Add --be8 option to gold.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_short;
66
67 template<bool big_endian>
68 class Output_data_plt_arm_long;
69
70 template<bool big_endian>
71 class Stub_table;
72
73 template<bool big_endian>
74 class Arm_input_section;
75
76 class Arm_exidx_cantunwind;
77
78 class Arm_exidx_merged_section;
79
80 class Arm_exidx_fixup;
81
82 template<bool big_endian>
83 class Arm_output_section;
84
85 class Arm_exidx_input_section;
86
87 template<bool big_endian>
88 class Arm_relobj;
89
90 template<bool big_endian>
91 class Arm_relocate_functions;
92
93 template<bool big_endian>
94 class Arm_output_data_got;
95
96 template<bool big_endian>
97 class Target_arm;
98
99 // For convenience.
100 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
101
102 // Maximum branch offsets for ARM, THUMB and THUMB2.
103 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
104 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
105 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
106 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
107 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
108 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
109
110 // Thread Control Block size.
111 const size_t ARM_TCB_SIZE = 8;
112
113 // The arm target class.
114 //
115 // This is a very simple port of gold for ARM-EABI. It is intended for
116 // supporting Android only for the time being.
117 //
118 // TODOs:
119 // - Implement all static relocation types documented in arm-reloc.def.
120 // - Make PLTs more flexible for different architecture features like
121 // Thumb-2 and BE8.
122 // There are probably a lot more.
123
124 // Ideally we would like to avoid using global variables but this is used
125 // very in many places and sometimes in loops. If we use a function
126 // returning a static instance of Arm_reloc_property_table, it will be very
127 // slow in an threaded environment since the static instance needs to be
128 // locked. The pointer is below initialized in the
129 // Target::do_select_as_default_target() hook so that we do not spend time
130 // building the table if we are not linking ARM objects.
131 //
132 // An alternative is to to process the information in arm-reloc.def in
133 // compilation time and generate a representation of it in PODs only. That
134 // way we can avoid initialization when the linker starts.
135
136 Arm_reloc_property_table* arm_reloc_property_table = NULL;
137
138 // Instruction template class. This class is similar to the insn_sequence
139 // struct in bfd/elf32-arm.c.
140
141 class Insn_template
142 {
143 public:
144 // Types of instruction templates.
145 enum Type
146 {
147 THUMB16_TYPE = 1,
148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
149 // templates with class-specific semantics. Currently this is used
150 // only by the Cortex_a8_stub class for handling condition codes in
151 // conditional branches.
152 THUMB16_SPECIAL_TYPE,
153 THUMB32_TYPE,
154 ARM_TYPE,
155 DATA_TYPE
156 };
157
158 // Factory methods to create instruction templates in different formats.
159
160 static const Insn_template
161 thumb16_insn(uint32_t data)
162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
163
164 // A Thumb conditional branch, in which the proper condition is inserted
165 // when we build the stub.
166 static const Insn_template
167 thumb16_bcond_insn(uint32_t data)
168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
169
170 static const Insn_template
171 thumb32_insn(uint32_t data)
172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
173
174 static const Insn_template
175 thumb32_b_insn(uint32_t data, int reloc_addend)
176 {
177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 reloc_addend);
179 }
180
181 static const Insn_template
182 arm_insn(uint32_t data)
183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
184
185 static const Insn_template
186 arm_rel_insn(unsigned data, int reloc_addend)
187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
188
189 static const Insn_template
190 data_word(unsigned data, unsigned int r_type, int reloc_addend)
191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
192
193 // Accessors. This class is used for read-only objects so no modifiers
194 // are provided.
195
196 uint32_t
197 data() const
198 { return this->data_; }
199
200 // Return the instruction sequence type of this.
201 Type
202 type() const
203 { return this->type_; }
204
205 // Return the ARM relocation type of this.
206 unsigned int
207 r_type() const
208 { return this->r_type_; }
209
210 int32_t
211 reloc_addend() const
212 { return this->reloc_addend_; }
213
214 // Return size of instruction template in bytes.
215 size_t
216 size() const;
217
218 // Return byte-alignment of instruction template.
219 unsigned
220 alignment() const;
221
222 private:
223 // We make the constructor private to ensure that only the factory
224 // methods are used.
225 inline
226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
228 { }
229
230 // Instruction specific data. This is used to store information like
231 // some of the instruction bits.
232 uint32_t data_;
233 // Instruction template type.
234 Type type_;
235 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
236 unsigned int r_type_;
237 // Relocation addend.
238 int32_t reloc_addend_;
239 };
240
241 // Macro for generating code to stub types. One entry per long/short
242 // branch stub
243
244 #define DEF_STUBS \
245 DEF_STUB(long_branch_any_any) \
246 DEF_STUB(long_branch_v4t_arm_thumb) \
247 DEF_STUB(long_branch_thumb_only) \
248 DEF_STUB(long_branch_v4t_thumb_thumb) \
249 DEF_STUB(long_branch_v4t_thumb_arm) \
250 DEF_STUB(short_branch_v4t_thumb_arm) \
251 DEF_STUB(long_branch_any_arm_pic) \
252 DEF_STUB(long_branch_any_thumb_pic) \
253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
256 DEF_STUB(long_branch_thumb_only_pic) \
257 DEF_STUB(a8_veneer_b_cond) \
258 DEF_STUB(a8_veneer_b) \
259 DEF_STUB(a8_veneer_bl) \
260 DEF_STUB(a8_veneer_blx) \
261 DEF_STUB(v4_veneer_bx)
262
263 // Stub types.
264
265 #define DEF_STUB(x) arm_stub_##x,
266 typedef enum
267 {
268 arm_stub_none,
269 DEF_STUBS
270
271 // First reloc stub type.
272 arm_stub_reloc_first = arm_stub_long_branch_any_any,
273 // Last reloc stub type.
274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
275
276 // First Cortex-A8 stub type.
277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
278 // Last Cortex-A8 stub type.
279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
280
281 // Last stub type.
282 arm_stub_type_last = arm_stub_v4_veneer_bx
283 } Stub_type;
284 #undef DEF_STUB
285
286 // Stub template class. Templates are meant to be read-only objects.
287 // A stub template for a stub type contains all read-only attributes
288 // common to all stubs of the same type.
289
290 class Stub_template
291 {
292 public:
293 Stub_template(Stub_type, const Insn_template*, size_t);
294
295 ~Stub_template()
296 { }
297
298 // Return stub type.
299 Stub_type
300 type() const
301 { return this->type_; }
302
303 // Return an array of instruction templates.
304 const Insn_template*
305 insns() const
306 { return this->insns_; }
307
308 // Return size of template in number of instructions.
309 size_t
310 insn_count() const
311 { return this->insn_count_; }
312
313 // Return size of template in bytes.
314 size_t
315 size() const
316 { return this->size_; }
317
318 // Return alignment of the stub template.
319 unsigned
320 alignment() const
321 { return this->alignment_; }
322
323 // Return whether entry point is in thumb mode.
324 bool
325 entry_in_thumb_mode() const
326 { return this->entry_in_thumb_mode_; }
327
328 // Return number of relocations in this template.
329 size_t
330 reloc_count() const
331 { return this->relocs_.size(); }
332
333 // Return index of the I-th instruction with relocation.
334 size_t
335 reloc_insn_index(size_t i) const
336 {
337 gold_assert(i < this->relocs_.size());
338 return this->relocs_[i].first;
339 }
340
341 // Return the offset of the I-th instruction with relocation from the
342 // beginning of the stub.
343 section_size_type
344 reloc_offset(size_t i) const
345 {
346 gold_assert(i < this->relocs_.size());
347 return this->relocs_[i].second;
348 }
349
350 private:
351 // This contains information about an instruction template with a relocation
352 // and its offset from start of stub.
353 typedef std::pair<size_t, section_size_type> Reloc;
354
355 // A Stub_template may not be copied. We want to share templates as much
356 // as possible.
357 Stub_template(const Stub_template&);
358 Stub_template& operator=(const Stub_template&);
359
360 // Stub type.
361 Stub_type type_;
362 // Points to an array of Insn_templates.
363 const Insn_template* insns_;
364 // Number of Insn_templates in insns_[].
365 size_t insn_count_;
366 // Size of templated instructions in bytes.
367 size_t size_;
368 // Alignment of templated instructions.
369 unsigned alignment_;
370 // Flag to indicate if entry is in thumb mode.
371 bool entry_in_thumb_mode_;
372 // A table of reloc instruction indices and offsets. We can find these by
373 // looking at the instruction templates but we pre-compute and then stash
374 // them here for speed.
375 std::vector<Reloc> relocs_;
376 };
377
378 //
379 // A class for code stubs. This is a base class for different type of
380 // stubs used in the ARM target.
381 //
382
383 class Stub
384 {
385 private:
386 static const section_offset_type invalid_offset =
387 static_cast<section_offset_type>(-1);
388
389 public:
390 Stub(const Stub_template* stub_template)
391 : stub_template_(stub_template), offset_(invalid_offset)
392 { }
393
394 virtual
395 ~Stub()
396 { }
397
398 // Return the stub template.
399 const Stub_template*
400 stub_template() const
401 { return this->stub_template_; }
402
403 // Return offset of code stub from beginning of its containing stub table.
404 section_offset_type
405 offset() const
406 {
407 gold_assert(this->offset_ != invalid_offset);
408 return this->offset_;
409 }
410
411 // Set offset of code stub from beginning of its containing stub table.
412 void
413 set_offset(section_offset_type offset)
414 { this->offset_ = offset; }
415
416 // Return the relocation target address of the i-th relocation in the
417 // stub. This must be defined in a child class.
418 Arm_address
419 reloc_target(size_t i)
420 { return this->do_reloc_target(i); }
421
422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
423 void
424 write(unsigned char* view, section_size_type view_size, bool big_endian)
425 { this->do_write(view, view_size, big_endian); }
426
427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
428 // for the i-th instruction.
429 uint16_t
430 thumb16_special(size_t i)
431 { return this->do_thumb16_special(i); }
432
433 protected:
434 // This must be defined in the child class.
435 virtual Arm_address
436 do_reloc_target(size_t) = 0;
437
438 // This may be overridden in the child class.
439 virtual void
440 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
441 {
442 if (big_endian)
443 this->do_fixed_endian_write<true>(view, view_size);
444 else
445 this->do_fixed_endian_write<false>(view, view_size);
446 }
447
448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
449 // instruction template.
450 virtual uint16_t
451 do_thumb16_special(size_t)
452 { gold_unreachable(); }
453
454 private:
455 // A template to implement do_write.
456 template<bool big_endian>
457 void inline
458 do_fixed_endian_write(unsigned char*, section_size_type);
459
460 // Its template.
461 const Stub_template* stub_template_;
462 // Offset within the section of containing this stub.
463 section_offset_type offset_;
464 };
465
466 // Reloc stub class. These are stubs we use to fix up relocation because
467 // of limited branch ranges.
468
469 class Reloc_stub : public Stub
470 {
471 public:
472 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
473 // We assume we never jump to this address.
474 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
475
476 // Return destination address.
477 Arm_address
478 destination_address() const
479 {
480 gold_assert(this->destination_address_ != this->invalid_address);
481 return this->destination_address_;
482 }
483
484 // Set destination address.
485 void
486 set_destination_address(Arm_address address)
487 {
488 gold_assert(address != this->invalid_address);
489 this->destination_address_ = address;
490 }
491
492 // Reset destination address.
493 void
494 reset_destination_address()
495 { this->destination_address_ = this->invalid_address; }
496
497 // Determine stub type for a branch of a relocation of R_TYPE going
498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
499 // the branch target is a thumb instruction. TARGET is used for look
500 // up ARM-specific linker settings.
501 static Stub_type
502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
503 Arm_address branch_target, bool target_is_thumb);
504
505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
506 // and an addend. Since we treat global and local symbol differently, we
507 // use a Symbol object for a global symbol and a object-index pair for
508 // a local symbol.
509 class Key
510 {
511 public:
512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
514 // and R_SYM must not be invalid_index.
515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
516 unsigned int r_sym, int32_t addend)
517 : stub_type_(stub_type), addend_(addend)
518 {
519 if (symbol != NULL)
520 {
521 this->r_sym_ = Reloc_stub::invalid_index;
522 this->u_.symbol = symbol;
523 }
524 else
525 {
526 gold_assert(relobj != NULL && r_sym != invalid_index);
527 this->r_sym_ = r_sym;
528 this->u_.relobj = relobj;
529 }
530 }
531
532 ~Key()
533 { }
534
535 // Accessors: Keys are meant to be read-only object so no modifiers are
536 // provided.
537
538 // Return stub type.
539 Stub_type
540 stub_type() const
541 { return this->stub_type_; }
542
543 // Return the local symbol index or invalid_index.
544 unsigned int
545 r_sym() const
546 { return this->r_sym_; }
547
548 // Return the symbol if there is one.
549 const Symbol*
550 symbol() const
551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
552
553 // Return the relobj if there is one.
554 const Relobj*
555 relobj() const
556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
557
558 // Whether this equals to another key k.
559 bool
560 eq(const Key& k) const
561 {
562 return ((this->stub_type_ == k.stub_type_)
563 && (this->r_sym_ == k.r_sym_)
564 && ((this->r_sym_ != Reloc_stub::invalid_index)
565 ? (this->u_.relobj == k.u_.relobj)
566 : (this->u_.symbol == k.u_.symbol))
567 && (this->addend_ == k.addend_));
568 }
569
570 // Return a hash value.
571 size_t
572 hash_value() const
573 {
574 return (this->stub_type_
575 ^ this->r_sym_
576 ^ gold::string_hash<char>(
577 (this->r_sym_ != Reloc_stub::invalid_index)
578 ? this->u_.relobj->name().c_str()
579 : this->u_.symbol->name())
580 ^ this->addend_);
581 }
582
583 // Functors for STL associative containers.
584 struct hash
585 {
586 size_t
587 operator()(const Key& k) const
588 { return k.hash_value(); }
589 };
590
591 struct equal_to
592 {
593 bool
594 operator()(const Key& k1, const Key& k2) const
595 { return k1.eq(k2); }
596 };
597
598 // Name of key. This is mainly for debugging.
599 std::string
600 name() const ATTRIBUTE_UNUSED;
601
602 private:
603 // Stub type.
604 Stub_type stub_type_;
605 // If this is a local symbol, this is the index in the defining object.
606 // Otherwise, it is invalid_index for a global symbol.
607 unsigned int r_sym_;
608 // If r_sym_ is an invalid index, this points to a global symbol.
609 // Otherwise, it points to a relobj. We used the unsized and target
610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
611 // Arm_relobj, in order to avoid making the stub class a template
612 // as most of the stub machinery is endianness-neutral. However, it
613 // may require a bit of casting done by users of this class.
614 union
615 {
616 const Symbol* symbol;
617 const Relobj* relobj;
618 } u_;
619 // Addend associated with a reloc.
620 int32_t addend_;
621 };
622
623 protected:
624 // Reloc_stubs are created via a stub factory. So these are protected.
625 Reloc_stub(const Stub_template* stub_template)
626 : Stub(stub_template), destination_address_(invalid_address)
627 { }
628
629 ~Reloc_stub()
630 { }
631
632 friend class Stub_factory;
633
634 // Return the relocation target address of the i-th relocation in the
635 // stub.
636 Arm_address
637 do_reloc_target(size_t i)
638 {
639 // All reloc stub have only one relocation.
640 gold_assert(i == 0);
641 return this->destination_address_;
642 }
643
644 private:
645 // Address of destination.
646 Arm_address destination_address_;
647 };
648
649 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
650 // THUMB branch that meets the following conditions:
651 //
652 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
653 // branch address is 0xffe.
654 // 2. The branch target address is in the same page as the first word of the
655 // branch.
656 // 3. The branch follows a 32-bit instruction which is not a branch.
657 //
658 // To do the fix up, we need to store the address of the branch instruction
659 // and its target at least. We also need to store the original branch
660 // instruction bits for the condition code in a conditional branch. The
661 // condition code is used in a special instruction template. We also want
662 // to identify input sections needing Cortex-A8 workaround quickly. We store
663 // extra information about object and section index of the code section
664 // containing a branch being fixed up. The information is used to mark
665 // the code section when we finalize the Cortex-A8 stubs.
666 //
667
668 class Cortex_a8_stub : public Stub
669 {
670 public:
671 ~Cortex_a8_stub()
672 { }
673
674 // Return the object of the code section containing the branch being fixed
675 // up.
676 Relobj*
677 relobj() const
678 { return this->relobj_; }
679
680 // Return the section index of the code section containing the branch being
681 // fixed up.
682 unsigned int
683 shndx() const
684 { return this->shndx_; }
685
686 // Return the source address of stub. This is the address of the original
687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
688 // instruction.
689 Arm_address
690 source_address() const
691 { return this->source_address_; }
692
693 // Return the destination address of the stub. This is the branch taken
694 // address of the original branch instruction. LSB is 1 if it is a THUMB
695 // instruction address.
696 Arm_address
697 destination_address() const
698 { return this->destination_address_; }
699
700 // Return the instruction being fixed up.
701 uint32_t
702 original_insn() const
703 { return this->original_insn_; }
704
705 protected:
706 // Cortex_a8_stubs are created via a stub factory. So these are protected.
707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
708 unsigned int shndx, Arm_address source_address,
709 Arm_address destination_address, uint32_t original_insn)
710 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
711 source_address_(source_address | 1U),
712 destination_address_(destination_address),
713 original_insn_(original_insn)
714 { }
715
716 friend class Stub_factory;
717
718 // Return the relocation target address of the i-th relocation in the
719 // stub.
720 Arm_address
721 do_reloc_target(size_t i)
722 {
723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
724 {
725 // The conditional branch veneer has two relocations.
726 gold_assert(i < 2);
727 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 }
729 else
730 {
731 // All other Cortex-A8 stubs have only one relocation.
732 gold_assert(i == 0);
733 return this->destination_address_;
734 }
735 }
736
737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
738 uint16_t
739 do_thumb16_special(size_t);
740
741 private:
742 // Object of the code section containing the branch being fixed up.
743 Relobj* relobj_;
744 // Section index of the code section containing the branch begin fixed up.
745 unsigned int shndx_;
746 // Source address of original branch.
747 Arm_address source_address_;
748 // Destination address of the original branch.
749 Arm_address destination_address_;
750 // Original branch instruction. This is needed for copying the condition
751 // code from a condition branch to its stub.
752 uint32_t original_insn_;
753 };
754
755 // ARMv4 BX Rx branch relocation stub class.
756 class Arm_v4bx_stub : public Stub
757 {
758 public:
759 ~Arm_v4bx_stub()
760 { }
761
762 // Return the associated register.
763 uint32_t
764 reg() const
765 { return this->reg_; }
766
767 protected:
768 // Arm V4BX stubs are created via a stub factory. So these are protected.
769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
770 : Stub(stub_template), reg_(reg)
771 { }
772
773 friend class Stub_factory;
774
775 // Return the relocation target address of the i-th relocation in the
776 // stub.
777 Arm_address
778 do_reloc_target(size_t)
779 { gold_unreachable(); }
780
781 // This may be overridden in the child class.
782 virtual void
783 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
784 {
785 if (big_endian)
786 this->do_fixed_endian_v4bx_write<true>(view, view_size);
787 else
788 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 }
790
791 private:
792 // A template to implement do_write.
793 template<bool big_endian>
794 void inline
795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
796 {
797 const Insn_template* insns = this->stub_template()->insns();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[0].data()
800 + (this->reg_ << 16)));
801 view += insns[0].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[1].data() + this->reg_));
804 view += insns[1].size();
805 elfcpp::Swap<32, big_endian>::writeval(view,
806 (insns[2].data() + this->reg_));
807 }
808
809 // A register index (r0-r14), which is associated with the stub.
810 uint32_t reg_;
811 };
812
813 // Stub factory class.
814
815 class Stub_factory
816 {
817 public:
818 // Return the unique instance of this class.
819 static const Stub_factory&
820 get_instance()
821 {
822 static Stub_factory singleton;
823 return singleton;
824 }
825
826 // Make a relocation stub.
827 Reloc_stub*
828 make_reloc_stub(Stub_type stub_type) const
829 {
830 gold_assert(stub_type >= arm_stub_reloc_first
831 && stub_type <= arm_stub_reloc_last);
832 return new Reloc_stub(this->stub_templates_[stub_type]);
833 }
834
835 // Make a Cortex-A8 stub.
836 Cortex_a8_stub*
837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
838 Arm_address source, Arm_address destination,
839 uint32_t original_insn) const
840 {
841 gold_assert(stub_type >= arm_stub_cortex_a8_first
842 && stub_type <= arm_stub_cortex_a8_last);
843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
844 source, destination, original_insn);
845 }
846
847 // Make an ARM V4BX relocation stub.
848 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
849 Arm_v4bx_stub*
850 make_arm_v4bx_stub(uint32_t reg) const
851 {
852 gold_assert(reg < 0xf);
853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
854 reg);
855 }
856
857 private:
858 // Constructor and destructor are protected since we only return a single
859 // instance created in Stub_factory::get_instance().
860
861 Stub_factory();
862
863 // A Stub_factory may not be copied since it is a singleton.
864 Stub_factory(const Stub_factory&);
865 Stub_factory& operator=(Stub_factory&);
866
867 // Stub templates. These are initialized in the constructor.
868 const Stub_template* stub_templates_[arm_stub_type_last+1];
869 };
870
871 // A class to hold stubs for the ARM target.
872
873 template<bool big_endian>
874 class Stub_table : public Output_data
875 {
876 public:
877 Stub_table(Arm_input_section<big_endian>* owner)
878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
880 prev_data_size_(0), prev_addralign_(1)
881 { }
882
883 ~Stub_table()
884 { }
885
886 // Owner of this stub table.
887 Arm_input_section<big_endian>*
888 owner() const
889 { return this->owner_; }
890
891 // Whether this stub table is empty.
892 bool
893 empty() const
894 {
895 return (this->reloc_stubs_.empty()
896 && this->cortex_a8_stubs_.empty()
897 && this->arm_v4bx_stubs_.empty());
898 }
899
900 // Return the current data size.
901 off_t
902 current_data_size() const
903 { return this->current_data_size_for_child(); }
904
905 // Add a STUB using KEY. The caller is responsible for avoiding addition
906 // if a STUB with the same key has already been added.
907 void
908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
909 {
910 const Stub_template* stub_template = stub->stub_template();
911 gold_assert(stub_template->type() == key.stub_type());
912 this->reloc_stubs_[key] = stub;
913
914 // Assign stub offset early. We can do this because we never remove
915 // reloc stubs and they are in the beginning of the stub table.
916 uint64_t align = stub_template->alignment();
917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
918 stub->set_offset(this->reloc_stubs_size_);
919 this->reloc_stubs_size_ += stub_template->size();
920 this->reloc_stubs_addralign_ =
921 std::max(this->reloc_stubs_addralign_, align);
922 }
923
924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
925 // The caller is responsible for avoiding addition if a STUB with the same
926 // address has already been added.
927 void
928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
929 {
930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
931 this->cortex_a8_stubs_.insert(value);
932 }
933
934 // Add an ARM V4BX relocation stub. A register index will be retrieved
935 // from the stub.
936 void
937 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
938 {
939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
940 this->arm_v4bx_stubs_[stub->reg()] = stub;
941 }
942
943 // Remove all Cortex-A8 stubs.
944 void
945 remove_all_cortex_a8_stubs();
946
947 // Look up a relocation stub using KEY. Return NULL if there is none.
948 Reloc_stub*
949 find_reloc_stub(const Reloc_stub::Key& key) const
950 {
951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
952 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
953 }
954
955 // Look up an arm v4bx relocation stub using the register index.
956 // Return NULL if there is none.
957 Arm_v4bx_stub*
958 find_arm_v4bx_stub(const uint32_t reg) const
959 {
960 gold_assert(reg < 0xf);
961 return this->arm_v4bx_stubs_[reg];
962 }
963
964 // Relocate stubs in this stub table.
965 void
966 relocate_stubs(const Relocate_info<32, big_endian>*,
967 Target_arm<big_endian>*, Output_section*,
968 unsigned char*, Arm_address, section_size_type);
969
970 // Update data size and alignment at the end of a relaxation pass. Return
971 // true if either data size or alignment is different from that of the
972 // previous relaxation pass.
973 bool
974 update_data_size_and_addralign();
975
976 // Finalize stubs. Set the offsets of all stubs and mark input sections
977 // needing the Cortex-A8 workaround.
978 void
979 finalize_stubs();
980
981 // Apply Cortex-A8 workaround to an address range.
982 void
983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
984 unsigned char*, Arm_address,
985 section_size_type);
986
987 protected:
988 // Write out section contents.
989 void
990 do_write(Output_file*);
991
992 // Return the required alignment.
993 uint64_t
994 do_addralign() const
995 { return this->prev_addralign_; }
996
997 // Reset address and file offset.
998 void
999 do_reset_address_and_file_offset()
1000 { this->set_current_data_size_for_child(this->prev_data_size_); }
1001
1002 // Set final data size.
1003 void
1004 set_final_data_size()
1005 { this->set_data_size(this->current_data_size()); }
1006
1007 private:
1008 // Relocate one stub.
1009 void
1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1011 Target_arm<big_endian>*, Output_section*,
1012 unsigned char*, Arm_address, section_size_type);
1013
1014 // Unordered map of relocation stubs.
1015 typedef
1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1017 Reloc_stub::Key::equal_to>
1018 Reloc_stub_map;
1019
1020 // List of Cortex-A8 stubs ordered by addresses of branches being
1021 // fixed up in output.
1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1023 // List of Arm V4BX relocation stubs ordered by associated registers.
1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1025
1026 // Owner of this stub table.
1027 Arm_input_section<big_endian>* owner_;
1028 // The relocation stubs.
1029 Reloc_stub_map reloc_stubs_;
1030 // Size of reloc stubs.
1031 off_t reloc_stubs_size_;
1032 // Maximum address alignment of reloc stubs.
1033 uint64_t reloc_stubs_addralign_;
1034 // The cortex_a8_stubs.
1035 Cortex_a8_stub_list cortex_a8_stubs_;
1036 // The Arm V4BX relocation stubs.
1037 Arm_v4bx_stub_list arm_v4bx_stubs_;
1038 // data size of this in the previous pass.
1039 off_t prev_data_size_;
1040 // address alignment of this in the previous pass.
1041 uint64_t prev_addralign_;
1042 };
1043
1044 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1045 // we add to the end of an EXIDX input section that goes into the output.
1046
1047 class Arm_exidx_cantunwind : public Output_section_data
1048 {
1049 public:
1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1052 { }
1053
1054 // Return the object containing the section pointed by this.
1055 Relobj*
1056 relobj() const
1057 { return this->relobj_; }
1058
1059 // Return the section index of the section pointed by this.
1060 unsigned int
1061 shndx() const
1062 { return this->shndx_; }
1063
1064 protected:
1065 void
1066 do_write(Output_file* of)
1067 {
1068 if (parameters->target().is_big_endian())
1069 this->do_fixed_endian_write<true>(of);
1070 else
1071 this->do_fixed_endian_write<false>(of);
1072 }
1073
1074 // Write to a map file.
1075 void
1076 do_print_to_mapfile(Mapfile* mapfile) const
1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1078
1079 private:
1080 // Implement do_write for a given endianness.
1081 template<bool big_endian>
1082 void inline
1083 do_fixed_endian_write(Output_file*);
1084
1085 // The object containing the section pointed by this.
1086 Relobj* relobj_;
1087 // The section index of the section pointed by this.
1088 unsigned int shndx_;
1089 };
1090
1091 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1092 // Offset map is used to map input section offset within the EXIDX section
1093 // to the output offset from the start of this EXIDX section.
1094
1095 typedef std::map<section_offset_type, section_offset_type>
1096 Arm_exidx_section_offset_map;
1097
1098 // Arm_exidx_merged_section class. This represents an EXIDX input section
1099 // with some of its entries merged.
1100
1101 class Arm_exidx_merged_section : public Output_relaxed_input_section
1102 {
1103 public:
1104 // Constructor for Arm_exidx_merged_section.
1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1106 // SECTION_OFFSET_MAP points to a section offset map describing how
1107 // parts of the input section are mapped to output. DELETED_BYTES is
1108 // the number of bytes deleted from the EXIDX input section.
1109 Arm_exidx_merged_section(
1110 const Arm_exidx_input_section& exidx_input_section,
1111 const Arm_exidx_section_offset_map& section_offset_map,
1112 uint32_t deleted_bytes);
1113
1114 // Build output contents.
1115 void
1116 build_contents(const unsigned char*, section_size_type);
1117
1118 // Return the original EXIDX input section.
1119 const Arm_exidx_input_section&
1120 exidx_input_section() const
1121 { return this->exidx_input_section_; }
1122
1123 // Return the section offset map.
1124 const Arm_exidx_section_offset_map&
1125 section_offset_map() const
1126 { return this->section_offset_map_; }
1127
1128 protected:
1129 // Write merged section into file OF.
1130 void
1131 do_write(Output_file* of);
1132
1133 bool
1134 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1135 section_offset_type*) const;
1136
1137 private:
1138 // Original EXIDX input section.
1139 const Arm_exidx_input_section& exidx_input_section_;
1140 // Section offset map.
1141 const Arm_exidx_section_offset_map& section_offset_map_;
1142 // Merged section contents. We need to keep build the merged section
1143 // and save it here to avoid accessing the original EXIDX section when
1144 // we cannot lock the sections' object.
1145 unsigned char* section_contents_;
1146 };
1147
1148 // A class to wrap an ordinary input section containing executable code.
1149
1150 template<bool big_endian>
1151 class Arm_input_section : public Output_relaxed_input_section
1152 {
1153 public:
1154 Arm_input_section(Relobj* relobj, unsigned int shndx)
1155 : Output_relaxed_input_section(relobj, shndx, 1),
1156 original_addralign_(1), original_size_(0), stub_table_(NULL),
1157 original_contents_(NULL)
1158 { }
1159
1160 ~Arm_input_section()
1161 { delete[] this->original_contents_; }
1162
1163 // Initialize.
1164 void
1165 init();
1166
1167 // Whether this is a stub table owner.
1168 bool
1169 is_stub_table_owner() const
1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1171
1172 // Return the stub table.
1173 Stub_table<big_endian>*
1174 stub_table() const
1175 { return this->stub_table_; }
1176
1177 // Set the stub_table.
1178 void
1179 set_stub_table(Stub_table<big_endian>* stub_table)
1180 { this->stub_table_ = stub_table; }
1181
1182 // Downcast a base pointer to an Arm_input_section pointer. This is
1183 // not type-safe but we only use Arm_input_section not the base class.
1184 static Arm_input_section<big_endian>*
1185 as_arm_input_section(Output_relaxed_input_section* poris)
1186 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1187
1188 // Return the original size of the section.
1189 uint32_t
1190 original_size() const
1191 { return this->original_size_; }
1192
1193 protected:
1194 // Write data to output file.
1195 void
1196 do_write(Output_file*);
1197
1198 // Return required alignment of this.
1199 uint64_t
1200 do_addralign() const
1201 {
1202 if (this->is_stub_table_owner())
1203 return std::max(this->stub_table_->addralign(),
1204 static_cast<uint64_t>(this->original_addralign_));
1205 else
1206 return this->original_addralign_;
1207 }
1208
1209 // Finalize data size.
1210 void
1211 set_final_data_size();
1212
1213 // Reset address and file offset.
1214 void
1215 do_reset_address_and_file_offset();
1216
1217 // Output offset.
