10317 Target_arm<big_endian>::default_target();
10318 r_type = arm_target->get_real_reloc_type(r_type);
10319 const Arm_reloc_property* arp =
10320 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10321 if (arp != NULL)
10322 return arp->size();
10323 else
10324 {
10325 std::string reloc_name =
10326 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10327 gold_error(_("%s: unexpected %s in object file"),
10328 object->name().c_str(), reloc_name.c_str());
10329 return 0;
10330 }
10331 }
10332
10333 // Scan the relocs during a relocatable link.
10334
10335 template<bool big_endian>
10336 void
10337 Target_arm<big_endian>::scan_relocatable_relocs(
10338 Symbol_table* symtab,
10339 Layout* layout,
10340 Sized_relobj_file<32, big_endian>* object,
10341 unsigned int data_shndx,
10342 unsigned int sh_type,
10343 const unsigned char* prelocs,
10344 size_t reloc_count,
10345 Output_section* output_section,
10346 bool needs_special_offset_handling,
10347 size_t local_symbol_count,
10348 const unsigned char* plocal_symbols,
10349 Relocatable_relocs* rr)
10350 {
10351 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
10352 Scan_relocatable_relocs;
10353
10354 gold_assert(sh_type == elfcpp::SHT_REL);
10355
10356 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
10357 symtab,
10358 layout,
10359 object,
10360 data_shndx,
10361 prelocs,
10362 reloc_count,
10363 output_section,
10364 needs_special_offset_handling,
10365 local_symbol_count,
10366 plocal_symbols,
10367 rr);
10368 }
10369
10370 // Scan the relocs for --emit-relocs.
10371
10372 template<bool big_endian>
10373 void
10374 Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
10375 Layout* layout,
10376 Sized_relobj_file<32, big_endian>* object,
10377 unsigned int data_shndx,
10378 unsigned int sh_type,
10379 const unsigned char* prelocs,
10380 size_t reloc_count,
10381 Output_section* output_section,
10382 bool needs_special_offset_handling,
10383 size_t local_symbol_count,
10384 const unsigned char* plocal_syms,
10385 Relocatable_relocs* rr)
10386 {
10387 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
10388 Classify_reloc;
10389 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10390 Emit_relocs_strategy;
10391
10392 gold_assert(sh_type == elfcpp::SHT_REL);
10393
10394 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
10395 symtab,
10396 layout,
10397 object,
10398 data_shndx,
10399 prelocs,
10400 reloc_count,
10401 output_section,
10402 needs_special_offset_handling,
10403 local_symbol_count,
10404 plocal_syms,
10405 rr);
10406 }
10407
10408 // Emit relocations for a section.
10409
10410 template<bool big_endian>
10411 void
10412 Target_arm<big_endian>::relocate_relocs(
10413 const Relocate_info<32, big_endian>* relinfo,
10414 unsigned int sh_type,
10415 const unsigned char* prelocs,
10416 size_t reloc_count,
10417 Output_section* output_section,
10418 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10419 unsigned char* view,
10420 Arm_address view_address,
10421 section_size_type view_size,
10422 unsigned char* reloc_view,
10423 section_size_type reloc_view_size)
10424 {
10425 gold_assert(sh_type == elfcpp::SHT_REL);
10426
10427 gold::relocate_relocs<32, big_endian, Classify_reloc>(
10428 relinfo,
10429 prelocs,
10430 reloc_count,
10431 output_section,
10432 offset_in_output_section,
10433 view,
10434 view_address,
10435 view_size,
10436 reloc_view,
10437 reloc_view_size);
10438 }
10439
10440 // Perform target-specific processing in a relocatable link. This is
10441 // only used if we use the relocation strategy RELOC_SPECIAL.
10442
10443 template<bool big_endian>
10444 void
10445 Target_arm<big_endian>::relocate_special_relocatable(
10446 const Relocate_info<32, big_endian>* relinfo,
10447 unsigned int sh_type,
10448 const unsigned char* preloc_in,
10449 size_t relnum,
10450 Output_section* output_section,
10451 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10452 unsigned char* view,
10453 elfcpp::Elf_types<32>::Elf_Addr view_address,
10454 section_size_type,
10455 unsigned char* preloc_out)
10456 {
10457 // We can only handle REL type relocation sections.
10458 gold_assert(sh_type == elfcpp::SHT_REL);
10459
10460 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10461 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10462 Reltype_write;
10463 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10464
10465 const Arm_relobj<big_endian>* object =
10466 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10467 const unsigned int local_count = object->local_symbol_count();
10468
10469 Reltype reloc(preloc_in);
10470 Reltype_write reloc_write(preloc_out);
10471
10472 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10473 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10474 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10475
10476 const Arm_reloc_property* arp =
10477 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10478 gold_assert(arp != NULL);
10479
10480 // Get the new symbol index.
10481 // We only use RELOC_SPECIAL strategy in local relocations.
10482 gold_assert(r_sym < local_count);
10483
10484 // We are adjusting a section symbol. We need to find
10485 // the symbol table index of the section symbol for
10486 // the output section corresponding to input section
10487 // in which this symbol is defined.
10488 bool is_ordinary;
10489 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10490 gold_assert(is_ordinary);
10491 Output_section* os = object->output_section(shndx);
10492 gold_assert(os != NULL);
10493 gold_assert(os->needs_symtab_index());
10494 unsigned int new_symndx = os->symtab_index();
10495
10496 // Get the new offset--the location in the output section where
10497 // this relocation should be applied.
10498
10499 Arm_address offset = reloc.get_r_offset();
10500 Arm_address new_offset;
10501 if (offset_in_output_section != invalid_address)
10502 new_offset = offset + offset_in_output_section;
10503 else
10504 {
10505 section_offset_type sot_offset =
10506 convert_types<section_offset_type, Arm_address>(offset);
10507 section_offset_type new_sot_offset =
10508 output_section->output_offset(object, relinfo->data_shndx,
10509 sot_offset);
10510 gold_assert(new_sot_offset != -1);
10511 new_offset = new_sot_offset;
10512 }
10513
10514 // In an object file, r_offset is an offset within the section.
10515 // In an executable or dynamic object, generated by
10516 // --emit-relocs, r_offset is an absolute address.
10517 if (!parameters->options().relocatable())
10518 {
10519 new_offset += view_address;
10520 if (offset_in_output_section != invalid_address)
10521 new_offset -= offset_in_output_section;
10522 }
10523
10524 reloc_write.put_r_offset(new_offset);
10525 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10526
10527 // Handle the reloc addend.
10528 // The relocation uses a section symbol in the input file.
10529 // We are adjusting it to use a section symbol in the output
10530 // file. The input section symbol refers to some address in
10531 // the input section. We need the relocation in the output
10532 // file to refer to that same address. This adjustment to
10533 // the addend is the same calculation we use for a simple
10534 // absolute relocation for the input section symbol.
10535
10536 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10537
10538 // Handle THUMB bit.
10539 Symbol_value<32> symval;
10540 Arm_address thumb_bit =
10541 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10542 if (thumb_bit != 0
10543 && arp->uses_thumb_bit()
10544 && ((psymval->value(object, 0) & 1) != 0))
10545 {
10546 Arm_address stripped_value =
10547 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10548 symval.set_output_value(stripped_value);
10549 psymval = &symval;
10550 }
10551
10552 unsigned char* paddend = view + offset;
10553 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10554 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10555 switch (r_type)
10556 {
10557 case elfcpp::R_ARM_ABS8:
10558 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10559 psymval);
10560 break;
10561
10562 case elfcpp::R_ARM_ABS12:
10563 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10564 psymval);
10565 break;
10566
10567 case elfcpp::R_ARM_ABS16:
10568 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10569 psymval);
10570 break;
10571
10572 case elfcpp::R_ARM_THM_ABS5:
10573 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10574 object,
10575 psymval);
10576 break;
10577
10578 case elfcpp::R_ARM_MOVW_ABS_NC:
10579 case elfcpp::R_ARM_MOVW_PREL_NC:
10580 case elfcpp::R_ARM_MOVW_BREL_NC:
10581 case elfcpp::R_ARM_MOVW_BREL:
10582 reloc_status = Arm_relocate_functions<big_endian>::movw(
10583 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10584 break;
10585
10586 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10587 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10588 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10589 case elfcpp::R_ARM_THM_MOVW_BREL:
10590 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10591 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10592 break;
10593
10594 case elfcpp::R_ARM_THM_CALL:
10595 case elfcpp::R_ARM_THM_XPC22:
10596 case elfcpp::R_ARM_THM_JUMP24:
10597 reloc_status =
10598 Arm_relocate_functions<big_endian>::thumb_branch_common(
10599 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10600 false);
10601 break;
10602
10603 case elfcpp::R_ARM_PLT32:
10604 case elfcpp::R_ARM_CALL:
10605 case elfcpp::R_ARM_JUMP24:
10606 case elfcpp::R_ARM_XPC25:
10607 reloc_status =
10608 Arm_relocate_functions<big_endian>::arm_branch_common(
10609 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10610 false);
10611 break;
10612
10613 case elfcpp::R_ARM_THM_JUMP19:
10614 reloc_status =
10615 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10616 psymval, 0, thumb_bit);
10617 break;
10618
10619 case elfcpp::R_ARM_THM_JUMP6:
10620 reloc_status =
10621 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10622 0);
10623 break;
10624
10625 case elfcpp::R_ARM_THM_JUMP8:
10626 reloc_status =
10627 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10628 0);
10629 break;
10630
10631 case elfcpp::R_ARM_THM_JUMP11:
10632 reloc_status =
10633 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10634 0);
10635 break;
10636
10637 case elfcpp::R_ARM_PREL31:
10638 reloc_status =
10639 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10640 thumb_bit);
10641 break;
10642
10643 case elfcpp::R_ARM_THM_PC8:
10644 reloc_status =
10645 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10646 0);
10647 break;
10648
10649 case elfcpp::R_ARM_THM_PC12:
10650 reloc_status =
10651 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10652 0);
10653 break;
10654
10655 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10656 reloc_status =
10657 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10658 0, thumb_bit);
10659 break;
10660
10661 // These relocation truncate relocation results so we cannot handle them
10662 // in a relocatable link.
10663 case elfcpp::R_ARM_MOVT_ABS:
10664 case elfcpp::R_ARM_THM_MOVT_ABS:
10665 case elfcpp::R_ARM_MOVT_PREL:
10666 case elfcpp::R_ARM_MOVT_BREL:
10667 case elfcpp::R_ARM_THM_MOVT_PREL:
10668 case elfcpp::R_ARM_THM_MOVT_BREL:
10669 case elfcpp::R_ARM_ALU_PC_G0_NC:
10670 case elfcpp::R_ARM_ALU_PC_G0:
10671 case elfcpp::R_ARM_ALU_PC_G1_NC:
10672 case elfcpp::R_ARM_ALU_PC_G1:
10673 case elfcpp::R_ARM_ALU_PC_G2:
10674 case elfcpp::R_ARM_ALU_SB_G0_NC:
10675 case elfcpp::R_ARM_ALU_SB_G0:
10676 case elfcpp::R_ARM_ALU_SB_G1_NC:
10677 case elfcpp::R_ARM_ALU_SB_G1:
10678 case elfcpp::R_ARM_ALU_SB_G2:
10679 case elfcpp::R_ARM_LDR_PC_G0:
10680 case elfcpp::R_ARM_LDR_PC_G1:
10681 case elfcpp::R_ARM_LDR_PC_G2:
10682 case elfcpp::R_ARM_LDR_SB_G0:
10683 case elfcpp::R_ARM_LDR_SB_G1:
10684 case elfcpp::R_ARM_LDR_SB_G2:
10685 case elfcpp::R_ARM_LDRS_PC_G0:
10686 case elfcpp::R_ARM_LDRS_PC_G1:
10687 case elfcpp::R_ARM_LDRS_PC_G2:
10688 case elfcpp::R_ARM_LDRS_SB_G0:
10689 case elfcpp::R_ARM_LDRS_SB_G1:
10690 case elfcpp::R_ARM_LDRS_SB_G2:
10691 case elfcpp::R_ARM_LDC_PC_G0:
10692 case elfcpp::R_ARM_LDC_PC_G1:
10693 case elfcpp::R_ARM_LDC_PC_G2:
10694 case elfcpp::R_ARM_LDC_SB_G0:
10695 case elfcpp::R_ARM_LDC_SB_G1:
10696 case elfcpp::R_ARM_LDC_SB_G2:
10697 gold_error(_("cannot handle %s in a relocatable link"),
10698 arp->name().c_str());
10699 break;
10700
10701 default:
10702 gold_unreachable();
10703 }
10704
10705 // Report any errors.
