Remove unnecessary target dependencies on relocation format.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 // Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
155 // Factory methods to create instruction templates in different formats.
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
176 }
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
211 // Return size of instruction template in bytes.
212 size_t
213 size() const;
214
215 // Return byte-alignment of instruction template.
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278 // Last stub type.
279 arm_stub_type_last = arm_stub_v4_veneer_bx
280 } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
319
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
356
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
412
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
435 // This may be overridden in the child class.
436 virtual void
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
444
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
451 private:
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461 };
462
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
515 {
516 if (symbol != NULL)
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
520 }
521 else
522 {
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
557 eq(const Key& k) const
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 // branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
857
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
863
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873 public:
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
904 void
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
977
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
988
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
992 { return this->prev_addralign_; }
993
994 // Reset address and file offset.
995 void
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1003
1004 private:
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076 private:
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
1081
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150 public:
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1155 { }
1156
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1159
1160 // Initialize.
1161 void
1162 init();
1163
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1178
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1219 {
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225 {
1226 *poutput = offset;
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255 public:
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1279
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
1336
1337 bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346 public:
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
1360
1361 ~Arm_output_section()
1362 { }
1363
1364 // Group input sections for stub generation.
1365 void
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1386 const Task* task);
1387
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
1423
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
1446 // Return address alignment of EXIDX input section.
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1480 bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1499 { }
1500
1501 ~Arm_relobj()
1502 { delete this->attributes_section_data_; }
1503
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1507 {
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515 {
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
1528
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
1576
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1585 {
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
1589
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1632
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1641
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1656 }
1657
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1675
1676 void
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690 private:
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1697
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1702
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1728 void
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770 public:
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1775 { }
1776
1777 ~Arm_dynobj()
1778 { delete this->attributes_section_data_; }
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
1869
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
1874 { return this->reloc_stub_; }
1875
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129 { }
2130
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2140
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2166 }
2167
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179 }
2180
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191 }
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2203
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221 }
2222
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2225 void
2226 gc_process_relocs(Symbol_table* symtab,
2227 Layout* layout,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
2240 scan_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256 // Return the value to use for a dynamic symbol which requires special
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2263 uint64_t
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2266
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2272
2273 // Relocate a section.
2274 void
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
2282 Arm_address view_address,
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
2285
2286 // Scan the relocs during a relocatable link.
2287 void
2288 scan_relocatable_relocs(Symbol_table* symtab,
2289 Layout* layout,
2290 Sized_relobj_file<32, big_endian>* object,
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2300
2301 // Emit relocations for a section.
2302 void
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2306 size_t reloc_count,
2307 Output_section* output_section,
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
2310 const Relocatable_relocs*,
2311 unsigned char* view,
2312 Arm_address view_address,
2313 section_size_type view_size,
2314 unsigned char* reloc_view,
2315 section_size_type reloc_view_size);
2316
2317 // Perform target-specific processing in a relocatable link. This is
2318 // only used if we use the relocation strategy RELOC_SPECIAL.
2319 void
2320 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321 unsigned int sh_type,
2322 const unsigned char* preloc_in,
2323 size_t relnum,
2324 Output_section* output_section,
2325 typename elfcpp::Elf_types<32>::Elf_Off
2326 offset_in_output_section,
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2329 view_address,
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2332
2333 // Return whether SYM is defined by the ABI.
2334 bool
2335 do_is_defined_by_abi(const Symbol* sym) const
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
2338 // Return whether there is a GOT section.
2339 bool
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2342
2343 // Return the size of the GOT section.
2344 section_size_type
2345 got_size() const
2346 {
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2349 }
2350
2351 // Return the number of entries in the GOT.
2352 unsigned int
2353 got_entry_count() const
2354 {
2355 if (!this->has_got_section())
2356 return 0;
2357 return this->got_size() / 4;
2358 }
2359
2360 // Return the number of entries in the PLT.
2361 unsigned int
2362 plt_entry_count() const;
2363
2364 // Return the offset of the first non-reserved PLT entry.
2365 unsigned int
2366 first_plt_entry_offset() const;
2367
2368 // Return the size of each PLT entry.
2369 unsigned int
2370 plt_entry_size() const;
2371
2372 // Get the section to use for IRELATIVE relocations, create it if necessary.
2373 Reloc_section*
2374 rel_irelative_section(Layout*);
2375
2376 // Map platform-specific reloc types
2377 static unsigned int
2378 get_real_reloc_type(unsigned int r_type);
2379
2380 //
2381 // Methods to support stub-generations.
2382 //
2383
2384 // Return the stub factory
2385 const Stub_factory&
2386 stub_factory() const
2387 { return this->stub_factory_; }
2388
2389 // Make a new Arm_input_section object.
2390 Arm_input_section<big_endian>*
2391 new_arm_input_section(Relobj*, unsigned int);
2392
2393 // Find the Arm_input_section object corresponding to the SHNDX-th input
2394 // section of RELOBJ.
2395 Arm_input_section<big_endian>*
2396 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2397
2398 // Make a new Stub_table
2399 Stub_table<big_endian>*
2400 new_stub_table(Arm_input_section<big_endian>*);
2401
2402 // Scan a section for stub generation.
2403 void
2404 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405 const unsigned char*, size_t, Output_section*,
2406 bool, const unsigned char*, Arm_address,
2407 section_size_type);
2408
2409 // Relocate a stub.
2410 void
2411 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2412 Output_section*, unsigned char*, Arm_address,
2413 section_size_type);
2414
2415 // Get the default ARM target.
2416 static Target_arm<big_endian>*
2417 default_target()
2418 {
2419 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420 && parameters->target().is_big_endian() == big_endian);
2421 return static_cast<Target_arm<big_endian>*>(
2422 parameters->sized_target<32, big_endian>());
2423 }
2424
2425 // Whether NAME belongs to a mapping symbol.
2426 static bool
2427 is_mapping_symbol_name(const char* name)
2428 {
2429 return (name
2430 && name[0] == '$'
2431 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432 && (name[2] == '\0' || name[2] == '.'));
2433 }
2434
2435 // Whether we work around the Cortex-A8 erratum.
2436 bool
2437 fix_cortex_a8() const
2438 { return this->fix_cortex_a8_; }
2439
2440 // Whether we merge exidx entries in debuginfo.
2441 bool
2442 merge_exidx_entries() const
2443 { return parameters->options().merge_exidx_entries(); }
2444
2445 // Whether we fix R_ARM_V4BX relocation.
2446 // 0 - do not fix
2447 // 1 - replace with MOV instruction (armv4 target)
2448 // 2 - make interworking veneer (>= armv4t targets only)
2449 General_options::Fix_v4bx
2450 fix_v4bx() const
2451 { return parameters->options().fix_v4bx(); }
2452
2453 // Scan a span of THUMB code section for Cortex-A8 erratum.
2454 void
2455 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456 section_size_type, section_size_type,
2457 const unsigned char*, Arm_address);
2458
2459 // Apply Cortex-A8 workaround to a branch.
2460 void
2461 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462 unsigned char*, Arm_address);
2463
2464 protected:
2465 // Make the PLT-generator object.
2466 Output_data_plt_arm<big_endian>*
2467 make_data_plt(Layout* layout,
2468 Arm_output_data_got<big_endian>* got,
2469 Output_data_space* got_plt,
2470 Output_data_space* got_irelative)
2471 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2472
2473 // Make an ELF object.
2474 Object*
2475 do_make_elf_object(const std::string&, Input_file*, off_t,
2476 const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478 Object*
2479 do_make_elf_object(const std::string&, Input_file*, off_t,
2480 const elfcpp::Ehdr<32, !big_endian>&)
2481 { gold_unreachable(); }
2482
2483 Object*
2484 do_make_elf_object(const std::string&, Input_file*, off_t,
2485 const elfcpp::Ehdr<64, false>&)
2486 { gold_unreachable(); }
2487
2488 Object*
2489 do_make_elf_object(const std::string&, Input_file*, off_t,
2490 const elfcpp::Ehdr<64, true>&)
2491 { gold_unreachable(); }
2492
2493 // Make an output section.
2494 Output_section*
2495 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496 elfcpp::Elf_Xword flags)
2497 { return new Arm_output_section<big_endian>(name, type, flags); }
2498
2499 void
2500 do_adjust_elf_header(unsigned char* view, int len);
2501
2502 // We only need to generate stubs, and hence perform relaxation if we are
2503 // not doing relocatable linking.
2504 bool
2505 do_may_relax() const
2506 { return !parameters->options().relocatable(); }
2507
2508 bool
2509 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2510
2511 // Determine whether an object attribute tag takes an integer, a
2512 // string or both.
2513 int
2514 do_attribute_arg_type(int tag) const;
2515
2516 // Reorder tags during output.
2517 int
2518 do_attributes_order(int num) const;
2519
2520 // This is called when the target is selected as the default.
2521 void
2522 do_select_as_default_target()
2523 {
2524 // No locking is required since there should only be one default target.
2525 // We cannot have both the big-endian and little-endian ARM targets
2526 // as the default.
2527 gold_assert(arm_reloc_property_table == NULL);
2528 arm_reloc_property_table = new Arm_reloc_property_table();
2529 }
2530
2531 // Virtual function which is set to return true by a target if
2532 // it can use relocation types to determine if a function's
2533 // pointer is taken.
2534 virtual bool
2535 do_can_check_for_function_pointers() const
2536 { return true; }
2537
2538 // Whether a section called SECTION_NAME may have function pointers to
2539 // sections not eligible for safe ICF folding.
2540 virtual bool
2541 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542 {
2543 return (!is_prefix_of(".ARM.exidx", section_name)
2544 && !is_prefix_of(".ARM.extab", section_name)
2545 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546 }
2547
2548 virtual void
2549 do_define_standard_symbols(Symbol_table*, Layout*);
2550
2551 virtual Output_data_plt_arm<big_endian>*
2552 do_make_data_plt(Layout* layout,
2553 Arm_output_data_got<big_endian>* got,
2554 Output_data_space* got_plt,
2555 Output_data_space* got_irelative)
2556 {
2557 gold_assert(got_plt != NULL && got_irelative != NULL);
2558 return new Output_data_plt_arm_standard<big_endian>(
2559 layout, got, got_plt, got_irelative);
2560 }
2561
2562 private:
2563 // The class which scans relocations.
2564 class Scan
2565 {
2566 public:
2567 Scan()
2568 : issued_non_pic_error_(false)
2569 { }
2570
2571 static inline int
2572 get_reference_flags(unsigned int r_type);
2573
2574 inline void
2575 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2576 Sized_relobj_file<32, big_endian>* object,
2577 unsigned int data_shndx,
2578 Output_section* output_section,
2579 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2580 const elfcpp::Sym<32, big_endian>& lsym,
2581 bool is_discarded);
2582
2583 inline void
2584 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2585 Sized_relobj_file<32, big_endian>* object,
2586 unsigned int data_shndx,
2587 Output_section* output_section,
2588 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589 Symbol* gsym);
2590
2591 inline bool
2592 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2593 Sized_relobj_file<32, big_endian>* ,
2594 unsigned int ,
2595 Output_section* ,
2596 const elfcpp::Rel<32, big_endian>& ,
2597 unsigned int ,
2598 const elfcpp::Sym<32, big_endian>&);
2599
2600 inline bool
2601 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2602 Sized_relobj_file<32, big_endian>* ,
2603 unsigned int ,
2604 Output_section* ,
2605 const elfcpp::Rel<32, big_endian>& ,
2606 unsigned int , Symbol*);
2607
2608 private:
2609 static void
2610 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2611 unsigned int r_type);
2612
2613 static void
2614 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2615 unsigned int r_type, Symbol*);
2616
2617 void
2618 check_non_pic(Relobj*, unsigned int r_type);
2619
2620 // Almost identical to Symbol::needs_plt_entry except that it also
2621 // handles STT_ARM_TFUNC.
2622 static bool
2623 symbol_needs_plt_entry(const Symbol* sym)
2624 {
2625 // An undefined symbol from an executable does not need a PLT entry.
2626 if (sym->is_undefined() && !parameters->options().shared())
2627 return false;
2628
2629 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630 return true;
2631
2632 return (!parameters->doing_static_link()
2633 && (sym->type() == elfcpp::STT_FUNC
2634 || sym->type() == elfcpp::STT_ARM_TFUNC)
2635 && (sym->is_from_dynobj()
2636 || sym->is_undefined()
2637 || sym->is_preemptible()));
2638 }
2639
2640 inline bool
2641 possible_function_pointer_reloc(unsigned int r_type);
2642
2643 // Whether a plt entry is needed for ifunc.
2644 bool
2645 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646 unsigned int r_type);
2647
2648 // Whether we have issued an error about a non-PIC compilation.
2649 bool issued_non_pic_error_;
2650 };
2651
2652 // The class which implements relocation.
2653 class Relocate
2654 {
2655 public:
2656 Relocate()
2657 { }
2658
2659 ~Relocate()
2660 { }
2661
2662 // Return whether the static relocation needs to be applied.
2663 inline bool
2664 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2665 unsigned int r_type,
2666 bool is_32bit,
2667 Output_section* output_section);
2668
2669 // Do a relocation. Return false if the caller should not issue
2670 // any warnings about this relocation.
2671 inline bool
2672 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673 Output_section*, size_t relnum,
2674 const elfcpp::Rel<32, big_endian>&,
2675 unsigned int r_type, const Sized_symbol<32>*,
2676 const Symbol_value<32>*,
2677 unsigned char*, Arm_address,
2678 section_size_type);
2679
2680 // Return whether we want to pass flag NON_PIC_REF for this
2681 // reloc. This means the relocation type accesses a symbol not via
2682 // GOT or PLT.
2683 static inline bool
2684 reloc_is_non_pic(unsigned int r_type)
2685 {
2686 switch (r_type)
2687 {
2688 // These relocation types reference GOT or PLT entries explicitly.
2689 case elfcpp::R_ARM_GOT_BREL:
2690 case elfcpp::R_ARM_GOT_ABS:
2691 case elfcpp::R_ARM_GOT_PREL:
2692 case elfcpp::R_ARM_GOT_BREL12:
2693 case elfcpp::R_ARM_PLT32_ABS:
2694 case elfcpp::R_ARM_TLS_GD32:
2695 case elfcpp::R_ARM_TLS_LDM32:
2696 case elfcpp::R_ARM_TLS_IE32:
2697 case elfcpp::R_ARM_TLS_IE12GP:
2698
2699 // These relocate types may use PLT entries.
2700 case elfcpp::R_ARM_CALL:
2701 case elfcpp::R_ARM_THM_CALL:
2702 case elfcpp::R_ARM_JUMP24:
2703 case elfcpp::R_ARM_THM_JUMP24:
2704 case elfcpp::R_ARM_THM_JUMP19:
2705 case elfcpp::R_ARM_PLT32:
2706 case elfcpp::R_ARM_THM_XPC22:
2707 case elfcpp::R_ARM_PREL31:
2708 case elfcpp::R_ARM_SBREL31:
2709 return false;
2710
2711 default:
2712 return true;
2713 }
2714 }
2715
2716 private:
2717 // Do a TLS relocation.
2718 inline typename Arm_relocate_functions<big_endian>::Status
2719 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2720 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2721 const Sized_symbol<32>*, const Symbol_value<32>*,
2722 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723 section_size_type);
2724
2725 };
2726
2727 // A class which returns the size required for a relocation type,
2728 // used while scanning relocs during a relocatable link.
2729 class Relocatable_size_for_reloc
2730 {
2731 public:
2732 unsigned int
2733 get_size_for_reloc(unsigned int, Relobj*);
2734 };
2735
2736 // Adjust TLS relocation type based on the options and whether this
2737 // is a local symbol.
2738 static tls::Tls_optimization
2739 optimize_tls_reloc(bool is_final, int r_type);
2740
2741 // Get the GOT section, creating it if necessary.
2742 Arm_output_data_got<big_endian>*
2743 got_section(Symbol_table*, Layout*);
2744
2745 // Get the GOT PLT section.
2746 Output_data_space*
2747 got_plt_section() const
2748 {
2749 gold_assert(this->got_plt_ != NULL);
2750 return this->got_plt_;
2751 }
2752
2753 // Create the PLT section.
2754 void
2755 make_plt_section(Symbol_table* symtab, Layout* layout);
2756
2757 // Create a PLT entry for a global symbol.
2758 void
2759 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
2761 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762 void
2763 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764 Sized_relobj_file<32, big_endian>* relobj,
2765 unsigned int local_sym_index);
2766
2767 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768 void
2769 define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771 // Create a GOT entry for the TLS module index.
2772 unsigned int
2773 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2774 Sized_relobj_file<32, big_endian>* object);
2775
2776 // Get the PLT section.
2777 const Output_data_plt_arm<big_endian>*
2778 plt_section() const
2779 {
2780 gold_assert(this->plt_ != NULL);
2781 return this->plt_;
2782 }
2783
2784 // Get the dynamic reloc section, creating it if necessary.
2785 Reloc_section*
2786 rel_dyn_section(Layout*);
2787
2788 // Get the section to use for TLS_DESC relocations.
2789 Reloc_section*
2790 rel_tls_desc_section(Layout*) const;
2791
2792 // Return true if the symbol may need a COPY relocation.
2793 // References from an executable object to non-function symbols
2794 // defined in a dynamic object may need a COPY relocation.
2795 bool
2796 may_need_copy_reloc(Symbol* gsym)
2797 {
2798 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799 && gsym->may_need_copy_reloc());
2800 }
2801
2802 // Add a potential copy relocation.
2803 void
2804 copy_reloc(Symbol_table* symtab, Layout* layout,
2805 Sized_relobj_file<32, big_endian>* object,
2806 unsigned int shndx, Output_section* output_section,
2807 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808 {
2809 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2810 this->copy_relocs_.copy_reloc(symtab, layout,
2811 symtab->get_sized_symbol<32>(sym),
2812 object, shndx, output_section,
2813 r_type, reloc.get_r_offset(), 0,
2814 this->rel_dyn_section(layout));
2815 }
2816
2817 // Whether two EABI versions are compatible.
2818 static bool
2819 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2820
2821 // Merge processor-specific flags from input object and those in the ELF
2822 // header of the output.
2823 void
2824 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2825
2826 // Get the secondary compatible architecture.
2827 static int
2828 get_secondary_compatible_arch(const Attributes_section_data*);
2829
2830 // Set the secondary compatible architecture.
2831 static void
2832 set_secondary_compatible_arch(Attributes_section_data*, int);
2833
2834 static int
2835 tag_cpu_arch_combine(const char*, int, int*, int, int);
2836
2837 // Helper to print AEABI enum tag value.
2838 static std::string
2839 aeabi_enum_name(unsigned int);
2840
2841 // Return string value for TAG_CPU_name.
2842 static std::string
2843 tag_cpu_name_value(unsigned int);
2844
2845 // Query attributes object to see if integer divide instructions may be
2846 // present in an object.
2847 static bool
2848 attributes_accept_div(int arch, int profile,
2849 const Object_attribute* div_attr);
2850
2851 // Query attributes object to see if integer divide instructions are
2852 // forbidden to be in the object. This is not the inverse of
2853 // attributes_accept_div.
2854 static bool
2855 attributes_forbid_div(const Object_attribute* div_attr);
2856
2857 // Merge object attributes from input object and those in the output.
2858 void
2859 merge_object_attributes(const char*, const Attributes_section_data*);
2860
2861 // Helper to get an AEABI object attribute
2862 Object_attribute*
2863 get_aeabi_object_attribute(int tag) const
2864 {
2865 Attributes_section_data* pasd = this->attributes_section_data_;
2866 gold_assert(pasd != NULL);
2867 Object_attribute* attr =
2868 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2869 gold_assert(attr != NULL);
2870 return attr;
2871 }
2872
2873 //
2874 // Methods to support stub-generations.
2875 //
2876
2877 // Group input sections for stub generation.
2878 void
2879 group_sections(Layout*, section_size_type, bool, const Task*);
2880
2881 // Scan a relocation for stub generation.
2882 void
2883 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2884 const Sized_symbol<32>*, unsigned int,
2885 const Symbol_value<32>*,
2886 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2887
2888 // Scan a relocation section for stub.
2889 template<int sh_type>
2890 void
2891 scan_reloc_section_for_stubs(
2892 const Relocate_info<32, big_endian>* relinfo,
2893 const unsigned char* prelocs,
2894 size_t reloc_count,
2895 Output_section* output_section,
2896 bool needs_special_offset_handling,
2897 const unsigned char* view,
2898 elfcpp::Elf_types<32>::Elf_Addr view_address,
2899 section_size_type);
2900
2901 // Fix .ARM.exidx section coverage.
2902 void
2903 fix_exidx_coverage(Layout*, const Input_objects*,
2904 Arm_output_section<big_endian>*, Symbol_table*,
2905 const Task*);
2906
2907 // Functors for STL set.
2908 struct output_section_address_less_than
2909 {
2910 bool
2911 operator()(const Output_section* s1, const Output_section* s2) const
2912 { return s1->address() < s2->address(); }
2913 };
2914
2915 // Information about this specific target which we pass to the
2916 // general Target structure.
2917 static const Target::Target_info arm_info;
2918
2919 // The types of GOT entries needed for this platform.
2920 // These values are exposed to the ABI in an incremental link.
2921 // Do not renumber existing values without changing the version
2922 // number of the .gnu_incremental_inputs section.
2923 enum Got_type
2924 {
2925 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2926 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2927 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2928 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2929 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2930 };
2931
2932 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2933
2934 // Map input section to Arm_input_section.
2935 typedef Unordered_map<Section_id,
2936 Arm_input_section<big_endian>*,
2937 Section_id_hash>
2938 Arm_input_section_map;
2939
2940 // Map output addresses to relocs for Cortex-A8 erratum.
2941 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2942 Cortex_a8_relocs_info;
2943
2944 // The GOT section.
2945 Arm_output_data_got<big_endian>* got_;
2946 // The PLT section.
2947 Output_data_plt_arm<big_endian>* plt_;
2948 // The GOT PLT section.
2949 Output_data_space* got_plt_;
2950 // The GOT section for IRELATIVE relocations.
2951 Output_data_space* got_irelative_;
2952 // The dynamic reloc section.
2953 Reloc_section* rel_dyn_;
2954 // The section to use for IRELATIVE relocs.
2955 Reloc_section* rel_irelative_;
2956 // Relocs saved to avoid a COPY reloc.
2957 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2958 // Offset of the GOT entry for the TLS module index.
2959 unsigned int got_mod_index_offset_;
2960 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2961 bool tls_base_symbol_defined_;
2962 // Vector of Stub_tables created.
2963 Stub_table_list stub_tables_;
2964 // Stub factory.
2965 const Stub_factory &stub_factory_;
2966 // Whether we force PIC branch veneers.
2967 bool should_force_pic_veneer_;
2968 // Map for locating Arm_input_sections.
2969 Arm_input_section_map arm_input_section_map_;
2970 // Attributes section data in output.
2971 Attributes_section_data* attributes_section_data_;
2972 // Whether we want to fix code for Cortex-A8 erratum.
2973 bool fix_cortex_a8_;
2974 // Map addresses to relocs for Cortex-A8 erratum.
2975 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2976 };
2977
2978 template<bool big_endian>
2979 const Target::Target_info Target_arm<big_endian>::arm_info =
2980 {
2981 32, // size
2982 big_endian, // is_big_endian
2983 elfcpp::EM_ARM, // machine_code
2984 false, // has_make_symbol
2985 false, // has_resolve
2986 false, // has_code_fill
2987 true, // is_default_stack_executable
2988 false, // can_icf_inline_merge_sections
2989 '\0', // wrap_char
2990 "/usr/lib/libc.so.1", // dynamic_linker
2991 0x8000, // default_text_segment_address
2992 0x1000, // abi_pagesize (overridable by -z max-page-size)
2993 0x1000, // common_pagesize (overridable by -z common-page-size)
2994 false, // isolate_execinstr
2995 0, // rosegment_gap
2996 elfcpp::SHN_UNDEF, // small_common_shndx
2997 elfcpp::SHN_UNDEF, // large_common_shndx
2998 0, // small_common_section_flags
2999 0, // large_common_section_flags
3000 ".ARM.attributes", // attributes_section
3001 "aeabi", // attributes_vendor
3002 "_start", // entry_symbol_name
3003 32, // hash_entry_size
3004 };
3005
3006 // Arm relocate functions class
3007 //
3008
3009 template<bool big_endian>
3010 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3011 {
3012 public:
3013 typedef enum
3014 {
3015 STATUS_OKAY, // No error during relocation.
3016 STATUS_OVERFLOW, // Relocation overflow.
3017 STATUS_BAD_RELOC // Relocation cannot be applied.
3018 } Status;
3019
3020 private:
3021 typedef Relocate_functions<32, big_endian> Base;
3022 typedef Arm_relocate_functions<big_endian> This;
3023
3024 // Encoding of imm16 argument for movt and movw ARM instructions
3025 // from ARM ARM:
3026 //
3027 // imm16 := imm4 | imm12
3028 //
3029 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3030 // +-------+---------------+-------+-------+-----------------------+
3031 // | | |imm4 | |imm12 |
3032 // +-------+---------------+-------+-------+-----------------------+
3033
3034 // Extract the relocation addend from VAL based on the ARM
3035 // instruction encoding described above.
3036 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3037 extract_arm_movw_movt_addend(
3038 typename elfcpp::Swap<32, big_endian>::Valtype val)
3039 {
3040 // According to the Elf ABI for ARM Architecture the immediate
3041 // field is sign-extended to form the addend.
3042 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3043 }
3044
3045 // Insert X into VAL based on the ARM instruction encoding described
3046 // above.
3047 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3048 insert_val_arm_movw_movt(
3049 typename elfcpp::Swap<32, big_endian>::Valtype val,
3050 typename elfcpp::Swap<32, big_endian>::Valtype x)
3051 {
3052 val &= 0xfff0f000;
3053 val |= x & 0x0fff;
3054 val |= (x & 0xf000) << 4;
3055 return val;
3056 }
3057
3058 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3059 // from ARM ARM:
3060 //
3061 // imm16 := imm4 | i | imm3 | imm8
3062 //
3063 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3064 // +---------+-+-----------+-------++-+-----+-------+---------------+
3065 // | |i| |imm4 || |imm3 | |imm8 |
3066 // +---------+-+-----------+-------++-+-----+-------+---------------+
3067
3068 // Extract the relocation addend from VAL based on the Thumb2
3069 // instruction encoding described above.
3070 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3071 extract_thumb_movw_movt_addend(
3072 typename elfcpp::Swap<32, big_endian>::Valtype val)
3073 {
3074 // According to the Elf ABI for ARM Architecture the immediate
3075 // field is sign-extended to form the addend.
3076 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3077 | ((val >> 15) & 0x0800)
3078 | ((val >> 4) & 0x0700)
3079 | (val & 0x00ff));
3080 }
3081
3082 // Insert X into VAL based on the Thumb2 instruction encoding
3083 // described above.
3084 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3085 insert_val_thumb_movw_movt(
3086 typename elfcpp::Swap<32, big_endian>::Valtype val,
3087 typename elfcpp::Swap<32, big_endian>::Valtype x)
3088 {
3089 val &= 0xfbf08f00;
3090 val |= (x & 0xf000) << 4;
3091 val |= (x & 0x0800) << 15;
3092 val |= (x & 0x0700) << 4;
3093 val |= (x & 0x00ff);
3094 return val;
3095 }
3096
3097 // Calculate the smallest constant Kn for the specified residual.
3098 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3099 static uint32_t
3100 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3101 {
3102 int32_t msb;
3103
3104 if (residual == 0)
3105 return 0;
3106 // Determine the most significant bit in the residual and
3107 // align the resulting value to a 2-bit boundary.
3108 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3109 ;
3110 // The desired shift is now (msb - 6), or zero, whichever
3111 // is the greater.
3112 return (((msb - 6) < 0) ? 0 : (msb - 6));
3113 }
3114
3115 // Calculate the final residual for the specified group index.
3116 // If the passed group index is less than zero, the method will return
3117 // the value of the specified residual without any change.
3118 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3119 static typename elfcpp::Swap<32, big_endian>::Valtype
3120 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3121 const int group)
3122 {
3123 for (int n = 0; n <= group; n++)
3124 {
3125 // Calculate which part of the value to mask.
3126 uint32_t shift = calc_grp_kn(residual);
3127 // Calculate the residual for the next time around.
3128 residual &= ~(residual & (0xff << shift));
3129 }
3130
3131 return residual;
3132 }
3133
3134 // Calculate the value of Gn for the specified group index.
3135 // We return it in the form of an encoded constant-and-rotation.
3136 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3137 static typename elfcpp::Swap<32, big_endian>::Valtype
3138 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3139 const int group)
3140 {
3141 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3142 uint32_t shift = 0;
3143
3144 for (int n = 0; n <= group; n++)
3145 {
3146 // Calculate which part of the value to mask.
3147 shift = calc_grp_kn(residual);
3148 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3149 gn = residual & (0xff << shift);
3150 // Calculate the residual for the next time around.
3151 residual &= ~gn;
3152 }
3153 // Return Gn in the form of an encoded constant-and-rotation.
3154 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3155 }
3156
3157 public:
3158 // Handle ARM long branches.
3159 static typename This::Status
3160 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3161 unsigned char*, const Sized_symbol<32>*,
3162 const Arm_relobj<big_endian>*, unsigned int,
3163 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3164
3165 // Handle THUMB long branches.
3166 static typename This::Status
3167 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3168 unsigned char*, const Sized_symbol<32>*,
3169 const Arm_relobj<big_endian>*, unsigned int,
3170 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3171
3172
3173 // Return the branch offset of a 32-bit THUMB branch.
3174 static inline int32_t
3175 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3176 {
3177 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3178 // involving the J1 and J2 bits.
3179 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3180 uint32_t upper = upper_insn & 0x3ffU;
3181 uint32_t lower = lower_insn & 0x7ffU;
3182 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3183 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3184 uint32_t i1 = j1 ^ s ? 0 : 1;
3185 uint32_t i2 = j2 ^ s ? 0 : 1;
3186
3187 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3188 | (upper << 12) | (lower << 1));
3189 }
3190
3191 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3192 // UPPER_INSN is the original upper instruction of the branch. Caller is
3193 // responsible for overflow checking and BLX offset adjustment.
3194 static inline uint16_t
3195 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3196 {
3197 uint32_t s = offset < 0 ? 1 : 0;
3198 uint32_t bits = static_cast<uint32_t>(offset);
3199 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3200 }
3201
3202 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3203 // LOWER_INSN is the original lower instruction of the branch. Caller is
3204 // responsible for overflow checking and BLX offset adjustment.
3205 static inline uint16_t
3206 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3207 {
3208 uint32_t s = offset < 0 ? 1 : 0;
3209 uint32_t bits = static_cast<uint32_t>(offset);
3210 return ((lower_insn & ~0x2fffU)
3211 | ((((bits >> 23) & 1) ^ !s) << 13)
3212 | ((((bits >> 22) & 1) ^ !s) << 11)
3213 | ((bits >> 1) & 0x7ffU));
3214 }
3215
3216 // Return the branch offset of a 32-bit THUMB conditional branch.
3217 static inline int32_t
3218 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3219 {
3220 uint32_t s = (upper_insn & 0x0400U) >> 10;
3221 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3222 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3223 uint32_t lower = (lower_insn & 0x07ffU);
3224 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3225
3226 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3227 }
3228
3229 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3230 // instruction. UPPER_INSN is the original upper instruction of the branch.
3231 // Caller is responsible for overflow checking.
3232 static inline uint16_t
3233 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3234 {
3235 uint32_t s = offset < 0 ? 1 : 0;
3236 uint32_t bits = static_cast<uint32_t>(offset);
3237 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3238 }
3239
3240 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3241 // instruction. LOWER_INSN is the original lower instruction of the branch.
3242 // The caller is responsible for overflow checking.
3243 static inline uint16_t
3244 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3245 {
3246 uint32_t bits = static_cast<uint32_t>(offset);
3247 uint32_t j2 = (bits & 0x00080000U) >> 19;
3248 uint32_t j1 = (bits & 0x00040000U) >> 18;
3249 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3250
3251 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3252 }
3253
3254 // R_ARM_ABS8: S + A
3255 static inline typename This::Status
3256 abs8(unsigned char* view,
3257 const Sized_relobj_file<32, big_endian>* object,
3258 const Symbol_value<32>* psymval)
3259 {
3260 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3261 Valtype* wv = reinterpret_cast<Valtype*>(view);
3262 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3263 int32_t addend = Bits<8>::sign_extend32(val);
3264 Arm_address x = psymval->value(object, addend);
3265 val = Bits<32>::bit_select32(val, x, 0xffU);
3266 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3267
3268 // R_ARM_ABS8 permits signed or unsigned results.
3269 return (Bits<8>::has_signed_unsigned_overflow32(x)
3270 ? This::STATUS_OVERFLOW
3271 : This::STATUS_OKAY);
3272 }
3273
3274 // R_ARM_THM_ABS5: S + A
3275 static inline typename This::Status
3276 thm_abs5(unsigned char* view,
3277 const Sized_relobj_file<32, big_endian>* object,
3278 const Symbol_value<32>* psymval)
3279 {
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3284 Reltype addend = (val & 0x7e0U) >> 6;
3285 Reltype x = psymval->value(object, addend);
3286 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3287 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3288 return (Bits<5>::has_overflow32(x)
3289 ? This::STATUS_OVERFLOW
3290 : This::STATUS_OKAY);
3291 }
3292
3293 // R_ARM_ABS12: S + A
3294 static inline typename This::Status
3295 abs12(unsigned char* view,
3296 const Sized_relobj_file<32, big_endian>* object,
3297 const Symbol_value<32>* psymval)
3298 {
3299 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3300 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3301 Valtype* wv = reinterpret_cast<Valtype*>(view);
3302 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3303 Reltype addend = val & 0x0fffU;
3304 Reltype x = psymval->value(object, addend);
3305 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3306 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3307 return (Bits<12>::has_overflow32(x)
3308 ? This::STATUS_OVERFLOW
3309 : This::STATUS_OKAY);
3310 }
3311
3312 // R_ARM_ABS16: S + A
3313 static inline typename This::Status
3314 abs16(unsigned char* view,
3315 const Sized_relobj_file<32, big_endian>* object,
3316 const Symbol_value<32>* psymval)
3317 {
3318 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3319 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3320 int32_t addend = Bits<16>::sign_extend32(val);
3321 Arm_address x = psymval->value(object, addend);
3322 val = Bits<32>::bit_select32(val, x, 0xffffU);
3323 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3324
3325 // R_ARM_ABS16 permits signed or unsigned results.
3326 return (Bits<16>::has_signed_unsigned_overflow32(x)
3327 ? This::STATUS_OVERFLOW
3328 : This::STATUS_OKAY);
3329 }
3330
3331 // R_ARM_ABS32: (S + A) | T
3332 static inline typename This::Status
3333 abs32(unsigned char* view,
3334 const Sized_relobj_file<32, big_endian>* object,
3335 const Symbol_value<32>* psymval,
3336 Arm_address thumb_bit)
3337 {
3338 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3339 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3340 Valtype x = psymval->value(object, addend) | thumb_bit;
3341 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3342 return This::STATUS_OKAY;
3343 }
3344
3345 // R_ARM_REL32: (S + A) | T - P
3346 static inline typename This::Status
3347 rel32(unsigned char* view,
3348 const Sized_relobj_file<32, big_endian>* object,
3349 const Symbol_value<32>* psymval,
3350 Arm_address address,
3351 Arm_address thumb_bit)
3352 {
3353 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3354 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3355 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3356 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3357 return This::STATUS_OKAY;
3358 }
3359
3360 // R_ARM_THM_JUMP24: (S + A) | T - P
3361 static typename This::Status
3362 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3363 const Symbol_value<32>* psymval, Arm_address address,
3364 Arm_address thumb_bit);
3365
3366 // R_ARM_THM_JUMP6: S + A – P
3367 static inline typename This::Status
3368 thm_jump6(unsigned char* view,
3369 const Sized_relobj_file<32, big_endian>* object,
3370 const Symbol_value<32>* psymval,
3371 Arm_address address)
3372 {
3373 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3374 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3375 Valtype* wv = reinterpret_cast<Valtype*>(view);
3376 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3377 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3378 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3379 Reltype x = (psymval->value(object, addend) - address);
3380 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3381 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3382 // CZB does only forward jumps.
3383 return ((x > 0x007e)
3384 ? This::STATUS_OVERFLOW
3385 : This::STATUS_OKAY);
3386 }
3387
3388 // R_ARM_THM_JUMP8: S + A – P
3389 static inline typename This::Status
3390 thm_jump8(unsigned char* view,
3391 const Sized_relobj_file<32, big_endian>* object,
3392 const Symbol_value<32>* psymval,
3393 Arm_address address)
3394 {
3395 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3396 Valtype* wv = reinterpret_cast<Valtype*>(view);
3397 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3398 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3399 int32_t x = (psymval->value(object, addend) - address);
3400 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3401 | ((x & 0x01fe) >> 1)));
3402 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3403 return (Bits<9>::has_overflow32(x)
3404 ? This::STATUS_OVERFLOW
3405 : This::STATUS_OKAY);
3406 }
3407
3408 // R_ARM_THM_JUMP11: S + A – P
3409 static inline typename This::Status
3410 thm_jump11(unsigned char* view,
3411 const Sized_relobj_file<32, big_endian>* object,
3412 const Symbol_value<32>* psymval,
3413 Arm_address address)
3414 {
3415 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3416 Valtype* wv = reinterpret_cast<Valtype*>(view);
3417 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3418 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3419 int32_t x = (psymval->value(object, addend) - address);
3420 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3421 | ((x & 0x0ffe) >> 1)));
3422 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3423 return (Bits<12>::has_overflow32(x)
3424 ? This::STATUS_OVERFLOW
3425 : This::STATUS_OKAY);
3426 }
3427
3428 // R_ARM_BASE_PREL: B(S) + A - P
3429 static inline typename This::Status
3430 base_prel(unsigned char* view,
3431 Arm_address origin,
3432 Arm_address address)
3433 {
3434 Base::rel32(view, origin - address);
3435 return STATUS_OKAY;
3436 }
3437
3438 // R_ARM_BASE_ABS: B(S) + A
3439 static inline typename This::Status
3440 base_abs(unsigned char* view,
3441 Arm_address origin)
3442 {
3443 Base::rel32(view, origin);
3444 return STATUS_OKAY;
3445 }
3446
3447 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3448 static inline typename This::Status
3449 got_brel(unsigned char* view,
3450 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3451 {
3452 Base::rel32(view, got_offset);
3453 return This::STATUS_OKAY;
3454 }
3455
3456 // R_ARM_GOT_PREL: GOT(S) + A - P
3457 static inline typename This::Status
3458 got_prel(unsigned char* view,
3459 Arm_address got_entry,
3460 Arm_address address)
3461 {
3462 Base::rel32(view, got_entry - address);
3463 return This::STATUS_OKAY;
3464 }
3465
3466 // R_ARM_PREL: (S + A) | T - P
3467 static inline typename This::Status
3468 prel31(unsigned char* view,
3469 const Sized_relobj_file<32, big_endian>* object,
3470 const Symbol_value<32>* psymval,
3471 Arm_address address,
3472 Arm_address thumb_bit)
3473 {
3474 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3475 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3476 Valtype addend = Bits<31>::sign_extend32(val);
3477 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3478 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3479 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3480 return (Bits<31>::has_overflow32(x)
3481 ? This::STATUS_OVERFLOW
3482 : This::STATUS_OKAY);
3483 }
3484
3485 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3486 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3487 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3488 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3489 static inline typename This::Status
3490 movw(unsigned char* view,
3491 const Sized_relobj_file<32, big_endian>* object,
3492 const Symbol_value<32>* psymval,
3493 Arm_address relative_address_base,
3494 Arm_address thumb_bit,
3495 bool check_overflow)
3496 {
3497 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3498 Valtype* wv = reinterpret_cast<Valtype*>(view);
3499 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3500 Valtype addend = This::extract_arm_movw_movt_addend(val);
3501 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3502 - relative_address_base);
3503 val = This::insert_val_arm_movw_movt(val, x);
3504 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3505 return ((check_overflow && Bits<16>::has_overflow32(x))
3506 ? This::STATUS_OVERFLOW
3507 : This::STATUS_OKAY);
3508 }
3509
3510 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3511 // R_ARM_MOVT_PREL: S + A - P
3512 // R_ARM_MOVT_BREL: S + A - B(S)
3513 static inline typename This::Status
3514 movt(unsigned char* view,
3515 const Sized_relobj_file<32, big_endian>* object,
3516 const Symbol_value<32>* psymval,
3517 Arm_address relative_address_base)
3518 {
3519 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3520 Valtype* wv = reinterpret_cast<Valtype*>(view);
3521 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3522 Valtype addend = This::extract_arm_movw_movt_addend(val);
3523 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3524 val = This::insert_val_arm_movw_movt(val, x);
3525 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3526 // FIXME: IHI0044D says that we should check for overflow.
3527 return This::STATUS_OKAY;
3528 }
3529
3530 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3531 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3532 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3533 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3534 static inline typename This::Status
3535 thm_movw(unsigned char* view,
3536 const Sized_relobj_file<32, big_endian>* object,
3537 const Symbol_value<32>* psymval,
3538 Arm_address relative_address_base,
3539 Arm_address thumb_bit,
3540 bool check_overflow)
3541 {
3542 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3543 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3544 Valtype* wv = reinterpret_cast<Valtype*>(view);
3545 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3546 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3547 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3548 Reltype x =
3549 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3550 val = This::insert_val_thumb_movw_movt(val, x);
3551 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3552 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3553 return ((check_overflow && Bits<16>::has_overflow32(x))
3554 ? This::STATUS_OVERFLOW
3555 : This::STATUS_OKAY);
3556 }
3557
3558 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3559 // R_ARM_THM_MOVT_PREL: S + A - P
3560 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3561 static inline typename This::Status
3562 thm_movt(unsigned char* view,
3563 const Sized_relobj_file<32, big_endian>* object,
3564 const Symbol_value<32>* psymval,
3565 Arm_address relative_address_base)
3566 {
3567 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3568 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3569 Valtype* wv = reinterpret_cast<Valtype*>(view);
3570 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3571 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3572 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3573 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3574 val = This::insert_val_thumb_movw_movt(val, x);
3575 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3576 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3577 return This::STATUS_OKAY;
3578 }
3579
3580 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3581 static inline typename This::Status
3582 thm_alu11(unsigned char* view,
3583 const Sized_relobj_file<32, big_endian>* object,
3584 const Symbol_value<32>* psymval,
3585 Arm_address address,
3586 Arm_address thumb_bit)
3587 {
3588 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3589 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3590 Valtype* wv = reinterpret_cast<Valtype*>(view);
3591 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3592 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3593
3594 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3595 // -----------------------------------------------------------------------
3596 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3597 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3598 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3599 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3600 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3601 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3602
3603 // Determine a sign for the addend.