1218 bool
1219 do_output_offset(const Relobj* object, unsigned int shndx,
1220 section_offset_type offset,
1221 section_offset_type* poutput) const
1222 {
1223 if ((object == this->relobj())
1224 && (shndx == this->shndx())
1225 && (offset >= 0)
1226 && (offset <=
1227 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1228 {
1229 *poutput = offset;
1230 return true;
1231 }
1232 else
1233 return false;
1234 }
1235
1236 private:
1237 // Copying is not allowed.
1238 Arm_input_section(const Arm_input_section&);
1239 Arm_input_section& operator=(const Arm_input_section&);
1240
1241 // Address alignment of the original input section.
1242 uint32_t original_addralign_;
1243 // Section size of the original input section.
1244 uint32_t original_size_;
1245 // Stub table.
1246 Stub_table<big_endian>* stub_table_;
1247 // Original section contents. We have to make a copy here since the file
1248 // containing the original section may not be locked when we need to access
1249 // the contents.
1250 unsigned char* original_contents_;
1251 };
1252
1253 // Arm_exidx_fixup class. This is used to define a number of methods
1254 // and keep states for fixing up EXIDX coverage.
1255
1256 class Arm_exidx_fixup
1257 {
1258 public:
1259 Arm_exidx_fixup(Output_section* exidx_output_section,
1260 bool merge_exidx_entries = true)
1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1262 last_inlined_entry_(0), last_input_section_(NULL),
1263 section_offset_map_(NULL), first_output_text_section_(NULL),
1264 merge_exidx_entries_(merge_exidx_entries)
1265 { }
1266
1267 ~Arm_exidx_fixup()
1268 { delete this->section_offset_map_; }
1269
1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1272 // number of bytes to be deleted in output. If parts of the input EXIDX
1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1275 // responsible for releasing it.
1276 template<bool big_endian>
1277 uint32_t
1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1279 const unsigned char* section_contents,
1280 section_size_type section_size,
1281 Arm_exidx_section_offset_map** psection_offset_map);
1282
1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1284 // input section, if there is not one already.
1285 void
1286 add_exidx_cantunwind_as_needed();
1287
1288 // Return the output section for the text section which is linked to the
1289 // first exidx input in output.
1290 Output_section*
1291 first_output_text_section() const
1292 { return this->first_output_text_section_; }
1293
1294 private:
1295 // Copying is not allowed.
1296 Arm_exidx_fixup(const Arm_exidx_fixup&);
1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1298
1299 // Type of EXIDX unwind entry.
1300 enum Unwind_type
1301 {
1302 // No type.
1303 UT_NONE,
1304 // EXIDX_CANTUNWIND.
1305 UT_EXIDX_CANTUNWIND,
1306 // Inlined entry.
1307 UT_INLINED_ENTRY,
1308 // Normal entry.
1309 UT_NORMAL_ENTRY,
1310 };
1311
1312 // Process an EXIDX entry. We only care about the second word of the
1313 // entry. Return true if the entry can be deleted.
1314 bool
1315 process_exidx_entry(uint32_t second_word);
1316
1317 // Update the current section offset map during EXIDX section fix-up.
1318 // If there is no map, create one. INPUT_OFFSET is the offset of a
1319 // reference point, DELETED_BYTES is the number of deleted by in the
1320 // section so far. If DELETE_ENTRY is true, the reference point and
1321 // all offsets after the previous reference point are discarded.
1322 void
1323 update_offset_map(section_offset_type input_offset,
1324 section_size_type deleted_bytes, bool delete_entry);
1325
1326 // EXIDX output section.
1327 Output_section* exidx_output_section_;
1328 // Unwind type of the last EXIDX entry processed.
1329 Unwind_type last_unwind_type_;
1330 // Last seen inlined EXIDX entry.
1331 uint32_t last_inlined_entry_;
1332 // Last processed EXIDX input section.
1333 const Arm_exidx_input_section* last_input_section_;
1334 // Section offset map created in process_exidx_section.
1335 Arm_exidx_section_offset_map* section_offset_map_;
1336 // Output section for the text section which is linked to the first exidx
1337 // input in output.
1338 Output_section* first_output_text_section_;
1339
1340 bool merge_exidx_entries_;
1341 };
1342
1343 // Arm output section class. This is defined mainly to add a number of
1344 // stub generation methods.
1345
1346 template<bool big_endian>
1347 class Arm_output_section : public Output_section
1348 {
1349 public:
1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1351
1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1353 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1354 elfcpp::Elf_Xword flags)
1355 : Output_section(name, type,
1356 (type == elfcpp::SHT_ARM_EXIDX
1357 ? flags | elfcpp::SHF_LINK_ORDER
1358 : flags))
1359 {
1360 if (type == elfcpp::SHT_ARM_EXIDX)
1361 this->set_always_keeps_input_sections();
1362 }
1363
1364 ~Arm_output_section()
1365 { }
1366
1367 // Group input sections for stub generation.
1368 void
1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1370
1371 // Downcast a base pointer to an Arm_output_section pointer. This is
1372 // not type-safe but we only use Arm_output_section not the base class.
1373 static Arm_output_section<big_endian>*
1374 as_arm_output_section(Output_section* os)
1375 { return static_cast<Arm_output_section<big_endian>*>(os); }
1376
1377 // Append all input text sections in this into LIST.
1378 void
1379 append_text_sections_to_list(Text_section_list* list);
1380
1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1382 // is a list of text input sections sorted in ascending order of their
1383 // output addresses.
1384 void
1385 fix_exidx_coverage(Layout* layout,
1386 const Text_section_list& sorted_text_section,
1387 Symbol_table* symtab,
1388 bool merge_exidx_entries,
1389 const Task* task);
1390
1391 // Link an EXIDX section into its corresponding text section.
1392 void
1393 set_exidx_section_link();
1394
1395 private:
1396 // For convenience.
1397 typedef Output_section::Input_section Input_section;
1398 typedef Output_section::Input_section_list Input_section_list;
1399
1400 // Create a stub group.
1401 void create_stub_group(Input_section_list::const_iterator,
1402 Input_section_list::const_iterator,
1403 Input_section_list::const_iterator,
1404 Target_arm<big_endian>*,
1405 std::vector<Output_relaxed_input_section*>*,
1406 const Task* task);
1407 };
1408
1409 // Arm_exidx_input_section class. This represents an EXIDX input section.
1410
1411 class Arm_exidx_input_section
1412 {
1413 public:
1414 static const section_offset_type invalid_offset =
1415 static_cast<section_offset_type>(-1);
1416
1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1418 unsigned int link, uint32_t size,
1419 uint32_t addralign, uint32_t text_size)
1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1421 addralign_(addralign), text_size_(text_size), has_errors_(false)
1422 { }
1423
1424 ~Arm_exidx_input_section()
1425 { }
1426
1427 // Accessors: This is a read-only class.
1428
1429 // Return the object containing this EXIDX input section.
1430 Relobj*
1431 relobj() const
1432 { return this->relobj_; }
1433
1434 // Return the section index of this EXIDX input section.
1435 unsigned int
1436 shndx() const
1437 { return this->shndx_; }
1438
1439 // Return the section index of linked text section in the same object.
1440 unsigned int
1441 link() const
1442 { return this->link_; }
1443
1444 // Return size of the EXIDX input section.
1445 uint32_t
1446 size() const
1447 { return this->size_; }
1448
1449 // Return address alignment of EXIDX input section.
1450 uint32_t
1451 addralign() const
1452 { return this->addralign_; }
1453
1454 // Return size of the associated text input section.
1455 uint32_t
1456 text_size() const
1457 { return this->text_size_; }
1458
1459 // Whether there are any errors in the EXIDX input section.
1460 bool
1461 has_errors() const
1462 { return this->has_errors_; }
1463
1464 // Set has-errors flag.
1465 void
1466 set_has_errors()
1467 { this->has_errors_ = true; }
1468
1469 private:
1470 // Object containing this.
1471 Relobj* relobj_;
1472 // Section index of this.
1473 unsigned int shndx_;
1474 // text section linked to this in the same object.
1475 unsigned int link_;
1476 // Size of this. For ARM 32-bit is sufficient.
1477 uint32_t size_;
1478 // Address alignment of this. For ARM 32-bit is sufficient.
1479 uint32_t addralign_;
1480 // Size of associated text section.
1481 uint32_t text_size_;
1482 // Whether this has any errors.
1483 bool has_errors_;
1484 };
1485
1486 // Arm_relobj class.
1487
1488 template<bool big_endian>
1489 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1490 {
1491 public:
1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1493
1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1497 stub_tables_(), local_symbol_is_thumb_function_(),
1498 attributes_section_data_(NULL), mapping_symbols_info_(),
1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1500 output_local_symbol_count_needs_update_(false),
1501 merge_flags_and_attributes_(true)
1502 { }
1503
1504 ~Arm_relobj()
1505 { delete this->attributes_section_data_; }
1506
1507 // Return the stub table of the SHNDX-th section if there is one.
1508 Stub_table<big_endian>*
1509 stub_table(unsigned int shndx) const
1510 {
1511 gold_assert(shndx < this->stub_tables_.size());
1512 return this->stub_tables_[shndx];
1513 }
1514
1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1516 void
1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1518 {
1519 gold_assert(shndx < this->stub_tables_.size());
1520 this->stub_tables_[shndx] = stub_table;
1521 }
1522
1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1524 // index. This is only valid after do_count_local_symbol is called.
1525 bool
1526 local_symbol_is_thumb_function(unsigned int r_sym) const
1527 {
1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1529 return this->local_symbol_is_thumb_function_[r_sym];
1530 }
1531
1532 // Scan all relocation sections for stub generation.
1533 void
1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1535 const Layout*);
1536
1537 // Convert regular input section with index SHNDX to a relaxed section.
1538 void
1539 convert_input_section_to_relaxed_section(unsigned shndx)
1540 {
1541 // The stubs have relocations and we need to process them after writing
1542 // out the stubs. So relocation now must follow section write.
1543 this->set_section_offset(shndx, -1ULL);
1544 this->set_relocs_must_follow_section_writes();
1545 }
1546
1547 // Downcast a base pointer to an Arm_relobj pointer. This is
1548 // not type-safe but we only use Arm_relobj not the base class.
1549 static Arm_relobj<big_endian>*
1550 as_arm_relobj(Relobj* relobj)
1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1552
1553 // Processor-specific flags in ELF file header. This is valid only after
1554 // reading symbols.
1555 elfcpp::Elf_Word
1556 processor_specific_flags() const
1557 { return this->processor_specific_flags_; }
1558
1559 // Attribute section data This is the contents of the .ARM.attribute section
1560 // if there is one.
1561 const Attributes_section_data*
1562 attributes_section_data() const
1563 { return this->attributes_section_data_; }
1564
1565 // Mapping symbol location.
1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1567
1568 // Functor for STL container.
1569 struct Mapping_symbol_position_less
1570 {
1571 bool
1572 operator()(const Mapping_symbol_position& p1,
1573 const Mapping_symbol_position& p2) const
1574 {
1575 return (p1.first < p2.first
1576 || (p1.first == p2.first && p1.second < p2.second));
1577 }
1578 };
1579
1580 // We only care about the first character of a mapping symbol, so
1581 // we only store that instead of the whole symbol name.
1582 typedef std::map<Mapping_symbol_position, char,
1583 Mapping_symbol_position_less> Mapping_symbols_info;
1584
1585 // Whether a section contains any Cortex-A8 workaround.
1586 bool
1587 section_has_cortex_a8_workaround(unsigned int shndx) const
1588 {
1589 return (this->section_has_cortex_a8_workaround_ != NULL
1590 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1591 }
1592
1593 // Mark a section that has Cortex-A8 workaround.
1594 void
1595 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1596 {
1597 if (this->section_has_cortex_a8_workaround_ == NULL)
1598 this->section_has_cortex_a8_workaround_ =
1599 new std::vector<bool>(this->shnum(), false);
1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1601 }
1602
1603 // Return the EXIDX section of an text section with index SHNDX or NULL
1604 // if the text section has no associated EXIDX section.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_link(unsigned int shndx) const
1607 {
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->link() == shndx)
1611 ? p->second
1612 : NULL);
1613 }
1614
1615 // Return the EXIDX section with index SHNDX or NULL if there is none.
1616 const Arm_exidx_input_section*
1617 exidx_input_section_by_shndx(unsigned shndx) const
1618 {
1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1620 return ((p != this->exidx_section_map_.end()
1621 && p->second->shndx() == shndx)
1622 ? p->second
1623 : NULL);
1624 }
1625
1626 // Whether output local symbol count needs updating.
1627 bool
1628 output_local_symbol_count_needs_update() const
1629 { return this->output_local_symbol_count_needs_update_; }
1630
1631 // Set output_local_symbol_count_needs_update flag to be true.
1632 void
1633 set_output_local_symbol_count_needs_update()
1634 { this->output_local_symbol_count_needs_update_ = true; }
1635
1636 // Update output local symbol count at the end of relaxation.
1637 void
1638 update_output_local_symbol_count();
1639
1640 // Whether we want to merge processor-specific flags and attributes.
1641 bool
1642 merge_flags_and_attributes() const
1643 { return this->merge_flags_and_attributes_; }
1644
1645 // Export list of EXIDX section indices.
1646 void
1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1648 {
1649 list->clear();
1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1651 p != this->exidx_section_map_.end();
1652 ++p)
1653 {
1654 if (p->second->shndx() == p->first)
1655 list->push_back(p->first);
1656 }
1657 // Sort list to make result independent of implementation of map.
1658 std::sort(list->begin(), list->end());
1659 }
1660
1661 protected:
1662 // Post constructor setup.
1663 void
1664 do_setup()
1665 {
1666 // Call parent's setup method.
1667 Sized_relobj_file<32, big_endian>::do_setup();
1668
1669 // Initialize look-up tables.
1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1671 this->stub_tables_.swap(empty_stub_table_list);
1672 }
1673
1674 // Count the local symbols.
1675 void
1676 do_count_local_symbols(Stringpool_template<char>*,
1677 Stringpool_template<char>*);
1678
1679 void
1680 do_relocate_sections(
1681 const Symbol_table* symtab, const Layout* layout,
1682 const unsigned char* pshdrs, Output_file* of,
1683 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1684
1685 // Read the symbol information.
1686 void
1687 do_read_symbols(Read_symbols_data* sd);
1688
1689 // Process relocs for garbage collection.
1690 void
1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692
1693 private:
1694
1695 // Whether a section needs to be scanned for relocation stubs.
1696 bool
1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1698 const Relobj::Output_sections&,
1699 const Symbol_table*, const unsigned char*);
1700
1701 // Whether a section is a scannable text section.
1702 bool
1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1704 const Output_section*, const Symbol_table*);
1705
1706 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1707 bool
1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1709 unsigned int, Output_section*,
1710 const Symbol_table*);
1711
1712 // Scan a section for the Cortex-A8 erratum.
1713 void
1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1715 unsigned int, Output_section*,
1716 Target_arm<big_endian>*);
1717
1718 // Find the linked text section of an EXIDX section by looking at the
1719 // first relocation of the EXIDX section. PSHDR points to the section
1720 // headers of a relocation section and PSYMS points to the local symbols.
1721 // PSHNDX points to a location storing the text section index if found.
1722 // Return whether we can find the linked section.
1723 bool
1724 find_linked_text_section(const unsigned char* pshdr,
1725 const unsigned char* psyms, unsigned int* pshndx);
1726
1727 //
1728 // Make a new Arm_exidx_input_section object for EXIDX section with
1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1730 // index of the linked text section.
1731 void
1732 make_exidx_input_section(unsigned int shndx,
1733 const elfcpp::Shdr<32, big_endian>& shdr,
1734 unsigned int text_shndx,
1735 const elfcpp::Shdr<32, big_endian>& text_shdr);
1736
1737 // Return the output address of either a plain input section or a
1738 // relaxed input section. SHNDX is the section index.
1739 Arm_address
1740 simple_input_section_output_address(unsigned int, Output_section*);
1741
1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1744 Exidx_section_map;
1745
1746 // List of stub tables.
1747 Stub_table_list stub_tables_;
1748 // Bit vector to tell if a local symbol is a thumb function or not.
1749 // This is only valid after do_count_local_symbol is called.
1750 std::vector<bool> local_symbol_is_thumb_function_;
1751 // processor-specific flags in ELF file header.
1752 elfcpp::Elf_Word processor_specific_flags_;
1753 // Object attributes if there is an .ARM.attributes section or NULL.
1754 Attributes_section_data* attributes_section_data_;
1755 // Mapping symbols information.
1756 Mapping_symbols_info mapping_symbols_info_;
1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1758 std::vector<bool>* section_has_cortex_a8_workaround_;
1759 // Map a text section to its associated .ARM.exidx section, if there is one.
1760 Exidx_section_map exidx_section_map_;
1761 // Whether output local symbol count needs updating.
1762 bool output_local_symbol_count_needs_update_;
1763 // Whether we merge processor flags and attributes of this object to
1764 // output.
1765 bool merge_flags_and_attributes_;
1766 };
1767
1768 // Arm_dynobj class.
1769
1770 template<bool big_endian>
1771 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1772 {
1773 public:
1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1775 const elfcpp::Ehdr<32, big_endian>& ehdr)
1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1777 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { }
1779
1780 ~Arm_dynobj()
1781 { delete this->attributes_section_data_; }
1782
1783 // Downcast a base pointer to an Arm_relobj pointer. This is
1784 // not type-safe but we only use Arm_relobj not the base class.
1785 static Arm_dynobj<big_endian>*
1786 as_arm_dynobj(Dynobj* dynobj)
1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1788
1789 // Processor-specific flags in ELF file header. This is valid only after
1790 // reading symbols.
1791 elfcpp::Elf_Word
1792 processor_specific_flags() const
1793 { return this->processor_specific_flags_; }
1794
1795 // Attributes section data.
1796 const Attributes_section_data*
1797 attributes_section_data() const
1798 { return this->attributes_section_data_; }
1799
1800 protected:
1801 // Read the symbol information.
1802 void
1803 do_read_symbols(Read_symbols_data* sd);
1804
1805 private:
1806 // processor-specific flags in ELF file header.
1807 elfcpp::Elf_Word processor_specific_flags_;
1808 // Object attributes if there is an .ARM.attributes section or NULL.
1809 Attributes_section_data* attributes_section_data_;
1810 };
1811
1812 // Functor to read reloc addends during stub generation.
1813
1814 template<int sh_type, bool big_endian>
1815 struct Stub_addend_reader
1816 {
1817 // Return the addend for a relocation of a particular type. Depending
1818 // on whether this is a REL or RELA relocation, read the addend from a
1819 // view or from a Reloc object.
1820 elfcpp::Elf_types<32>::Elf_Swxword
1821 operator()(
1822 unsigned int /* r_type */,
1823 const unsigned char* /* view */,
1824 const typename Reloc_types<sh_type,
1825 32, big_endian>::Reloc& /* reloc */) const;
1826 };
1827
1828 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1829
1830 template<bool big_endian>
1831 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1832 {
1833 elfcpp::Elf_types<32>::Elf_Swxword
1834 operator()(
1835 unsigned int,
1836 const unsigned char*,
1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1838 };
1839
1840 // Specialized Stub_addend_reader for RELA type relocation sections.
1841 // We currently do not handle RELA type relocation sections but it is trivial
1842 // to implement the addend reader. This is provided for completeness and to
1843 // make it easier to add support for RELA relocation sections in the future.
1844
1845 template<bool big_endian>
1846 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1847 {
1848 elfcpp::Elf_types<32>::Elf_Swxword
1849 operator()(
1850 unsigned int,
1851 const unsigned char*,
1852 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1853 big_endian>::Reloc& reloc) const
1854 { return reloc.get_r_addend(); }
1855 };
1856
1857 // Cortex_a8_reloc class. We keep record of relocation that may need
1858 // the Cortex-A8 erratum workaround.
1859
1860 class Cortex_a8_reloc
1861 {
1862 public:
1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1864 Arm_address destination)
1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1866 { }
1867
1868 ~Cortex_a8_reloc()
1869 { }
1870
1871 // Accessors: This is a read-only class.
1872
1873 // Return the relocation stub associated with this relocation if there is
1874 // one.
1875 const Reloc_stub*
1876 reloc_stub() const
1877 { return this->reloc_stub_; }
1878
1879 // Return the relocation type.
1880 unsigned int
1881 r_type() const
1882 { return this->r_type_; }
1883
1884 // Return the destination address of the relocation. LSB stores the THUMB
1885 // bit.
1886 Arm_address
1887 destination() const
1888 { return this->destination_; }
1889
1890 private:
1891 // Associated relocation stub if there is one, or NULL.
1892 const Reloc_stub* reloc_stub_;
1893 // Relocation type.
1894 unsigned int r_type_;
1895 // Destination address of this relocation. LSB is used to distinguish
1896 // ARM/THUMB mode.
1897 Arm_address destination_;
1898 };
1899
1900 // Arm_output_data_got class. We derive this from Output_data_got to add
1901 // extra methods to handle TLS relocations in a static link.
1902
1903 template<bool big_endian>
1904 class Arm_output_data_got : public Output_data_got<32, big_endian>
1905 {
1906 public:
1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1909 { }
1910
1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1913 // applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1917
1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1920 // relocation that needs to be applied in a static link.
1921 void
1922 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1923 Sized_relobj_file<32, big_endian>* relobj,
1924 unsigned int index)
1925 {
1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 index));
1928 }
1929
1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1931 // The first one is initialized to be 1, which is the module index for
1932 // the main executable and the second one 0. A reloc of the type
1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1934 // be applied by gold. GSYM is a global symbol.
1935 void
1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1937
1938 // Same as the above but for a local symbol in OBJECT with INDEX.
1939 void
1940 add_tls_gd32_with_static_reloc(unsigned int got_type,
1941 Sized_relobj_file<32, big_endian>* object,
1942 unsigned int index);
1943
1944 protected:
1945 // Write out the GOT table.
1946 void
1947 do_write(Output_file*);
1948
1949 private:
1950 // This class represent dynamic relocations that need to be applied by
1951 // gold because we are using TLS relocations in a static link.
1952 class Static_reloc
1953 {
1954 public:
1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1957 { this->u_.global.symbol = gsym; }
1958
1959 Static_reloc(unsigned int got_offset, unsigned int r_type,
1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1962 {
1963 this->u_.local.relobj = relobj;
1964 this->u_.local.index = index;
1965 }
1966
1967 // Return the GOT offset.
1968 unsigned int
1969 got_offset() const
1970 { return this->got_offset_; }
1971
1972 // Relocation type.
1973 unsigned int
1974 r_type() const
1975 { return this->r_type_; }
1976
1977 // Whether the symbol is global or not.
1978 bool
1979 symbol_is_global() const
1980 { return this->symbol_is_global_; }
1981
1982 // For a relocation against a global symbol, the global symbol.
1983 Symbol*
1984 symbol() const
1985 {
1986 gold_assert(this->symbol_is_global_);
1987 return this->u_.global.symbol;
1988 }
1989
1990 // For a relocation against a local symbol, the defining object.
1991 Sized_relobj_file<32, big_endian>*
1992 relobj() const
1993 {
1994 gold_assert(!this->symbol_is_global_);
1995 return this->u_.local.relobj;
1996 }
1997
1998 // For a relocation against a local symbol, the local symbol index.
1999 unsigned int
2000 index() const
2001 {
2002 gold_assert(!this->symbol_is_global_);
2003 return this->u_.local.index;
2004 }
2005
2006 private:
2007 // GOT offset of the entry to which this relocation is applied.
2008 unsigned int got_offset_;
2009 // Type of relocation.
2010 unsigned int r_type_;
2011 // Whether this relocation is against a global symbol.
2012 bool symbol_is_global_;
2013 // A global or local symbol.
2014 union
2015 {
2016 struct
2017 {
2018 // For a global symbol, the symbol itself.
2019 Symbol* symbol;
2020 } global;
2021 struct
2022 {
2023 // For a local symbol, the object defining object.
2024 Sized_relobj_file<32, big_endian>* relobj;
2025 // For a local symbol, the symbol index.
2026 unsigned int index;
2027 } local;
2028 } u_;
2029 };
2030
2031 // Symbol table of the output object.
2032 Symbol_table* symbol_table_;
2033 // Layout of the output object.
2034 Layout* layout_;
2035 // Static relocs to be applied to the GOT.
2036 std::vector<Static_reloc> static_relocs_;
2037 };
2038
2039 // The ARM target has many relocation types with odd-sizes or noncontiguous
2040 // bits. The default handling of relocatable relocation cannot process these
2041 // relocations. So we have to extend the default code.
2042
2043 template<bool big_endian, typename Classify_reloc>
2044 class Arm_scan_relocatable_relocs :
2045 public Default_scan_relocatable_relocs<Classify_reloc>
2046 {
2047 public:
2048 // Return the strategy to use for a local symbol which is a section
2049 // symbol, given the relocation type.
2050 inline Relocatable_relocs::Reloc_strategy
2051 local_section_strategy(unsigned int r_type, Relobj*)
2052 {
2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2055 else
2056 {
2057 if (r_type == elfcpp::R_ARM_TARGET1
2058 || r_type == elfcpp::R_ARM_TARGET2)
2059 {
2060 const Target_arm<big_endian>* arm_target =
2061 Target_arm<big_endian>::default_target();
2062 r_type = arm_target->get_real_reloc_type(r_type);
2063 }
2064
2065 switch(r_type)
2066 {
2067 // Relocations that write nothing. These exclude R_ARM_TARGET1
2068 // and R_ARM_TARGET2.
2069 case elfcpp::R_ARM_NONE:
2070 case elfcpp::R_ARM_V4BX:
2071 case elfcpp::R_ARM_TLS_GOTDESC:
2072 case elfcpp::R_ARM_TLS_CALL:
2073 case elfcpp::R_ARM_TLS_DESCSEQ:
2074 case elfcpp::R_ARM_THM_TLS_CALL:
2075 case elfcpp::R_ARM_GOTRELAX:
2076 case elfcpp::R_ARM_GNU_VTENTRY:
2077 case elfcpp::R_ARM_GNU_VTINHERIT:
2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2081 // These should have been converted to something else above.
2082 case elfcpp::R_ARM_TARGET1:
2083 case elfcpp::R_ARM_TARGET2:
2084 gold_unreachable();
2085 // Relocations that write full 32 bits and
2086 // have alignment of 1.
2087 case elfcpp::R_ARM_ABS32:
2088 case elfcpp::R_ARM_REL32:
2089 case elfcpp::R_ARM_SBREL32:
2090 case elfcpp::R_ARM_GOTOFF32:
2091 case elfcpp::R_ARM_BASE_PREL:
2092 case elfcpp::R_ARM_GOT_BREL:
2093 case elfcpp::R_ARM_BASE_ABS:
2094 case elfcpp::R_ARM_ABS32_NOI:
2095 case elfcpp::R_ARM_REL32_NOI:
2096 case elfcpp::R_ARM_PLT32_ABS:
2097 case elfcpp::R_ARM_GOT_ABS:
2098 case elfcpp::R_ARM_GOT_PREL:
2099 case elfcpp::R_ARM_TLS_GD32:
2100 case elfcpp::R_ARM_TLS_LDM32:
2101 case elfcpp::R_ARM_TLS_LDO32:
2102 case elfcpp::R_ARM_TLS_IE32:
2103 case elfcpp::R_ARM_TLS_LE32:
2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2105 default:
2106 // For all other static relocations, return RELOC_SPECIAL.
2107 return Relocatable_relocs::RELOC_SPECIAL;
2108 }
2109 }
2110 }
2111 };
2112
2113 template<bool big_endian>
2114 class Target_arm : public Sized_target<32, big_endian>
2115 {
2116 public:
2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2118 Reloc_section;
2119
2120 // When were are relocating a stub, we pass this as the relocation number.
2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2122
2123 Target_arm(const Target::Target_info* info = &arm_info)
2124 : Sized_target<32, big_endian>(info),
2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2129 should_force_pic_veneer_(false),
2130 arm_input_section_map_(), attributes_section_data_(NULL),
2131 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2132 { }
2133
2134 // Whether we force PCI branch veneers.
2135 bool
2136 should_force_pic_veneer() const
2137 { return this->should_force_pic_veneer_; }
2138
2139 // Set PIC veneer flag.
2140 void
2141 set_should_force_pic_veneer(bool value)
2142 { this->should_force_pic_veneer_ = value; }
2143
2144 // Whether we use THUMB-2 instructions.
2145 bool
2146 using_thumb2() const
2147 {
2148 Object_attribute* attr =
2149 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2150 int arch = attr->int_value();
2151 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2152 }
2153
2154 // Whether we use THUMB/THUMB-2 instructions only.
2155 bool
2156 using_thumb_only() const
2157 {
2158 Object_attribute* attr =
2159 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2160
2161 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2162 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2163 return true;
2164 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2165 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2166 return false;
2167 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2168 return attr->int_value() == 'M';
2169 }
2170
2171 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2172 bool
2173 may_use_arm_nop() const
2174 {
2175 Object_attribute* attr =
2176 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2177 int arch = attr->int_value();
2178 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2179 || arch == elfcpp::TAG_CPU_ARCH_V6K
2180 || arch == elfcpp::TAG_CPU_ARCH_V7
2181 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2182 }
2183
2184 // Whether we have THUMB-2 NOP.W instruction.
2185 bool
2186 may_use_thumb2_nop() const
2187 {
2188 Object_attribute* attr =
2189 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2190 int arch = attr->int_value();
2191 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2192 || arch == elfcpp::TAG_CPU_ARCH_V7
2193 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2194 }
2195
2196 // Whether we have v4T interworking instructions available.
2197 bool
2198 may_use_v4t_interworking() const
2199 {
2200 Object_attribute* attr =
2201 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2202 int arch = attr->int_value();
2203 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2204 && arch != elfcpp::TAG_CPU_ARCH_V4);
2205 }
2206
2207 // Whether we have v5T interworking instructions available.
2208 bool
2209 may_use_v5t_interworking() const
2210 {
2211 Object_attribute* attr =
2212 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2213 int arch = attr->int_value();
2214 if (parameters->options().fix_arm1176())
2215 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2216 || arch == elfcpp::TAG_CPU_ARCH_V7
2217 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2218 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2219 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2220 else
2221 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2222 && arch != elfcpp::TAG_CPU_ARCH_V4
2223 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2224 }
2225
2226 // Process the relocations to determine unreferenced sections for
2227 // garbage collection.
2228 void
2229 gc_process_relocs(Symbol_table* symtab,
2230 Layout* layout,
2231 Sized_relobj_file<32, big_endian>* object,
2232 unsigned int data_shndx,
2233 unsigned int sh_type,
2234 const unsigned char* prelocs,
2235 size_t reloc_count,
2236 Output_section* output_section,
2237 bool needs_special_offset_handling,
2238 size_t local_symbol_count,
2239 const unsigned char* plocal_symbols);
2240
2241 // Scan the relocations to look for symbol adjustments.
2242 void
2243 scan_relocs(Symbol_table* symtab,
2244 Layout* layout,
2245 Sized_relobj_file<32, big_endian>* object,
2246 unsigned int data_shndx,
2247 unsigned int sh_type,
2248 const unsigned char* prelocs,
2249 size_t reloc_count,
2250 Output_section* output_section,
2251 bool needs_special_offset_handling,
2252 size_t local_symbol_count,
2253 const unsigned char* plocal_symbols);
2254
2255 // Finalize the sections.
2256 void
2257 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2258
2259 // Return the value to use for a dynamic symbol which requires special
2260 // treatment.
2261 uint64_t
2262 do_dynsym_value(const Symbol*) const;
2263
2264 // Return the plt address for globals. Since we have irelative plt entries,
2265 // address calculation is not as straightforward as plt_address + plt_offset.
2266 uint64_t
2267 do_plt_address_for_global(const Symbol* gsym) const
2268 { return this->plt_section()->address_for_global(gsym); }
2269
2270 // Return the plt address for locals. Since we have irelative plt entries,
2271 // address calculation is not as straightforward as plt_address + plt_offset.