10706 switch (reloc_status)
10707 {
10708 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10709 break;
10710 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10711 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10712 _("relocation overflow in %s"),
10713 arp->name().c_str());
10714 break;
10715 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10716 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10717 _("unexpected opcode while processing relocation %s"),
10718 arp->name().c_str());
10719 break;
10720 default:
10721 gold_unreachable();
10722 }
10723 }
10724
10725 // Return the value to use for a dynamic symbol which requires special
10726 // treatment. This is how we support equality comparisons of function
10727 // pointers across shared library boundaries, as described in the
10728 // processor specific ABI supplement.
10729
10730 template<bool big_endian>
10731 uint64_t
10732 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10733 {
10734 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10735 return this->plt_address_for_global(gsym);
10736 }
10737
10738 // Map platform-specific relocs to real relocs
10739 //
10740 template<bool big_endian>
10741 unsigned int
10742 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const
10743 {
10744 switch (r_type)
10745 {
10746 case elfcpp::R_ARM_TARGET1:
10747 return this->target1_reloc_;
10748
10749 case elfcpp::R_ARM_TARGET2:
10750 return this->target2_reloc_;
10751
10752 default:
10753 return r_type;
10754 }
10755 }
10756
10757 // Whether if two EABI versions V1 and V2 are compatible.
10758
10759 template<bool big_endian>
10760 bool
10761 Target_arm<big_endian>::are_eabi_versions_compatible(
10762 elfcpp::Elf_Word v1,
10763 elfcpp::Elf_Word v2)
10764 {
10765 // v4 and v5 are the same spec before and after it was released,
10766 // so allow mixing them.
10767 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10768 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10769 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10770 return true;
10771
10772 return v1 == v2;
10773 }
10774
10775 // Combine FLAGS from an input object called NAME and the processor-specific
10776 // flags in the ELF header of the output. Much of this is adapted from the
10777 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10778 // in bfd/elf32-arm.c.
10779
10780 template<bool big_endian>
10781 void
10782 Target_arm<big_endian>::merge_processor_specific_flags(
10783 const std::string& name,
10784 elfcpp::Elf_Word flags)
10785 {
10786 if (this->are_processor_specific_flags_set())
10787 {
10788 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10789
10790 // Nothing to merge if flags equal to those in output.
10791 if (flags == out_flags)
10792 return;
10793
10794 // Complain about various flag mismatches.
10795 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10796 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10797 if (!this->are_eabi_versions_compatible(version1, version2)
10798 && parameters->options().warn_mismatch())
10799 gold_error(_("Source object %s has EABI version %d but output has "
10800 "EABI version %d."),
10801 name.c_str(),
10802 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10803 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10804 }
10805 else
10806 {
10807 // If the input is the default architecture and had the default
10808 // flags then do not bother setting the flags for the output
10809 // architecture, instead allow future merges to do this. If no
10810 // future merges ever set these flags then they will retain their
10811 // uninitialised values, which surprise surprise, correspond
10812 // to the default values.
10813 if (flags == 0)
10814 return;
10815
10816 // This is the first time, just copy the flags.
10817 // We only copy the EABI version for now.
10818 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10819 }
10820 }
10821
10822 // Adjust ELF file header.
10823 template<bool big_endian>
10824 void
10825 Target_arm<big_endian>::do_adjust_elf_header(
10826 unsigned char* view,
10827 int len)
10828 {
10829 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10830
10831 elfcpp::Ehdr<32, big_endian> ehdr(view);
10832 elfcpp::Elf_Word flags = this->processor_specific_flags();
10833 unsigned char e_ident[elfcpp::EI_NIDENT];
10834 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10835
10836 if (elfcpp::arm_eabi_version(flags)
10837 == elfcpp::EF_ARM_EABI_UNKNOWN)
10838 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10839 else
10840 e_ident[elfcpp::EI_OSABI] = 0;
10841 e_ident[elfcpp::EI_ABIVERSION] = 0;
10842
10843 // Do EF_ARM_BE8 adjustment.
10844 if (parameters->options().be8() && !big_endian)
10845 gold_error("BE8 images only valid in big-endian mode.");
10846 if (parameters->options().be8())
10847 {
10848 flags |= elfcpp::EF_ARM_BE8;
10849 this->set_processor_specific_flags(flags);
10850 }
10851
10852 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10853 // as appropriate.
10854 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10855 {
10856 elfcpp::Elf_Half type = ehdr.get_e_type();
10857 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10858 {
10859 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10860 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10861 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10862 else
10863 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10864 this->set_processor_specific_flags(flags);
10865 }
10866 }
10867 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10868 oehdr.put_e_ident(e_ident);
10869 oehdr.put_e_flags(this->processor_specific_flags());
10870 }
10871
10872 // do_make_elf_object to override the same function in the base class.
10873 // We need to use a target-specific sub-class of
10874 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10875 // Hence we need to have our own ELF object creation.
10876
10877 template<bool big_endian>
10878 Object*
10879 Target_arm<big_endian>::do_make_elf_object(
10880 const std::string& name,
10881 Input_file* input_file,
10882 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10883 {
10884 int et = ehdr.get_e_type();
10885 // ET_EXEC files are valid input for --just-symbols/-R,
10886 // and we treat them as relocatable objects.
10887 if (et == elfcpp::ET_REL
10888 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10889 {
10890 Arm_relobj<big_endian>* obj =
10891 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10892 obj->setup();
10893 return obj;
10894 }
10895 else if (et == elfcpp::ET_DYN)
10896 {
10897 Sized_dynobj<32, big_endian>* obj =
10898 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10899 obj->setup();
10900 return obj;
10901 }
10902 else
10903 {
10904 gold_error(_("%s: unsupported ELF file type %d"),
10905 name.c_str(), et);
10906 return NULL;
10907 }
10908 }
10909
10910 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10911 // Returns -1 if no architecture could be read.
10912 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10913
10914 template<bool big_endian>
10915 int
10916 Target_arm<big_endian>::get_secondary_compatible_arch(
10917 const Attributes_section_data* pasd)
10918 {
10919 const Object_attribute* known_attributes =
10920 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10921
10922 // Note: the tag and its argument below are uleb128 values, though
10923 // currently-defined values fit in one byte for each.
10924 const std::string& sv =
10925 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10926 if (sv.size() == 2
10927 && sv.data()[0] == elfcpp::Tag_CPU_arch
10928 && (sv.data()[1] & 128) != 128)
10929 return sv.data()[1];
10930
10931 // This tag is "safely ignorable", so don't complain if it looks funny.
10932 return -1;
10933 }
10934
10935 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10936 // The tag is removed if ARCH is -1.
10937 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10938
10939 template<bool big_endian>
10940 void
10941 Target_arm<big_endian>::set_secondary_compatible_arch(
10942 Attributes_section_data* pasd,
10943 int arch)
10944 {
10945 Object_attribute* known_attributes =
10946 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10947
10948 if (arch == -1)
10949 {
10950 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10951 return;
10952 }
10953
10954 // Note: the tag and its argument below are uleb128 values, though
10955 // currently-defined values fit in one byte for each.
10956 char sv[3];
10957 sv[0] = elfcpp::Tag_CPU_arch;
10958 gold_assert(arch != 0);
10959 sv[1] = arch;
10960 sv[2] = '\0';
10961
10962 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10963 }
10964
10965 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10966 // into account.
10967 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10968
10969 template<bool big_endian>
10970 int
10971 Target_arm<big_endian>::tag_cpu_arch_combine(
10972 const char* name,
10973 int oldtag,
10974 int* secondary_compat_out,
10975 int newtag,
10976 int secondary_compat)
10977 {
10978 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10979 static const int v6t2[] =
10980 {
10981 T(V6T2), // PRE_V4.
10982 T(V6T2), // V4.
10983 T(V6T2), // V4T.
10984 T(V6T2), // V5T.
10985 T(V6T2), // V5TE.
10986 T(V6T2), // V5TEJ.
10987 T(V6T2), // V6.
10988 T(V7), // V6KZ.
10989 T(V6T2) // V6T2.
10990 };
10991 static const int v6k[] =
10992 {
10993 T(V6K), // PRE_V4.
10994 T(V6K), // V4.
10995 T(V6K), // V4T.
10996 T(V6K), // V5T.
10997 T(V6K), // V5TE.
10998 T(V6K), // V5TEJ.
10999 T(V6K), // V6.
11000 T(V6KZ), // V6KZ.
11001 T(V7), // V6T2.
11002 T(V6K) // V6K.
11003 };
11004 static const int v7[] =
11005 {
11006 T(V7), // PRE_V4.
11007 T(V7), // V4.
11008 T(V7), // V4T.
11009 T(V7), // V5T.
11010 T(V7), // V5TE.
11011 T(V7), // V5TEJ.
11012 T(V7), // V6.
11013 T(V7), // V6KZ.
11014 T(V7), // V6T2.
11015 T(V7), // V6K.
11016 T(V7) // V7.
11017 };
11018 static const int v6_m[] =
11019 {
11020 -1, // PRE_V4.
11021 -1, // V4.
11022 T(V6K), // V4T.
11023 T(V6K), // V5T.
11024 T(V6K), // V5TE.
11025 T(V6K), // V5TEJ.
11026 T(V6K), // V6.
11027 T(V6KZ), // V6KZ.
11028 T(V7), // V6T2.
11029 T(V6K), // V6K.
11030 T(V7), // V7.
11031 T(V6_M) // V6_M.
11032 };
11033 static const int v6s_m[] =
11034 {
11035 -1, // PRE_V4.
11036 -1, // V4.
11037 T(V6K), // V4T.
11038 T(V6K), // V5T.
11039 T(V6K), // V5TE.
11040 T(V6K), // V5TEJ.
11041 T(V6K), // V6.
11042 T(V6KZ), // V6KZ.
11043 T(V7), // V6T2.
11044 T(V6K), // V6K.
11045 T(V7), // V7.
11046 T(V6S_M), // V6_M.
11047 T(V6S_M) // V6S_M.
11048 };
11049 static const int v7e_m[] =
11050 {
11051 -1, // PRE_V4.
11052 -1, // V4.
11053 T(V7E_M), // V4T.
11054 T(V7E_M), // V5T.
11055 T(V7E_M), // V5TE.
11056 T(V7E_M), // V5TEJ.
11057 T(V7E_M), // V6.
11058 T(V7E_M), // V6KZ.
11059 T(V7E_M), // V6T2.
11060 T(V7E_M), // V6K.
11061 T(V7E_M), // V7.
11062 T(V7E_M), // V6_M.
11063 T(V7E_M), // V6S_M.
11064 T(V7E_M) // V7E_M.
11065 };
11066 static const int v8[] =
11067 {
11068 T(V8), // PRE_V4.
11069 T(V8), // V4.
11070 T(V8), // V4T.
11071 T(V8), // V5T.
11072 T(V8), // V5TE.
11073 T(V8), // V5TEJ.
11074 T(V8), // V6.
11075 T(V8), // V6KZ.
11076 T(V8), // V6T2.
11077 T(V8), // V6K.
11078 T(V8), // V7.
11079 T(V8), // V6_M.
11080 T(V8), // V6S_M.
11081 T(V8), // V7E_M.
11082 T(V8) // V8.
11083 };
11084 static const int v4t_plus_v6_m[] =
11085 {
11086 -1, // PRE_V4.