3604 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3605 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3606 // Thumb2 addend encoding:
3607 // imm12 := i | imm3 | imm8
3608 int32_t addend = (insn & 0xff)
3609 | ((insn & 0x00007000) >> 4)
3610 | ((insn & 0x04000000) >> 15);
3611 // Apply a sign to the added.
3612 addend *= sign;
3613
3614 int32_t x = (psymval->value(object, addend) | thumb_bit)
3615 - (address & 0xfffffffc);
3616 Reltype val = abs(x);
3617 // Mask out the value and a distinct part of the ADD/SUB opcode
3618 // (bits 7:5 of opword).
3619 insn = (insn & 0xfb0f8f00)
3620 | (val & 0xff)
3621 | ((val & 0x700) << 4)
3622 | ((val & 0x800) << 15);
3623 // Set the opcode according to whether the value to go in the
3624 // place is negative.
3625 if (x < 0)
3626 insn |= 0x00a00000;
3627
3628 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3629 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3630 return ((val > 0xfff) ?
3631 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3632 }
3633
3634 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3635 static inline typename This::Status
3636 thm_pc8(unsigned char* view,
3637 const Sized_relobj_file<32, big_endian>* object,
3638 const Symbol_value<32>* psymval,
3639 Arm_address address)
3640 {
3641 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3642 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3643 Valtype* wv = reinterpret_cast<Valtype*>(view);
3644 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3645 Reltype addend = ((insn & 0x00ff) << 2);
3646 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3647 Reltype val = abs(x);
3648 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3649
3650 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3651 return ((val > 0x03fc)
3652 ? This::STATUS_OVERFLOW
3653 : This::STATUS_OKAY);
3654 }
3655
3656 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3657 static inline typename This::Status
3658 thm_pc12(unsigned char* view,
3659 const Sized_relobj_file<32, big_endian>* object,
3660 const Symbol_value<32>* psymval,
3661 Arm_address address)
3662 {
3663 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3664 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3665 Valtype* wv = reinterpret_cast<Valtype*>(view);
3666 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3667 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3668 // Determine a sign for the addend (positive if the U bit is 1).
3669 const int sign = (insn & 0x00800000) ? 1 : -1;
3670 int32_t addend = (insn & 0xfff);
3671 // Apply a sign to the added.
3672 addend *= sign;
3673
3674 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3675 Reltype val = abs(x);
3676 // Mask out and apply the value and the U bit.
3677 insn = (insn & 0xff7ff000) | (val & 0xfff);
3678 // Set the U bit according to whether the value to go in the
3679 // place is positive.
3680 if (x >= 0)
3681 insn |= 0x00800000;
3682
3683 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3684 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3685 return ((val > 0xfff) ?
3686 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3687 }
3688
3689 // R_ARM_V4BX
3690 static inline typename This::Status
3691 v4bx(const Relocate_info<32, big_endian>* relinfo,
3692 unsigned char* view,
3693 const Arm_relobj<big_endian>* object,
3694 const Arm_address address,
3695 const bool is_interworking)
3696 {
3697
3698 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3699 Valtype* wv = reinterpret_cast<Valtype*>(view);
3700 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3701
3702 // Ensure that we have a BX instruction.
3703 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3704 const uint32_t reg = (val & 0xf);
3705 if (is_interworking && reg != 0xf)
3706 {
3707 Stub_table<big_endian>* stub_table =
3708 object->stub_table(relinfo->data_shndx);
3709 gold_assert(stub_table != NULL);
3710
3711 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3712 gold_assert(stub != NULL);
3713
3714 int32_t veneer_address =
3715 stub_table->address() + stub->offset() - 8 - address;
3716 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3717 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3718 // Replace with a branch to veneer (B <addr>)
3719 val = (val & 0xf0000000) | 0x0a000000
3720 | ((veneer_address >> 2) & 0x00ffffff);
3721 }
3722 else
3723 {
3724 // Preserve Rm (lowest four bits) and the condition code
3725 // (highest four bits). Other bits encode MOV PC,Rm.
3726 val = (val & 0xf000000f) | 0x01a0f000;
3727 }
3728 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3729 return This::STATUS_OKAY;
3730 }
3731
3732 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3733 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3734 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3735 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3736 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3737 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3738 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3739 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3740 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3741 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3742 static inline typename This::Status
3743 arm_grp_alu(unsigned char* view,
3744 const Sized_relobj_file<32, big_endian>* object,
3745 const Symbol_value<32>* psymval,
3746 const int group,
3747 Arm_address address,
3748 Arm_address thumb_bit,
3749 bool check_overflow)
3750 {
3751 gold_assert(group >= 0 && group < 3);
3752 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3753 Valtype* wv = reinterpret_cast<Valtype*>(view);
3754 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3755
3756 // ALU group relocations are allowed only for the ADD/SUB instructions.
3757 // (0x00800000 - ADD, 0x00400000 - SUB)
3758 const Valtype opcode = insn & 0x01e00000;
3759 if (opcode != 0x00800000 && opcode != 0x00400000)
3760 return This::STATUS_BAD_RELOC;
3761
3762 // Determine a sign for the addend.
3763 const int sign = (opcode == 0x00800000) ? 1 : -1;
3764 // shifter = rotate_imm * 2
3765 const uint32_t shifter = (insn & 0xf00) >> 7;
3766 // Initial addend value.
3767 int32_t addend = insn & 0xff;
3768 // Rotate addend right by shifter.
3769 addend = (addend >> shifter) | (addend << (32 - shifter));
3770 // Apply a sign to the added.
3771 addend *= sign;
3772
3773 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3774 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3775 // Check for overflow if required
3776 if (check_overflow
3777 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3778 return This::STATUS_OVERFLOW;
3779
3780 // Mask out the value and the ADD/SUB part of the opcode; take care
3781 // not to destroy the S bit.
3782 insn &= 0xff1ff000;
3783 // Set the opcode according to whether the value to go in the
3784 // place is negative.
3785 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3786 // Encode the offset (encoded Gn).
3787 insn |= gn;
3788
3789 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3790 return This::STATUS_OKAY;
3791 }
3792
3793 // R_ARM_LDR_PC_G0: S + A - P
3794 // R_ARM_LDR_PC_G1: S + A - P
3795 // R_ARM_LDR_PC_G2: S + A - P
3796 // R_ARM_LDR_SB_G0: S + A - B(S)
3797 // R_ARM_LDR_SB_G1: S + A - B(S)
3798 // R_ARM_LDR_SB_G2: S + A - B(S)
3799 static inline typename This::Status
3800 arm_grp_ldr(unsigned char* view,
3801 const Sized_relobj_file<32, big_endian>* object,
3802 const Symbol_value<32>* psymval,
3803 const int group,
3804 Arm_address address)
3805 {
3806 gold_assert(group >= 0 && group < 3);
3807 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3808 Valtype* wv = reinterpret_cast<Valtype*>(view);
3809 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3810
3811 const int sign = (insn & 0x00800000) ? 1 : -1;
3812 int32_t addend = (insn & 0xfff) * sign;
3813 int32_t x = (psymval->value(object, addend) - address);
3814 // Calculate the relevant G(n-1) value to obtain this stage residual.
3815 Valtype residual =
3816 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3817 if (residual >= 0x1000)
3818 return This::STATUS_OVERFLOW;
3819
3820 // Mask out the value and U bit.
3821 insn &= 0xff7ff000;
3822 // Set the U bit for non-negative values.
3823 if (x >= 0)
3824 insn |= 0x00800000;
3825 insn |= residual;
3826
3827 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3828 return This::STATUS_OKAY;
3829 }
3830
3831 // R_ARM_LDRS_PC_G0: S + A - P
3832 // R_ARM_LDRS_PC_G1: S + A - P
3833 // R_ARM_LDRS_PC_G2: S + A - P
3834 // R_ARM_LDRS_SB_G0: S + A - B(S)
3835 // R_ARM_LDRS_SB_G1: S + A - B(S)
3836 // R_ARM_LDRS_SB_G2: S + A - B(S)
3837 static inline typename This::Status
3838 arm_grp_ldrs(unsigned char* view,
3839 const Sized_relobj_file<32, big_endian>* object,
3840 const Symbol_value<32>* psymval,
3841 const int group,
3842 Arm_address address)
3843 {
3844 gold_assert(group >= 0 && group < 3);
3845 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3846 Valtype* wv = reinterpret_cast<Valtype*>(view);
3847 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3848
3849 const int sign = (insn & 0x00800000) ? 1 : -1;
3850 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3851 int32_t x = (psymval->value(object, addend) - address);
3852 // Calculate the relevant G(n-1) value to obtain this stage residual.
3853 Valtype residual =
3854 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3855 if (residual >= 0x100)
3856 return This::STATUS_OVERFLOW;
3857
3858 // Mask out the value and U bit.
3859 insn &= 0xff7ff0f0;
3860 // Set the U bit for non-negative values.
3861 if (x >= 0)
3862 insn |= 0x00800000;
3863 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3864
3865 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3866 return This::STATUS_OKAY;
3867 }
3868
3869 // R_ARM_LDC_PC_G0: S + A - P
3870 // R_ARM_LDC_PC_G1: S + A - P
3871 // R_ARM_LDC_PC_G2: S + A - P
3872 // R_ARM_LDC_SB_G0: S + A - B(S)
3873 // R_ARM_LDC_SB_G1: S + A - B(S)
3874 // R_ARM_LDC_SB_G2: S + A - B(S)
3875 static inline typename This::Status
3876 arm_grp_ldc(unsigned char* view,
3877 const Sized_relobj_file<32, big_endian>* object,
3878 const Symbol_value<32>* psymval,
3879 const int group,
3880 Arm_address address)
3881 {
3882 gold_assert(group >= 0 && group < 3);
3883 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3884 Valtype* wv = reinterpret_cast<Valtype*>(view);
3885 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3886
3887 const int sign = (insn & 0x00800000) ? 1 : -1;
3888 int32_t addend = ((insn & 0xff) << 2) * sign;
3889 int32_t x = (psymval->value(object, addend) - address);
3890 // Calculate the relevant G(n-1) value to obtain this stage residual.
3891 Valtype residual =
3892 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3893 if ((residual & 0x3) != 0 || residual >= 0x400)
3894 return This::STATUS_OVERFLOW;
3895
3896 // Mask out the value and U bit.
3897 insn &= 0xff7fff00;
3898 // Set the U bit for non-negative values.
3899 if (x >= 0)
3900 insn |= 0x00800000;
3901 insn |= (residual >> 2);
3902
3903 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3904 return This::STATUS_OKAY;
3905 }
3906 };
3907
3908 // Relocate ARM long branches. This handles relocation types
3909 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3910 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3911 // undefined and we do not use PLT in this relocation. In such a case,
3912 // the branch is converted into an NOP.
3913
3914 template<bool big_endian>
3915 typename Arm_relocate_functions<big_endian>::Status
3916 Arm_relocate_functions<big_endian>::arm_branch_common(
3917 unsigned int r_type,
3918 const Relocate_info<32, big_endian>* relinfo,
3919 unsigned char* view,
3920 const Sized_symbol<32>* gsym,
3921 const Arm_relobj<big_endian>* object,
3922 unsigned int r_sym,
3923 const Symbol_value<32>* psymval,
3924 Arm_address address,
3925 Arm_address thumb_bit,
3926 bool is_weakly_undefined_without_plt)
3927 {
3928 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3929 Valtype* wv = reinterpret_cast<Valtype*>(view);
3930 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3931
3932 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3933 && ((val & 0x0f000000UL) == 0x0a000000UL);
3934 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3935 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3936 && ((val & 0x0f000000UL) == 0x0b000000UL);
3937 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3938 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3939
3940 // Check that the instruction is valid.
3941 if (r_type == elfcpp::R_ARM_CALL)
3942 {
3943 if (!insn_is_uncond_bl && !insn_is_blx)
3944 return This::STATUS_BAD_RELOC;
3945 }
3946 else if (r_type == elfcpp::R_ARM_JUMP24)
3947 {
3948 if (!insn_is_b && !insn_is_cond_bl)
3949 return This::STATUS_BAD_RELOC;
3950 }
3951 else if (r_type == elfcpp::R_ARM_PLT32)
3952 {
3953 if (!insn_is_any_branch)
3954 return This::STATUS_BAD_RELOC;
3955 }
3956 else if (r_type == elfcpp::R_ARM_XPC25)
3957 {
3958 // FIXME: AAELF document IH0044C does not say much about it other
3959 // than it being obsolete.
3960 if (!insn_is_any_branch)
3961 return This::STATUS_BAD_RELOC;
3962 }
3963 else
3964 gold_unreachable();
3965
3966 // A branch to an undefined weak symbol is turned into a jump to
3967 // the next instruction unless a PLT entry will be created.
3968 // Do the same for local undefined symbols.
3969 // The jump to the next instruction is optimized as a NOP depending
3970 // on the architecture.
3971 const Target_arm<big_endian>* arm_target =
3972 Target_arm<big_endian>::default_target();
3973 if (is_weakly_undefined_without_plt)
3974 {
3975 gold_assert(!parameters->options().relocatable());
3976 Valtype cond = val & 0xf0000000U;
3977 if (arm_target->may_use_arm_nop())
3978 val = cond | 0x0320f000;
3979 else
3980 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3981 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3982 return This::STATUS_OKAY;
3983 }
3984
3985 Valtype addend = Bits<26>::sign_extend32(val << 2);
3986 Valtype branch_target = psymval->value(object, addend);
3987 int32_t branch_offset = branch_target - address;
3988
3989 // We need a stub if the branch offset is too large or if we need
3990 // to switch mode.
3991 bool may_use_blx = arm_target->may_use_v5t_interworking();
3992 Reloc_stub* stub = NULL;
3993
3994 if (!parameters->options().relocatable()
3995 && (Bits<26>::has_overflow32(branch_offset)
3996 || ((thumb_bit != 0)
3997 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3998 {
3999 Valtype unadjusted_branch_target = psymval->value(object, 0);
4000
4001 Stub_type stub_type =
4002 Reloc_stub::stub_type_for_reloc(r_type, address,
4003 unadjusted_branch_target,
4004 (thumb_bit != 0));
4005 if (stub_type != arm_stub_none)
4006 {
4007 Stub_table<big_endian>* stub_table =
4008 object->stub_table(relinfo->data_shndx);
4009 gold_assert(stub_table != NULL);
4010
4011 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4012 stub = stub_table->find_reloc_stub(stub_key);
4013 gold_assert(stub != NULL);
4014 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4015 branch_target = stub_table->address() + stub->offset() + addend;
4016 branch_offset = branch_target - address;
4017 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4018 }
4019 }
4020
4021 // At this point, if we still need to switch mode, the instruction
4022 // must either be a BLX or a BL that can be converted to a BLX.
4023 if (thumb_bit != 0)
4024 {
4025 // Turn BL to BLX.
4026 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4027 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4028 }
4029
4030 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4031 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4032 return (Bits<26>::has_overflow32(branch_offset)
4033 ? This::STATUS_OVERFLOW
4034 : This::STATUS_OKAY);
4035 }
4036
4037 // Relocate THUMB long branches. This handles relocation types
4038 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4039 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4040 // undefined and we do not use PLT in this relocation. In such a case,
4041 // the branch is converted into an NOP.
4042
4043 template<bool big_endian>
4044 typename Arm_relocate_functions<big_endian>::Status
4045 Arm_relocate_functions<big_endian>::thumb_branch_common(
4046 unsigned int r_type,
4047 const Relocate_info<32, big_endian>* relinfo,
4048 unsigned char* view,
4049 const Sized_symbol<32>* gsym,
4050 const Arm_relobj<big_endian>* object,
4051 unsigned int r_sym,
4052 const Symbol_value<32>* psymval,
4053 Arm_address address,
4054 Arm_address thumb_bit,
4055 bool is_weakly_undefined_without_plt)
4056 {
4057 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4058 Valtype* wv = reinterpret_cast<Valtype*>(view);
4059 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4060 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4061
4062 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4063 // into account.
4064 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4065 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4066
4067 // Check that the instruction is valid.
4068 if (r_type == elfcpp::R_ARM_THM_CALL)
4069 {
4070 if (!is_bl_insn && !is_blx_insn)
4071 return This::STATUS_BAD_RELOC;
4072 }
4073 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4074 {
4075 // This cannot be a BLX.
4076 if (!is_bl_insn)
4077 return This::STATUS_BAD_RELOC;
4078 }
4079 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4080 {
4081 // Check for Thumb to Thumb call.
4082 if (!is_blx_insn)
4083 return This::STATUS_BAD_RELOC;
4084 if (thumb_bit != 0)
4085 {
4086 gold_warning(_("%s: Thumb BLX instruction targets "
4087 "thumb function '%s'."),
4088 object->name().c_str(),
4089 (gsym ? gsym->name() : "(local)"));
4090 // Convert BLX to BL.
4091 lower_insn |= 0x1000U;
4092 }
4093 }
4094 else
4095 gold_unreachable();
4096
4097 // A branch to an undefined weak symbol is turned into a jump to
4098 // the next instruction unless a PLT entry will be created.
4099 // The jump to the next instruction is optimized as a NOP.W for
4100 // Thumb-2 enabled architectures.
4101 const Target_arm<big_endian>* arm_target =
4102 Target_arm<big_endian>::default_target();
4103 if (is_weakly_undefined_without_plt)
4104 {
4105 gold_assert(!parameters->options().relocatable());
4106 if (arm_target->may_use_thumb2_nop())
4107 {
4108 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4109 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4110 }
4111 else
4112 {
4113 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4114 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4115 }
4116 return This::STATUS_OKAY;
4117 }
4118
4119 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4120 Arm_address branch_target = psymval->value(object, addend);
4121
4122 // For BLX, bit 1 of target address comes from bit 1 of base address.
4123 bool may_use_blx = arm_target->may_use_v5t_interworking();
4124 if (thumb_bit == 0 && may_use_blx)
4125 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4126
4127 int32_t branch_offset = branch_target - address;
4128
4129 // We need a stub if the branch offset is too large or if we need
4130 // to switch mode.
4131 bool thumb2 = arm_target->using_thumb2();
4132 if (!parameters->options().relocatable()
4133 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4134 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4135 || ((thumb_bit == 0)
4136 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4137 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4138 {
4139 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4140
4141 Stub_type stub_type =
4142 Reloc_stub::stub_type_for_reloc(r_type, address,
4143 unadjusted_branch_target,
4144 (thumb_bit != 0));
4145
4146 if (stub_type != arm_stub_none)
4147 {
4148 Stub_table<big_endian>* stub_table =
4149 object->stub_table(relinfo->data_shndx);
4150 gold_assert(stub_table != NULL);
4151
4152 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4153 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4154 gold_assert(stub != NULL);
4155 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4156 branch_target = stub_table->address() + stub->offset() + addend;
4157 if (thumb_bit == 0 && may_use_blx)
4158 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4159 branch_offset = branch_target - address;
4160 }
4161 }
4162
4163 // At this point, if we still need to switch mode, the instruction
4164 // must either be a BLX or a BL that can be converted to a BLX.
4165 if (thumb_bit == 0)
4166 {
4167 gold_assert(may_use_blx
4168 && (r_type == elfcpp::R_ARM_THM_CALL
4169 || r_type == elfcpp::R_ARM_THM_XPC22));
4170 // Make sure this is a BLX.
4171 lower_insn &= ~0x1000U;
4172 }
4173 else
4174 {
4175 // Make sure this is a BL.
4176 lower_insn |= 0x1000U;
4177 }
4178
4179 // For a BLX instruction, make sure that the relocation is rounded up
4180 // to a word boundary. This follows the semantics of the instruction
4181 // which specifies that bit 1 of the target address will come from bit
4182 // 1 of the base address.
4183 if ((lower_insn & 0x5000U) == 0x4000U)
4184 gold_assert((branch_offset & 3) == 0);
4185
4186 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4187 // We use the Thumb-2 encoding, which is safe even if dealing with
4188 // a Thumb-1 instruction by virtue of our overflow check above. */
4189 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4190 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4191
4192 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4193 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4194
4195 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4196
4197 return ((thumb2
4198 ? Bits<25>::has_overflow32(branch_offset)
4199 : Bits<23>::has_overflow32(branch_offset))
4200 ? This::STATUS_OVERFLOW
4201 : This::STATUS_OKAY);
4202 }
4203
4204 // Relocate THUMB-2 long conditional branches.
4205 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4206 // undefined and we do not use PLT in this relocation. In such a case,
4207 // the branch is converted into an NOP.
4208
4209 template<bool big_endian>
4210 typename Arm_relocate_functions<big_endian>::Status
4211 Arm_relocate_functions<big_endian>::thm_jump19(
4212 unsigned char* view,
4213 const Arm_relobj<big_endian>* object,
4214 const Symbol_value<32>* psymval,
4215 Arm_address address,
4216 Arm_address thumb_bit)
4217 {
4218 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4219 Valtype* wv = reinterpret_cast<Valtype*>(view);
4220 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4221 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4222 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4223
4224 Arm_address branch_target = psymval->value(object, addend);
4225 int32_t branch_offset = branch_target - address;
4226
4227 // ??? Should handle interworking? GCC might someday try to
4228 // use this for tail calls.
4229 // FIXME: We do support thumb entry to PLT yet.
4230 if (thumb_bit == 0)
4231 {
4232 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4233 return This::STATUS_BAD_RELOC;
4234 }
4235
4236 // Put RELOCATION back into the insn.
4237 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4238 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4239
4240 // Put the relocated value back in the object file:
4241 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4242 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4243
4244 return (Bits<21>::has_overflow32(branch_offset)
4245 ? This::STATUS_OVERFLOW
4246 : This::STATUS_OKAY);
4247 }
4248
4249 // Get the GOT section, creating it if necessary.
4250
4251 template<bool big_endian>
4252 Arm_output_data_got<big_endian>*
4253 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4254 {
4255 if (this->got_ == NULL)
4256 {
4257 gold_assert(symtab != NULL && layout != NULL);
4258
4259 // When using -z now, we can treat .got as a relro section.
4260 // Without -z now, it is modified after program startup by lazy
4261 // PLT relocations.
4262 bool is_got_relro = parameters->options().now();
4263 Output_section_order got_order = (is_got_relro
4264 ? ORDER_RELRO_LAST
4265 : ORDER_DATA);
4266
4267 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4268 // .got.plt sections in output. The output .got section contains both
4269 // PLT and non-PLT GOT entries.
4270 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4271
4272 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4273 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4274 this->got_, got_order, is_got_relro);
4275
4276 // The old GNU linker creates a .got.plt section. We just
4277 // create another set of data in the .got section. Note that we
4278 // always create a PLT if we create a GOT, although the PLT
4279 // might be empty.
4280 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4281 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4282 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4283 this->got_plt_, got_order, is_got_relro);
4284
4285 // The first three entries are reserved.
4286 this->got_plt_->set_current_data_size(3 * 4);
4287
4288 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4289 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4290 Symbol_table::PREDEFINED,
4291 this->got_plt_,
4292 0, 0, elfcpp::STT_OBJECT,
4293 elfcpp::STB_LOCAL,
4294 elfcpp::STV_HIDDEN, 0,
4295 false, false);
4296
4297 // If there are any IRELATIVE relocations, they get GOT entries
4298 // in .got.plt after the jump slot entries.
4299 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4300 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4301 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4302 this->got_irelative_,
4303 got_order, is_got_relro);
4304
4305 }
4306 return this->got_;
4307 }
4308
4309 // Get the dynamic reloc section, creating it if necessary.
4310
4311 template<bool big_endian>
4312 typename Target_arm<big_endian>::Reloc_section*
4313 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4314 {
4315 if (this->rel_dyn_ == NULL)
4316 {
4317 gold_assert(layout != NULL);
4318 // Create both relocation sections in the same place, so as to ensure
4319 // their relative order in the output section.
4320 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4321 this->rel_irelative_ = new Reloc_section(false);
4322 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4323 elfcpp::SHF_ALLOC, this->rel_dyn_,
4324 ORDER_DYNAMIC_RELOCS, false);
4325 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4326 elfcpp::SHF_ALLOC, this->rel_irelative_,
4327 ORDER_DYNAMIC_RELOCS, false);
4328 }
4329 return this->rel_dyn_;
4330 }
4331
4332
4333 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4334 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4335 // follow the other dynamic relocations so that they can refer to global
4336 // variables initialized by those relocs.
4337
4338 template<bool big_endian>
4339 typename Target_arm<big_endian>::Reloc_section*
4340 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4341 {
4342 if (this->rel_irelative_ == NULL)
4343 {
4344 // Delegate the creation to rel_dyn_section so as to ensure their order in
4345 // the output section.
4346 this->rel_dyn_section(layout);
4347 gold_assert(this->rel_irelative_ != NULL
4348 && (this->rel_dyn_->output_section()
4349 == this->rel_irelative_->output_section()));
4350 }
4351 return this->rel_irelative_;
4352 }
4353
4354
4355 // Insn_template methods.
4356
4357 // Return byte size of an instruction template.
4358
4359 size_t
4360 Insn_template::size() const
4361 {
4362 switch (this->type())
4363 {
4364 case THUMB16_TYPE:
4365 case THUMB16_SPECIAL_TYPE:
4366 return 2;
4367 case ARM_TYPE:
4368 case THUMB32_TYPE:
4369 case DATA_TYPE:
4370 return 4;
4371 default:
4372 gold_unreachable();
4373 }
4374 }
4375
4376 // Return alignment of an instruction template.
4377
4378 unsigned
4379 Insn_template::alignment() const
4380 {
4381 switch (this->type())
4382 {
4383 case THUMB16_TYPE:
4384 case THUMB16_SPECIAL_TYPE:
4385 case THUMB32_TYPE:
4386 return 2;
4387 case ARM_TYPE:
4388 case DATA_TYPE:
4389 return 4;
4390 default:
4391 gold_unreachable();
4392 }
4393 }
4394
4395 // Stub_template methods.
4396
4397 Stub_template::Stub_template(
4398 Stub_type type, const Insn_template* insns,
4399 size_t insn_count)
4400 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4401 entry_in_thumb_mode_(false), relocs_()
4402 {
4403 off_t offset = 0;
4404
4405 // Compute byte size and alignment of stub template.
4406 for (size_t i = 0; i < insn_count; i++)
4407 {
4408 unsigned insn_alignment = insns[i].alignment();
4409 size_t insn_size = insns[i].size();
4410 gold_assert((offset & (insn_alignment - 1)) == 0);
4411 this->alignment_ = std::max(this->alignment_, insn_alignment);
4412 switch (insns[i].type())
4413 {
4414 case Insn_template::THUMB16_TYPE:
4415 case Insn_template::THUMB16_SPECIAL_TYPE:
4416 if (i == 0)
4417 this->entry_in_thumb_mode_ = true;
4418 break;
4419
4420 case Insn_template::THUMB32_TYPE:
4421 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4422 this->relocs_.push_back(Reloc(i, offset));
4423 if (i == 0)
4424 this->entry_in_thumb_mode_ = true;
4425 break;
4426
4427 case Insn_template::ARM_TYPE:
4428 // Handle cases where the target is encoded within the
4429 // instruction.
4430 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4431 this->relocs_.push_back(Reloc(i, offset));
4432 break;
4433
4434 case Insn_template::DATA_TYPE:
4435 // Entry point cannot be data.
4436 gold_assert(i != 0);
4437 this->relocs_.push_back(Reloc(i, offset));
4438 break;
4439
4440 default:
4441 gold_unreachable();
4442 }
4443 offset += insn_size;
4444 }
4445 this->size_ = offset;
4446 }
4447
4448 // Stub methods.
4449
4450 // Template to implement do_write for a specific target endianness.
4451
4452 template<bool big_endian>
4453 void inline
4454 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4455 {
4456 const Stub_template* stub_template = this->stub_template();
4457 const Insn_template* insns = stub_template->insns();
4458
4459 // FIXME: We do not handle BE8 encoding yet.
4460 unsigned char* pov = view;
4461 for (size_t i = 0; i < stub_template->insn_count(); i++)
4462 {
4463 switch (insns[i].type())
4464 {
4465 case Insn_template::THUMB16_TYPE:
4466 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4467 break;
4468 case Insn_template::THUMB16_SPECIAL_TYPE:
4469 elfcpp::Swap<16, big_endian>::writeval(
4470 pov,
4471 this->thumb16_special(i));
4472 break;
4473 case Insn_template::THUMB32_TYPE:
4474 {
4475 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4476 uint32_t lo = insns[i].data() & 0xffff;
4477 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4478 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4479 }
4480 break;
4481 case Insn_template::ARM_TYPE:
4482 case Insn_template::DATA_TYPE:
4483 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4484 break;
4485 default:
4486 gold_unreachable();
4487 }
4488 pov += insns[i].size();
4489 }
4490 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4491 }
4492
4493 // Reloc_stub::Key methods.
4494
4495 // Dump a Key as a string for debugging.
4496
4497 std::string
4498 Reloc_stub::Key::name() const
4499 {
4500 if (this->r_sym_ == invalid_index)
4501 {
4502 // Global symbol key name
4503 // <stub-type>:<symbol name>:<addend>.
4504 const std::string sym_name = this->u_.symbol->name();
4505 // We need to print two hex number and two colons. So just add 100 bytes
4506 // to the symbol name size.
4507 size_t len = sym_name.size() + 100;
4508 char* buffer = new char[len];
4509 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4510 sym_name.c_str(), this->addend_);
4511 gold_assert(c > 0 && c < static_cast<int>(len));
4512 delete[] buffer;
4513 return std::string(buffer);
4514 }
4515 else
4516 {
4517 // local symbol key name
4518 // <stub-type>:<object>:<r_sym>:<addend>.
4519 const size_t len = 200;
4520 char buffer[len];
4521 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4522 this->u_.relobj, this->r_sym_, this->addend_);
4523 gold_assert(c > 0 && c < static_cast<int>(len));
4524 return std::string(buffer);
4525 }
4526 }
4527
4528 // Reloc_stub methods.
4529
4530 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4531 // LOCATION to DESTINATION.
4532 // This code is based on the arm_type_of_stub function in
4533 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4534 // class simple.
4535
4536 Stub_type
4537 Reloc_stub::stub_type_for_reloc(
4538 unsigned int r_type,
4539 Arm_address location,
4540 Arm_address destination,
4541 bool target_is_thumb)
4542 {
4543 Stub_type stub_type = arm_stub_none;
4544
4545 // This is a bit ugly but we want to avoid using a templated class for
4546 // big and little endianities.
4547 bool may_use_blx;
4548 bool should_force_pic_veneer = parameters->options().pic_veneer();
4549 bool thumb2;
4550 bool thumb_only;
4551 if (parameters->target().is_big_endian())
4552 {
4553 const Target_arm<true>* big_endian_target =
4554 Target_arm<true>::default_target();
4555 may_use_blx = big_endian_target->may_use_v5t_interworking();
4556 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4557 thumb2 = big_endian_target->using_thumb2();
4558 thumb_only = big_endian_target->using_thumb_only();
4559 }
4560 else
4561 {
4562 const Target_arm<false>* little_endian_target =
4563 Target_arm<false>::default_target();
4564 may_use_blx = little_endian_target->may_use_v5t_interworking();
4565 should_force_pic_veneer |=
4566 little_endian_target->should_force_pic_veneer();
4567 thumb2 = little_endian_target->using_thumb2();
4568 thumb_only = little_endian_target->using_thumb_only();
4569 }
4570
4571 int64_t branch_offset;
4572 bool output_is_position_independent =
4573 parameters->options().output_is_position_independent();
4574 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4575 {
4576 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4577 // base address (instruction address + 4).
4578 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4579 destination = Bits<32>::bit_select32(destination, location, 0x2);
4580 branch_offset = static_cast<int64_t>(destination) - location;
4581
4582 // Handle cases where:
4583 // - this call goes too far (different Thumb/Thumb2 max
4584 // distance)
4585 // - it's a Thumb->Arm call and blx is not available, or it's a
4586 // Thumb->Arm branch (not bl). A stub is needed in this case.
4587 if ((!thumb2
4588 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4589 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4590 || (thumb2
4591 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4592 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4593 || ((!target_is_thumb)
4594 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4595 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4596 {
4597 if (target_is_thumb)
4598 {
4599 // Thumb to thumb.
4600 if (!thumb_only)
4601 {
4602 stub_type = (output_is_position_independent
4603 || should_force_pic_veneer)
4604 // PIC stubs.
4605 ? ((may_use_blx
4606 && (r_type == elfcpp::R_ARM_THM_CALL))
4607 // V5T and above. Stub starts with ARM code, so
4608 // we must be able to switch mode before
4609 // reaching it, which is only possible for 'bl'
4610 // (ie R_ARM_THM_CALL relocation).
4611 ? arm_stub_long_branch_any_thumb_pic
4612 // On V4T, use Thumb code only.
4613 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4614
4615 // non-PIC stubs.
4616 : ((may_use_blx
4617 && (r_type == elfcpp::R_ARM_THM_CALL))
4618 ? arm_stub_long_branch_any_any // V5T and above.
4619 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4620 }
4621 else
4622 {
4623 stub_type = (output_is_position_independent
4624 || should_force_pic_veneer)
4625 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4626 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4627 }
4628 }
4629 else
4630 {
4631 // Thumb to arm.
4632
4633 // FIXME: We should check that the input section is from an
4634 // object that has interwork enabled.
4635
4636 stub_type = (output_is_position_independent
4637 || should_force_pic_veneer)
4638 // PIC stubs.
4639 ? ((may_use_blx
4640 && (r_type == elfcpp::R_ARM_THM_CALL))
4641 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4642 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4643
4644 // non-PIC stubs.
4645 : ((may_use_blx
4646 && (r_type == elfcpp::R_ARM_THM_CALL))
4647 ? arm_stub_long_branch_any_any // V5T and above.
4648 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4649
4650 // Handle v4t short branches.
4651 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4652 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4653 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4654 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4655 }
4656 }
4657 }
4658 else if (r_type == elfcpp::R_ARM_CALL
4659 || r_type == elfcpp::R_ARM_JUMP24
4660 || r_type == elfcpp::R_ARM_PLT32)
4661 {
4662 branch_offset = static_cast<int64_t>(destination) - location;
4663 if (target_is_thumb)
4664 {
4665 // Arm to thumb.
4666
4667 // FIXME: We should check that the input section is from an
4668 // object that has interwork enabled.
4669
4670 // We have an extra 2-bytes reach because of
4671 // the mode change (bit 24 (H) of BLX encoding).
4672 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4673 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4674 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4675 || (r_type == elfcpp::R_ARM_JUMP24)
4676 || (r_type == elfcpp::R_ARM_PLT32))
4677 {
4678 stub_type = (output_is_position_independent
4679 || should_force_pic_veneer)
4680 // PIC stubs.
4681 ? (may_use_blx
4682 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4683 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4684
4685 // non-PIC stubs.
4686 : (may_use_blx
4687 ? arm_stub_long_branch_any_any // V5T and above.
4688 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4689 }
4690 }
4691 else
4692 {
4693 // Arm to arm.
4694 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4695 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4696 {
4697 stub_type = (output_is_position_independent
4698 || should_force_pic_veneer)
4699 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4700 : arm_stub_long_branch_any_any; /// non-PIC.
4701 }
4702 }
4703 }
4704
4705 return stub_type;
4706 }
4707
4708 // Cortex_a8_stub methods.
4709
4710 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4711 // I is the position of the instruction template in the stub template.
4712
4713 uint16_t
4714 Cortex_a8_stub::do_thumb16_special(size_t i)
4715 {
4716 // The only use of this is to copy condition code from a conditional
4717 // branch being worked around to the corresponding conditional branch in
4718 // to the stub.
4719 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4720 && i == 0);
4721 uint16_t data = this->stub_template()->insns()[i].data();
4722 gold_assert((data & 0xff00U) == 0xd000U);
4723 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4724 return data;
4725 }
4726
4727 // Stub_factory methods.
4728
4729 Stub_factory::Stub_factory()
4730 {
4731 // The instruction template sequences are declared as static
4732 // objects and initialized first time the constructor runs.
4733
4734 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4735 // to reach the stub if necessary.
4736 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4737 {
4738 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4739 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4740 // dcd R_ARM_ABS32(X)
4741 };
4742
4743 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4744 // available.
4745 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4746 {
4747 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4748 Insn_template::arm_insn(0xe12fff1c), // bx ip
4749 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4750 // dcd R_ARM_ABS32(X)
4751 };
4752
4753 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4754 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4755 {
4756 Insn_template::thumb16_insn(0xb401), // push {r0}
4757 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4758 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4759 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4760 Insn_template::thumb16_insn(0x4760), // bx ip
4761 Insn_template::thumb16_insn(0xbf00), // nop
4762 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4763 // dcd R_ARM_ABS32(X)
4764 };
4765
4766 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4767 // allowed.
4768 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4769 {
4770 Insn_template::thumb16_insn(0x4778), // bx pc
4771 Insn_template::thumb16_insn(0x46c0), // nop
4772 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4773 Insn_template::arm_insn(0xe12fff1c), // bx ip
4774 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4775 // dcd R_ARM_ABS32(X)
4776 };
4777
4778 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4779 // available.
4780 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4781 {
4782 Insn_template::thumb16_insn(0x4778), // bx pc
4783 Insn_template::thumb16_insn(0x46c0), // nop
4784 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4785 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4786 // dcd R_ARM_ABS32(X)
4787 };
4788
4789 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4790 // one, when the destination is close enough.
4791 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4792 {
4793 Insn_template::thumb16_insn(0x4778), // bx pc
4794 Insn_template::thumb16_insn(0x46c0), // nop
4795 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4796 };
4797
4798 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4799 // blx to reach the stub if necessary.
4800 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4801 {
4802 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4803 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4804 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4805 // dcd R_ARM_REL32(X-4)
4806 };
4807
4808 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4809 // blx to reach the stub if necessary. We can not add into pc;
4810 // it is not guaranteed to mode switch (different in ARMv6 and
4811 // ARMv7).
4812 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4813 {
4814 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4815 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4816 Insn_template::arm_insn(0xe12fff1c), // bx ip
4817 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4818 // dcd R_ARM_REL32(X)
4819 };
4820
4821 // V4T ARM -> ARM long branch stub, PIC.
4822 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4823 {
4824 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4825 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4826 Insn_template::arm_insn(0xe12fff1c), // bx ip
4827 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4828 // dcd R_ARM_REL32(X)
4829 };
4830
4831 // V4T Thumb -> ARM long branch stub, PIC.
4832 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4833 {
4834 Insn_template::thumb16_insn(0x4778), // bx pc
4835 Insn_template::thumb16_insn(0x46c0), // nop
4836 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4837 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4838 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4839 // dcd R_ARM_REL32(X)
4840 };
4841
4842 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4843 // architectures.
4844 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4845 {
4846 Insn_template::thumb16_insn(0xb401), // push {r0}
4847 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4848 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4849 Insn_template::thumb16_insn(0x4484), // add ip, r0
4850 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4851 Insn_template::thumb16_insn(0x4760), // bx ip
4852 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4853 // dcd R_ARM_REL32(X)
4854 };
4855
4856 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4857 // allowed.
4858 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4859 {
4860 Insn_template::thumb16_insn(0x4778), // bx pc
4861 Insn_template::thumb16_insn(0x46c0), // nop
4862 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4863 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4864 Insn_template::arm_insn(0xe12fff1c), // bx ip
4865 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4866 // dcd R_ARM_REL32(X)
4867 };
4868
4869 // Cortex-A8 erratum-workaround stubs.
4870
4871 // Stub used for conditional branches (which may be beyond +/-1MB away,
4872 // so we can't use a conditional branch to reach this stub).
4873
4874 // original code:
4875 //
4876 // b<cond> X
4877 // after:
4878 //
4879 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4880 {
4881 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4882 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4883 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4884 // b.w X
4885 };
4886
4887 // Stub used for b.w and bl.w instructions.
4888
4889 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4890 {
4891 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4892 };
4893
4894 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4895 {
4896 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4897 };
4898
4899 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4900 // instruction (which switches to ARM mode) to point to this stub. Jump to
4901 // the real destination using an ARM-mode branch.
4902 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4903 {
4904 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4905 };
4906
4907 // Stub used to provide an interworking for R_ARM_V4BX relocation
4908 // (bx r[n] instruction).
4909 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4910 {
4911 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4912 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4913 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4914 };
4915
4916 // Fill in the stub template look-up table. Stub templates are constructed
4917 // per instance of Stub_factory for fast look-up without locking
4918 // in a thread-enabled environment.
4919
4920 this->stub_templates_[arm_stub_none] =
4921 new Stub_template(arm_stub_none, NULL, 0);
4922
4923 #define DEF_STUB(x) \
4924 do \
4925 { \
4926 size_t array_size \
4927 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4928 Stub_type type = arm_stub_##x; \
4929 this->stub_templates_[type] = \
4930 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4931 } \
4932 while (0);
4933
4934 DEF_STUBS
4935 #undef DEF_STUB
4936 }
4937
4938 // Stub_table methods.
4939
4940 // Remove all Cortex-A8 stub.
4941
4942 template<bool big_endian>
4943 void
4944 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4945 {
4946 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4948 ++p)
4949 delete p->second;
4950 this->cortex_a8_stubs_.clear();
4951 }
4952
4953 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4954
4955 template<bool big_endian>
4956 void
4957 Stub_table<big_endian>::relocate_stub(
4958 Stub* stub,
4959 const Relocate_info<32, big_endian>* relinfo,
4960 Target_arm<big_endian>* arm_target,
4961 Output_section* output_section,
4962 unsigned char* view,
4963 Arm_address address,
4964 section_size_type view_size)
4965 {
4966 const Stub_template* stub_template = stub->stub_template();
4967 if (stub_template->reloc_count() != 0)
4968 {
4969 // Adjust view to cover the stub only.
4970 section_size_type offset = stub->offset();
4971 section_size_type stub_size = stub_template->size();
4972 gold_assert(offset + stub_size <= view_size);
4973
4974 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4975 address + offset, stub_size);
4976 }
4977 }
4978
4979 // Relocate all stubs in this stub table.