2272 uint64_t
2273 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2274 { return this->plt_section()->address_for_local(relobj, symndx); }
2275
2276 // Relocate a section.
2277 void
2278 relocate_section(const Relocate_info<32, big_endian>*,
2279 unsigned int sh_type,
2280 const unsigned char* prelocs,
2281 size_t reloc_count,
2282 Output_section* output_section,
2283 bool needs_special_offset_handling,
2284 unsigned char* view,
2285 Arm_address view_address,
2286 section_size_type view_size,
2287 const Reloc_symbol_changes*);
2288
2289 // Scan the relocs during a relocatable link.
2290 void
2291 scan_relocatable_relocs(Symbol_table* symtab,
2292 Layout* layout,
2293 Sized_relobj_file<32, big_endian>* object,
2294 unsigned int data_shndx,
2295 unsigned int sh_type,
2296 const unsigned char* prelocs,
2297 size_t reloc_count,
2298 Output_section* output_section,
2299 bool needs_special_offset_handling,
2300 size_t local_symbol_count,
2301 const unsigned char* plocal_symbols,
2302 Relocatable_relocs*);
2303
2304 // Scan the relocs for --emit-relocs.
2305 void
2306 emit_relocs_scan(Symbol_table* symtab,
2307 Layout* layout,
2308 Sized_relobj_file<32, big_endian>* object,
2309 unsigned int data_shndx,
2310 unsigned int sh_type,
2311 const unsigned char* prelocs,
2312 size_t reloc_count,
2313 Output_section* output_section,
2314 bool needs_special_offset_handling,
2315 size_t local_symbol_count,
2316 const unsigned char* plocal_syms,
2317 Relocatable_relocs* rr);
2318
2319 // Emit relocations for a section.
2320 void
2321 relocate_relocs(const Relocate_info<32, big_endian>*,
2322 unsigned int sh_type,
2323 const unsigned char* prelocs,
2324 size_t reloc_count,
2325 Output_section* output_section,
2326 typename elfcpp::Elf_types<32>::Elf_Off
2327 offset_in_output_section,
2328 unsigned char* view,
2329 Arm_address view_address,
2330 section_size_type view_size,
2331 unsigned char* reloc_view,
2332 section_size_type reloc_view_size);
2333
2334 // Perform target-specific processing in a relocatable link. This is
2335 // only used if we use the relocation strategy RELOC_SPECIAL.
2336 void
2337 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2338 unsigned int sh_type,
2339 const unsigned char* preloc_in,
2340 size_t relnum,
2341 Output_section* output_section,
2342 typename elfcpp::Elf_types<32>::Elf_Off
2343 offset_in_output_section,
2344 unsigned char* view,
2345 typename elfcpp::Elf_types<32>::Elf_Addr
2346 view_address,
2347 section_size_type view_size,
2348 unsigned char* preloc_out);
2349
2350 // Return whether SYM is defined by the ABI.
2351 bool
2352 do_is_defined_by_abi(const Symbol* sym) const
2353 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2354
2355 // Return whether there is a GOT section.
2356 bool
2357 has_got_section() const
2358 { return this->got_ != NULL; }
2359
2360 // Return the size of the GOT section.
2361 section_size_type
2362 got_size() const
2363 {
2364 gold_assert(this->got_ != NULL);
2365 return this->got_->data_size();
2366 }
2367
2368 // Return the number of entries in the GOT.
2369 unsigned int
2370 got_entry_count() const
2371 {
2372 if (!this->has_got_section())
2373 return 0;
2374 return this->got_size() / 4;
2375 }
2376
2377 // Return the number of entries in the PLT.
2378 unsigned int
2379 plt_entry_count() const;
2380
2381 // Return the offset of the first non-reserved PLT entry.
2382 unsigned int
2383 first_plt_entry_offset() const;
2384
2385 // Return the size of each PLT entry.
2386 unsigned int
2387 plt_entry_size() const;
2388
2389 // Get the section to use for IRELATIVE relocations, create it if necessary.
2390 Reloc_section*
2391 rel_irelative_section(Layout*);
2392
2393 // Map platform-specific reloc types
2394 static unsigned int
2395 get_real_reloc_type(unsigned int r_type);
2396
2397 //
2398 // Methods to support stub-generations.
2399 //
2400
2401 // Return the stub factory
2402 const Stub_factory&
2403 stub_factory() const
2404 { return this->stub_factory_; }
2405
2406 // Make a new Arm_input_section object.
2407 Arm_input_section<big_endian>*
2408 new_arm_input_section(Relobj*, unsigned int);
2409
2410 // Find the Arm_input_section object corresponding to the SHNDX-th input
2411 // section of RELOBJ.
2412 Arm_input_section<big_endian>*
2413 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2414
2415 // Make a new Stub_table
2416 Stub_table<big_endian>*
2417 new_stub_table(Arm_input_section<big_endian>*);
2418
2419 // Scan a section for stub generation.
2420 void
2421 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2422 const unsigned char*, size_t, Output_section*,
2423 bool, const unsigned char*, Arm_address,
2424 section_size_type);
2425
2426 // Relocate a stub.
2427 void
2428 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2429 Output_section*, unsigned char*, Arm_address,
2430 section_size_type);
2431
2432 // Get the default ARM target.
2433 static Target_arm<big_endian>*
2434 default_target()
2435 {
2436 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2437 && parameters->target().is_big_endian() == big_endian);
2438 return static_cast<Target_arm<big_endian>*>(
2439 parameters->sized_target<32, big_endian>());
2440 }
2441
2442 // Whether NAME belongs to a mapping symbol.
2443 static bool
2444 is_mapping_symbol_name(const char* name)
2445 {
2446 return (name
2447 && name[0] == '$'
2448 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2449 && (name[2] == '\0' || name[2] == '.'));
2450 }
2451
2452 // Whether we work around the Cortex-A8 erratum.
2453 bool
2454 fix_cortex_a8() const
2455 { return this->fix_cortex_a8_; }
2456
2457 // Whether we merge exidx entries in debuginfo.
2458 bool
2459 merge_exidx_entries() const
2460 { return parameters->options().merge_exidx_entries(); }
2461
2462 // Whether we fix R_ARM_V4BX relocation.
2463 // 0 - do not fix
2464 // 1 - replace with MOV instruction (armv4 target)
2465 // 2 - make interworking veneer (>= armv4t targets only)
2466 General_options::Fix_v4bx
2467 fix_v4bx() const
2468 { return parameters->options().fix_v4bx(); }
2469
2470 // Scan a span of THUMB code section for Cortex-A8 erratum.
2471 void
2472 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2473 section_size_type, section_size_type,
2474 const unsigned char*, Arm_address);
2475
2476 // Apply Cortex-A8 workaround to a branch.
2477 void
2478 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2479 unsigned char*, Arm_address);
2480
2481 protected:
2482 // Make the PLT-generator object.
2483 Output_data_plt_arm<big_endian>*
2484 make_data_plt(Layout* layout,
2485 Arm_output_data_got<big_endian>* got,
2486 Output_data_space* got_plt,
2487 Output_data_space* got_irelative)
2488 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2489
2490 // Make an ELF object.
2491 Object*
2492 do_make_elf_object(const std::string&, Input_file*, off_t,
2493 const elfcpp::Ehdr<32, big_endian>& ehdr);
2494
2495 Object*
2496 do_make_elf_object(const std::string&, Input_file*, off_t,
2497 const elfcpp::Ehdr<32, !big_endian>&)
2498 { gold_unreachable(); }
2499
2500 Object*
2501 do_make_elf_object(const std::string&, Input_file*, off_t,
2502 const elfcpp::Ehdr<64, false>&)
2503 { gold_unreachable(); }
2504
2505 Object*
2506 do_make_elf_object(const std::string&, Input_file*, off_t,
2507 const elfcpp::Ehdr<64, true>&)
2508 { gold_unreachable(); }
2509
2510 // Make an output section.
2511 Output_section*
2512 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2513 elfcpp::Elf_Xword flags)
2514 { return new Arm_output_section<big_endian>(name, type, flags); }
2515
2516 void
2517 do_adjust_elf_header(unsigned char* view, int len);
2518
2519 // We only need to generate stubs, and hence perform relaxation if we are
2520 // not doing relocatable linking.
2521 bool
2522 do_may_relax() const
2523 { return !parameters->options().relocatable(); }
2524
2525 bool
2526 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2527
2528 // Determine whether an object attribute tag takes an integer, a
2529 // string or both.
2530 int
2531 do_attribute_arg_type(int tag) const;
2532
2533 // Reorder tags during output.
2534 int
2535 do_attributes_order(int num) const;
2536
2537 // This is called when the target is selected as the default.
2538 void
2539 do_select_as_default_target()
2540 {
2541 // No locking is required since there should only be one default target.
2542 // We cannot have both the big-endian and little-endian ARM targets
2543 // as the default.
2544 gold_assert(arm_reloc_property_table == NULL);
2545 arm_reloc_property_table = new Arm_reloc_property_table();
2546 }
2547
2548 // Virtual function which is set to return true by a target if
2549 // it can use relocation types to determine if a function's
2550 // pointer is taken.
2551 virtual bool
2552 do_can_check_for_function_pointers() const
2553 { return true; }
2554
2555 // Whether a section called SECTION_NAME may have function pointers to
2556 // sections not eligible for safe ICF folding.
2557 virtual bool
2558 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2559 {
2560 return (!is_prefix_of(".ARM.exidx", section_name)
2561 && !is_prefix_of(".ARM.extab", section_name)
2562 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2563 }
2564
2565 virtual void
2566 do_define_standard_symbols(Symbol_table*, Layout*);
2567
2568 virtual Output_data_plt_arm<big_endian>*
2569 do_make_data_plt(Layout* layout,
2570 Arm_output_data_got<big_endian>* got,
2571 Output_data_space* got_plt,
2572 Output_data_space* got_irelative)
2573 {
2574 gold_assert(got_plt != NULL && got_irelative != NULL);
2575 if (parameters->options().long_plt())
2576 return new Output_data_plt_arm_long<big_endian>(
2577 layout, got, got_plt, got_irelative);
2578 else
2579 return new Output_data_plt_arm_short<big_endian>(
2580 layout, got, got_plt, got_irelative);
2581 }
2582
2583 private:
2584 // The class which scans relocations.
2585 class Scan
2586 {
2587 public:
2588 Scan()
2589 : issued_non_pic_error_(false)
2590 { }
2591
2592 static inline int
2593 get_reference_flags(unsigned int r_type);
2594
2595 inline void
2596 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2597 Sized_relobj_file<32, big_endian>* object,
2598 unsigned int data_shndx,
2599 Output_section* output_section,
2600 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2601 const elfcpp::Sym<32, big_endian>& lsym,
2602 bool is_discarded);
2603
2604 inline void
2605 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2606 Sized_relobj_file<32, big_endian>* object,
2607 unsigned int data_shndx,
2608 Output_section* output_section,
2609 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2610 Symbol* gsym);
2611
2612 inline bool
2613 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2614 Sized_relobj_file<32, big_endian>* ,
2615 unsigned int ,
2616 Output_section* ,
2617 const elfcpp::Rel<32, big_endian>& ,
2618 unsigned int ,
2619 const elfcpp::Sym<32, big_endian>&);
2620
2621 inline bool
2622 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2623 Sized_relobj_file<32, big_endian>* ,
2624 unsigned int ,
2625 Output_section* ,
2626 const elfcpp::Rel<32, big_endian>& ,
2627 unsigned int , Symbol*);
2628
2629 private:
2630 static void
2631 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2632 unsigned int r_type);
2633
2634 static void
2635 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2636 unsigned int r_type, Symbol*);
2637
2638 void
2639 check_non_pic(Relobj*, unsigned int r_type);
2640
2641 // Almost identical to Symbol::needs_plt_entry except that it also
2642 // handles STT_ARM_TFUNC.
2643 static bool
2644 symbol_needs_plt_entry(const Symbol* sym)
2645 {
2646 // An undefined symbol from an executable does not need a PLT entry.
2647 if (sym->is_undefined() && !parameters->options().shared())
2648 return false;
2649
2650 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2651 return true;
2652
2653 return (!parameters->doing_static_link()
2654 && (sym->type() == elfcpp::STT_FUNC
2655 || sym->type() == elfcpp::STT_ARM_TFUNC)
2656 && (sym->is_from_dynobj()
2657 || sym->is_undefined()
2658 || sym->is_preemptible()));
2659 }
2660
2661 inline bool
2662 possible_function_pointer_reloc(unsigned int r_type);
2663
2664 // Whether a plt entry is needed for ifunc.
2665 bool
2666 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2667 unsigned int r_type);
2668
2669 // Whether we have issued an error about a non-PIC compilation.
2670 bool issued_non_pic_error_;
2671 };
2672
2673 // The class which implements relocation.
2674 class Relocate
2675 {
2676 public:
2677 Relocate()
2678 { }
2679
2680 ~Relocate()
2681 { }
2682
2683 // Return whether the static relocation needs to be applied.
2684 inline bool
2685 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2686 unsigned int r_type,
2687 bool is_32bit,
2688 Output_section* output_section);
2689
2690 // Do a relocation. Return false if the caller should not issue
2691 // any warnings about this relocation.
2692 inline bool
2693 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2694 Target_arm*, Output_section*, size_t, const unsigned char*,
2695 const Sized_symbol<32>*, const Symbol_value<32>*,
2696 unsigned char*, Arm_address, section_size_type);
2697
2698 // Return whether we want to pass flag NON_PIC_REF for this
2699 // reloc. This means the relocation type accesses a symbol not via
2700 // GOT or PLT.
2701 static inline bool
2702 reloc_is_non_pic(unsigned int r_type)
2703 {
2704 switch (r_type)
2705 {
2706 // These relocation types reference GOT or PLT entries explicitly.
2707 case elfcpp::R_ARM_GOT_BREL:
2708 case elfcpp::R_ARM_GOT_ABS:
2709 case elfcpp::R_ARM_GOT_PREL:
2710 case elfcpp::R_ARM_GOT_BREL12:
2711 case elfcpp::R_ARM_PLT32_ABS:
2712 case elfcpp::R_ARM_TLS_GD32:
2713 case elfcpp::R_ARM_TLS_LDM32:
2714 case elfcpp::R_ARM_TLS_IE32:
2715 case elfcpp::R_ARM_TLS_IE12GP:
2716
2717 // These relocate types may use PLT entries.
2718 case elfcpp::R_ARM_CALL:
2719 case elfcpp::R_ARM_THM_CALL:
2720 case elfcpp::R_ARM_JUMP24:
2721 case elfcpp::R_ARM_THM_JUMP24:
2722 case elfcpp::R_ARM_THM_JUMP19:
2723 case elfcpp::R_ARM_PLT32:
2724 case elfcpp::R_ARM_THM_XPC22:
2725 case elfcpp::R_ARM_PREL31:
2726 case elfcpp::R_ARM_SBREL31:
2727 return false;
2728
2729 default:
2730 return true;
2731 }
2732 }
2733
2734 private:
2735 // Do a TLS relocation.
2736 inline typename Arm_relocate_functions<big_endian>::Status
2737 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2738 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2739 const Sized_symbol<32>*, const Symbol_value<32>*,
2740 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2741 section_size_type);
2742
2743 };
2744
2745 // A class for inquiring about properties of a relocation,
2746 // used while scanning relocs during a relocatable link and
2747 // garbage collection.
2748 class Classify_reloc :
2749 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
2750 {
2751 public:
2752 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
2753 Reltype;
2754
2755 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2756 static typename elfcpp::Elf_types<32>::Elf_Swxword
2757 get_r_addend(const Reltype*)
2758 { return 0; }
2759
2760 // Return the size of the addend of the relocation (only used for SHT_REL).
2761 static unsigned int
2762 get_size_for_reloc(unsigned int, Relobj*);
2763 };
2764
2765 // Adjust TLS relocation type based on the options and whether this
2766 // is a local symbol.
2767 static tls::Tls_optimization
2768 optimize_tls_reloc(bool is_final, int r_type);
2769
2770 // Get the GOT section, creating it if necessary.
2771 Arm_output_data_got<big_endian>*
2772 got_section(Symbol_table*, Layout*);
2773
2774 // Get the GOT PLT section.
2775 Output_data_space*
2776 got_plt_section() const
2777 {
2778 gold_assert(this->got_plt_ != NULL);
2779 return this->got_plt_;
2780 }
2781
2782 // Create the PLT section.
2783 void
2784 make_plt_section(Symbol_table* symtab, Layout* layout);
2785
2786 // Create a PLT entry for a global symbol.
2787 void
2788 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2789
2790 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2791 void
2792 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2793 Sized_relobj_file<32, big_endian>* relobj,
2794 unsigned int local_sym_index);
2795
2796 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2797 void
2798 define_tls_base_symbol(Symbol_table*, Layout*);
2799
2800 // Create a GOT entry for the TLS module index.
2801 unsigned int
2802 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2803 Sized_relobj_file<32, big_endian>* object);
2804
2805 // Get the PLT section.
2806 const Output_data_plt_arm<big_endian>*
2807 plt_section() const
2808 {
2809 gold_assert(this->plt_ != NULL);
2810 return this->plt_;
2811 }
2812
2813 // Get the dynamic reloc section, creating it if necessary.
2814 Reloc_section*
2815 rel_dyn_section(Layout*);
2816
2817 // Get the section to use for TLS_DESC relocations.
2818 Reloc_section*
2819 rel_tls_desc_section(Layout*) const;
2820
2821 // Return true if the symbol may need a COPY relocation.
2822 // References from an executable object to non-function symbols
2823 // defined in a dynamic object may need a COPY relocation.
2824 bool
2825 may_need_copy_reloc(Symbol* gsym)
2826 {
2827 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2828 && gsym->may_need_copy_reloc());
2829 }
2830
2831 // Add a potential copy relocation.
2832 void
2833 copy_reloc(Symbol_table* symtab, Layout* layout,
2834 Sized_relobj_file<32, big_endian>* object,
2835 unsigned int shndx, Output_section* output_section,
2836 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2837 {
2838 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2839 this->copy_relocs_.copy_reloc(symtab, layout,
2840 symtab->get_sized_symbol<32>(sym),
2841 object, shndx, output_section,
2842 r_type, reloc.get_r_offset(), 0,
2843 this->rel_dyn_section(layout));
2844 }
2845
2846 // Whether two EABI versions are compatible.
2847 static bool
2848 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2849
2850 // Merge processor-specific flags from input object and those in the ELF
2851 // header of the output.
2852 void
2853 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2854
2855 // Get the secondary compatible architecture.
2856 static int
2857 get_secondary_compatible_arch(const Attributes_section_data*);
2858
2859 // Set the secondary compatible architecture.
2860 static void
2861 set_secondary_compatible_arch(Attributes_section_data*, int);
2862
2863 static int
2864 tag_cpu_arch_combine(const char*, int, int*, int, int);
2865
2866 // Helper to print AEABI enum tag value.
2867 static std::string
2868 aeabi_enum_name(unsigned int);
2869
2870 // Return string value for TAG_CPU_name.
2871 static std::string
2872 tag_cpu_name_value(unsigned int);
2873
2874 // Query attributes object to see if integer divide instructions may be
2875 // present in an object.
2876 static bool
2877 attributes_accept_div(int arch, int profile,
2878 const Object_attribute* div_attr);
2879
2880 // Query attributes object to see if integer divide instructions are
2881 // forbidden to be in the object. This is not the inverse of
2882 // attributes_accept_div.
2883 static bool
2884 attributes_forbid_div(const Object_attribute* div_attr);
2885
2886 // Merge object attributes from input object and those in the output.
2887 void
2888 merge_object_attributes(const char*, const Attributes_section_data*);
2889
2890 // Helper to get an AEABI object attribute
2891 Object_attribute*
2892 get_aeabi_object_attribute(int tag) const
2893 {
2894 Attributes_section_data* pasd = this->attributes_section_data_;
2895 gold_assert(pasd != NULL);
2896 Object_attribute* attr =
2897 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2898 gold_assert(attr != NULL);
2899 return attr;
2900 }
2901
2902 //
2903 // Methods to support stub-generations.
2904 //
2905
2906 // Group input sections for stub generation.
2907 void
2908 group_sections(Layout*, section_size_type, bool, const Task*);
2909
2910 // Scan a relocation for stub generation.
2911 void
2912 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2913 const Sized_symbol<32>*, unsigned int,
2914 const Symbol_value<32>*,
2915 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2916
2917 // Scan a relocation section for stub.
2918 template<int sh_type>
2919 void
2920 scan_reloc_section_for_stubs(
2921 const Relocate_info<32, big_endian>* relinfo,
2922 const unsigned char* prelocs,
2923 size_t reloc_count,
2924 Output_section* output_section,
2925 bool needs_special_offset_handling,
2926 const unsigned char* view,
2927 elfcpp::Elf_types<32>::Elf_Addr view_address,
2928 section_size_type);
2929
2930 // Fix .ARM.exidx section coverage.
2931 void
2932 fix_exidx_coverage(Layout*, const Input_objects*,
2933 Arm_output_section<big_endian>*, Symbol_table*,
2934 const Task*);
2935
2936 // Functors for STL set.
2937 struct output_section_address_less_than
2938 {
2939 bool
2940 operator()(const Output_section* s1, const Output_section* s2) const
2941 { return s1->address() < s2->address(); }
2942 };
2943
2944 // Information about this specific target which we pass to the
2945 // general Target structure.
2946 static const Target::Target_info arm_info;
2947
2948 // The types of GOT entries needed for this platform.
2949 // These values are exposed to the ABI in an incremental link.
2950 // Do not renumber existing values without changing the version
2951 // number of the .gnu_incremental_inputs section.
2952 enum Got_type
2953 {
2954 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2955 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2956 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2957 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2958 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2959 };
2960
2961 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2962
2963 // Map input section to Arm_input_section.
2964 typedef Unordered_map<Section_id,
2965 Arm_input_section<big_endian>*,
2966 Section_id_hash>
2967 Arm_input_section_map;
2968
2969 // Map output addresses to relocs for Cortex-A8 erratum.
2970 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2971 Cortex_a8_relocs_info;
2972
2973 // The GOT section.
2974 Arm_output_data_got<big_endian>* got_;
2975 // The PLT section.
2976 Output_data_plt_arm<big_endian>* plt_;
2977 // The GOT PLT section.
2978 Output_data_space* got_plt_;
2979 // The GOT section for IRELATIVE relocations.
2980 Output_data_space* got_irelative_;
2981 // The dynamic reloc section.
2982 Reloc_section* rel_dyn_;
2983 // The section to use for IRELATIVE relocs.
2984 Reloc_section* rel_irelative_;
2985 // Relocs saved to avoid a COPY reloc.
2986 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2987 // Offset of the GOT entry for the TLS module index.
2988 unsigned int got_mod_index_offset_;
2989 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2990 bool tls_base_symbol_defined_;
2991 // Vector of Stub_tables created.
2992 Stub_table_list stub_tables_;
2993 // Stub factory.
2994 const Stub_factory &stub_factory_;
2995 // Whether we force PIC branch veneers.
2996 bool should_force_pic_veneer_;
2997 // Map for locating Arm_input_sections.
2998 Arm_input_section_map arm_input_section_map_;
2999 // Attributes section data in output.
3000 Attributes_section_data* attributes_section_data_;
3001 // Whether we want to fix code for Cortex-A8 erratum.
3002 bool fix_cortex_a8_;
3003 // Map addresses to relocs for Cortex-A8 erratum.
3004 Cortex_a8_relocs_info cortex_a8_relocs_info_;
3005 };
3006
3007 template<bool big_endian>
3008 const Target::Target_info Target_arm<big_endian>::arm_info =
3009 {
3010 32, // size
3011 big_endian, // is_big_endian
3012 elfcpp::EM_ARM, // machine_code
3013 false, // has_make_symbol
3014 false, // has_resolve
3015 false, // has_code_fill
3016 true, // is_default_stack_executable
3017 false, // can_icf_inline_merge_sections
3018 '\0', // wrap_char
3019 "/usr/lib/libc.so.1", // dynamic_linker
3020 0x8000, // default_text_segment_address
3021 0x1000, // abi_pagesize (overridable by -z max-page-size)
3022 0x1000, // common_pagesize (overridable by -z common-page-size)
3023 false, // isolate_execinstr
3024 0, // rosegment_gap
3025 elfcpp::SHN_UNDEF, // small_common_shndx
3026 elfcpp::SHN_UNDEF, // large_common_shndx
3027 0, // small_common_section_flags
3028 0, // large_common_section_flags
3029 ".ARM.attributes", // attributes_section
3030 "aeabi", // attributes_vendor
3031 "_start", // entry_symbol_name
3032 32, // hash_entry_size
3033 };
3034
3035 // Arm relocate functions class
3036 //
3037
3038 template<bool big_endian>
3039 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3040 {
3041 public:
3042 typedef enum
3043 {
3044 STATUS_OKAY, // No error during relocation.
3045 STATUS_OVERFLOW, // Relocation overflow.
3046 STATUS_BAD_RELOC // Relocation cannot be applied.
3047 } Status;
3048
3049 private:
3050 typedef Relocate_functions<32, big_endian> Base;
3051 typedef Arm_relocate_functions<big_endian> This;
3052
3053 // Encoding of imm16 argument for movt and movw ARM instructions
3054 // from ARM ARM:
3055 //
3056 // imm16 := imm4 | imm12
3057 //
3058 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3059 // +-------+---------------+-------+-------+-----------------------+
3060 // | | |imm4 | |imm12 |
3061 // +-------+---------------+-------+-------+-----------------------+
3062
3063 // Extract the relocation addend from VAL based on the ARM
3064 // instruction encoding described above.
3065 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3066 extract_arm_movw_movt_addend(
3067 typename elfcpp::Swap<32, big_endian>::Valtype val)
3068 {
3069 // According to the Elf ABI for ARM Architecture the immediate
3070 // field is sign-extended to form the addend.
3071 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3072 }
3073
3074 // Insert X into VAL based on the ARM instruction encoding described
3075 // above.
3076 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3077 insert_val_arm_movw_movt(
3078 typename elfcpp::Swap<32, big_endian>::Valtype val,
3079 typename elfcpp::Swap<32, big_endian>::Valtype x)
3080 {
3081 val &= 0xfff0f000;
3082 val |= x & 0x0fff;
3083 val |= (x & 0xf000) << 4;
3084 return val;
3085 }
3086
3087 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3088 // from ARM ARM:
3089 //
3090 // imm16 := imm4 | i | imm3 | imm8
3091 //
3092 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3093 // +---------+-+-----------+-------++-+-----+-------+---------------+
3094 // | |i| |imm4 || |imm3 | |imm8 |
3095 // +---------+-+-----------+-------++-+-----+-------+---------------+
3096
3097 // Extract the relocation addend from VAL based on the Thumb2
3098 // instruction encoding described above.
3099 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3100 extract_thumb_movw_movt_addend(
3101 typename elfcpp::Swap<32, big_endian>::Valtype val)
3102 {
3103 // According to the Elf ABI for ARM Architecture the immediate
3104 // field is sign-extended to form the addend.
3105 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3106 | ((val >> 15) & 0x0800)
3107 | ((val >> 4) & 0x0700)
3108 | (val & 0x00ff));
3109 }
3110
3111 // Insert X into VAL based on the Thumb2 instruction encoding
3112 // described above.
3113 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3114 insert_val_thumb_movw_movt(
3115 typename elfcpp::Swap<32, big_endian>::Valtype val,
3116 typename elfcpp::Swap<32, big_endian>::Valtype x)
3117 {
3118 val &= 0xfbf08f00;
3119 val |= (x & 0xf000) << 4;
3120 val |= (x & 0x0800) << 15;
3121 val |= (x & 0x0700) << 4;
3122 val |= (x & 0x00ff);
3123 return val;
3124 }
3125
3126 // Calculate the smallest constant Kn for the specified residual.
3127 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3128 static uint32_t
3129 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3130 {
3131 int32_t msb;
3132
3133 if (residual == 0)
3134 return 0;
3135 // Determine the most significant bit in the residual and
3136 // align the resulting value to a 2-bit boundary.
3137 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3138 ;
3139 // The desired shift is now (msb - 6), or zero, whichever
3140 // is the greater.
3141 return (((msb - 6) < 0) ? 0 : (msb - 6));
3142 }
3143
3144 // Calculate the final residual for the specified group index.
3145 // If the passed group index is less than zero, the method will return
3146 // the value of the specified residual without any change.
3147 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3148 static typename elfcpp::Swap<32, big_endian>::Valtype
3149 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3150 const int group)
3151 {
3152 for (int n = 0; n <= group; n++)
3153 {
3154 // Calculate which part of the value to mask.
3155 uint32_t shift = calc_grp_kn(residual);
3156 // Calculate the residual for the next time around.
3157 residual &= ~(residual & (0xff << shift));
3158 }
3159
3160 return residual;
3161 }
3162
3163 // Calculate the value of Gn for the specified group index.
3164 // We return it in the form of an encoded constant-and-rotation.
3165 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3166 static typename elfcpp::Swap<32, big_endian>::Valtype
3167 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3168 const int group)
3169 {
3170 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3171 uint32_t shift = 0;
3172
3173 for (int n = 0; n <= group; n++)
3174 {
3175 // Calculate which part of the value to mask.
3176 shift = calc_grp_kn(residual);
3177 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3178 gn = residual & (0xff << shift);
3179 // Calculate the residual for the next time around.
3180 residual &= ~gn;
3181 }
3182 // Return Gn in the form of an encoded constant-and-rotation.
3183 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3184 }
3185
3186 public:
3187 // Handle ARM long branches.
3188 static typename This::Status
3189 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3190 unsigned char*, const Sized_symbol<32>*,
3191 const Arm_relobj<big_endian>*, unsigned int,
3192 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3193
3194 // Handle THUMB long branches.
3195 static typename This::Status
3196 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3197 unsigned char*, const Sized_symbol<32>*,
3198 const Arm_relobj<big_endian>*, unsigned int,
3199 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3200
3201
3202 // Return the branch offset of a 32-bit THUMB branch.
3203 static inline int32_t
3204 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3205 {
3206 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3207 // involving the J1 and J2 bits.
3208 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3209 uint32_t upper = upper_insn & 0x3ffU;
3210 uint32_t lower = lower_insn & 0x7ffU;
3211 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3212 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3213 uint32_t i1 = j1 ^ s ? 0 : 1;
3214 uint32_t i2 = j2 ^ s ? 0 : 1;
3215
3216 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3217 | (upper << 12) | (lower << 1));
3218 }
3219
3220 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3221 // UPPER_INSN is the original upper instruction of the branch. Caller is
3222 // responsible for overflow checking and BLX offset adjustment.
3223 static inline uint16_t
3224 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3225 {
3226 uint32_t s = offset < 0 ? 1 : 0;
3227 uint32_t bits = static_cast<uint32_t>(offset);
3228 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3229 }
3230
3231 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3232 // LOWER_INSN is the original lower instruction of the branch. Caller is
3233 // responsible for overflow checking and BLX offset adjustment.
3234 static inline uint16_t
3235 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3236 {
3237 uint32_t s = offset < 0 ? 1 : 0;
3238 uint32_t bits = static_cast<uint32_t>(offset);
3239 return ((lower_insn & ~0x2fffU)
3240 | ((((bits >> 23) & 1) ^ !s) << 13)
3241 | ((((bits >> 22) & 1) ^ !s) << 11)
3242 | ((bits >> 1) & 0x7ffU));
3243 }
3244
3245 // Return the branch offset of a 32-bit THUMB conditional branch.