11087 -1, // V4.
11088 T(V4T), // V4T.
11089 T(V5T), // V5T.
11090 T(V5TE), // V5TE.
11091 T(V5TEJ), // V5TEJ.
11092 T(V6), // V6.
11093 T(V6KZ), // V6KZ.
11094 T(V6T2), // V6T2.
11095 T(V6K), // V6K.
11096 T(V7), // V7.
11097 T(V6_M), // V6_M.
11098 T(V6S_M), // V6S_M.
11099 T(V7E_M), // V7E_M.
11100 T(V8), // V8.
11101 T(V4T_PLUS_V6_M) // V4T plus V6_M.
11102 };
11103 static const int* comb[] =
11104 {
11105 v6t2,
11106 v6k,
11107 v7,
11108 v6_m,
11109 v6s_m,
11110 v7e_m,
11111 v8,
11112 // Pseudo-architecture.
11113 v4t_plus_v6_m
11114 };
11115
11116 // Check we've not got a higher architecture than we know about.
11117
11118 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
11119 {
11120 gold_error(_("%s: unknown CPU architecture"), name);
11121 return -1;
11122 }
11123
11124 // Override old tag if we have a Tag_also_compatible_with on the output.
11125
11126 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11127 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11128 oldtag = T(V4T_PLUS_V6_M);
11129
11130 // And override the new tag if we have a Tag_also_compatible_with on the
11131 // input.
11132
11133 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11134 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11135 newtag = T(V4T_PLUS_V6_M);
11136
11137 // Architectures before V6KZ add features monotonically.
11138 int tagh = std::max(oldtag, newtag);
11139 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
11140 return tagh;
11141
11142 int tagl = std::min(oldtag, newtag);
11143 int result = comb[tagh - T(V6T2)][tagl];
11144
11145 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11146 // as the canonical version.
11147 if (result == T(V4T_PLUS_V6_M))
11148 {
11149 result = T(V4T);
11150 *secondary_compat_out = T(V6_M);
11151 }
11152 else
11153 *secondary_compat_out = -1;
11154
11155 if (result == -1)
11156 {
11157 gold_error(_("%s: conflicting CPU architectures %d/%d"),
11158 name, oldtag, newtag);
11159 return -1;
11160 }
11161
11162 return result;
11163 #undef T
11164 }
11165
11166 // Helper to print AEABI enum tag value.
11167
11168 template<bool big_endian>
11169 std::string
11170 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
11171 {
11172 static const char* aeabi_enum_names[] =
11173 { "", "variable-size", "32-bit", "" };
11174 const size_t aeabi_enum_names_size =
11175 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
11176
11177 if (value < aeabi_enum_names_size)
11178 return std::string(aeabi_enum_names[value]);
11179 else
11180 {
11181 char buffer[100];
11182 sprintf(buffer, "<unknown value %u>", value);
11183 return std::string(buffer);
11184 }
11185 }
11186
11187 // Return the string value to store in TAG_CPU_name.
11188
11189 template<bool big_endian>
11190 std::string
11191 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
11192 {
11193 static const char* name_table[] = {
11194 // These aren't real CPU names, but we can't guess
11195 // that from the architecture version alone.
11196 "Pre v4",
11197 "ARM v4",
11198 "ARM v4T",
11199 "ARM v5T",
11200 "ARM v5TE",
11201 "ARM v5TEJ",
11202 "ARM v6",
11203 "ARM v6KZ",
11204 "ARM v6T2",
11205 "ARM v6K",
11206 "ARM v7",
11207 "ARM v6-M",
11208 "ARM v6S-M",
11209 "ARM v7E-M",
11210 "ARM v8"
11211 };
11212 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
11213
11214 if (value < name_table_size)
11215 return std::string(name_table[value]);
11216 else
11217 {
11218 char buffer[100];
11219 sprintf(buffer, "<unknown CPU value %u>", value);
11220 return std::string(buffer);
11221 }
11222 }
11223
11224 // Query attributes object to see if integer divide instructions may be
11225 // present in an object.
11226
11227 template<bool big_endian>
11228 bool
11229 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
11230 const Object_attribute* div_attr)
11231 {
11232 switch (div_attr->int_value())
11233 {
11234 case 0:
11235 // Integer divide allowed if instruction contained in
11236 // architecture.
11237 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11238 return true;
11239 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
11240 return true;
11241 else
11242 return false;
11243
11244 case 1:
11245 // Integer divide explicitly prohibited.
11246 return false;
11247
11248 default:
11249 // Unrecognised case - treat as allowing divide everywhere.
11250 case 2:
11251 // Integer divide allowed in ARM state.
11252 return true;
11253 }
11254 }
11255
11256 // Query attributes object to see if integer divide instructions are
11257 // forbidden to be in the object. This is not the inverse of
11258 // attributes_accept_div.
11259
11260 template<bool big_endian>
11261 bool
11262 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
11263 {
11264 return div_attr->int_value() == 1;
11265 }
11266
11267 // Merge object attributes from input file called NAME with those of the
11268 // output. The input object attributes are in the object pointed by PASD.
11269
11270 template<bool big_endian>
11271 void
11272 Target_arm<big_endian>::merge_object_attributes(
11273 const char* name,
11274 const Attributes_section_data* pasd)
11275 {
11276 // Return if there is no attributes section data.
11277 if (pasd == NULL)
11278 return;
11279
11280 // If output has no object attributes, just copy.
11281 const int vendor = Object_attribute::OBJ_ATTR_PROC;
11282 if (this->attributes_section_data_ == NULL)
11283 {
11284 this->attributes_section_data_ = new Attributes_section_data(*pasd);
11285 Object_attribute* out_attr =
11286 this->attributes_section_data_->known_attributes(vendor);
11287
11288 // We do not output objects with Tag_MPextension_use_legacy - we move
11289 // the attribute's value to Tag_MPextension_use. */
11290 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
11291 {
11292 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
11293 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
11294 != out_attr[elfcpp::Tag_MPextension_use].int_value())
11295 {
11296 gold_error(_("%s has both the current and legacy "
11297 "Tag_MPextension_use attributes"),
11298 name);
11299 }
11300
11301 out_attr[elfcpp::Tag_MPextension_use] =
11302 out_attr[elfcpp::Tag_MPextension_use_legacy];
11303 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11304 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11305 }
11306
11307 return;
11308 }
11309
11310 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11311 Object_attribute* out_attr =
11312 this->attributes_section_data_->known_attributes(vendor);
11313
11314 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11315 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11316 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11317 {
11318 // Ignore mismatches if the object doesn't use floating point. */
11319 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11320 == elfcpp::AEABI_FP_number_model_none
11321 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11322 != elfcpp::AEABI_FP_number_model_none
11323 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11324 == elfcpp::AEABI_VFP_args_compatible))
11325 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11326 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11327 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11328 != elfcpp::AEABI_FP_number_model_none
11329 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11330 != elfcpp::AEABI_VFP_args_compatible
11331 && parameters->options().warn_mismatch())
11332 gold_error(_("%s uses VFP register arguments, output does not"),
11333 name);
11334 }
11335
11336 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11337 {
11338 // Merge this attribute with existing attributes.
11339 switch (i)
11340 {
11341 case elfcpp::Tag_CPU_raw_name:
11342 case elfcpp::Tag_CPU_name:
11343 // These are merged after Tag_CPU_arch.
11344 break;
11345
11346 case elfcpp::Tag_ABI_optimization_goals:
11347 case elfcpp::Tag_ABI_FP_optimization_goals:
11348 // Use the first value seen.
11349 break;
11350
11351 case elfcpp::Tag_CPU_arch:
11352 {
11353 unsigned int saved_out_attr = out_attr->int_value();
11354 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11355 int secondary_compat =
11356 this->get_secondary_compatible_arch(pasd);
11357 int secondary_compat_out =
11358 this->get_secondary_compatible_arch(
11359 this->attributes_section_data_);
11360 out_attr[i].set_int_value(
11361 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11362 &secondary_compat_out,
11363 in_attr[i].int_value(),
11364 secondary_compat));
11365 this->set_secondary_compatible_arch(this->attributes_section_data_,
11366 secondary_compat_out);
11367
11368 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11369 if (out_attr[i].int_value() == saved_out_attr)
11370 ; // Leave the names alone.
11371 else if (out_attr[i].int_value() == in_attr[i].int_value())
11372 {
11373 // The output architecture has been changed to match the
11374 // input architecture. Use the input names.
11375 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11376 in_attr[elfcpp::Tag_CPU_name].string_value());
11377 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11378 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11379 }
11380 else
11381 {
11382 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11383 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11384 }
11385
11386 // If we still don't have a value for Tag_CPU_name,
11387 // make one up now. Tag_CPU_raw_name remains blank.
11388 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11389 {
11390 const std::string cpu_name =
11391 this->tag_cpu_name_value(out_attr[i].int_value());
11392 // FIXME: If we see an unknown CPU, this will be set
11393 // to "<unknown CPU n>", where n is the attribute value.
11394 // This is different from BFD, which leaves the name alone.
11395 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11396 }
11397 }
11398 break;
11399
11400 case elfcpp::Tag_ARM_ISA_use:
11401 case elfcpp::Tag_THUMB_ISA_use:
11402 case elfcpp::Tag_WMMX_arch:
11403 case elfcpp::Tag_Advanced_SIMD_arch:
11404 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11405 case elfcpp::Tag_ABI_FP_rounding:
11406 case elfcpp::Tag_ABI_FP_exceptions:
11407 case elfcpp::Tag_ABI_FP_user_exceptions:
11408 case elfcpp::Tag_ABI_FP_number_model:
11409 case elfcpp::Tag_VFP_HP_extension:
11410 case elfcpp::Tag_CPU_unaligned_access:
11411 case elfcpp::Tag_T2EE_use:
11412 case elfcpp::Tag_Virtualization_use:
11413 case elfcpp::Tag_MPextension_use:
11414 // Use the largest value specified.
11415 if (in_attr[i].int_value() > out_attr[i].int_value())
11416 out_attr[i].set_int_value(in_attr[i].int_value());
11417 break;
11418
11419 case elfcpp::Tag_ABI_align8_preserved:
11420 case elfcpp::Tag_ABI_PCS_RO_data:
11421 // Use the smallest value specified.
11422 if (in_attr[i].int_value() < out_attr[i].int_value())
11423 out_attr[i].set_int_value(in_attr[i].int_value());
11424 break;
11425
11426 case elfcpp::Tag_ABI_align8_needed:
11427 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11428 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11429 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11430 == 0)))
11431 {
11432 // This error message should be enabled once all non-conforming
11433 // binaries in the toolchain have had the attributes set
11434 // properly.
11435 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11436 // name);
11437 }
11438 // Fall through.
11439 case elfcpp::Tag_ABI_FP_denormal:
11440 case elfcpp::Tag_ABI_PCS_GOT_use:
11441 {
11442 // These tags have 0 = don't care, 1 = strong requirement,
11443 // 2 = weak requirement.
11444 static const int order_021[3] = {0, 2, 1};
11445
11446 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11447 // value if greater than 2 (for future-proofing).
11448 if ((in_attr[i].int_value() > 2
11449 && in_attr[i].int_value() > out_attr[i].int_value())
11450 || (in_attr[i].int_value() <= 2
11451 && out_attr[i].int_value() <= 2
11452 && (order_021[in_attr[i].int_value()]
11453 > order_021[out_attr[i].int_value()])))
11454 out_attr[i].set_int_value(in_attr[i].int_value());
11455 }
11456 break;
11457
11458 case elfcpp::Tag_CPU_arch_profile:
11459 if (out_attr[i].int_value() != in_attr[i].int_value())
11460 {
11461 // 0 will merge with anything.
11462 // 'A' and 'S' merge to 'A'.
11463 // 'R' and 'S' merge to 'R'.