4980
4981 template<bool big_endian>
4982 void
4983 Stub_table<big_endian>::relocate_stubs(
4984 const Relocate_info<32, big_endian>* relinfo,
4985 Target_arm<big_endian>* arm_target,
4986 Output_section* output_section,
4987 unsigned char* view,
4988 Arm_address address,
4989 section_size_type view_size)
4990 {
4991 // If we are passed a view bigger than the stub table's. we need to
4992 // adjust the view.
4993 gold_assert(address == this->address()
4994 && (view_size
4995 == static_cast<section_size_type>(this->data_size())));
4996
4997 // Relocate all relocation stubs.
4998 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4999 p != this->reloc_stubs_.end();
5000 ++p)
5001 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5002 address, view_size);
5003
5004 // Relocate all Cortex-A8 stubs.
5005 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5006 p != this->cortex_a8_stubs_.end();
5007 ++p)
5008 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5009 address, view_size);
5010
5011 // Relocate all ARM V4BX stubs.
5012 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5013 p != this->arm_v4bx_stubs_.end();
5014 ++p)
5015 {
5016 if (*p != NULL)
5017 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5018 address, view_size);
5019 }
5020 }
5021
5022 // Write out the stubs to file.
5023
5024 template<bool big_endian>
5025 void
5026 Stub_table<big_endian>::do_write(Output_file* of)
5027 {
5028 off_t offset = this->offset();
5029 const section_size_type oview_size =
5030 convert_to_section_size_type(this->data_size());
5031 unsigned char* const oview = of->get_output_view(offset, oview_size);
5032
5033 // Write relocation stubs.
5034 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5035 p != this->reloc_stubs_.end();
5036 ++p)
5037 {
5038 Reloc_stub* stub = p->second;
5039 Arm_address address = this->address() + stub->offset();
5040 gold_assert(address
5041 == align_address(address,
5042 stub->stub_template()->alignment()));
5043 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5044 big_endian);
5045 }
5046
5047 // Write Cortex-A8 stubs.
5048 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5049 p != this->cortex_a8_stubs_.end();
5050 ++p)
5051 {
5052 Cortex_a8_stub* stub = p->second;
5053 Arm_address address = this->address() + stub->offset();
5054 gold_assert(address
5055 == align_address(address,
5056 stub->stub_template()->alignment()));
5057 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5058 big_endian);
5059 }
5060
5061 // Write ARM V4BX relocation stubs.
5062 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5063 p != this->arm_v4bx_stubs_.end();
5064 ++p)
5065 {
5066 if (*p == NULL)
5067 continue;
5068
5069 Arm_address address = this->address() + (*p)->offset();
5070 gold_assert(address
5071 == align_address(address,
5072 (*p)->stub_template()->alignment()));
5073 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5074 big_endian);
5075 }
5076
5077 of->write_output_view(this->offset(), oview_size, oview);
5078 }
5079
5080 // Update the data size and address alignment of the stub table at the end
5081 // of a relaxation pass. Return true if either the data size or the
5082 // alignment changed in this relaxation pass.
5083
5084 template<bool big_endian>
5085 bool
5086 Stub_table<big_endian>::update_data_size_and_addralign()
5087 {
5088 // Go over all stubs in table to compute data size and address alignment.
5089 off_t size = this->reloc_stubs_size_;
5090 unsigned addralign = this->reloc_stubs_addralign_;
5091
5092 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5093 p != this->cortex_a8_stubs_.end();
5094 ++p)
5095 {
5096 const Stub_template* stub_template = p->second->stub_template();
5097 addralign = std::max(addralign, stub_template->alignment());
5098 size = (align_address(size, stub_template->alignment())
5099 + stub_template->size());
5100 }
5101
5102 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5103 p != this->arm_v4bx_stubs_.end();
5104 ++p)
5105 {
5106 if (*p == NULL)
5107 continue;
5108
5109 const Stub_template* stub_template = (*p)->stub_template();
5110 addralign = std::max(addralign, stub_template->alignment());
5111 size = (align_address(size, stub_template->alignment())
5112 + stub_template->size());
5113 }
5114
5115 // Check if either data size or alignment changed in this pass.
5116 // Update prev_data_size_ and prev_addralign_. These will be used
5117 // as the current data size and address alignment for the next pass.
5118 bool changed = size != this->prev_data_size_;
5119 this->prev_data_size_ = size;
5120
5121 if (addralign != this->prev_addralign_)
5122 changed = true;
5123 this->prev_addralign_ = addralign;
5124
5125 return changed;
5126 }
5127
5128 // Finalize the stubs. This sets the offsets of the stubs within the stub
5129 // table. It also marks all input sections needing Cortex-A8 workaround.
5130
5131 template<bool big_endian>
5132 void
5133 Stub_table<big_endian>::finalize_stubs()
5134 {
5135 off_t off = this->reloc_stubs_size_;
5136 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5137 p != this->cortex_a8_stubs_.end();
5138 ++p)
5139 {
5140 Cortex_a8_stub* stub = p->second;
5141 const Stub_template* stub_template = stub->stub_template();
5142 uint64_t stub_addralign = stub_template->alignment();
5143 off = align_address(off, stub_addralign);
5144 stub->set_offset(off);
5145 off += stub_template->size();
5146
5147 // Mark input section so that we can determine later if a code section
5148 // needs the Cortex-A8 workaround quickly.
5149 Arm_relobj<big_endian>* arm_relobj =
5150 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5151 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5152 }
5153
5154 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5155 p != this->arm_v4bx_stubs_.end();
5156 ++p)
5157 {
5158 if (*p == NULL)
5159 continue;
5160
5161 const Stub_template* stub_template = (*p)->stub_template();
5162 uint64_t stub_addralign = stub_template->alignment();
5163 off = align_address(off, stub_addralign);
5164 (*p)->set_offset(off);
5165 off += stub_template->size();
5166 }
5167
5168 gold_assert(off <= this->prev_data_size_);
5169 }
5170
5171 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5172 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5173 // of the address range seen by the linker.
5174
5175 template<bool big_endian>
5176 void
5177 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5178 Target_arm<big_endian>* arm_target,
5179 unsigned char* view,
5180 Arm_address view_address,
5181 section_size_type view_size)
5182 {
5183 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5184 for (Cortex_a8_stub_list::const_iterator p =
5185 this->cortex_a8_stubs_.lower_bound(view_address);
5186 ((p != this->cortex_a8_stubs_.end())
5187 && (p->first < (view_address + view_size)));
5188 ++p)
5189 {
5190 // We do not store the THUMB bit in the LSB of either the branch address
5191 // or the stub offset. There is no need to strip the LSB.
5192 Arm_address branch_address = p->first;
5193 const Cortex_a8_stub* stub = p->second;
5194 Arm_address stub_address = this->address() + stub->offset();
5195
5196 // Offset of the branch instruction relative to this view.
5197 section_size_type offset =
5198 convert_to_section_size_type(branch_address - view_address);
5199 gold_assert((offset + 4) <= view_size);
5200
5201 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5202 view + offset, branch_address);
5203 }
5204 }
5205
5206 // Arm_input_section methods.
5207
5208 // Initialize an Arm_input_section.
5209
5210 template<bool big_endian>
5211 void
5212 Arm_input_section<big_endian>::init()
5213 {
5214 Relobj* relobj = this->relobj();
5215 unsigned int shndx = this->shndx();
5216
5217 // We have to cache original size, alignment and contents to avoid locking
5218 // the original file.
5219 this->original_addralign_ =
5220 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5221
5222 // This is not efficient but we expect only a small number of relaxed
5223 // input sections for stubs.
5224 section_size_type section_size;
5225 const unsigned char* section_contents =
5226 relobj->section_contents(shndx, &section_size, false);
5227 this->original_size_ =
5228 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5229
5230 gold_assert(this->original_contents_ == NULL);
5231 this->original_contents_ = new unsigned char[section_size];
5232 memcpy(this->original_contents_, section_contents, section_size);
5233
5234 // We want to make this look like the original input section after
5235 // output sections are finalized.
5236 Output_section* os = relobj->output_section(shndx);
5237 off_t offset = relobj->output_section_offset(shndx);
5238 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5239 this->set_address(os->address() + offset);
5240 this->set_file_offset(os->offset() + offset);
5241
5242 this->set_current_data_size(this->original_size_);
5243 this->finalize_data_size();
5244 }
5245
5246 template<bool big_endian>
5247 void
5248 Arm_input_section<big_endian>::do_write(Output_file* of)
5249 {
5250 // We have to write out the original section content.
5251 gold_assert(this->original_contents_ != NULL);
5252 of->write(this->offset(), this->original_contents_,
5253 this->original_size_);
5254
5255 // If this owns a stub table and it is not empty, write it.
5256 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5257 this->stub_table_->write(of);
5258 }
5259
5260 // Finalize data size.
5261
5262 template<bool big_endian>
5263 void
5264 Arm_input_section<big_endian>::set_final_data_size()
5265 {
5266 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5267
5268 if (this->is_stub_table_owner())
5269 {
5270 this->stub_table_->finalize_data_size();
5271 off = align_address(off, this->stub_table_->addralign());
5272 off += this->stub_table_->data_size();
5273 }
5274 this->set_data_size(off);
5275 }
5276
5277 // Reset address and file offset.
5278
5279 template<bool big_endian>
5280 void
5281 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5282 {
5283 // Size of the original input section contents.
5284 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5285
5286 // If this is a stub table owner, account for the stub table size.
5287 if (this->is_stub_table_owner())
5288 {
5289 Stub_table<big_endian>* stub_table = this->stub_table_;
5290
5291 // Reset the stub table's address and file offset. The
5292 // current data size for child will be updated after that.
5293 stub_table_->reset_address_and_file_offset();
5294 off = align_address(off, stub_table_->addralign());
5295 off += stub_table->current_data_size();
5296 }
5297
5298 this->set_current_data_size(off);
5299 }
5300
5301 // Arm_exidx_cantunwind methods.
5302
5303 // Write this to Output file OF for a fixed endianness.
5304
5305 template<bool big_endian>
5306 void
5307 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5308 {
5309 off_t offset = this->offset();
5310 const section_size_type oview_size = 8;
5311 unsigned char* const oview = of->get_output_view(offset, oview_size);
5312
5313 Output_section* os = this->relobj_->output_section(this->shndx_);
5314 gold_assert(os != NULL);
5315
5316 Arm_relobj<big_endian>* arm_relobj =
5317 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5318 Arm_address output_offset =
5319 arm_relobj->get_output_section_offset(this->shndx_);
5320 Arm_address section_start;
5321 section_size_type section_size;
5322
5323 // Find out the end of the text section referred by this.
5324 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5325 {
5326 section_start = os->address() + output_offset;
5327 const Arm_exidx_input_section* exidx_input_section =
5328 arm_relobj->exidx_input_section_by_link(this->shndx_);
5329 gold_assert(exidx_input_section != NULL);
5330 section_size =
5331 convert_to_section_size_type(exidx_input_section->text_size());
5332 }
5333 else
5334 {
5335 // Currently this only happens for a relaxed section.
5336 const Output_relaxed_input_section* poris =
5337 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5338 gold_assert(poris != NULL);
5339 section_start = poris->address();
5340 section_size = convert_to_section_size_type(poris->data_size());
5341 }
5342
5343 // We always append this to the end of an EXIDX section.
5344 Arm_address output_address = section_start + section_size;
5345
5346 // Write out the entry. The first word either points to the beginning
5347 // or after the end of a text section. The second word is the special
5348 // EXIDX_CANTUNWIND value.
5349 uint32_t prel31_offset = output_address - this->address();
5350 if (Bits<31>::has_overflow32(offset))
5351 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5352 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5353 prel31_offset & 0x7fffffffU);
5354 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5355 elfcpp::EXIDX_CANTUNWIND);
5356
5357 of->write_output_view(this->offset(), oview_size, oview);
5358 }
5359
5360 // Arm_exidx_merged_section methods.
5361
5362 // Constructor for Arm_exidx_merged_section.
5363 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5364 // SECTION_OFFSET_MAP points to a section offset map describing how
5365 // parts of the input section are mapped to output. DELETED_BYTES is
5366 // the number of bytes deleted from the EXIDX input section.
5367
5368 Arm_exidx_merged_section::Arm_exidx_merged_section(
5369 const Arm_exidx_input_section& exidx_input_section,
5370 const Arm_exidx_section_offset_map& section_offset_map,
5371 uint32_t deleted_bytes)
5372 : Output_relaxed_input_section(exidx_input_section.relobj(),
5373 exidx_input_section.shndx(),
5374 exidx_input_section.addralign()),
5375 exidx_input_section_(exidx_input_section),
5376 section_offset_map_(section_offset_map)
5377 {
5378 // If we retain or discard the whole EXIDX input section, we would
5379 // not be here.
5380 gold_assert(deleted_bytes != 0
5381 && deleted_bytes != this->exidx_input_section_.size());
5382
5383 // Fix size here so that we do not need to implement set_final_data_size.
5384 uint32_t size = exidx_input_section.size() - deleted_bytes;
5385 this->set_data_size(size);
5386 this->fix_data_size();
5387
5388 // Allocate buffer for section contents and build contents.
5389 this->section_contents_ = new unsigned char[size];
5390 }
5391
5392 // Build the contents of a merged EXIDX output section.
5393
5394 void
5395 Arm_exidx_merged_section::build_contents(
5396 const unsigned char* original_contents,
5397 section_size_type original_size)
5398 {
5399 // Go over spans of input offsets and write only those that are not
5400 // discarded.
5401 section_offset_type in_start = 0;
5402 section_offset_type out_start = 0;
5403 section_offset_type in_max =
5404 convert_types<section_offset_type>(original_size);
5405 section_offset_type out_max =
5406 convert_types<section_offset_type>(this->data_size());
5407 for (Arm_exidx_section_offset_map::const_iterator p =
5408 this->section_offset_map_.begin();
5409 p != this->section_offset_map_.end();
5410 ++p)
5411 {
5412 section_offset_type in_end = p->first;
5413 gold_assert(in_end >= in_start);
5414 section_offset_type out_end = p->second;
5415 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5416 if (out_end != -1)
5417 {
5418 size_t out_chunk_size =
5419 convert_types<size_t>(out_end - out_start + 1);
5420
5421 gold_assert(out_chunk_size == in_chunk_size
5422 && in_end < in_max && out_end < out_max);
5423
5424 memcpy(this->section_contents_ + out_start,
5425 original_contents + in_start,
5426 out_chunk_size);
5427 out_start += out_chunk_size;
5428 }
5429 in_start += in_chunk_size;
5430 }
5431 }
5432
5433 // Given an input OBJECT, an input section index SHNDX within that
5434 // object, and an OFFSET relative to the start of that input
5435 // section, return whether or not the corresponding offset within
5436 // the output section is known. If this function returns true, it
5437 // sets *POUTPUT to the output offset. The value -1 indicates that
5438 // this input offset is being discarded.
5439
5440 bool
5441 Arm_exidx_merged_section::do_output_offset(
5442 const Relobj* relobj,
5443 unsigned int shndx,
5444 section_offset_type offset,
5445 section_offset_type* poutput) const
5446 {
5447 // We only handle offsets for the original EXIDX input section.
5448 if (relobj != this->exidx_input_section_.relobj()
5449 || shndx != this->exidx_input_section_.shndx())
5450 return false;
5451
5452 section_offset_type section_size =
5453 convert_types<section_offset_type>(this->exidx_input_section_.size());
5454 if (offset < 0 || offset >= section_size)
5455 // Input offset is out of valid range.
5456 *poutput = -1;
5457 else
5458 {
5459 // We need to look up the section offset map to determine the output
5460 // offset. Find the reference point in map that is first offset
5461 // bigger than or equal to this offset.
5462 Arm_exidx_section_offset_map::const_iterator p =
5463 this->section_offset_map_.lower_bound(offset);
5464
5465 // The section offset maps are build such that this should not happen if
5466 // input offset is in the valid range.
5467 gold_assert(p != this->section_offset_map_.end());
5468
5469 // We need to check if this is dropped.
5470 section_offset_type ref = p->first;
5471 section_offset_type mapped_ref = p->second;
5472
5473 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5474 // Offset is present in output.
5475 *poutput = mapped_ref + (offset - ref);
5476 else
5477 // Offset is discarded owing to EXIDX entry merging.
5478 *poutput = -1;
5479 }
5480
5481 return true;
5482 }
5483
5484 // Write this to output file OF.
5485
5486 void
5487 Arm_exidx_merged_section::do_write(Output_file* of)
5488 {
5489 off_t offset = this->offset();
5490 const section_size_type oview_size = this->data_size();
5491 unsigned char* const oview = of->get_output_view(offset, oview_size);
5492
5493 Output_section* os = this->relobj()->output_section(this->shndx());
5494 gold_assert(os != NULL);
5495
5496 memcpy(oview, this->section_contents_, oview_size);
5497 of->write_output_view(this->offset(), oview_size, oview);
5498 }
5499
5500 // Arm_exidx_fixup methods.
5501
5502 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5503 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5504 // points to the end of the last seen EXIDX section.
5505
5506 void
5507 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5508 {
5509 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5510 && this->last_input_section_ != NULL)
5511 {
5512 Relobj* relobj = this->last_input_section_->relobj();
5513 unsigned int text_shndx = this->last_input_section_->link();
5514 Arm_exidx_cantunwind* cantunwind =
5515 new Arm_exidx_cantunwind(relobj, text_shndx);
5516 this->exidx_output_section_->add_output_section_data(cantunwind);
5517 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5518 }
5519 }
5520
5521 // Process an EXIDX section entry in input. Return whether this entry
5522 // can be deleted in the output. SECOND_WORD in the second word of the
5523 // EXIDX entry.
5524
5525 bool
5526 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5527 {
5528 bool delete_entry;
5529 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5530 {
5531 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5532 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5533 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5534 }
5535 else if ((second_word & 0x80000000) != 0)
5536 {
5537 // Inlined unwinding data. Merge if equal to previous.
5538 delete_entry = (merge_exidx_entries_
5539 && this->last_unwind_type_ == UT_INLINED_ENTRY
5540 && this->last_inlined_entry_ == second_word);
5541 this->last_unwind_type_ = UT_INLINED_ENTRY;
5542 this->last_inlined_entry_ = second_word;
5543 }
5544 else
5545 {
5546 // Normal table entry. In theory we could merge these too,
5547 // but duplicate entries are likely to be much less common.
5548 delete_entry = false;
5549 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5550 }
5551 return delete_entry;
5552 }
5553
5554 // Update the current section offset map during EXIDX section fix-up.
5555 // If there is no map, create one. INPUT_OFFSET is the offset of a
5556 // reference point, DELETED_BYTES is the number of deleted by in the
5557 // section so far. If DELETE_ENTRY is true, the reference point and
5558 // all offsets after the previous reference point are discarded.
5559
5560 void
5561 Arm_exidx_fixup::update_offset_map(
5562 section_offset_type input_offset,
5563 section_size_type deleted_bytes,
5564 bool delete_entry)
5565 {
5566 if (this->section_offset_map_ == NULL)
5567 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5568 section_offset_type output_offset;
5569 if (delete_entry)
5570 output_offset = Arm_exidx_input_section::invalid_offset;
5571 else
5572 output_offset = input_offset - deleted_bytes;
5573 (*this->section_offset_map_)[input_offset] = output_offset;
5574 }
5575
5576 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5577 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5578 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5579 // If some entries are merged, also store a pointer to a newly created
5580 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5581 // owns the map and is responsible for releasing it after use.
5582
5583 template<bool big_endian>
5584 uint32_t
5585 Arm_exidx_fixup::process_exidx_section(
5586 const Arm_exidx_input_section* exidx_input_section,
5587 const unsigned char* section_contents,
5588 section_size_type section_size,
5589 Arm_exidx_section_offset_map** psection_offset_map)
5590 {
5591 Relobj* relobj = exidx_input_section->relobj();
5592 unsigned shndx = exidx_input_section->shndx();
5593
5594 if ((section_size % 8) != 0)
5595 {
5596 // Something is wrong with this section. Better not touch it.
5597 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5598 relobj->name().c_str(), shndx);
5599 this->last_input_section_ = exidx_input_section;
5600 this->last_unwind_type_ = UT_NONE;
5601 return 0;
5602 }
5603
5604 uint32_t deleted_bytes = 0;
5605 bool prev_delete_entry = false;
5606 gold_assert(this->section_offset_map_ == NULL);
5607
5608 for (section_size_type i = 0; i < section_size; i += 8)
5609 {
5610 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5611 const Valtype* wv =
5612 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5613 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5614
5615 bool delete_entry = this->process_exidx_entry(second_word);
5616
5617 // Entry deletion causes changes in output offsets. We use a std::map
5618 // to record these. And entry (x, y) means input offset x
5619 // is mapped to output offset y. If y is invalid_offset, then x is
5620 // dropped in the output. Because of the way std::map::lower_bound
5621 // works, we record the last offset in a region w.r.t to keeping or
5622 // dropping. If there is no entry (x0, y0) for an input offset x0,
5623 // the output offset y0 of it is determined by the output offset y1 of
5624 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5625 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5626 // y0 is also -1.
5627 if (delete_entry != prev_delete_entry && i != 0)
5628 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5629
5630 // Update total deleted bytes for this entry.
5631 if (delete_entry)
5632 deleted_bytes += 8;
5633
5634 prev_delete_entry = delete_entry;
5635 }
5636
5637 // If section offset map is not NULL, make an entry for the end of
5638 // section.
5639 if (this->section_offset_map_ != NULL)
5640 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5641
5642 *psection_offset_map = this->section_offset_map_;
5643 this->section_offset_map_ = NULL;
5644 this->last_input_section_ = exidx_input_section;
5645
5646 // Set the first output text section so that we can link the EXIDX output
5647 // section to it. Ignore any EXIDX input section that is completely merged.
5648 if (this->first_output_text_section_ == NULL
5649 && deleted_bytes != section_size)
5650 {
5651 unsigned int link = exidx_input_section->link();
5652 Output_section* os = relobj->output_section(link);
5653 gold_assert(os != NULL);
5654 this->first_output_text_section_ = os;
5655 }
5656
5657 return deleted_bytes;
5658 }
5659
5660 // Arm_output_section methods.
5661
5662 // Create a stub group for input sections from BEGIN to END. OWNER
5663 // points to the input section to be the owner a new stub table.
5664
5665 template<bool big_endian>
5666 void
5667 Arm_output_section<big_endian>::create_stub_group(
5668 Input_section_list::const_iterator begin,
5669 Input_section_list::const_iterator end,
5670 Input_section_list::const_iterator owner,
5671 Target_arm<big_endian>* target,
5672 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5673 const Task* task)
5674 {
5675 // We use a different kind of relaxed section in an EXIDX section.
5676 // The static casting from Output_relaxed_input_section to
5677 // Arm_input_section is invalid in an EXIDX section. We are okay
5678 // because we should not be calling this for an EXIDX section.
5679 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5680
5681 // Currently we convert ordinary input sections into relaxed sections only
5682 // at this point but we may want to support creating relaxed input section
5683 // very early. So we check here to see if owner is already a relaxed
5684 // section.
5685
5686 Arm_input_section<big_endian>* arm_input_section;
5687 if (owner->is_relaxed_input_section())
5688 {
5689 arm_input_section =
5690 Arm_input_section<big_endian>::as_arm_input_section(
5691 owner->relaxed_input_section());
5692 }
5693 else
5694 {
5695 gold_assert(owner->is_input_section());
5696 // Create a new relaxed input section. We need to lock the original
5697 // file.
5698 Task_lock_obj<Object> tl(task, owner->relobj());
5699 arm_input_section =
5700 target->new_arm_input_section(owner->relobj(), owner->shndx());
5701 new_relaxed_sections->push_back(arm_input_section);
5702 }
5703
5704 // Create a stub table.
5705 Stub_table<big_endian>* stub_table =
5706 target->new_stub_table(arm_input_section);
5707
5708 arm_input_section->set_stub_table(stub_table);
5709
5710 Input_section_list::const_iterator p = begin;
5711 Input_section_list::const_iterator prev_p;
5712
5713 // Look for input sections or relaxed input sections in [begin ... end].
5714 do
5715 {
5716 if (p->is_input_section() || p->is_relaxed_input_section())
5717 {
5718 // The stub table information for input sections live
5719 // in their objects.
5720 Arm_relobj<big_endian>* arm_relobj =
5721 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5722 arm_relobj->set_stub_table(p->shndx(), stub_table);
5723 }
5724 prev_p = p++;
5725 }
5726 while (prev_p != end);
5727 }
5728
5729 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5730 // of stub groups. We grow a stub group by adding input section until the
5731 // size is just below GROUP_SIZE. The last input section will be converted
5732 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5733 // input section after the stub table, effectively double the group size.
5734 //
5735 // This is similar to the group_sections() function in elf32-arm.c but is
5736 // implemented differently.
5737
5738 template<bool big_endian>
5739 void
5740 Arm_output_section<big_endian>::group_sections(
5741 section_size_type group_size,
5742 bool stubs_always_after_branch,
5743 Target_arm<big_endian>* target,
5744 const Task* task)
5745 {
5746 // States for grouping.
5747 typedef enum
5748 {
5749 // No group is being built.
5750 NO_GROUP,
5751 // A group is being built but the stub table is not found yet.
5752 // We keep group a stub group until the size is just under GROUP_SIZE.
5753 // The last input section in the group will be used as the stub table.
5754 FINDING_STUB_SECTION,
5755 // A group is being built and we have already found a stub table.
5756 // We enter this state to grow a stub group by adding input section
5757 // after the stub table. This effectively doubles the group size.
5758 HAS_STUB_SECTION
5759 } State;
5760
5761 // Any newly created relaxed sections are stored here.
5762 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5763
5764 State state = NO_GROUP;
5765 section_size_type off = 0;
5766 section_size_type group_begin_offset = 0;
5767 section_size_type group_end_offset = 0;
5768 section_size_type stub_table_end_offset = 0;
5769 Input_section_list::const_iterator group_begin =
5770 this->input_sections().end();
5771 Input_section_list::const_iterator stub_table =
5772 this->input_sections().end();
5773 Input_section_list::const_iterator group_end = this->input_sections().end();
5774 for (Input_section_list::const_iterator p = this->input_sections().begin();
5775 p != this->input_sections().end();
5776 ++p)
5777 {
5778 section_size_type section_begin_offset =
5779 align_address(off, p->addralign());
5780 section_size_type section_end_offset =
5781 section_begin_offset + p->data_size();
5782
5783 // Check to see if we should group the previously seen sections.
5784 switch (state)
5785 {
5786 case NO_GROUP:
5787 break;
5788
5789 case FINDING_STUB_SECTION:
5790 // Adding this section makes the group larger than GROUP_SIZE.
5791 if (section_end_offset - group_begin_offset >= group_size)
5792 {
5793 if (stubs_always_after_branch)
5794 {
5795 gold_assert(group_end != this->input_sections().end());
5796 this->create_stub_group(group_begin, group_end, group_end,
5797 target, &new_relaxed_sections,
5798 task);
5799 state = NO_GROUP;
5800 }
5801 else
5802 {
5803 // But wait, there's more! Input sections up to
5804 // stub_group_size bytes after the stub table can be
5805 // handled by it too.
5806 state = HAS_STUB_SECTION;
5807 stub_table = group_end;
5808 stub_table_end_offset = group_end_offset;
5809 }
5810 }
5811 break;
5812
5813 case HAS_STUB_SECTION:
5814 // Adding this section makes the post stub-section group larger
5815 // than GROUP_SIZE.
5816 if (section_end_offset - stub_table_end_offset >= group_size)
5817 {
5818 gold_assert(group_end != this->input_sections().end());
5819 this->create_stub_group(group_begin, group_end, stub_table,
5820 target, &new_relaxed_sections, task);
5821 state = NO_GROUP;
5822 }
5823 break;
5824
5825 default:
5826 gold_unreachable();
5827 }
5828
5829 // If we see an input section and currently there is no group, start
5830 // a new one. Skip any empty sections. We look at the data size
5831 // instead of calling p->relobj()->section_size() to avoid locking.
5832 if ((p->is_input_section() || p->is_relaxed_input_section())
5833 && (p->data_size() != 0))
5834 {
5835 if (state == NO_GROUP)
5836 {
5837 state = FINDING_STUB_SECTION;
5838 group_begin = p;
5839 group_begin_offset = section_begin_offset;
5840 }
5841
5842 // Keep track of the last input section seen.
5843 group_end = p;
5844 group_end_offset = section_end_offset;
5845 }
5846
5847 off = section_end_offset;
5848 }
5849
5850 // Create a stub group for any ungrouped sections.
5851 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5852 {
5853 gold_assert(group_end != this->input_sections().end());
5854 this->create_stub_group(group_begin, group_end,
5855 (state == FINDING_STUB_SECTION
5856 ? group_end
5857 : stub_table),
5858 target, &new_relaxed_sections, task);
5859 }
5860
5861 // Convert input section into relaxed input section in a batch.
5862 if (!new_relaxed_sections.empty())
5863 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5864
5865 // Update the section offsets
5866 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5867 {
5868 Arm_relobj<big_endian>* arm_relobj =
5869 Arm_relobj<big_endian>::as_arm_relobj(
5870 new_relaxed_sections[i]->relobj());
5871 unsigned int shndx = new_relaxed_sections[i]->shndx();
5872 // Tell Arm_relobj that this input section is converted.
5873 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5874 }
5875 }
5876
5877 // Append non empty text sections in this to LIST in ascending
5878 // order of their position in this.
5879
5880 template<bool big_endian>
5881 void
5882 Arm_output_section<big_endian>::append_text_sections_to_list(
5883 Text_section_list* list)
5884 {
5885 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5886
5887 for (Input_section_list::const_iterator p = this->input_sections().begin();
5888 p != this->input_sections().end();
5889 ++p)
5890 {
5891 // We only care about plain or relaxed input sections. We also
5892 // ignore any merged sections.
5893 if (p->is_input_section() || p->is_relaxed_input_section())
5894 list->push_back(Text_section_list::value_type(p->relobj(),
5895 p->shndx()));
5896 }
5897 }
5898
5899 template<bool big_endian>
5900 void
5901 Arm_output_section<big_endian>::fix_exidx_coverage(
5902 Layout* layout,
5903 const Text_section_list& sorted_text_sections,
5904 Symbol_table* symtab,
5905 bool merge_exidx_entries,
5906 const Task* task)
5907 {
5908 // We should only do this for the EXIDX output section.
5909 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5910
5911 // We don't want the relaxation loop to undo these changes, so we discard
5912 // the current saved states and take another one after the fix-up.
5913 this->discard_states();
5914
5915 // Remove all input sections.
5916 uint64_t address = this->address();
5917 typedef std::list<Output_section::Input_section> Input_section_list;
5918 Input_section_list input_sections;
5919 this->reset_address_and_file_offset();
5920 this->get_input_sections(address, std::string(""), &input_sections);
5921
5922 if (!this->input_sections().empty())
5923 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5924
5925 // Go through all the known input sections and record them.
5926 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5927 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5928 Section_id_hash> Text_to_exidx_map;
5929 Text_to_exidx_map text_to_exidx_map;
5930 for (Input_section_list::const_iterator p = input_sections.begin();
5931 p != input_sections.end();
5932 ++p)
5933 {
5934 // This should never happen. At this point, we should only see
5935 // plain EXIDX input sections.
5936 gold_assert(!p->is_relaxed_input_section());
5937 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5938 }
5939
5940 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5941
5942 // Go over the sorted text sections.
5943 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5944 Section_id_set processed_input_sections;
5945 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5946 p != sorted_text_sections.end();
5947 ++p)
5948 {
5949 Relobj* relobj = p->first;
5950 unsigned int shndx = p->second;
5951
5952 Arm_relobj<big_endian>* arm_relobj =
5953 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5954 const Arm_exidx_input_section* exidx_input_section =
5955 arm_relobj->exidx_input_section_by_link(shndx);
5956
5957 // If this text section has no EXIDX section or if the EXIDX section
5958 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5959 // of the last seen EXIDX section.
5960 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5961 {
5962 exidx_fixup.add_exidx_cantunwind_as_needed();
5963 continue;
5964 }
5965
5966 Relobj* exidx_relobj = exidx_input_section->relobj();
5967 unsigned int exidx_shndx = exidx_input_section->shndx();
5968 Section_id sid(exidx_relobj, exidx_shndx);
5969 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5970 if (iter == text_to_exidx_map.end())
5971 {
5972 // This is odd. We have not seen this EXIDX input section before.
5973 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5974 // issue a warning instead. We assume the user knows what he
5975 // or she is doing. Otherwise, this is an error.
5976 if (layout->script_options()->saw_sections_clause())
5977 gold_warning(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx, exidx_relobj->name().c_str());
5980 else
5981 gold_error(_("unwinding may not work because EXIDX input section"
5982 " %u of %s is not in EXIDX output section"),
5983 exidx_shndx, exidx_relobj->name().c_str());
5984
5985 exidx_fixup.add_exidx_cantunwind_as_needed();
5986 continue;
5987 }
5988
5989 // We need to access the contents of the EXIDX section, lock the
5990 // object here.
5991 Task_lock_obj<Object> tl(task, exidx_relobj);
5992 section_size_type exidx_size;
5993 const unsigned char* exidx_contents =
5994 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5995
5996 // Fix up coverage and append input section to output data list.
5997 Arm_exidx_section_offset_map* section_offset_map = NULL;
5998 uint32_t deleted_bytes =
5999 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
6000 exidx_contents,
6001 exidx_size,
6002 &section_offset_map);
6003
6004 if (deleted_bytes == exidx_input_section->size())
6005 {
6006 // The whole EXIDX section got merged. Remove it from output.
6007 gold_assert(section_offset_map == NULL);
6008 exidx_relobj->set_output_section(exidx_shndx, NULL);
6009
6010 // All local symbols defined in this input section will be dropped.
6011 // We need to adjust output local symbol count.
6012 arm_relobj->set_output_local_symbol_count_needs_update();
6013 }
6014 else if (deleted_bytes > 0)
6015 {
6016 // Some entries are merged. We need to convert this EXIDX input
6017 // section into a relaxed section.
6018 gold_assert(section_offset_map != NULL);
6019
6020 Arm_exidx_merged_section* merged_section =
6021 new Arm_exidx_merged_section(*exidx_input_section,
6022 *section_offset_map, deleted_bytes);
6023 merged_section->build_contents(exidx_contents, exidx_size);
6024
6025 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6026 this->add_relaxed_input_section(layout, merged_section, secname);
6027 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6028
6029 // All local symbols defined in discarded portions of this input
6030 // section will be dropped. We need to adjust output local symbol
6031 // count.
6032 arm_relobj->set_output_local_symbol_count_needs_update();
6033 }
6034 else
6035 {
6036 // Just add back the EXIDX input section.
6037 gold_assert(section_offset_map == NULL);
6038 const Output_section::Input_section* pis = iter->second;
6039 gold_assert(pis->is_input_section());
6040 this->add_script_input_section(*pis);
6041 }
6042
6043 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6044 }
6045
6046 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6047 exidx_fixup.add_exidx_cantunwind_as_needed();
6048
6049 // Remove any known EXIDX input sections that are not processed.
6050 for (Input_section_list::const_iterator p = input_sections.begin();
6051 p != input_sections.end();
6052 ++p)
6053 {
6054 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6055 == processed_input_sections.end())
6056 {
6057 // We discard a known EXIDX section because its linked
6058 // text section has been folded by ICF. We also discard an
6059 // EXIDX section with error, the output does not matter in this
6060 // case. We do this to avoid triggering asserts.
6061 Arm_relobj<big_endian>* arm_relobj =
6062 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6063 const Arm_exidx_input_section* exidx_input_section =
6064 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6065 gold_assert(exidx_input_section != NULL);
6066 if (!exidx_input_section->has_errors())
6067 {
6068 unsigned int text_shndx = exidx_input_section->link();
6069 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6070 }
6071
6072 // Remove this from link. We also need to recount the
6073 // local symbols.
6074 p->relobj()->set_output_section(p->shndx(), NULL);
6075 arm_relobj->set_output_local_symbol_count_needs_update();
6076 }
6077 }
6078
6079 // Link exidx output section to the first seen output section and
6080 // set correct entry size.
6081 this->set_link_section(exidx_fixup.first_output_text_section());
6082 this->set_entsize(8);
6083
6084 // Make changes permanent.
6085 this->save_states();
6086 this->set_section_offsets_need_adjustment();
6087 }
6088
6089 // Link EXIDX output sections to text output sections.
6090
6091 template<bool big_endian>
6092 void
6093 Arm_output_section<big_endian>::set_exidx_section_link()
6094 {
6095 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6096 if (!this->input_sections().empty())
6097 {
6098 Input_section_list::const_iterator p = this->input_sections().begin();
6099 Arm_relobj<big_endian>* arm_relobj =
6100 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6101 unsigned exidx_shndx = p->shndx();
6102 const Arm_exidx_input_section* exidx_input_section =
6103 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6104 gold_assert(exidx_input_section != NULL);
6105 unsigned int text_shndx = exidx_input_section->link();
6106 Output_section* os = arm_relobj->output_section(text_shndx);
6107 this->set_link_section(os);
6108 }
6109 }
6110
6111 // Arm_relobj methods.
6112
6113 // Determine if an input section is scannable for stub processing. SHDR is
6114 // the header of the section and SHNDX is the section index. OS is the output
6115 // section for the input section and SYMTAB is the global symbol table used to
6116 // look up ICF information.
6117
6118 template<bool big_endian>
6119 bool
6120 Arm_relobj<big_endian>::section_is_scannable(
6121 const elfcpp::Shdr<32, big_endian>& shdr,
6122 unsigned int shndx,
6123 const Output_section* os,
6124 const Symbol_table* symtab)
6125 {
6126 // Skip any empty sections, unallocated sections or sections whose
6127 // type are not SHT_PROGBITS.
6128 if (shdr.get_sh_size() == 0
6129 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6130 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6131 return false;
6132
6133 // Skip any discarded or ICF'ed sections.
6134 if (os == NULL || symtab->is_section_folded(this, shndx))
6135 return false;
6136
6137 // If this requires special offset handling, check to see if it is
6138 // a relaxed section. If this is not, then it is a merged section that
6139 // we cannot handle.
6140 if (this->is_output_section_offset_invalid(shndx))
6141 {
6142 const Output_relaxed_input_section* poris =
6143 os->find_relaxed_input_section(this, shndx);
6144 if (poris == NULL)
6145 return false;
6146 }
6147
6148 return true;
6149 }
6150
6151 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6152 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6153
6154 template<bool big_endian>
6155 bool
6156 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6157 const elfcpp::Shdr<32, big_endian>& shdr,
6158 const Relobj::Output_sections& out_sections,
6159 const Symbol_table* symtab,
6160 const unsigned char* pshdrs)
6161 {
6162 unsigned int sh_type = shdr.get_sh_type();
6163 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6164 return false;
6165
6166 // Ignore empty section.
6167 off_t sh_size = shdr.get_sh_size();
6168 if (sh_size == 0)
6169 return false;
6170
6171 // Ignore reloc section with unexpected symbol table. The
6172 // error will be reported in the final link.
6173 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6174 return false;
6175
6176 unsigned int reloc_size;
6177 if (sh_type == elfcpp::SHT_REL)
6178 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6179 else
6180 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6181
6182 // Ignore reloc section with unexpected entsize or uneven size.
6183 // The error will be reported in the final link.
6184 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6185 return false;
6186
6187 // Ignore reloc section with bad info. This error will be
6188 // reported in the final link.
6189 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6190 if (index >= this->shnum())
6191 return false;
6192
6193 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6194 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6195 return this->section_is_scannable(text_shdr, index,
6196 out_sections[index], symtab);
6197 }
6198
6199 // Return the output address of either a plain input section or a relaxed
6200 // input section. SHNDX is the section index. We define and use this
6201 // instead of calling Output_section::output_address because that is slow
6202 // for large output.
6203
6204 template<bool big_endian>
6205 Arm_address
6206 Arm_relobj<big_endian>::simple_input_section_output_address(
6207 unsigned int shndx,
6208 Output_section* os)
6209 {
6210 if (this->is_output_section_offset_invalid(shndx))
6211 {
6212 const Output_relaxed_input_section* poris =
6213 os->find_relaxed_input_section(this, shndx);
6214 // We do not handle merged sections here.
6215 gold_assert(poris != NULL);
6216 return poris->address();
6217 }
6218 else
6219 return os->address() + this->get_output_section_offset(shndx);
6220 }
6221
6222 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6223 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6224
6225 template<bool big_endian>
6226 bool
6227 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6228 const elfcpp::Shdr<32, big_endian>& shdr,
6229 unsigned int shndx,
6230 Output_section* os,
6231 const Symbol_table* symtab)
6232 {
6233 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6234 return false;
6235
6236 // If the section does not cross any 4K-boundaries, it does not need to
6237 // be scanned.
6238 Arm_address address = this->simple_input_section_output_address(shndx, os);
6239 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6240 return false;
6241
6242 return true;
6243 }
6244
6245 // Scan a section for Cortex-A8 workaround.
6246
6247 template<bool big_endian>
6248 void
6249 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6250 const elfcpp::Shdr<32, big_endian>& shdr,
6251 unsigned int shndx,
6252 Output_section* os,
6253 Target_arm<big_endian>* arm_target)
6254 {
6255 // Look for the first mapping symbol in this section. It should be
6256 // at (shndx, 0).
6257 Mapping_symbol_position section_start(shndx, 0);
6258 typename Mapping_symbols_info::const_iterator p =
6259 this->mapping_symbols_info_.lower_bound(section_start);
6260
6261 // There are no mapping symbols for this section. Treat it as a data-only
6262 // section.
6263 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6264 return;
6265
6266 Arm_address output_address =
6267 this->simple_input_section_output_address(shndx, os);
6268
6269 // Get the section contents.
6270 section_size_type input_view_size = 0;
6271 const unsigned char* input_view =
6272 this->section_contents(shndx, &input_view_size, false);
6273
6274 // We need to go through the mapping symbols to determine what to
6275 // scan. There are two reasons. First, we should look at THUMB code and
6276 // THUMB code only. Second, we only want to look at the 4K-page boundary
6277 // to speed up the scanning.
6278
6279 while (p != this->mapping_symbols_info_.end()
6280 && p->first.first == shndx)
6281 {
6282 typename Mapping_symbols_info::const_iterator next =
6283 this->mapping_symbols_info_.upper_bound(p->first);
6284
6285 // Only scan part of a section with THUMB code.
6286 if (p->second == 't')
6287 {
6288 // Determine the end of this range.