3246 static inline int32_t
3247 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3248 {
3249 uint32_t s = (upper_insn & 0x0400U) >> 10;
3250 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3251 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3252 uint32_t lower = (lower_insn & 0x07ffU);
3253 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3254
3255 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3256 }
3257
3258 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3259 // instruction. UPPER_INSN is the original upper instruction of the branch.
3260 // Caller is responsible for overflow checking.
3261 static inline uint16_t
3262 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3263 {
3264 uint32_t s = offset < 0 ? 1 : 0;
3265 uint32_t bits = static_cast<uint32_t>(offset);
3266 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3267 }
3268
3269 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3270 // instruction. LOWER_INSN is the original lower instruction of the branch.
3271 // The caller is responsible for overflow checking.
3272 static inline uint16_t
3273 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3274 {
3275 uint32_t bits = static_cast<uint32_t>(offset);
3276 uint32_t j2 = (bits & 0x00080000U) >> 19;
3277 uint32_t j1 = (bits & 0x00040000U) >> 18;
3278 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3279
3280 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3281 }
3282
3283 // R_ARM_ABS8: S + A
3284 static inline typename This::Status
3285 abs8(unsigned char* view,
3286 const Sized_relobj_file<32, big_endian>* object,
3287 const Symbol_value<32>* psymval)
3288 {
3289 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3290 Valtype* wv = reinterpret_cast<Valtype*>(view);
3291 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3292 int32_t addend = Bits<8>::sign_extend32(val);
3293 Arm_address x = psymval->value(object, addend);
3294 val = Bits<32>::bit_select32(val, x, 0xffU);
3295 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3296
3297 // R_ARM_ABS8 permits signed or unsigned results.
3298 return (Bits<8>::has_signed_unsigned_overflow32(x)
3299 ? This::STATUS_OVERFLOW
3300 : This::STATUS_OKAY);
3301 }
3302
3303 // R_ARM_THM_ABS5: S + A
3304 static inline typename This::Status
3305 thm_abs5(unsigned char* view,
3306 const Sized_relobj_file<32, big_endian>* object,
3307 const Symbol_value<32>* psymval)
3308 {
3309 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3310 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3311 Valtype* wv = reinterpret_cast<Valtype*>(view);
3312 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3313 Reltype addend = (val & 0x7e0U) >> 6;
3314 Reltype x = psymval->value(object, addend);
3315 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3316 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3317 return (Bits<5>::has_overflow32(x)
3318 ? This::STATUS_OVERFLOW
3319 : This::STATUS_OKAY);
3320 }
3321
3322 // R_ARM_ABS12: S + A
3323 static inline typename This::Status
3324 abs12(unsigned char* view,
3325 const Sized_relobj_file<32, big_endian>* object,
3326 const Symbol_value<32>* psymval)
3327 {
3328 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3329 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3330 Valtype* wv = reinterpret_cast<Valtype*>(view);
3331 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3332 Reltype addend = val & 0x0fffU;
3333 Reltype x = psymval->value(object, addend);
3334 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3335 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3336 return (Bits<12>::has_overflow32(x)
3337 ? This::STATUS_OVERFLOW
3338 : This::STATUS_OKAY);
3339 }
3340
3341 // R_ARM_ABS16: S + A
3342 static inline typename This::Status
3343 abs16(unsigned char* view,
3344 const Sized_relobj_file<32, big_endian>* object,
3345 const Symbol_value<32>* psymval)
3346 {
3347 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3348 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3349 int32_t addend = Bits<16>::sign_extend32(val);
3350 Arm_address x = psymval->value(object, addend);
3351 val = Bits<32>::bit_select32(val, x, 0xffffU);
3352 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3353
3354 // R_ARM_ABS16 permits signed or unsigned results.
3355 return (Bits<16>::has_signed_unsigned_overflow32(x)
3356 ? This::STATUS_OVERFLOW
3357 : This::STATUS_OKAY);
3358 }
3359
3360 // R_ARM_ABS32: (S + A) | T
3361 static inline typename This::Status
3362 abs32(unsigned char* view,
3363 const Sized_relobj_file<32, big_endian>* object,
3364 const Symbol_value<32>* psymval,
3365 Arm_address thumb_bit)
3366 {
3367 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3368 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3369 Valtype x = psymval->value(object, addend) | thumb_bit;
3370 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3371 return This::STATUS_OKAY;
3372 }
3373
3374 // R_ARM_REL32: (S + A) | T - P
3375 static inline typename This::Status
3376 rel32(unsigned char* view,
3377 const Sized_relobj_file<32, big_endian>* object,
3378 const Symbol_value<32>* psymval,
3379 Arm_address address,
3380 Arm_address thumb_bit)
3381 {
3382 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3383 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3384 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3385 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3386 return This::STATUS_OKAY;
3387 }
3388
3389 // R_ARM_THM_JUMP24: (S + A) | T - P
3390 static typename This::Status
3391 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3392 const Symbol_value<32>* psymval, Arm_address address,
3393 Arm_address thumb_bit);
3394
3395 // R_ARM_THM_JUMP6: S + A – P
3396 static inline typename This::Status
3397 thm_jump6(unsigned char* view,
3398 const Sized_relobj_file<32, big_endian>* object,
3399 const Symbol_value<32>* psymval,
3400 Arm_address address)
3401 {
3402 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3403 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3404 Valtype* wv = reinterpret_cast<Valtype*>(view);
3405 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3406 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3407 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3408 Reltype x = (psymval->value(object, addend) - address);
3409 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3410 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3411 // CZB does only forward jumps.
3412 return ((x > 0x007e)
3413 ? This::STATUS_OVERFLOW
3414 : This::STATUS_OKAY);
3415 }
3416
3417 // R_ARM_THM_JUMP8: S + A – P
3418 static inline typename This::Status
3419 thm_jump8(unsigned char* view,
3420 const Sized_relobj_file<32, big_endian>* object,
3421 const Symbol_value<32>* psymval,
3422 Arm_address address)
3423 {
3424 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3425 Valtype* wv = reinterpret_cast<Valtype*>(view);
3426 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3427 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3428 int32_t x = (psymval->value(object, addend) - address);
3429 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3430 | ((x & 0x01fe) >> 1)));
3431 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3432 return (Bits<9>::has_overflow32(x)
3433 ? This::STATUS_OVERFLOW
3434 : This::STATUS_OKAY);
3435 }
3436
3437 // R_ARM_THM_JUMP11: S + A – P
3438 static inline typename This::Status
3439 thm_jump11(unsigned char* view,
3440 const Sized_relobj_file<32, big_endian>* object,
3441 const Symbol_value<32>* psymval,
3442 Arm_address address)
3443 {
3444 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3445 Valtype* wv = reinterpret_cast<Valtype*>(view);
3446 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3447 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3448 int32_t x = (psymval->value(object, addend) - address);
3449 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3450 | ((x & 0x0ffe) >> 1)));
3451 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3452 return (Bits<12>::has_overflow32(x)
3453 ? This::STATUS_OVERFLOW
3454 : This::STATUS_OKAY);
3455 }
3456
3457 // R_ARM_BASE_PREL: B(S) + A - P
3458 static inline typename This::Status
3459 base_prel(unsigned char* view,
3460 Arm_address origin,
3461 Arm_address address)
3462 {
3463 Base::rel32(view, origin - address);
3464 return STATUS_OKAY;
3465 }
3466
3467 // R_ARM_BASE_ABS: B(S) + A
3468 static inline typename This::Status
3469 base_abs(unsigned char* view,
3470 Arm_address origin)
3471 {
3472 Base::rel32(view, origin);
3473 return STATUS_OKAY;
3474 }
3475
3476 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3477 static inline typename This::Status
3478 got_brel(unsigned char* view,
3479 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3480 {
3481 Base::rel32(view, got_offset);
3482 return This::STATUS_OKAY;
3483 }
3484
3485 // R_ARM_GOT_PREL: GOT(S) + A - P
3486 static inline typename This::Status
3487 got_prel(unsigned char* view,
3488 Arm_address got_entry,
3489 Arm_address address)
3490 {
3491 Base::rel32(view, got_entry - address);
3492 return This::STATUS_OKAY;
3493 }
3494
3495 // R_ARM_PREL: (S + A) | T - P
3496 static inline typename This::Status
3497 prel31(unsigned char* view,
3498 const Sized_relobj_file<32, big_endian>* object,
3499 const Symbol_value<32>* psymval,
3500 Arm_address address,
3501 Arm_address thumb_bit)
3502 {
3503 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3504 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3505 Valtype addend = Bits<31>::sign_extend32(val);
3506 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3507 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3508 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3509 return (Bits<31>::has_overflow32(x)
3510 ? This::STATUS_OVERFLOW
3511 : This::STATUS_OKAY);
3512 }
3513
3514 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3515 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3516 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3517 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3518 static inline typename This::Status
3519 movw(unsigned char* view,
3520 const Sized_relobj_file<32, big_endian>* object,
3521 const Symbol_value<32>* psymval,
3522 Arm_address relative_address_base,
3523 Arm_address thumb_bit,
3524 bool check_overflow)
3525 {
3526 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3527 Valtype* wv = reinterpret_cast<Valtype*>(view);
3528 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3529 Valtype addend = This::extract_arm_movw_movt_addend(val);
3530 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3531 - relative_address_base);
3532 val = This::insert_val_arm_movw_movt(val, x);
3533 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3534 return ((check_overflow && Bits<16>::has_overflow32(x))
3535 ? This::STATUS_OVERFLOW
3536 : This::STATUS_OKAY);
3537 }
3538
3539 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3540 // R_ARM_MOVT_PREL: S + A - P
3541 // R_ARM_MOVT_BREL: S + A - B(S)
3542 static inline typename This::Status
3543 movt(unsigned char* view,
3544 const Sized_relobj_file<32, big_endian>* object,
3545 const Symbol_value<32>* psymval,
3546 Arm_address relative_address_base)
3547 {
3548 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3549 Valtype* wv = reinterpret_cast<Valtype*>(view);
3550 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3551 Valtype addend = This::extract_arm_movw_movt_addend(val);
3552 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3553 val = This::insert_val_arm_movw_movt(val, x);
3554 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3555 // FIXME: IHI0044D says that we should check for overflow.
3556 return This::STATUS_OKAY;
3557 }
3558
3559 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3560 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3561 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3562 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3563 static inline typename This::Status
3564 thm_movw(unsigned char* view,
3565 const Sized_relobj_file<32, big_endian>* object,
3566 const Symbol_value<32>* psymval,
3567 Arm_address relative_address_base,
3568 Arm_address thumb_bit,
3569 bool check_overflow)
3570 {
3571 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3572 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3573 Valtype* wv = reinterpret_cast<Valtype*>(view);
3574 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3575 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3576 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3577 Reltype x =
3578 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3579 val = This::insert_val_thumb_movw_movt(val, x);
3580 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3581 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3582 return ((check_overflow && Bits<16>::has_overflow32(x))
3583 ? This::STATUS_OVERFLOW
3584 : This::STATUS_OKAY);
3585 }
3586
3587 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3588 // R_ARM_THM_MOVT_PREL: S + A - P
3589 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3590 static inline typename This::Status
3591 thm_movt(unsigned char* view,
3592 const Sized_relobj_file<32, big_endian>* object,
3593 const Symbol_value<32>* psymval,
3594 Arm_address relative_address_base)
3595 {
3596 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3597 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3598 Valtype* wv = reinterpret_cast<Valtype*>(view);
3599 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3600 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3601 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3602 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3603 val = This::insert_val_thumb_movw_movt(val, x);
3604 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3605 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3606 return This::STATUS_OKAY;
3607 }
3608
3609 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3610 static inline typename This::Status
3611 thm_alu11(unsigned char* view,
3612 const Sized_relobj_file<32, big_endian>* object,
3613 const Symbol_value<32>* psymval,
3614 Arm_address address,
3615 Arm_address thumb_bit)
3616 {
3617 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3618 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3619 Valtype* wv = reinterpret_cast<Valtype*>(view);
3620 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3621 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3622
3623 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3624 // -----------------------------------------------------------------------
3625 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3626 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3627 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3628 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3629 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3630 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3631
3632 // Determine a sign for the addend.
3633 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3634 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3635 // Thumb2 addend encoding:
3636 // imm12 := i | imm3 | imm8
3637 int32_t addend = (insn & 0xff)
3638 | ((insn & 0x00007000) >> 4)
3639 | ((insn & 0x04000000) >> 15);
3640 // Apply a sign to the added.
3641 addend *= sign;
3642
3643 int32_t x = (psymval->value(object, addend) | thumb_bit)
3644 - (address & 0xfffffffc);
3645 Reltype val = abs(x);
3646 // Mask out the value and a distinct part of the ADD/SUB opcode
3647 // (bits 7:5 of opword).
3648 insn = (insn & 0xfb0f8f00)
3649 | (val & 0xff)
3650 | ((val & 0x700) << 4)
3651 | ((val & 0x800) << 15);
3652 // Set the opcode according to whether the value to go in the
3653 // place is negative.
3654 if (x < 0)
3655 insn |= 0x00a00000;
3656
3657 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3658 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3659 return ((val > 0xfff) ?
3660 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3661 }
3662
3663 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3664 static inline typename This::Status
3665 thm_pc8(unsigned char* view,
3666 const Sized_relobj_file<32, big_endian>* object,
3667 const Symbol_value<32>* psymval,
3668 Arm_address address)
3669 {
3670 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3671 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3672 Valtype* wv = reinterpret_cast<Valtype*>(view);
3673 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3674 Reltype addend = ((insn & 0x00ff) << 2);
3675 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3676 Reltype val = abs(x);
3677 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3678
3679 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3680 return ((val > 0x03fc)
3681 ? This::STATUS_OVERFLOW
3682 : This::STATUS_OKAY);
3683 }
3684
3685 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3686 static inline typename This::Status
3687 thm_pc12(unsigned char* view,
3688 const Sized_relobj_file<32, big_endian>* object,
3689 const Symbol_value<32>* psymval,
3690 Arm_address address)
3691 {
3692 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3693 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3694 Valtype* wv = reinterpret_cast<Valtype*>(view);
3695 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3696 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3697 // Determine a sign for the addend (positive if the U bit is 1).
3698 const int sign = (insn & 0x00800000) ? 1 : -1;
3699 int32_t addend = (insn & 0xfff);
3700 // Apply a sign to the added.
3701 addend *= sign;
3702
3703 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3704 Reltype val = abs(x);
3705 // Mask out and apply the value and the U bit.
3706 insn = (insn & 0xff7ff000) | (val & 0xfff);
3707 // Set the U bit according to whether the value to go in the
3708 // place is positive.
3709 if (x >= 0)
3710 insn |= 0x00800000;
3711
3712 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3713 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3714 return ((val > 0xfff) ?
3715 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3716 }
3717
3718 // R_ARM_V4BX
3719 static inline typename This::Status
3720 v4bx(const Relocate_info<32, big_endian>* relinfo,
3721 unsigned char* view,
3722 const Arm_relobj<big_endian>* object,
3723 const Arm_address address,
3724 const bool is_interworking)
3725 {
3726
3727 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3728 Valtype* wv = reinterpret_cast<Valtype*>(view);
3729 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3730
3731 // Ensure that we have a BX instruction.
3732 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3733 const uint32_t reg = (val & 0xf);
3734 if (is_interworking && reg != 0xf)
3735 {
3736 Stub_table<big_endian>* stub_table =
3737 object->stub_table(relinfo->data_shndx);
3738 gold_assert(stub_table != NULL);
3739
3740 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3741 gold_assert(stub != NULL);
3742
3743 int32_t veneer_address =
3744 stub_table->address() + stub->offset() - 8 - address;
3745 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3746 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3747 // Replace with a branch to veneer (B <addr>)
3748 val = (val & 0xf0000000) | 0x0a000000
3749 | ((veneer_address >> 2) & 0x00ffffff);
3750 }
3751 else
3752 {
3753 // Preserve Rm (lowest four bits) and the condition code
3754 // (highest four bits). Other bits encode MOV PC,Rm.
3755 val = (val & 0xf000000f) | 0x01a0f000;
3756 }
3757 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3758 return This::STATUS_OKAY;
3759 }
3760
3761 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3762 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3763 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3764 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3765 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3766 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3767 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3768 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3769 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3770 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3771 static inline typename This::Status
3772 arm_grp_alu(unsigned char* view,
3773 const Sized_relobj_file<32, big_endian>* object,
3774 const Symbol_value<32>* psymval,
3775 const int group,
3776 Arm_address address,
3777 Arm_address thumb_bit,
3778 bool check_overflow)
3779 {
3780 gold_assert(group >= 0 && group < 3);
3781 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3782 Valtype* wv = reinterpret_cast<Valtype*>(view);
3783 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3784
3785 // ALU group relocations are allowed only for the ADD/SUB instructions.
3786 // (0x00800000 - ADD, 0x00400000 - SUB)
3787 const Valtype opcode = insn & 0x01e00000;
3788 if (opcode != 0x00800000 && opcode != 0x00400000)
3789 return This::STATUS_BAD_RELOC;
3790
3791 // Determine a sign for the addend.
3792 const int sign = (opcode == 0x00800000) ? 1 : -1;
3793 // shifter = rotate_imm * 2
3794 const uint32_t shifter = (insn & 0xf00) >> 7;
3795 // Initial addend value.
3796 int32_t addend = insn & 0xff;
3797 // Rotate addend right by shifter.
3798 addend = (addend >> shifter) | (addend << (32 - shifter));
3799 // Apply a sign to the added.
3800 addend *= sign;
3801
3802 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3803 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3804 // Check for overflow if required
3805 if (check_overflow
3806 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3807 return This::STATUS_OVERFLOW;
3808
3809 // Mask out the value and the ADD/SUB part of the opcode; take care
3810 // not to destroy the S bit.
3811 insn &= 0xff1ff000;
3812 // Set the opcode according to whether the value to go in the
3813 // place is negative.
3814 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3815 // Encode the offset (encoded Gn).
3816 insn |= gn;
3817
3818 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3819 return This::STATUS_OKAY;
3820 }
3821
3822 // R_ARM_LDR_PC_G0: S + A - P
3823 // R_ARM_LDR_PC_G1: S + A - P
3824 // R_ARM_LDR_PC_G2: S + A - P
3825 // R_ARM_LDR_SB_G0: S + A - B(S)
3826 // R_ARM_LDR_SB_G1: S + A - B(S)
3827 // R_ARM_LDR_SB_G2: S + A - B(S)
3828 static inline typename This::Status
3829 arm_grp_ldr(unsigned char* view,
3830 const Sized_relobj_file<32, big_endian>* object,
3831 const Symbol_value<32>* psymval,
3832 const int group,
3833 Arm_address address)
3834 {
3835 gold_assert(group >= 0 && group < 3);
3836 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3837 Valtype* wv = reinterpret_cast<Valtype*>(view);
3838 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3839
3840 const int sign = (insn & 0x00800000) ? 1 : -1;
3841 int32_t addend = (insn & 0xfff) * sign;
3842 int32_t x = (psymval->value(object, addend) - address);
3843 // Calculate the relevant G(n-1) value to obtain this stage residual.
3844 Valtype residual =
3845 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3846 if (residual >= 0x1000)
3847 return This::STATUS_OVERFLOW;
3848
3849 // Mask out the value and U bit.
3850 insn &= 0xff7ff000;
3851 // Set the U bit for non-negative values.
3852 if (x >= 0)
3853 insn |= 0x00800000;
3854 insn |= residual;
3855
3856 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3857 return This::STATUS_OKAY;
3858 }
3859
3860 // R_ARM_LDRS_PC_G0: S + A - P
3861 // R_ARM_LDRS_PC_G1: S + A - P
3862 // R_ARM_LDRS_PC_G2: S + A - P
3863 // R_ARM_LDRS_SB_G0: S + A - B(S)
3864 // R_ARM_LDRS_SB_G1: S + A - B(S)
3865 // R_ARM_LDRS_SB_G2: S + A - B(S)
3866 static inline typename This::Status
3867 arm_grp_ldrs(unsigned char* view,
3868 const Sized_relobj_file<32, big_endian>* object,
3869 const Symbol_value<32>* psymval,
3870 const int group,
3871 Arm_address address)
3872 {
3873 gold_assert(group >= 0 && group < 3);
3874 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3875 Valtype* wv = reinterpret_cast<Valtype*>(view);
3876 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3877
3878 const int sign = (insn & 0x00800000) ? 1 : -1;
3879 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3880 int32_t x = (psymval->value(object, addend) - address);
3881 // Calculate the relevant G(n-1) value to obtain this stage residual.
3882 Valtype residual =
3883 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3884 if (residual >= 0x100)
3885 return This::STATUS_OVERFLOW;
3886
3887 // Mask out the value and U bit.
3888 insn &= 0xff7ff0f0;
3889 // Set the U bit for non-negative values.
3890 if (x >= 0)
3891 insn |= 0x00800000;
3892 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3893
3894 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3895 return This::STATUS_OKAY;
3896 }
3897
3898 // R_ARM_LDC_PC_G0: S + A - P
3899 // R_ARM_LDC_PC_G1: S + A - P
3900 // R_ARM_LDC_PC_G2: S + A - P
3901 // R_ARM_LDC_SB_G0: S + A - B(S)
3902 // R_ARM_LDC_SB_G1: S + A - B(S)
3903 // R_ARM_LDC_SB_G2: S + A - B(S)
3904 static inline typename This::Status
3905 arm_grp_ldc(unsigned char* view,
3906 const Sized_relobj_file<32, big_endian>* object,
3907 const Symbol_value<32>* psymval,
3908 const int group,
3909 Arm_address address)
3910 {
3911 gold_assert(group >= 0 && group < 3);
3912 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3913 Valtype* wv = reinterpret_cast<Valtype*>(view);
3914 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3915
3916 const int sign = (insn & 0x00800000) ? 1 : -1;
3917 int32_t addend = ((insn & 0xff) << 2) * sign;
3918 int32_t x = (psymval->value(object, addend) - address);
3919 // Calculate the relevant G(n-1) value to obtain this stage residual.
3920 Valtype residual =
3921 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3922 if ((residual & 0x3) != 0 || residual >= 0x400)
3923 return This::STATUS_OVERFLOW;
3924
3925 // Mask out the value and U bit.
3926 insn &= 0xff7fff00;
3927 // Set the U bit for non-negative values.
3928 if (x >= 0)
3929 insn |= 0x00800000;
3930 insn |= (residual >> 2);
3931
3932 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3933 return This::STATUS_OKAY;
3934 }
3935 };
3936
3937 // Relocate ARM long branches. This handles relocation types
3938 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3939 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3940 // undefined and we do not use PLT in this relocation. In such a case,
3941 // the branch is converted into an NOP.
3942
3943 template<bool big_endian>
3944 typename Arm_relocate_functions<big_endian>::Status
3945 Arm_relocate_functions<big_endian>::arm_branch_common(
3946 unsigned int r_type,
3947 const Relocate_info<32, big_endian>* relinfo,
3948 unsigned char* view,
3949 const Sized_symbol<32>* gsym,
3950 const Arm_relobj<big_endian>* object,
3951 unsigned int r_sym,
3952 const Symbol_value<32>* psymval,
3953 Arm_address address,
3954 Arm_address thumb_bit,
3955 bool is_weakly_undefined_without_plt)
3956 {
3957 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3958 Valtype* wv = reinterpret_cast<Valtype*>(view);
3959 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3960
3961 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3962 && ((val & 0x0f000000UL) == 0x0a000000UL);
3963 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3964 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3965 && ((val & 0x0f000000UL) == 0x0b000000UL);
3966 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3967 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3968
3969 // Check that the instruction is valid.
3970 if (r_type == elfcpp::R_ARM_CALL)
3971 {
3972 if (!insn_is_uncond_bl && !insn_is_blx)
3973 return This::STATUS_BAD_RELOC;
3974 }
3975 else if (r_type == elfcpp::R_ARM_JUMP24)
3976 {
3977 if (!insn_is_b && !insn_is_cond_bl)
3978 return This::STATUS_BAD_RELOC;
3979 }
3980 else if (r_type == elfcpp::R_ARM_PLT32)
3981 {
3982 if (!insn_is_any_branch)
3983 return This::STATUS_BAD_RELOC;
3984 }
3985 else if (r_type == elfcpp::R_ARM_XPC25)
3986 {
3987 // FIXME: AAELF document IH0044C does not say much about it other
3988 // than it being obsolete.
3989 if (!insn_is_any_branch)
3990 return This::STATUS_BAD_RELOC;
3991 }
3992 else
3993 gold_unreachable();
3994
3995 // A branch to an undefined weak symbol is turned into a jump to
3996 // the next instruction unless a PLT entry will be created.
3997 // Do the same for local undefined symbols.
3998 // The jump to the next instruction is optimized as a NOP depending
3999 // on the architecture.
4000 const Target_arm<big_endian>* arm_target =
4001 Target_arm<big_endian>::default_target();
4002 if (is_weakly_undefined_without_plt)
4003 {
4004 gold_assert(!parameters->options().relocatable());
4005 Valtype cond = val & 0xf0000000U;
4006 if (arm_target->may_use_arm_nop())
4007 val = cond | 0x0320f000;
4008 else
4009 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
4010 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4011 return This::STATUS_OKAY;
4012 }
4013
4014 Valtype addend = Bits<26>::sign_extend32(val << 2);
4015 Valtype branch_target = psymval->value(object, addend);
4016 int32_t branch_offset = branch_target - address;
4017
4018 // We need a stub if the branch offset is too large or if we need
4019 // to switch mode.
4020 bool may_use_blx = arm_target->may_use_v5t_interworking();
4021 Reloc_stub* stub = NULL;
4022
4023 if (!parameters->options().relocatable()
4024 && (Bits<26>::has_overflow32(branch_offset)
4025 || ((thumb_bit != 0)
4026 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
4027 {
4028 Valtype unadjusted_branch_target = psymval->value(object, 0);
4029
4030 Stub_type stub_type =
4031 Reloc_stub::stub_type_for_reloc(r_type, address,
4032 unadjusted_branch_target,
4033 (thumb_bit != 0));
4034 if (stub_type != arm_stub_none)
4035 {
4036 Stub_table<big_endian>* stub_table =
4037 object->stub_table(relinfo->data_shndx);
4038 gold_assert(stub_table != NULL);
4039
4040 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4041 stub = stub_table->find_reloc_stub(stub_key);
4042 gold_assert(stub != NULL);
4043 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4044 branch_target = stub_table->address() + stub->offset() + addend;
4045 branch_offset = branch_target - address;
4046 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4047 }
4048 }
4049
4050 // At this point, if we still need to switch mode, the instruction
4051 // must either be a BLX or a BL that can be converted to a BLX.
4052 if (thumb_bit != 0)
4053 {
4054 // Turn BL to BLX.
4055 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4056 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4057 }
4058
4059 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4060 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4061 return (Bits<26>::has_overflow32(branch_offset)
4062 ? This::STATUS_OVERFLOW
4063 : This::STATUS_OKAY);
4064 }
4065
4066 // Relocate THUMB long branches. This handles relocation types
4067 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4068 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4069 // undefined and we do not use PLT in this relocation. In such a case,
4070 // the branch is converted into an NOP.
4071
4072 template<bool big_endian>
4073 typename Arm_relocate_functions<big_endian>::Status
4074 Arm_relocate_functions<big_endian>::thumb_branch_common(
4075 unsigned int r_type,
4076 const Relocate_info<32, big_endian>* relinfo,
4077 unsigned char* view,
4078 const Sized_symbol<32>* gsym,
4079 const Arm_relobj<big_endian>* object,
4080 unsigned int r_sym,
4081 const Symbol_value<32>* psymval,
4082 Arm_address address,
4083 Arm_address thumb_bit,
4084 bool is_weakly_undefined_without_plt)
4085 {
4086 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4087 Valtype* wv = reinterpret_cast<Valtype*>(view);
4088 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4089 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4090
4091 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4092 // into account.
4093 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4094 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4095
4096 // Check that the instruction is valid.
4097 if (r_type == elfcpp::R_ARM_THM_CALL)
4098 {
4099 if (!is_bl_insn && !is_blx_insn)
4100 return This::STATUS_BAD_RELOC;
4101 }
4102 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4103 {
4104 // This cannot be a BLX.
4105 if (!is_bl_insn)
4106 return This::STATUS_BAD_RELOC;
4107 }
4108 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4109 {
4110 // Check for Thumb to Thumb call.
4111 if (!is_blx_insn)
4112 return This::STATUS_BAD_RELOC;
4113 if (thumb_bit != 0)
4114 {
4115 gold_warning(_("%s: Thumb BLX instruction targets "
4116 "thumb function '%s'."),
4117 object->name().c_str(),
4118 (gsym ? gsym->name() : "(local)"));
4119 // Convert BLX to BL.
4120 lower_insn |= 0x1000U;
4121 }
4122 }
4123 else
4124 gold_unreachable();
4125
4126 // A branch to an undefined weak symbol is turned into a jump to
4127 // the next instruction unless a PLT entry will be created.
4128 // The jump to the next instruction is optimized as a NOP.W for
4129 // Thumb-2 enabled architectures.
4130 const Target_arm<big_endian>* arm_target =
4131 Target_arm<big_endian>::default_target();
4132 if (is_weakly_undefined_without_plt)
4133 {
4134 gold_assert(!parameters->options().relocatable());
4135 if (arm_target->may_use_thumb2_nop())
4136 {
4137 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4138 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4139 }
4140 else
4141 {
4142 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4143 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4144 }
4145 return This::STATUS_OKAY;
4146 }
4147
4148 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4149 Arm_address branch_target = psymval->value(object, addend);
4150
4151 // For BLX, bit 1 of target address comes from bit 1 of base address.
4152 bool may_use_blx = arm_target->may_use_v5t_interworking();
4153 if (thumb_bit == 0 && may_use_blx)
4154 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4155
4156 int32_t branch_offset = branch_target - address;
4157
4158 // We need a stub if the branch offset is too large or if we need
4159 // to switch mode.
4160 bool thumb2 = arm_target->using_thumb2();
4161 if (!parameters->options().relocatable()
4162 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4163 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4164 || ((thumb_bit == 0)
4165 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4166 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4167 {
4168 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4169
4170 Stub_type stub_type =
4171 Reloc_stub::stub_type_for_reloc(r_type, address,
4172 unadjusted_branch_target,
4173 (thumb_bit != 0));
4174
4175 if (stub_type != arm_stub_none)
4176 {
4177 Stub_table<big_endian>* stub_table =
4178 object->stub_table(relinfo->data_shndx);
4179 gold_assert(stub_table != NULL);
4180
4181 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4182 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4183 gold_assert(stub != NULL);
4184 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4185 branch_target = stub_table->address() + stub->offset() + addend;
4186 if (thumb_bit == 0 && may_use_blx)
4187 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4188 branch_offset = branch_target - address;
4189 }
4190 }
4191
4192 // At this point, if we still need to switch mode, the instruction
4193 // must either be a BLX or a BL that can be converted to a BLX.
4194 if (thumb_bit == 0)
4195 {
4196 gold_assert(may_use_blx
4197 && (r_type == elfcpp::R_ARM_THM_CALL
4198 || r_type == elfcpp::R_ARM_THM_XPC22));
4199 // Make sure this is a BLX.
4200 lower_insn &= ~0x1000U;
4201 }
4202 else
4203 {
4204 // Make sure this is a BL.
4205 lower_insn |= 0x1000U;
4206 }
4207
4208 // For a BLX instruction, make sure that the relocation is rounded up
4209 // to a word boundary. This follows the semantics of the instruction
4210 // which specifies that bit 1 of the target address will come from bit
4211 // 1 of the base address.