11464 // 'M' and 'A|R|S' is an error.
11465 if (out_attr[i].int_value() == 0
11466 || (out_attr[i].int_value() == 'S'
11467 && (in_attr[i].int_value() == 'A'
11468 || in_attr[i].int_value() == 'R')))
11469 out_attr[i].set_int_value(in_attr[i].int_value());
11470 else if (in_attr[i].int_value() == 0
11471 || (in_attr[i].int_value() == 'S'
11472 && (out_attr[i].int_value() == 'A'
11473 || out_attr[i].int_value() == 'R')))
11474 ; // Do nothing.
11475 else if (parameters->options().warn_mismatch())
11476 {
11477 gold_error
11478 (_("conflicting architecture profiles %c/%c"),
11479 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11480 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11481 }
11482 }
11483 break;
11484 case elfcpp::Tag_VFP_arch:
11485 {
11486 static const struct
11487 {
11488 int ver;
11489 int regs;
11490 } vfp_versions[7] =
11491 {
11492 {0, 0},
11493 {1, 16},
11494 {2, 16},
11495 {3, 32},
11496 {3, 16},
11497 {4, 32},
11498 {4, 16}
11499 };
11500
11501 // Values greater than 6 aren't defined, so just pick the
11502 // biggest.
11503 if (in_attr[i].int_value() > 6
11504 && in_attr[i].int_value() > out_attr[i].int_value())
11505 {
11506 *out_attr = *in_attr;
11507 break;
11508 }
11509 // The output uses the superset of input features
11510 // (ISA version) and registers.
11511 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11512 vfp_versions[out_attr[i].int_value()].ver);
11513 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11514 vfp_versions[out_attr[i].int_value()].regs);
11515 // This assumes all possible supersets are also a valid
11516 // options.
11517 int newval;
11518 for (newval = 6; newval > 0; newval--)
11519 {
11520 if (regs == vfp_versions[newval].regs
11521 && ver == vfp_versions[newval].ver)
11522 break;
11523 }
11524 out_attr[i].set_int_value(newval);
11525 }
11526 break;
11527 case elfcpp::Tag_PCS_config:
11528 if (out_attr[i].int_value() == 0)
11529 out_attr[i].set_int_value(in_attr[i].int_value());
11530 else if (in_attr[i].int_value() != 0
11531 && out_attr[i].int_value() != 0
11532 && parameters->options().warn_mismatch())
11533 {
11534 // It's sometimes ok to mix different configs, so this is only
11535 // a warning.
11536 gold_warning(_("%s: conflicting platform configuration"), name);
11537 }
11538 break;
11539 case elfcpp::Tag_ABI_PCS_R9_use:
11540 if (in_attr[i].int_value() != out_attr[i].int_value()
11541 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11542 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11543 && parameters->options().warn_mismatch())
11544 {
11545 gold_error(_("%s: conflicting use of R9"), name);
11546 }
11547 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11548 out_attr[i].set_int_value(in_attr[i].int_value());
11549 break;
11550 case elfcpp::Tag_ABI_PCS_RW_data:
11551 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11552 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11553 != elfcpp::AEABI_R9_SB)
11554 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11555 != elfcpp::AEABI_R9_unused)
11556 && parameters->options().warn_mismatch())
11557 {
11558 gold_error(_("%s: SB relative addressing conflicts with use "
11559 "of R9"),
11560 name);
11561 }
11562 // Use the smallest value specified.
11563 if (in_attr[i].int_value() < out_attr[i].int_value())
11564 out_attr[i].set_int_value(in_attr[i].int_value());
11565 break;
11566 case elfcpp::Tag_ABI_PCS_wchar_t:
11567 if (out_attr[i].int_value()
11568 && in_attr[i].int_value()
11569 && out_attr[i].int_value() != in_attr[i].int_value()
11570 && parameters->options().warn_mismatch()
11571 && parameters->options().wchar_size_warning())
11572 {
11573 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11574 "use %u-byte wchar_t; use of wchar_t values "
11575 "across objects may fail"),
11576 name, in_attr[i].int_value(),
11577 out_attr[i].int_value());
11578 }
11579 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11580 out_attr[i].set_int_value(in_attr[i].int_value());
11581 break;
11582 case elfcpp::Tag_ABI_enum_size:
11583 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11584 {
11585 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11586 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11587 {
11588 // The existing object is compatible with anything.
11589 // Use whatever requirements the new object has.
11590 out_attr[i].set_int_value(in_attr[i].int_value());
11591 }
11592 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11593 && out_attr[i].int_value() != in_attr[i].int_value()
11594 && parameters->options().warn_mismatch()
11595 && parameters->options().enum_size_warning())
11596 {
11597 unsigned int in_value = in_attr[i].int_value();
11598 unsigned int out_value = out_attr[i].int_value();
11599 gold_warning(_("%s uses %s enums yet the output is to use "
11600 "%s enums; use of enum values across objects "
11601 "may fail"),
11602 name,
11603 this->aeabi_enum_name(in_value).c_str(),
11604 this->aeabi_enum_name(out_value).c_str());
11605 }
11606 }
11607 break;
11608 case elfcpp::Tag_ABI_VFP_args:
11609 // Already done.
11610 break;
11611 case elfcpp::Tag_ABI_WMMX_args:
11612 if (in_attr[i].int_value() != out_attr[i].int_value()
11613 && parameters->options().warn_mismatch())
11614 {
11615 gold_error(_("%s uses iWMMXt register arguments, output does "
11616 "not"),
11617 name);
11618 }
11619 break;
11620 case Object_attribute::Tag_compatibility:
11621 // Merged in target-independent code.
11622 break;
11623 case elfcpp::Tag_ABI_HardFP_use:
11624 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11625 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11626 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11627 out_attr[i].set_int_value(3);
11628 else if (in_attr[i].int_value() > out_attr[i].int_value())
11629 out_attr[i].set_int_value(in_attr[i].int_value());
11630 break;
11631 case elfcpp::Tag_ABI_FP_16bit_format:
11632 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11633 {
11634 if (in_attr[i].int_value() != out_attr[i].int_value()
11635 && parameters->options().warn_mismatch())
11636 gold_error(_("fp16 format mismatch between %s and output"),
11637 name);
11638 }
11639 if (in_attr[i].int_value() != 0)
11640 out_attr[i].set_int_value(in_attr[i].int_value());
11641 break;
11642
11643 case elfcpp::Tag_DIV_use:
11644 {
11645 // A value of zero on input means that the divide
11646 // instruction may be used if available in the base
11647 // architecture as specified via Tag_CPU_arch and
11648 // Tag_CPU_arch_profile. A value of 1 means that the user
11649 // did not want divide instructions. A value of 2
11650 // explicitly means that divide instructions were allowed
11651 // in ARM and Thumb state.
11652 int arch = this->
11653 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11654 int_value();
11655 int profile = this->
11656 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11657 int_value();
11658 if (in_attr[i].int_value() == out_attr[i].int_value())
11659 {
11660 // Do nothing.
11661 }
11662 else if (attributes_forbid_div(&in_attr[i])
11663 && !attributes_accept_div(arch, profile, &out_attr[i]))
11664 out_attr[i].set_int_value(1);
11665 else if (attributes_forbid_div(&out_attr[i])
11666 && attributes_accept_div(arch, profile, &in_attr[i]))
11667 out_attr[i].set_int_value(in_attr[i].int_value());
11668 else if (in_attr[i].int_value() == 2)
11669 out_attr[i].set_int_value(in_attr[i].int_value());
11670 }
11671 break;
11672
11673 case elfcpp::Tag_MPextension_use_legacy:
11674 // We don't output objects with Tag_MPextension_use_legacy - we
11675 // move the value to Tag_MPextension_use.
11676 if (in_attr[i].int_value() != 0
11677 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11678 {
11679 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11680 != in_attr[i].int_value())
11681 {
11682 gold_error(_("%s has both the current and legacy "
11683 "Tag_MPextension_use attributes"),
11684 name);
11685 }
11686 }
11687
11688 if (in_attr[i].int_value()
11689 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11690 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11691
11692 break;
11693
11694 case elfcpp::Tag_nodefaults:
11695 // This tag is set if it exists, but the value is unused (and is
11696 // typically zero). We don't actually need to do anything here -
11697 // the merge happens automatically when the type flags are merged
11698 // below.
11699 break;
11700 case elfcpp::Tag_also_compatible_with:
11701 // Already done in Tag_CPU_arch.
11702 break;
11703 case elfcpp::Tag_conformance:
11704 // Keep the attribute if it matches. Throw it away otherwise.
11705 // No attribute means no claim to conform.
11706 if (in_attr[i].string_value() != out_attr[i].string_value())
11707 out_attr[i].set_string_value("");
11708 break;
11709
11710 default:
11711 {
11712 const char* err_object = NULL;
11713
11714 // The "known_obj_attributes" table does contain some undefined
11715 // attributes. Ensure that there are unused.
11716 if (out_attr[i].int_value() != 0
11717 || out_attr[i].string_value() != "")
11718 err_object = "output";
11719 else if (in_attr[i].int_value() != 0
11720 || in_attr[i].string_value() != "")
11721 err_object = name;
11722
11723 if (err_object != NULL
11724 && parameters->options().warn_mismatch())
11725 {
11726 // Attribute numbers >=64 (mod 128) can be safely ignored.
11727 if ((i & 127) < 64)
11728 gold_error(_("%s: unknown mandatory EABI object attribute "
11729 "%d"),
11730 err_object, i);
11731 else
11732 gold_warning(_("%s: unknown EABI object attribute %d"),
11733 err_object, i);
11734 }
11735
11736 // Only pass on attributes that match in both inputs.
11737 if (!in_attr[i].matches(out_attr[i]))
11738 {
11739 out_attr[i].set_int_value(0);
11740 out_attr[i].set_string_value("");
11741 }
11742 }
11743 }
11744
11745 // If out_attr was copied from in_attr then it won't have a type yet.
11746 if (in_attr[i].type() && !out_attr[i].type())
11747 out_attr[i].set_type(in_attr[i].type());
11748 }
11749
11750 // Merge Tag_compatibility attributes and any common GNU ones.
11751 this->attributes_section_data_->merge(name, pasd);
11752
11753 // Check for any attributes not known on ARM.
11754 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11755 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11756 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11757 Other_attributes* out_other_attributes =
11758 this->attributes_section_data_->other_attributes(vendor);
11759 Other_attributes::iterator out_iter = out_other_attributes->begin();
11760
11761 while (in_iter != in_other_attributes->end()
11762 || out_iter != out_other_attributes->end())
11763 {
11764 const char* err_object = NULL;
11765 int err_tag = 0;
11766
11767 // The tags for each list are in numerical order.
11768 // If the tags are equal, then merge.
11769 if (out_iter != out_other_attributes->end()
11770 && (in_iter == in_other_attributes->end()
11771 || in_iter->first > out_iter->first))
11772 {
11773 // This attribute only exists in output. We can't merge, and we
11774 // don't know what the tag means, so delete it.
11775 err_object = "output";
11776 err_tag = out_iter->first;
11777 int saved_tag = out_iter->first;
11778 delete out_iter->second;
11779 out_other_attributes->erase(out_iter);
11780 out_iter = out_other_attributes->upper_bound(saved_tag);
11781 }
11782 else if (in_iter != in_other_attributes->end()
11783 && (out_iter != out_other_attributes->end()
11784 || in_iter->first < out_iter->first))
11785 {
11786 // This attribute only exists in input. We can't merge, and we
11787 // don't know what the tag means, so ignore it.
11788 err_object = name;
11789 err_tag = in_iter->first;
11790 ++in_iter;
11791 }
11792 else // The tags are equal.
11793 {
11794 // As present, all attributes in the list are unknown, and
11795 // therefore can't be merged meaningfully.
11796 err_object = "output";
11797 err_tag = out_iter->first;
11798
11799 // Only pass on attributes that match in both inputs.