6289 section_size_type span_start =
6290 convert_to_section_size_type(p->first.second);
6291 section_size_type span_end;
6292 if (next != this->mapping_symbols_info_.end()
6293 && next->first.first == shndx)
6294 span_end = convert_to_section_size_type(next->first.second);
6295 else
6296 span_end = convert_to_section_size_type(shdr.get_sh_size());
6297
6298 if (((span_start + output_address) & ~0xfffUL)
6299 != ((span_end + output_address - 1) & ~0xfffUL))
6300 {
6301 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6302 span_start, span_end,
6303 input_view,
6304 output_address);
6305 }
6306 }
6307
6308 p = next;
6309 }
6310 }
6311
6312 // Scan relocations for stub generation.
6313
6314 template<bool big_endian>
6315 void
6316 Arm_relobj<big_endian>::scan_sections_for_stubs(
6317 Target_arm<big_endian>* arm_target,
6318 const Symbol_table* symtab,
6319 const Layout* layout)
6320 {
6321 unsigned int shnum = this->shnum();
6322 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6323
6324 // Read the section headers.
6325 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6326 shnum * shdr_size,
6327 true, true);
6328
6329 // To speed up processing, we set up hash tables for fast lookup of
6330 // input offsets to output addresses.
6331 this->initialize_input_to_output_maps();
6332
6333 const Relobj::Output_sections& out_sections(this->output_sections());
6334
6335 Relocate_info<32, big_endian> relinfo;
6336 relinfo.symtab = symtab;
6337 relinfo.layout = layout;
6338 relinfo.object = this;
6339
6340 // Do relocation stubs scanning.
6341 const unsigned char* p = pshdrs + shdr_size;
6342 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6343 {
6344 const elfcpp::Shdr<32, big_endian> shdr(p);
6345 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6346 pshdrs))
6347 {
6348 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6349 Arm_address output_offset = this->get_output_section_offset(index);
6350 Arm_address output_address;
6351 if (output_offset != invalid_address)
6352 output_address = out_sections[index]->address() + output_offset;
6353 else
6354 {
6355 // Currently this only happens for a relaxed section.
6356 const Output_relaxed_input_section* poris =
6357 out_sections[index]->find_relaxed_input_section(this, index);
6358 gold_assert(poris != NULL);
6359 output_address = poris->address();
6360 }
6361
6362 // Get the relocations.
6363 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6364 shdr.get_sh_size(),
6365 true, false);
6366
6367 // Get the section contents. This does work for the case in which
6368 // we modify the contents of an input section. We need to pass the
6369 // output view under such circumstances.
6370 section_size_type input_view_size = 0;
6371 const unsigned char* input_view =
6372 this->section_contents(index, &input_view_size, false);
6373
6374 relinfo.reloc_shndx = i;
6375 relinfo.data_shndx = index;
6376 unsigned int sh_type = shdr.get_sh_type();
6377 unsigned int reloc_size;
6378 if (sh_type == elfcpp::SHT_REL)
6379 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6380 else
6381 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6382
6383 Output_section* os = out_sections[index];
6384 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6385 shdr.get_sh_size() / reloc_size,
6386 os,
6387 output_offset == invalid_address,
6388 input_view, output_address,
6389 input_view_size);
6390 }
6391 }
6392
6393 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6394 // after its relocation section, if there is one, is processed for
6395 // relocation stubs. Merging this loop with the one above would have been
6396 // complicated since we would have had to make sure that relocation stub
6397 // scanning is done first.
6398 if (arm_target->fix_cortex_a8())
6399 {
6400 const unsigned char* p = pshdrs + shdr_size;
6401 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6402 {
6403 const elfcpp::Shdr<32, big_endian> shdr(p);
6404 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6405 out_sections[i],
6406 symtab))
6407 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6408 arm_target);
6409 }
6410 }
6411
6412 // After we've done the relocations, we release the hash tables,
6413 // since we no longer need them.
6414 this->free_input_to_output_maps();
6415 }
6416
6417 // Count the local symbols. The ARM backend needs to know if a symbol
6418 // is a THUMB function or not. For global symbols, it is easy because
6419 // the Symbol object keeps the ELF symbol type. For local symbol it is
6420 // harder because we cannot access this information. So we override the
6421 // do_count_local_symbol in parent and scan local symbols to mark
6422 // THUMB functions. This is not the most efficient way but I do not want to
6423 // slow down other ports by calling a per symbol target hook inside
6424 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6425
6426 template<bool big_endian>
6427 void
6428 Arm_relobj<big_endian>::do_count_local_symbols(
6429 Stringpool_template<char>* pool,
6430 Stringpool_template<char>* dynpool)
6431 {
6432 // We need to fix-up the values of any local symbols whose type are
6433 // STT_ARM_TFUNC.
6434
6435 // Ask parent to count the local symbols.
6436 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6437 const unsigned int loccount = this->local_symbol_count();
6438 if (loccount == 0)
6439 return;
6440
6441 // Initialize the thumb function bit-vector.
6442 std::vector<bool> empty_vector(loccount, false);
6443 this->local_symbol_is_thumb_function_.swap(empty_vector);
6444
6445 // Read the symbol table section header.
6446 const unsigned int symtab_shndx = this->symtab_shndx();
6447 elfcpp::Shdr<32, big_endian>
6448 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6449 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6450
6451 // Read the local symbols.
6452 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6453 gold_assert(loccount == symtabshdr.get_sh_info());
6454 off_t locsize = loccount * sym_size;
6455 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6456 locsize, true, true);
6457
6458 // For mapping symbol processing, we need to read the symbol names.
6459 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6460 if (strtab_shndx >= this->shnum())
6461 {
6462 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6463 return;
6464 }
6465
6466 elfcpp::Shdr<32, big_endian>
6467 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6468 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6469 {
6470 this->error(_("symbol table name section has wrong type: %u"),
6471 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6472 return;
6473 }
6474 const char* pnames =
6475 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6476 strtabshdr.get_sh_size(),
6477 false, false));
6478
6479 // Loop over the local symbols and mark any local symbols pointing
6480 // to THUMB functions.
6481
6482 // Skip the first dummy symbol.
6483 psyms += sym_size;
6484 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6485 this->local_values();
6486 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6487 {
6488 elfcpp::Sym<32, big_endian> sym(psyms);
6489 elfcpp::STT st_type = sym.get_st_type();
6490 Symbol_value<32>& lv((*plocal_values)[i]);
6491 Arm_address input_value = lv.input_value();
6492
6493 // Check to see if this is a mapping symbol.
6494 const char* sym_name = pnames + sym.get_st_name();
6495 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6496 {
6497 bool is_ordinary;
6498 unsigned int input_shndx =
6499 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6500 gold_assert(is_ordinary);
6501
6502 // Strip of LSB in case this is a THUMB symbol.
6503 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6504 this->mapping_symbols_info_[msp] = sym_name[1];
6505 }
6506
6507 if (st_type == elfcpp::STT_ARM_TFUNC
6508 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6509 {
6510 // This is a THUMB function. Mark this and canonicalize the
6511 // symbol value by setting LSB.
6512 this->local_symbol_is_thumb_function_[i] = true;
6513 if ((input_value & 1) == 0)
6514 lv.set_input_value(input_value | 1);
6515 }
6516 }
6517 }
6518
6519 // Relocate sections.
6520 template<bool big_endian>
6521 void
6522 Arm_relobj<big_endian>::do_relocate_sections(
6523 const Symbol_table* symtab,
6524 const Layout* layout,
6525 const unsigned char* pshdrs,
6526 Output_file* of,
6527 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6528 {
6529 // Call parent to relocate sections.
6530 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6531 pshdrs, of, pviews);
6532
6533 // We do not generate stubs if doing a relocatable link.
6534 if (parameters->options().relocatable())
6535 return;
6536
6537 // Relocate stub tables.
6538 unsigned int shnum = this->shnum();
6539
6540 Target_arm<big_endian>* arm_target =
6541 Target_arm<big_endian>::default_target();
6542
6543 Relocate_info<32, big_endian> relinfo;
6544 relinfo.symtab = symtab;
6545 relinfo.layout = layout;
6546 relinfo.object = this;
6547
6548 for (unsigned int i = 1; i < shnum; ++i)
6549 {
6550 Arm_input_section<big_endian>* arm_input_section =
6551 arm_target->find_arm_input_section(this, i);
6552
6553 if (arm_input_section != NULL
6554 && arm_input_section->is_stub_table_owner()
6555 && !arm_input_section->stub_table()->empty())
6556 {
6557 // We cannot discard a section if it owns a stub table.
6558 Output_section* os = this->output_section(i);
6559 gold_assert(os != NULL);
6560
6561 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6562 relinfo.reloc_shdr = NULL;
6563 relinfo.data_shndx = i;
6564 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6565
6566 gold_assert((*pviews)[i].view != NULL);
6567
6568 // We are passed the output section view. Adjust it to cover the
6569 // stub table only.
6570 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6571 gold_assert((stub_table->address() >= (*pviews)[i].address)
6572 && ((stub_table->address() + stub_table->data_size())
6573 <= (*pviews)[i].address + (*pviews)[i].view_size));
6574
6575 off_t offset = stub_table->address() - (*pviews)[i].address;
6576 unsigned char* view = (*pviews)[i].view + offset;
6577 Arm_address address = stub_table->address();
6578 section_size_type view_size = stub_table->data_size();
6579
6580 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6581 view_size);
6582 }
6583
6584 // Apply Cortex A8 workaround if applicable.
6585 if (this->section_has_cortex_a8_workaround(i))
6586 {
6587 unsigned char* view = (*pviews)[i].view;
6588 Arm_address view_address = (*pviews)[i].address;
6589 section_size_type view_size = (*pviews)[i].view_size;
6590 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6591
6592 // Adjust view to cover section.
6593 Output_section* os = this->output_section(i);
6594 gold_assert(os != NULL);
6595 Arm_address section_address =
6596 this->simple_input_section_output_address(i, os);
6597 uint64_t section_size = this->section_size(i);
6598
6599 gold_assert(section_address >= view_address
6600 && ((section_address + section_size)
6601 <= (view_address + view_size)));
6602
6603 unsigned char* section_view = view + (section_address - view_address);
6604
6605 // Apply the Cortex-A8 workaround to the output address range
6606 // corresponding to this input section.
6607 stub_table->apply_cortex_a8_workaround_to_address_range(
6608 arm_target,
6609 section_view,
6610 section_address,
6611 section_size);
6612 }
6613 }
6614 }
6615
6616 // Find the linked text section of an EXIDX section by looking at the first
6617 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6618 // must be linked to its associated code section via the sh_link field of
6619 // its section header. However, some tools are broken and the link is not
6620 // always set. LD just drops such an EXIDX section silently, causing the
6621 // associated code not unwindabled. Here we try a little bit harder to
6622 // discover the linked code section.
6623 //
6624 // PSHDR points to the section header of a relocation section of an EXIDX
6625 // section. If we can find a linked text section, return true and
6626 // store the text section index in the location PSHNDX. Otherwise
6627 // return false.
6628
6629 template<bool big_endian>
6630 bool
6631 Arm_relobj<big_endian>::find_linked_text_section(
6632 const unsigned char* pshdr,
6633 const unsigned char* psyms,
6634 unsigned int* pshndx)
6635 {
6636 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6637
6638 // If there is no relocation, we cannot find the linked text section.
6639 size_t reloc_size;
6640 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6641 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6642 else
6643 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6644 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6645
6646 // Get the relocations.
6647 const unsigned char* prelocs =
6648 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6649
6650 // Find the REL31 relocation for the first word of the first EXIDX entry.
6651 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6652 {
6653 Arm_address r_offset;
6654 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6655 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6656 {
6657 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6658 r_info = reloc.get_r_info();
6659 r_offset = reloc.get_r_offset();
6660 }
6661 else
6662 {
6663 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6664 r_info = reloc.get_r_info();
6665 r_offset = reloc.get_r_offset();
6666 }
6667
6668 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6669 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6670 continue;
6671
6672 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6673 if (r_sym == 0
6674 || r_sym >= this->local_symbol_count()
6675 || r_offset != 0)
6676 continue;
6677
6678 // This is the relocation for the first word of the first EXIDX entry.
6679 // We expect to see a local section symbol.
6680 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6681 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6682 if (sym.get_st_type() == elfcpp::STT_SECTION)
6683 {
6684 bool is_ordinary;
6685 *pshndx =
6686 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6687 gold_assert(is_ordinary);
6688 return true;
6689 }
6690 else
6691 return false;
6692 }
6693
6694 return false;
6695 }
6696
6697 // Make an EXIDX input section object for an EXIDX section whose index is
6698 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6699 // is the section index of the linked text section.
6700
6701 template<bool big_endian>
6702 void
6703 Arm_relobj<big_endian>::make_exidx_input_section(
6704 unsigned int shndx,
6705 const elfcpp::Shdr<32, big_endian>& shdr,
6706 unsigned int text_shndx,
6707 const elfcpp::Shdr<32, big_endian>& text_shdr)
6708 {
6709 // Create an Arm_exidx_input_section object for this EXIDX section.
6710 Arm_exidx_input_section* exidx_input_section =
6711 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6712 shdr.get_sh_addralign(),
6713 text_shdr.get_sh_size());
6714
6715 gold_assert(this->exidx_section_map_[shndx] == NULL);
6716 this->exidx_section_map_[shndx] = exidx_input_section;
6717
6718 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6719 {
6720 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6721 this->section_name(shndx).c_str(), shndx, text_shndx,
6722 this->name().c_str());
6723 exidx_input_section->set_has_errors();
6724 }
6725 else if (this->exidx_section_map_[text_shndx] != NULL)
6726 {
6727 unsigned other_exidx_shndx =
6728 this->exidx_section_map_[text_shndx]->shndx();
6729 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6730 "%s(%u) in %s"),
6731 this->section_name(shndx).c_str(), shndx,
6732 this->section_name(other_exidx_shndx).c_str(),
6733 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6734 text_shndx, this->name().c_str());
6735 exidx_input_section->set_has_errors();
6736 }
6737 else
6738 this->exidx_section_map_[text_shndx] = exidx_input_section;
6739
6740 // Check section flags of text section.
6741 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6742 {
6743 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6744 " in %s"),
6745 this->section_name(shndx).c_str(), shndx,
6746 this->section_name(text_shndx).c_str(), text_shndx,
6747 this->name().c_str());
6748 exidx_input_section->set_has_errors();
6749 }
6750 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6751 // I would like to make this an error but currently ld just ignores
6752 // this.
6753 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6754 "%s(%u) in %s"),
6755 this->section_name(shndx).c_str(), shndx,
6756 this->section_name(text_shndx).c_str(), text_shndx,
6757 this->name().c_str());
6758 }
6759
6760 // Read the symbol information.
6761
6762 template<bool big_endian>
6763 void
6764 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6765 {
6766 // Call parent class to read symbol information.
6767 this->base_read_symbols(sd);
6768
6769 // If this input file is a binary file, it has no processor
6770 // specific flags and attributes section.
6771 Input_file::Format format = this->input_file()->format();
6772 if (format != Input_file::FORMAT_ELF)
6773 {
6774 gold_assert(format == Input_file::FORMAT_BINARY);
6775 this->merge_flags_and_attributes_ = false;
6776 return;
6777 }
6778
6779 // Read processor-specific flags in ELF file header.
6780 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6781 elfcpp::Elf_sizes<32>::ehdr_size,
6782 true, false);
6783 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6784 this->processor_specific_flags_ = ehdr.get_e_flags();
6785
6786 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6787 // sections.
6788 std::vector<unsigned int> deferred_exidx_sections;
6789 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6790 const unsigned char* pshdrs = sd->section_headers->data();
6791 const unsigned char* ps = pshdrs + shdr_size;
6792 bool must_merge_flags_and_attributes = false;
6793 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6794 {
6795 elfcpp::Shdr<32, big_endian> shdr(ps);
6796
6797 // Sometimes an object has no contents except the section name string
6798 // table and an empty symbol table with the undefined symbol. We
6799 // don't want to merge processor-specific flags from such an object.
6800 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6801 {
6802 // Symbol table is not empty.
6803 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6804 elfcpp::Elf_sizes<32>::sym_size;
6805 if (shdr.get_sh_size() > sym_size)
6806 must_merge_flags_and_attributes = true;
6807 }
6808 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6809 // If this is neither an empty symbol table nor a string table,
6810 // be conservative.
6811 must_merge_flags_and_attributes = true;
6812
6813 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6814 {
6815 gold_assert(this->attributes_section_data_ == NULL);
6816 section_offset_type section_offset = shdr.get_sh_offset();
6817 section_size_type section_size =
6818 convert_to_section_size_type(shdr.get_sh_size());
6819 const unsigned char* view =
6820 this->get_view(section_offset, section_size, true, false);
6821 this->attributes_section_data_ =
6822 new Attributes_section_data(view, section_size);
6823 }
6824 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6825 {
6826 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6827 if (text_shndx == elfcpp::SHN_UNDEF)
6828 deferred_exidx_sections.push_back(i);
6829 else
6830 {
6831 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6832 + text_shndx * shdr_size);
6833 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6834 }
6835 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6836 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6837 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6838 this->section_name(i).c_str(), this->name().c_str());
6839 }
6840 }
6841
6842 // This is rare.
6843 if (!must_merge_flags_and_attributes)
6844 {
6845 gold_assert(deferred_exidx_sections.empty());
6846 this->merge_flags_and_attributes_ = false;
6847 return;
6848 }
6849
6850 // Some tools are broken and they do not set the link of EXIDX sections.
6851 // We look at the first relocation to figure out the linked sections.
6852 if (!deferred_exidx_sections.empty())
6853 {
6854 // We need to go over the section headers again to find the mapping
6855 // from sections being relocated to their relocation sections. This is
6856 // a bit inefficient as we could do that in the loop above. However,
6857 // we do not expect any deferred EXIDX sections normally. So we do not
6858 // want to slow down the most common path.
6859 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6860 Reloc_map reloc_map;
6861 ps = pshdrs + shdr_size;
6862 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6863 {
6864 elfcpp::Shdr<32, big_endian> shdr(ps);
6865 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6866 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6867 {
6868 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6869 if (info_shndx >= this->shnum())
6870 gold_error(_("relocation section %u has invalid info %u"),
6871 i, info_shndx);
6872 Reloc_map::value_type value(info_shndx, i);
6873 std::pair<Reloc_map::iterator, bool> result =
6874 reloc_map.insert(value);
6875 if (!result.second)
6876 gold_error(_("section %u has multiple relocation sections "
6877 "%u and %u"),
6878 info_shndx, i, reloc_map[info_shndx]);
6879 }
6880 }
6881
6882 // Read the symbol table section header.
6883 const unsigned int symtab_shndx = this->symtab_shndx();
6884 elfcpp::Shdr<32, big_endian>
6885 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6886 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6887
6888 // Read the local symbols.
6889 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6890 const unsigned int loccount = this->local_symbol_count();
6891 gold_assert(loccount == symtabshdr.get_sh_info());
6892 off_t locsize = loccount * sym_size;
6893 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6894 locsize, true, true);
6895
6896 // Process the deferred EXIDX sections.
6897 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6898 {
6899 unsigned int shndx = deferred_exidx_sections[i];
6900 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6901 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6902 Reloc_map::const_iterator it = reloc_map.find(shndx);
6903 if (it != reloc_map.end())
6904 find_linked_text_section(pshdrs + it->second * shdr_size,
6905 psyms, &text_shndx);
6906 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6907 + text_shndx * shdr_size);
6908 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6909 }
6910 }
6911 }
6912
6913 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6914 // sections for unwinding. These sections are referenced implicitly by
6915 // text sections linked in the section headers. If we ignore these implicit
6916 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6917 // will be garbage-collected incorrectly. Hence we override the same function
6918 // in the base class to handle these implicit references.
6919
6920 template<bool big_endian>
6921 void
6922 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6923 Layout* layout,
6924 Read_relocs_data* rd)
6925 {
6926 // First, call base class method to process relocations in this object.
6927 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6928
6929 // If --gc-sections is not specified, there is nothing more to do.
6930 // This happens when --icf is used but --gc-sections is not.
6931 if (!parameters->options().gc_sections())
6932 return;
6933
6934 unsigned int shnum = this->shnum();
6935 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6936 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6937 shnum * shdr_size,
6938 true, true);
6939
6940 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6941 // to these from the linked text sections.
6942 const unsigned char* ps = pshdrs + shdr_size;
6943 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6944 {
6945 elfcpp::Shdr<32, big_endian> shdr(ps);
6946 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6947 {
6948 // Found an .ARM.exidx section, add it to the set of reachable
6949 // sections from its linked text section.
6950 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6951 symtab->gc()->add_reference(this, text_shndx, this, i);
6952 }
6953 }
6954 }
6955
6956 // Update output local symbol count. Owing to EXIDX entry merging, some local
6957 // symbols will be removed in output. Adjust output local symbol count
6958 // accordingly. We can only changed the static output local symbol count. It
6959 // is too late to change the dynamic symbols.
6960
6961 template<bool big_endian>
6962 void
6963 Arm_relobj<big_endian>::update_output_local_symbol_count()
6964 {
6965 // Caller should check that this needs updating. We want caller checking
6966 // because output_local_symbol_count_needs_update() is most likely inlined.
6967 gold_assert(this->output_local_symbol_count_needs_update_);
6968
6969 gold_assert(this->symtab_shndx() != -1U);
6970 if (this->symtab_shndx() == 0)
6971 {
6972 // This object has no symbols. Weird but legal.
6973 return;
6974 }
6975
6976 // Read the symbol table section header.
6977 const unsigned int symtab_shndx = this->symtab_shndx();
6978 elfcpp::Shdr<32, big_endian>
6979 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6980 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6981
6982 // Read the local symbols.
6983 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6984 const unsigned int loccount = this->local_symbol_count();
6985 gold_assert(loccount == symtabshdr.get_sh_info());
6986 off_t locsize = loccount * sym_size;
6987 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6988 locsize, true, true);
6989
6990 // Loop over the local symbols.
6991
6992 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6993 Output_sections;
6994 const Output_sections& out_sections(this->output_sections());
6995 unsigned int shnum = this->shnum();
6996 unsigned int count = 0;
6997 // Skip the first, dummy, symbol.
6998 psyms += sym_size;
6999 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7000 {
7001 elfcpp::Sym<32, big_endian> sym(psyms);
7002
7003 Symbol_value<32>& lv((*this->local_values())[i]);
7004
7005 // This local symbol was already discarded by do_count_local_symbols.
7006 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7007 continue;
7008
7009 bool is_ordinary;
7010 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7011 &is_ordinary);
7012
7013 if (shndx < shnum)
7014 {
7015 Output_section* os = out_sections[shndx];
7016
7017 // This local symbol no longer has an output section. Discard it.
7018 if (os == NULL)
7019 {
7020 lv.set_no_output_symtab_entry();
7021 continue;
7022 }
7023
7024 // Currently we only discard parts of EXIDX input sections.
7025 // We explicitly check for a merged EXIDX input section to avoid
7026 // calling Output_section_data::output_offset unless necessary.
7027 if ((this->get_output_section_offset(shndx) == invalid_address)
7028 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7029 {
7030 section_offset_type output_offset =
7031 os->output_offset(this, shndx, lv.input_value());
7032 if (output_offset == -1)
7033 {
7034 // This symbol is defined in a part of an EXIDX input section
7035 // that is discarded due to entry merging.
7036 lv.set_no_output_symtab_entry();
7037 continue;
7038 }
7039 }
7040 }
7041
7042 ++count;
7043 }
7044
7045 this->set_output_local_symbol_count(count);
7046 this->output_local_symbol_count_needs_update_ = false;
7047 }
7048
7049 // Arm_dynobj methods.
7050
7051 // Read the symbol information.
7052
7053 template<bool big_endian>
7054 void
7055 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7056 {
7057 // Call parent class to read symbol information.
7058 this->base_read_symbols(sd);
7059
7060 // Read processor-specific flags in ELF file header.
7061 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7062 elfcpp::Elf_sizes<32>::ehdr_size,
7063 true, false);
7064 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7065 this->processor_specific_flags_ = ehdr.get_e_flags();
7066
7067 // Read the attributes section if there is one.
7068 // We read from the end because gas seems to put it near the end of
7069 // the section headers.
7070 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7071 const unsigned char* ps =
7072 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7073 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7074 {
7075 elfcpp::Shdr<32, big_endian> shdr(ps);
7076 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7077 {
7078 section_offset_type section_offset = shdr.get_sh_offset();
7079 section_size_type section_size =
7080 convert_to_section_size_type(shdr.get_sh_size());
7081 const unsigned char* view =
7082 this->get_view(section_offset, section_size, true, false);
7083 this->attributes_section_data_ =
7084 new Attributes_section_data(view, section_size);
7085 break;
7086 }
7087 }
7088 }
7089
7090 // Stub_addend_reader methods.
7091
7092 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7093
7094 template<bool big_endian>
7095 elfcpp::Elf_types<32>::Elf_Swxword
7096 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7097 unsigned int r_type,
7098 const unsigned char* view,
7099 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7100 {
7101 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7102
7103 switch (r_type)
7104 {
7105 case elfcpp::R_ARM_CALL:
7106 case elfcpp::R_ARM_JUMP24:
7107 case elfcpp::R_ARM_PLT32:
7108 {
7109 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7110 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7111 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7112 return Bits<26>::sign_extend32(val << 2);
7113 }
7114
7115 case elfcpp::R_ARM_THM_CALL:
7116 case elfcpp::R_ARM_THM_JUMP24:
7117 case elfcpp::R_ARM_THM_XPC22:
7118 {
7119 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7120 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7121 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7122 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7123 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7124 }
7125
7126 case elfcpp::R_ARM_THM_JUMP19:
7127 {
7128 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7129 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7130 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7131 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7132 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7133 }
7134
7135 default:
7136 gold_unreachable();
7137 }
7138 }
7139
7140 // Arm_output_data_got methods.
7141
7142 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7143 // The first one is initialized to be 1, which is the module index for
7144 // the main executable and the second one 0. A reloc of the type
7145 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7146 // be applied by gold. GSYM is a global symbol.
7147 //
7148 template<bool big_endian>
7149 void
7150 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7151 unsigned int got_type,
7152 Symbol* gsym)
7153 {
7154 if (gsym->has_got_offset(got_type))
7155 return;
7156
7157 // We are doing a static link. Just mark it as belong to module 1,
7158 // the executable.
7159 unsigned int got_offset = this->add_constant(1);
7160 gsym->set_got_offset(got_type, got_offset);
7161 got_offset = this->add_constant(0);
7162 this->static_relocs_.push_back(Static_reloc(got_offset,
7163 elfcpp::R_ARM_TLS_DTPOFF32,
7164 gsym));
7165 }
7166
7167 // Same as the above but for a local symbol.
7168
7169 template<bool big_endian>
7170 void
7171 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7172 unsigned int got_type,
7173 Sized_relobj_file<32, big_endian>* object,
7174 unsigned int index)
7175 {
7176 if (object->local_has_got_offset(index, got_type))
7177 return;
7178
7179 // We are doing a static link. Just mark it as belong to module 1,
7180 // the executable.
7181 unsigned int got_offset = this->add_constant(1);
7182 object->set_local_got_offset(index, got_type, got_offset);
7183 got_offset = this->add_constant(0);
7184 this->static_relocs_.push_back(Static_reloc(got_offset,
7185 elfcpp::R_ARM_TLS_DTPOFF32,
7186 object, index));
7187 }
7188
7189 template<bool big_endian>
7190 void
7191 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7192 {
7193 // Call parent to write out GOT.
7194 Output_data_got<32, big_endian>::do_write(of);
7195
7196 // We are done if there is no fix up.
7197 if (this->static_relocs_.empty())
7198 return;
7199
7200 gold_assert(parameters->doing_static_link());
7201
7202 const off_t offset = this->offset();
7203 const section_size_type oview_size =
7204 convert_to_section_size_type(this->data_size());
7205 unsigned char* const oview = of->get_output_view(offset, oview_size);
7206
7207 Output_segment* tls_segment = this->layout_->tls_segment();
7208 gold_assert(tls_segment != NULL);
7209
7210 // The thread pointer $tp points to the TCB, which is followed by the
7211 // TLS. So we need to adjust $tp relative addressing by this amount.
7212 Arm_address aligned_tcb_size =
7213 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7214
7215 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7216 {
7217 Static_reloc& reloc(this->static_relocs_[i]);
7218
7219 Arm_address value;
7220 if (!reloc.symbol_is_global())
7221 {
7222 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7223 const Symbol_value<32>* psymval =
7224 reloc.relobj()->local_symbol(reloc.index());
7225
7226 // We are doing static linking. Issue an error and skip this
7227 // relocation if the symbol is undefined or in a discarded_section.
7228 bool is_ordinary;
7229 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7230 if ((shndx == elfcpp::SHN_UNDEF)
7231 || (is_ordinary
7232 && shndx != elfcpp::SHN_UNDEF
7233 && !object->is_section_included(shndx)
7234 && !this->symbol_table_->is_section_folded(object, shndx)))
7235 {
7236 gold_error(_("undefined or discarded local symbol %u from "
7237 " object %s in GOT"),
7238 reloc.index(), reloc.relobj()->name().c_str());
7239 continue;
7240 }
7241
7242 value = psymval->value(object, 0);
7243 }
7244 else
7245 {
7246 const Symbol* gsym = reloc.symbol();
7247 gold_assert(gsym != NULL);
7248 if (gsym->is_forwarder())
7249 gsym = this->symbol_table_->resolve_forwards(gsym);
7250
7251 // We are doing static linking. Issue an error and skip this
7252 // relocation if the symbol is undefined or in a discarded_section
7253 // unless it is a weakly_undefined symbol.
7254 if ((gsym->is_defined_in_discarded_section()
7255 || gsym->is_undefined())
7256 && !gsym->is_weak_undefined())
7257 {
7258 gold_error(_("undefined or discarded symbol %s in GOT"),
7259 gsym->name());
7260 continue;
7261 }
7262
7263 if (!gsym->is_weak_undefined())
7264 {
7265 const Sized_symbol<32>* sym =
7266 static_cast<const Sized_symbol<32>*>(gsym);
7267 value = sym->value();
7268 }
7269 else
7270 value = 0;
7271 }
7272
7273 unsigned got_offset = reloc.got_offset();
7274 gold_assert(got_offset < oview_size);
7275
7276 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7277 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7278 Valtype x;
7279 switch (reloc.r_type())
7280 {
7281 case elfcpp::R_ARM_TLS_DTPOFF32:
7282 x = value;
7283 break;
7284 case elfcpp::R_ARM_TLS_TPOFF32:
7285 x = value + aligned_tcb_size;
7286 break;
7287 default:
7288 gold_unreachable();
7289 }
7290 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7291 }
7292
7293 of->write_output_view(offset, oview_size, oview);
7294 }
7295
7296 // A class to handle the PLT data.
7297 // This is an abstract base class that handles most of the linker details
7298 // but does not know the actual contents of PLT entries. The derived
7299 // classes below fill in those details.
7300
7301 template<bool big_endian>
7302 class Output_data_plt_arm : public Output_section_data
7303 {
7304 public:
7305 // Unlike aarch64, which records symbol value in "addend" field of relocations
7306 // and could be done at the same time an IRelative reloc is created for the
7307 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7308 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7309 // to keep necessary symbol information for later use in do_write. We usually
7310 // have only a very limited number of ifuncs, so the extra data required here
7311 // is also limited.
7312
7313 struct IRelative_data
7314 {
7315 IRelative_data(Sized_symbol<32>* sized_symbol)
7316 : symbol_is_global_(true)
7317 {
7318 u_.global = sized_symbol;
7319 }
7320
7321 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7322 unsigned int index)
7323 : symbol_is_global_(false)
7324 {
7325 u_.local.relobj = relobj;
7326 u_.local.index = index;
7327 }
7328
7329 union
7330 {
7331 Sized_symbol<32>* global;
7332
7333 struct
7334 {
7335 Sized_relobj_file<32, big_endian>* relobj;
7336 unsigned int index;
7337 } local;
7338 } u_;
7339
7340 bool symbol_is_global_;
7341 };
7342
7343 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7344 Reloc_section;
7345
7346 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7347 Arm_output_data_got<big_endian>* got,
7348 Output_data_space* got_plt,
7349 Output_data_space* got_irelative);
7350
7351 // Add an entry to the PLT.
7352 void
7353 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7354
7355 // Add the relocation for a plt entry.
7356 void
7357 add_relocation(Symbol_table* symtab, Layout* layout,
7358 Symbol* gsym, unsigned int got_offset);
7359
7360 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7361 unsigned int
7362 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7363 Sized_relobj_file<32, big_endian>* relobj,
7364 unsigned int local_sym_index);
7365
7366 // Return the .rel.plt section data.
7367 const Reloc_section*
7368 rel_plt() const
7369 { return this->rel_; }
7370
7371 // Return the PLT relocation container for IRELATIVE.
7372 Reloc_section*
7373 rel_irelative(Symbol_table*, Layout*);
7374
7375 // Return the number of PLT entries.
7376 unsigned int
7377 entry_count() const
7378 { return this->count_ + this->irelative_count_; }
7379
7380 // Return the offset of the first non-reserved PLT entry.
7381 unsigned int
7382 first_plt_entry_offset() const
7383 { return this->do_first_plt_entry_offset(); }
7384
7385 // Return the size of a PLT entry.
7386 unsigned int
7387 get_plt_entry_size() const
7388 { return this->do_get_plt_entry_size(); }
7389
7390 // Return the PLT address for globals.
7391 uint32_t
7392 address_for_global(const Symbol*) const;
7393
7394 // Return the PLT address for locals.
7395 uint32_t
7396 address_for_local(const Relobj*, unsigned int symndx) const;
7397
7398 protected:
7399 // Fill in the first PLT entry.
7400 void
7401 fill_first_plt_entry(unsigned char* pov,
7402 Arm_address got_address,
7403 Arm_address plt_address)
7404 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7405
7406 void
7407 fill_plt_entry(unsigned char* pov,
7408 Arm_address got_address,
7409 Arm_address plt_address,
7410 unsigned int got_offset,
7411 unsigned int plt_offset)
7412 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7413
7414 virtual unsigned int
7415 do_first_plt_entry_offset() const = 0;
7416
7417 virtual unsigned int
7418 do_get_plt_entry_size() const = 0;
7419
7420 virtual void
7421 do_fill_first_plt_entry(unsigned char* pov,
7422 Arm_address got_address,
7423 Arm_address plt_address) = 0;
7424
7425 virtual void
7426 do_fill_plt_entry(unsigned char* pov,
7427 Arm_address got_address,
7428 Arm_address plt_address,
7429 unsigned int got_offset,
7430 unsigned int plt_offset) = 0;
7431
7432 void
7433 do_adjust_output_section(Output_section* os);
7434
7435 // Write to a map file.
7436 void
7437 do_print_to_mapfile(Mapfile* mapfile) const
7438 { mapfile->print_output_data(this, _("** PLT")); }
7439
7440 private:
7441 // Set the final size.
7442 void
7443 set_final_data_size()
7444 {
7445 this->set_data_size(this->first_plt_entry_offset()
7446 + ((this->count_ + this->irelative_count_)
7447 * this->get_plt_entry_size()));
7448 }
7449
7450 // Write out the PLT data.
7451 void
7452 do_write(Output_file*);
7453
7454 // Record irelative symbol data.
7455 void insert_irelative_data(const IRelative_data& idata)
7456 { irelative_data_vec_.push_back(idata); }
7457
7458 // The reloc section.
7459 Reloc_section* rel_;
7460 // The IRELATIVE relocs, if necessary. These must follow the
7461 // regular PLT relocations.
7462 Reloc_section* irelative_rel_;
7463 // The .got section.
7464 Arm_output_data_got<big_endian>* got_;
7465 // The .got.plt section.
7466 Output_data_space* got_plt_;
7467 // The part of the .got.plt section used for IRELATIVE relocs.
7468 Output_data_space* got_irelative_;
7469 // The number of PLT entries.
7470 unsigned int count_;
7471 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7472 // follow the regular PLT entries.
7473 unsigned int irelative_count_;
7474 // Vector for irelative data.
7475 typedef std::vector<IRelative_data> IRelative_data_vec;
7476 IRelative_data_vec irelative_data_vec_;
7477 };
7478
7479 // Create the PLT section. The ordinary .got section is an argument,
7480 // since we need to refer to the start. We also create our own .got
7481 // section just for PLT entries.
7482
7483 template<bool big_endian>
7484 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7485 Layout* layout, uint64_t addralign,
7486 Arm_output_data_got<big_endian>* got,
7487 Output_data_space* got_plt,
7488 Output_data_space* got_irelative)
7489 : Output_section_data(addralign), irelative_rel_(NULL),
7490 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7491 count_(0), irelative_count_(0)
7492 {
7493 this->rel_ = new Reloc_section(false);
7494 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7495 elfcpp::SHF_ALLOC, this->rel_,
7496 ORDER_DYNAMIC_PLT_RELOCS, false);
7497 }
7498
7499 template<bool big_endian>
7500 void
7501 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7502 {
7503 os->set_entsize(0);
7504 }
7505
7506 // Add an entry to the PLT.
7507
7508 template<bool big_endian>
7509 void
7510 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7511 Layout* layout,
7512 Symbol* gsym)
7513 {
7514 gold_assert(!gsym->has_plt_offset());
7515
7516 unsigned int* entry_count;
7517 Output_section_data_build* got;
7518
7519 // We have 2 different types of plt entry here, normal and ifunc.
7520
7521 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7522 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7523
7524 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7525 // second 12, third 24 ... etc.
7526
7527 // IFunc plt entries *always* come after *normal* plt entries.
7528
7529 // Notice, when computing the plt address of a certain symbol, "plt_address +
7530 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7531 // target->plt_address_for_local() instead.
7532
7533 int begin_offset = 0;
7534 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7535 && gsym->can_use_relative_reloc(false))
7536 {
7537 entry_count = &this->irelative_count_;
7538 got = this->got_irelative_;
7539 // For irelative plt entries, offset is relative to the end of normal plt
7540 // entries, so it starts from 0.
7541 begin_offset = 0;
7542 // Record symbol information.
7543 this->insert_irelative_data(
7544 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7545 }
7546 else
7547 {
7548 entry_count = &this->count_;
7549 got = this->got_plt_;
7550 // Note that for normal plt entries, when setting the PLT offset we skip
7551 // the initial reserved PLT entry.
7552 begin_offset = this->first_plt_entry_offset();
7553 }
7554
7555 gsym->set_plt_offset(begin_offset
7556 + (*entry_count) * this->get_plt_entry_size());
7557
7558 ++(*entry_count);
7559
7560 section_offset_type got_offset = got->current_data_size();
7561
7562 // Every PLT entry needs a GOT entry which points back to the PLT
7563 // entry (this will be changed by the dynamic linker, normally
7564 // lazily when the function is called).
7565 got->set_current_data_size(got_offset + 4);
7566
7567 // Every PLT entry needs a reloc.
7568 this->add_relocation(symtab, layout, gsym, got_offset);
7569
7570 // Note that we don't need to save the symbol. The contents of the
7571 // PLT are independent of which symbols are used. The symbols only
7572 // appear in the relocations.
7573 }
7574
7575 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7576 // the PLT offset.
7577
7578 template<bool big_endian>
7579 unsigned int
7580 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7581 Symbol_table* symtab,
7582 Layout* layout,
7583 Sized_relobj_file<32, big_endian>* relobj,
7584 unsigned int local_sym_index)
7585 {
7586 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7587
7588 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7589 // no longer correct. Use target->plt_address_for_local() instead.
7590 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7591 ++this->irelative_count_;
7592
7593 section_offset_type got_offset = this->got_irelative_->current_data_size();
7594
7595 // Every PLT entry needs a GOT entry which points back to the PLT
7596 // entry.
7597 this->got_irelative_->set_current_data_size(got_offset + 4);
7598
7599
7600 // Every PLT entry needs a reloc.
7601 Reloc_section* rel = this->rel_irelative(symtab, layout);
7602 rel->add_symbolless_local_addend(relobj, local_sym_index,
7603 elfcpp::R_ARM_IRELATIVE,
7604 this->got_irelative_, got_offset);
7605 return plt_offset;
7606 }
7607
7608
7609 // Add the relocation for a PLT entry.
7610
7611 template<bool big_endian>
7612 void
7613 Output_data_plt_arm<big_endian>::add_relocation(
7614 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7615 {
7616 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7617 && gsym->can_use_relative_reloc(false))
7618 {
7619 Reloc_section* rel = this->rel_irelative(symtab, layout);
7620 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7621 this->got_irelative_, got_offset);
7622 }
7623 else
7624 {
7625 gsym->set_needs_dynsym_entry();
7626 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7627 got_offset);
7628 }
7629 }
7630
7631
7632 // Create the irelative relocation data.
7633
7634 template<bool big_endian>
7635 typename Output_data_plt_arm<big_endian>::Reloc_section*
7636 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7637 Layout* layout)
7638 {
7639 if (this->irelative_rel_ == NULL)
7640 {
7641 // Since irelative relocations goes into 'rel.dyn', we delegate the
7642 // creation of irelative_rel_ to where rel_dyn section gets created.
7643 Target_arm<big_endian>* arm_target =
7644 Target_arm<big_endian>::default_target();
7645 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7646
7647 // Make sure we have a place for the TLSDESC relocations, in
7648 // case we see any later on.
7649 // this->rel_tlsdesc(layout);
7650 if (parameters->doing_static_link())
7651 {
7652 // A statically linked executable will only have a .rel.plt section to
7653 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7654 // will use these symbols to locate the IRELATIVE relocs at program
7655 // startup time.
7656 symtab->define_in_output_data("__rel_iplt_start", NULL,
7657 Symbol_table::PREDEFINED,
7658 this->irelative_rel_, 0, 0,
7659 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7660 elfcpp::STV_HIDDEN, 0, false, true);
7661 symtab->define_in_output_data("__rel_iplt_end", NULL,
7662 Symbol_table::PREDEFINED,
7663 this->irelative_rel_, 0, 0,
7664 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7665 elfcpp::STV_HIDDEN, 0, true, true);
7666 }
7667 }
7668 return this->irelative_rel_;
7669 }
7670
7671
7672 // Return the PLT address for a global symbol.
7673
7674 template<bool big_endian>
7675 uint32_t
7676 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7677 {
7678 uint64_t begin_offset = 0;
7679 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7680 && gsym->can_use_relative_reloc(false))
7681 {
7682 begin_offset = (this->first_plt_entry_offset() +
7683 this->count_ * this->get_plt_entry_size());
7684 }
7685 return this->address() + begin_offset + gsym->plt_offset();
7686 }
7687
7688
7689 // Return the PLT address for a local symbol. These are always
7690 // IRELATIVE relocs.