4212 if ((lower_insn & 0x5000U) == 0x4000U)
4213 gold_assert((branch_offset & 3) == 0);
4214
4215 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4216 // We use the Thumb-2 encoding, which is safe even if dealing with
4217 // a Thumb-1 instruction by virtue of our overflow check above. */
4218 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4219 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4220
4221 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4222 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4223
4224 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4225
4226 return ((thumb2
4227 ? Bits<25>::has_overflow32(branch_offset)
4228 : Bits<23>::has_overflow32(branch_offset))
4229 ? This::STATUS_OVERFLOW
4230 : This::STATUS_OKAY);
4231 }
4232
4233 // Relocate THUMB-2 long conditional branches.
4234 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4235 // undefined and we do not use PLT in this relocation. In such a case,
4236 // the branch is converted into an NOP.
4237
4238 template<bool big_endian>
4239 typename Arm_relocate_functions<big_endian>::Status
4240 Arm_relocate_functions<big_endian>::thm_jump19(
4241 unsigned char* view,
4242 const Arm_relobj<big_endian>* object,
4243 const Symbol_value<32>* psymval,
4244 Arm_address address,
4245 Arm_address thumb_bit)
4246 {
4247 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4248 Valtype* wv = reinterpret_cast<Valtype*>(view);
4249 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4250 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4251 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4252
4253 Arm_address branch_target = psymval->value(object, addend);
4254 int32_t branch_offset = branch_target - address;
4255
4256 // ??? Should handle interworking? GCC might someday try to
4257 // use this for tail calls.
4258 // FIXME: We do support thumb entry to PLT yet.
4259 if (thumb_bit == 0)
4260 {
4261 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4262 return This::STATUS_BAD_RELOC;
4263 }
4264
4265 // Put RELOCATION back into the insn.
4266 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4267 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4268
4269 // Put the relocated value back in the object file:
4270 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4271 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4272
4273 return (Bits<21>::has_overflow32(branch_offset)
4274 ? This::STATUS_OVERFLOW
4275 : This::STATUS_OKAY);
4276 }
4277
4278 // Get the GOT section, creating it if necessary.
4279
4280 template<bool big_endian>
4281 Arm_output_data_got<big_endian>*
4282 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4283 {
4284 if (this->got_ == NULL)
4285 {
4286 gold_assert(symtab != NULL && layout != NULL);
4287
4288 // When using -z now, we can treat .got as a relro section.
4289 // Without -z now, it is modified after program startup by lazy
4290 // PLT relocations.
4291 bool is_got_relro = parameters->options().now();
4292 Output_section_order got_order = (is_got_relro
4293 ? ORDER_RELRO_LAST
4294 : ORDER_DATA);
4295
4296 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4297 // .got.plt sections in output. The output .got section contains both
4298 // PLT and non-PLT GOT entries.
4299 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4300
4301 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4302 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4303 this->got_, got_order, is_got_relro);
4304
4305 // The old GNU linker creates a .got.plt section. We just
4306 // create another set of data in the .got section. Note that we
4307 // always create a PLT if we create a GOT, although the PLT
4308 // might be empty.
4309 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4310 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4311 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4312 this->got_plt_, got_order, is_got_relro);
4313
4314 // The first three entries are reserved.
4315 this->got_plt_->set_current_data_size(3 * 4);
4316
4317 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4318 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4319 Symbol_table::PREDEFINED,
4320 this->got_plt_,
4321 0, 0, elfcpp::STT_OBJECT,
4322 elfcpp::STB_LOCAL,
4323 elfcpp::STV_HIDDEN, 0,
4324 false, false);
4325
4326 // If there are any IRELATIVE relocations, they get GOT entries
4327 // in .got.plt after the jump slot entries.
4328 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4329 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4330 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4331 this->got_irelative_,
4332 got_order, is_got_relro);
4333
4334 }
4335 return this->got_;
4336 }
4337
4338 // Get the dynamic reloc section, creating it if necessary.
4339
4340 template<bool big_endian>
4341 typename Target_arm<big_endian>::Reloc_section*
4342 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4343 {
4344 if (this->rel_dyn_ == NULL)
4345 {
4346 gold_assert(layout != NULL);
4347 // Create both relocation sections in the same place, so as to ensure
4348 // their relative order in the output section.
4349 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4350 this->rel_irelative_ = new Reloc_section(false);
4351 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4352 elfcpp::SHF_ALLOC, this->rel_dyn_,
4353 ORDER_DYNAMIC_RELOCS, false);
4354 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4355 elfcpp::SHF_ALLOC, this->rel_irelative_,
4356 ORDER_DYNAMIC_RELOCS, false);
4357 }
4358 return this->rel_dyn_;
4359 }
4360
4361
4362 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4363 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4364 // follow the other dynamic relocations so that they can refer to global
4365 // variables initialized by those relocs.
4366
4367 template<bool big_endian>
4368 typename Target_arm<big_endian>::Reloc_section*
4369 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4370 {
4371 if (this->rel_irelative_ == NULL)
4372 {
4373 // Delegate the creation to rel_dyn_section so as to ensure their order in
4374 // the output section.
4375 this->rel_dyn_section(layout);
4376 gold_assert(this->rel_irelative_ != NULL
4377 && (this->rel_dyn_->output_section()
4378 == this->rel_irelative_->output_section()));
4379 }
4380 return this->rel_irelative_;
4381 }
4382
4383
4384 // Insn_template methods.
4385
4386 // Return byte size of an instruction template.
4387
4388 size_t
4389 Insn_template::size() const
4390 {
4391 switch (this->type())
4392 {
4393 case THUMB16_TYPE:
4394 case THUMB16_SPECIAL_TYPE:
4395 return 2;
4396 case ARM_TYPE:
4397 case THUMB32_TYPE:
4398 case DATA_TYPE:
4399 return 4;
4400 default:
4401 gold_unreachable();
4402 }
4403 }
4404
4405 // Return alignment of an instruction template.
4406
4407 unsigned
4408 Insn_template::alignment() const
4409 {
4410 switch (this->type())
4411 {
4412 case THUMB16_TYPE:
4413 case THUMB16_SPECIAL_TYPE:
4414 case THUMB32_TYPE:
4415 return 2;
4416 case ARM_TYPE:
4417 case DATA_TYPE:
4418 return 4;
4419 default:
4420 gold_unreachable();
4421 }
4422 }
4423
4424 // Stub_template methods.
4425
4426 Stub_template::Stub_template(
4427 Stub_type type, const Insn_template* insns,
4428 size_t insn_count)
4429 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4430 entry_in_thumb_mode_(false), relocs_()
4431 {
4432 off_t offset = 0;
4433
4434 // Compute byte size and alignment of stub template.
4435 for (size_t i = 0; i < insn_count; i++)
4436 {
4437 unsigned insn_alignment = insns[i].alignment();
4438 size_t insn_size = insns[i].size();
4439 gold_assert((offset & (insn_alignment - 1)) == 0);
4440 this->alignment_ = std::max(this->alignment_, insn_alignment);
4441 switch (insns[i].type())
4442 {
4443 case Insn_template::THUMB16_TYPE:
4444 case Insn_template::THUMB16_SPECIAL_TYPE:
4445 if (i == 0)
4446 this->entry_in_thumb_mode_ = true;
4447 break;
4448
4449 case Insn_template::THUMB32_TYPE:
4450 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4451 this->relocs_.push_back(Reloc(i, offset));
4452 if (i == 0)
4453 this->entry_in_thumb_mode_ = true;
4454 break;
4455
4456 case Insn_template::ARM_TYPE:
4457 // Handle cases where the target is encoded within the
4458 // instruction.
4459 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4460 this->relocs_.push_back(Reloc(i, offset));
4461 break;
4462
4463 case Insn_template::DATA_TYPE:
4464 // Entry point cannot be data.
4465 gold_assert(i != 0);
4466 this->relocs_.push_back(Reloc(i, offset));
4467 break;
4468
4469 default:
4470 gold_unreachable();
4471 }
4472 offset += insn_size;
4473 }
4474 this->size_ = offset;
4475 }
4476
4477 // Stub methods.
4478
4479 // Template to implement do_write for a specific target endianness.
4480
4481 template<bool big_endian>
4482 void inline
4483 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4484 {
4485 const Stub_template* stub_template = this->stub_template();
4486 const Insn_template* insns = stub_template->insns();
4487
4488 // FIXME: We do not handle BE8 encoding yet.
4489 unsigned char* pov = view;
4490 for (size_t i = 0; i < stub_template->insn_count(); i++)
4491 {
4492 switch (insns[i].type())
4493 {
4494 case Insn_template::THUMB16_TYPE:
4495 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4496 break;
4497 case Insn_template::THUMB16_SPECIAL_TYPE:
4498 elfcpp::Swap<16, big_endian>::writeval(
4499 pov,
4500 this->thumb16_special(i));
4501 break;
4502 case Insn_template::THUMB32_TYPE:
4503 {
4504 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4505 uint32_t lo = insns[i].data() & 0xffff;
4506 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4507 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4508 }
4509 break;
4510 case Insn_template::ARM_TYPE:
4511 case Insn_template::DATA_TYPE:
4512 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4513 break;
4514 default:
4515 gold_unreachable();
4516 }
4517 pov += insns[i].size();
4518 }
4519 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4520 }
4521
4522 // Reloc_stub::Key methods.
4523
4524 // Dump a Key as a string for debugging.
4525
4526 std::string
4527 Reloc_stub::Key::name() const
4528 {
4529 if (this->r_sym_ == invalid_index)
4530 {
4531 // Global symbol key name
4532 // <stub-type>:<symbol name>:<addend>.
4533 const std::string sym_name = this->u_.symbol->name();
4534 // We need to print two hex number and two colons. So just add 100 bytes
4535 // to the symbol name size.
4536 size_t len = sym_name.size() + 100;
4537 char* buffer = new char[len];
4538 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4539 sym_name.c_str(), this->addend_);
4540 gold_assert(c > 0 && c < static_cast<int>(len));
4541 delete[] buffer;
4542 return std::string(buffer);
4543 }
4544 else
4545 {
4546 // local symbol key name
4547 // <stub-type>:<object>:<r_sym>:<addend>.
4548 const size_t len = 200;
4549 char buffer[len];
4550 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4551 this->u_.relobj, this->r_sym_, this->addend_);
4552 gold_assert(c > 0 && c < static_cast<int>(len));
4553 return std::string(buffer);
4554 }
4555 }
4556
4557 // Reloc_stub methods.
4558
4559 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4560 // LOCATION to DESTINATION.
4561 // This code is based on the arm_type_of_stub function in
4562 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4563 // class simple.
4564
4565 Stub_type
4566 Reloc_stub::stub_type_for_reloc(
4567 unsigned int r_type,
4568 Arm_address location,
4569 Arm_address destination,
4570 bool target_is_thumb)
4571 {
4572 Stub_type stub_type = arm_stub_none;
4573
4574 // This is a bit ugly but we want to avoid using a templated class for
4575 // big and little endianities.
4576 bool may_use_blx;
4577 bool should_force_pic_veneer = parameters->options().pic_veneer();
4578 bool thumb2;
4579 bool thumb_only;
4580 if (parameters->target().is_big_endian())
4581 {
4582 const Target_arm<true>* big_endian_target =
4583 Target_arm<true>::default_target();
4584 may_use_blx = big_endian_target->may_use_v5t_interworking();
4585 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4586 thumb2 = big_endian_target->using_thumb2();
4587 thumb_only = big_endian_target->using_thumb_only();
4588 }
4589 else
4590 {
4591 const Target_arm<false>* little_endian_target =
4592 Target_arm<false>::default_target();
4593 may_use_blx = little_endian_target->may_use_v5t_interworking();
4594 should_force_pic_veneer |=
4595 little_endian_target->should_force_pic_veneer();
4596 thumb2 = little_endian_target->using_thumb2();
4597 thumb_only = little_endian_target->using_thumb_only();
4598 }
4599
4600 int64_t branch_offset;
4601 bool output_is_position_independent =
4602 parameters->options().output_is_position_independent();
4603 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4604 {
4605 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4606 // base address (instruction address + 4).
4607 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4608 destination = Bits<32>::bit_select32(destination, location, 0x2);
4609 branch_offset = static_cast<int64_t>(destination) - location;
4610
4611 // Handle cases where:
4612 // - this call goes too far (different Thumb/Thumb2 max
4613 // distance)
4614 // - it's a Thumb->Arm call and blx is not available, or it's a
4615 // Thumb->Arm branch (not bl). A stub is needed in this case.
4616 if ((!thumb2
4617 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4618 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4619 || (thumb2
4620 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4621 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4622 || ((!target_is_thumb)
4623 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4624 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4625 {
4626 if (target_is_thumb)
4627 {
4628 // Thumb to thumb.
4629 if (!thumb_only)
4630 {
4631 stub_type = (output_is_position_independent
4632 || should_force_pic_veneer)
4633 // PIC stubs.
4634 ? ((may_use_blx
4635 && (r_type == elfcpp::R_ARM_THM_CALL))
4636 // V5T and above. Stub starts with ARM code, so
4637 // we must be able to switch mode before
4638 // reaching it, which is only possible for 'bl'
4639 // (ie R_ARM_THM_CALL relocation).
4640 ? arm_stub_long_branch_any_thumb_pic
4641 // On V4T, use Thumb code only.
4642 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4643
4644 // non-PIC stubs.
4645 : ((may_use_blx
4646 && (r_type == elfcpp::R_ARM_THM_CALL))
4647 ? arm_stub_long_branch_any_any // V5T and above.
4648 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4649 }
4650 else
4651 {
4652 stub_type = (output_is_position_independent
4653 || should_force_pic_veneer)
4654 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4655 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4656 }
4657 }
4658 else
4659 {
4660 // Thumb to arm.
4661
4662 // FIXME: We should check that the input section is from an
4663 // object that has interwork enabled.
4664
4665 stub_type = (output_is_position_independent
4666 || should_force_pic_veneer)
4667 // PIC stubs.
4668 ? ((may_use_blx
4669 && (r_type == elfcpp::R_ARM_THM_CALL))
4670 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4671 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4672
4673 // non-PIC stubs.
4674 : ((may_use_blx
4675 && (r_type == elfcpp::R_ARM_THM_CALL))
4676 ? arm_stub_long_branch_any_any // V5T and above.
4677 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4678
4679 // Handle v4t short branches.
4680 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4681 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4682 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4683 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4684 }
4685 }
4686 }
4687 else if (r_type == elfcpp::R_ARM_CALL
4688 || r_type == elfcpp::R_ARM_JUMP24
4689 || r_type == elfcpp::R_ARM_PLT32)
4690 {
4691 branch_offset = static_cast<int64_t>(destination) - location;
4692 if (target_is_thumb)
4693 {
4694 // Arm to thumb.
4695
4696 // FIXME: We should check that the input section is from an
4697 // object that has interwork enabled.
4698
4699 // We have an extra 2-bytes reach because of
4700 // the mode change (bit 24 (H) of BLX encoding).
4701 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4702 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4703 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4704 || (r_type == elfcpp::R_ARM_JUMP24)
4705 || (r_type == elfcpp::R_ARM_PLT32))
4706 {
4707 stub_type = (output_is_position_independent
4708 || should_force_pic_veneer)
4709 // PIC stubs.
4710 ? (may_use_blx
4711 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4712 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4713
4714 // non-PIC stubs.
4715 : (may_use_blx
4716 ? arm_stub_long_branch_any_any // V5T and above.
4717 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4718 }
4719 }
4720 else
4721 {
4722 // Arm to arm.
4723 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4724 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4725 {
4726 stub_type = (output_is_position_independent
4727 || should_force_pic_veneer)
4728 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4729 : arm_stub_long_branch_any_any; /// non-PIC.
4730 }
4731 }
4732 }
4733
4734 return stub_type;
4735 }
4736
4737 // Cortex_a8_stub methods.
4738
4739 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4740 // I is the position of the instruction template in the stub template.
4741
4742 uint16_t
4743 Cortex_a8_stub::do_thumb16_special(size_t i)
4744 {
4745 // The only use of this is to copy condition code from a conditional
4746 // branch being worked around to the corresponding conditional branch in
4747 // to the stub.
4748 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4749 && i == 0);
4750 uint16_t data = this->stub_template()->insns()[i].data();
4751 gold_assert((data & 0xff00U) == 0xd000U);
4752 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4753 return data;
4754 }
4755
4756 // Stub_factory methods.
4757
4758 Stub_factory::Stub_factory()
4759 {
4760 // The instruction template sequences are declared as static
4761 // objects and initialized first time the constructor runs.
4762
4763 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4764 // to reach the stub if necessary.
4765 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4766 {
4767 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4768 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4769 // dcd R_ARM_ABS32(X)
4770 };
4771
4772 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4773 // available.
4774 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4775 {
4776 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4777 Insn_template::arm_insn(0xe12fff1c), // bx ip
4778 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4779 // dcd R_ARM_ABS32(X)
4780 };
4781
4782 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4783 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4784 {
4785 Insn_template::thumb16_insn(0xb401), // push {r0}
4786 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4787 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4788 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4789 Insn_template::thumb16_insn(0x4760), // bx ip
4790 Insn_template::thumb16_insn(0xbf00), // nop
4791 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4792 // dcd R_ARM_ABS32(X)
4793 };
4794
4795 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4796 // allowed.
4797 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4798 {
4799 Insn_template::thumb16_insn(0x4778), // bx pc
4800 Insn_template::thumb16_insn(0x46c0), // nop
4801 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4802 Insn_template::arm_insn(0xe12fff1c), // bx ip
4803 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4804 // dcd R_ARM_ABS32(X)
4805 };
4806
4807 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4808 // available.
4809 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4810 {
4811 Insn_template::thumb16_insn(0x4778), // bx pc
4812 Insn_template::thumb16_insn(0x46c0), // nop
4813 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4814 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4815 // dcd R_ARM_ABS32(X)
4816 };
4817
4818 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4819 // one, when the destination is close enough.
4820 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4821 {
4822 Insn_template::thumb16_insn(0x4778), // bx pc
4823 Insn_template::thumb16_insn(0x46c0), // nop
4824 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4825 };
4826
4827 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4828 // blx to reach the stub if necessary.
4829 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4830 {
4831 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4832 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4833 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4834 // dcd R_ARM_REL32(X-4)
4835 };
4836
4837 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4838 // blx to reach the stub if necessary. We can not add into pc;
4839 // it is not guaranteed to mode switch (different in ARMv6 and
4840 // ARMv7).
4841 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4842 {
4843 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4844 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4845 Insn_template::arm_insn(0xe12fff1c), // bx ip
4846 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4847 // dcd R_ARM_REL32(X)
4848 };
4849
4850 // V4T ARM -> ARM long branch stub, PIC.
4851 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4852 {
4853 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4854 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4855 Insn_template::arm_insn(0xe12fff1c), // bx ip
4856 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4857 // dcd R_ARM_REL32(X)
4858 };
4859
4860 // V4T Thumb -> ARM long branch stub, PIC.
4861 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4862 {
4863 Insn_template::thumb16_insn(0x4778), // bx pc
4864 Insn_template::thumb16_insn(0x46c0), // nop
4865 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4866 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4867 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4868 // dcd R_ARM_REL32(X)
4869 };
4870
4871 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4872 // architectures.
4873 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4874 {
4875 Insn_template::thumb16_insn(0xb401), // push {r0}
4876 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4877 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4878 Insn_template::thumb16_insn(0x4484), // add ip, r0
4879 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4880 Insn_template::thumb16_insn(0x4760), // bx ip
4881 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4882 // dcd R_ARM_REL32(X)
4883 };
4884
4885 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4886 // allowed.
4887 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4888 {
4889 Insn_template::thumb16_insn(0x4778), // bx pc
4890 Insn_template::thumb16_insn(0x46c0), // nop
4891 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4892 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4893 Insn_template::arm_insn(0xe12fff1c), // bx ip
4894 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4895 // dcd R_ARM_REL32(X)
4896 };
4897
4898 // Cortex-A8 erratum-workaround stubs.
4899
4900 // Stub used for conditional branches (which may be beyond +/-1MB away,
4901 // so we can't use a conditional branch to reach this stub).
4902
4903 // original code:
4904 //
4905 // b<cond> X
4906 // after:
4907 //
4908 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4909 {
4910 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4911 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4912 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4913 // b.w X
4914 };
4915
4916 // Stub used for b.w and bl.w instructions.
4917
4918 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4919 {
4920 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4921 };
4922
4923 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4924 {
4925 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4926 };
4927
4928 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4929 // instruction (which switches to ARM mode) to point to this stub. Jump to
4930 // the real destination using an ARM-mode branch.
4931 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4932 {
4933 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4934 };
4935
4936 // Stub used to provide an interworking for R_ARM_V4BX relocation
4937 // (bx r[n] instruction).
4938 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4939 {
4940 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4941 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4942 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4943 };
4944
4945 // Fill in the stub template look-up table. Stub templates are constructed
4946 // per instance of Stub_factory for fast look-up without locking
4947 // in a thread-enabled environment.
4948
4949 this->stub_templates_[arm_stub_none] =
4950 new Stub_template(arm_stub_none, NULL, 0);
4951
4952 #define DEF_STUB(x) \
4953 do \
4954 { \
4955 size_t array_size \
4956 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4957 Stub_type type = arm_stub_##x; \
4958 this->stub_templates_[type] = \
4959 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4960 } \
4961 while (0);
4962
4963 DEF_STUBS
4964 #undef DEF_STUB
4965 }
4966
4967 // Stub_table methods.
4968
4969 // Remove all Cortex-A8 stub.
4970
4971 template<bool big_endian>
4972 void
4973 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4974 {
4975 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4976 p != this->cortex_a8_stubs_.end();
4977 ++p)
4978 delete p->second;
4979 this->cortex_a8_stubs_.clear();
4980 }
4981
4982 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4983
4984 template<bool big_endian>
4985 void
4986 Stub_table<big_endian>::relocate_stub(
4987 Stub* stub,
4988 const Relocate_info<32, big_endian>* relinfo,
4989 Target_arm<big_endian>* arm_target,
4990 Output_section* output_section,
4991 unsigned char* view,
4992 Arm_address address,
4993 section_size_type view_size)
4994 {
4995 const Stub_template* stub_template = stub->stub_template();
4996 if (stub_template->reloc_count() != 0)
4997 {
4998 // Adjust view to cover the stub only.
4999 section_size_type offset = stub->offset();
5000 section_size_type stub_size = stub_template->size();
5001 gold_assert(offset + stub_size <= view_size);
5002
5003 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
5004 address + offset, stub_size);
5005 }
5006 }
5007
5008 // Relocate all stubs in this stub table.
5009
5010 template<bool big_endian>
5011 void
5012 Stub_table<big_endian>::relocate_stubs(
5013 const Relocate_info<32, big_endian>* relinfo,
5014 Target_arm<big_endian>* arm_target,
5015 Output_section* output_section,
5016 unsigned char* view,
5017 Arm_address address,
5018 section_size_type view_size)
5019 {
5020 // If we are passed a view bigger than the stub table's. we need to
5021 // adjust the view.
5022 gold_assert(address == this->address()
5023 && (view_size
5024 == static_cast<section_size_type>(this->data_size())));
5025
5026 // Relocate all relocation stubs.
5027 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5028 p != this->reloc_stubs_.end();
5029 ++p)
5030 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5031 address, view_size);
5032
5033 // Relocate all Cortex-A8 stubs.
5034 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5035 p != this->cortex_a8_stubs_.end();
5036 ++p)
5037 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5038 address, view_size);
5039
5040 // Relocate all ARM V4BX stubs.
5041 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5042 p != this->arm_v4bx_stubs_.end();
5043 ++p)
5044 {
5045 if (*p != NULL)
5046 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5047 address, view_size);
5048 }
5049 }
5050
5051 // Write out the stubs to file.
5052
5053 template<bool big_endian>
5054 void
5055 Stub_table<big_endian>::do_write(Output_file* of)
5056 {
5057 off_t offset = this->offset();
5058 const section_size_type oview_size =
5059 convert_to_section_size_type(this->data_size());
5060 unsigned char* const oview = of->get_output_view(offset, oview_size);
5061
5062 // Write relocation stubs.
5063 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5064 p != this->reloc_stubs_.end();
5065 ++p)
5066 {
5067 Reloc_stub* stub = p->second;
5068 Arm_address address = this->address() + stub->offset();
5069 gold_assert(address
5070 == align_address(address,
5071 stub->stub_template()->alignment()));
5072 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5073 big_endian);
5074 }
5075
5076 // Write Cortex-A8 stubs.
5077 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5078 p != this->cortex_a8_stubs_.end();
5079 ++p)
5080 {
5081 Cortex_a8_stub* stub = p->second;
5082 Arm_address address = this->address() + stub->offset();
5083 gold_assert(address
5084 == align_address(address,
5085 stub->stub_template()->alignment()));
5086 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5087 big_endian);
5088 }
5089
5090 // Write ARM V4BX relocation stubs.
5091 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5092 p != this->arm_v4bx_stubs_.end();
5093 ++p)
5094 {
5095 if (*p == NULL)
5096 continue;
5097
5098 Arm_address address = this->address() + (*p)->offset();
5099 gold_assert(address
5100 == align_address(address,
5101 (*p)->stub_template()->alignment()));
5102 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5103 big_endian);
5104 }
5105
5106 of->write_output_view(this->offset(), oview_size, oview);
5107 }
5108
5109 // Update the data size and address alignment of the stub table at the end
5110 // of a relaxation pass. Return true if either the data size or the
5111 // alignment changed in this relaxation pass.
5112
5113 template<bool big_endian>
5114 bool
5115 Stub_table<big_endian>::update_data_size_and_addralign()
5116 {
5117 // Go over all stubs in table to compute data size and address alignment.
5118 off_t size = this->reloc_stubs_size_;
5119 unsigned addralign = this->reloc_stubs_addralign_;
5120
5121 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5122 p != this->cortex_a8_stubs_.end();
5123 ++p)
5124 {
5125 const Stub_template* stub_template = p->second->stub_template();
5126 addralign = std::max(addralign, stub_template->alignment());
5127 size = (align_address(size, stub_template->alignment())
5128 + stub_template->size());
5129 }
5130
5131 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5132 p != this->arm_v4bx_stubs_.end();
5133 ++p)
5134 {
5135 if (*p == NULL)
5136 continue;
5137
5138 const Stub_template* stub_template = (*p)->stub_template();
5139 addralign = std::max(addralign, stub_template->alignment());
5140 size = (align_address(size, stub_template->alignment())
5141 + stub_template->size());
5142 }
5143
5144 // Check if either data size or alignment changed in this pass.
5145 // Update prev_data_size_ and prev_addralign_. These will be used
5146 // as the current data size and address alignment for the next pass.
5147 bool changed = size != this->prev_data_size_;
5148 this->prev_data_size_ = size;
5149
5150 if (addralign != this->prev_addralign_)
5151 changed = true;
5152 this->prev_addralign_ = addralign;
5153
5154 return changed;
5155 }
5156
5157 // Finalize the stubs. This sets the offsets of the stubs within the stub
5158 // table. It also marks all input sections needing Cortex-A8 workaround.
5159
5160 template<bool big_endian>
5161 void
5162 Stub_table<big_endian>::finalize_stubs()
5163 {
5164 off_t off = this->reloc_stubs_size_;
5165 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5166 p != this->cortex_a8_stubs_.end();
5167 ++p)
5168 {
5169 Cortex_a8_stub* stub = p->second;
5170 const Stub_template* stub_template = stub->stub_template();
5171 uint64_t stub_addralign = stub_template->alignment();
5172 off = align_address(off, stub_addralign);
5173 stub->set_offset(off);
5174 off += stub_template->size();
5175
5176 // Mark input section so that we can determine later if a code section
5177 // needs the Cortex-A8 workaround quickly.
5178 Arm_relobj<big_endian>* arm_relobj =
5179 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5180 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5181 }
5182
5183 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5184 p != this->arm_v4bx_stubs_.end();
5185 ++p)
5186 {
5187 if (*p == NULL)
5188 continue;
5189
5190 const Stub_template* stub_template = (*p)->stub_template();
5191 uint64_t stub_addralign = stub_template->alignment();
5192 off = align_address(off, stub_addralign);
5193 (*p)->set_offset(off);
5194 off += stub_template->size();
5195 }
5196
5197 gold_assert(off <= this->prev_data_size_);
5198 }
5199
5200 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5201 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5202 // of the address range seen by the linker.
5203
5204 template<bool big_endian>
5205 void
5206 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5207 Target_arm<big_endian>* arm_target,
5208 unsigned char* view,
5209 Arm_address view_address,
5210 section_size_type view_size)
5211 {
5212 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5213 for (Cortex_a8_stub_list::const_iterator p =
5214 this->cortex_a8_stubs_.lower_bound(view_address);
5215 ((p != this->cortex_a8_stubs_.end())
5216 && (p->first < (view_address + view_size)));
5217 ++p)
5218 {
5219 // We do not store the THUMB bit in the LSB of either the branch address
5220 // or the stub offset. There is no need to strip the LSB.
5221 Arm_address branch_address = p->first;
5222 const Cortex_a8_stub* stub = p->second;
5223 Arm_address stub_address = this->address() + stub->offset();
5224
5225 // Offset of the branch instruction relative to this view.
5226 section_size_type offset =
5227 convert_to_section_size_type(branch_address - view_address);
5228 gold_assert((offset + 4) <= view_size);
5229
5230 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5231 view + offset, branch_address);
5232 }
5233 }
5234
5235 // Arm_input_section methods.
5236
5237 // Initialize an Arm_input_section.
5238
5239 template<bool big_endian>
5240 void
5241 Arm_input_section<big_endian>::init()
5242 {
5243 Relobj* relobj = this->relobj();
5244 unsigned int shndx = this->shndx();
5245
5246 // We have to cache original size, alignment and contents to avoid locking
5247 // the original file.
5248 this->original_addralign_ =
5249 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5250
5251 // This is not efficient but we expect only a small number of relaxed
5252 // input sections for stubs.
5253 section_size_type section_size;
5254 const unsigned char* section_contents =
5255 relobj->section_contents(shndx, &section_size, false);
5256 this->original_size_ =
5257 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5258
5259 gold_assert(this->original_contents_ == NULL);
5260 this->original_contents_ = new unsigned char[section_size];
5261 memcpy(this->original_contents_, section_contents, section_size);
5262
5263 // We want to make this look like the original input section after
5264 // output sections are finalized.
5265 Output_section* os = relobj->output_section(shndx);
5266 off_t offset = relobj->output_section_offset(shndx);
5267 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5268 this->set_address(os->address() + offset);
5269 this->set_file_offset(os->offset() + offset);
5270
5271 this->set_current_data_size(this->original_size_);
5272 this->finalize_data_size();
5273 }
5274
5275 template<bool big_endian>
5276 void
5277 Arm_input_section<big_endian>::do_write(Output_file* of)
5278 {
5279 // We have to write out the original section content.
5280 gold_assert(this->original_contents_ != NULL);
5281 of->write(this->offset(), this->original_contents_,
5282 this->original_size_);
5283
5284 // If this owns a stub table and it is not empty, write it.
5285 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5286 this->stub_table_->write(of);
5287 }
5288
5289 // Finalize data size.
5290
5291 template<bool big_endian>
5292 void
5293 Arm_input_section<big_endian>::set_final_data_size()
5294 {
5295 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5296
5297 if (this->is_stub_table_owner())
5298 {
5299 this->stub_table_->finalize_data_size();
5300 off = align_address(off, this->stub_table_->addralign());
5301 off += this->stub_table_->data_size();
5302 }
5303 this->set_data_size(off);
5304 }
5305
5306 // Reset address and file offset.
5307
5308 template<bool big_endian>
5309 void
5310 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5311 {
5312 // Size of the original input section contents.
5313 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5314
5315 // If this is a stub table owner, account for the stub table size.