11800 if (!in_iter->second->matches(*(out_iter->second)))
11801 {
11802 // No match. Delete the attribute.
11803 int saved_tag = out_iter->first;
11804 delete out_iter->second;
11805 out_other_attributes->erase(out_iter);
11806 out_iter = out_other_attributes->upper_bound(saved_tag);
11807 }
11808 else
11809 {
11810 // Matched. Keep the attribute and move to the next.
11811 ++out_iter;
11812 ++in_iter;
11813 }
11814 }
11815
11816 if (err_object && parameters->options().warn_mismatch())
11817 {
11818 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11819 if ((err_tag & 127) < 64)
11820 {
11821 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11822 err_object, err_tag);
11823 }
11824 else
11825 {
11826 gold_warning(_("%s: unknown EABI object attribute %d"),
11827 err_object, err_tag);
11828 }
11829 }
11830 }
11831 }
11832
11833 // Stub-generation methods for Target_arm.
11834
11835 // Make a new Arm_input_section object.
11836
11837 template<bool big_endian>
11838 Arm_input_section<big_endian>*
11839 Target_arm<big_endian>::new_arm_input_section(
11840 Relobj* relobj,
11841 unsigned int shndx)
11842 {
11843 Section_id sid(relobj, shndx);
11844
11845 Arm_input_section<big_endian>* arm_input_section =
11846 new Arm_input_section<big_endian>(relobj, shndx);
11847 arm_input_section->init();
11848
11849 // Register new Arm_input_section in map for look-up.
11850 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11851 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11852
11853 // Make sure that it we have not created another Arm_input_section
11854 // for this input section already.
11855 gold_assert(ins.second);
11856
11857 return arm_input_section;
11858 }
11859
11860 // Find the Arm_input_section object corresponding to the SHNDX-th input
11861 // section of RELOBJ.
11862
11863 template<bool big_endian>
11864 Arm_input_section<big_endian>*
11865 Target_arm<big_endian>::find_arm_input_section(
11866 Relobj* relobj,
11867 unsigned int shndx) const
11868 {
11869 Section_id sid(relobj, shndx);
11870 typename Arm_input_section_map::const_iterator p =
11871 this->arm_input_section_map_.find(sid);
11872 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11873 }
11874
11875 // Make a new stub table.
11876
11877 template<bool big_endian>
11878 Stub_table<big_endian>*
11879 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11880 {
11881 Stub_table<big_endian>* stub_table =
11882 new Stub_table<big_endian>(owner);
11883 this->stub_tables_.push_back(stub_table);
11884
11885 stub_table->set_address(owner->address() + owner->data_size());
11886 stub_table->set_file_offset(owner->offset() + owner->data_size());
11887 stub_table->finalize_data_size();
11888
11889 return stub_table;
11890 }
11891
11892 // Scan a relocation for stub generation.
11893
11894 template<bool big_endian>
11895 void
11896 Target_arm<big_endian>::scan_reloc_for_stub(
11897 const Relocate_info<32, big_endian>* relinfo,
11898 unsigned int r_type,
11899 const Sized_symbol<32>* gsym,
11900 unsigned int r_sym,
11901 const Symbol_value<32>* psymval,
11902 elfcpp::Elf_types<32>::Elf_Swxword addend,
11903 Arm_address address)
11904 {
11905 const Arm_relobj<big_endian>* arm_relobj =
11906 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11907
11908 bool target_is_thumb;
11909 Symbol_value<32> symval;
11910 if (gsym != NULL)
11911 {
11912 // This is a global symbol. Determine if we use PLT and if the
11913 // final target is THUMB.
11914 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11915 {
11916 // This uses a PLT, change the symbol value.
11917 symval.set_output_value(this->plt_address_for_global(gsym));
11918 psymval = &symval;
11919 target_is_thumb = false;
11920 }
11921 else if (gsym->is_undefined())
11922 // There is no need to generate a stub symbol is undefined.
11923 return;
11924 else
11925 {
11926 target_is_thumb =
11927 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11928 || (gsym->type() == elfcpp::STT_FUNC
11929 && !gsym->is_undefined()
11930 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11931 }
11932 }
11933 else
11934 {
11935 // This is a local symbol. Determine if the final target is THUMB.
11936 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11937 }
11938
11939 // Strip LSB if this points to a THUMB target.
11940 const Arm_reloc_property* reloc_property =
11941 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11942 gold_assert(reloc_property != NULL);
11943 if (target_is_thumb
11944 && reloc_property->uses_thumb_bit()
11945 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11946 {
11947 Arm_address stripped_value =
11948 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11949 symval.set_output_value(stripped_value);
11950 psymval = &symval;
11951 }
11952
11953 // Get the symbol value.
11954 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11955
11956 // Owing to pipelining, the PC relative branches below actually skip
11957 // two instructions when the branch offset is 0.
11958 Arm_address destination;
11959 switch (r_type)
11960 {
11961 case elfcpp::R_ARM_CALL:
11962 case elfcpp::R_ARM_JUMP24:
11963 case elfcpp::R_ARM_PLT32:
11964 // ARM branches.
11965 destination = value + addend + 8;
11966 break;
11967 case elfcpp::R_ARM_THM_CALL:
11968 case elfcpp::R_ARM_THM_XPC22:
11969 case elfcpp::R_ARM_THM_JUMP24:
11970 case elfcpp::R_ARM_THM_JUMP19:
11971 // THUMB branches.
11972 destination = value + addend + 4;
11973 break;
11974 default:
11975 gold_unreachable();
11976 }
11977
11978 Reloc_stub* stub = NULL;
11979 Stub_type stub_type =
11980 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11981 target_is_thumb);
11982 if (stub_type != arm_stub_none)
11983 {
11984 // Try looking up an existing stub from a stub table.
11985 Stub_table<big_endian>* stub_table =
11986 arm_relobj->stub_table(relinfo->data_shndx);
11987 gold_assert(stub_table != NULL);
11988
11989 // Locate stub by destination.
11990 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11991
11992 // Create a stub if there is not one already
11993 stub = stub_table->find_reloc_stub(stub_key);
11994 if (stub == NULL)
11995 {
11996 // create a new stub and add it to stub table.
11997 stub = this->stub_factory().make_reloc_stub(stub_type);
11998 stub_table->add_reloc_stub(stub, stub_key);
11999 }
12000
12001 // Record the destination address.
12002 stub->set_destination_address(destination
12003 | (target_is_thumb ? 1 : 0));
12004 }
12005
12006 // For Cortex-A8, we need to record a relocation at 4K page boundary.
12007 if (this->fix_cortex_a8_
12008 && (r_type == elfcpp::R_ARM_THM_JUMP24
12009 || r_type == elfcpp::R_ARM_THM_JUMP19
12010 || r_type == elfcpp::R_ARM_THM_CALL
12011 || r_type == elfcpp::R_ARM_THM_XPC22)
12012 && (address & 0xfffU) == 0xffeU)
12013 {
12014 // Found a candidate. Note we haven't checked the destination is
12015 // within 4K here: if we do so (and don't create a record) we can't
12016 // tell that a branch should have been relocated when scanning later.
12017 this->cortex_a8_relocs_info_[address] =
12018 new Cortex_a8_reloc(stub, r_type,
12019 destination | (target_is_thumb ? 1 : 0));
12020 }
12021 }
12022
12023 // This function scans a relocation sections for stub generation.
12024 // The template parameter Relocate must be a class type which provides
12025 // a single function, relocate(), which implements the machine
12026 // specific part of a relocation.
12027
12028 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
12029 // SHT_REL or SHT_RELA.
12030
12031 // PRELOCS points to the relocation data. RELOC_COUNT is the number
12032 // of relocs. OUTPUT_SECTION is the output section.
12033 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
12034 // mapped to output offsets.
12035
12036 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
12037 // VIEW_SIZE is the size. These refer to the input section, unless
12038 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
12039 // the output section.
12040
12041 template<bool big_endian>
12042 template<int sh_type>
12043 void inline
12044 Target_arm<big_endian>::scan_reloc_section_for_stubs(
12045 const Relocate_info<32, big_endian>* relinfo,
12046 const unsigned char* prelocs,
12047 size_t reloc_count,
12048 Output_section* output_section,
12049 bool needs_special_offset_handling,
12050 const unsigned char* view,
12051 elfcpp::Elf_types<32>::Elf_Addr view_address,
12052 section_size_type)
12053 {
12054 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
12055 const int reloc_size =
12056 Reloc_types<sh_type, 32, big_endian>::reloc_size;
12057
12058 Arm_relobj<big_endian>* arm_object =
12059 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
12060 unsigned int local_count = arm_object->local_symbol_count();
12061
12062 gold::Default_comdat_behavior default_comdat_behavior;
12063 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
12064
12065 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
12066 {
12067 Reltype reloc(prelocs);
12068
12069 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
12070 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
12071 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
12072
12073 r_type = this->get_real_reloc_type(r_type);
12074
12075 // Only a few relocation types need stubs.
12076 if ((r_type != elfcpp::R_ARM_CALL)
12077 && (r_type != elfcpp::R_ARM_JUMP24)
12078 && (r_type != elfcpp::R_ARM_PLT32)
12079 && (r_type != elfcpp::R_ARM_THM_CALL)
12080 && (r_type != elfcpp::R_ARM_THM_XPC22)
12081 && (r_type != elfcpp::R_ARM_THM_JUMP24)
12082 && (r_type != elfcpp::R_ARM_THM_JUMP19)
12083 && (r_type != elfcpp::R_ARM_V4BX))
12084 continue;
12085
12086 section_offset_type offset =
12087 convert_to_section_size_type(reloc.get_r_offset());
12088
12089 if (needs_special_offset_handling)
12090 {
12091 offset = output_section->output_offset(relinfo->object,
12092 relinfo->data_shndx,
12093 offset);
12094 if (offset == -1)
12095 continue;
12096 }
12097
12098 // Create a v4bx stub if --fix-v4bx-interworking is used.
12099 if (r_type == elfcpp::R_ARM_V4BX)
12100 {
12101 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
12102 {
12103 // Get the BX instruction.
12104 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
12105 const Valtype* wv =
12106 reinterpret_cast<const Valtype*>(view + offset);
12107 elfcpp::Elf_types<32>::Elf_Swxword insn =
12108 elfcpp::Swap<32, big_endian>::readval(wv);
12109 const uint32_t reg = (insn & 0xf);
12110
12111 if (reg < 0xf)
12112 {
12113 // Try looking up an existing stub from a stub table.
12114 Stub_table<big_endian>* stub_table =
12115 arm_object->stub_table(relinfo->data_shndx);
12116 gold_assert(stub_table != NULL);
12117
12118 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
12119 {
12120 // create a new stub and add it to stub table.
12121 Arm_v4bx_stub* stub =
12122 this->stub_factory().make_arm_v4bx_stub(reg);
12123 gold_assert(stub != NULL);
12124 stub_table->add_arm_v4bx_stub(stub);
12125 }
12126 }
12127 }
12128 continue;
12129 }
12130
12131 // Get the addend.
12132 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
12133 elfcpp::Elf_types<32>::Elf_Swxword addend =
12134 stub_addend_reader(r_type, view + offset, reloc);
12135
12136 const Sized_symbol<32>* sym;
12137
12138 Symbol_value<32> symval;
12139 const Symbol_value<32> *psymval;
12140 bool is_defined_in_discarded_section;
12141 unsigned int shndx;
12142 if (r_sym < local_count)
12143 {
12144 sym = NULL;
12145 psymval = arm_object->local_symbol(r_sym);
12146
12147 // If the local symbol belongs to a section we are discarding,
12148 // and that section is a debug section, try to find the
12149 // corresponding kept section and map this symbol to its
12150 // counterpart in the kept section. The symbol must not
12151 // correspond to a section we are folding.