7691
7692 template<bool big_endian>
7693 uint32_t
7694 Output_data_plt_arm<big_endian>::address_for_local(
7695 const Relobj* object,
7696 unsigned int r_sym) const
7697 {
7698 return (this->address()
7699 + this->first_plt_entry_offset()
7700 + this->count_ * this->get_plt_entry_size()
7701 + object->local_plt_offset(r_sym));
7702 }
7703
7704
7705 template<bool big_endian>
7706 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7707 {
7708 public:
7709 Output_data_plt_arm_standard(Layout* layout,
7710 Arm_output_data_got<big_endian>* got,
7711 Output_data_space* got_plt,
7712 Output_data_space* got_irelative)
7713 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7714 { }
7715
7716 protected:
7717 // Return the offset of the first non-reserved PLT entry.
7718 virtual unsigned int
7719 do_first_plt_entry_offset() const
7720 { return sizeof(first_plt_entry); }
7721
7722 // Return the size of a PLT entry.
7723 virtual unsigned int
7724 do_get_plt_entry_size() const
7725 { return sizeof(plt_entry); }
7726
7727 virtual void
7728 do_fill_first_plt_entry(unsigned char* pov,
7729 Arm_address got_address,
7730 Arm_address plt_address);
7731
7732 virtual void
7733 do_fill_plt_entry(unsigned char* pov,
7734 Arm_address got_address,
7735 Arm_address plt_address,
7736 unsigned int got_offset,
7737 unsigned int plt_offset);
7738
7739 private:
7740 // Template for the first PLT entry.
7741 static const uint32_t first_plt_entry[5];
7742
7743 // Template for subsequent PLT entries.
7744 static const uint32_t plt_entry[3];
7745 };
7746
7747 // ARM PLTs.
7748 // FIXME: This is not very flexible. Right now this has only been tested
7749 // on armv5te. If we are to support additional architecture features like
7750 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7751
7752 // The first entry in the PLT.
7753 template<bool big_endian>
7754 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7755 {
7756 0xe52de004, // str lr, [sp, #-4]!
7757 0xe59fe004, // ldr lr, [pc, #4]
7758 0xe08fe00e, // add lr, pc, lr
7759 0xe5bef008, // ldr pc, [lr, #8]!
7760 0x00000000, // &GOT[0] - .
7761 };
7762
7763 template<bool big_endian>
7764 void
7765 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7766 unsigned char* pov,
7767 Arm_address got_address,
7768 Arm_address plt_address)
7769 {
7770 // Write first PLT entry. All but the last word are constants.
7771 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7772 / sizeof(plt_entry[0]));
7773 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7774 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7775 // Last word in first PLT entry is &GOT[0] - .
7776 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7777 got_address - (plt_address + 16));
7778 }
7779
7780 // Subsequent entries in the PLT.
7781
7782 template<bool big_endian>
7783 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7784 {
7785 0xe28fc600, // add ip, pc, #0xNN00000
7786 0xe28cca00, // add ip, ip, #0xNN000
7787 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7788 };
7789
7790 template<bool big_endian>
7791 void
7792 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7793 unsigned char* pov,
7794 Arm_address got_address,
7795 Arm_address plt_address,
7796 unsigned int got_offset,
7797 unsigned int plt_offset)
7798 {
7799 int32_t offset = ((got_address + got_offset)
7800 - (plt_address + plt_offset + 8));
7801
7802 gold_assert(offset >= 0 && offset < 0x0fffffff);
7803 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7804 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7805 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7806 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7807 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7808 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7809 }
7810
7811 // Write out the PLT. This uses the hand-coded instructions above,
7812 // and adjusts them as needed. This is all specified by the arm ELF
7813 // Processor Supplement.
7814
7815 template<bool big_endian>
7816 void
7817 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7818 {
7819 const off_t offset = this->offset();
7820 const section_size_type oview_size =
7821 convert_to_section_size_type(this->data_size());
7822 unsigned char* const oview = of->get_output_view(offset, oview_size);
7823
7824 const off_t got_file_offset = this->got_plt_->offset();
7825 gold_assert(got_file_offset + this->got_plt_->data_size()
7826 == this->got_irelative_->offset());
7827 const section_size_type got_size =
7828 convert_to_section_size_type(this->got_plt_->data_size()
7829 + this->got_irelative_->data_size());
7830 unsigned char* const got_view = of->get_output_view(got_file_offset,
7831 got_size);
7832 unsigned char* pov = oview;
7833
7834 Arm_address plt_address = this->address();
7835 Arm_address got_address = this->got_plt_->address();
7836
7837 // Write first PLT entry.
7838 this->fill_first_plt_entry(pov, got_address, plt_address);
7839 pov += this->first_plt_entry_offset();
7840
7841 unsigned char* got_pov = got_view;
7842
7843 memset(got_pov, 0, 12);
7844 got_pov += 12;
7845
7846 unsigned int plt_offset = this->first_plt_entry_offset();
7847 unsigned int got_offset = 12;
7848 const unsigned int count = this->count_ + this->irelative_count_;
7849 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7850 for (unsigned int i = 0;
7851 i < count;
7852 ++i,
7853 pov += this->get_plt_entry_size(),
7854 got_pov += 4,
7855 plt_offset += this->get_plt_entry_size(),
7856 got_offset += 4)
7857 {
7858 // Set and adjust the PLT entry itself.
7859 this->fill_plt_entry(pov, got_address, plt_address,
7860 got_offset, plt_offset);
7861
7862 Arm_address value;
7863 if (i < this->count_)
7864 {
7865 // For non-irelative got entries, the value is the beginning of plt.
7866 value = plt_address;
7867 }
7868 else
7869 {
7870 // For irelative got entries, the value is the (global/local) symbol
7871 // address.
7872 const IRelative_data& idata =
7873 this->irelative_data_vec_[i - this->count_];
7874 if (idata.symbol_is_global_)
7875 {
7876 // Set the entry in the GOT for irelative symbols. The content is
7877 // the address of the ifunc, not the address of plt start.
7878 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7879 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7880 value = sized_symbol->value();
7881 }
7882 else
7883 {
7884 value = idata.u_.local.relobj->local_symbol_value(
7885 idata.u_.local.index, 0);
7886 }
7887 }
7888 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7889 }
7890
7891 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7892 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7893
7894 of->write_output_view(offset, oview_size, oview);
7895 of->write_output_view(got_file_offset, got_size, got_view);
7896 }
7897
7898
7899 // Create a PLT entry for a global symbol.
7900
7901 template<bool big_endian>
7902 void
7903 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7904 Symbol* gsym)
7905 {
7906 if (gsym->has_plt_offset())
7907 return;
7908
7909 if (this->plt_ == NULL)
7910 this->make_plt_section(symtab, layout);
7911
7912 this->plt_->add_entry(symtab, layout, gsym);
7913 }
7914
7915
7916 // Create the PLT section.
7917 template<bool big_endian>
7918 void
7919 Target_arm<big_endian>::make_plt_section(
7920 Symbol_table* symtab, Layout* layout)
7921 {
7922 if (this->plt_ == NULL)
7923 {
7924 // Create the GOT section first.
7925 this->got_section(symtab, layout);
7926
7927 // GOT for irelatives is create along with got.plt.
7928 gold_assert(this->got_ != NULL
7929 && this->got_plt_ != NULL
7930 && this->got_irelative_ != NULL);
7931 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7932 this->got_irelative_);
7933
7934 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7935 (elfcpp::SHF_ALLOC
7936 | elfcpp::SHF_EXECINSTR),
7937 this->plt_, ORDER_PLT, false);
7938 symtab->define_in_output_data("$a", NULL,
7939 Symbol_table::PREDEFINED,
7940 this->plt_,
7941 0, 0, elfcpp::STT_NOTYPE,
7942 elfcpp::STB_LOCAL,
7943 elfcpp::STV_DEFAULT, 0,
7944 false, false);
7945 }
7946 }
7947
7948
7949 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7950
7951 template<bool big_endian>
7952 void
7953 Target_arm<big_endian>::make_local_ifunc_plt_entry(
7954 Symbol_table* symtab, Layout* layout,
7955 Sized_relobj_file<32, big_endian>* relobj,
7956 unsigned int local_sym_index)
7957 {
7958 if (relobj->local_has_plt_offset(local_sym_index))
7959 return;
7960 if (this->plt_ == NULL)
7961 this->make_plt_section(symtab, layout);
7962 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7963 relobj,
7964 local_sym_index);
7965 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7966 }
7967
7968
7969 // Return the number of entries in the PLT.
7970
7971 template<bool big_endian>
7972 unsigned int
7973 Target_arm<big_endian>::plt_entry_count() const
7974 {
7975 if (this->plt_ == NULL)
7976 return 0;
7977 return this->plt_->entry_count();
7978 }
7979
7980 // Return the offset of the first non-reserved PLT entry.
7981
7982 template<bool big_endian>
7983 unsigned int
7984 Target_arm<big_endian>::first_plt_entry_offset() const
7985 {
7986 return this->plt_->first_plt_entry_offset();
7987 }
7988
7989 // Return the size of each PLT entry.
7990
7991 template<bool big_endian>
7992 unsigned int
7993 Target_arm<big_endian>::plt_entry_size() const
7994 {
7995 return this->plt_->get_plt_entry_size();
7996 }
7997
7998 // Get the section to use for TLS_DESC relocations.
7999
8000 template<bool big_endian>
8001 typename Target_arm<big_endian>::Reloc_section*
8002 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8003 {
8004 return this->plt_section()->rel_tls_desc(layout);
8005 }
8006
8007 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8008
8009 template<bool big_endian>
8010 void
8011 Target_arm<big_endian>::define_tls_base_symbol(
8012 Symbol_table* symtab,
8013 Layout* layout)
8014 {
8015 if (this->tls_base_symbol_defined_)
8016 return;
8017
8018 Output_segment* tls_segment = layout->tls_segment();
8019 if (tls_segment != NULL)
8020 {
8021 bool is_exec = parameters->options().output_is_executable();
8022 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8023 Symbol_table::PREDEFINED,
8024 tls_segment, 0, 0,
8025 elfcpp::STT_TLS,
8026 elfcpp::STB_LOCAL,
8027 elfcpp::STV_HIDDEN, 0,
8028 (is_exec
8029 ? Symbol::SEGMENT_END
8030 : Symbol::SEGMENT_START),
8031 true);
8032 }
8033 this->tls_base_symbol_defined_ = true;
8034 }
8035
8036 // Create a GOT entry for the TLS module index.
8037
8038 template<bool big_endian>
8039 unsigned int
8040 Target_arm<big_endian>::got_mod_index_entry(
8041 Symbol_table* symtab,
8042 Layout* layout,
8043 Sized_relobj_file<32, big_endian>* object)
8044 {
8045 if (this->got_mod_index_offset_ == -1U)
8046 {
8047 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8048 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8049 unsigned int got_offset;
8050 if (!parameters->doing_static_link())
8051 {
8052 got_offset = got->add_constant(0);
8053 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8054 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8055 got_offset);
8056 }
8057 else
8058 {
8059 // We are doing a static link. Just mark it as belong to module 1,
8060 // the executable.
8061 got_offset = got->add_constant(1);
8062 }
8063
8064 got->add_constant(0);
8065 this->got_mod_index_offset_ = got_offset;
8066 }
8067 return this->got_mod_index_offset_;
8068 }
8069
8070 // Optimize the TLS relocation type based on what we know about the
8071 // symbol. IS_FINAL is true if the final address of this symbol is
8072 // known at link time.
8073
8074 template<bool big_endian>
8075 tls::Tls_optimization
8076 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8077 {
8078 // FIXME: Currently we do not do any TLS optimization.
8079 return tls::TLSOPT_NONE;
8080 }
8081
8082 // Get the Reference_flags for a particular relocation.
8083
8084 template<bool big_endian>
8085 int
8086 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8087 {
8088 switch (r_type)
8089 {
8090 case elfcpp::R_ARM_NONE:
8091 case elfcpp::R_ARM_V4BX:
8092 case elfcpp::R_ARM_GNU_VTENTRY:
8093 case elfcpp::R_ARM_GNU_VTINHERIT:
8094 // No symbol reference.
8095 return 0;
8096
8097 case elfcpp::R_ARM_ABS32:
8098 case elfcpp::R_ARM_ABS16:
8099 case elfcpp::R_ARM_ABS12:
8100 case elfcpp::R_ARM_THM_ABS5:
8101 case elfcpp::R_ARM_ABS8:
8102 case elfcpp::R_ARM_BASE_ABS:
8103 case elfcpp::R_ARM_MOVW_ABS_NC:
8104 case elfcpp::R_ARM_MOVT_ABS:
8105 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8106 case elfcpp::R_ARM_THM_MOVT_ABS:
8107 case elfcpp::R_ARM_ABS32_NOI:
8108 return Symbol::ABSOLUTE_REF;
8109
8110 case elfcpp::R_ARM_REL32:
8111 case elfcpp::R_ARM_LDR_PC_G0:
8112 case elfcpp::R_ARM_SBREL32:
8113 case elfcpp::R_ARM_THM_PC8:
8114 case elfcpp::R_ARM_BASE_PREL:
8115 case elfcpp::R_ARM_MOVW_PREL_NC:
8116 case elfcpp::R_ARM_MOVT_PREL:
8117 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8118 case elfcpp::R_ARM_THM_MOVT_PREL:
8119 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8120 case elfcpp::R_ARM_THM_PC12:
8121 case elfcpp::R_ARM_REL32_NOI:
8122 case elfcpp::R_ARM_ALU_PC_G0_NC:
8123 case elfcpp::R_ARM_ALU_PC_G0:
8124 case elfcpp::R_ARM_ALU_PC_G1_NC:
8125 case elfcpp::R_ARM_ALU_PC_G1:
8126 case elfcpp::R_ARM_ALU_PC_G2:
8127 case elfcpp::R_ARM_LDR_PC_G1:
8128 case elfcpp::R_ARM_LDR_PC_G2:
8129 case elfcpp::R_ARM_LDRS_PC_G0:
8130 case elfcpp::R_ARM_LDRS_PC_G1:
8131 case elfcpp::R_ARM_LDRS_PC_G2:
8132 case elfcpp::R_ARM_LDC_PC_G0:
8133 case elfcpp::R_ARM_LDC_PC_G1:
8134 case elfcpp::R_ARM_LDC_PC_G2:
8135 case elfcpp::R_ARM_ALU_SB_G0_NC:
8136 case elfcpp::R_ARM_ALU_SB_G0:
8137 case elfcpp::R_ARM_ALU_SB_G1_NC:
8138 case elfcpp::R_ARM_ALU_SB_G1:
8139 case elfcpp::R_ARM_ALU_SB_G2:
8140 case elfcpp::R_ARM_LDR_SB_G0:
8141 case elfcpp::R_ARM_LDR_SB_G1:
8142 case elfcpp::R_ARM_LDR_SB_G2:
8143 case elfcpp::R_ARM_LDRS_SB_G0:
8144 case elfcpp::R_ARM_LDRS_SB_G1:
8145 case elfcpp::R_ARM_LDRS_SB_G2:
8146 case elfcpp::R_ARM_LDC_SB_G0:
8147 case elfcpp::R_ARM_LDC_SB_G1:
8148 case elfcpp::R_ARM_LDC_SB_G2:
8149 case elfcpp::R_ARM_MOVW_BREL_NC:
8150 case elfcpp::R_ARM_MOVT_BREL:
8151 case elfcpp::R_ARM_MOVW_BREL:
8152 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8153 case elfcpp::R_ARM_THM_MOVT_BREL:
8154 case elfcpp::R_ARM_THM_MOVW_BREL:
8155 case elfcpp::R_ARM_GOTOFF32:
8156 case elfcpp::R_ARM_GOTOFF12:
8157 case elfcpp::R_ARM_SBREL31:
8158 return Symbol::RELATIVE_REF;
8159
8160 case elfcpp::R_ARM_PLT32:
8161 case elfcpp::R_ARM_CALL:
8162 case elfcpp::R_ARM_JUMP24:
8163 case elfcpp::R_ARM_THM_CALL:
8164 case elfcpp::R_ARM_THM_JUMP24:
8165 case elfcpp::R_ARM_THM_JUMP19:
8166 case elfcpp::R_ARM_THM_JUMP6:
8167 case elfcpp::R_ARM_THM_JUMP11:
8168 case elfcpp::R_ARM_THM_JUMP8:
8169 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8170 // in unwind tables. It may point to functions via PLTs.
8171 // So we treat it like call/jump relocations above.
8172 case elfcpp::R_ARM_PREL31:
8173 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8174
8175 case elfcpp::R_ARM_GOT_BREL:
8176 case elfcpp::R_ARM_GOT_ABS:
8177 case elfcpp::R_ARM_GOT_PREL:
8178 // Absolute in GOT.
8179 return Symbol::ABSOLUTE_REF;
8180
8181 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8182 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8183 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8184 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8185 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8186 return Symbol::TLS_REF;
8187
8188 case elfcpp::R_ARM_TARGET1:
8189 case elfcpp::R_ARM_TARGET2:
8190 case elfcpp::R_ARM_COPY:
8191 case elfcpp::R_ARM_GLOB_DAT:
8192 case elfcpp::R_ARM_JUMP_SLOT:
8193 case elfcpp::R_ARM_RELATIVE:
8194 case elfcpp::R_ARM_PC24:
8195 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8196 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8197 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8198 default:
8199 // Not expected. We will give an error later.
8200 return 0;
8201 }
8202 }
8203
8204 // Report an unsupported relocation against a local symbol.
8205
8206 template<bool big_endian>
8207 void
8208 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8209 Sized_relobj_file<32, big_endian>* object,
8210 unsigned int r_type)
8211 {
8212 gold_error(_("%s: unsupported reloc %u against local symbol"),
8213 object->name().c_str(), r_type);
8214 }
8215
8216 // We are about to emit a dynamic relocation of type R_TYPE. If the
8217 // dynamic linker does not support it, issue an error. The GNU linker
8218 // only issues a non-PIC error for an allocated read-only section.
8219 // Here we know the section is allocated, but we don't know that it is
8220 // read-only. But we check for all the relocation types which the
8221 // glibc dynamic linker supports, so it seems appropriate to issue an
8222 // error even if the section is not read-only.
8223
8224 template<bool big_endian>
8225 void
8226 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8227 unsigned int r_type)
8228 {
8229 switch (r_type)
8230 {
8231 // These are the relocation types supported by glibc for ARM.
8232 case elfcpp::R_ARM_RELATIVE:
8233 case elfcpp::R_ARM_COPY:
8234 case elfcpp::R_ARM_GLOB_DAT:
8235 case elfcpp::R_ARM_JUMP_SLOT:
8236 case elfcpp::R_ARM_ABS32:
8237 case elfcpp::R_ARM_ABS32_NOI:
8238 case elfcpp::R_ARM_IRELATIVE:
8239 case elfcpp::R_ARM_PC24:
8240 // FIXME: The following 3 types are not supported by Android's dynamic
8241 // linker.
8242 case elfcpp::R_ARM_TLS_DTPMOD32:
8243 case elfcpp::R_ARM_TLS_DTPOFF32:
8244 case elfcpp::R_ARM_TLS_TPOFF32:
8245 return;
8246
8247 default:
8248 {
8249 // This prevents us from issuing more than one error per reloc
8250 // section. But we can still wind up issuing more than one
8251 // error per object file.
8252 if (this->issued_non_pic_error_)
8253 return;
8254 const Arm_reloc_property* reloc_property =
8255 arm_reloc_property_table->get_reloc_property(r_type);
8256 gold_assert(reloc_property != NULL);
8257 object->error(_("requires unsupported dynamic reloc %s; "
8258 "recompile with -fPIC"),
8259 reloc_property->name().c_str());
8260 this->issued_non_pic_error_ = true;
8261 return;
8262 }
8263
8264 case elfcpp::R_ARM_NONE:
8265 gold_unreachable();
8266 }
8267 }
8268
8269
8270 // Return whether we need to make a PLT entry for a relocation of the
8271 // given type against a STT_GNU_IFUNC symbol.
8272
8273 template<bool big_endian>
8274 bool
8275 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8276 Sized_relobj_file<32, big_endian>* object,
8277 unsigned int r_type)
8278 {
8279 int flags = Scan::get_reference_flags(r_type);
8280 if (flags & Symbol::TLS_REF)
8281 {
8282 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8283 object->name().c_str(), r_type);
8284 return false;
8285 }
8286 return flags != 0;
8287 }
8288
8289
8290 // Scan a relocation for a local symbol.
8291 // FIXME: This only handles a subset of relocation types used by Android
8292 // on ARM v5te devices.
8293
8294 template<bool big_endian>
8295 inline void
8296 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8297 Layout* layout,
8298 Target_arm* target,
8299 Sized_relobj_file<32, big_endian>* object,
8300 unsigned int data_shndx,
8301 Output_section* output_section,
8302 const elfcpp::Rel<32, big_endian>& reloc,
8303 unsigned int r_type,
8304 const elfcpp::Sym<32, big_endian>& lsym,
8305 bool is_discarded)
8306 {
8307 if (is_discarded)
8308 return;
8309
8310 r_type = get_real_reloc_type(r_type);
8311
8312 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8313 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8314 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8315 {
8316 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8317 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8318 }
8319
8320 switch (r_type)
8321 {
8322 case elfcpp::R_ARM_NONE:
8323 case elfcpp::R_ARM_V4BX:
8324 case elfcpp::R_ARM_GNU_VTENTRY:
8325 case elfcpp::R_ARM_GNU_VTINHERIT:
8326 break;
8327
8328 case elfcpp::R_ARM_ABS32:
8329 case elfcpp::R_ARM_ABS32_NOI:
8330 // If building a shared library (or a position-independent
8331 // executable), we need to create a dynamic relocation for
8332 // this location. The relocation applied at link time will
8333 // apply the link-time value, so we flag the location with
8334 // an R_ARM_RELATIVE relocation so the dynamic loader can
8335 // relocate it easily.
8336 if (parameters->options().output_is_position_independent())
8337 {
8338 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8339 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8340 // If we are to add more other reloc types than R_ARM_ABS32,
8341 // we need to add check_non_pic(object, r_type) here.
8342 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8343 output_section, data_shndx,
8344 reloc.get_r_offset(), is_ifunc);
8345 }
8346 break;
8347
8348 case elfcpp::R_ARM_ABS16:
8349 case elfcpp::R_ARM_ABS12:
8350 case elfcpp::R_ARM_THM_ABS5:
8351 case elfcpp::R_ARM_ABS8:
8352 case elfcpp::R_ARM_BASE_ABS:
8353 case elfcpp::R_ARM_MOVW_ABS_NC:
8354 case elfcpp::R_ARM_MOVT_ABS:
8355 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8356 case elfcpp::R_ARM_THM_MOVT_ABS:
8357 // If building a shared library (or a position-independent
8358 // executable), we need to create a dynamic relocation for
8359 // this location. Because the addend needs to remain in the
8360 // data section, we need to be careful not to apply this
8361 // relocation statically.
8362 if (parameters->options().output_is_position_independent())
8363 {
8364 check_non_pic(object, r_type);
8365 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8366 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8367 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8368 rel_dyn->add_local(object, r_sym, r_type, output_section,
8369 data_shndx, reloc.get_r_offset());
8370 else
8371 {
8372 gold_assert(lsym.get_st_value() == 0);
8373 unsigned int shndx = lsym.get_st_shndx();
8374 bool is_ordinary;
8375 shndx = object->adjust_sym_shndx(r_sym, shndx,
8376 &is_ordinary);
8377 if (!is_ordinary)
8378 object->error(_("section symbol %u has bad shndx %u"),
8379 r_sym, shndx);
8380 else
8381 rel_dyn->add_local_section(object, shndx,
8382 r_type, output_section,
8383 data_shndx, reloc.get_r_offset());
8384 }
8385 }
8386 break;
8387
8388 case elfcpp::R_ARM_REL32:
8389 case elfcpp::R_ARM_LDR_PC_G0:
8390 case elfcpp::R_ARM_SBREL32:
8391 case elfcpp::R_ARM_THM_CALL:
8392 case elfcpp::R_ARM_THM_PC8:
8393 case elfcpp::R_ARM_BASE_PREL:
8394 case elfcpp::R_ARM_PLT32:
8395 case elfcpp::R_ARM_CALL:
8396 case elfcpp::R_ARM_JUMP24:
8397 case elfcpp::R_ARM_THM_JUMP24:
8398 case elfcpp::R_ARM_SBREL31:
8399 case elfcpp::R_ARM_PREL31:
8400 case elfcpp::R_ARM_MOVW_PREL_NC:
8401 case elfcpp::R_ARM_MOVT_PREL:
8402 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8403 case elfcpp::R_ARM_THM_MOVT_PREL:
8404 case elfcpp::R_ARM_THM_JUMP19:
8405 case elfcpp::R_ARM_THM_JUMP6:
8406 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8407 case elfcpp::R_ARM_THM_PC12:
8408 case elfcpp::R_ARM_REL32_NOI:
8409 case elfcpp::R_ARM_ALU_PC_G0_NC:
8410 case elfcpp::R_ARM_ALU_PC_G0:
8411 case elfcpp::R_ARM_ALU_PC_G1_NC:
8412 case elfcpp::R_ARM_ALU_PC_G1:
8413 case elfcpp::R_ARM_ALU_PC_G2:
8414 case elfcpp::R_ARM_LDR_PC_G1:
8415 case elfcpp::R_ARM_LDR_PC_G2:
8416 case elfcpp::R_ARM_LDRS_PC_G0:
8417 case elfcpp::R_ARM_LDRS_PC_G1:
8418 case elfcpp::R_ARM_LDRS_PC_G2:
8419 case elfcpp::R_ARM_LDC_PC_G0:
8420 case elfcpp::R_ARM_LDC_PC_G1:
8421 case elfcpp::R_ARM_LDC_PC_G2:
8422 case elfcpp::R_ARM_ALU_SB_G0_NC:
8423 case elfcpp::R_ARM_ALU_SB_G0:
8424 case elfcpp::R_ARM_ALU_SB_G1_NC:
8425 case elfcpp::R_ARM_ALU_SB_G1:
8426 case elfcpp::R_ARM_ALU_SB_G2:
8427 case elfcpp::R_ARM_LDR_SB_G0:
8428 case elfcpp::R_ARM_LDR_SB_G1:
8429 case elfcpp::R_ARM_LDR_SB_G2:
8430 case elfcpp::R_ARM_LDRS_SB_G0:
8431 case elfcpp::R_ARM_LDRS_SB_G1:
8432 case elfcpp::R_ARM_LDRS_SB_G2:
8433 case elfcpp::R_ARM_LDC_SB_G0:
8434 case elfcpp::R_ARM_LDC_SB_G1:
8435 case elfcpp::R_ARM_LDC_SB_G2:
8436 case elfcpp::R_ARM_MOVW_BREL_NC:
8437 case elfcpp::R_ARM_MOVT_BREL:
8438 case elfcpp::R_ARM_MOVW_BREL:
8439 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8440 case elfcpp::R_ARM_THM_MOVT_BREL:
8441 case elfcpp::R_ARM_THM_MOVW_BREL:
8442 case elfcpp::R_ARM_THM_JUMP11:
8443 case elfcpp::R_ARM_THM_JUMP8:
8444 // We don't need to do anything for a relative addressing relocation
8445 // against a local symbol if it does not reference the GOT.
8446 break;
8447
8448 case elfcpp::R_ARM_GOTOFF32:
8449 case elfcpp::R_ARM_GOTOFF12:
8450 // We need a GOT section:
8451 target->got_section(symtab, layout);
8452 break;
8453
8454 case elfcpp::R_ARM_GOT_BREL:
8455 case elfcpp::R_ARM_GOT_PREL:
8456 {
8457 // The symbol requires a GOT entry.
8458 Arm_output_data_got<big_endian>* got =
8459 target->got_section(symtab, layout);
8460 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8461 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8462 {
8463 // If we are generating a shared object, we need to add a
8464 // dynamic RELATIVE relocation for this symbol's GOT entry.
8465 if (parameters->options().output_is_position_independent())
8466 {
8467 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8468 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8469 rel_dyn->add_local_relative(
8470 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8471 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8472 }
8473 }
8474 }
8475 break;
8476
8477 case elfcpp::R_ARM_TARGET1:
8478 case elfcpp::R_ARM_TARGET2:
8479 // This should have been mapped to another type already.
8480 // Fall through.
8481 case elfcpp::R_ARM_COPY:
8482 case elfcpp::R_ARM_GLOB_DAT:
8483 case elfcpp::R_ARM_JUMP_SLOT:
8484 case elfcpp::R_ARM_RELATIVE:
8485 // These are relocations which should only be seen by the
8486 // dynamic linker, and should never be seen here.
8487 gold_error(_("%s: unexpected reloc %u in object file"),
8488 object->name().c_str(), r_type);
8489 break;
8490
8491
8492 // These are initial TLS relocs, which are expected when
8493 // linking.
8494 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8495 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8496 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8497 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8498 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8499 {
8500 bool output_is_shared = parameters->options().shared();
8501 const tls::Tls_optimization optimized_type
8502 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8503 r_type);
8504 switch (r_type)
8505 {
8506 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8507 if (optimized_type == tls::TLSOPT_NONE)
8508 {
8509 // Create a pair of GOT entries for the module index and
8510 // dtv-relative offset.
8511 Arm_output_data_got<big_endian>* got
8512 = target->got_section(symtab, layout);
8513 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8514 unsigned int shndx = lsym.get_st_shndx();
8515 bool is_ordinary;
8516 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8517 if (!is_ordinary)
8518 {
8519 object->error(_("local symbol %u has bad shndx %u"),
8520 r_sym, shndx);
8521 break;
8522 }
8523
8524 if (!parameters->doing_static_link())
8525 got->add_local_pair_with_rel(object, r_sym, shndx,
8526 GOT_TYPE_TLS_PAIR,
8527 target->rel_dyn_section(layout),
8528 elfcpp::R_ARM_TLS_DTPMOD32);
8529 else
8530 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8531 object, r_sym);
8532 }
8533 else
8534 // FIXME: TLS optimization not supported yet.
8535 gold_unreachable();
8536 break;
8537
8538 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8539 if (optimized_type == tls::TLSOPT_NONE)
8540 {
8541 // Create a GOT entry for the module index.
8542 target->got_mod_index_entry(symtab, layout, object);
8543 }
8544 else
8545 // FIXME: TLS optimization not supported yet.
8546 gold_unreachable();
8547 break;
8548
8549 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8550 break;
8551
8552 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8553 layout->set_has_static_tls();
8554 if (optimized_type == tls::TLSOPT_NONE)
8555 {
8556 // Create a GOT entry for the tp-relative offset.
8557 Arm_output_data_got<big_endian>* got
8558 = target->got_section(symtab, layout);
8559 unsigned int r_sym =
8560 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8561 if (!parameters->doing_static_link())
8562 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8563 target->rel_dyn_section(layout),
8564 elfcpp::R_ARM_TLS_TPOFF32);
8565 else if (!object->local_has_got_offset(r_sym,
8566 GOT_TYPE_TLS_OFFSET))
8567 {
8568 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8569 unsigned int got_offset =
8570 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8571 got->add_static_reloc(got_offset,
8572 elfcpp::R_ARM_TLS_TPOFF32, object,
8573 r_sym);
8574 }
8575 }
8576 else
8577 // FIXME: TLS optimization not supported yet.
8578 gold_unreachable();
8579 break;
8580
8581 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8582 layout->set_has_static_tls();
8583 if (output_is_shared)
8584 {
8585 // We need to create a dynamic relocation.
8586 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8587 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8588 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8589 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8590 output_section, data_shndx,
8591 reloc.get_r_offset());
8592 }
8593 break;
8594
8595 default:
8596 gold_unreachable();
8597 }
8598 }
8599 break;
8600
8601 case elfcpp::R_ARM_PC24:
8602 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8603 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8604 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8605 default:
8606 unsupported_reloc_local(object, r_type);
8607 break;
8608 }
8609 }
8610
8611 // Report an unsupported relocation against a global symbol.
8612
8613 template<bool big_endian>
8614 void
8615 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8616 Sized_relobj_file<32, big_endian>* object,
8617 unsigned int r_type,
8618 Symbol* gsym)
8619 {
8620 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8621 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8622 }
8623
8624 template<bool big_endian>
8625 inline bool
8626 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8627 unsigned int r_type)
8628 {
8629 switch (r_type)
8630 {
8631 case elfcpp::R_ARM_PC24:
8632 case elfcpp::R_ARM_THM_CALL:
8633 case elfcpp::R_ARM_PLT32:
8634 case elfcpp::R_ARM_CALL:
8635 case elfcpp::R_ARM_JUMP24:
8636 case elfcpp::R_ARM_THM_JUMP24:
8637 case elfcpp::R_ARM_SBREL31:
8638 case elfcpp::R_ARM_PREL31:
8639 case elfcpp::R_ARM_THM_JUMP19:
8640 case elfcpp::R_ARM_THM_JUMP6:
8641 case elfcpp::R_ARM_THM_JUMP11:
8642 case elfcpp::R_ARM_THM_JUMP8:
8643 // All the relocations above are branches except SBREL31 and PREL31.
8644 return false;
8645
8646 default:
8647 // Be conservative and assume this is a function pointer.
8648 return true;
8649 }
8650 }
8651
8652 template<bool big_endian>
8653 inline bool
8654 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8655 Symbol_table*,
8656 Layout*,
8657 Target_arm<big_endian>* target,
8658 Sized_relobj_file<32, big_endian>*,
8659 unsigned int,
8660 Output_section*,
8661 const elfcpp::Rel<32, big_endian>&,
8662 unsigned int r_type,
8663 const elfcpp::Sym<32, big_endian>&)
8664 {
8665 r_type = target->get_real_reloc_type(r_type);
8666 return possible_function_pointer_reloc(r_type);
8667 }
8668
8669 template<bool big_endian>
8670 inline bool
8671 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8672 Symbol_table*,
8673 Layout*,
8674 Target_arm<big_endian>* target,
8675 Sized_relobj_file<32, big_endian>*,
8676 unsigned int,
8677 Output_section*,
8678 const elfcpp::Rel<32, big_endian>&,
8679 unsigned int r_type,
8680 Symbol* gsym)
8681 {
8682 // GOT is not a function.
8683 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8684 return false;
8685
8686 r_type = target->get_real_reloc_type(r_type);
8687 return possible_function_pointer_reloc(r_type);
8688 }
8689
8690 // Scan a relocation for a global symbol.
8691
8692 template<bool big_endian>
8693 inline void
8694 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8695 Layout* layout,
8696 Target_arm* target,
8697 Sized_relobj_file<32, big_endian>* object,
8698 unsigned int data_shndx,
8699 Output_section* output_section,
8700 const elfcpp::Rel<32, big_endian>& reloc,
8701 unsigned int r_type,
8702 Symbol* gsym)
8703 {
8704 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8705 // section. We check here to avoid creating a dynamic reloc against
8706 // _GLOBAL_OFFSET_TABLE_.
8707 if (!target->has_got_section()
8708 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8709 target->got_section(symtab, layout);
8710
8711 // A STT_GNU_IFUNC symbol may require a PLT entry.
8712 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8713 && this->reloc_needs_plt_for_ifunc(object, r_type))
8714 target->make_plt_entry(symtab, layout, gsym);
8715
8716 r_type = get_real_reloc_type(r_type);
8717 switch (r_type)
8718 {
8719 case elfcpp::R_ARM_NONE:
8720 case elfcpp::R_ARM_V4BX:
8721 case elfcpp::R_ARM_GNU_VTENTRY:
8722 case elfcpp::R_ARM_GNU_VTINHERIT:
8723 break;
8724
8725 case elfcpp::R_ARM_ABS32:
8726 case elfcpp::R_ARM_ABS16:
8727 case elfcpp::R_ARM_ABS12:
8728 case elfcpp::R_ARM_THM_ABS5:
8729 case elfcpp::R_ARM_ABS8:
8730 case elfcpp::R_ARM_BASE_ABS:
8731 case elfcpp::R_ARM_MOVW_ABS_NC:
8732 case elfcpp::R_ARM_MOVT_ABS:
8733 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8734 case elfcpp::R_ARM_THM_MOVT_ABS:
8735 case elfcpp::R_ARM_ABS32_NOI:
8736 // Absolute addressing relocations.
8737 {
8738 // Make a PLT entry if necessary.
8739 if (this->symbol_needs_plt_entry(gsym))
8740 {
8741 target->make_plt_entry(symtab, layout, gsym);
8742 // Since this is not a PC-relative relocation, we may be
8743 // taking the address of a function. In that case we need to
8744 // set the entry in the dynamic symbol table to the address of
8745 // the PLT entry.
8746 if (gsym->is_from_dynobj() && !parameters->options().shared())
8747 gsym->set_needs_dynsym_value();
8748 }
8749 // Make a dynamic relocation if necessary.
8750 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8751 {
8752 if (!parameters->options().output_is_position_independent()
8753 && gsym->may_need_copy_reloc())
8754 {
8755 target->copy_reloc(symtab, layout, object,
8756 data_shndx, output_section, gsym, reloc);
8757 }
8758 else if ((r_type == elfcpp::R_ARM_ABS32
8759 || r_type == elfcpp::R_ARM_ABS32_NOI)
8760 && gsym->type() == elfcpp::STT_GNU_IFUNC
8761 && gsym->can_use_relative_reloc(false)
8762 && !gsym->is_from_dynobj()
8763 && !gsym->is_undefined()
8764 && !gsym->is_preemptible())
8765 {
8766 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8767 // symbol. This makes a function address in a PIE executable
8768 // match the address in a shared library that it links against.
8769 Reloc_section* rel_irelative =
8770 target->rel_irelative_section(layout);
8771 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8772 rel_irelative->add_symbolless_global_addend(
8773 gsym, r_type, output_section, object,
8774 data_shndx, reloc.get_r_offset());
8775 }
8776 else if ((r_type == elfcpp::R_ARM_ABS32
8777 || r_type == elfcpp::R_ARM_ABS32_NOI)
8778 && gsym->can_use_relative_reloc(false))
8779 {
8780 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8781 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8782 output_section, object,
8783 data_shndx, reloc.get_r_offset());
8784 }
8785 else
8786 {
8787 check_non_pic(object, r_type);
8788 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8789 rel_dyn->add_global(gsym, r_type, output_section, object,
8790 data_shndx, reloc.get_r_offset());
8791 }
8792 }
8793 }
8794 break;
8795
8796 case elfcpp::R_ARM_GOTOFF32:
8797 case elfcpp::R_ARM_GOTOFF12:
8798 // We need a GOT section.
8799 target->got_section(symtab, layout);
8800 break;
8801
8802 case elfcpp::R_ARM_REL32:
8803 case elfcpp::R_ARM_LDR_PC_G0:
8804 case elfcpp::R_ARM_SBREL32:
8805 case elfcpp::R_ARM_THM_PC8:
8806 case elfcpp::R_ARM_BASE_PREL:
8807 case elfcpp::R_ARM_MOVW_PREL_NC:
8808 case elfcpp::R_ARM_MOVT_PREL:
8809 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8810 case elfcpp::R_ARM_THM_MOVT_PREL:
8811 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8812 case elfcpp::R_ARM_THM_PC12:
8813 case elfcpp::R_ARM_REL32_NOI:
8814 case elfcpp::R_ARM_ALU_PC_G0_NC:
8815 case elfcpp::R_ARM_ALU_PC_G0:
8816 case elfcpp::R_ARM_ALU_PC_G1_NC:
8817 case elfcpp::R_ARM_ALU_PC_G1:
8818 case elfcpp::R_ARM_ALU_PC_G2:
8819 case elfcpp::R_ARM_LDR_PC_G1:
8820 case elfcpp::R_ARM_LDR_PC_G2:
8821 case elfcpp::R_ARM_LDRS_PC_G0:
8822 case elfcpp::R_ARM_LDRS_PC_G1:
8823 case elfcpp::R_ARM_LDRS_PC_G2:
8824 case elfcpp::R_ARM_LDC_PC_G0:
8825 case elfcpp::R_ARM_LDC_PC_G1:
8826 case elfcpp::R_ARM_LDC_PC_G2:
8827 case elfcpp::R_ARM_ALU_SB_G0_NC:
8828 case elfcpp::R_ARM_ALU_SB_G0:
8829 case elfcpp::R_ARM_ALU_SB_G1_NC:
8830 case elfcpp::R_ARM_ALU_SB_G1:
8831 case elfcpp::R_ARM_ALU_SB_G2:
8832 case elfcpp::R_ARM_LDR_SB_G0:
8833 case elfcpp::R_ARM_LDR_SB_G1:
8834 case elfcpp::R_ARM_LDR_SB_G2:
8835 case elfcpp::R_ARM_LDRS_SB_G0:
8836 case elfcpp::R_ARM_LDRS_SB_G1:
8837 case elfcpp::R_ARM_LDRS_SB_G2:
8838 case elfcpp::R_ARM_LDC_SB_G0:
8839 case elfcpp::R_ARM_LDC_SB_G1:
8840 case elfcpp::R_ARM_LDC_SB_G2:
8841 case elfcpp::R_ARM_MOVW_BREL_NC:
8842 case elfcpp::R_ARM_MOVT_BREL:
8843 case elfcpp::R_ARM_MOVW_BREL:
8844 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8845 case elfcpp::R_ARM_THM_MOVT_BREL:
8846 case elfcpp::R_ARM_THM_MOVW_BREL:
8847 // Relative addressing relocations.
8848 {
8849 // Make a dynamic relocation if necessary.
8850 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8851 {
8852 if (parameters->options().output_is_executable()
8853 && target->may_need_copy_reloc(gsym))
8854 {
8855 target->copy_reloc(symtab, layout, object,
8856 data_shndx, output_section, gsym, reloc);
8857 }
8858 else
8859 {
8860 check_non_pic(object, r_type);
8861 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8862 rel_dyn->add_global(gsym, r_type, output_section, object,
8863 data_shndx, reloc.get_r_offset());
8864 }
8865 }
8866 }
8867 break;
8868
8869 case elfcpp::R_ARM_THM_CALL:
8870 case elfcpp::R_ARM_PLT32:
8871 case elfcpp::R_ARM_CALL:
8872 case elfcpp::R_ARM_JUMP24:
8873 case elfcpp::R_ARM_THM_JUMP24:
8874 case elfcpp::R_ARM_SBREL31:
8875 case elfcpp::R_ARM_PREL31:
8876 case elfcpp::R_ARM_THM_JUMP19:
8877 case elfcpp::R_ARM_THM_JUMP6:
8878 case elfcpp::R_ARM_THM_JUMP11:
8879 case elfcpp::R_ARM_THM_JUMP8:
8880 // All the relocation above are branches except for the PREL31 ones.