5316 if (this->is_stub_table_owner())
5317 {
5318 Stub_table<big_endian>* stub_table = this->stub_table_;
5319
5320 // Reset the stub table's address and file offset. The
5321 // current data size for child will be updated after that.
5322 stub_table_->reset_address_and_file_offset();
5323 off = align_address(off, stub_table_->addralign());
5324 off += stub_table->current_data_size();
5325 }
5326
5327 this->set_current_data_size(off);
5328 }
5329
5330 // Arm_exidx_cantunwind methods.
5331
5332 // Write this to Output file OF for a fixed endianness.
5333
5334 template<bool big_endian>
5335 void
5336 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5337 {
5338 off_t offset = this->offset();
5339 const section_size_type oview_size = 8;
5340 unsigned char* const oview = of->get_output_view(offset, oview_size);
5341
5342 Output_section* os = this->relobj_->output_section(this->shndx_);
5343 gold_assert(os != NULL);
5344
5345 Arm_relobj<big_endian>* arm_relobj =
5346 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5347 Arm_address output_offset =
5348 arm_relobj->get_output_section_offset(this->shndx_);
5349 Arm_address section_start;
5350 section_size_type section_size;
5351
5352 // Find out the end of the text section referred by this.
5353 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5354 {
5355 section_start = os->address() + output_offset;
5356 const Arm_exidx_input_section* exidx_input_section =
5357 arm_relobj->exidx_input_section_by_link(this->shndx_);
5358 gold_assert(exidx_input_section != NULL);
5359 section_size =
5360 convert_to_section_size_type(exidx_input_section->text_size());
5361 }
5362 else
5363 {
5364 // Currently this only happens for a relaxed section.
5365 const Output_relaxed_input_section* poris =
5366 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5367 gold_assert(poris != NULL);
5368 section_start = poris->address();
5369 section_size = convert_to_section_size_type(poris->data_size());
5370 }
5371
5372 // We always append this to the end of an EXIDX section.
5373 Arm_address output_address = section_start + section_size;
5374
5375 // Write out the entry. The first word either points to the beginning
5376 // or after the end of a text section. The second word is the special
5377 // EXIDX_CANTUNWIND value.
5378 uint32_t prel31_offset = output_address - this->address();
5379 if (Bits<31>::has_overflow32(offset))
5380 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5381 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5382 prel31_offset & 0x7fffffffU);
5383 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5384 elfcpp::EXIDX_CANTUNWIND);
5385
5386 of->write_output_view(this->offset(), oview_size, oview);
5387 }
5388
5389 // Arm_exidx_merged_section methods.
5390
5391 // Constructor for Arm_exidx_merged_section.
5392 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5393 // SECTION_OFFSET_MAP points to a section offset map describing how
5394 // parts of the input section are mapped to output. DELETED_BYTES is
5395 // the number of bytes deleted from the EXIDX input section.
5396
5397 Arm_exidx_merged_section::Arm_exidx_merged_section(
5398 const Arm_exidx_input_section& exidx_input_section,
5399 const Arm_exidx_section_offset_map& section_offset_map,
5400 uint32_t deleted_bytes)
5401 : Output_relaxed_input_section(exidx_input_section.relobj(),
5402 exidx_input_section.shndx(),
5403 exidx_input_section.addralign()),
5404 exidx_input_section_(exidx_input_section),
5405 section_offset_map_(section_offset_map)
5406 {
5407 // If we retain or discard the whole EXIDX input section, we would
5408 // not be here.
5409 gold_assert(deleted_bytes != 0
5410 && deleted_bytes != this->exidx_input_section_.size());
5411
5412 // Fix size here so that we do not need to implement set_final_data_size.
5413 uint32_t size = exidx_input_section.size() - deleted_bytes;
5414 this->set_data_size(size);
5415 this->fix_data_size();
5416
5417 // Allocate buffer for section contents and build contents.
5418 this->section_contents_ = new unsigned char[size];
5419 }
5420
5421 // Build the contents of a merged EXIDX output section.
5422
5423 void
5424 Arm_exidx_merged_section::build_contents(
5425 const unsigned char* original_contents,
5426 section_size_type original_size)
5427 {
5428 // Go over spans of input offsets and write only those that are not
5429 // discarded.
5430 section_offset_type in_start = 0;
5431 section_offset_type out_start = 0;
5432 section_offset_type in_max =
5433 convert_types<section_offset_type>(original_size);
5434 section_offset_type out_max =
5435 convert_types<section_offset_type>(this->data_size());
5436 for (Arm_exidx_section_offset_map::const_iterator p =
5437 this->section_offset_map_.begin();
5438 p != this->section_offset_map_.end();
5439 ++p)
5440 {
5441 section_offset_type in_end = p->first;
5442 gold_assert(in_end >= in_start);
5443 section_offset_type out_end = p->second;
5444 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5445 if (out_end != -1)
5446 {
5447 size_t out_chunk_size =
5448 convert_types<size_t>(out_end - out_start + 1);
5449
5450 gold_assert(out_chunk_size == in_chunk_size
5451 && in_end < in_max && out_end < out_max);
5452
5453 memcpy(this->section_contents_ + out_start,
5454 original_contents + in_start,
5455 out_chunk_size);
5456 out_start += out_chunk_size;
5457 }
5458 in_start += in_chunk_size;
5459 }
5460 }
5461
5462 // Given an input OBJECT, an input section index SHNDX within that
5463 // object, and an OFFSET relative to the start of that input
5464 // section, return whether or not the corresponding offset within
5465 // the output section is known. If this function returns true, it
5466 // sets *POUTPUT to the output offset. The value -1 indicates that
5467 // this input offset is being discarded.
5468
5469 bool
5470 Arm_exidx_merged_section::do_output_offset(
5471 const Relobj* relobj,
5472 unsigned int shndx,
5473 section_offset_type offset,
5474 section_offset_type* poutput) const
5475 {
5476 // We only handle offsets for the original EXIDX input section.
5477 if (relobj != this->exidx_input_section_.relobj()
5478 || shndx != this->exidx_input_section_.shndx())
5479 return false;
5480
5481 section_offset_type section_size =
5482 convert_types<section_offset_type>(this->exidx_input_section_.size());
5483 if (offset < 0 || offset >= section_size)
5484 // Input offset is out of valid range.
5485 *poutput = -1;
5486 else
5487 {
5488 // We need to look up the section offset map to determine the output
5489 // offset. Find the reference point in map that is first offset
5490 // bigger than or equal to this offset.
5491 Arm_exidx_section_offset_map::const_iterator p =
5492 this->section_offset_map_.lower_bound(offset);
5493
5494 // The section offset maps are build such that this should not happen if
5495 // input offset is in the valid range.
5496 gold_assert(p != this->section_offset_map_.end());
5497
5498 // We need to check if this is dropped.
5499 section_offset_type ref = p->first;
5500 section_offset_type mapped_ref = p->second;
5501
5502 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5503 // Offset is present in output.
5504 *poutput = mapped_ref + (offset - ref);
5505 else
5506 // Offset is discarded owing to EXIDX entry merging.
5507 *poutput = -1;
5508 }
5509
5510 return true;
5511 }
5512
5513 // Write this to output file OF.
5514
5515 void
5516 Arm_exidx_merged_section::do_write(Output_file* of)
5517 {
5518 off_t offset = this->offset();
5519 const section_size_type oview_size = this->data_size();
5520 unsigned char* const oview = of->get_output_view(offset, oview_size);
5521
5522 Output_section* os = this->relobj()->output_section(this->shndx());
5523 gold_assert(os != NULL);
5524
5525 memcpy(oview, this->section_contents_, oview_size);
5526 of->write_output_view(this->offset(), oview_size, oview);
5527 }
5528
5529 // Arm_exidx_fixup methods.
5530
5531 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5532 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5533 // points to the end of the last seen EXIDX section.
5534
5535 void
5536 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5537 {
5538 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5539 && this->last_input_section_ != NULL)
5540 {
5541 Relobj* relobj = this->last_input_section_->relobj();
5542 unsigned int text_shndx = this->last_input_section_->link();
5543 Arm_exidx_cantunwind* cantunwind =
5544 new Arm_exidx_cantunwind(relobj, text_shndx);
5545 this->exidx_output_section_->add_output_section_data(cantunwind);
5546 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5547 }
5548 }
5549
5550 // Process an EXIDX section entry in input. Return whether this entry
5551 // can be deleted in the output. SECOND_WORD in the second word of the
5552 // EXIDX entry.
5553
5554 bool
5555 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5556 {
5557 bool delete_entry;
5558 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5559 {
5560 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5561 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5562 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5563 }
5564 else if ((second_word & 0x80000000) != 0)
5565 {
5566 // Inlined unwinding data. Merge if equal to previous.
5567 delete_entry = (merge_exidx_entries_
5568 && this->last_unwind_type_ == UT_INLINED_ENTRY
5569 && this->last_inlined_entry_ == second_word);
5570 this->last_unwind_type_ = UT_INLINED_ENTRY;
5571 this->last_inlined_entry_ = second_word;
5572 }
5573 else
5574 {
5575 // Normal table entry. In theory we could merge these too,
5576 // but duplicate entries are likely to be much less common.
5577 delete_entry = false;
5578 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5579 }
5580 return delete_entry;
5581 }
5582
5583 // Update the current section offset map during EXIDX section fix-up.
5584 // If there is no map, create one. INPUT_OFFSET is the offset of a
5585 // reference point, DELETED_BYTES is the number of deleted by in the
5586 // section so far. If DELETE_ENTRY is true, the reference point and
5587 // all offsets after the previous reference point are discarded.
5588
5589 void
5590 Arm_exidx_fixup::update_offset_map(
5591 section_offset_type input_offset,
5592 section_size_type deleted_bytes,
5593 bool delete_entry)
5594 {
5595 if (this->section_offset_map_ == NULL)
5596 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5597 section_offset_type output_offset;
5598 if (delete_entry)
5599 output_offset = Arm_exidx_input_section::invalid_offset;
5600 else
5601 output_offset = input_offset - deleted_bytes;
5602 (*this->section_offset_map_)[input_offset] = output_offset;
5603 }
5604
5605 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5606 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5607 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5608 // If some entries are merged, also store a pointer to a newly created
5609 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5610 // owns the map and is responsible for releasing it after use.
5611
5612 template<bool big_endian>
5613 uint32_t
5614 Arm_exidx_fixup::process_exidx_section(
5615 const Arm_exidx_input_section* exidx_input_section,
5616 const unsigned char* section_contents,
5617 section_size_type section_size,
5618 Arm_exidx_section_offset_map** psection_offset_map)
5619 {
5620 Relobj* relobj = exidx_input_section->relobj();
5621 unsigned shndx = exidx_input_section->shndx();
5622
5623 if ((section_size % 8) != 0)
5624 {
5625 // Something is wrong with this section. Better not touch it.
5626 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5627 relobj->name().c_str(), shndx);
5628 this->last_input_section_ = exidx_input_section;
5629 this->last_unwind_type_ = UT_NONE;
5630 return 0;
5631 }
5632
5633 uint32_t deleted_bytes = 0;
5634 bool prev_delete_entry = false;
5635 gold_assert(this->section_offset_map_ == NULL);
5636
5637 for (section_size_type i = 0; i < section_size; i += 8)
5638 {
5639 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5640 const Valtype* wv =
5641 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5642 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5643
5644 bool delete_entry = this->process_exidx_entry(second_word);
5645
5646 // Entry deletion causes changes in output offsets. We use a std::map
5647 // to record these. And entry (x, y) means input offset x
5648 // is mapped to output offset y. If y is invalid_offset, then x is
5649 // dropped in the output. Because of the way std::map::lower_bound
5650 // works, we record the last offset in a region w.r.t to keeping or
5651 // dropping. If there is no entry (x0, y0) for an input offset x0,
5652 // the output offset y0 of it is determined by the output offset y1 of
5653 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5654 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5655 // y0 is also -1.
5656 if (delete_entry != prev_delete_entry && i != 0)
5657 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5658
5659 // Update total deleted bytes for this entry.
5660 if (delete_entry)
5661 deleted_bytes += 8;
5662
5663 prev_delete_entry = delete_entry;
5664 }
5665
5666 // If section offset map is not NULL, make an entry for the end of
5667 // section.
5668 if (this->section_offset_map_ != NULL)
5669 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5670
5671 *psection_offset_map = this->section_offset_map_;
5672 this->section_offset_map_ = NULL;
5673 this->last_input_section_ = exidx_input_section;
5674
5675 // Set the first output text section so that we can link the EXIDX output
5676 // section to it. Ignore any EXIDX input section that is completely merged.
5677 if (this->first_output_text_section_ == NULL
5678 && deleted_bytes != section_size)
5679 {
5680 unsigned int link = exidx_input_section->link();
5681 Output_section* os = relobj->output_section(link);
5682 gold_assert(os != NULL);
5683 this->first_output_text_section_ = os;
5684 }
5685
5686 return deleted_bytes;
5687 }
5688
5689 // Arm_output_section methods.
5690
5691 // Create a stub group for input sections from BEGIN to END. OWNER
5692 // points to the input section to be the owner a new stub table.
5693
5694 template<bool big_endian>
5695 void
5696 Arm_output_section<big_endian>::create_stub_group(
5697 Input_section_list::const_iterator begin,
5698 Input_section_list::const_iterator end,
5699 Input_section_list::const_iterator owner,
5700 Target_arm<big_endian>* target,
5701 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5702 const Task* task)
5703 {
5704 // We use a different kind of relaxed section in an EXIDX section.
5705 // The static casting from Output_relaxed_input_section to
5706 // Arm_input_section is invalid in an EXIDX section. We are okay
5707 // because we should not be calling this for an EXIDX section.
5708 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5709
5710 // Currently we convert ordinary input sections into relaxed sections only
5711 // at this point but we may want to support creating relaxed input section
5712 // very early. So we check here to see if owner is already a relaxed
5713 // section.
5714
5715 Arm_input_section<big_endian>* arm_input_section;
5716 if (owner->is_relaxed_input_section())
5717 {
5718 arm_input_section =
5719 Arm_input_section<big_endian>::as_arm_input_section(
5720 owner->relaxed_input_section());
5721 }
5722 else
5723 {
5724 gold_assert(owner->is_input_section());
5725 // Create a new relaxed input section. We need to lock the original
5726 // file.
5727 Task_lock_obj<Object> tl(task, owner->relobj());
5728 arm_input_section =
5729 target->new_arm_input_section(owner->relobj(), owner->shndx());
5730 new_relaxed_sections->push_back(arm_input_section);
5731 }
5732
5733 // Create a stub table.
5734 Stub_table<big_endian>* stub_table =
5735 target->new_stub_table(arm_input_section);
5736
5737 arm_input_section->set_stub_table(stub_table);
5738
5739 Input_section_list::const_iterator p = begin;
5740 Input_section_list::const_iterator prev_p;
5741
5742 // Look for input sections or relaxed input sections in [begin ... end].
5743 do
5744 {
5745 if (p->is_input_section() || p->is_relaxed_input_section())
5746 {
5747 // The stub table information for input sections live
5748 // in their objects.
5749 Arm_relobj<big_endian>* arm_relobj =
5750 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5751 arm_relobj->set_stub_table(p->shndx(), stub_table);
5752 }
5753 prev_p = p++;
5754 }
5755 while (prev_p != end);
5756 }
5757
5758 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5759 // of stub groups. We grow a stub group by adding input section until the
5760 // size is just below GROUP_SIZE. The last input section will be converted
5761 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5762 // input section after the stub table, effectively double the group size.
5763 //
5764 // This is similar to the group_sections() function in elf32-arm.c but is
5765 // implemented differently.
5766
5767 template<bool big_endian>
5768 void
5769 Arm_output_section<big_endian>::group_sections(
5770 section_size_type group_size,
5771 bool stubs_always_after_branch,
5772 Target_arm<big_endian>* target,
5773 const Task* task)
5774 {
5775 // States for grouping.
5776 typedef enum
5777 {
5778 // No group is being built.
5779 NO_GROUP,
5780 // A group is being built but the stub table is not found yet.
5781 // We keep group a stub group until the size is just under GROUP_SIZE.
5782 // The last input section in the group will be used as the stub table.
5783 FINDING_STUB_SECTION,
5784 // A group is being built and we have already found a stub table.
5785 // We enter this state to grow a stub group by adding input section
5786 // after the stub table. This effectively doubles the group size.
5787 HAS_STUB_SECTION
5788 } State;
5789
5790 // Any newly created relaxed sections are stored here.
5791 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5792
5793 State state = NO_GROUP;
5794 section_size_type off = 0;
5795 section_size_type group_begin_offset = 0;
5796 section_size_type group_end_offset = 0;
5797 section_size_type stub_table_end_offset = 0;
5798 Input_section_list::const_iterator group_begin =
5799 this->input_sections().end();
5800 Input_section_list::const_iterator stub_table =
5801 this->input_sections().end();
5802 Input_section_list::const_iterator group_end = this->input_sections().end();
5803 for (Input_section_list::const_iterator p = this->input_sections().begin();
5804 p != this->input_sections().end();
5805 ++p)
5806 {
5807 section_size_type section_begin_offset =
5808 align_address(off, p->addralign());
5809 section_size_type section_end_offset =
5810 section_begin_offset + p->data_size();
5811
5812 // Check to see if we should group the previously seen sections.
5813 switch (state)
5814 {
5815 case NO_GROUP:
5816 break;
5817
5818 case FINDING_STUB_SECTION:
5819 // Adding this section makes the group larger than GROUP_SIZE.
5820 if (section_end_offset - group_begin_offset >= group_size)
5821 {
5822 if (stubs_always_after_branch)
5823 {
5824 gold_assert(group_end != this->input_sections().end());
5825 this->create_stub_group(group_begin, group_end, group_end,
5826 target, &new_relaxed_sections,
5827 task);
5828 state = NO_GROUP;
5829 }
5830 else
5831 {
5832 // But wait, there's more! Input sections up to
5833 // stub_group_size bytes after the stub table can be
5834 // handled by it too.
5835 state = HAS_STUB_SECTION;
5836 stub_table = group_end;
5837 stub_table_end_offset = group_end_offset;
5838 }
5839 }
5840 break;
5841
5842 case HAS_STUB_SECTION:
5843 // Adding this section makes the post stub-section group larger
5844 // than GROUP_SIZE.
5845 if (section_end_offset - stub_table_end_offset >= group_size)
5846 {
5847 gold_assert(group_end != this->input_sections().end());
5848 this->create_stub_group(group_begin, group_end, stub_table,
5849 target, &new_relaxed_sections, task);
5850 state = NO_GROUP;
5851 }
5852 break;
5853
5854 default:
5855 gold_unreachable();
5856 }
5857
5858 // If we see an input section and currently there is no group, start
5859 // a new one. Skip any empty sections. We look at the data size
5860 // instead of calling p->relobj()->section_size() to avoid locking.
5861 if ((p->is_input_section() || p->is_relaxed_input_section())
5862 && (p->data_size() != 0))
5863 {
5864 if (state == NO_GROUP)
5865 {
5866 state = FINDING_STUB_SECTION;
5867 group_begin = p;
5868 group_begin_offset = section_begin_offset;
5869 }
5870
5871 // Keep track of the last input section seen.
5872 group_end = p;
5873 group_end_offset = section_end_offset;
5874 }
5875
5876 off = section_end_offset;
5877 }
5878
5879 // Create a stub group for any ungrouped sections.
5880 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5881 {
5882 gold_assert(group_end != this->input_sections().end());
5883 this->create_stub_group(group_begin, group_end,
5884 (state == FINDING_STUB_SECTION
5885 ? group_end
5886 : stub_table),
5887 target, &new_relaxed_sections, task);
5888 }
5889
5890 // Convert input section into relaxed input section in a batch.
5891 if (!new_relaxed_sections.empty())
5892 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5893
5894 // Update the section offsets
5895 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5896 {
5897 Arm_relobj<big_endian>* arm_relobj =
5898 Arm_relobj<big_endian>::as_arm_relobj(
5899 new_relaxed_sections[i]->relobj());
5900 unsigned int shndx = new_relaxed_sections[i]->shndx();
5901 // Tell Arm_relobj that this input section is converted.
5902 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5903 }
5904 }
5905
5906 // Append non empty text sections in this to LIST in ascending
5907 // order of their position in this.
5908
5909 template<bool big_endian>
5910 void
5911 Arm_output_section<big_endian>::append_text_sections_to_list(
5912 Text_section_list* list)
5913 {
5914 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5915
5916 for (Input_section_list::const_iterator p = this->input_sections().begin();
5917 p != this->input_sections().end();
5918 ++p)
5919 {
5920 // We only care about plain or relaxed input sections. We also
5921 // ignore any merged sections.
5922 if (p->is_input_section() || p->is_relaxed_input_section())
5923 list->push_back(Text_section_list::value_type(p->relobj(),
5924 p->shndx()));
5925 }
5926 }
5927
5928 template<bool big_endian>
5929 void
5930 Arm_output_section<big_endian>::fix_exidx_coverage(
5931 Layout* layout,
5932 const Text_section_list& sorted_text_sections,
5933 Symbol_table* symtab,
5934 bool merge_exidx_entries,
5935 const Task* task)
5936 {
5937 // We should only do this for the EXIDX output section.
5938 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5939
5940 // We don't want the relaxation loop to undo these changes, so we discard
5941 // the current saved states and take another one after the fix-up.
5942 this->discard_states();
5943
5944 // Remove all input sections.
5945 uint64_t address = this->address();
5946 typedef std::list<Output_section::Input_section> Input_section_list;
5947 Input_section_list input_sections;
5948 this->reset_address_and_file_offset();
5949 this->get_input_sections(address, std::string(""), &input_sections);
5950
5951 if (!this->input_sections().empty())
5952 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5953
5954 // Go through all the known input sections and record them.
5955 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5956 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5957 Section_id_hash> Text_to_exidx_map;
5958 Text_to_exidx_map text_to_exidx_map;
5959 for (Input_section_list::const_iterator p = input_sections.begin();
5960 p != input_sections.end();
5961 ++p)
5962 {
5963 // This should never happen. At this point, we should only see
5964 // plain EXIDX input sections.
5965 gold_assert(!p->is_relaxed_input_section());
5966 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5967 }
5968
5969 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5970
5971 // Go over the sorted text sections.
5972 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5973 Section_id_set processed_input_sections;
5974 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5975 p != sorted_text_sections.end();
5976 ++p)
5977 {
5978 Relobj* relobj = p->first;
5979 unsigned int shndx = p->second;
5980
5981 Arm_relobj<big_endian>* arm_relobj =
5982 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5983 const Arm_exidx_input_section* exidx_input_section =
5984 arm_relobj->exidx_input_section_by_link(shndx);
5985
5986 // If this text section has no EXIDX section or if the EXIDX section
5987 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5988 // of the last seen EXIDX section.
5989 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5990 {
5991 exidx_fixup.add_exidx_cantunwind_as_needed();
5992 continue;
5993 }
5994
5995 Relobj* exidx_relobj = exidx_input_section->relobj();
5996 unsigned int exidx_shndx = exidx_input_section->shndx();
5997 Section_id sid(exidx_relobj, exidx_shndx);
5998 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5999 if (iter == text_to_exidx_map.end())
6000 {
6001 // This is odd. We have not seen this EXIDX input section before.
6002 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
6003 // issue a warning instead. We assume the user knows what he
6004 // or she is doing. Otherwise, this is an error.
6005 if (layout->script_options()->saw_sections_clause())
6006 gold_warning(_("unwinding may not work because EXIDX input section"
6007 " %u of %s is not in EXIDX output section"),
6008 exidx_shndx, exidx_relobj->name().c_str());
6009 else
6010 gold_error(_("unwinding may not work because EXIDX input section"
6011 " %u of %s is not in EXIDX output section"),
6012 exidx_shndx, exidx_relobj->name().c_str());
6013
6014 exidx_fixup.add_exidx_cantunwind_as_needed();
6015 continue;
6016 }
6017
6018 // We need to access the contents of the EXIDX section, lock the
6019 // object here.
6020 Task_lock_obj<Object> tl(task, exidx_relobj);
6021 section_size_type exidx_size;
6022 const unsigned char* exidx_contents =
6023 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
6024
6025 // Fix up coverage and append input section to output data list.
6026 Arm_exidx_section_offset_map* section_offset_map = NULL;
6027 uint32_t deleted_bytes =
6028 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
6029 exidx_contents,
6030 exidx_size,
6031 &section_offset_map);
6032
6033 if (deleted_bytes == exidx_input_section->size())
6034 {
6035 // The whole EXIDX section got merged. Remove it from output.
6036 gold_assert(section_offset_map == NULL);
6037 exidx_relobj->set_output_section(exidx_shndx, NULL);
6038
6039 // All local symbols defined in this input section will be dropped.
6040 // We need to adjust output local symbol count.
6041 arm_relobj->set_output_local_symbol_count_needs_update();
6042 }
6043 else if (deleted_bytes > 0)
6044 {
6045 // Some entries are merged. We need to convert this EXIDX input
6046 // section into a relaxed section.
6047 gold_assert(section_offset_map != NULL);
6048
6049 Arm_exidx_merged_section* merged_section =
6050 new Arm_exidx_merged_section(*exidx_input_section,
6051 *section_offset_map, deleted_bytes);
6052 merged_section->build_contents(exidx_contents, exidx_size);
6053
6054 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6055 this->add_relaxed_input_section(layout, merged_section, secname);
6056 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6057
6058 // All local symbols defined in discarded portions of this input
6059 // section will be dropped. We need to adjust output local symbol
6060 // count.
6061 arm_relobj->set_output_local_symbol_count_needs_update();
6062 }
6063 else
6064 {
6065 // Just add back the EXIDX input section.
6066 gold_assert(section_offset_map == NULL);
6067 const Output_section::Input_section* pis = iter->second;
6068 gold_assert(pis->is_input_section());
6069 this->add_script_input_section(*pis);
6070 }
6071
6072 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6073 }
6074
6075 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6076 exidx_fixup.add_exidx_cantunwind_as_needed();
6077
6078 // Remove any known EXIDX input sections that are not processed.
6079 for (Input_section_list::const_iterator p = input_sections.begin();
6080 p != input_sections.end();
6081 ++p)
6082 {
6083 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6084 == processed_input_sections.end())
6085 {
6086 // We discard a known EXIDX section because its linked
6087 // text section has been folded by ICF. We also discard an
6088 // EXIDX section with error, the output does not matter in this
6089 // case. We do this to avoid triggering asserts.
6090 Arm_relobj<big_endian>* arm_relobj =
6091 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6092 const Arm_exidx_input_section* exidx_input_section =
6093 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6094 gold_assert(exidx_input_section != NULL);
6095 if (!exidx_input_section->has_errors())
6096 {
6097 unsigned int text_shndx = exidx_input_section->link();
6098 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6099 }
6100
6101 // Remove this from link. We also need to recount the
6102 // local symbols.
6103 p->relobj()->set_output_section(p->shndx(), NULL);
6104 arm_relobj->set_output_local_symbol_count_needs_update();
6105 }
6106 }
6107
6108 // Link exidx output section to the first seen output section and
6109 // set correct entry size.
6110 this->set_link_section(exidx_fixup.first_output_text_section());
6111 this->set_entsize(8);
6112
6113 // Make changes permanent.
6114 this->save_states();
6115 this->set_section_offsets_need_adjustment();
6116 }
6117
6118 // Link EXIDX output sections to text output sections.
6119
6120 template<bool big_endian>
6121 void
6122 Arm_output_section<big_endian>::set_exidx_section_link()
6123 {
6124 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6125 if (!this->input_sections().empty())
6126 {
6127 Input_section_list::const_iterator p = this->input_sections().begin();
6128 Arm_relobj<big_endian>* arm_relobj =
6129 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6130 unsigned exidx_shndx = p->shndx();
6131 const Arm_exidx_input_section* exidx_input_section =
6132 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6133 gold_assert(exidx_input_section != NULL);
6134 unsigned int text_shndx = exidx_input_section->link();
6135 Output_section* os = arm_relobj->output_section(text_shndx);
6136 this->set_link_section(os);
6137 }
6138 }
6139
6140 // Arm_relobj methods.
6141
6142 // Determine if an input section is scannable for stub processing. SHDR is
6143 // the header of the section and SHNDX is the section index. OS is the output
6144 // section for the input section and SYMTAB is the global symbol table used to
6145 // look up ICF information.
6146
6147 template<bool big_endian>
6148 bool
6149 Arm_relobj<big_endian>::section_is_scannable(
6150 const elfcpp::Shdr<32, big_endian>& shdr,
6151 unsigned int shndx,
6152 const Output_section* os,
6153 const Symbol_table* symtab)
6154 {
6155 // Skip any empty sections, unallocated sections or sections whose
6156 // type are not SHT_PROGBITS.
6157 if (shdr.get_sh_size() == 0
6158 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6159 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6160 return false;
6161
6162 // Skip any discarded or ICF'ed sections.
6163 if (os == NULL || symtab->is_section_folded(this, shndx))
6164 return false;
6165
6166 // If this requires special offset handling, check to see if it is
6167 // a relaxed section. If this is not, then it is a merged section that
6168 // we cannot handle.
6169 if (this->is_output_section_offset_invalid(shndx))
6170 {
6171 const Output_relaxed_input_section* poris =
6172 os->find_relaxed_input_section(this, shndx);
6173 if (poris == NULL)
6174 return false;
6175 }
6176
6177 return true;
6178 }
6179
6180 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6181 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6182
6183 template<bool big_endian>
6184 bool
6185 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6186 const elfcpp::Shdr<32, big_endian>& shdr,
6187 const Relobj::Output_sections& out_sections,
6188 const Symbol_table* symtab,
6189 const unsigned char* pshdrs)
6190 {
6191 unsigned int sh_type = shdr.get_sh_type();
6192 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6193 return false;
6194
6195 // Ignore empty section.
6196 off_t sh_size = shdr.get_sh_size();
6197 if (sh_size == 0)
6198 return false;
6199
6200 // Ignore reloc section with unexpected symbol table. The
6201 // error will be reported in the final link.
6202 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6203 return false;
6204
6205 unsigned int reloc_size;
6206 if (sh_type == elfcpp::SHT_REL)
6207 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6208 else
6209 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6210
6211 // Ignore reloc section with unexpected entsize or uneven size.
6212 // The error will be reported in the final link.
6213 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6214 return false;
6215
6216 // Ignore reloc section with bad info. This error will be
6217 // reported in the final link.
6218 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6219 if (index >= this->shnum())
6220 return false;
6221
6222 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6223 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6224 return this->section_is_scannable(text_shdr, index,
6225 out_sections[index], symtab);
6226 }
6227
6228 // Return the output address of either a plain input section or a relaxed
6229 // input section. SHNDX is the section index. We define and use this
6230 // instead of calling Output_section::output_address because that is slow
6231 // for large output.
6232
6233 template<bool big_endian>
6234 Arm_address
6235 Arm_relobj<big_endian>::simple_input_section_output_address(
6236 unsigned int shndx,
6237 Output_section* os)
6238 {
6239 if (this->is_output_section_offset_invalid(shndx))
6240 {
6241 const Output_relaxed_input_section* poris =
6242 os->find_relaxed_input_section(this, shndx);
6243 // We do not handle merged sections here.
6244 gold_assert(poris != NULL);
6245 return poris->address();
6246 }
6247 else
6248 return os->address() + this->get_output_section_offset(shndx);
6249 }
6250
6251 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6252 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6253
6254 template<bool big_endian>
6255 bool
6256 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6257 const elfcpp::Shdr<32, big_endian>& shdr,
6258 unsigned int shndx,
6259 Output_section* os,
6260 const Symbol_table* symtab)
6261 {
6262 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6263 return false;
6264
6265 // If the section does not cross any 4K-boundaries, it does not need to
6266 // be scanned.