12152 bool is_ordinary;
12153 shndx = psymval->input_shndx(&is_ordinary);
12154 is_defined_in_discarded_section =
12155 (is_ordinary
12156 && shndx != elfcpp::SHN_UNDEF
12157 && !arm_object->is_section_included(shndx)
12158 && !relinfo->symtab->is_section_folded(arm_object, shndx));
12159
12160 // We need to compute the would-be final value of this local
12161 // symbol.
12162 if (!is_defined_in_discarded_section)
12163 {
12164 typedef Sized_relobj_file<32, big_endian> ObjType;
12165 if (psymval->is_section_symbol())
12166 symval.set_is_section_symbol();
12167 typename ObjType::Compute_final_local_value_status status =
12168 arm_object->compute_final_local_value(r_sym, psymval, &symval,
12169 relinfo->symtab);
12170 if (status == ObjType::CFLV_OK)
12171 {
12172 // Currently we cannot handle a branch to a target in
12173 // a merged section. If this is the case, issue an error
12174 // and also free the merge symbol value.
12175 if (!symval.has_output_value())
12176 {
12177 const std::string& section_name =
12178 arm_object->section_name(shndx);
12179 arm_object->error(_("cannot handle branch to local %u "
12180 "in a merged section %s"),
12181 r_sym, section_name.c_str());
12182 }
12183 psymval = &symval;
12184 }
12185 else
12186 {
12187 // We cannot determine the final value.
12188 continue;
12189 }
12190 }
12191 }
12192 else
12193 {
12194 const Symbol* gsym;
12195 gsym = arm_object->global_symbol(r_sym);
12196 gold_assert(gsym != NULL);
12197 if (gsym->is_forwarder())
12198 gsym = relinfo->symtab->resolve_forwards(gsym);
12199
12200 sym = static_cast<const Sized_symbol<32>*>(gsym);
12201 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
12202 symval.set_output_symtab_index(sym->symtab_index());
12203 else
12204 symval.set_no_output_symtab_entry();
12205
12206 // We need to compute the would-be final value of this global
12207 // symbol.
12208 const Symbol_table* symtab = relinfo->symtab;
12209 const Sized_symbol<32>* sized_symbol =
12210 symtab->get_sized_symbol<32>(gsym);
12211 Symbol_table::Compute_final_value_status status;
12212 Arm_address value =
12213 symtab->compute_final_value<32>(sized_symbol, &status);
12214
12215 // Skip this if the symbol has not output section.
12216 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
12217 continue;
12218 symval.set_output_value(value);
12219
12220 if (gsym->type() == elfcpp::STT_TLS)
12221 symval.set_is_tls_symbol();
12222 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
12223 symval.set_is_ifunc_symbol();
12224 psymval = &symval;
12225
12226 is_defined_in_discarded_section =
12227 (gsym->is_defined_in_discarded_section()
12228 && gsym->is_undefined());
12229 shndx = 0;
12230 }
12231
12232 Symbol_value<32> symval2;
12233 if (is_defined_in_discarded_section)
12234 {
12235 if (comdat_behavior == CB_UNDETERMINED)
12236 {
12237 std::string name = arm_object->section_name(relinfo->data_shndx);
12238 comdat_behavior = default_comdat_behavior.get(name.c_str());
12239 }
12240 if (comdat_behavior == CB_PRETEND)
12241 {
12242 // FIXME: This case does not work for global symbols.
12243 // We have no place to store the original section index.
12244 // Fortunately this does not matter for comdat sections,
12245 // only for sections explicitly discarded by a linker
12246 // script.
12247 bool found;
12248 typename elfcpp::Elf_types<32>::Elf_Addr value =
12249 arm_object->map_to_kept_section(shndx, &found);
12250 if (found)
12251 symval2.set_output_value(value + psymval->input_value());
12252 else
12253 symval2.set_output_value(0);
12254 }
12255 else
12256 {
12257 if (comdat_behavior == CB_WARNING)
12258 gold_warning_at_location(relinfo, i, offset,
12259 _("relocation refers to discarded "
12260 "section"));
12261 symval2.set_output_value(0);
12262 }
12263 symval2.set_no_output_symtab_entry();
12264 psymval = &symval2;
12265 }
12266
12267 // If symbol is a section symbol, we don't know the actual type of
12268 // destination. Give up.
12269 if (psymval->is_section_symbol())
12270 continue;
12271
12272 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
12273 addend, view_address + offset);
12274 }
12275 }
12276
12277 // Scan an input section for stub generation.
12278
12279 template<bool big_endian>
12280 void
12281 Target_arm<big_endian>::scan_section_for_stubs(
12282 const Relocate_info<32, big_endian>* relinfo,
12283 unsigned int sh_type,
12284 const unsigned char* prelocs,
12285 size_t reloc_count,
12286 Output_section* output_section,
12287 bool needs_special_offset_handling,
12288 const unsigned char* view,
12289 Arm_address view_address,
12290 section_size_type view_size)
12291 {
12292 if (sh_type == elfcpp::SHT_REL)
12293 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
12294 relinfo,
12295 prelocs,
12296 reloc_count,
12297 output_section,
12298 needs_special_offset_handling,
12299 view,
12300 view_address,
12301 view_size);
12302 else if (sh_type == elfcpp::SHT_RELA)
12303 // We do not support RELA type relocations yet. This is provided for
12304 // completeness.
12305 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12306 relinfo,
12307 prelocs,
12308 reloc_count,
12309 output_section,
12310 needs_special_offset_handling,
12311 view,
12312 view_address,
12313 view_size);
12314 else
12315 gold_unreachable();
12316 }
12317
12318 // Group input sections for stub generation.
12319 //
12320 // We group input sections in an output section so that the total size,
12321 // including any padding space due to alignment is smaller than GROUP_SIZE
12322 // unless the only input section in group is bigger than GROUP_SIZE already.
12323 // Then an ARM stub table is created to follow the last input section
12324 // in group. For each group an ARM stub table is created an is placed
12325 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12326 // extend the group after the stub table.
12327
12328 template<bool big_endian>
12329 void
12330 Target_arm<big_endian>::group_sections(
12331 Layout* layout,
12332 section_size_type group_size,
12333 bool stubs_always_after_branch,
12334 const Task* task)
12335 {
12336 // Group input sections and insert stub table
12337 Layout::Section_list section_list;
12338 layout->get_executable_sections(&section_list);
12339 for (Layout::Section_list::const_iterator p = section_list.begin();
12340 p != section_list.end();
12341 ++p)
12342 {
12343 Arm_output_section<big_endian>* output_section =
12344 Arm_output_section<big_endian>::as_arm_output_section(*p);
12345 output_section->group_sections(group_size, stubs_always_after_branch,
12346 this, task);
12347 }
12348 }
12349
12350 // Relaxation hook. This is where we do stub generation.
12351
12352 template<bool big_endian>
12353 bool
12354 Target_arm<big_endian>::do_relax(
12355 int pass,
12356 const Input_objects* input_objects,
12357 Symbol_table* symtab,
12358 Layout* layout,
12359 const Task* task)
12360 {
12361 // No need to generate stubs if this is a relocatable link.
12362 gold_assert(!parameters->options().relocatable());
12363
12364 // If this is the first pass, we need to group input sections into
12365 // stub groups.
12366 bool done_exidx_fixup = false;
12367 typedef typename Stub_table_list::iterator Stub_table_iterator;
12368 if (pass == 1)
12369 {
12370 // Determine the stub group size. The group size is the absolute
12371 // value of the parameter --stub-group-size. If --stub-group-size
12372 // is passed a negative value, we restrict stubs to be always after
12373 // the stubbed branches.
12374 int32_t stub_group_size_param =
12375 parameters->options().stub_group_size();
12376 bool stubs_always_after_branch = stub_group_size_param < 0;
12377 section_size_type stub_group_size = abs(stub_group_size_param);
12378
12379 if (stub_group_size == 1)
12380 {
12381 // Default value.
12382 // Thumb branch range is +-4MB has to be used as the default
12383 // maximum size (a given section can contain both ARM and Thumb
12384 // code, so the worst case has to be taken into account). If we are
12385 // fixing cortex-a8 errata, the branch range has to be even smaller,
12386 // since wide conditional branch has a range of +-1MB only.
12387 //
12388 // This value is 48K less than that, which allows for 4096
12389 // 12-byte stubs. If we exceed that, then we will fail to link.
12390 // The user will have to relink with an explicit group size
12391 // option.
12392 stub_group_size = 4145152;
12393 }
12394
12395 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12396 // page as the first half of a 32-bit branch straddling two 4K pages.
12397 // This is a crude way of enforcing that. In addition, long conditional
12398 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12399 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12400 // cortex-A8 stubs from long conditional branches.
12401 if (this->fix_cortex_a8_)
12402 {
12403 stubs_always_after_branch = true;
12404 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12405 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12406 }
12407
12408 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12409
12410 // Also fix .ARM.exidx section coverage.
12411 Arm_output_section<big_endian>* exidx_output_section = NULL;
12412 for (Layout::Section_list::const_iterator p =
12413 layout->section_list().begin();
12414 p != layout->section_list().end();
12415 ++p)
12416 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12417 {
12418 if (exidx_output_section == NULL)
12419 exidx_output_section =
12420 Arm_output_section<big_endian>::as_arm_output_section(*p);
12421 else
12422 // We cannot handle this now.
12423 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12424 "non-relocatable link"),
12425 exidx_output_section->name(),
12426 (*p)->name());
12427 }
12428
12429 if (exidx_output_section != NULL)
12430 {
12431 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12432 symtab, task);
12433 done_exidx_fixup = true;
12434 }
12435 }
12436 else
12437 {
12438 // If this is not the first pass, addresses and file offsets have
12439 // been reset at this point, set them here.
12440 for (Stub_table_iterator sp = this->stub_tables_.begin();
12441 sp != this->stub_tables_.end();
12442 ++sp)
12443 {
12444 Arm_input_section<big_endian>* owner = (*sp)->owner();
12445 off_t off = align_address(owner->original_size(),
12446 (*sp)->addralign());
12447 (*sp)->set_address_and_file_offset(owner->address() + off,
12448 owner->offset() + off);
12449 }
12450 }
12451
12452 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12453 // beginning of each relaxation pass, just blow away all the stubs.
12454 // Alternatively, we could selectively remove only the stubs and reloc
12455 // information for code sections that have moved since the last pass.
12456 // That would require more book-keeping.
12457 if (this->fix_cortex_a8_)
12458 {
12459 // Clear all Cortex-A8 reloc information.
12460 for (typename Cortex_a8_relocs_info::const_iterator p =
12461 this->cortex_a8_relocs_info_.begin();
12462 p != this->cortex_a8_relocs_info_.end();
12463 ++p)
12464 delete p->second;
12465 this->cortex_a8_relocs_info_.clear();
12466
12467 // Remove all Cortex-A8 stubs.
12468 for (Stub_table_iterator sp = this->stub_tables_.begin();
12469 sp != this->stub_tables_.end();
12470 ++sp)
12471 (*sp)->remove_all_cortex_a8_stubs();
12472 }
12473
12474 // Scan relocs for relocation stubs
12475 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12476 op != input_objects->relobj_end();
12477 ++op)
12478 {
12479 Arm_relobj<big_endian>* arm_relobj =
12480 Arm_relobj<big_endian>::as_arm_relobj(*op);
12481 // Lock the object so we can read from it. This is only called
12482 // single-threaded from Layout::finalize, so it is OK to lock.
12483 Task_lock_obj<Object> tl(task, arm_relobj);
12484 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12485 }
12486
12487 // Check all stub tables to see if any of them have their data sizes
12488 // or addresses alignments changed. These are the only things that
12489 // matter.
12490 bool any_stub_table_changed = false;
12491 Unordered_set<const Output_section*> sections_needing_adjustment;
12492 for (Stub_table_iterator sp = this->stub_tables_.begin();
12493 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12494 ++sp)
12495 {
12496 if ((*sp)->update_data_size_and_addralign())
12497 {
12498 // Update data size of stub table owner.