8881 // A PREL31 relocation can point to a personality function in a shared
8882 // library. In that case we want to use a PLT because we want to
8883 // call the personality routine and the dynamic linkers we care about
8884 // do not support dynamic PREL31 relocations. An REL31 relocation may
8885 // point to a function whose unwinding behaviour is being described but
8886 // we will not mistakenly generate a PLT for that because we should use
8887 // a local section symbol.
8888
8889 // If the symbol is fully resolved, this is just a relative
8890 // local reloc. Otherwise we need a PLT entry.
8891 if (gsym->final_value_is_known())
8892 break;
8893 // If building a shared library, we can also skip the PLT entry
8894 // if the symbol is defined in the output file and is protected
8895 // or hidden.
8896 if (gsym->is_defined()
8897 && !gsym->is_from_dynobj()
8898 && !gsym->is_preemptible())
8899 break;
8900 target->make_plt_entry(symtab, layout, gsym);
8901 break;
8902
8903 case elfcpp::R_ARM_GOT_BREL:
8904 case elfcpp::R_ARM_GOT_ABS:
8905 case elfcpp::R_ARM_GOT_PREL:
8906 {
8907 // The symbol requires a GOT entry.
8908 Arm_output_data_got<big_endian>* got =
8909 target->got_section(symtab, layout);
8910 if (gsym->final_value_is_known())
8911 {
8912 // For a STT_GNU_IFUNC symbol we want the PLT address.
8913 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8914 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8915 else
8916 got->add_global(gsym, GOT_TYPE_STANDARD);
8917 }
8918 else
8919 {
8920 // If this symbol is not fully resolved, we need to add a
8921 // GOT entry with a dynamic relocation.
8922 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8923 if (gsym->is_from_dynobj()
8924 || gsym->is_undefined()
8925 || gsym->is_preemptible()
8926 || (gsym->visibility() == elfcpp::STV_PROTECTED
8927 && parameters->options().shared())
8928 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8929 && parameters->options().output_is_position_independent()))
8930 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8931 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8932 else
8933 {
8934 // For a STT_GNU_IFUNC symbol we want to write the PLT
8935 // offset into the GOT, so that function pointer
8936 // comparisons work correctly.
8937 bool is_new;
8938 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8939 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8940 else
8941 {
8942 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8943 // Tell the dynamic linker to use the PLT address
8944 // when resolving relocations.
8945 if (gsym->is_from_dynobj()
8946 && !parameters->options().shared())
8947 gsym->set_needs_dynsym_value();
8948 }
8949 if (is_new)
8950 rel_dyn->add_global_relative(
8951 gsym, elfcpp::R_ARM_RELATIVE, got,
8952 gsym->got_offset(GOT_TYPE_STANDARD));
8953 }
8954 }
8955 }
8956 break;
8957
8958 case elfcpp::R_ARM_TARGET1:
8959 case elfcpp::R_ARM_TARGET2:
8960 // These should have been mapped to other types already.
8961 // Fall through.
8962 case elfcpp::R_ARM_COPY:
8963 case elfcpp::R_ARM_GLOB_DAT:
8964 case elfcpp::R_ARM_JUMP_SLOT:
8965 case elfcpp::R_ARM_RELATIVE:
8966 // These are relocations which should only be seen by the
8967 // dynamic linker, and should never be seen here.
8968 gold_error(_("%s: unexpected reloc %u in object file"),
8969 object->name().c_str(), r_type);
8970 break;
8971
8972 // These are initial tls relocs, which are expected when
8973 // linking.
8974 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8975 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8976 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8977 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8978 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8979 {
8980 const bool is_final = gsym->final_value_is_known();
8981 const tls::Tls_optimization optimized_type
8982 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8983 switch (r_type)
8984 {
8985 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8986 if (optimized_type == tls::TLSOPT_NONE)
8987 {
8988 // Create a pair of GOT entries for the module index and
8989 // dtv-relative offset.
8990 Arm_output_data_got<big_endian>* got
8991 = target->got_section(symtab, layout);
8992 if (!parameters->doing_static_link())
8993 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8994 target->rel_dyn_section(layout),
8995 elfcpp::R_ARM_TLS_DTPMOD32,
8996 elfcpp::R_ARM_TLS_DTPOFF32);
8997 else
8998 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8999 }
9000 else
9001 // FIXME: TLS optimization not supported yet.
9002 gold_unreachable();
9003 break;
9004
9005 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9006 if (optimized_type == tls::TLSOPT_NONE)
9007 {
9008 // Create a GOT entry for the module index.
9009 target->got_mod_index_entry(symtab, layout, object);
9010 }
9011 else
9012 // FIXME: TLS optimization not supported yet.
9013 gold_unreachable();
9014 break;
9015
9016 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9017 break;
9018
9019 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9020 layout->set_has_static_tls();
9021 if (optimized_type == tls::TLSOPT_NONE)
9022 {
9023 // Create a GOT entry for the tp-relative offset.
9024 Arm_output_data_got<big_endian>* got
9025 = target->got_section(symtab, layout);
9026 if (!parameters->doing_static_link())
9027 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9028 target->rel_dyn_section(layout),
9029 elfcpp::R_ARM_TLS_TPOFF32);
9030 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9031 {
9032 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9033 unsigned int got_offset =
9034 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9035 got->add_static_reloc(got_offset,
9036 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9037 }
9038 }
9039 else
9040 // FIXME: TLS optimization not supported yet.
9041 gold_unreachable();
9042 break;
9043
9044 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9045 layout->set_has_static_tls();
9046 if (parameters->options().shared())
9047 {
9048 // We need to create a dynamic relocation.
9049 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9050 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9051 output_section, object,
9052 data_shndx, reloc.get_r_offset());
9053 }
9054 break;
9055
9056 default:
9057 gold_unreachable();
9058 }
9059 }
9060 break;
9061
9062 case elfcpp::R_ARM_PC24:
9063 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9064 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9065 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9066 default:
9067 unsupported_reloc_global(object, r_type, gsym);
9068 break;
9069 }
9070 }
9071
9072 // Process relocations for gc.
9073
9074 template<bool big_endian>
9075 void
9076 Target_arm<big_endian>::gc_process_relocs(
9077 Symbol_table* symtab,
9078 Layout* layout,
9079 Sized_relobj_file<32, big_endian>* object,
9080 unsigned int data_shndx,
9081 unsigned int,
9082 const unsigned char* prelocs,
9083 size_t reloc_count,
9084 Output_section* output_section,
9085 bool needs_special_offset_handling,
9086 size_t local_symbol_count,
9087 const unsigned char* plocal_symbols)
9088 {
9089 typedef Target_arm<big_endian> Arm;
9090 typedef typename Target_arm<big_endian>::Scan Scan;
9091
9092 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
9093 typename Target_arm::Relocatable_size_for_reloc>(
9094 symtab,
9095 layout,
9096 this,
9097 object,
9098 data_shndx,
9099 prelocs,
9100 reloc_count,
9101 output_section,
9102 needs_special_offset_handling,
9103 local_symbol_count,
9104 plocal_symbols);
9105 }
9106
9107 // Scan relocations for a section.
9108
9109 template<bool big_endian>
9110 void
9111 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9112 Layout* layout,
9113 Sized_relobj_file<32, big_endian>* object,
9114 unsigned int data_shndx,
9115 unsigned int sh_type,
9116 const unsigned char* prelocs,
9117 size_t reloc_count,
9118 Output_section* output_section,
9119 bool needs_special_offset_handling,
9120 size_t local_symbol_count,
9121 const unsigned char* plocal_symbols)
9122 {
9123 typedef typename Target_arm<big_endian>::Scan Scan;
9124 if (sh_type == elfcpp::SHT_RELA)
9125 {
9126 gold_error(_("%s: unsupported RELA reloc section"),
9127 object->name().c_str());
9128 return;
9129 }
9130
9131 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
9132 symtab,
9133 layout,
9134 this,
9135 object,
9136 data_shndx,
9137 prelocs,
9138 reloc_count,
9139 output_section,
9140 needs_special_offset_handling,
9141 local_symbol_count,
9142 plocal_symbols);
9143 }
9144
9145 // Finalize the sections.
9146
9147 template<bool big_endian>
9148 void
9149 Target_arm<big_endian>::do_finalize_sections(
9150 Layout* layout,
9151 const Input_objects* input_objects,
9152 Symbol_table*)
9153 {
9154 bool merged_any_attributes = false;
9155 // Merge processor-specific flags.
9156 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9157 p != input_objects->relobj_end();
9158 ++p)
9159 {
9160 Arm_relobj<big_endian>* arm_relobj =
9161 Arm_relobj<big_endian>::as_arm_relobj(*p);
9162 if (arm_relobj->merge_flags_and_attributes())
9163 {
9164 this->merge_processor_specific_flags(
9165 arm_relobj->name(),
9166 arm_relobj->processor_specific_flags());
9167 this->merge_object_attributes(arm_relobj->name().c_str(),
9168 arm_relobj->attributes_section_data());
9169 merged_any_attributes = true;
9170 }
9171 }
9172
9173 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9174 p != input_objects->dynobj_end();
9175 ++p)
9176 {
9177 Arm_dynobj<big_endian>* arm_dynobj =
9178 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9179 this->merge_processor_specific_flags(
9180 arm_dynobj->name(),
9181 arm_dynobj->processor_specific_flags());
9182 this->merge_object_attributes(arm_dynobj->name().c_str(),
9183 arm_dynobj->attributes_section_data());
9184 merged_any_attributes = true;
9185 }
9186
9187 // Create an empty uninitialized attribute section if we still don't have it
9188 // at this moment. This happens if there is no attributes sections in all
9189 // inputs.
9190 if (this->attributes_section_data_ == NULL)
9191 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9192
9193 const Object_attribute* cpu_arch_attr =
9194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9195 // Check if we need to use Cortex-A8 workaround.
9196 if (parameters->options().user_set_fix_cortex_a8())
9197 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9198 else
9199 {
9200 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9201 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9202 // profile.
9203 const Object_attribute* cpu_arch_profile_attr =
9204 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9205 this->fix_cortex_a8_ =
9206 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9207 && (cpu_arch_profile_attr->int_value() == 'A'
9208 || cpu_arch_profile_attr->int_value() == 0));
9209 }
9210
9211 // Check if we can use V4BX interworking.
9212 // The V4BX interworking stub contains BX instruction,
9213 // which is not specified for some profiles.
9214 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9215 && !this->may_use_v4t_interworking())
9216 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9217 "the target profile does not support BX instruction"));
9218
9219 // Fill in some more dynamic tags.
9220 const Reloc_section* rel_plt = (this->plt_ == NULL
9221 ? NULL
9222 : this->plt_->rel_plt());
9223 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9224 this->rel_dyn_, true, false);
9225
9226 // Emit any relocs we saved in an attempt to avoid generating COPY
9227 // relocs.
9228 if (this->copy_relocs_.any_saved_relocs())
9229 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9230
9231 // Handle the .ARM.exidx section.
9232 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9233
9234 if (!parameters->options().relocatable())
9235 {
9236 if (exidx_section != NULL
9237 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9238 {
9239 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9240 // the .ARM.exidx section.
9241 if (!layout->script_options()->saw_phdrs_clause())
9242 {
9243 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9244 0)
9245 == NULL);
9246 Output_segment* exidx_segment =
9247 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9248 exidx_segment->add_output_section_to_nonload(exidx_section,
9249 elfcpp::PF_R);
9250 }
9251 }
9252 }
9253
9254 // Create an .ARM.attributes section if we have merged any attributes
9255 // from inputs.
9256 if (merged_any_attributes)
9257 {
9258 Output_attributes_section_data* attributes_section =
9259 new Output_attributes_section_data(*this->attributes_section_data_);
9260 layout->add_output_section_data(".ARM.attributes",
9261 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9262 attributes_section, ORDER_INVALID,
9263 false);
9264 }
9265
9266 // Fix up links in section EXIDX headers.
9267 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9268 p != layout->section_list().end();
9269 ++p)
9270 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9271 {
9272 Arm_output_section<big_endian>* os =
9273 Arm_output_section<big_endian>::as_arm_output_section(*p);
9274 os->set_exidx_section_link();
9275 }
9276 }
9277
9278 // Return whether a direct absolute static relocation needs to be applied.
9279 // In cases where Scan::local() or Scan::global() has created
9280 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9281 // of the relocation is carried in the data, and we must not
9282 // apply the static relocation.
9283
9284 template<bool big_endian>
9285 inline bool
9286 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9287 const Sized_symbol<32>* gsym,
9288 unsigned int r_type,
9289 bool is_32bit,
9290 Output_section* output_section)
9291 {
9292 // If the output section is not allocated, then we didn't call
9293 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9294 // the reloc here.
9295 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9296 return true;
9297
9298 int ref_flags = Scan::get_reference_flags(r_type);
9299
9300 // For local symbols, we will have created a non-RELATIVE dynamic
9301 // relocation only if (a) the output is position independent,
9302 // (b) the relocation is absolute (not pc- or segment-relative), and
9303 // (c) the relocation is not 32 bits wide.
9304 if (gsym == NULL)
9305 return !(parameters->options().output_is_position_independent()
9306 && (ref_flags & Symbol::ABSOLUTE_REF)
9307 && !is_32bit);
9308
9309 // For global symbols, we use the same helper routines used in the
9310 // scan pass. If we did not create a dynamic relocation, or if we
9311 // created a RELATIVE dynamic relocation, we should apply the static
9312 // relocation.
9313 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9314 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9315 && gsym->can_use_relative_reloc(ref_flags
9316 & Symbol::FUNCTION_CALL);
9317 return !has_dyn || is_rel;
9318 }
9319
9320 // Perform a relocation.
9321
9322 template<bool big_endian>
9323 inline bool
9324 Target_arm<big_endian>::Relocate::relocate(
9325 const Relocate_info<32, big_endian>* relinfo,
9326 Target_arm* target,
9327 Output_section* output_section,
9328 size_t relnum,
9329 const elfcpp::Rel<32, big_endian>& rel,
9330 unsigned int r_type,
9331 const Sized_symbol<32>* gsym,
9332 const Symbol_value<32>* psymval,
9333 unsigned char* view,
9334 Arm_address address,
9335 section_size_type view_size)
9336 {
9337 if (view == NULL)
9338 return true;
9339
9340 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9341
9342 r_type = get_real_reloc_type(r_type);
9343 const Arm_reloc_property* reloc_property =
9344 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9345 if (reloc_property == NULL)
9346 {
9347 std::string reloc_name =
9348 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9349 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9350 _("cannot relocate %s in object file"),
9351 reloc_name.c_str());
9352 return true;
9353 }
9354
9355 const Arm_relobj<big_endian>* object =
9356 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9357
9358 // If the final branch target of a relocation is THUMB instruction, this
9359 // is 1. Otherwise it is 0.
9360 Arm_address thumb_bit = 0;
9361 Symbol_value<32> symval;
9362 bool is_weakly_undefined_without_plt = false;
9363 bool have_got_offset = false;
9364 unsigned int got_offset = 0;
9365
9366 // If the relocation uses the GOT entry of a symbol instead of the symbol
9367 // itself, we don't care about whether the symbol is defined or what kind
9368 // of symbol it is.
9369 if (reloc_property->uses_got_entry())
9370 {
9371 // Get the GOT offset.
9372 // The GOT pointer points to the end of the GOT section.
9373 // We need to subtract the size of the GOT section to get
9374 // the actual offset to use in the relocation.
9375 // TODO: We should move GOT offset computing code in TLS relocations
9376 // to here.
9377 switch (r_type)
9378 {
9379 case elfcpp::R_ARM_GOT_BREL:
9380 case elfcpp::R_ARM_GOT_PREL:
9381 if (gsym != NULL)
9382 {
9383 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9384 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9385 - target->got_size());
9386 }
9387 else
9388 {
9389 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9390 gold_assert(object->local_has_got_offset(r_sym,
9391 GOT_TYPE_STANDARD));
9392 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9393 - target->got_size());
9394 }
9395 have_got_offset = true;
9396 break;
9397
9398 default:
9399 break;
9400 }
9401 }
9402 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9403 {
9404 if (gsym != NULL)
9405 {
9406 // This is a global symbol. Determine if we use PLT and if the
9407 // final target is THUMB.
9408 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9409 {
9410 // This uses a PLT, change the symbol value.
9411 symval.set_output_value(target->plt_address_for_global(gsym));
9412 psymval = &symval;
9413 }
9414 else if (gsym->is_weak_undefined())
9415 {
9416 // This is a weakly undefined symbol and we do not use PLT
9417 // for this relocation. A branch targeting this symbol will
9418 // be converted into an NOP.
9419 is_weakly_undefined_without_plt = true;
9420 }
9421 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9422 {
9423 // This relocation uses the symbol value but the symbol is
9424 // undefined. Exit early and have the caller reporting an
9425 // error.
9426 return true;
9427 }
9428 else
9429 {
9430 // Set thumb bit if symbol:
9431 // -Has type STT_ARM_TFUNC or
9432 // -Has type STT_FUNC, is defined and with LSB in value set.
9433 thumb_bit =
9434 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9435 || (gsym->type() == elfcpp::STT_FUNC
9436 && !gsym->is_undefined()
9437 && ((psymval->value(object, 0) & 1) != 0)))
9438 ? 1
9439 : 0);
9440 }
9441 }
9442 else
9443 {
9444 // This is a local symbol. Determine if the final target is THUMB.
9445 // We saved this information when all the local symbols were read.
9446 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9447 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9448 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9449
9450 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9451 {
9452 symval.set_output_value(
9453 target->plt_address_for_local(object, r_sym));
9454 psymval = &symval;
9455 }
9456 }
9457 }
9458 else
9459 {
9460 // This is a fake relocation synthesized for a stub. It does not have
9461 // a real symbol. We just look at the LSB of the symbol value to
9462 // determine if the target is THUMB or not.
9463 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9464 }
9465
9466 // Strip LSB if this points to a THUMB target.
9467 if (thumb_bit != 0
9468 && reloc_property->uses_thumb_bit()
9469 && ((psymval->value(object, 0) & 1) != 0))
9470 {
9471 Arm_address stripped_value =
9472 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9473 symval.set_output_value(stripped_value);
9474 psymval = &symval;
9475 }
9476
9477 // To look up relocation stubs, we need to pass the symbol table index of
9478 // a local symbol.
9479 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9480
9481 // Get the addressing origin of the output segment defining the
9482 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9483 Arm_address sym_origin = 0;
9484 if (reloc_property->uses_symbol_base())
9485 {
9486 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9487 // R_ARM_BASE_ABS with the NULL symbol will give the
9488 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9489 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9490 sym_origin = target->got_plt_section()->address();
9491 else if (gsym == NULL)
9492 sym_origin = 0;
9493 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9494 sym_origin = gsym->output_segment()->vaddr();
9495 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9496 sym_origin = gsym->output_data()->address();
9497
9498 // TODO: Assumes the segment base to be zero for the global symbols
9499 // till the proper support for the segment-base-relative addressing
9500 // will be implemented. This is consistent with GNU ld.
9501 }
9502
9503 // For relative addressing relocation, find out the relative address base.
9504 Arm_address relative_address_base = 0;
9505 switch(reloc_property->relative_address_base())
9506 {
9507 case Arm_reloc_property::RAB_NONE:
9508 // Relocations with relative address bases RAB_TLS and RAB_tp are
9509 // handled by relocate_tls. So we do not need to do anything here.
9510 case Arm_reloc_property::RAB_TLS:
9511 case Arm_reloc_property::RAB_tp:
9512 break;
9513 case Arm_reloc_property::RAB_B_S:
9514 relative_address_base = sym_origin;
9515 break;
9516 case Arm_reloc_property::RAB_GOT_ORG:
9517 relative_address_base = target->got_plt_section()->address();
9518 break;
9519 case Arm_reloc_property::RAB_P:
9520 relative_address_base = address;
9521 break;
9522 case Arm_reloc_property::RAB_Pa:
9523 relative_address_base = address & 0xfffffffcU;
9524 break;
9525 default:
9526 gold_unreachable();
9527 }
9528
9529 typename Arm_relocate_functions::Status reloc_status =
9530 Arm_relocate_functions::STATUS_OKAY;
9531 bool check_overflow = reloc_property->checks_overflow();
9532 switch (r_type)
9533 {
9534 case elfcpp::R_ARM_NONE:
9535 break;
9536
9537 case elfcpp::R_ARM_ABS8:
9538 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9539 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9540 break;
9541
9542 case elfcpp::R_ARM_ABS12:
9543 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9544 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9545 break;
9546
9547 case elfcpp::R_ARM_ABS16:
9548 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9549 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9550 break;
9551
9552 case elfcpp::R_ARM_ABS32:
9553 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9554 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9555 thumb_bit);
9556 break;
9557
9558 case elfcpp::R_ARM_ABS32_NOI:
9559 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9560 // No thumb bit for this relocation: (S + A)
9561 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9562 0);
9563 break;
9564
9565 case elfcpp::R_ARM_MOVW_ABS_NC:
9566 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9567 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9568 0, thumb_bit,
9569 check_overflow);
9570 break;
9571
9572 case elfcpp::R_ARM_MOVT_ABS:
9573 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9574 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9575 break;
9576
9577 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9578 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9579 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9580 0, thumb_bit, false);
9581 break;
9582
9583 case elfcpp::R_ARM_THM_MOVT_ABS:
9584 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9585 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9586 psymval, 0);
9587 break;
9588
9589 case elfcpp::R_ARM_MOVW_PREL_NC:
9590 case elfcpp::R_ARM_MOVW_BREL_NC:
9591 case elfcpp::R_ARM_MOVW_BREL:
9592 reloc_status =
9593 Arm_relocate_functions::movw(view, object, psymval,
9594 relative_address_base, thumb_bit,
9595 check_overflow);
9596 break;
9597
9598 case elfcpp::R_ARM_MOVT_PREL:
9599 case elfcpp::R_ARM_MOVT_BREL:
9600 reloc_status =
9601 Arm_relocate_functions::movt(view, object, psymval,
9602 relative_address_base);
9603 break;
9604
9605 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9606 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9607 case elfcpp::R_ARM_THM_MOVW_BREL:
9608 reloc_status =
9609 Arm_relocate_functions::thm_movw(view, object, psymval,
9610 relative_address_base,
9611 thumb_bit, check_overflow);
9612 break;
9613
9614 case elfcpp::R_ARM_THM_MOVT_PREL:
9615 case elfcpp::R_ARM_THM_MOVT_BREL:
9616 reloc_status =
9617 Arm_relocate_functions::thm_movt(view, object, psymval,
9618 relative_address_base);
9619 break;
9620
9621 case elfcpp::R_ARM_REL32:
9622 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9623 address, thumb_bit);
9624 break;
9625
9626 case elfcpp::R_ARM_THM_ABS5:
9627 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9628 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9629 break;
9630
9631 // Thumb long branches.
9632 case elfcpp::R_ARM_THM_CALL:
9633 case elfcpp::R_ARM_THM_XPC22:
9634 case elfcpp::R_ARM_THM_JUMP24:
9635 reloc_status =
9636 Arm_relocate_functions::thumb_branch_common(
9637 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9638 thumb_bit, is_weakly_undefined_without_plt);
9639 break;
9640
9641 case elfcpp::R_ARM_GOTOFF32:
9642 {
9643 Arm_address got_origin;
9644 got_origin = target->got_plt_section()->address();
9645 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9646 got_origin, thumb_bit);
9647 }
9648 break;
9649
9650 case elfcpp::R_ARM_BASE_PREL:
9651 gold_assert(gsym != NULL);
9652 reloc_status =
9653 Arm_relocate_functions::base_prel(view, sym_origin, address);
9654 break;
9655
9656 case elfcpp::R_ARM_BASE_ABS:
9657 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9658 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9659 break;
9660
9661 case elfcpp::R_ARM_GOT_BREL:
9662 gold_assert(have_got_offset);
9663 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9664 break;
9665
9666 case elfcpp::R_ARM_GOT_PREL:
9667 gold_assert(have_got_offset);
9668 // Get the address origin for GOT PLT, which is allocated right
9669 // after the GOT section, to calculate an absolute address of
9670 // the symbol GOT entry (got_origin + got_offset).
9671 Arm_address got_origin;
9672 got_origin = target->got_plt_section()->address();
9673 reloc_status = Arm_relocate_functions::got_prel(view,
9674 got_origin + got_offset,
9675 address);
9676 break;
9677
9678 case elfcpp::R_ARM_PLT32:
9679 case elfcpp::R_ARM_CALL:
9680 case elfcpp::R_ARM_JUMP24:
9681 case elfcpp::R_ARM_XPC25:
9682 gold_assert(gsym == NULL
9683 || gsym->has_plt_offset()
9684 || gsym->final_value_is_known()
9685 || (gsym->is_defined()
9686 && !gsym->is_from_dynobj()
9687 && !gsym->is_preemptible()));
9688 reloc_status =
9689 Arm_relocate_functions::arm_branch_common(
9690 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9691 thumb_bit, is_weakly_undefined_without_plt);
9692 break;
9693
9694 case elfcpp::R_ARM_THM_JUMP19:
9695 reloc_status =
9696 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9697 thumb_bit);
9698 break;
9699
9700 case elfcpp::R_ARM_THM_JUMP6:
9701 reloc_status =
9702 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9703 break;
9704
9705 case elfcpp::R_ARM_THM_JUMP8:
9706 reloc_status =
9707 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9708 break;
9709
9710 case elfcpp::R_ARM_THM_JUMP11:
9711 reloc_status =
9712 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9713 break;
9714
9715 case elfcpp::R_ARM_PREL31:
9716 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9717 address, thumb_bit);
9718 break;
9719
9720 case elfcpp::R_ARM_V4BX:
9721 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9722 {
9723 const bool is_v4bx_interworking =
9724 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9725 reloc_status =
9726 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9727 is_v4bx_interworking);
9728 }
9729 break;
9730
9731 case elfcpp::R_ARM_THM_PC8:
9732 reloc_status =
9733 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9734 break;
9735
9736 case elfcpp::R_ARM_THM_PC12:
9737 reloc_status =
9738 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9739 break;
9740
9741 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9742 reloc_status =
9743 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9744 thumb_bit);
9745 break;
9746
9747 case elfcpp::R_ARM_ALU_PC_G0_NC:
9748 case elfcpp::R_ARM_ALU_PC_G0:
9749 case elfcpp::R_ARM_ALU_PC_G1_NC:
9750 case elfcpp::R_ARM_ALU_PC_G1:
9751 case elfcpp::R_ARM_ALU_PC_G2:
9752 case elfcpp::R_ARM_ALU_SB_G0_NC:
9753 case elfcpp::R_ARM_ALU_SB_G0:
9754 case elfcpp::R_ARM_ALU_SB_G1_NC:
9755 case elfcpp::R_ARM_ALU_SB_G1:
9756 case elfcpp::R_ARM_ALU_SB_G2:
9757 reloc_status =
9758 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9759 reloc_property->group_index(),
9760 relative_address_base,
9761 thumb_bit, check_overflow);
9762 break;
9763
9764 case elfcpp::R_ARM_LDR_PC_G0:
9765 case elfcpp::R_ARM_LDR_PC_G1:
9766 case elfcpp::R_ARM_LDR_PC_G2:
9767 case elfcpp::R_ARM_LDR_SB_G0:
9768 case elfcpp::R_ARM_LDR_SB_G1:
9769 case elfcpp::R_ARM_LDR_SB_G2:
9770 reloc_status =
9771 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9772 reloc_property->group_index(),
9773 relative_address_base);
9774 break;
9775
9776 case elfcpp::R_ARM_LDRS_PC_G0:
9777 case elfcpp::R_ARM_LDRS_PC_G1:
9778 case elfcpp::R_ARM_LDRS_PC_G2:
9779 case elfcpp::R_ARM_LDRS_SB_G0:
9780 case elfcpp::R_ARM_LDRS_SB_G1:
9781 case elfcpp::R_ARM_LDRS_SB_G2:
9782 reloc_status =
9783 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9784 reloc_property->group_index(),
9785 relative_address_base);
9786 break;
9787
9788 case elfcpp::R_ARM_LDC_PC_G0:
9789 case elfcpp::R_ARM_LDC_PC_G1:
9790 case elfcpp::R_ARM_LDC_PC_G2:
9791 case elfcpp::R_ARM_LDC_SB_G0:
9792 case elfcpp::R_ARM_LDC_SB_G1:
9793 case elfcpp::R_ARM_LDC_SB_G2:
9794 reloc_status =
9795 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9796 reloc_property->group_index(),
9797 relative_address_base);
9798 break;
9799
9800 // These are initial tls relocs, which are expected when
9801 // linking.
9802 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9803 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9804 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9805 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9806 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9807 reloc_status =
9808 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9809 view, address, view_size);
9810 break;
9811
9812 // The known and unknown unsupported and/or deprecated relocations.
9813 case elfcpp::R_ARM_PC24:
9814 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9815 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9816 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9817 default:
9818 // Just silently leave the method. We should get an appropriate error
9819 // message in the scan methods.
9820 break;
9821 }
9822
9823 // Report any errors.
9824 switch (reloc_status)
9825 {
9826 case Arm_relocate_functions::STATUS_OKAY:
9827 break;
9828 case Arm_relocate_functions::STATUS_OVERFLOW:
9829 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9830 _("relocation overflow in %s"),
9831 reloc_property->name().c_str());
9832 break;
9833 case Arm_relocate_functions::STATUS_BAD_RELOC:
9834 gold_error_at_location(
9835 relinfo,
9836 relnum,
9837 rel.get_r_offset(),
9838 _("unexpected opcode while processing relocation %s"),
9839 reloc_property->name().c_str());
9840 break;
9841 default:
9842 gold_unreachable();
9843 }
9844
9845 return true;
9846 }
9847
9848 // Perform a TLS relocation.
9849
9850 template<bool big_endian>
9851 inline typename Arm_relocate_functions<big_endian>::Status
9852 Target_arm<big_endian>::Relocate::relocate_tls(
9853 const Relocate_info<32, big_endian>* relinfo,
9854 Target_arm<big_endian>* target,
9855 size_t relnum,
9856 const elfcpp::Rel<32, big_endian>& rel,
9857 unsigned int r_type,
9858 const Sized_symbol<32>* gsym,
9859 const Symbol_value<32>* psymval,
9860 unsigned char* view,
9861 elfcpp::Elf_types<32>::Elf_Addr address,
9862 section_size_type /*view_size*/ )
9863 {
9864 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9865 typedef Relocate_functions<32, big_endian> RelocFuncs;
9866 Output_segment* tls_segment = relinfo->layout->tls_segment();
9867
9868 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9869
9870 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9871
9872 const bool is_final = (gsym == NULL
9873 ? !parameters->options().shared()
9874 : gsym->final_value_is_known());
9875 const tls::Tls_optimization optimized_type
9876 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9877 switch (r_type)
9878 {
9879 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9880 {
9881 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9882 unsigned int got_offset;
9883 if (gsym != NULL)
9884 {
9885 gold_assert(gsym->has_got_offset(got_type));
9886 got_offset = gsym->got_offset(got_type) - target->got_size();
9887 }
9888 else
9889 {
9890 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9891 gold_assert(object->local_has_got_offset(r_sym, got_type));
9892 got_offset = (object->local_got_offset(r_sym, got_type)
9893 - target->got_size());
9894 }
9895 if (optimized_type == tls::TLSOPT_NONE)
9896 {
9897 Arm_address got_entry =
9898 target->got_plt_section()->address() + got_offset;
9899
9900 // Relocate the field with the PC relative offset of the pair of
9901 // GOT entries.
9902 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9903 return ArmRelocFuncs::STATUS_OKAY;
9904 }
9905 }
9906 break;
9907
9908 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9909 if (optimized_type == tls::TLSOPT_NONE)
9910 {
9911 // Relocate the field with the offset of the GOT entry for
9912 // the module index.
9913 unsigned int got_offset;
9914 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9915 - target->got_size());
9916 Arm_address got_entry =
9917 target->got_plt_section()->address() + got_offset;
9918
9919 // Relocate the field with the PC relative offset of the pair of
9920 // GOT entries.
9921 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9922 return ArmRelocFuncs::STATUS_OKAY;
9923 }
9924 break;
9925
9926 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9927 RelocFuncs::rel32_unaligned(view, value);
9928 return ArmRelocFuncs::STATUS_OKAY;
9929
9930 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9931 if (optimized_type == tls::TLSOPT_NONE)
9932 {
9933 // Relocate the field with the offset of the GOT entry for
9934 // the tp-relative offset of the symbol.
9935 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9936 unsigned int got_offset;
9937 if (gsym != NULL)
9938 {
9939 gold_assert(gsym->has_got_offset(got_type));
9940 got_offset = gsym->got_offset(got_type);
9941 }
9942 else
9943 {
9944 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9945 gold_assert(object->local_has_got_offset(r_sym, got_type));
9946 got_offset = object->local_got_offset(r_sym, got_type);
9947 }
9948
9949 // All GOT offsets are relative to the end of the GOT.
9950 got_offset -= target->got_size();
9951
9952 Arm_address got_entry =
9953 target->got_plt_section()->address() + got_offset;
9954
9955 // Relocate the field with the PC relative offset of the GOT entry.
9956 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9957 return ArmRelocFuncs::STATUS_OKAY;
9958 }
9959 break;
9960
9961 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9962 // If we're creating a shared library, a dynamic relocation will
9963 // have been created for this location, so do not apply it now.
9964 if (!parameters->options().shared())
9965 {
9966 gold_assert(tls_segment != NULL);
9967
9968 // $tp points to the TCB, which is followed by the TLS, so we
9969 // need to add TCB size to the offset.
9970 Arm_address aligned_tcb_size =
9971 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9972 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9973
9974 }
9975 return ArmRelocFuncs::STATUS_OKAY;
9976
9977 default:
9978 gold_unreachable();
9979 }
9980
9981 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9982 _("unsupported reloc %u"),
9983 r_type);
9984 return ArmRelocFuncs::STATUS_BAD_RELOC;
9985 }
9986
9987 // Relocate section data.
9988
9989 template<bool big_endian>
9990 void
9991 Target_arm<big_endian>::relocate_section(
9992 const Relocate_info<32, big_endian>* relinfo,
9993 unsigned int sh_type,
9994 const unsigned char* prelocs,
9995 size_t reloc_count,
9996 Output_section* output_section,
9997 bool needs_special_offset_handling,
9998 unsigned char* view,
9999 Arm_address address,
10000 section_size_type view_size,
10001 const Reloc_symbol_changes* reloc_symbol_changes)
10002 {
10003 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10004 gold_assert(sh_type == elfcpp::SHT_REL);
10005
10006 // See if we are relocating a relaxed input section. If so, the view
10007 // covers the whole output section and we need to adjust accordingly.
10008 if (needs_special_offset_handling)
10009 {
10010 const Output_relaxed_input_section* poris =
10011 output_section->find_relaxed_input_section(relinfo->object,
10012 relinfo->data_shndx);
10013 if (poris != NULL)
10014 {
10015 Arm_address section_address = poris->address();
10016 section_size_type section_size = poris->data_size();
10017
10018 gold_assert((section_address >= address)
10019 && ((section_address + section_size)
10020 <= (address + view_size)));
10021
10022 off_t offset = section_address - address;
10023 view += offset;
10024 address += offset;
10025 view_size = section_size;
10026 }
10027 }
10028
10029 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
10030 Arm_relocate, gold::Default_comdat_behavior>(
10031 relinfo,
10032 this,
10033 prelocs,
10034 reloc_count,
10035 output_section,
10036 needs_special_offset_handling,
10037 view,
10038 address,
10039 view_size,
10040 reloc_symbol_changes);
10041 }
10042
10043 // Return the size of a relocation while scanning during a relocatable
10044 // link.
10045
10046 template<bool big_endian>
10047 unsigned int
10048 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10049 unsigned int r_type,
10050 Relobj* object)
10051 {
10052 r_type = get_real_reloc_type(r_type);
10053 const Arm_reloc_property* arp =
10054 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10055 if (arp != NULL)
10056 return arp->size();
10057 else
10058 {
10059 std::string reloc_name =
10060 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10061 gold_error(_("%s: unexpected %s in object file"),
10062 object->name().c_str(), reloc_name.c_str());
10063 return 0;
10064 }
10065 }
10066
10067 // Scan the relocs during a relocatable link.
10068
10069 template<bool big_endian>
10070 void
10071 Target_arm<big_endian>::scan_relocatable_relocs(
10072 Symbol_table* symtab,
10073 Layout* layout,
10074 Sized_relobj_file<32, big_endian>* object,
10075 unsigned int data_shndx,
10076 unsigned int sh_type,
10077 const unsigned char* prelocs,
10078 size_t reloc_count,
10079 Output_section* output_section,
10080 bool needs_special_offset_handling,
10081 size_t local_symbol_count,
10082 const unsigned char* plocal_symbols,
10083 Relocatable_relocs* rr)
10084 {
10085 gold_assert(sh_type == elfcpp::SHT_REL);
10086
10087 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
10088 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10089
10090 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10091 Scan_relocatable_relocs>(
10092 symtab,
10093 layout,
10094 object,
10095 data_shndx,
10096 prelocs,
10097 reloc_count,
10098 output_section,
10099 needs_special_offset_handling,
10100 local_symbol_count,
10101 plocal_symbols,
10102 rr);
10103 }
10104
10105 // Emit relocations for a section.
10106
10107 template<bool big_endian>
10108 void
10109 Target_arm<big_endian>::relocate_relocs(
10110 const Relocate_info<32, big_endian>* relinfo,
10111 unsigned int sh_type,
10112 const unsigned char* prelocs,
10113 size_t reloc_count,
10114 Output_section* output_section,
10115 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10116 const Relocatable_relocs* rr,
10117 unsigned char* view,
10118 Arm_address view_address,
10119 section_size_type view_size,
10120 unsigned char* reloc_view,
10121 section_size_type reloc_view_size)
10122 {
10123 gold_assert(sh_type == elfcpp::SHT_REL);
10124
10125 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
10126 relinfo,
10127 prelocs,
10128 reloc_count,
10129 output_section,
10130 offset_in_output_section,
10131 rr,
10132 view,
10133 view_address,
10134 view_size,
10135 reloc_view,
10136 reloc_view_size);
10137 }
10138
10139 // Perform target-specific processing in a relocatable link. This is
10140 // only used if we use the relocation strategy RELOC_SPECIAL.
10141
10142 template<bool big_endian>
10143 void
10144 Target_arm<big_endian>::relocate_special_relocatable(
10145 const Relocate_info<32, big_endian>* relinfo,
10146 unsigned int sh_type,
10147 const unsigned char* preloc_in,
10148 size_t relnum,
10149 Output_section* output_section,
10150 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10151 unsigned char* view,
10152 elfcpp::Elf_types<32>::Elf_Addr view_address,
10153 section_size_type,
10154 unsigned char* preloc_out)
10155 {
10156 // We can only handle REL type relocation sections.
10157 gold_assert(sh_type == elfcpp::SHT_REL);
10158
10159 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10160 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10161 Reltype_write;
10162 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10163
10164 const Arm_relobj<big_endian>* object =
10165 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10166 const unsigned int local_count = object->local_symbol_count();
10167
10168 Reltype reloc(preloc_in);
10169 Reltype_write reloc_write(preloc_out);
10170
10171 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10172 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10173 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10174
10175 const Arm_reloc_property* arp =
10176 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10177 gold_assert(arp != NULL);
10178
10179 // Get the new symbol index.
10180 // We only use RELOC_SPECIAL strategy in local relocations.
10181 gold_assert(r_sym < local_count);
10182
10183 // We are adjusting a section symbol. We need to find
10184 // the symbol table index of the section symbol for
10185 // the output section corresponding to input section
10186 // in which this symbol is defined.
10187 bool is_ordinary;
10188 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10189 gold_assert(is_ordinary);
10190 Output_section* os = object->output_section(shndx);
10191 gold_assert(os != NULL);
10192 gold_assert(os->needs_symtab_index());
10193 unsigned int new_symndx = os->symtab_index();
10194
10195 // Get the new offset--the location in the output section where
10196 // this relocation should be applied.
10197
10198 Arm_address offset = reloc.get_r_offset();
10199 Arm_address new_offset;
10200 if (offset_in_output_section != invalid_address)
10201 new_offset = offset + offset_in_output_section;
10202 else
10203 {
10204 section_offset_type sot_offset =
10205 convert_types<section_offset_type, Arm_address>(offset);
10206 section_offset_type new_sot_offset =
10207 output_section->output_offset(object, relinfo->data_shndx,
10208 sot_offset);
10209 gold_assert(new_sot_offset != -1);
10210 new_offset = new_sot_offset;
10211 }
10212
10213 // In an object file, r_offset is an offset within the section.
10214 // In an executable or dynamic object, generated by
10215 // --emit-relocs, r_offset is an absolute address.
10216 if (!parameters->options().relocatable())
10217 {
10218 new_offset += view_address;
10219 if (offset_in_output_section != invalid_address)
10220 new_offset -= offset_in_output_section;
10221 }
10222
10223 reloc_write.put_r_offset(new_offset);
10224 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10225
10226 // Handle the reloc addend.
10227 // The relocation uses a section symbol in the input file.
10228 // We are adjusting it to use a section symbol in the output
10229 // file. The input section symbol refers to some address in
10230 // the input section. We need the relocation in the output
10231 // file to refer to that same address. This adjustment to
10232 // the addend is the same calculation we use for a simple
10233 // absolute relocation for the input section symbol.
10234
10235 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10236
10237 // Handle THUMB bit.