6267 Arm_address address = this->simple_input_section_output_address(shndx, os);
6268 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6269 return false;
6270
6271 return true;
6272 }
6273
6274 // Scan a section for Cortex-A8 workaround.
6275
6276 template<bool big_endian>
6277 void
6278 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6279 const elfcpp::Shdr<32, big_endian>& shdr,
6280 unsigned int shndx,
6281 Output_section* os,
6282 Target_arm<big_endian>* arm_target)
6283 {
6284 // Look for the first mapping symbol in this section. It should be
6285 // at (shndx, 0).
6286 Mapping_symbol_position section_start(shndx, 0);
6287 typename Mapping_symbols_info::const_iterator p =
6288 this->mapping_symbols_info_.lower_bound(section_start);
6289
6290 // There are no mapping symbols for this section. Treat it as a data-only
6291 // section.
6292 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6293 return;
6294
6295 Arm_address output_address =
6296 this->simple_input_section_output_address(shndx, os);
6297
6298 // Get the section contents.
6299 section_size_type input_view_size = 0;
6300 const unsigned char* input_view =
6301 this->section_contents(shndx, &input_view_size, false);
6302
6303 // We need to go through the mapping symbols to determine what to
6304 // scan. There are two reasons. First, we should look at THUMB code and
6305 // THUMB code only. Second, we only want to look at the 4K-page boundary
6306 // to speed up the scanning.
6307
6308 while (p != this->mapping_symbols_info_.end()
6309 && p->first.first == shndx)
6310 {
6311 typename Mapping_symbols_info::const_iterator next =
6312 this->mapping_symbols_info_.upper_bound(p->first);
6313
6314 // Only scan part of a section with THUMB code.
6315 if (p->second == 't')
6316 {
6317 // Determine the end of this range.
6318 section_size_type span_start =
6319 convert_to_section_size_type(p->first.second);
6320 section_size_type span_end;
6321 if (next != this->mapping_symbols_info_.end()
6322 && next->first.first == shndx)
6323 span_end = convert_to_section_size_type(next->first.second);
6324 else
6325 span_end = convert_to_section_size_type(shdr.get_sh_size());
6326
6327 if (((span_start + output_address) & ~0xfffUL)
6328 != ((span_end + output_address - 1) & ~0xfffUL))
6329 {
6330 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6331 span_start, span_end,
6332 input_view,
6333 output_address);
6334 }
6335 }
6336
6337 p = next;
6338 }
6339 }
6340
6341 // Scan relocations for stub generation.
6342
6343 template<bool big_endian>
6344 void
6345 Arm_relobj<big_endian>::scan_sections_for_stubs(
6346 Target_arm<big_endian>* arm_target,
6347 const Symbol_table* symtab,
6348 const Layout* layout)
6349 {
6350 unsigned int shnum = this->shnum();
6351 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6352
6353 // Read the section headers.
6354 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6355 shnum * shdr_size,
6356 true, true);
6357
6358 // To speed up processing, we set up hash tables for fast lookup of
6359 // input offsets to output addresses.
6360 this->initialize_input_to_output_maps();
6361
6362 const Relobj::Output_sections& out_sections(this->output_sections());
6363
6364 Relocate_info<32, big_endian> relinfo;
6365 relinfo.symtab = symtab;
6366 relinfo.layout = layout;
6367 relinfo.object = this;
6368
6369 // Do relocation stubs scanning.
6370 const unsigned char* p = pshdrs + shdr_size;
6371 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6372 {
6373 const elfcpp::Shdr<32, big_endian> shdr(p);
6374 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6375 pshdrs))
6376 {
6377 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6378 Arm_address output_offset = this->get_output_section_offset(index);
6379 Arm_address output_address;
6380 if (output_offset != invalid_address)
6381 output_address = out_sections[index]->address() + output_offset;
6382 else
6383 {
6384 // Currently this only happens for a relaxed section.
6385 const Output_relaxed_input_section* poris =
6386 out_sections[index]->find_relaxed_input_section(this, index);
6387 gold_assert(poris != NULL);
6388 output_address = poris->address();
6389 }
6390
6391 // Get the relocations.
6392 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6393 shdr.get_sh_size(),
6394 true, false);
6395
6396 // Get the section contents. This does work for the case in which
6397 // we modify the contents of an input section. We need to pass the
6398 // output view under such circumstances.
6399 section_size_type input_view_size = 0;
6400 const unsigned char* input_view =
6401 this->section_contents(index, &input_view_size, false);
6402
6403 relinfo.reloc_shndx = i;
6404 relinfo.data_shndx = index;
6405 unsigned int sh_type = shdr.get_sh_type();
6406 unsigned int reloc_size;
6407 if (sh_type == elfcpp::SHT_REL)
6408 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6409 else
6410 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6411
6412 Output_section* os = out_sections[index];
6413 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6414 shdr.get_sh_size() / reloc_size,
6415 os,
6416 output_offset == invalid_address,
6417 input_view, output_address,
6418 input_view_size);
6419 }
6420 }
6421
6422 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6423 // after its relocation section, if there is one, is processed for
6424 // relocation stubs. Merging this loop with the one above would have been
6425 // complicated since we would have had to make sure that relocation stub
6426 // scanning is done first.
6427 if (arm_target->fix_cortex_a8())
6428 {
6429 const unsigned char* p = pshdrs + shdr_size;
6430 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6431 {
6432 const elfcpp::Shdr<32, big_endian> shdr(p);
6433 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6434 out_sections[i],
6435 symtab))
6436 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6437 arm_target);
6438 }
6439 }
6440
6441 // After we've done the relocations, we release the hash tables,
6442 // since we no longer need them.
6443 this->free_input_to_output_maps();
6444 }
6445
6446 // Count the local symbols. The ARM backend needs to know if a symbol
6447 // is a THUMB function or not. For global symbols, it is easy because
6448 // the Symbol object keeps the ELF symbol type. For local symbol it is
6449 // harder because we cannot access this information. So we override the
6450 // do_count_local_symbol in parent and scan local symbols to mark
6451 // THUMB functions. This is not the most efficient way but I do not want to
6452 // slow down other ports by calling a per symbol target hook inside
6453 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6454
6455 template<bool big_endian>
6456 void
6457 Arm_relobj<big_endian>::do_count_local_symbols(
6458 Stringpool_template<char>* pool,
6459 Stringpool_template<char>* dynpool)
6460 {
6461 // We need to fix-up the values of any local symbols whose type are
6462 // STT_ARM_TFUNC.
6463
6464 // Ask parent to count the local symbols.
6465 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6466 const unsigned int loccount = this->local_symbol_count();
6467 if (loccount == 0)
6468 return;
6469
6470 // Initialize the thumb function bit-vector.
6471 std::vector<bool> empty_vector(loccount, false);
6472 this->local_symbol_is_thumb_function_.swap(empty_vector);
6473
6474 // Read the symbol table section header.
6475 const unsigned int symtab_shndx = this->symtab_shndx();
6476 elfcpp::Shdr<32, big_endian>
6477 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6478 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6479
6480 // Read the local symbols.
6481 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6482 gold_assert(loccount == symtabshdr.get_sh_info());
6483 off_t locsize = loccount * sym_size;
6484 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6485 locsize, true, true);
6486
6487 // For mapping symbol processing, we need to read the symbol names.
6488 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6489 if (strtab_shndx >= this->shnum())
6490 {
6491 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6492 return;
6493 }
6494
6495 elfcpp::Shdr<32, big_endian>
6496 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6497 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6498 {
6499 this->error(_("symbol table name section has wrong type: %u"),
6500 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6501 return;
6502 }
6503 const char* pnames =
6504 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6505 strtabshdr.get_sh_size(),
6506 false, false));
6507
6508 // Loop over the local symbols and mark any local symbols pointing
6509 // to THUMB functions.
6510
6511 // Skip the first dummy symbol.
6512 psyms += sym_size;
6513 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6514 this->local_values();
6515 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6516 {
6517 elfcpp::Sym<32, big_endian> sym(psyms);
6518 elfcpp::STT st_type = sym.get_st_type();
6519 Symbol_value<32>& lv((*plocal_values)[i]);
6520 Arm_address input_value = lv.input_value();
6521
6522 // Check to see if this is a mapping symbol.
6523 const char* sym_name = pnames + sym.get_st_name();
6524 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6525 {
6526 bool is_ordinary;
6527 unsigned int input_shndx =
6528 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6529 gold_assert(is_ordinary);
6530
6531 // Strip of LSB in case this is a THUMB symbol.
6532 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6533 this->mapping_symbols_info_[msp] = sym_name[1];
6534 }
6535
6536 if (st_type == elfcpp::STT_ARM_TFUNC
6537 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6538 {
6539 // This is a THUMB function. Mark this and canonicalize the
6540 // symbol value by setting LSB.
6541 this->local_symbol_is_thumb_function_[i] = true;
6542 if ((input_value & 1) == 0)
6543 lv.set_input_value(input_value | 1);
6544 }
6545 }
6546 }
6547
6548 // Relocate sections.
6549 template<bool big_endian>
6550 void
6551 Arm_relobj<big_endian>::do_relocate_sections(
6552 const Symbol_table* symtab,
6553 const Layout* layout,
6554 const unsigned char* pshdrs,
6555 Output_file* of,
6556 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6557 {
6558 // Call parent to relocate sections.
6559 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6560 pshdrs, of, pviews);
6561
6562 // We do not generate stubs if doing a relocatable link.
6563 if (parameters->options().relocatable())
6564 return;
6565
6566 // Relocate stub tables.
6567 unsigned int shnum = this->shnum();
6568
6569 Target_arm<big_endian>* arm_target =
6570 Target_arm<big_endian>::default_target();
6571
6572 Relocate_info<32, big_endian> relinfo;
6573 relinfo.symtab = symtab;
6574 relinfo.layout = layout;
6575 relinfo.object = this;
6576
6577 for (unsigned int i = 1; i < shnum; ++i)
6578 {
6579 Arm_input_section<big_endian>* arm_input_section =
6580 arm_target->find_arm_input_section(this, i);
6581
6582 if (arm_input_section != NULL
6583 && arm_input_section->is_stub_table_owner()
6584 && !arm_input_section->stub_table()->empty())
6585 {
6586 // We cannot discard a section if it owns a stub table.
6587 Output_section* os = this->output_section(i);
6588 gold_assert(os != NULL);
6589
6590 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6591 relinfo.reloc_shdr = NULL;
6592 relinfo.data_shndx = i;
6593 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6594
6595 gold_assert((*pviews)[i].view != NULL);
6596
6597 // We are passed the output section view. Adjust it to cover the
6598 // stub table only.
6599 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6600 gold_assert((stub_table->address() >= (*pviews)[i].address)
6601 && ((stub_table->address() + stub_table->data_size())
6602 <= (*pviews)[i].address + (*pviews)[i].view_size));
6603
6604 off_t offset = stub_table->address() - (*pviews)[i].address;
6605 unsigned char* view = (*pviews)[i].view + offset;
6606 Arm_address address = stub_table->address();
6607 section_size_type view_size = stub_table->data_size();
6608
6609 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6610 view_size);
6611 }
6612
6613 // Apply Cortex A8 workaround if applicable.
6614 if (this->section_has_cortex_a8_workaround(i))
6615 {
6616 unsigned char* view = (*pviews)[i].view;
6617 Arm_address view_address = (*pviews)[i].address;
6618 section_size_type view_size = (*pviews)[i].view_size;
6619 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6620
6621 // Adjust view to cover section.
6622 Output_section* os = this->output_section(i);
6623 gold_assert(os != NULL);
6624 Arm_address section_address =
6625 this->simple_input_section_output_address(i, os);
6626 uint64_t section_size = this->section_size(i);
6627
6628 gold_assert(section_address >= view_address
6629 && ((section_address + section_size)
6630 <= (view_address + view_size)));
6631
6632 unsigned char* section_view = view + (section_address - view_address);
6633
6634 // Apply the Cortex-A8 workaround to the output address range
6635 // corresponding to this input section.
6636 stub_table->apply_cortex_a8_workaround_to_address_range(
6637 arm_target,
6638 section_view,
6639 section_address,
6640 section_size);
6641 }
6642 // BE8 swapping
6643 if (parameters->options().be8())
6644 {
6645 section_size_type span_start, span_end;
6646 elfcpp::Shdr<32, big_endian>
6647 shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
6648 Mapping_symbol_position section_start(i, 0);
6649 typename Mapping_symbols_info::const_iterator p =
6650 this->mapping_symbols_info_.lower_bound(section_start);
6651 unsigned char* view = (*pviews)[i].view;
6652 Arm_address view_address = (*pviews)[i].address;
6653 section_size_type view_size = (*pviews)[i].view_size;
6654 while (p != this->mapping_symbols_info_.end()
6655 && p->first.first == i)
6656 {
6657 typename Mapping_symbols_info::const_iterator next =
6658 this->mapping_symbols_info_.upper_bound(p->first);
6659
6660 // Only swap arm or thumb code.
6661 if ((p->second == 'a') || (p->second == 't'))
6662 {
6663 Output_section* os = this->output_section(i);
6664 gold_assert(os != NULL);
6665 Arm_address section_address =
6666 this->simple_input_section_output_address(i, os);
6667 span_start = convert_to_section_size_type(p->first.second);
6668 if (next != this->mapping_symbols_info_.end()
6669 && next->first.first == i)
6670 span_end =
6671 convert_to_section_size_type(next->first.second);
6672 else
6673 span_end =
6674 convert_to_section_size_type(shdr.get_sh_size());
6675 unsigned char* section_view =
6676 view + (section_address - view_address);
6677 uint64_t section_size = this->section_size(i);
6678
6679 gold_assert(section_address >= view_address
6680 && ((section_address + section_size)
6681 <= (view_address + view_size)));
6682
6683 // Set Output view for swapping
6684 unsigned char *oview = section_view + span_start;
6685 unsigned int index = 0;
6686 if (p->second == 'a')
6687 {
6688 while (index + 3 < (span_end - span_start))
6689 {
6690 typedef typename elfcpp::Swap<32, big_endian>
6691 ::Valtype Valtype;
6692 Valtype* wv =
6693 reinterpret_cast<Valtype*>(oview+index);
6694 uint32_t val = elfcpp::Swap<32, false>::readval(wv);
6695 elfcpp::Swap<32, true>::writeval(wv, val);
6696 index += 4;
6697 }
6698 }
6699 else if (p->second == 't')
6700 {
6701 while (index + 1 < (span_end - span_start))
6702 {
6703 typedef typename elfcpp::Swap<16, big_endian>
6704 ::Valtype Valtype;
6705 Valtype* wv =
6706 reinterpret_cast<Valtype*>(oview+index);
6707 uint16_t val = elfcpp::Swap<16, false>::readval(wv);
6708 elfcpp::Swap<16, true>::writeval(wv, val);
6709 index += 2;
6710 }
6711 }
6712 }
6713 p = next;
6714 }
6715 }
6716 }
6717 }
6718
6719 // Find the linked text section of an EXIDX section by looking at the first
6720 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6721 // must be linked to its associated code section via the sh_link field of
6722 // its section header. However, some tools are broken and the link is not
6723 // always set. LD just drops such an EXIDX section silently, causing the
6724 // associated code not unwindabled. Here we try a little bit harder to
6725 // discover the linked code section.
6726 //
6727 // PSHDR points to the section header of a relocation section of an EXIDX
6728 // section. If we can find a linked text section, return true and
6729 // store the text section index in the location PSHNDX. Otherwise
6730 // return false.
6731
6732 template<bool big_endian>
6733 bool
6734 Arm_relobj<big_endian>::find_linked_text_section(
6735 const unsigned char* pshdr,
6736 const unsigned char* psyms,
6737 unsigned int* pshndx)
6738 {
6739 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6740
6741 // If there is no relocation, we cannot find the linked text section.
6742 size_t reloc_size;
6743 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6744 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6745 else
6746 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6747 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6748
6749 // Get the relocations.
6750 const unsigned char* prelocs =
6751 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6752
6753 // Find the REL31 relocation for the first word of the first EXIDX entry.
6754 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6755 {
6756 Arm_address r_offset;
6757 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6758 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6759 {
6760 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6761 r_info = reloc.get_r_info();
6762 r_offset = reloc.get_r_offset();
6763 }
6764 else
6765 {
6766 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6767 r_info = reloc.get_r_info();
6768 r_offset = reloc.get_r_offset();
6769 }
6770
6771 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6772 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6773 continue;
6774
6775 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6776 if (r_sym == 0
6777 || r_sym >= this->local_symbol_count()
6778 || r_offset != 0)
6779 continue;
6780
6781 // This is the relocation for the first word of the first EXIDX entry.
6782 // We expect to see a local section symbol.
6783 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6784 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6785 if (sym.get_st_type() == elfcpp::STT_SECTION)
6786 {
6787 bool is_ordinary;
6788 *pshndx =
6789 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6790 gold_assert(is_ordinary);
6791 return true;
6792 }
6793 else
6794 return false;
6795 }
6796
6797 return false;
6798 }
6799
6800 // Make an EXIDX input section object for an EXIDX section whose index is
6801 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6802 // is the section index of the linked text section.
6803
6804 template<bool big_endian>
6805 void
6806 Arm_relobj<big_endian>::make_exidx_input_section(
6807 unsigned int shndx,
6808 const elfcpp::Shdr<32, big_endian>& shdr,
6809 unsigned int text_shndx,
6810 const elfcpp::Shdr<32, big_endian>& text_shdr)
6811 {
6812 // Create an Arm_exidx_input_section object for this EXIDX section.
6813 Arm_exidx_input_section* exidx_input_section =
6814 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6815 shdr.get_sh_addralign(),
6816 text_shdr.get_sh_size());
6817
6818 gold_assert(this->exidx_section_map_[shndx] == NULL);
6819 this->exidx_section_map_[shndx] = exidx_input_section;
6820
6821 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6822 {
6823 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6824 this->section_name(shndx).c_str(), shndx, text_shndx,
6825 this->name().c_str());
6826 exidx_input_section->set_has_errors();
6827 }
6828 else if (this->exidx_section_map_[text_shndx] != NULL)
6829 {
6830 unsigned other_exidx_shndx =
6831 this->exidx_section_map_[text_shndx]->shndx();
6832 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6833 "%s(%u) in %s"),
6834 this->section_name(shndx).c_str(), shndx,
6835 this->section_name(other_exidx_shndx).c_str(),
6836 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6837 text_shndx, this->name().c_str());
6838 exidx_input_section->set_has_errors();
6839 }
6840 else
6841 this->exidx_section_map_[text_shndx] = exidx_input_section;
6842
6843 // Check section flags of text section.
6844 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6845 {
6846 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6847 " in %s"),
6848 this->section_name(shndx).c_str(), shndx,
6849 this->section_name(text_shndx).c_str(), text_shndx,
6850 this->name().c_str());
6851 exidx_input_section->set_has_errors();
6852 }
6853 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6854 // I would like to make this an error but currently ld just ignores
6855 // this.
6856 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6857 "%s(%u) in %s"),
6858 this->section_name(shndx).c_str(), shndx,
6859 this->section_name(text_shndx).c_str(), text_shndx,
6860 this->name().c_str());
6861 }
6862
6863 // Read the symbol information.
6864
6865 template<bool big_endian>
6866 void
6867 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6868 {
6869 // Call parent class to read symbol information.
6870 this->base_read_symbols(sd);
6871
6872 // If this input file is a binary file, it has no processor
6873 // specific flags and attributes section.
6874 Input_file::Format format = this->input_file()->format();
6875 if (format != Input_file::FORMAT_ELF)
6876 {
6877 gold_assert(format == Input_file::FORMAT_BINARY);
6878 this->merge_flags_and_attributes_ = false;
6879 return;
6880 }
6881
6882 // Read processor-specific flags in ELF file header.
6883 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6884 elfcpp::Elf_sizes<32>::ehdr_size,
6885 true, false);
6886 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6887 this->processor_specific_flags_ = ehdr.get_e_flags();
6888
6889 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6890 // sections.
6891 std::vector<unsigned int> deferred_exidx_sections;
6892 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6893 const unsigned char* pshdrs = sd->section_headers->data();
6894 const unsigned char* ps = pshdrs + shdr_size;
6895 bool must_merge_flags_and_attributes = false;
6896 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6897 {
6898 elfcpp::Shdr<32, big_endian> shdr(ps);
6899
6900 // Sometimes an object has no contents except the section name string
6901 // table and an empty symbol table with the undefined symbol. We
6902 // don't want to merge processor-specific flags from such an object.
6903 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6904 {
6905 // Symbol table is not empty.
6906 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6907 elfcpp::Elf_sizes<32>::sym_size;
6908 if (shdr.get_sh_size() > sym_size)
6909 must_merge_flags_and_attributes = true;
6910 }
6911 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6912 // If this is neither an empty symbol table nor a string table,
6913 // be conservative.
6914 must_merge_flags_and_attributes = true;
6915
6916 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6917 {
6918 gold_assert(this->attributes_section_data_ == NULL);
6919 section_offset_type section_offset = shdr.get_sh_offset();
6920 section_size_type section_size =
6921 convert_to_section_size_type(shdr.get_sh_size());
6922 const unsigned char* view =
6923 this->get_view(section_offset, section_size, true, false);
6924 this->attributes_section_data_ =
6925 new Attributes_section_data(view, section_size);
6926 }
6927 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6928 {
6929 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6930 if (text_shndx == elfcpp::SHN_UNDEF)
6931 deferred_exidx_sections.push_back(i);
6932 else
6933 {
6934 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6935 + text_shndx * shdr_size);
6936 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6937 }
6938 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6939 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6940 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6941 this->section_name(i).c_str(), this->name().c_str());
6942 }
6943 }
6944
6945 // This is rare.
6946 if (!must_merge_flags_and_attributes)
6947 {
6948 gold_assert(deferred_exidx_sections.empty());
6949 this->merge_flags_and_attributes_ = false;
6950 return;
6951 }
6952
6953 // Some tools are broken and they do not set the link of EXIDX sections.
6954 // We look at the first relocation to figure out the linked sections.
6955 if (!deferred_exidx_sections.empty())
6956 {
6957 // We need to go over the section headers again to find the mapping
6958 // from sections being relocated to their relocation sections. This is
6959 // a bit inefficient as we could do that in the loop above. However,
6960 // we do not expect any deferred EXIDX sections normally. So we do not
6961 // want to slow down the most common path.
6962 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6963 Reloc_map reloc_map;
6964 ps = pshdrs + shdr_size;
6965 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6966 {
6967 elfcpp::Shdr<32, big_endian> shdr(ps);
6968 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6969 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6970 {
6971 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6972 if (info_shndx >= this->shnum())
6973 gold_error(_("relocation section %u has invalid info %u"),
6974 i, info_shndx);
6975 Reloc_map::value_type value(info_shndx, i);
6976 std::pair<Reloc_map::iterator, bool> result =
6977 reloc_map.insert(value);
6978 if (!result.second)
6979 gold_error(_("section %u has multiple relocation sections "
6980 "%u and %u"),
6981 info_shndx, i, reloc_map[info_shndx]);
6982 }
6983 }
6984
6985 // Read the symbol table section header.
6986 const unsigned int symtab_shndx = this->symtab_shndx();
6987 elfcpp::Shdr<32, big_endian>
6988 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6989 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6990
6991 // Read the local symbols.
6992 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6993 const unsigned int loccount = this->local_symbol_count();
6994 gold_assert(loccount == symtabshdr.get_sh_info());
6995 off_t locsize = loccount * sym_size;
6996 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6997 locsize, true, true);
6998
6999 // Process the deferred EXIDX sections.
7000 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
7001 {
7002 unsigned int shndx = deferred_exidx_sections[i];
7003 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
7004 unsigned int text_shndx = elfcpp::SHN_UNDEF;
7005 Reloc_map::const_iterator it = reloc_map.find(shndx);
7006 if (it != reloc_map.end())
7007 find_linked_text_section(pshdrs + it->second * shdr_size,
7008 psyms, &text_shndx);
7009 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
7010 + text_shndx * shdr_size);
7011 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
7012 }
7013 }
7014 }
7015
7016 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
7017 // sections for unwinding. These sections are referenced implicitly by
7018 // text sections linked in the section headers. If we ignore these implicit
7019 // references, the .ARM.exidx sections and any .ARM.extab sections they use
7020 // will be garbage-collected incorrectly. Hence we override the same function
7021 // in the base class to handle these implicit references.
7022
7023 template<bool big_endian>
7024 void
7025 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
7026 Layout* layout,
7027 Read_relocs_data* rd)
7028 {
7029 // First, call base class method to process relocations in this object.
7030 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
7031
7032 // If --gc-sections is not specified, there is nothing more to do.
7033 // This happens when --icf is used but --gc-sections is not.
7034 if (!parameters->options().gc_sections())
7035 return;
7036
7037 unsigned int shnum = this->shnum();
7038 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7039 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
7040 shnum * shdr_size,
7041 true, true);
7042
7043 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
7044 // to these from the linked text sections.
7045 const unsigned char* ps = pshdrs + shdr_size;
7046 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
7047 {
7048 elfcpp::Shdr<32, big_endian> shdr(ps);
7049 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
7050 {
7051 // Found an .ARM.exidx section, add it to the set of reachable
7052 // sections from its linked text section.
7053 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
7054 symtab->gc()->add_reference(this, text_shndx, this, i);
7055 }
7056 }
7057 }
7058
7059 // Update output local symbol count. Owing to EXIDX entry merging, some local
7060 // symbols will be removed in output. Adjust output local symbol count
7061 // accordingly. We can only changed the static output local symbol count. It
7062 // is too late to change the dynamic symbols.
7063
7064 template<bool big_endian>
7065 void
7066 Arm_relobj<big_endian>::update_output_local_symbol_count()
7067 {
7068 // Caller should check that this needs updating. We want caller checking
7069 // because output_local_symbol_count_needs_update() is most likely inlined.
7070 gold_assert(this->output_local_symbol_count_needs_update_);
7071
7072 gold_assert(this->symtab_shndx() != -1U);
7073 if (this->symtab_shndx() == 0)
7074 {
7075 // This object has no symbols. Weird but legal.
7076 return;
7077 }
7078
7079 // Read the symbol table section header.
7080 const unsigned int symtab_shndx = this->symtab_shndx();
7081 elfcpp::Shdr<32, big_endian>
7082 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7083 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7084
7085 // Read the local symbols.
7086 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
7087 const unsigned int loccount = this->local_symbol_count();
7088 gold_assert(loccount == symtabshdr.get_sh_info());
7089 off_t locsize = loccount * sym_size;
7090 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7091 locsize, true, true);
7092
7093 // Loop over the local symbols.
7094
7095 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
7096 Output_sections;
7097 const Output_sections& out_sections(this->output_sections());
7098 unsigned int shnum = this->shnum();
7099 unsigned int count = 0;
7100 // Skip the first, dummy, symbol.
7101 psyms += sym_size;
7102 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7103 {
7104 elfcpp::Sym<32, big_endian> sym(psyms);
7105
7106 Symbol_value<32>& lv((*this->local_values())[i]);
7107
7108 // This local symbol was already discarded by do_count_local_symbols.
7109 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7110 continue;
7111
7112 bool is_ordinary;
7113 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7114 &is_ordinary);
7115
7116 if (shndx < shnum)
7117 {
7118 Output_section* os = out_sections[shndx];
7119
7120 // This local symbol no longer has an output section. Discard it.
7121 if (os == NULL)
7122 {
7123 lv.set_no_output_symtab_entry();
7124 continue;
7125 }
7126
7127 // Currently we only discard parts of EXIDX input sections.
7128 // We explicitly check for a merged EXIDX input section to avoid
7129 // calling Output_section_data::output_offset unless necessary.
7130 if ((this->get_output_section_offset(shndx) == invalid_address)
7131 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7132 {
7133 section_offset_type output_offset =
7134 os->output_offset(this, shndx, lv.input_value());
7135 if (output_offset == -1)
7136 {
7137 // This symbol is defined in a part of an EXIDX input section
7138 // that is discarded due to entry merging.
7139 lv.set_no_output_symtab_entry();
7140 continue;
7141 }
7142 }
7143 }
7144
7145 ++count;
7146 }
7147
7148 this->set_output_local_symbol_count(count);
7149 this->output_local_symbol_count_needs_update_ = false;
7150 }
7151
7152 // Arm_dynobj methods.
7153
7154 // Read the symbol information.
7155
7156 template<bool big_endian>
7157 void
7158 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7159 {
7160 // Call parent class to read symbol information.
7161 this->base_read_symbols(sd);
7162
7163 // Read processor-specific flags in ELF file header.
7164 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7165 elfcpp::Elf_sizes<32>::ehdr_size,
7166 true, false);
7167 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7168 this->processor_specific_flags_ = ehdr.get_e_flags();
7169
7170 // Read the attributes section if there is one.
7171 // We read from the end because gas seems to put it near the end of
7172 // the section headers.
7173 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7174 const unsigned char* ps =
7175 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7176 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7177 {
7178 elfcpp::Shdr<32, big_endian> shdr(ps);
7179 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7180 {
7181 section_offset_type section_offset = shdr.get_sh_offset();
7182 section_size_type section_size =
7183 convert_to_section_size_type(shdr.get_sh_size());
7184 const unsigned char* view =
7185 this->get_view(section_offset, section_size, true, false);
7186 this->attributes_section_data_ =
7187 new Attributes_section_data(view, section_size);
7188 break;
7189 }
7190 }
7191 }
7192
7193 // Stub_addend_reader methods.
7194
7195 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7196
7197 template<bool big_endian>
7198 elfcpp::Elf_types<32>::Elf_Swxword
7199 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7200 unsigned int r_type,
7201 const unsigned char* view,
7202 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7203 {
7204 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7205
7206 switch (r_type)
7207 {
7208 case elfcpp::R_ARM_CALL:
7209 case elfcpp::R_ARM_JUMP24:
7210 case elfcpp::R_ARM_PLT32:
7211 {
7212 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7213 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7214 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7215 return Bits<26>::sign_extend32(val << 2);
7216 }
7217
7218 case elfcpp::R_ARM_THM_CALL:
7219 case elfcpp::R_ARM_THM_JUMP24:
7220 case elfcpp::R_ARM_THM_XPC22:
7221 {
7222 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7223 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7224 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7225 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7226 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7227 }
7228
7229 case elfcpp::R_ARM_THM_JUMP19:
7230 {
7231 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7232 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7233 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7234 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7235 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7236 }
7237
7238 default:
7239 gold_unreachable();
7240 }
7241 }
7242
7243 // Arm_output_data_got methods.
7244
7245 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7246 // The first one is initialized to be 1, which is the module index for
7247 // the main executable and the second one 0. A reloc of the type
7248 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7249 // be applied by gold. GSYM is a global symbol.
7250 //
7251 template<bool big_endian>
7252 void
7253 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7254 unsigned int got_type,
7255 Symbol* gsym)
7256 {
7257 if (gsym->has_got_offset(got_type))
7258 return;
7259
7260 // We are doing a static link. Just mark it as belong to module 1,
7261 // the executable.
7262 unsigned int got_offset = this->add_constant(1);
7263 gsym->set_got_offset(got_type, got_offset);
7264 got_offset = this->add_constant(0);
7265 this->static_relocs_.push_back(Static_reloc(got_offset,
7266 elfcpp::R_ARM_TLS_DTPOFF32,
7267 gsym));
7268 }
7269
7270 // Same as the above but for a local symbol.
7271
7272 template<bool big_endian>
7273 void
7274 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7275 unsigned int got_type,
7276 Sized_relobj_file<32, big_endian>* object,
7277 unsigned int index)
7278 {
7279 if (object->local_has_got_offset(index, got_type))
7280 return;
7281
7282 // We are doing a static link. Just mark it as belong to module 1,
7283 // the executable.