12499 Arm_input_section<big_endian>* owner = (*sp)->owner();
12500 uint64_t address = owner->address();
12501 off_t offset = owner->offset();
12502 owner->reset_address_and_file_offset();
12503 owner->set_address_and_file_offset(address, offset);
12504
12505 sections_needing_adjustment.insert(owner->output_section());
12506 any_stub_table_changed = true;
12507 }
12508 }
12509
12510 // Output_section_data::output_section() returns a const pointer but we
12511 // need to update output sections, so we record all output sections needing
12512 // update above and scan the sections here to find out what sections need
12513 // to be updated.
12514 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12515 p != layout->section_list().end();
12516 ++p)
12517 {
12518 if (sections_needing_adjustment.find(*p)
12519 != sections_needing_adjustment.end())
12520 (*p)->set_section_offsets_need_adjustment();
12521 }
12522
12523 // Stop relaxation if no EXIDX fix-up and no stub table change.
12524 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12525
12526 // Finalize the stubs in the last relaxation pass.
12527 if (!continue_relaxation)
12528 {
12529 for (Stub_table_iterator sp = this->stub_tables_.begin();
12530 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12531 ++sp)
12532 (*sp)->finalize_stubs();
12533
12534 // Update output local symbol counts of objects if necessary.
12535 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12536 op != input_objects->relobj_end();
12537 ++op)
12538 {
12539 Arm_relobj<big_endian>* arm_relobj =
12540 Arm_relobj<big_endian>::as_arm_relobj(*op);
12541
12542 // Update output local symbol counts. We need to discard local
12543 // symbols defined in parts of input sections that are discarded by
12544 // relaxation.
12545 if (arm_relobj->output_local_symbol_count_needs_update())
12546 {
12547 // We need to lock the object's file to update it.
12548 Task_lock_obj<Object> tl(task, arm_relobj);
12549 arm_relobj->update_output_local_symbol_count();
12550 }
12551 }
12552 }
12553
12554 return continue_relaxation;
12555 }
12556
12557 // Relocate a stub.
12558
12559 template<bool big_endian>
12560 void
12561 Target_arm<big_endian>::relocate_stub(
12562 Stub* stub,
12563 const Relocate_info<32, big_endian>* relinfo,
12564 Output_section* output_section,
12565 unsigned char* view,
12566 Arm_address address,
12567 section_size_type view_size)
12568 {
12569 Relocate relocate;
12570 const Stub_template* stub_template = stub->stub_template();
12571 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12572 {
12573 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12574 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12575
12576 unsigned int r_type = insn->r_type();
12577 section_size_type reloc_offset = stub_template->reloc_offset(i);
12578 section_size_type reloc_size = insn->size();
12579 gold_assert(reloc_offset + reloc_size <= view_size);
12580
12581 // This is the address of the stub destination.
12582 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12583 Symbol_value<32> symval;
12584 symval.set_output_value(target);
12585
12586 // Synthesize a fake reloc just in case. We don't have a symbol so
12587 // we use 0.
12588 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12589 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12590 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12591 reloc_write.put_r_offset(reloc_offset);
12592 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12593
12594 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12595 this->fake_relnum_for_stubs, reloc_buffer,
12596 NULL, &symval, view + reloc_offset,
12597 address + reloc_offset, reloc_size);
12598 }
12599 }
12600
12601 // Determine whether an object attribute tag takes an integer, a
12602 // string or both.
12603
12604 template<bool big_endian>
12605 int
12606 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12607 {
12608 if (tag == Object_attribute::Tag_compatibility)
12609 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12610 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12611 else if (tag == elfcpp::Tag_nodefaults)
12612 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12613 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12614 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12615 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12616 else if (tag < 32)
12617 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12618 else
12619 return ((tag & 1) != 0
12620 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12621 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12622 }
12623
12624 // Reorder attributes.
12625 //
12626 // The ABI defines that Tag_conformance should be emitted first, and that
12627 // Tag_nodefaults should be second (if either is defined). This sets those
12628 // two positions, and bumps up the position of all the remaining tags to
12629 // compensate.
12630
12631 template<bool big_endian>
12632 int
12633 Target_arm<big_endian>::do_attributes_order(int num) const
12634 {
12635 // Reorder the known object attributes in output. We want to move
12636 // Tag_conformance to position 4 and Tag_conformance to position 5
12637 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12638 if (num == 4)
12639 return elfcpp::Tag_conformance;
12640 if (num == 5)
12641 return elfcpp::Tag_nodefaults;
12642 if ((num - 2) < elfcpp::Tag_nodefaults)
12643 return num - 2;
12644 if ((num - 1) < elfcpp::Tag_conformance)
12645 return num - 1;
12646 return num;
12647 }
12648
12649 // Scan a span of THUMB code for Cortex-A8 erratum.
12650
12651 template<bool big_endian>
12652 void
12653 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12654 Arm_relobj<big_endian>* arm_relobj,
12655 unsigned int shndx,
12656 section_size_type span_start,
12657 section_size_type span_end,
12658 const unsigned char* view,
12659 Arm_address address)
12660 {
12661 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12662 //
12663 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12664 // The branch target is in the same 4KB region as the
12665 // first half of the branch.
12666 // The instruction before the branch is a 32-bit
12667 // length non-branch instruction.
12668 section_size_type i = span_start;
12669 bool last_was_32bit = false;
12670 bool last_was_branch = false;
12671 while (i < span_end)
12672 {
12673 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12674 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12675 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12676 bool is_blx = false, is_b = false;
12677 bool is_bl = false, is_bcc = false;
12678
12679 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12680 if (insn_32bit)
12681 {
12682 // Load the rest of the insn (in manual-friendly order).
12683 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12684
12685 // Encoding T4: B<c>.W.
12686 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12687 // Encoding T1: BL<c>.W.
12688 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12689 // Encoding T2: BLX<c>.W.
12690 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12691 // Encoding T3: B<c>.W (not permitted in IT block).
12692 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12693 && (insn & 0x07f00000U) != 0x03800000U);
12694 }
12695
12696 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12697
12698 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12699 // page boundary and it follows 32-bit non-branch instruction,
12700 // we need to work around.
12701 if (is_32bit_branch
12702 && ((address + i) & 0xfffU) == 0xffeU
12703 && last_was_32bit
12704 && !last_was_branch)
12705 {
12706 // Check to see if there is a relocation stub for this branch.
12707 bool force_target_arm = false;
12708 bool force_target_thumb = false;
12709 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12710 Cortex_a8_relocs_info::const_iterator p =
12711 this->cortex_a8_relocs_info_.find(address + i);
12712
12713 if (p != this->cortex_a8_relocs_info_.end())
12714 {
12715 cortex_a8_reloc = p->second;
12716 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12717
12718 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12719 && !target_is_thumb)
12720 force_target_arm = true;
12721 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12722 && target_is_thumb)
12723 force_target_thumb = true;
12724 }
12725
12726 off_t offset;
12727 Stub_type stub_type = arm_stub_none;
12728
12729 // Check if we have an offending branch instruction.
12730 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12731 uint16_t lower_insn = insn & 0xffffU;
12732 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12733
12734 if (cortex_a8_reloc != NULL
12735 && cortex_a8_reloc->reloc_stub() != NULL)
12736 // We've already made a stub for this instruction, e.g.
12737 // it's a long branch or a Thumb->ARM stub. Assume that
12738 // stub will suffice to work around the A8 erratum (see
12739 // setting of always_after_branch above).
12740 ;
12741 else if (is_bcc)
12742 {
12743 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12744 lower_insn);
12745 stub_type = arm_stub_a8_veneer_b_cond;
12746 }
12747 else if (is_b || is_bl || is_blx)
12748 {
12749 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12750 lower_insn);
12751 if (is_blx)
12752 offset &= ~3;
12753
12754 stub_type = (is_blx
12755 ? arm_stub_a8_veneer_blx
12756 : (is_bl
12757 ? arm_stub_a8_veneer_bl
12758 : arm_stub_a8_veneer_b));
12759 }
12760
12761 if (stub_type != arm_stub_none)
12762 {
12763 Arm_address pc_for_insn = address + i + 4;
12764
12765 // The original instruction is a BL, but the target is
12766 // an ARM instruction. If we were not making a stub,
12767 // the BL would have been converted to a BLX. Use the
12768 // BLX stub instead in that case.
12769 if (this->may_use_v5t_interworking() && force_target_arm
12770 && stub_type == arm_stub_a8_veneer_bl)
12771 {
12772 stub_type = arm_stub_a8_veneer_blx;
12773 is_blx = true;
12774 is_bl = false;
12775 }
12776 // Conversely, if the original instruction was
12777 // BLX but the target is Thumb mode, use the BL stub.
12778 else if (force_target_thumb
12779 && stub_type == arm_stub_a8_veneer_blx)
12780 {
12781 stub_type = arm_stub_a8_veneer_bl;
12782 is_blx = false;
12783 is_bl = true;
12784 }
12785
12786 if (is_blx)
12787 pc_for_insn &= ~3;
12788
12789 // If we found a relocation, use the proper destination,
12790 // not the offset in the (unrelocated) instruction.
12791 // Note this is always done if we switched the stub type above.
12792 if (cortex_a8_reloc != NULL)
12793 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12794
12795 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12796
12797 // Add a new stub if destination address is in the same page.
12798 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12799 {
12800 Cortex_a8_stub* stub =
12801 this->stub_factory_.make_cortex_a8_stub(stub_type,
12802 arm_relobj, shndx,
12803 address + i,
12804 target, insn);
12805 Stub_table<big_endian>* stub_table =
12806 arm_relobj->stub_table(shndx);
12807 gold_assert(stub_table != NULL);
12808 stub_table->add_cortex_a8_stub(address + i, stub);
12809 }
12810 }
12811 }
12812
12813 i += insn_32bit ? 4 : 2;
12814 last_was_32bit = insn_32bit;
12815 last_was_branch = is_32bit_branch;
12816 }
12817 }
12818
12819 // Apply the Cortex-A8 workaround.
12820
12821 template<bool big_endian>
12822 void
12823 Target_arm<big_endian>::apply_cortex_a8_workaround(
12824 const Cortex_a8_stub* stub,
12825 Arm_address stub_address,
12826 unsigned char* insn_view,
12827 Arm_address insn_address)
12828 {
12829 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12830 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12831 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12832 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12833 off_t branch_offset = stub_address - (insn_address + 4);
12834
12835 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12836 switch (stub->stub_template()->type())
12837 {
12838 case arm_stub_a8_veneer_b_cond:
12839 // For a conditional branch, we re-write it to be an unconditional
12840 // branch to the stub. We use the THUMB-2 encoding here.
12841 upper_insn = 0xf000U;
12842 lower_insn = 0xb800U;
12843 // Fall through.
12844 case arm_stub_a8_veneer_b:
12845 case arm_stub_a8_veneer_bl:
12846 case arm_stub_a8_veneer_blx:
12847 if ((lower_insn & 0x5000U) == 0x4000U)
12848 // For a BLX instruction, make sure that the relocation is
12849 // rounded up to a word boundary. This follows the semantics of
12850 // the instruction which specifies that bit 1 of the target
12851 // address will come from bit 1 of the base address.
12852 branch_offset = (branch_offset + 2) & ~3;
12853
12854 // Put BRANCH_OFFSET back into the insn.
12855 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12856 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12857 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12858 break;
12859
12860 default:
12861 gold_unreachable();
12862 }
12863
12864 // Put the relocated value back in the object file:
12865 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12866 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12867 }
12868
12869 // Target selector for ARM. Note this is never instantiated directly.
12870 // It's only used in Target_selector_arm_nacl, below.
12871
12872 template<bool big_endian>
12873 class Target_selector_arm : public Target_selector
12874 {
12875 public:
12876 Target_selector_arm()
12877 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12878 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12879 (big_endian ? "armelfb" : "armelf"))
12880 { }
12881
12882 Target*
12883 do_instantiate_target()
12884 { return new Target_arm<big_endian>(); }
12885 };
12886
12887 // Fix .ARM.exidx section coverage.