10238 Symbol_value<32> symval;
10239 Arm_address thumb_bit =
10240 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10241 if (thumb_bit != 0
10242 && arp->uses_thumb_bit()
10243 && ((psymval->value(object, 0) & 1) != 0))
10244 {
10245 Arm_address stripped_value =
10246 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10247 symval.set_output_value(stripped_value);
10248 psymval = &symval;
10249 }
10250
10251 unsigned char* paddend = view + offset;
10252 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10253 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10254 switch (r_type)
10255 {
10256 case elfcpp::R_ARM_ABS8:
10257 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10258 psymval);
10259 break;
10260
10261 case elfcpp::R_ARM_ABS12:
10262 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10263 psymval);
10264 break;
10265
10266 case elfcpp::R_ARM_ABS16:
10267 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10268 psymval);
10269 break;
10270
10271 case elfcpp::R_ARM_THM_ABS5:
10272 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10273 object,
10274 psymval);
10275 break;
10276
10277 case elfcpp::R_ARM_MOVW_ABS_NC:
10278 case elfcpp::R_ARM_MOVW_PREL_NC:
10279 case elfcpp::R_ARM_MOVW_BREL_NC:
10280 case elfcpp::R_ARM_MOVW_BREL:
10281 reloc_status = Arm_relocate_functions<big_endian>::movw(
10282 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10283 break;
10284
10285 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10286 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10287 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10288 case elfcpp::R_ARM_THM_MOVW_BREL:
10289 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10290 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10291 break;
10292
10293 case elfcpp::R_ARM_THM_CALL:
10294 case elfcpp::R_ARM_THM_XPC22:
10295 case elfcpp::R_ARM_THM_JUMP24:
10296 reloc_status =
10297 Arm_relocate_functions<big_endian>::thumb_branch_common(
10298 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10299 false);
10300 break;
10301
10302 case elfcpp::R_ARM_PLT32:
10303 case elfcpp::R_ARM_CALL:
10304 case elfcpp::R_ARM_JUMP24:
10305 case elfcpp::R_ARM_XPC25:
10306 reloc_status =
10307 Arm_relocate_functions<big_endian>::arm_branch_common(
10308 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10309 false);
10310 break;
10311
10312 case elfcpp::R_ARM_THM_JUMP19:
10313 reloc_status =
10314 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10315 psymval, 0, thumb_bit);
10316 break;
10317
10318 case elfcpp::R_ARM_THM_JUMP6:
10319 reloc_status =
10320 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10321 0);
10322 break;
10323
10324 case elfcpp::R_ARM_THM_JUMP8:
10325 reloc_status =
10326 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10327 0);
10328 break;
10329
10330 case elfcpp::R_ARM_THM_JUMP11:
10331 reloc_status =
10332 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10333 0);
10334 break;
10335
10336 case elfcpp::R_ARM_PREL31:
10337 reloc_status =
10338 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10339 thumb_bit);
10340 break;
10341
10342 case elfcpp::R_ARM_THM_PC8:
10343 reloc_status =
10344 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10345 0);
10346 break;
10347
10348 case elfcpp::R_ARM_THM_PC12:
10349 reloc_status =
10350 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10351 0);
10352 break;
10353
10354 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10355 reloc_status =
10356 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10357 0, thumb_bit);
10358 break;
10359
10360 // These relocation truncate relocation results so we cannot handle them
10361 // in a relocatable link.
10362 case elfcpp::R_ARM_MOVT_ABS:
10363 case elfcpp::R_ARM_THM_MOVT_ABS:
10364 case elfcpp::R_ARM_MOVT_PREL:
10365 case elfcpp::R_ARM_MOVT_BREL:
10366 case elfcpp::R_ARM_THM_MOVT_PREL:
10367 case elfcpp::R_ARM_THM_MOVT_BREL:
10368 case elfcpp::R_ARM_ALU_PC_G0_NC:
10369 case elfcpp::R_ARM_ALU_PC_G0:
10370 case elfcpp::R_ARM_ALU_PC_G1_NC:
10371 case elfcpp::R_ARM_ALU_PC_G1:
10372 case elfcpp::R_ARM_ALU_PC_G2:
10373 case elfcpp::R_ARM_ALU_SB_G0_NC:
10374 case elfcpp::R_ARM_ALU_SB_G0:
10375 case elfcpp::R_ARM_ALU_SB_G1_NC:
10376 case elfcpp::R_ARM_ALU_SB_G1:
10377 case elfcpp::R_ARM_ALU_SB_G2:
10378 case elfcpp::R_ARM_LDR_PC_G0:
10379 case elfcpp::R_ARM_LDR_PC_G1:
10380 case elfcpp::R_ARM_LDR_PC_G2:
10381 case elfcpp::R_ARM_LDR_SB_G0:
10382 case elfcpp::R_ARM_LDR_SB_G1:
10383 case elfcpp::R_ARM_LDR_SB_G2:
10384 case elfcpp::R_ARM_LDRS_PC_G0:
10385 case elfcpp::R_ARM_LDRS_PC_G1:
10386 case elfcpp::R_ARM_LDRS_PC_G2:
10387 case elfcpp::R_ARM_LDRS_SB_G0:
10388 case elfcpp::R_ARM_LDRS_SB_G1:
10389 case elfcpp::R_ARM_LDRS_SB_G2:
10390 case elfcpp::R_ARM_LDC_PC_G0:
10391 case elfcpp::R_ARM_LDC_PC_G1:
10392 case elfcpp::R_ARM_LDC_PC_G2:
10393 case elfcpp::R_ARM_LDC_SB_G0:
10394 case elfcpp::R_ARM_LDC_SB_G1:
10395 case elfcpp::R_ARM_LDC_SB_G2:
10396 gold_error(_("cannot handle %s in a relocatable link"),
10397 arp->name().c_str());
10398 break;
10399
10400 default:
10401 gold_unreachable();
10402 }
10403
10404 // Report any errors.
10405 switch (reloc_status)
10406 {
10407 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10408 break;
10409 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10410 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10411 _("relocation overflow in %s"),
10412 arp->name().c_str());
10413 break;
10414 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10415 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10416 _("unexpected opcode while processing relocation %s"),
10417 arp->name().c_str());
10418 break;
10419 default:
10420 gold_unreachable();
10421 }
10422 }
10423
10424 // Return the value to use for a dynamic symbol which requires special
10425 // treatment. This is how we support equality comparisons of function
10426 // pointers across shared library boundaries, as described in the
10427 // processor specific ABI supplement.
10428
10429 template<bool big_endian>
10430 uint64_t
10431 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10432 {
10433 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10434 return this->plt_address_for_global(gsym);
10435 }
10436
10437 // Map platform-specific relocs to real relocs
10438 //
10439 template<bool big_endian>
10440 unsigned int
10441 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10442 {
10443 switch (r_type)
10444 {
10445 case elfcpp::R_ARM_TARGET1:
10446 // This is either R_ARM_ABS32 or R_ARM_REL32;
10447 return elfcpp::R_ARM_ABS32;
10448
10449 case elfcpp::R_ARM_TARGET2:
10450 // This can be any reloc type but usually is R_ARM_GOT_PREL
10451 return elfcpp::R_ARM_GOT_PREL;
10452
10453 default:
10454 return r_type;
10455 }
10456 }
10457
10458 // Whether if two EABI versions V1 and V2 are compatible.
10459
10460 template<bool big_endian>
10461 bool
10462 Target_arm<big_endian>::are_eabi_versions_compatible(
10463 elfcpp::Elf_Word v1,
10464 elfcpp::Elf_Word v2)
10465 {
10466 // v4 and v5 are the same spec before and after it was released,
10467 // so allow mixing them.
10468 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10469 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10470 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10471 return true;
10472
10473 return v1 == v2;
10474 }
10475
10476 // Combine FLAGS from an input object called NAME and the processor-specific
10477 // flags in the ELF header of the output. Much of this is adapted from the
10478 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10479 // in bfd/elf32-arm.c.
10480
10481 template<bool big_endian>
10482 void
10483 Target_arm<big_endian>::merge_processor_specific_flags(
10484 const std::string& name,
10485 elfcpp::Elf_Word flags)
10486 {
10487 if (this->are_processor_specific_flags_set())
10488 {
10489 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10490
10491 // Nothing to merge if flags equal to those in output.
10492 if (flags == out_flags)
10493 return;
10494
10495 // Complain about various flag mismatches.
10496 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10497 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10498 if (!this->are_eabi_versions_compatible(version1, version2)
10499 && parameters->options().warn_mismatch())
10500 gold_error(_("Source object %s has EABI version %d but output has "
10501 "EABI version %d."),
10502 name.c_str(),
10503 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10504 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10505 }
10506 else
10507 {
10508 // If the input is the default architecture and had the default
10509 // flags then do not bother setting the flags for the output
10510 // architecture, instead allow future merges to do this. If no
10511 // future merges ever set these flags then they will retain their
10512 // uninitialised values, which surprise surprise, correspond
10513 // to the default values.
10514 if (flags == 0)
10515 return;
10516
10517 // This is the first time, just copy the flags.
10518 // We only copy the EABI version for now.
10519 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10520 }
10521 }
10522
10523 // Adjust ELF file header.
10524 template<bool big_endian>
10525 void
10526 Target_arm<big_endian>::do_adjust_elf_header(
10527 unsigned char* view,
10528 int len)
10529 {
10530 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10531
10532 elfcpp::Ehdr<32, big_endian> ehdr(view);
10533 elfcpp::Elf_Word flags = this->processor_specific_flags();
10534 unsigned char e_ident[elfcpp::EI_NIDENT];
10535 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10536
10537 if (elfcpp::arm_eabi_version(flags)
10538 == elfcpp::EF_ARM_EABI_UNKNOWN)
10539 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10540 else
10541 e_ident[elfcpp::EI_OSABI] = 0;
10542 e_ident[elfcpp::EI_ABIVERSION] = 0;
10543
10544 // FIXME: Do EF_ARM_BE8 adjustment.
10545
10546 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10547 // as appropriate.
10548 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10549 {
10550 elfcpp::Elf_Half type = ehdr.get_e_type();
10551 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10552 {
10553 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10554 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10555 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10556 else
10557 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10558 this->set_processor_specific_flags(flags);
10559 }
10560 }
10561 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10562 oehdr.put_e_ident(e_ident);
10563 oehdr.put_e_flags(this->processor_specific_flags());
10564 }
10565
10566 // do_make_elf_object to override the same function in the base class.
10567 // We need to use a target-specific sub-class of
10568 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10569 // Hence we need to have our own ELF object creation.
10570
10571 template<bool big_endian>
10572 Object*
10573 Target_arm<big_endian>::do_make_elf_object(
10574 const std::string& name,
10575 Input_file* input_file,
10576 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10577 {
10578 int et = ehdr.get_e_type();
10579 // ET_EXEC files are valid input for --just-symbols/-R,
10580 // and we treat them as relocatable objects.
10581 if (et == elfcpp::ET_REL
10582 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10583 {
10584 Arm_relobj<big_endian>* obj =
10585 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10586 obj->setup();
10587 return obj;
10588 }
10589 else if (et == elfcpp::ET_DYN)
10590 {
10591 Sized_dynobj<32, big_endian>* obj =
10592 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10593 obj->setup();
10594 return obj;
10595 }
10596 else
10597 {
10598 gold_error(_("%s: unsupported ELF file type %d"),
10599 name.c_str(), et);
10600 return NULL;
10601 }
10602 }
10603
10604 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10605 // Returns -1 if no architecture could be read.
10606 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10607
10608 template<bool big_endian>
10609 int
10610 Target_arm<big_endian>::get_secondary_compatible_arch(
10611 const Attributes_section_data* pasd)
10612 {
10613 const Object_attribute* known_attributes =
10614 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10615
10616 // Note: the tag and its argument below are uleb128 values, though
10617 // currently-defined values fit in one byte for each.
10618 const std::string& sv =
10619 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10620 if (sv.size() == 2
10621 && sv.data()[0] == elfcpp::Tag_CPU_arch
10622 && (sv.data()[1] & 128) != 128)
10623 return sv.data()[1];
10624
10625 // This tag is "safely ignorable", so don't complain if it looks funny.
10626 return -1;
10627 }
10628
10629 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10630 // The tag is removed if ARCH is -1.
10631 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10632
10633 template<bool big_endian>
10634 void
10635 Target_arm<big_endian>::set_secondary_compatible_arch(
10636 Attributes_section_data* pasd,
10637 int arch)
10638 {
10639 Object_attribute* known_attributes =
10640 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10641
10642 if (arch == -1)
10643 {
10644 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10645 return;
10646 }
10647
10648 // Note: the tag and its argument below are uleb128 values, though
10649 // currently-defined values fit in one byte for each.
10650 char sv[3];
10651 sv[0] = elfcpp::Tag_CPU_arch;
10652 gold_assert(arch != 0);
10653 sv[1] = arch;
10654 sv[2] = '\0';
10655
10656 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10657 }
10658
10659 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10660 // into account.
10661 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10662
10663 template<bool big_endian>
10664 int
10665 Target_arm<big_endian>::tag_cpu_arch_combine(
10666 const char* name,
10667 int oldtag,
10668 int* secondary_compat_out,
10669 int newtag,
10670 int secondary_compat)
10671 {
10672 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10673 static const int v6t2[] =
10674 {
10675 T(V6T2), // PRE_V4.
10676 T(V6T2), // V4.
10677 T(V6T2), // V4T.
10678 T(V6T2), // V5T.
10679 T(V6T2), // V5TE.
10680 T(V6T2), // V5TEJ.
10681 T(V6T2), // V6.
10682 T(V7), // V6KZ.
10683 T(V6T2) // V6T2.
10684 };
10685 static const int v6k[] =
10686 {
10687 T(V6K), // PRE_V4.
10688 T(V6K), // V4.
10689 T(V6K), // V4T.
10690 T(V6K), // V5T.
10691 T(V6K), // V5TE.
10692 T(V6K), // V5TEJ.
10693 T(V6K), // V6.
10694 T(V6KZ), // V6KZ.
10695 T(V7), // V6T2.
10696 T(V6K) // V6K.
10697 };
10698 static const int v7[] =
10699 {
10700 T(V7), // PRE_V4.
10701 T(V7), // V4.
10702 T(V7), // V4T.
10703 T(V7), // V5T.
10704 T(V7), // V5TE.
10705 T(V7), // V5TEJ.
10706 T(V7), // V6.
10707 T(V7), // V6KZ.
10708 T(V7), // V6T2.
10709 T(V7), // V6K.
10710 T(V7) // V7.
10711 };
10712 static const int v6_m[] =
10713 {
10714 -1, // PRE_V4.
10715 -1, // V4.
10716 T(V6K), // V4T.
10717 T(V6K), // V5T.
10718 T(V6K), // V5TE.
10719 T(V6K), // V5TEJ.
10720 T(V6K), // V6.
10721 T(V6KZ), // V6KZ.
10722 T(V7), // V6T2.
10723 T(V6K), // V6K.
10724 T(V7), // V7.
10725 T(V6_M) // V6_M.
10726 };
10727 static const int v6s_m[] =
10728 {
10729 -1, // PRE_V4.
10730 -1, // V4.
10731 T(V6K), // V4T.
10732 T(V6K), // V5T.
10733 T(V6K), // V5TE.
10734 T(V6K), // V5TEJ.
10735 T(V6K), // V6.
10736 T(V6KZ), // V6KZ.
10737 T(V7), // V6T2.
10738 T(V6K), // V6K.
10739 T(V7), // V7.
10740 T(V6S_M), // V6_M.
10741 T(V6S_M) // V6S_M.
10742 };
10743 static const int v7e_m[] =
10744 {
10745 -1, // PRE_V4.
10746 -1, // V4.
10747 T(V7E_M), // V4T.
10748 T(V7E_M), // V5T.
10749 T(V7E_M), // V5TE.
10750 T(V7E_M), // V5TEJ.
10751 T(V7E_M), // V6.
10752 T(V7E_M), // V6KZ.
10753 T(V7E_M), // V6T2.
10754 T(V7E_M), // V6K.
10755 T(V7E_M), // V7.
10756 T(V7E_M), // V6_M.
10757 T(V7E_M), // V6S_M.
10758 T(V7E_M) // V7E_M.
10759 };
10760 static const int v8[] =
10761 {
10762 T(V8), // PRE_V4.
10763 T(V8), // V4.
10764 T(V8), // V4T.
10765 T(V8), // V5T.
10766 T(V8), // V5TE.
10767 T(V8), // V5TEJ.
10768 T(V8), // V6.
10769 T(V8), // V6KZ.
10770 T(V8), // V6T2.
10771 T(V8), // V6K.
10772 T(V8), // V7.
10773 T(V8), // V6_M.
10774 T(V8), // V6S_M.
10775 T(V8), // V7E_M.
10776 T(V8) // V8.
10777 };
10778 static const int v4t_plus_v6_m[] =
10779 {
10780 -1, // PRE_V4.
10781 -1, // V4.
10782 T(V4T), // V4T.
10783 T(V5T), // V5T.
10784 T(V5TE), // V5TE.
10785 T(V5TEJ), // V5TEJ.
10786 T(V6), // V6.
10787 T(V6KZ), // V6KZ.
10788 T(V6T2), // V6T2.
10789 T(V6K), // V6K.
10790 T(V7), // V7.
10791 T(V6_M), // V6_M.
10792 T(V6S_M), // V6S_M.
10793 T(V7E_M), // V7E_M.
10794 T(V8), // V8.
10795 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10796 };
10797 static const int* comb[] =
10798 {
10799 v6t2,
10800 v6k,
10801 v7,
10802 v6_m,
10803 v6s_m,
10804 v7e_m,
10805 v8,
10806 // Pseudo-architecture.
10807 v4t_plus_v6_m
10808 };
10809
10810 // Check we've not got a higher architecture than we know about.
10811
10812 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10813 {
10814 gold_error(_("%s: unknown CPU architecture"), name);
10815 return -1;
10816 }
10817
10818 // Override old tag if we have a Tag_also_compatible_with on the output.
10819
10820 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10821 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10822 oldtag = T(V4T_PLUS_V6_M);
10823
10824 // And override the new tag if we have a Tag_also_compatible_with on the
10825 // input.
10826
10827 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10828 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10829 newtag = T(V4T_PLUS_V6_M);
10830
10831 // Architectures before V6KZ add features monotonically.
10832 int tagh = std::max(oldtag, newtag);
10833 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10834 return tagh;
10835
10836 int tagl = std::min(oldtag, newtag);
10837 int result = comb[tagh - T(V6T2)][tagl];
10838
10839 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10840 // as the canonical version.
10841 if (result == T(V4T_PLUS_V6_M))
10842 {
10843 result = T(V4T);
10844 *secondary_compat_out = T(V6_M);
10845 }
10846 else
10847 *secondary_compat_out = -1;
10848
10849 if (result == -1)
10850 {
10851 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10852 name, oldtag, newtag);
10853 return -1;
10854 }
10855
10856 return result;
10857 #undef T
10858 }
10859
10860 // Helper to print AEABI enum tag value.
10861
10862 template<bool big_endian>
10863 std::string
10864 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10865 {
10866 static const char* aeabi_enum_names[] =
10867 { "", "variable-size", "32-bit", "" };
10868 const size_t aeabi_enum_names_size =
10869 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10870
10871 if (value < aeabi_enum_names_size)
10872 return std::string(aeabi_enum_names[value]);
10873 else
10874 {
10875 char buffer[100];
10876 sprintf(buffer, "<unknown value %u>", value);
10877 return std::string(buffer);
10878 }
10879 }
10880
10881 // Return the string value to store in TAG_CPU_name.
10882
10883 template<bool big_endian>
10884 std::string
10885 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10886 {
10887 static const char* name_table[] = {
10888 // These aren't real CPU names, but we can't guess
10889 // that from the architecture version alone.
10890 "Pre v4",
10891 "ARM v4",
10892 "ARM v4T",
10893 "ARM v5T",
10894 "ARM v5TE",
10895 "ARM v5TEJ",
10896 "ARM v6",
10897 "ARM v6KZ",
10898 "ARM v6T2",
10899 "ARM v6K",
10900 "ARM v7",
10901 "ARM v6-M",
10902 "ARM v6S-M",
10903 "ARM v7E-M",
10904 "ARM v8"
10905 };
10906 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10907
10908 if (value < name_table_size)
10909 return std::string(name_table[value]);
10910 else
10911 {
10912 char buffer[100];
10913 sprintf(buffer, "<unknown CPU value %u>", value);
10914 return std::string(buffer);
10915 }
10916 }
10917
10918 // Query attributes object to see if integer divide instructions may be
10919 // present in an object.
10920
10921 template<bool big_endian>
10922 bool
10923 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10924 const Object_attribute* div_attr)
10925 {
10926 switch (div_attr->int_value())
10927 {
10928 case 0:
10929 // Integer divide allowed if instruction contained in
10930 // archetecture.
10931 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10932 return true;
10933 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10934 return true;
10935 else
10936 return false;
10937
10938 case 1:
10939 // Integer divide explicitly prohibited.
10940 return false;
10941
10942 default:
10943 // Unrecognised case - treat as allowing divide everywhere.
10944 case 2:
10945 // Integer divide allowed in ARM state.
10946 return true;
10947 }
10948 }
10949
10950 // Query attributes object to see if integer divide instructions are
10951 // forbidden to be in the object. This is not the inverse of
10952 // attributes_accept_div.
10953
10954 template<bool big_endian>
10955 bool
10956 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10957 {
10958 return div_attr->int_value() == 1;
10959 }
10960
10961 // Merge object attributes from input file called NAME with those of the
10962 // output. The input object attributes are in the object pointed by PASD.
10963
10964 template<bool big_endian>
10965 void
10966 Target_arm<big_endian>::merge_object_attributes(
10967 const char* name,
10968 const Attributes_section_data* pasd)
10969 {
10970 // Return if there is no attributes section data.
10971 if (pasd == NULL)
10972 return;
10973
10974 // If output has no object attributes, just copy.
10975 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10976 if (this->attributes_section_data_ == NULL)
10977 {
10978 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10979 Object_attribute* out_attr =
10980 this->attributes_section_data_->known_attributes(vendor);
10981
10982 // We do not output objects with Tag_MPextension_use_legacy - we move
10983 // the attribute's value to Tag_MPextension_use. */
10984 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10985 {
10986 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10987 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10988 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10989 {
10990 gold_error(_("%s has both the current and legacy "
10991 "Tag_MPextension_use attributes"),
10992 name);
10993 }
10994
10995 out_attr[elfcpp::Tag_MPextension_use] =
10996 out_attr[elfcpp::Tag_MPextension_use_legacy];
10997 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10998 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10999 }
11000
11001 return;
11002 }
11003
11004 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11005 Object_attribute* out_attr =
11006 this->attributes_section_data_->known_attributes(vendor);
11007
11008 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11009 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11010 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11011 {
11012 // Ignore mismatches if the object doesn't use floating point. */
11013 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11014 == elfcpp::AEABI_FP_number_model_none
11015 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11016 != elfcpp::AEABI_FP_number_model_none
11017 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11018 == elfcpp::AEABI_VFP_args_compatible))
11019 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11020 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11021 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11022 != elfcpp::AEABI_FP_number_model_none
11023 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11024 != elfcpp::AEABI_VFP_args_compatible
11025 && parameters->options().warn_mismatch())
11026 gold_error(_("%s uses VFP register arguments, output does not"),
11027 name);
11028 }
11029
11030 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11031 {
11032 // Merge this attribute with existing attributes.
11033 switch (i)
11034 {
11035 case elfcpp::Tag_CPU_raw_name:
11036 case elfcpp::Tag_CPU_name:
11037 // These are merged after Tag_CPU_arch.
11038 break;
11039
11040 case elfcpp::Tag_ABI_optimization_goals:
11041 case elfcpp::Tag_ABI_FP_optimization_goals:
11042 // Use the first value seen.
11043 break;
11044
11045 case elfcpp::Tag_CPU_arch:
11046 {
11047 unsigned int saved_out_attr = out_attr->int_value();
11048 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11049 int secondary_compat =
11050 this->get_secondary_compatible_arch(pasd);
11051 int secondary_compat_out =
11052 this->get_secondary_compatible_arch(
11053 this->attributes_section_data_);
11054 out_attr[i].set_int_value(
11055 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11056 &secondary_compat_out,
11057 in_attr[i].int_value(),
11058 secondary_compat));
11059 this->set_secondary_compatible_arch(this->attributes_section_data_,
11060 secondary_compat_out);
11061
11062 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11063 if (out_attr[i].int_value() == saved_out_attr)
11064 ; // Leave the names alone.
11065 else if (out_attr[i].int_value() == in_attr[i].int_value())
11066 {
11067 // The output architecture has been changed to match the
11068 // input architecture. Use the input names.
11069 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11070 in_attr[elfcpp::Tag_CPU_name].string_value());
11071 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11072 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11073 }
11074 else
11075 {
11076 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11077 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11078 }
11079
11080 // If we still don't have a value for Tag_CPU_name,
11081 // make one up now. Tag_CPU_raw_name remains blank.
11082 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11083 {
11084 const std::string cpu_name =
11085 this->tag_cpu_name_value(out_attr[i].int_value());
11086 // FIXME: If we see an unknown CPU, this will be set
11087 // to "<unknown CPU n>", where n is the attribute value.
11088 // This is different from BFD, which leaves the name alone.
11089 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11090 }
11091 }
11092 break;
11093
11094 case elfcpp::Tag_ARM_ISA_use:
11095 case elfcpp::Tag_THUMB_ISA_use:
11096 case elfcpp::Tag_WMMX_arch:
11097 case elfcpp::Tag_Advanced_SIMD_arch:
11098 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11099 case elfcpp::Tag_ABI_FP_rounding:
11100 case elfcpp::Tag_ABI_FP_exceptions:
11101 case elfcpp::Tag_ABI_FP_user_exceptions:
11102 case elfcpp::Tag_ABI_FP_number_model:
11103 case elfcpp::Tag_VFP_HP_extension:
11104 case elfcpp::Tag_CPU_unaligned_access:
11105 case elfcpp::Tag_T2EE_use:
11106 case elfcpp::Tag_Virtualization_use:
11107 case elfcpp::Tag_MPextension_use:
11108 // Use the largest value specified.
11109 if (in_attr[i].int_value() > out_attr[i].int_value())
11110 out_attr[i].set_int_value(in_attr[i].int_value());
11111 break;
11112
11113 case elfcpp::Tag_ABI_align8_preserved:
11114 case elfcpp::Tag_ABI_PCS_RO_data:
11115 // Use the smallest value specified.
11116 if (in_attr[i].int_value() < out_attr[i].int_value())
11117 out_attr[i].set_int_value(in_attr[i].int_value());
11118 break;
11119
11120 case elfcpp::Tag_ABI_align8_needed:
11121 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11122 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11123 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11124 == 0)))
11125 {
11126 // This error message should be enabled once all non-conforming
11127 // binaries in the toolchain have had the attributes set
11128 // properly.
11129 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11130 // name);
11131 }
11132 // Fall through.
11133 case elfcpp::Tag_ABI_FP_denormal:
11134 case elfcpp::Tag_ABI_PCS_GOT_use:
11135 {
11136 // These tags have 0 = don't care, 1 = strong requirement,
11137 // 2 = weak requirement.
11138 static const int order_021[3] = {0, 2, 1};
11139
11140 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11141 // value if greater than 2 (for future-proofing).
11142 if ((in_attr[i].int_value() > 2
11143 && in_attr[i].int_value() > out_attr[i].int_value())
11144 || (in_attr[i].int_value() <= 2
11145 && out_attr[i].int_value() <= 2
11146 && (order_021[in_attr[i].int_value()]
11147 > order_021[out_attr[i].int_value()])))
11148 out_attr[i].set_int_value(in_attr[i].int_value());
11149 }
11150 break;
11151
11152 case elfcpp::Tag_CPU_arch_profile:
11153 if (out_attr[i].int_value() != in_attr[i].int_value())
11154 {
11155 // 0 will merge with anything.
11156 // 'A' and 'S' merge to 'A'.
11157 // 'R' and 'S' merge to 'R'.
11158 // 'M' and 'A|R|S' is an error.
11159 if (out_attr[i].int_value() == 0
11160 || (out_attr[i].int_value() == 'S'
11161 && (in_attr[i].int_value() == 'A'
11162 || in_attr[i].int_value() == 'R')))
11163 out_attr[i].set_int_value(in_attr[i].int_value());
11164 else if (in_attr[i].int_value() == 0
11165 || (in_attr[i].int_value() == 'S'
11166 && (out_attr[i].int_value() == 'A'
11167 || out_attr[i].int_value() == 'R')))
11168 ; // Do nothing.
11169 else if (parameters->options().warn_mismatch())
11170 {
11171 gold_error
11172 (_("conflicting architecture profiles %c/%c"),
11173 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11174 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11175 }
11176 }
11177 break;
11178 case elfcpp::Tag_VFP_arch:
11179 {
11180 static const struct
11181 {
11182 int ver;
11183 int regs;
11184 } vfp_versions[7] =
11185 {
11186 {0, 0},
11187 {1, 16},
11188 {2, 16},
11189 {3, 32},
11190 {3, 16},
11191 {4, 32},
11192 {4, 16}
11193 };
11194
11195 // Values greater than 6 aren't defined, so just pick the
11196 // biggest.
11197 if (in_attr[i].int_value() > 6
11198 && in_attr[i].int_value() > out_attr[i].int_value())
11199 {
11200 *out_attr = *in_attr;
11201 break;
11202 }
11203 // The output uses the superset of input features
11204 // (ISA version) and registers.
11205 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11206 vfp_versions[out_attr[i].int_value()].ver);
11207 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11208 vfp_versions[out_attr[i].int_value()].regs);
11209 // This assumes all possible supersets are also a valid
11210 // options.
11211 int newval;
11212 for (newval = 6; newval > 0; newval--)
11213 {
11214 if (regs == vfp_versions[newval].regs
11215 && ver == vfp_versions[newval].ver)
11216 break;
11217 }
11218 out_attr[i].set_int_value(newval);
11219 }
11220 break;
11221 case elfcpp::Tag_PCS_config:
11222 if (out_attr[i].int_value() == 0)
11223 out_attr[i].set_int_value(in_attr[i].int_value());
11224 else if (in_attr[i].int_value() != 0
11225 && out_attr[i].int_value() != 0
11226 && parameters->options().warn_mismatch())
11227 {
11228 // It's sometimes ok to mix different configs, so this is only
11229 // a warning.
11230 gold_warning(_("%s: conflicting platform configuration"), name);
11231 }
11232 break;
11233 case elfcpp::Tag_ABI_PCS_R9_use:
11234 if (in_attr[i].int_value() != out_attr[i].int_value()
11235 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11236 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11237 && parameters->options().warn_mismatch())
11238 {
11239 gold_error(_("%s: conflicting use of R9"), name);
11240 }
11241 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11242 out_attr[i].set_int_value(in_attr[i].int_value());
11243 break;
11244 case elfcpp::Tag_ABI_PCS_RW_data:
11245 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11246 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11247 != elfcpp::AEABI_R9_SB)
11248 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11249 != elfcpp::AEABI_R9_unused)
11250 && parameters->options().warn_mismatch())
11251 {
11252 gold_error(_("%s: SB relative addressing conflicts with use "
11253 "of R9"),
11254 name);
11255 }
11256 // Use the smallest value specified.
11257 if (in_attr[i].int_value() < out_attr[i].int_value())
11258 out_attr[i].set_int_value(in_attr[i].int_value());
11259 break;
11260 case elfcpp::Tag_ABI_PCS_wchar_t:
11261 if (out_attr[i].int_value()
11262 && in_attr[i].int_value()
11263 && out_attr[i].int_value() != in_attr[i].int_value()
11264 && parameters->options().warn_mismatch()
11265 && parameters->options().wchar_size_warning())
11266 {
11267 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11268 "use %u-byte wchar_t; use of wchar_t values "
11269 "across objects may fail"),
11270 name, in_attr[i].int_value(),
11271 out_attr[i].int_value());
11272 }
11273 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11274 out_attr[i].set_int_value(in_attr[i].int_value());
11275 break;
11276 case elfcpp::Tag_ABI_enum_size:
11277 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11278 {
11279 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11280 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11281 {
11282 // The existing object is compatible with anything.
11283 // Use whatever requirements the new object has.
11284 out_attr[i].set_int_value(in_attr[i].int_value());
11285 }
11286 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11287 && out_attr[i].int_value() != in_attr[i].int_value()
11288 && parameters->options().warn_mismatch()
11289 && parameters->options().enum_size_warning())
11290 {
11291 unsigned int in_value = in_attr[i].int_value();
11292 unsigned int out_value = out_attr[i].int_value();
11293 gold_warning(_("%s uses %s enums yet the output is to use "
11294 "%s enums; use of enum values across objects "
11295 "may fail"),
11296 name,
11297 this->aeabi_enum_name(in_value).c_str(),
11298 this->aeabi_enum_name(out_value).c_str());
11299 }
11300 }
11301 break;
11302 case elfcpp::Tag_ABI_VFP_args:
11303 // Already done.
11304 break;
11305 case elfcpp::Tag_ABI_WMMX_args:
11306 if (in_attr[i].int_value() != out_attr[i].int_value()
11307 && parameters->options().warn_mismatch())
11308 {
11309 gold_error(_("%s uses iWMMXt register arguments, output does "
11310 "not"),
11311 name);
11312 }
11313 break;
11314 case Object_attribute::Tag_compatibility:
11315 // Merged in target-independent code.
11316 break;
11317 case elfcpp::Tag_ABI_HardFP_use:
11318 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11319 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11320 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11321 out_attr[i].set_int_value(3);
11322 else if (in_attr[i].int_value() > out_attr[i].int_value())
11323 out_attr[i].set_int_value(in_attr[i].int_value());
11324 break;
11325 case elfcpp::Tag_ABI_FP_16bit_format:
11326 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11327 {
11328 if (in_attr[i].int_value() != out_attr[i].int_value()
11329 && parameters->options().warn_mismatch())
11330 gold_error(_("fp16 format mismatch between %s and output"),
11331 name);
11332 }
11333 if (in_attr[i].int_value() != 0)
11334 out_attr[i].set_int_value(in_attr[i].int_value());
11335 break;
11336
11337 case elfcpp::Tag_DIV_use:
11338 {
11339 // A value of zero on input means that the divide
11340 // instruction may be used if available in the base
11341 // architecture as specified via Tag_CPU_arch and
11342 // Tag_CPU_arch_profile. A value of 1 means that the user
11343 // did not want divide instructions. A value of 2
11344 // explicitly means that divide instructions were allowed
11345 // in ARM and Thumb state.
11346 int arch = this->
11347 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11348 int_value();
11349 int profile = this->
11350 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11351 int_value();
11352 if (in_attr[i].int_value() == out_attr[i].int_value())
11353 {
11354 // Do nothing.
11355 }
11356 else if (attributes_forbid_div(&in_attr[i])
11357 && !attributes_accept_div(arch, profile, &out_attr[i]))
11358 out_attr[i].set_int_value(1);
11359 else if (attributes_forbid_div(&out_attr[i])
11360 && attributes_accept_div(arch, profile, &in_attr[i]))
11361 out_attr[i].set_int_value(in_attr[i].int_value());
11362 else if (in_attr[i].int_value() == 2)
11363 out_attr[i].set_int_value(in_attr[i].int_value());
11364 }
11365 break;
11366
11367 case elfcpp::Tag_MPextension_use_legacy:
11368 // We don't output objects with Tag_MPextension_use_legacy - we
11369 // move the value to Tag_MPextension_use.
11370 if (in_attr[i].int_value() != 0
11371 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11372 {
11373 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11374 != in_attr[i].int_value())
11375 {
11376 gold_error(_("%s has has both the current and legacy "
11377 "Tag_MPextension_use attributes"),
11378 name);
11379 }
11380 }
11381
11382 if (in_attr[i].int_value()
11383 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11384 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11385
11386 break;
11387
11388 case elfcpp::Tag_nodefaults:
11389 // This tag is set if it exists, but the value is unused (and is
11390 // typically zero). We don't actually need to do anything here -
11391 // the merge happens automatically when the type flags are merged
11392 // below.
11393 break;
11394 case elfcpp::Tag_also_compatible_with:
11395 // Already done in Tag_CPU_arch.
11396 break;
11397 case elfcpp::Tag_conformance:
11398 // Keep the attribute if it matches. Throw it away otherwise.
11399 // No attribute means no claim to conform.
11400 if (in_attr[i].string_value() != out_attr[i].string_value())
11401 out_attr[i].set_string_value("");
11402 break;
11403
11404 default:
11405 {
11406 const char* err_object = NULL;
11407
11408 // The "known_obj_attributes" table does contain some undefined
11409 // attributes. Ensure that there are unused.
11410 if (out_attr[i].int_value() != 0
11411 || out_attr[i].string_value() != "")
11412 err_object = "output";
11413 else if (in_attr[i].int_value() != 0
11414 || in_attr[i].string_value() != "")
11415 err_object = name;
11416
11417 if (err_object != NULL
11418 && parameters->options().warn_mismatch())
11419 {
11420 // Attribute numbers >=64 (mod 128) can be safely ignored.
11421 if ((i & 127) < 64)
11422 gold_error(_("%s: unknown mandatory EABI object attribute "
11423 "%d"),
11424 err_object, i);
11425 else
11426 gold_warning(_("%s: unknown EABI object attribute %d"),
11427 err_object, i);
11428 }
11429
11430 // Only pass on attributes that match in both inputs.
11431 if (!in_attr[i].matches(out_attr[i]))
11432 {
11433 out_attr[i].set_int_value(0);
11434 out_attr[i].set_string_value("");
11435 }
11436 }
11437 }
11438
11439 // If out_attr was copied from in_attr then it won't have a type yet.
11440 if (in_attr[i].type() && !out_attr[i].type())
11441 out_attr[i].set_type(in_attr[i].type());
11442 }
11443
11444 // Merge Tag_compatibility attributes and any common GNU ones.
11445 this->attributes_section_data_->merge(name, pasd);
11446
11447 // Check for any attributes not known on ARM.
11448 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11449 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11450 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11451 Other_attributes* out_other_attributes =
11452 this->attributes_section_data_->other_attributes(vendor);
11453 Other_attributes::iterator out_iter = out_other_attributes->begin();
11454
11455 while (in_iter != in_other_attributes->end()
11456 || out_iter != out_other_attributes->end())
11457 {
11458 const char* err_object = NULL;
11459 int err_tag = 0;
11460
11461 // The tags for each list are in numerical order.
11462 // If the tags are equal, then merge.
11463 if (out_iter != out_other_attributes->end()
11464 && (in_iter == in_other_attributes->end()
11465 || in_iter->first > out_iter->first))
11466 {
11467 // This attribute only exists in output. We can't merge, and we
11468 // don't know what the tag means, so delete it.
11469 err_object = "output";
11470 err_tag = out_iter->first;
11471 int saved_tag = out_iter->first;
11472 delete out_iter->second;
11473 out_other_attributes->erase(out_iter);
11474 out_iter = out_other_attributes->upper_bound(saved_tag);
11475 }
11476 else if (in_iter != in_other_attributes->end()
11477 && (out_iter != out_other_attributes->end()
11478 || in_iter->first < out_iter->first))
11479 {
11480 // This attribute only exists in input. We can't merge, and we
11481 // don't know what the tag means, so ignore it.
11482 err_object = name;
11483 err_tag = in_iter->first;
11484 ++in_iter;
11485 }
11486 else // The tags are equal.
11487 {
11488 // As present, all attributes in the list are unknown, and
11489 // therefore can't be merged meaningfully.
11490 err_object = "output";
11491 err_tag = out_iter->first;
11492
11493 // Only pass on attributes that match in both inputs.
11494 if (!in_iter->second->matches(*(out_iter->second)))
11495 {
11496 // No match. Delete the attribute.
11497 int saved_tag = out_iter->first;
11498 delete out_iter->second;
11499 out_other_attributes->erase(out_iter);
11500 out_iter = out_other_attributes->upper_bound(saved_tag);
11501 }
11502 else
11503 {
11504 // Matched. Keep the attribute and move to the next.
11505 ++out_iter;
11506 ++in_iter;
11507 }
11508 }
11509
11510 if (err_object && parameters->options().warn_mismatch())
11511 {
11512 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11513 if ((err_tag & 127) < 64)
11514 {
11515 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11516 err_object, err_tag);
11517 }
11518 else
11519 {
11520 gold_warning(_("%s: unknown EABI object attribute %d"),
11521 err_object, err_tag);
11522 }
11523 }
11524 }
11525 }
11526
11527 // Stub-generation methods for Target_arm.
11528
11529 // Make a new Arm_input_section object.
11530
11531 template<bool big_endian>
11532 Arm_input_section<big_endian>*
11533 Target_arm<big_endian>::new_arm_input_section(
11534 Relobj* relobj,
11535 unsigned int shndx)
11536 {
11537 Section_id sid(relobj, shndx);
11538
11539 Arm_input_section<big_endian>* arm_input_section =
11540 new Arm_input_section<big_endian>(relobj, shndx);
11541 arm_input_section->init();
11542
11543 // Register new Arm_input_section in map for look-up.
11544 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11545 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11546
11547 // Make sure that it we have not created another Arm_input_section
11548 // for this input section already.
11549 gold_assert(ins.second);
11550
11551 return arm_input_section;
11552 }
11553
11554 // Find the Arm_input_section object corresponding to the SHNDX-th input
11555 // section of RELOBJ.
11556
11557 template<bool big_endian>
11558 Arm_input_section<big_endian>*
11559 Target_arm<big_endian>::find_arm_input_section(
11560 Relobj* relobj,
11561 unsigned int shndx) const
11562 {
11563 Section_id sid(relobj, shndx);
11564 typename Arm_input_section_map::const_iterator p =
11565 this->arm_input_section_map_.find(sid);
11566 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11567 }
11568
11569 // Make a new stub table.
11570
11571 template<bool big_endian>
11572 Stub_table<big_endian>*
11573 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11574 {
11575 Stub_table<big_endian>* stub_table =
11576 new Stub_table<big_endian>(owner);
11577 this->stub_tables_.push_back(stub_table);
11578
11579 stub_table->set_address(owner->address() + owner->data_size());
11580 stub_table->set_file_offset(owner->offset() + owner->data_size());
11581 stub_table->finalize_data_size();
11582
11583 return stub_table;
11584 }
11585
11586 // Scan a relocation for stub generation.
11587
11588 template<bool big_endian>
11589 void
11590 Target_arm<big_endian>::scan_reloc_for_stub(
11591 const Relocate_info<32, big_endian>* relinfo,
11592 unsigned int r_type,
11593 const Sized_symbol<32>* gsym,
11594 unsigned int r_sym,
11595 const Symbol_value<32>* psymval,
11596 elfcpp::Elf_types<32>::Elf_Swxword addend,
11597 Arm_address address)
11598 {
11599 const Arm_relobj<big_endian>* arm_relobj =
11600 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11601
11602 bool target_is_thumb;
11603 Symbol_value<32> symval;
11604 if (gsym != NULL)
11605 {
11606 // This is a global symbol. Determine if we use PLT and if the
11607 // final target is THUMB.
11608 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11609 {
11610 // This uses a PLT, change the symbol value.
11611 symval.set_output_value(this->plt_address_for_global(gsym));
11612 psymval = &symval;
11613 target_is_thumb = false;
11614 }
11615 else if (gsym->is_undefined())
11616 // There is no need to generate a stub symbol is undefined.
11617 return;
11618 else
11619 {
11620 target_is_thumb =
11621 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11622 || (gsym->type() == elfcpp::STT_FUNC
11623 && !gsym->is_undefined()
11624 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11625 }
11626 }
11627 else
11628 {
11629 // This is a local symbol. Determine if the final target is THUMB.
11630 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11631 }
11632
11633 // Strip LSB if this points to a THUMB target.
11634 const Arm_reloc_property* reloc_property =
11635 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11636 gold_assert(reloc_property != NULL);
11637 if (target_is_thumb
11638 && reloc_property->uses_thumb_bit()
11639 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11640 {
11641 Arm_address stripped_value =
11642 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11643 symval.set_output_value(stripped_value);
11644 psymval = &symval;
11645 }
11646
11647 // Get the symbol value.
11648 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11649
11650 // Owing to pipelining, the PC relative branches below actually skip
11651 // two instructions when the branch offset is 0.
11652 Arm_address destination;
11653 switch (r_type)
11654 {
11655 case elfcpp::R_ARM_CALL:
11656 case elfcpp::R_ARM_JUMP24:
11657 case elfcpp::R_ARM_PLT32:
11658 // ARM branches.
11659 destination = value + addend + 8;
11660 break;
11661 case elfcpp::R_ARM_THM_CALL:
11662 case elfcpp::R_ARM_THM_XPC22:
11663 case elfcpp::R_ARM_THM_JUMP24:
11664 case elfcpp::R_ARM_THM_JUMP19:
11665 // THUMB branches.
11666 destination = value + addend + 4;
11667 break;
11668 default:
11669 gold_unreachable();
11670 }
11671
11672 Reloc_stub* stub = NULL;
11673 Stub_type stub_type =
11674 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11675 target_is_thumb);
11676 if (stub_type != arm_stub_none)
11677 {
11678 // Try looking up an existing stub from a stub table.
11679 Stub_table<big_endian>* stub_table =
11680 arm_relobj->stub_table(relinfo->data_shndx);
11681 gold_assert(stub_table != NULL);
11682
11683 // Locate stub by destination.
11684 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11685
11686 // Create a stub if there is not one already
11687 stub = stub_table->find_reloc_stub(stub_key);
11688 if (stub == NULL)
11689 {
11690 // create a new stub and add it to stub table.
11691 stub = this->stub_factory().make_reloc_stub(stub_type);
11692 stub_table->add_reloc_stub(stub, stub_key);
11693 }
11694
11695 // Record the destination address.
11696 stub->set_destination_address(destination
11697 | (target_is_thumb ? 1 : 0));
11698 }
11699
11700 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11701 if (this->fix_cortex_a8_
11702 && (r_type == elfcpp::R_ARM_THM_JUMP24
11703 || r_type == elfcpp::R_ARM_THM_JUMP19
11704 || r_type == elfcpp::R_ARM_THM_CALL
11705 || r_type == elfcpp::R_ARM_THM_XPC22)
11706 && (address & 0xfffU) == 0xffeU)
11707 {
11708 // Found a candidate. Note we haven't checked the destination is
11709 // within 4K here: if we do so (and don't create a record) we can't
11710 // tell that a branch should have been relocated when scanning later.
11711 this->cortex_a8_relocs_info_[address] =
11712 new Cortex_a8_reloc(stub, r_type,
11713 destination | (target_is_thumb ? 1 : 0));
11714 }
11715 }
11716
11717 // This function scans a relocation sections for stub generation.
11718 // The template parameter Relocate must be a class type which provides
11719 // a single function, relocate(), which implements the machine
11720 // specific part of a relocation.
11721
11722 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11723 // SHT_REL or SHT_RELA.
11724
11725 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11726 // of relocs. OUTPUT_SECTION is the output section.
11727 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11728 // mapped to output offsets.
11729
11730 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11731 // VIEW_SIZE is the size. These refer to the input section, unless
11732 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11733 // the output section.
11734
11735 template<bool big_endian>
11736 template<int sh_type>
11737 void inline
11738 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11739 const Relocate_info<32, big_endian>* relinfo,
11740 const unsigned char* prelocs,
11741 size_t reloc_count,
11742 Output_section* output_section,
11743 bool needs_special_offset_handling,
11744 const unsigned char* view,
11745 elfcpp::Elf_types<32>::Elf_Addr view_address,
11746 section_size_type)
11747 {
11748 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11749 const int reloc_size =
11750 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11751
11752 Arm_relobj<big_endian>* arm_object =
11753 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11754 unsigned int local_count = arm_object->local_symbol_count();
11755
11756 gold::Default_comdat_behavior default_comdat_behavior;
11757 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11758
11759 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11760 {
11761 Reltype reloc(prelocs);
11762
11763 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11764 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11765 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11766
11767 r_type = this->get_real_reloc_type(r_type);
11768
11769 // Only a few relocation types need stubs.
11770 if ((r_type != elfcpp::R_ARM_CALL)
11771 && (r_type != elfcpp::R_ARM_JUMP24)
11772 && (r_type != elfcpp::R_ARM_PLT32)
11773 && (r_type != elfcpp::R_ARM_THM_CALL)
11774 && (r_type != elfcpp::R_ARM_THM_XPC22)
11775 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11776 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11777 && (r_type != elfcpp::R_ARM_V4BX))
11778 continue;
11779
11780 section_offset_type offset =
11781 convert_to_section_size_type(reloc.get_r_offset());
11782
11783 if (needs_special_offset_handling)
11784 {
11785 offset = output_section->output_offset(relinfo->object,
11786 relinfo->data_shndx,
11787 offset);
11788 if (offset == -1)
11789 continue;
11790 }
11791
11792 // Create a v4bx stub if --fix-v4bx-interworking is used.
11793 if (r_type == elfcpp::R_ARM_V4BX)
11794 {
11795 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11796 {
11797 // Get the BX instruction.
11798 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11799 const Valtype* wv =
11800 reinterpret_cast<const Valtype*>(view + offset);
11801 elfcpp::Elf_types<32>::Elf_Swxword insn =
11802 elfcpp::Swap<32, big_endian>::readval(wv);
11803 const uint32_t reg = (insn & 0xf);
11804
11805 if (reg < 0xf)
11806 {
11807 // Try looking up an existing stub from a stub table.
11808 Stub_table<big_endian>* stub_table =
11809 arm_object->stub_table(relinfo->data_shndx);
11810 gold_assert(stub_table != NULL);
11811
11812 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11813 {
11814 // create a new stub and add it to stub table.
11815 Arm_v4bx_stub* stub =
11816 this->stub_factory().make_arm_v4bx_stub(reg);
11817 gold_assert(stub != NULL);
11818 stub_table->add_arm_v4bx_stub(stub);
11819 }
11820 }
11821 }
11822 continue;
11823 }
11824
11825 // Get the addend.
11826 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11827 elfcpp::Elf_types<32>::Elf_Swxword addend =
11828 stub_addend_reader(r_type, view + offset, reloc);
11829
11830 const Sized_symbol<32>* sym;
11831
11832 Symbol_value<32> symval;
11833 const Symbol_value<32> *psymval;
11834 bool is_defined_in_discarded_section;
11835 unsigned int shndx;
11836 if (r_sym < local_count)
11837 {
11838 sym = NULL;
11839 psymval = arm_object->local_symbol(r_sym);
11840
11841 // If the local symbol belongs to a section we are discarding,
11842 // and that section is a debug section, try to find the
11843 // corresponding kept section and map this symbol to its
11844 // counterpart in the kept section. The symbol must not
11845 // correspond to a section we are folding.
11846 bool is_ordinary;
11847 shndx = psymval->input_shndx(&is_ordinary);
11848 is_defined_in_discarded_section =
11849 (is_ordinary
11850 && shndx != elfcpp::SHN_UNDEF
11851 && !arm_object->is_section_included(shndx)
11852 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11853
11854 // We need to compute the would-be final value of this local
11855 // symbol.
11856 if (!is_defined_in_discarded_section)
11857 {
11858 typedef Sized_relobj_file<32, big_endian> ObjType;
11859 typename ObjType::Compute_final_local_value_status status =
11860 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11861 relinfo->symtab);
11862 if (status == ObjType::CFLV_OK)
11863 {
11864 // Currently we cannot handle a branch to a target in
11865 // a merged section. If this is the case, issue an error
11866 // and also free the merge symbol value.
11867 if (!symval.has_output_value())
11868 {
11869 const std::string& section_name =
11870 arm_object->section_name(shndx);
11871 arm_object->error(_("cannot handle branch to local %u "
11872 "in a merged section %s"),
11873 r_sym, section_name.c_str());
11874 }
11875 psymval = &symval;
11876 }
11877 else
11878 {
11879 // We cannot determine the final value.
11880 continue;
11881 }
11882 }
11883 }
11884 else
11885 {
11886 const Symbol* gsym;
11887 gsym = arm_object->global_symbol(r_sym);
11888 gold_assert(gsym != NULL);
11889 if (gsym->is_forwarder())
11890 gsym = relinfo->symtab->resolve_forwards(gsym);
11891
11892 sym = static_cast<const Sized_symbol<32>*>(gsym);
11893 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11894 symval.set_output_symtab_index(sym->symtab_index());
11895 else
11896 symval.set_no_output_symtab_entry();
11897
11898 // We need to compute the would-be final value of this global
11899 // symbol.
11900 const Symbol_table* symtab = relinfo->symtab;
11901 const Sized_symbol<32>* sized_symbol =
11902 symtab->get_sized_symbol<32>(gsym);
11903 Symbol_table::Compute_final_value_status status;
11904 Arm_address value =
11905 symtab->compute_final_value<32>(sized_symbol, &status);
11906
11907 // Skip this if the symbol has not output section.
11908 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11909 continue;
11910 symval.set_output_value(value);
11911
11912 if (gsym->type() == elfcpp::STT_TLS)
11913 symval.set_is_tls_symbol();
11914 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11915 symval.set_is_ifunc_symbol();
11916 psymval = &symval;
11917
11918 is_defined_in_discarded_section =
11919 (gsym->is_defined_in_discarded_section()
11920 && gsym->is_undefined());
11921 shndx = 0;
11922 }
11923
11924 Symbol_value<32> symval2;
11925 if (is_defined_in_discarded_section)
11926 {
11927 if (comdat_behavior == CB_UNDETERMINED)
11928 {
11929 std::string name = arm_object->section_name(relinfo->data_shndx);
11930 comdat_behavior = default_comdat_behavior.get(name.c_str());
11931 }
11932 if (comdat_behavior == CB_PRETEND)
11933 {
11934 // FIXME: This case does not work for global symbols.
11935 // We have no place to store the original section index.
11936 // Fortunately this does not matter for comdat sections,
11937 // only for sections explicitly discarded by a linker
11938 // script.
11939 bool found;
11940 typename elfcpp::Elf_types<32>::Elf_Addr value =
11941 arm_object->map_to_kept_section(shndx, &found);
11942 if (found)
11943 symval2.set_output_value(value + psymval->input_value());
11944 else
11945 symval2.set_output_value(0);
11946 }
11947 else
11948 {
11949 if (comdat_behavior == CB_WARNING)
11950 gold_warning_at_location(relinfo, i, offset,
11951 _("relocation refers to discarded "
11952 "section"));
11953 symval2.set_output_value(0);
11954 }
11955 symval2.set_no_output_symtab_entry();
11956 psymval = &symval2;
11957 }
11958
11959 // If symbol is a section symbol, we don't know the actual type of
11960 // destination. Give up.
11961 if (psymval->is_section_symbol())
11962 continue;
11963
11964 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11965 addend, view_address + offset);
11966 }
11967 }
11968
11969 // Scan an input section for stub generation.
11970
11971 template<bool big_endian>
11972 void
11973 Target_arm<big_endian>::scan_section_for_stubs(
11974 const Relocate_info<32, big_endian>* relinfo,
11975 unsigned int sh_type,
11976 const unsigned char* prelocs,
11977 size_t reloc_count,
11978 Output_section* output_section,
11979 bool needs_special_offset_handling,
11980 const unsigned char* view,
11981 Arm_address view_address,
11982 section_size_type view_size)
11983 {
11984 if (sh_type == elfcpp::SHT_REL)
11985 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11986 relinfo,
11987 prelocs,
11988 reloc_count,
11989 output_section,
11990 needs_special_offset_handling,
11991 view,
11992 view_address,
11993 view_size);
11994 else if (sh_type == elfcpp::SHT_RELA)
11995 // We do not support RELA type relocations yet. This is provided for
11996 // completeness.
11997 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11998 relinfo,
11999 prelocs,
12000 reloc_count,
12001 output_section,
12002 needs_special_offset_handling,
12003 view,
12004 view_address,
12005 view_size);
12006 else
12007 gold_unreachable();
12008 }
12009
12010 // Group input sections for stub generation.
12011 //
12012 // We group input sections in an output section so that the total size,
12013 // including any padding space due to alignment is smaller than GROUP_SIZE
12014 // unless the only input section in group is bigger than GROUP_SIZE already.
12015 // Then an ARM stub table is created to follow the last input section
12016 // in group. For each group an ARM stub table is created an is placed
12017 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12018 // extend the group after the stub table.
12019
12020 template<bool big_endian>
12021 void
12022 Target_arm<big_endian>::group_sections(
12023 Layout* layout,
12024 section_size_type group_size,
12025 bool stubs_always_after_branch,
12026 const Task* task)
12027 {
12028 // Group input sections and insert stub table
12029 Layout::Section_list section_list;
12030 layout->get_executable_sections(&section_list);
12031 for (Layout::Section_list::const_iterator p = section_list.begin();
12032 p != section_list.end();
12033 ++p)
12034 {
12035 Arm_output_section<big_endian>* output_section =
12036 Arm_output_section<big_endian>::as_arm_output_section(*p);
12037 output_section->group_sections(group_size, stubs_always_after_branch,
12038 this, task);
12039 }
12040 }
12041
12042 // Relaxation hook. This is where we do stub generation.
12043
12044 template<bool big_endian>
12045 bool
12046 Target_arm<big_endian>::do_relax(
12047 int pass,
12048 const Input_objects* input_objects,
12049 Symbol_table* symtab,
12050 Layout* layout,
12051 const Task* task)
12052 {
12053 // No need to generate stubs if this is a relocatable link.
12054 gold_assert(!parameters->options().relocatable());
12055
12056 // If this is the first pass, we need to group input sections into
12057 // stub groups.
12058 bool done_exidx_fixup = false;
12059 typedef typename Stub_table_list::iterator Stub_table_iterator;
12060 if (pass == 1)
12061 {
12062 // Determine the stub group size. The group size is the absolute
12063 // value of the parameter --stub-group-size. If --stub-group-size
12064 // is passed a negative value, we restrict stubs to be always after
12065 // the stubbed branches.
12066 int32_t stub_group_size_param =
12067 parameters->options().stub_group_size();
12068 bool stubs_always_after_branch = stub_group_size_param < 0;
12069 section_size_type stub_group_size = abs(stub_group_size_param);
12070
12071 if (stub_group_size == 1)
12072 {
12073 // Default value.
12074 // Thumb branch range is +-4MB has to be used as the default
12075 // maximum size (a given section can contain both ARM and Thumb
12076 // code, so the worst case has to be taken into account). If we are
12077 // fixing cortex-a8 errata, the branch range has to be even smaller,
12078 // since wide conditional branch has a range of +-1MB only.
12079 //
12080 // This value is 48K less than that, which allows for 4096
12081 // 12-byte stubs. If we exceed that, then we will fail to link.
12082 // The user will have to relink with an explicit group size
12083 // option.
12084 stub_group_size = 4145152;
12085 }
12086
12087 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12088 // page as the first half of a 32-bit branch straddling two 4K pages.
12089 // This is a crude way of enforcing that. In addition, long conditional
12090 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12091 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12092 // cortex-A8 stubs from long conditional branches.
12093 if (this->fix_cortex_a8_)
12094 {
12095 stubs_always_after_branch = true;
12096 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12097 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12098 }
12099
12100 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12101
12102 // Also fix .ARM.exidx section coverage.
12103 Arm_output_section<big_endian>* exidx_output_section = NULL;
12104 for (Layout::Section_list::const_iterator p =
12105 layout->section_list().begin();
12106 p != layout->section_list().end();
12107 ++p)
12108 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12109 {
12110 if (exidx_output_section == NULL)
12111 exidx_output_section =
12112 Arm_output_section<big_endian>::as_arm_output_section(*p);
12113 else
12114 // We cannot handle this now.
12115 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12116 "non-relocatable link"),
12117 exidx_output_section->name(),
12118 (*p)->name());
12119 }
12120
12121 if (exidx_output_section != NULL)
12122 {
12123 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12124 symtab, task);
12125 done_exidx_fixup = true;
12126 }
12127 }
12128 else
12129 {
12130 // If this is not the first pass, addresses and file offsets have
12131 // been reset at this point, set them here.
12132 for (Stub_table_iterator sp = this->stub_tables_.begin();
12133 sp != this->stub_tables_.end();
12134 ++sp)
12135 {
12136 Arm_input_section<big_endian>* owner = (*sp)->owner();
12137 off_t off = align_address(owner->original_size(),
12138 (*sp)->addralign());
12139 (*sp)->set_address_and_file_offset(owner->address() + off,
12140 owner->offset() + off);
12141 }
12142 }
12143
12144 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12145 // beginning of each relaxation pass, just blow away all the stubs.
12146 // Alternatively, we could selectively remove only the stubs and reloc
12147 // information for code sections that have moved since the last pass.
12148 // That would require more book-keeping.
12149 if (this->fix_cortex_a8_)
12150 {
12151 // Clear all Cortex-A8 reloc information.
12152 for (typename Cortex_a8_relocs_info::const_iterator p =
12153 this->cortex_a8_relocs_info_.begin();
12154 p != this->cortex_a8_relocs_info_.end();
12155 ++p)
12156 delete p->second;
12157 this->cortex_a8_relocs_info_.clear();
12158
12159 // Remove all Cortex-A8 stubs.
12160 for (Stub_table_iterator sp = this->stub_tables_.begin();
12161 sp != this->stub_tables_.end();
12162 ++sp)
12163 (*sp)->remove_all_cortex_a8_stubs();
12164 }
12165
12166 // Scan relocs for relocation stubs
12167 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12168 op != input_objects->relobj_end();
12169 ++op)
12170 {
12171 Arm_relobj<big_endian>* arm_relobj =
12172 Arm_relobj<big_endian>::as_arm_relobj(*op);
12173 // Lock the object so we can read from it. This is only called
12174 // single-threaded from Layout::finalize, so it is OK to lock.
12175 Task_lock_obj<Object> tl(task, arm_relobj);
12176 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12177 }
12178
12179 // Check all stub tables to see if any of them have their data sizes
12180 // or addresses alignments changed. These are the only things that
12181 // matter.
12182 bool any_stub_table_changed = false;
12183 Unordered_set<const Output_section*> sections_needing_adjustment;
12184 for (Stub_table_iterator sp = this->stub_tables_.begin();
12185 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12186 ++sp)
12187 {
12188 if ((*sp)->update_data_size_and_addralign())
12189 {
12190 // Update data size of stub table owner.
12191 Arm_input_section<big_endian>* owner = (*sp)->owner();
12192 uint64_t address = owner->address();
12193 off_t offset = owner->offset();
12194 owner->reset_address_and_file_offset();
12195 owner->set_address_and_file_offset(address, offset);
12196
12197 sections_needing_adjustment.insert(owner->output_section());
12198 any_stub_table_changed = true;
12199 }
12200 }
12201
12202 // Output_section_data::output_section() returns a const pointer but we
12203 // need to update output sections, so we record all output sections needing
12204 // update above and scan the sections here to find out what sections need
12205 // to be updated.
12206 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12207 p != layout->section_list().end();
12208 ++p)
12209 {
12210 if (sections_needing_adjustment.find(*p)
12211 != sections_needing_adjustment.end())
12212 (*p)->set_section_offsets_need_adjustment();
12213 }
12214
12215 // Stop relaxation if no EXIDX fix-up and no stub table change.
12216 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12217
12218 // Finalize the stubs in the last relaxation pass.
12219 if (!continue_relaxation)
12220 {
12221 for (Stub_table_iterator sp = this->stub_tables_.begin();
12222 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12223 ++sp)
12224 (*sp)->finalize_stubs();
12225
12226 // Update output local symbol counts of objects if necessary.
12227 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12228 op != input_objects->relobj_end();
12229 ++op)
12230 {
12231 Arm_relobj<big_endian>* arm_relobj =
12232 Arm_relobj<big_endian>::as_arm_relobj(*op);
12233
12234 // Update output local symbol counts. We need to discard local
12235 // symbols defined in parts of input sections that are discarded by
12236 // relaxation.
12237 if (arm_relobj->output_local_symbol_count_needs_update())
12238 {
12239 // We need to lock the object's file to update it.
12240 Task_lock_obj<Object> tl(task, arm_relobj);
12241 arm_relobj->update_output_local_symbol_count();
12242 }
12243 }
12244 }
12245
12246 return continue_relaxation;
12247 }
12248
12249 // Relocate a stub.
12250
12251 template<bool big_endian>
12252 void
12253 Target_arm<big_endian>::relocate_stub(
12254 Stub* stub,
12255 const Relocate_info<32, big_endian>* relinfo,
12256 Output_section* output_section,
12257 unsigned char* view,
12258 Arm_address address,
12259 section_size_type view_size)
12260 {
12261 Relocate relocate;
12262 const Stub_template* stub_template = stub->stub_template();
12263 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12264 {
12265 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12266 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12267
12268 unsigned int r_type = insn->r_type();
12269 section_size_type reloc_offset = stub_template->reloc_offset(i);
12270 section_size_type reloc_size = insn->size();
12271 gold_assert(reloc_offset + reloc_size <= view_size);
12272
12273 // This is the address of the stub destination.
12274 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12275 Symbol_value<32> symval;
12276 symval.set_output_value(target);
12277
12278 // Synthesize a fake reloc just in case. We don't have a symbol so
12279 // we use 0.
12280 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12281 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12282 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12283 reloc_write.put_r_offset(reloc_offset);
12284 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12285 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12286
12287 relocate.relocate(relinfo, this, output_section,
12288 this->fake_relnum_for_stubs, rel, r_type,
12289 NULL, &symval, view + reloc_offset,
12290 address + reloc_offset, reloc_size);
12291 }
12292 }
12293
12294 // Determine whether an object attribute tag takes an integer, a
12295 // string or both.
12296
12297 template<bool big_endian>
12298 int
12299 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12300 {
12301 if (tag == Object_attribute::Tag_compatibility)
12302 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12303 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12304 else if (tag == elfcpp::Tag_nodefaults)
12305 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12306 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12307 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12308 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12309 else if (tag < 32)
12310 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12311 else
12312 return ((tag & 1) != 0
12313 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12314 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12315 }
12316
12317 // Reorder attributes.
12318 //
12319 // The ABI defines that Tag_conformance should be emitted first, and that
12320 // Tag_nodefaults should be second (if either is defined). This sets those
12321 // two positions, and bumps up the position of all the remaining tags to
12322 // compensate.
12323
12324 template<bool big_endian>
12325 int
12326 Target_arm<big_endian>::do_attributes_order(int num) const
12327 {
12328 // Reorder the known object attributes in output. We want to move
12329 // Tag_conformance to position 4 and Tag_conformance to position 5
12330 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12331 if (num == 4)
12332 return elfcpp::Tag_conformance;
12333 if (num == 5)
12334 return elfcpp::Tag_nodefaults;
12335 if ((num - 2) < elfcpp::Tag_nodefaults)
12336 return num - 2;
12337 if ((num - 1) < elfcpp::Tag_conformance)
12338 return num - 1;
12339 return num;
12340 }
12341
12342 // Scan a span of THUMB code for Cortex-A8 erratum.
12343
12344 template<bool big_endian>
12345 void
12346 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12347 Arm_relobj<big_endian>* arm_relobj,
12348 unsigned int shndx,
12349 section_size_type span_start,
12350 section_size_type span_end,
12351 const unsigned char* view,
12352 Arm_address address)
12353 {
12354 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12355 //
12356 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12357 // The branch target is in the same 4KB region as the
12358 // first half of the branch.
12359 // The instruction before the branch is a 32-bit
12360 // length non-branch instruction.
12361 section_size_type i = span_start;
12362 bool last_was_32bit = false;
12363 bool last_was_branch = false;
12364 while (i < span_end)
12365 {
12366 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12367 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12368 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12369 bool is_blx = false, is_b = false;
12370 bool is_bl = false, is_bcc = false;
12371
12372 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12373 if (insn_32bit)
12374 {
12375 // Load the rest of the insn (in manual-friendly order).
12376 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12377
12378 // Encoding T4: B<c>.W.
12379 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12380 // Encoding T1: BL<c>.W.
12381 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12382 // Encoding T2: BLX<c>.W.
12383 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12384 // Encoding T3: B<c>.W (not permitted in IT block).
12385 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12386 && (insn & 0x07f00000U) != 0x03800000U);
12387 }
12388
12389 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12390
12391 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12392 // page boundary and it follows 32-bit non-branch instruction,
12393 // we need to work around.
12394 if (is_32bit_branch
12395 && ((address + i) & 0xfffU) == 0xffeU
12396 && last_was_32bit
12397 && !last_was_branch)
12398 {
12399 // Check to see if there is a relocation stub for this branch.
12400 bool force_target_arm = false;
12401 bool force_target_thumb = false;
12402 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12403 Cortex_a8_relocs_info::const_iterator p =
12404 this->cortex_a8_relocs_info_.find(address + i);
12405
12406 if (p != this->cortex_a8_relocs_info_.end())
12407 {
12408 cortex_a8_reloc = p->second;
12409 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12410
12411 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12412 && !target_is_thumb)
12413 force_target_arm = true;
12414 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12415 && target_is_thumb)
12416 force_target_thumb = true;
12417 }
12418
12419 off_t offset;
12420 Stub_type stub_type = arm_stub_none;
12421
12422 // Check if we have an offending branch instruction.
12423 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12424 uint16_t lower_insn = insn & 0xffffU;
12425 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12426
12427 if (cortex_a8_reloc != NULL
12428 && cortex_a8_reloc->reloc_stub() != NULL)
12429 // We've already made a stub for this instruction, e.g.
12430 // it's a long branch or a Thumb->ARM stub. Assume that
12431 // stub will suffice to work around the A8 erratum (see
12432 // setting of always_after_branch above).
12433 ;
12434 else if (is_bcc)
12435 {
12436 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12437 lower_insn);
12438 stub_type = arm_stub_a8_veneer_b_cond;
12439 }
12440 else if (is_b || is_bl || is_blx)
12441 {
12442 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12443 lower_insn);
12444 if (is_blx)
12445 offset &= ~3;
12446
12447 stub_type = (is_blx
12448 ? arm_stub_a8_veneer_blx
12449 : (is_bl
12450 ? arm_stub_a8_veneer_bl
12451 : arm_stub_a8_veneer_b));
12452 }
12453
12454 if (stub_type != arm_stub_none)
12455 {
12456 Arm_address pc_for_insn = address + i + 4;
12457
12458 // The original instruction is a BL, but the target is
12459 // an ARM instruction. If we were not making a stub,
12460 // the BL would have been converted to a BLX. Use the
12461 // BLX stub instead in that case.
12462 if (this->may_use_v5t_interworking() && force_target_arm
12463 && stub_type == arm_stub_a8_veneer_bl)
12464 {
12465 stub_type = arm_stub_a8_veneer_blx;
12466 is_blx = true;
12467 is_bl = false;
12468 }
12469 // Conversely, if the original instruction was
12470 // BLX but the target is Thumb mode, use the BL stub.
12471 else if (force_target_thumb
12472 && stub_type == arm_stub_a8_veneer_blx)
12473 {
12474 stub_type = arm_stub_a8_veneer_bl;
12475 is_blx = false;
12476 is_bl = true;
12477 }
12478
12479 if (is_blx)
12480 pc_for_insn &= ~3;
12481
12482 // If we found a relocation, use the proper destination,
12483 // not the offset in the (unrelocated) instruction.
12484 // Note this is always done if we switched the stub type above.
12485 if (cortex_a8_reloc != NULL)
12486 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12487
12488 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12489
12490 // Add a new stub if destination address in in the same page.
12491 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12492 {
12493 Cortex_a8_stub* stub =
12494 this->stub_factory_.make_cortex_a8_stub(stub_type,
12495 arm_relobj, shndx,
12496 address + i,
12497 target, insn);
12498 Stub_table<big_endian>* stub_table =
12499 arm_relobj->stub_table(shndx);
12500 gold_assert(stub_table != NULL);
12501 stub_table->add_cortex_a8_stub(address + i, stub);
12502 }
12503 }
12504 }
12505
12506 i += insn_32bit ? 4 : 2;
12507 last_was_32bit = insn_32bit;
12508 last_was_branch = is_32bit_branch;
12509 }
12510 }
12511
12512 // Apply the Cortex-A8 workaround.
12513
12514 template<bool big_endian>
12515 void
12516 Target_arm<big_endian>::apply_cortex_a8_workaround(
12517 const Cortex_a8_stub* stub,
12518 Arm_address stub_address,
12519 unsigned char* insn_view,
12520 Arm_address insn_address)
12521 {
12522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12523 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12524 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12525 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12526 off_t branch_offset = stub_address - (insn_address + 4);
12527
12528 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12529 switch (stub->stub_template()->type())
12530 {
12531 case arm_stub_a8_veneer_b_cond:
12532 // For a conditional branch, we re-write it to be an unconditional
12533 // branch to the stub. We use the THUMB-2 encoding here.
12534 upper_insn = 0xf000U;
12535 lower_insn = 0xb800U;
12536 // Fall through
12537 case arm_stub_a8_veneer_b:
12538 case arm_stub_a8_veneer_bl:
12539 case arm_stub_a8_veneer_blx:
12540 if ((lower_insn & 0x5000U) == 0x4000U)
12541 // For a BLX instruction, make sure that the relocation is
12542 // rounded up to a word boundary. This follows the semantics of
12543 // the instruction which specifies that bit 1 of the target
12544 // address will come from bit 1 of the base address.
12545 branch_offset = (branch_offset + 2) & ~3;
12546
12547 // Put BRANCH_OFFSET back into the insn.
12548 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12549 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12550 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12551 break;
12552
12553 default:
12554 gold_unreachable();
12555 }
12556
12557 // Put the relocated value back in the object file:
12558 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12559 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12560 }
12561
12562 // Target selector for ARM. Note this is never instantiated directly.
12563 // It's only used in Target_selector_arm_nacl, below.
12564
12565 template<bool big_endian>
12566 class Target_selector_arm : public Target_selector
12567 {
12568 public:
12569 Target_selector_arm()
12570 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12571 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12572 (big_endian ? "armelfb" : "armelf"))
12573 { }
12574
12575 Target*
12576 do_instantiate_target()
12577 { return new Target_arm<big_endian>(); }
12578 };
12579
12580 // Fix .ARM.exidx section coverage.
12581
12582 template<bool big_endian>
12583 void
12584 Target_arm<big_endian>::fix_exidx_coverage(
12585 Layout* layout,
12586 const Input_objects* input_objects,
12587 Arm_output_section<big_endian>* exidx_section,
12588 Symbol_table* symtab,
12589 const Task* task)
12590 {
12591 // We need to look at all the input sections in output in ascending
12592 // order of of output address. We do that by building a sorted list
12593 // of output sections by addresses. Then we looks at the output sections
12594 // in order. The input sections in an output section are already sorted
12595 // by addresses within the output section.
12596
12597 typedef std::set<Output_section*, output_section_address_less_than>
12598 Sorted_output_section_list;
12599 Sorted_output_section_list sorted_output_sections;
12600
12601 // Find out all the output sections of input sections pointed by
12602 // EXIDX input sections.
12603 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12604 p != input_objects->relobj_end();
12605 ++p)
12606 {
12607 Arm_relobj<big_endian>* arm_relobj =
12608 Arm_relobj<big_endian>::as_arm_relobj(*p);
12609 std::vector<unsigned int> shndx_list;
12610 arm_relobj->get_exidx_shndx_list(&shndx_list);
12611 for (size_t i = 0; i < shndx_list.size(); ++i)
12612 {
12613 const Arm_exidx_input_section* exidx_input_section =
12614 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12615 gold_assert(exidx_input_section != NULL);
12616 if (!exidx_input_section->has_errors())
12617 {
12618 unsigned int text_shndx = exidx_input_section->link();
12619 Output_section* os = arm_relobj->output_section(text_shndx);
12620 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12621 sorted_output_sections.insert(os);
12622 }
12623 }
12624 }
12625
12626 // Go over the output sections in ascending order of output addresses.
12627 typedef typename Arm_output_section<big_endian>::Text_section_list
12628 Text_section_list;
12629 Text_section_list sorted_text_sections;
12630 for (typename Sorted_output_section_list::iterator p =
12631 sorted_output_sections.begin();
12632 p != sorted_output_sections.end();
12633 ++p)
12634 {
12635 Arm_output_section<big_endian>* arm_output_section =
12636 Arm_output_section<big_endian>::as_arm_output_section(*p);
12637 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12638 }
12639
12640 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12641 merge_exidx_entries(), task);
12642 }
12643
12644 template<bool big_endian>
12645 void
12646 Target_arm<big_endian>::do_define_standard_symbols(
12647 Symbol_table* symtab,
12648 Layout* layout)
12649 {
12650 // Handle the .ARM.exidx section.
12651 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12652
12653 if (exidx_section != NULL)
12654 {
12655 // Create __exidx_start and __exidx_end symbols.
12656 symtab->define_in_output_data("__exidx_start",
12657 NULL, // version
12658 Symbol_table::PREDEFINED,
12659 exidx_section,
12660 0, // value
12661 0, // symsize
12662 elfcpp::STT_NOTYPE,
12663 elfcpp::STB_GLOBAL,
12664 elfcpp::STV_HIDDEN,
12665 0, // nonvis
12666 false, // offset_is_from_end
12667 true); // only_if_ref
12668
12669 symtab->define_in_output_data("__exidx_end",
12670 NULL, // version
12671 Symbol_table::PREDEFINED,
12672 exidx_section,
12673 0, // value
12674 0, // symsize
12675 elfcpp::STT_NOTYPE,
12676 elfcpp::STB_GLOBAL,
12677 elfcpp::STV_HIDDEN,
12678 0, // nonvis
12679 true, // offset_is_from_end
12680 true); // only_if_ref
12681 }
12682 else
12683 {
12684 // Define __exidx_start and __exidx_end even when .ARM.exidx
12685 // section is missing to match ld's behaviour.
12686 symtab->define_as_constant("__exidx_start", NULL,
12687 Symbol_table::PREDEFINED,
12688 0, 0, elfcpp::STT_OBJECT,
12689 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12690 true, false);
12691 symtab->define_as_constant("__exidx_end", NULL,
12692 Symbol_table::PREDEFINED,
12693 0, 0, elfcpp::STT_OBJECT,
12694 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12695 true, false);
12696 }
12697 }
12698
12699 // NaCl variant. It uses different PLT contents.
12700
12701 template<bool big_endian>
12702 class Output_data_plt_arm_nacl;
12703
12704 template<bool big_endian>
12705 class Target_arm_nacl : public Target_arm<big_endian>
12706 {
12707 public:
12708 Target_arm_nacl()
12709 : Target_arm<big_endian>(&arm_nacl_info)
12710 { }
12711
12712 protected:
12713 virtual Output_data_plt_arm<big_endian>*
12714 do_make_data_plt(
12715 Layout* layout,
12716 Arm_output_data_got<big_endian>* got,
12717 Output_data_space* got_plt,
12718 Output_data_space* got_irelative)
12719 { return new Output_data_plt_arm_nacl<big_endian>(
12720 layout, got, got_plt, got_irelative); }
12721
12722 private:
12723 static const Target::Target_info arm_nacl_info;
12724 };
12725
12726 template<bool big_endian>
12727 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12728 {
12729 32, // size
12730 big_endian, // is_big_endian
12731 elfcpp::EM_ARM, // machine_code
12732 false, // has_make_symbol
12733 false, // has_resolve
12734 false, // has_code_fill
12735 true, // is_default_stack_executable
12736 false, // can_icf_inline_merge_sections
12737 '\0', // wrap_char
12738 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12739 0x20000, // default_text_segment_address
12740 0x10000, // abi_pagesize (overridable by -z max-page-size)
12741 0x10000, // common_pagesize (overridable by -z common-page-size)
12742 true, // isolate_execinstr
12743 0x10000000, // rosegment_gap
12744 elfcpp::SHN_UNDEF, // small_common_shndx
12745 elfcpp::SHN_UNDEF, // large_common_shndx
12746 0, // small_common_section_flags
12747 0, // large_common_section_flags
12748 ".ARM.attributes", // attributes_section
12749 "aeabi", // attributes_vendor
12750 "_start", // entry_symbol_name
12751 32, // hash_entry_size
12752 };
12753
12754 template<bool big_endian>
12755 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12756 {
12757 public:
12758 Output_data_plt_arm_nacl(
12759 Layout* layout,
12760 Arm_output_data_got<big_endian>* got,
12761 Output_data_space* got_plt,
12762 Output_data_space* got_irelative)
12763 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12764 { }
12765
12766 protected:
12767 // Return the offset of the first non-reserved PLT entry.
12768 virtual unsigned int
12769 do_first_plt_entry_offset() const
12770 { return sizeof(first_plt_entry); }
12771
12772 // Return the size of a PLT entry.
12773 virtual unsigned int
12774 do_get_plt_entry_size() const
12775 { return sizeof(plt_entry); }
12776
12777 virtual void
12778 do_fill_first_plt_entry(unsigned char* pov,
12779 Arm_address got_address,
12780 Arm_address plt_address);
12781
12782 virtual void
12783 do_fill_plt_entry(unsigned char* pov,
12784 Arm_address got_address,
12785 Arm_address plt_address,
12786 unsigned int got_offset,
12787 unsigned int plt_offset);
12788
12789 private:
12790 inline uint32_t arm_movw_immediate(uint32_t value)
12791 {
12792 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12793 }
12794
12795 inline uint32_t arm_movt_immediate(uint32_t value)
12796 {
12797 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12798 }
12799
12800 // Template for the first PLT entry.
12801 static const uint32_t first_plt_entry[16];
12802
12803 // Template for subsequent PLT entries.
12804 static const uint32_t plt_entry[4];
12805 };
12806
12807 // The first entry in the PLT.
12808 template<bool big_endian>
12809 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12810 {
12811 // First bundle:
12812 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12813 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12814 0xe08cc00f, // add ip, ip, pc
12815 0xe52dc008, // str ip, [sp, #-8]!
12816 // Second bundle:
12817 0xe3ccc103, // bic ip, ip, #0xc0000000
12818 0xe59cc000, // ldr ip, [ip]
12819 0xe3ccc13f, // bic ip, ip, #0xc000000f
12820 0xe12fff1c, // bx ip
12821 // Third bundle:
12822 0xe320f000, // nop
12823 0xe320f000, // nop
12824 0xe320f000, // nop
12825 // .Lplt_tail:
12826 0xe50dc004, // str ip, [sp, #-4]
12827 // Fourth bundle:
12828 0xe3ccc103, // bic ip, ip, #0xc0000000
12829 0xe59cc000, // ldr ip, [ip]
12830 0xe3ccc13f, // bic ip, ip, #0xc000000f
12831 0xe12fff1c, // bx ip
12832 };
12833
12834 template<bool big_endian>
12835 void
12836 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12837 unsigned char* pov,
12838 Arm_address got_address,
12839 Arm_address plt_address)
12840 {
12841 // Write first PLT entry. All but first two words are constants.
12842 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12843 / sizeof(first_plt_entry[0]));
12844
12845 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12846
12847 elfcpp::Swap<32, big_endian>::writeval
12848 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12849 elfcpp::Swap<32, big_endian>::writeval
12850 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12851
12852 for (size_t i = 2; i < num_first_plt_words; ++i)
12853 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12854 }
12855
12856 // Subsequent entries in the PLT.
12857
12858 template<bool big_endian>
12859 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12860 {
12861 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12862 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12863 0xe08cc00f, // add ip, ip, pc
12864 0xea000000, // b .Lplt_tail
12865 };
12866
12867 template<bool big_endian>
12868 void
12869 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12870 unsigned char* pov,
12871 Arm_address got_address,
12872 Arm_address plt_address,
12873 unsigned int got_offset,
12874 unsigned int plt_offset)
12875 {
12876 // Calculate the displacement between the PLT slot and the
12877 // common tail that's part of the special initial PLT slot.
12878 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12879 - (plt_address + plt_offset
12880 + sizeof(plt_entry) + sizeof(uint32_t)));
12881 gold_assert((tail_displacement & 3) == 0);
12882 tail_displacement >>= 2;
12883
12884 gold_assert ((tail_displacement & 0xff000000) == 0
12885 || (-tail_displacement & 0xff000000) == 0);
12886
12887 // Calculate the displacement between the PLT slot and the entry
12888 // in the GOT. The offset accounts for the value produced by
12889 // adding to pc in the penultimate instruction of the PLT stub.
12890 const int32_t got_displacement = (got_address + got_offset
12891 - (plt_address + sizeof(plt_entry)));
12892
12893 elfcpp::Swap<32, big_endian>::writeval
12894 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12895 elfcpp::Swap<32, big_endian>::writeval
12896 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12897 elfcpp::Swap<32, big_endian>::writeval
12898 (pov + 8, plt_entry[2]);
12899 elfcpp::Swap<32, big_endian>::writeval
12900 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12901 }
12902
12903 // Target selectors.
12904
12905 template<bool big_endian>
12906 class Target_selector_arm_nacl
12907 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12908 Target_arm_nacl<big_endian> >
12909 {
12910 public:
12911 Target_selector_arm_nacl()
12912 : Target_selector_nacl<Target_selector_arm<big_endian>,
12913 Target_arm_nacl<big_endian> >(
12914 "arm",
12915 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12916 big_endian ? "armelfb_nacl" : "armelf_nacl")
12917 { }
12918 };
12919
12920 Target_selector_arm_nacl<false> target_selector_arm;
12921 Target_selector_arm_nacl<true> target_selector_armbe;
12922
12923 } // End anonymous namespace.
This page took 0.350701 seconds and 5 git commands to generate.