12888
12889 template<bool big_endian>
12890 void
12891 Target_arm<big_endian>::fix_exidx_coverage(
12892 Layout* layout,
12893 const Input_objects* input_objects,
12894 Arm_output_section<big_endian>* exidx_section,
12895 Symbol_table* symtab,
12896 const Task* task)
12897 {
12898 // We need to look at all the input sections in output in ascending
12899 // order of output address. We do that by building a sorted list
12900 // of output sections by addresses. Then we looks at the output sections
12901 // in order. The input sections in an output section are already sorted
12902 // by addresses within the output section.
12903
12904 typedef std::set<Output_section*, output_section_address_less_than>
12905 Sorted_output_section_list;
12906 Sorted_output_section_list sorted_output_sections;
12907
12908 // Find out all the output sections of input sections pointed by
12909 // EXIDX input sections.
12910 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12911 p != input_objects->relobj_end();
12912 ++p)
12913 {
12914 Arm_relobj<big_endian>* arm_relobj =
12915 Arm_relobj<big_endian>::as_arm_relobj(*p);
12916 std::vector<unsigned int> shndx_list;
12917 arm_relobj->get_exidx_shndx_list(&shndx_list);
12918 for (size_t i = 0; i < shndx_list.size(); ++i)
12919 {
12920 const Arm_exidx_input_section* exidx_input_section =
12921 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12922 gold_assert(exidx_input_section != NULL);
12923 if (!exidx_input_section->has_errors())
12924 {
12925 unsigned int text_shndx = exidx_input_section->link();
12926 Output_section* os = arm_relobj->output_section(text_shndx);
12927 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12928 sorted_output_sections.insert(os);
12929 }
12930 }
12931 }
12932
12933 // Go over the output sections in ascending order of output addresses.
12934 typedef typename Arm_output_section<big_endian>::Text_section_list
12935 Text_section_list;
12936 Text_section_list sorted_text_sections;
12937 for (typename Sorted_output_section_list::iterator p =
12938 sorted_output_sections.begin();
12939 p != sorted_output_sections.end();
12940 ++p)
12941 {
12942 Arm_output_section<big_endian>* arm_output_section =
12943 Arm_output_section<big_endian>::as_arm_output_section(*p);
12944 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12945 }
12946
12947 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12948 merge_exidx_entries(), task);
12949 }
12950
12951 template<bool big_endian>
12952 void
12953 Target_arm<big_endian>::do_define_standard_symbols(
12954 Symbol_table* symtab,
12955 Layout* layout)
12956 {
12957 // Handle the .ARM.exidx section.
12958 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12959
12960 if (exidx_section != NULL)
12961 {
12962 // Create __exidx_start and __exidx_end symbols.
12963 symtab->define_in_output_data("__exidx_start",
12964 NULL, // version
12965 Symbol_table::PREDEFINED,
12966 exidx_section,
12967 0, // value
12968 0, // symsize
12969 elfcpp::STT_NOTYPE,
12970 elfcpp::STB_GLOBAL,
12971 elfcpp::STV_HIDDEN,
12972 0, // nonvis
12973 false, // offset_is_from_end
12974 true); // only_if_ref
12975
12976 symtab->define_in_output_data("__exidx_end",
12977 NULL, // version
12978 Symbol_table::PREDEFINED,
12979 exidx_section,
12980 0, // value
12981 0, // symsize
12982 elfcpp::STT_NOTYPE,
12983 elfcpp::STB_GLOBAL,
12984 elfcpp::STV_HIDDEN,
12985 0, // nonvis
12986 true, // offset_is_from_end
12987 true); // only_if_ref
12988 }
12989 else
12990 {
12991 // Define __exidx_start and __exidx_end even when .ARM.exidx
12992 // section is missing to match ld's behaviour.
12993 symtab->define_as_constant("__exidx_start", NULL,
12994 Symbol_table::PREDEFINED,
12995 0, 0, elfcpp::STT_OBJECT,
12996 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12997 true, false);
12998 symtab->define_as_constant("__exidx_end", NULL,
12999 Symbol_table::PREDEFINED,
13000 0, 0, elfcpp::STT_OBJECT,
13001 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
13002 true, false);
13003 }
13004 }
13005
13006 // NaCl variant. It uses different PLT contents.
13007
13008 template<bool big_endian>
13009 class Output_data_plt_arm_nacl;
13010
13011 template<bool big_endian>
13012 class Target_arm_nacl : public Target_arm<big_endian>
13013 {
13014 public:
13015 Target_arm_nacl()
13016 : Target_arm<big_endian>(&arm_nacl_info)
13017 { }
13018
13019 protected:
13020 virtual Output_data_plt_arm<big_endian>*
13021 do_make_data_plt(
13022 Layout* layout,
13023 Arm_output_data_got<big_endian>* got,
13024 Output_data_space* got_plt,
13025 Output_data_space* got_irelative)
13026 { return new Output_data_plt_arm_nacl<big_endian>(
13027 layout, got, got_plt, got_irelative); }
13028
13029 private:
13030 static const Target::Target_info arm_nacl_info;
13031 };
13032
13033 template<bool big_endian>
13034 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
13035 {
13036 32, // size
13037 big_endian, // is_big_endian
13038 elfcpp::EM_ARM, // machine_code
13039 false, // has_make_symbol
13040 false, // has_resolve
13041 false, // has_code_fill
13042 true, // is_default_stack_executable
13043 false, // can_icf_inline_merge_sections
13044 '\0', // wrap_char
13045 "/lib/ld-nacl-arm.so.1", // dynamic_linker
13046 0x20000, // default_text_segment_address
13047 0x10000, // abi_pagesize (overridable by -z max-page-size)
13048 0x10000, // common_pagesize (overridable by -z common-page-size)
13049 true, // isolate_execinstr
13050 0x10000000, // rosegment_gap
13051 elfcpp::SHN_UNDEF, // small_common_shndx
13052 elfcpp::SHN_UNDEF, // large_common_shndx
13053 0, // small_common_section_flags
13054 0, // large_common_section_flags
13055 ".ARM.attributes", // attributes_section
13056 "aeabi", // attributes_vendor
13057 "_start", // entry_symbol_name
13058 32, // hash_entry_size
13059 };
13060
13061 template<bool big_endian>
13062 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
13063 {
13064 public:
13065 Output_data_plt_arm_nacl(
13066 Layout* layout,
13067 Arm_output_data_got<big_endian>* got,
13068 Output_data_space* got_plt,
13069 Output_data_space* got_irelative)
13070 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
13071 { }
13072
13073 protected:
13074 // Return the offset of the first non-reserved PLT entry.
13075 virtual unsigned int
13076 do_first_plt_entry_offset() const
13077 { return sizeof(first_plt_entry); }
13078
13079 // Return the size of a PLT entry.
13080 virtual unsigned int
13081 do_get_plt_entry_size() const
13082 { return sizeof(plt_entry); }
13083
13084 virtual void
13085 do_fill_first_plt_entry(unsigned char* pov,
13086 Arm_address got_address,
13087 Arm_address plt_address);
13088
13089 virtual void
13090 do_fill_plt_entry(unsigned char* pov,
13091 Arm_address got_address,
13092 Arm_address plt_address,
13093 unsigned int got_offset,
13094 unsigned int plt_offset);
13095
13096 private:
13097 inline uint32_t arm_movw_immediate(uint32_t value)
13098 {
13099 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
13100 }
13101
13102 inline uint32_t arm_movt_immediate(uint32_t value)
13103 {
13104 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
13105 }
13106
13107 // Template for the first PLT entry.
13108 static const uint32_t first_plt_entry[16];
13109
13110 // Template for subsequent PLT entries.
13111 static const uint32_t plt_entry[4];
13112 };
13113
13114 // The first entry in the PLT.
13115 template<bool big_endian>
13116 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
13117 {
13118 // First bundle:
13119 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
13120 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
13121 0xe08cc00f, // add ip, ip, pc
13122 0xe52dc008, // str ip, [sp, #-8]!
13123 // Second bundle:
13124 0xe3ccc103, // bic ip, ip, #0xc0000000
13125 0xe59cc000, // ldr ip, [ip]
13126 0xe3ccc13f, // bic ip, ip, #0xc000000f
13127 0xe12fff1c, // bx ip
13128 // Third bundle:
13129 0xe320f000, // nop
13130 0xe320f000, // nop
13131 0xe320f000, // nop
13132 // .Lplt_tail:
13133 0xe50dc004, // str ip, [sp, #-4]
13134 // Fourth bundle:
13135 0xe3ccc103, // bic ip, ip, #0xc0000000
13136 0xe59cc000, // ldr ip, [ip]
13137 0xe3ccc13f, // bic ip, ip, #0xc000000f
13138 0xe12fff1c, // bx ip
13139 };
13140
13141 template<bool big_endian>
13142 void
13143 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
13144 unsigned char* pov,
13145 Arm_address got_address,
13146 Arm_address plt_address)
13147 {
13148 // Write first PLT entry. All but first two words are constants.
13149 const size_t num_first_plt_words = (sizeof(first_plt_entry)
13150 / sizeof(first_plt_entry[0]));
13151
13152 int32_t got_displacement = got_address + 8 - (plt_address + 16);
13153
13154 elfcpp::Swap<32, big_endian>::writeval
13155 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
13156 elfcpp::Swap<32, big_endian>::writeval
13157 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
13158
13159 for (size_t i = 2; i < num_first_plt_words; ++i)
13160 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
13161 }
13162
13163 // Subsequent entries in the PLT.
13164
13165 template<bool big_endian>
13166 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
13167 {
13168 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
13169 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
13170 0xe08cc00f, // add ip, ip, pc
13171 0xea000000, // b .Lplt_tail
13172 };
13173
13174 template<bool big_endian>
13175 void
13176 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
13177 unsigned char* pov,
13178 Arm_address got_address,
13179 Arm_address plt_address,
13180 unsigned int got_offset,
13181 unsigned int plt_offset)
13182 {
13183 // Calculate the displacement between the PLT slot and the
13184 // common tail that's part of the special initial PLT slot.
13185 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
13186 - (plt_address + plt_offset
13187 + sizeof(plt_entry) + sizeof(uint32_t)));
13188 gold_assert((tail_displacement & 3) == 0);
13189 tail_displacement >>= 2;
13190
13191 gold_assert ((tail_displacement & 0xff000000) == 0
13192 || (-tail_displacement & 0xff000000) == 0);
13193
13194 // Calculate the displacement between the PLT slot and the entry
13195 // in the GOT. The offset accounts for the value produced by
13196 // adding to pc in the penultimate instruction of the PLT stub.
13197 const int32_t got_displacement = (got_address + got_offset
13198 - (plt_address + sizeof(plt_entry)));
13199
13200 elfcpp::Swap<32, big_endian>::writeval
13201 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
13202 elfcpp::Swap<32, big_endian>::writeval
13203 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
13204 elfcpp::Swap<32, big_endian>::writeval
13205 (pov + 8, plt_entry[2]);
13206 elfcpp::Swap<32, big_endian>::writeval
13207 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
13208 }
13209
13210 // Target selectors.
13211
13212 template<bool big_endian>
13213 class Target_selector_arm_nacl
13214 : public Target_selector_nacl<Target_selector_arm<big_endian>,
13215 Target_arm_nacl<big_endian> >
13216 {
13217 public:
13218 Target_selector_arm_nacl()
13219 : Target_selector_nacl<Target_selector_arm<big_endian>,
13220 Target_arm_nacl<big_endian> >(
13221 "arm",
13222 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
13223 big_endian ? "armelfb_nacl" : "armelf_nacl")
13224 { }
13225 };
13226
13227 Target_selector_arm_nacl<false> target_selector_arm;
13228 Target_selector_arm_nacl<true> target_selector_armbe;
13229
13230 } // End anonymous namespace.
This page took 0.37011 seconds and 5 git commands to generate.