7284 unsigned int got_offset = this->add_constant(1);
7285 object->set_local_got_offset(index, got_type, got_offset);
7286 got_offset = this->add_constant(0);
7287 this->static_relocs_.push_back(Static_reloc(got_offset,
7288 elfcpp::R_ARM_TLS_DTPOFF32,
7289 object, index));
7290 }
7291
7292 template<bool big_endian>
7293 void
7294 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7295 {
7296 // Call parent to write out GOT.
7297 Output_data_got<32, big_endian>::do_write(of);
7298
7299 // We are done if there is no fix up.
7300 if (this->static_relocs_.empty())
7301 return;
7302
7303 gold_assert(parameters->doing_static_link());
7304
7305 const off_t offset = this->offset();
7306 const section_size_type oview_size =
7307 convert_to_section_size_type(this->data_size());
7308 unsigned char* const oview = of->get_output_view(offset, oview_size);
7309
7310 Output_segment* tls_segment = this->layout_->tls_segment();
7311 gold_assert(tls_segment != NULL);
7312
7313 // The thread pointer $tp points to the TCB, which is followed by the
7314 // TLS. So we need to adjust $tp relative addressing by this amount.
7315 Arm_address aligned_tcb_size =
7316 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7317
7318 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7319 {
7320 Static_reloc& reloc(this->static_relocs_[i]);
7321
7322 Arm_address value;
7323 if (!reloc.symbol_is_global())
7324 {
7325 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7326 const Symbol_value<32>* psymval =
7327 reloc.relobj()->local_symbol(reloc.index());
7328
7329 // We are doing static linking. Issue an error and skip this
7330 // relocation if the symbol is undefined or in a discarded_section.
7331 bool is_ordinary;
7332 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7333 if ((shndx == elfcpp::SHN_UNDEF)
7334 || (is_ordinary
7335 && shndx != elfcpp::SHN_UNDEF
7336 && !object->is_section_included(shndx)
7337 && !this->symbol_table_->is_section_folded(object, shndx)))
7338 {
7339 gold_error(_("undefined or discarded local symbol %u from "
7340 " object %s in GOT"),
7341 reloc.index(), reloc.relobj()->name().c_str());
7342 continue;
7343 }
7344
7345 value = psymval->value(object, 0);
7346 }
7347 else
7348 {
7349 const Symbol* gsym = reloc.symbol();
7350 gold_assert(gsym != NULL);
7351 if (gsym->is_forwarder())
7352 gsym = this->symbol_table_->resolve_forwards(gsym);
7353
7354 // We are doing static linking. Issue an error and skip this
7355 // relocation if the symbol is undefined or in a discarded_section
7356 // unless it is a weakly_undefined symbol.
7357 if ((gsym->is_defined_in_discarded_section()
7358 || gsym->is_undefined())
7359 && !gsym->is_weak_undefined())
7360 {
7361 gold_error(_("undefined or discarded symbol %s in GOT"),
7362 gsym->name());
7363 continue;
7364 }
7365
7366 if (!gsym->is_weak_undefined())
7367 {
7368 const Sized_symbol<32>* sym =
7369 static_cast<const Sized_symbol<32>*>(gsym);
7370 value = sym->value();
7371 }
7372 else
7373 value = 0;
7374 }
7375
7376 unsigned got_offset = reloc.got_offset();
7377 gold_assert(got_offset < oview_size);
7378
7379 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7380 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7381 Valtype x;
7382 switch (reloc.r_type())
7383 {
7384 case elfcpp::R_ARM_TLS_DTPOFF32:
7385 x = value;
7386 break;
7387 case elfcpp::R_ARM_TLS_TPOFF32:
7388 x = value + aligned_tcb_size;
7389 break;
7390 default:
7391 gold_unreachable();
7392 }
7393 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7394 }
7395
7396 of->write_output_view(offset, oview_size, oview);
7397 }
7398
7399 // A class to handle the PLT data.
7400 // This is an abstract base class that handles most of the linker details
7401 // but does not know the actual contents of PLT entries. The derived
7402 // classes below fill in those details.
7403
7404 template<bool big_endian>
7405 class Output_data_plt_arm : public Output_section_data
7406 {
7407 public:
7408 // Unlike aarch64, which records symbol value in "addend" field of relocations
7409 // and could be done at the same time an IRelative reloc is created for the
7410 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7411 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7412 // to keep necessary symbol information for later use in do_write. We usually
7413 // have only a very limited number of ifuncs, so the extra data required here
7414 // is also limited.
7415
7416 struct IRelative_data
7417 {
7418 IRelative_data(Sized_symbol<32>* sized_symbol)
7419 : symbol_is_global_(true)
7420 {
7421 u_.global = sized_symbol;
7422 }
7423
7424 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7425 unsigned int index)
7426 : symbol_is_global_(false)
7427 {
7428 u_.local.relobj = relobj;
7429 u_.local.index = index;
7430 }
7431
7432 union
7433 {
7434 Sized_symbol<32>* global;
7435
7436 struct
7437 {
7438 Sized_relobj_file<32, big_endian>* relobj;
7439 unsigned int index;
7440 } local;
7441 } u_;
7442
7443 bool symbol_is_global_;
7444 };
7445
7446 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7447 Reloc_section;
7448
7449 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7450 Arm_output_data_got<big_endian>* got,
7451 Output_data_space* got_plt,
7452 Output_data_space* got_irelative);
7453
7454 // Add an entry to the PLT.
7455 void
7456 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7457
7458 // Add the relocation for a plt entry.
7459 void
7460 add_relocation(Symbol_table* symtab, Layout* layout,
7461 Symbol* gsym, unsigned int got_offset);
7462
7463 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7464 unsigned int
7465 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7466 Sized_relobj_file<32, big_endian>* relobj,
7467 unsigned int local_sym_index);
7468
7469 // Return the .rel.plt section data.
7470 const Reloc_section*
7471 rel_plt() const
7472 { return this->rel_; }
7473
7474 // Return the PLT relocation container for IRELATIVE.
7475 Reloc_section*
7476 rel_irelative(Symbol_table*, Layout*);
7477
7478 // Return the number of PLT entries.
7479 unsigned int
7480 entry_count() const
7481 { return this->count_ + this->irelative_count_; }
7482
7483 // Return the offset of the first non-reserved PLT entry.
7484 unsigned int
7485 first_plt_entry_offset() const
7486 { return this->do_first_plt_entry_offset(); }
7487
7488 // Return the size of a PLT entry.
7489 unsigned int
7490 get_plt_entry_size() const
7491 { return this->do_get_plt_entry_size(); }
7492
7493 // Return the PLT address for globals.
7494 uint32_t
7495 address_for_global(const Symbol*) const;
7496
7497 // Return the PLT address for locals.
7498 uint32_t
7499 address_for_local(const Relobj*, unsigned int symndx) const;
7500
7501 protected:
7502 // Fill in the first PLT entry.
7503 void
7504 fill_first_plt_entry(unsigned char* pov,
7505 Arm_address got_address,
7506 Arm_address plt_address)
7507 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7508
7509 void
7510 fill_plt_entry(unsigned char* pov,
7511 Arm_address got_address,
7512 Arm_address plt_address,
7513 unsigned int got_offset,
7514 unsigned int plt_offset)
7515 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7516
7517 virtual unsigned int
7518 do_first_plt_entry_offset() const = 0;
7519
7520 virtual unsigned int
7521 do_get_plt_entry_size() const = 0;
7522
7523 virtual void
7524 do_fill_first_plt_entry(unsigned char* pov,
7525 Arm_address got_address,
7526 Arm_address plt_address) = 0;
7527
7528 virtual void
7529 do_fill_plt_entry(unsigned char* pov,
7530 Arm_address got_address,
7531 Arm_address plt_address,
7532 unsigned int got_offset,
7533 unsigned int plt_offset) = 0;
7534
7535 void
7536 do_adjust_output_section(Output_section* os);
7537
7538 // Write to a map file.
7539 void
7540 do_print_to_mapfile(Mapfile* mapfile) const
7541 { mapfile->print_output_data(this, _("** PLT")); }
7542
7543 private:
7544 // Set the final size.
7545 void
7546 set_final_data_size()
7547 {
7548 this->set_data_size(this->first_plt_entry_offset()
7549 + ((this->count_ + this->irelative_count_)
7550 * this->get_plt_entry_size()));
7551 }
7552
7553 // Write out the PLT data.
7554 void
7555 do_write(Output_file*);
7556
7557 // Record irelative symbol data.
7558 void insert_irelative_data(const IRelative_data& idata)
7559 { irelative_data_vec_.push_back(idata); }
7560
7561 // The reloc section.
7562 Reloc_section* rel_;
7563 // The IRELATIVE relocs, if necessary. These must follow the
7564 // regular PLT relocations.
7565 Reloc_section* irelative_rel_;
7566 // The .got section.
7567 Arm_output_data_got<big_endian>* got_;
7568 // The .got.plt section.
7569 Output_data_space* got_plt_;
7570 // The part of the .got.plt section used for IRELATIVE relocs.
7571 Output_data_space* got_irelative_;
7572 // The number of PLT entries.
7573 unsigned int count_;
7574 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7575 // follow the regular PLT entries.
7576 unsigned int irelative_count_;
7577 // Vector for irelative data.
7578 typedef std::vector<IRelative_data> IRelative_data_vec;
7579 IRelative_data_vec irelative_data_vec_;
7580 };
7581
7582 // Create the PLT section. The ordinary .got section is an argument,
7583 // since we need to refer to the start. We also create our own .got
7584 // section just for PLT entries.
7585
7586 template<bool big_endian>
7587 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7588 Layout* layout, uint64_t addralign,
7589 Arm_output_data_got<big_endian>* got,
7590 Output_data_space* got_plt,
7591 Output_data_space* got_irelative)
7592 : Output_section_data(addralign), irelative_rel_(NULL),
7593 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7594 count_(0), irelative_count_(0)
7595 {
7596 this->rel_ = new Reloc_section(false);
7597 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7598 elfcpp::SHF_ALLOC, this->rel_,
7599 ORDER_DYNAMIC_PLT_RELOCS, false);
7600 }
7601
7602 template<bool big_endian>
7603 void
7604 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7605 {
7606 os->set_entsize(0);
7607 }
7608
7609 // Add an entry to the PLT.
7610
7611 template<bool big_endian>
7612 void
7613 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7614 Layout* layout,
7615 Symbol* gsym)
7616 {
7617 gold_assert(!gsym->has_plt_offset());
7618
7619 unsigned int* entry_count;
7620 Output_section_data_build* got;
7621
7622 // We have 2 different types of plt entry here, normal and ifunc.
7623
7624 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7625 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7626
7627 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7628 // second 12, third 24 ... etc.
7629
7630 // IFunc plt entries *always* come after *normal* plt entries.
7631
7632 // Notice, when computing the plt address of a certain symbol, "plt_address +
7633 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7634 // target->plt_address_for_local() instead.
7635
7636 int begin_offset = 0;
7637 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7638 && gsym->can_use_relative_reloc(false))
7639 {
7640 entry_count = &this->irelative_count_;
7641 got = this->got_irelative_;
7642 // For irelative plt entries, offset is relative to the end of normal plt
7643 // entries, so it starts from 0.
7644 begin_offset = 0;
7645 // Record symbol information.
7646 this->insert_irelative_data(
7647 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7648 }
7649 else
7650 {
7651 entry_count = &this->count_;
7652 got = this->got_plt_;
7653 // Note that for normal plt entries, when setting the PLT offset we skip
7654 // the initial reserved PLT entry.
7655 begin_offset = this->first_plt_entry_offset();
7656 }
7657
7658 gsym->set_plt_offset(begin_offset
7659 + (*entry_count) * this->get_plt_entry_size());
7660
7661 ++(*entry_count);
7662
7663 section_offset_type got_offset = got->current_data_size();
7664
7665 // Every PLT entry needs a GOT entry which points back to the PLT
7666 // entry (this will be changed by the dynamic linker, normally
7667 // lazily when the function is called).
7668 got->set_current_data_size(got_offset + 4);
7669
7670 // Every PLT entry needs a reloc.
7671 this->add_relocation(symtab, layout, gsym, got_offset);
7672
7673 // Note that we don't need to save the symbol. The contents of the
7674 // PLT are independent of which symbols are used. The symbols only
7675 // appear in the relocations.
7676 }
7677
7678 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7679 // the PLT offset.
7680
7681 template<bool big_endian>
7682 unsigned int
7683 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7684 Symbol_table* symtab,
7685 Layout* layout,
7686 Sized_relobj_file<32, big_endian>* relobj,
7687 unsigned int local_sym_index)
7688 {
7689 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7690
7691 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7692 // no longer correct. Use target->plt_address_for_local() instead.
7693 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7694 ++this->irelative_count_;
7695
7696 section_offset_type got_offset = this->got_irelative_->current_data_size();
7697
7698 // Every PLT entry needs a GOT entry which points back to the PLT
7699 // entry.
7700 this->got_irelative_->set_current_data_size(got_offset + 4);
7701
7702
7703 // Every PLT entry needs a reloc.
7704 Reloc_section* rel = this->rel_irelative(symtab, layout);
7705 rel->add_symbolless_local_addend(relobj, local_sym_index,
7706 elfcpp::R_ARM_IRELATIVE,
7707 this->got_irelative_, got_offset);
7708 return plt_offset;
7709 }
7710
7711
7712 // Add the relocation for a PLT entry.
7713
7714 template<bool big_endian>
7715 void
7716 Output_data_plt_arm<big_endian>::add_relocation(
7717 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7718 {
7719 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7720 && gsym->can_use_relative_reloc(false))
7721 {
7722 Reloc_section* rel = this->rel_irelative(symtab, layout);
7723 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7724 this->got_irelative_, got_offset);
7725 }
7726 else
7727 {
7728 gsym->set_needs_dynsym_entry();
7729 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7730 got_offset);
7731 }
7732 }
7733
7734
7735 // Create the irelative relocation data.
7736
7737 template<bool big_endian>
7738 typename Output_data_plt_arm<big_endian>::Reloc_section*
7739 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7740 Layout* layout)
7741 {
7742 if (this->irelative_rel_ == NULL)
7743 {
7744 // Since irelative relocations goes into 'rel.dyn', we delegate the
7745 // creation of irelative_rel_ to where rel_dyn section gets created.
7746 Target_arm<big_endian>* arm_target =
7747 Target_arm<big_endian>::default_target();
7748 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7749
7750 // Make sure we have a place for the TLSDESC relocations, in
7751 // case we see any later on.
7752 // this->rel_tlsdesc(layout);
7753 if (parameters->doing_static_link())
7754 {
7755 // A statically linked executable will only have a .rel.plt section to
7756 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7757 // will use these symbols to locate the IRELATIVE relocs at program
7758 // startup time.
7759 symtab->define_in_output_data("__rel_iplt_start", NULL,
7760 Symbol_table::PREDEFINED,
7761 this->irelative_rel_, 0, 0,
7762 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7763 elfcpp::STV_HIDDEN, 0, false, true);
7764 symtab->define_in_output_data("__rel_iplt_end", NULL,
7765 Symbol_table::PREDEFINED,
7766 this->irelative_rel_, 0, 0,
7767 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7768 elfcpp::STV_HIDDEN, 0, true, true);
7769 }
7770 }
7771 return this->irelative_rel_;
7772 }
7773
7774
7775 // Return the PLT address for a global symbol.
7776
7777 template<bool big_endian>
7778 uint32_t
7779 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7780 {
7781 uint64_t begin_offset = 0;
7782 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7783 && gsym->can_use_relative_reloc(false))
7784 {
7785 begin_offset = (this->first_plt_entry_offset() +
7786 this->count_ * this->get_plt_entry_size());
7787 }
7788 return this->address() + begin_offset + gsym->plt_offset();
7789 }
7790
7791
7792 // Return the PLT address for a local symbol. These are always
7793 // IRELATIVE relocs.
7794
7795 template<bool big_endian>
7796 uint32_t
7797 Output_data_plt_arm<big_endian>::address_for_local(
7798 const Relobj* object,
7799 unsigned int r_sym) const
7800 {
7801 return (this->address()
7802 + this->first_plt_entry_offset()
7803 + this->count_ * this->get_plt_entry_size()
7804 + object->local_plt_offset(r_sym));
7805 }
7806
7807
7808 template<bool big_endian>
7809 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7810 {
7811 public:
7812 Output_data_plt_arm_standard(Layout* layout,
7813 Arm_output_data_got<big_endian>* got,
7814 Output_data_space* got_plt,
7815 Output_data_space* got_irelative)
7816 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7817 { }
7818
7819 protected:
7820 // Return the offset of the first non-reserved PLT entry.
7821 virtual unsigned int
7822 do_first_plt_entry_offset() const
7823 { return sizeof(first_plt_entry); }
7824
7825 virtual void
7826 do_fill_first_plt_entry(unsigned char* pov,
7827 Arm_address got_address,
7828 Arm_address plt_address);
7829
7830 private:
7831 // Template for the first PLT entry.
7832 static const uint32_t first_plt_entry[5];
7833 };
7834
7835 // ARM PLTs.
7836 // FIXME: This is not very flexible. Right now this has only been tested
7837 // on armv5te. If we are to support additional architecture features like
7838 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7839
7840 // The first entry in the PLT.
7841 template<bool big_endian>
7842 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7843 {
7844 0xe52de004, // str lr, [sp, #-4]!
7845 0xe59fe004, // ldr lr, [pc, #4]
7846 0xe08fe00e, // add lr, pc, lr
7847 0xe5bef008, // ldr pc, [lr, #8]!
7848 0x00000000, // &GOT[0] - .
7849 };
7850
7851 template<bool big_endian>
7852 void
7853 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7854 unsigned char* pov,
7855 Arm_address got_address,
7856 Arm_address plt_address)
7857 {
7858 // Write first PLT entry. All but the last word are constants.
7859 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7860 / sizeof(first_plt_entry[0]));
7861 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7862 {
7863 if (parameters->options().be8())
7864 {
7865 elfcpp::Swap<32, false>::writeval(pov + i * 4,
7866 first_plt_entry[i]);
7867 }
7868 else
7869 {
7870 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
7871 first_plt_entry[i]);
7872 }
7873 }
7874 // Last word in first PLT entry is &GOT[0] - .
7875 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7876 got_address - (plt_address + 16));
7877 }
7878
7879 // Subsequent entries in the PLT.
7880 // This class generates short (12-byte) entries, for displacements up to 2^28.
7881
7882 template<bool big_endian>
7883 class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
7884 {
7885 public:
7886 Output_data_plt_arm_short(Layout* layout,
7887 Arm_output_data_got<big_endian>* got,
7888 Output_data_space* got_plt,
7889 Output_data_space* got_irelative)
7890 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7891 { }
7892
7893 protected:
7894 // Return the size of a PLT entry.
7895 virtual unsigned int
7896 do_get_plt_entry_size() const
7897 { return sizeof(plt_entry); }
7898
7899 virtual void
7900 do_fill_plt_entry(unsigned char* pov,
7901 Arm_address got_address,
7902 Arm_address plt_address,
7903 unsigned int got_offset,
7904 unsigned int plt_offset);
7905
7906 private:
7907 // Template for subsequent PLT entries.
7908 static const uint32_t plt_entry[3];
7909 };
7910
7911 template<bool big_endian>
7912 const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
7913 {
7914 0xe28fc600, // add ip, pc, #0xNN00000
7915 0xe28cca00, // add ip, ip, #0xNN000
7916 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7917 };
7918
7919 template<bool big_endian>
7920 void
7921 Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
7922 unsigned char* pov,
7923 Arm_address got_address,
7924 Arm_address plt_address,
7925 unsigned int got_offset,
7926 unsigned int plt_offset)
7927 {
7928 int32_t offset = ((got_address + got_offset)
7929 - (plt_address + plt_offset + 8));
7930 if (offset < 0 || offset > 0x0fffffff)
7931 gold_error(_("PLT offset too large, try linking with --long-plt"));
7932
7933 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7934 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7935 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7936
7937 if (parameters->options().be8())
7938 {
7939 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
7940 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
7941 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
7942 }
7943 else
7944 {
7945 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7946 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7947 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7948 }
7949 }
7950
7951 // This class generates long (16-byte) entries, for arbitrary displacements.
7952
7953 template<bool big_endian>
7954 class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
7955 {
7956 public:
7957 Output_data_plt_arm_long(Layout* layout,
7958 Arm_output_data_got<big_endian>* got,
7959 Output_data_space* got_plt,
7960 Output_data_space* got_irelative)
7961 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7962 { }
7963
7964 protected:
7965 // Return the size of a PLT entry.
7966 virtual unsigned int
7967 do_get_plt_entry_size() const
7968 { return sizeof(plt_entry); }
7969
7970 virtual void
7971 do_fill_plt_entry(unsigned char* pov,
7972 Arm_address got_address,
7973 Arm_address plt_address,
7974 unsigned int got_offset,
7975 unsigned int plt_offset);
7976
7977 private:
7978 // Template for subsequent PLT entries.
7979 static const uint32_t plt_entry[4];
7980 };
7981
7982 template<bool big_endian>
7983 const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
7984 {
7985 0xe28fc200, // add ip, pc, #0xN0000000
7986 0xe28cc600, // add ip, ip, #0xNN00000
7987 0xe28cca00, // add ip, ip, #0xNN000
7988 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7989 };
7990
7991 template<bool big_endian>
7992 void
7993 Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
7994 unsigned char* pov,
7995 Arm_address got_address,
7996 Arm_address plt_address,
7997 unsigned int got_offset,
7998 unsigned int plt_offset)
7999 {
8000 int32_t offset = ((got_address + got_offset)
8001 - (plt_address + plt_offset + 8));
8002
8003 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
8004 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
8005 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
8006 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
8007
8008 if (parameters->options().be8())
8009 {
8010 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
8011 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
8012 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
8013 elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
8014 }
8015 else
8016 {
8017 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
8018 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
8019 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
8020 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
8021 }
8022 }
8023
8024 // Write out the PLT. This uses the hand-coded instructions above,
8025 // and adjusts them as needed. This is all specified by the arm ELF
8026 // Processor Supplement.
8027
8028 template<bool big_endian>
8029 void
8030 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
8031 {
8032 const off_t offset = this->offset();
8033 const section_size_type oview_size =
8034 convert_to_section_size_type(this->data_size());
8035 unsigned char* const oview = of->get_output_view(offset, oview_size);
8036
8037 const off_t got_file_offset = this->got_plt_->offset();
8038 gold_assert(got_file_offset + this->got_plt_->data_size()
8039 == this->got_irelative_->offset());
8040 const section_size_type got_size =
8041 convert_to_section_size_type(this->got_plt_->data_size()
8042 + this->got_irelative_->data_size());
8043 unsigned char* const got_view = of->get_output_view(got_file_offset,
8044 got_size);
8045 unsigned char* pov = oview;
8046
8047 Arm_address plt_address = this->address();
8048 Arm_address got_address = this->got_plt_->address();
8049
8050 // Write first PLT entry.
8051 this->fill_first_plt_entry(pov, got_address, plt_address);
8052 pov += this->first_plt_entry_offset();
8053
8054 unsigned char* got_pov = got_view;
8055
8056 memset(got_pov, 0, 12);
8057 got_pov += 12;
8058
8059 unsigned int plt_offset = this->first_plt_entry_offset();
8060 unsigned int got_offset = 12;
8061 const unsigned int count = this->count_ + this->irelative_count_;
8062 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
8063 for (unsigned int i = 0;
8064 i < count;
8065 ++i,
8066 pov += this->get_plt_entry_size(),
8067 got_pov += 4,
8068 plt_offset += this->get_plt_entry_size(),
8069 got_offset += 4)
8070 {
8071 // Set and adjust the PLT entry itself.
8072 this->fill_plt_entry(pov, got_address, plt_address,
8073 got_offset, plt_offset);
8074
8075 Arm_address value;
8076 if (i < this->count_)
8077 {
8078 // For non-irelative got entries, the value is the beginning of plt.
8079 value = plt_address;
8080 }
8081 else
8082 {
8083 // For irelative got entries, the value is the (global/local) symbol
8084 // address.
8085 const IRelative_data& idata =
8086 this->irelative_data_vec_[i - this->count_];
8087 if (idata.symbol_is_global_)
8088 {
8089 // Set the entry in the GOT for irelative symbols. The content is
8090 // the address of the ifunc, not the address of plt start.
8091 const Sized_symbol<32>* sized_symbol = idata.u_.global;
8092 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
8093 value = sized_symbol->value();
8094 }
8095 else
8096 {
8097 value = idata.u_.local.relobj->local_symbol_value(
8098 idata.u_.local.index, 0);
8099 }
8100 }
8101 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
8102 }
8103
8104 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
8105 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
8106
8107 of->write_output_view(offset, oview_size, oview);
8108 of->write_output_view(got_file_offset, got_size, got_view);
8109 }
8110
8111
8112 // Create a PLT entry for a global symbol.
8113
8114 template<bool big_endian>
8115 void
8116 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
8117 Symbol* gsym)
8118 {
8119 if (gsym->has_plt_offset())
8120 return;
8121
8122 if (this->plt_ == NULL)
8123 this->make_plt_section(symtab, layout);
8124
8125 this->plt_->add_entry(symtab, layout, gsym);
8126 }
8127
8128
8129 // Create the PLT section.
8130 template<bool big_endian>
8131 void
8132 Target_arm<big_endian>::make_plt_section(
8133 Symbol_table* symtab, Layout* layout)
8134 {
8135 if (this->plt_ == NULL)
8136 {
8137 // Create the GOT section first.
8138 this->got_section(symtab, layout);
8139
8140 // GOT for irelatives is create along with got.plt.
8141 gold_assert(this->got_ != NULL
8142 && this->got_plt_ != NULL
8143 && this->got_irelative_ != NULL);
8144 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
8145 this->got_irelative_);
8146
8147 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8148 (elfcpp::SHF_ALLOC
8149 | elfcpp::SHF_EXECINSTR),
8150 this->plt_, ORDER_PLT, false);
8151 symtab->define_in_output_data("$a", NULL,
8152 Symbol_table::PREDEFINED,
8153 this->plt_,
8154 0, 0, elfcpp::STT_NOTYPE,
8155 elfcpp::STB_LOCAL,
8156 elfcpp::STV_DEFAULT, 0,
8157 false, false);
8158 }
8159 }
8160
8161
8162 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
8163
8164 template<bool big_endian>
8165 void
8166 Target_arm<big_endian>::make_local_ifunc_plt_entry(
8167 Symbol_table* symtab, Layout* layout,
8168 Sized_relobj_file<32, big_endian>* relobj,
8169 unsigned int local_sym_index)
8170 {
8171 if (relobj->local_has_plt_offset(local_sym_index))
8172 return;
8173 if (this->plt_ == NULL)
8174 this->make_plt_section(symtab, layout);
8175 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
8176 relobj,
8177 local_sym_index);
8178 relobj->set_local_plt_offset(local_sym_index, plt_offset);
8179 }
8180
8181
8182 // Return the number of entries in the PLT.
8183
8184 template<bool big_endian>
8185 unsigned int
8186 Target_arm<big_endian>::plt_entry_count() const
8187 {
8188 if (this->plt_ == NULL)
8189 return 0;
8190 return this->plt_->entry_count();
8191 }
8192
8193 // Return the offset of the first non-reserved PLT entry.
8194
8195 template<bool big_endian>
8196 unsigned int
8197 Target_arm<big_endian>::first_plt_entry_offset() const
8198 {
8199 return this->plt_->first_plt_entry_offset();
8200 }
8201
8202 // Return the size of each PLT entry.
8203
8204 template<bool big_endian>
8205 unsigned int
8206 Target_arm<big_endian>::plt_entry_size() const
8207 {
8208 return this->plt_->get_plt_entry_size();
8209 }
8210
8211 // Get the section to use for TLS_DESC relocations.
8212
8213 template<bool big_endian>
8214 typename Target_arm<big_endian>::Reloc_section*
8215 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8216 {
8217 return this->plt_section()->rel_tls_desc(layout);
8218 }
8219
8220 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8221
8222 template<bool big_endian>
8223 void
8224 Target_arm<big_endian>::define_tls_base_symbol(
8225 Symbol_table* symtab,
8226 Layout* layout)
8227 {
8228 if (this->tls_base_symbol_defined_)
8229 return;
8230
8231 Output_segment* tls_segment = layout->tls_segment();
8232 if (tls_segment != NULL)
8233 {
8234 bool is_exec = parameters->options().output_is_executable();
8235 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8236 Symbol_table::PREDEFINED,
8237 tls_segment, 0, 0,
8238 elfcpp::STT_TLS,
8239 elfcpp::STB_LOCAL,
8240 elfcpp::STV_HIDDEN, 0,
8241 (is_exec
8242 ? Symbol::SEGMENT_END
8243 : Symbol::SEGMENT_START),
8244 true);
8245 }
8246 this->tls_base_symbol_defined_ = true;
8247 }
8248
8249 // Create a GOT entry for the TLS module index.
8250
8251 template<bool big_endian>
8252 unsigned int
8253 Target_arm<big_endian>::got_mod_index_entry(
8254 Symbol_table* symtab,
8255 Layout* layout,
8256 Sized_relobj_file<32, big_endian>* object)
8257 {
8258 if (this->got_mod_index_offset_ == -1U)
8259 {
8260 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8261 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8262 unsigned int got_offset;
8263 if (!parameters->doing_static_link())
8264 {
8265 got_offset = got->add_constant(0);
8266 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8267 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8268 got_offset);
8269 }
8270 else
8271 {
8272 // We are doing a static link. Just mark it as belong to module 1,
8273 // the executable.
8274 got_offset = got->add_constant(1);
8275 }
8276
8277 got->add_constant(0);
8278 this->got_mod_index_offset_ = got_offset;
8279 }
8280 return this->got_mod_index_offset_;
8281 }
8282
8283 // Optimize the TLS relocation type based on what we know about the
8284 // symbol. IS_FINAL is true if the final address of this symbol is
8285 // known at link time.
8286
8287 template<bool big_endian>
8288 tls::Tls_optimization
8289 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8290 {
8291 // FIXME: Currently we do not do any TLS optimization.
8292 return tls::TLSOPT_NONE;
8293 }
8294
8295 // Get the Reference_flags for a particular relocation.
8296
8297 template<bool big_endian>
8298 int
8299 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8300 {
8301 switch (r_type)
8302 {
8303 case elfcpp::R_ARM_NONE:
8304 case elfcpp::R_ARM_V4BX:
8305 case elfcpp::R_ARM_GNU_VTENTRY:
8306 case elfcpp::R_ARM_GNU_VTINHERIT:
8307 // No symbol reference.
8308 return 0;
8309
8310 case elfcpp::R_ARM_ABS32:
8311 case elfcpp::R_ARM_ABS16:
8312 case elfcpp::R_ARM_ABS12:
8313 case elfcpp::R_ARM_THM_ABS5:
8314 case elfcpp::R_ARM_ABS8:
8315 case elfcpp::R_ARM_BASE_ABS:
8316 case elfcpp::R_ARM_MOVW_ABS_NC:
8317 case elfcpp::R_ARM_MOVT_ABS:
8318 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8319 case elfcpp::R_ARM_THM_MOVT_ABS:
8320 case elfcpp::R_ARM_ABS32_NOI:
8321 return Symbol::ABSOLUTE_REF;
8322
8323 case elfcpp::R_ARM_REL32:
8324 case elfcpp::R_ARM_LDR_PC_G0:
8325 case elfcpp::R_ARM_SBREL32:
8326 case elfcpp::R_ARM_THM_PC8:
8327 case elfcpp::R_ARM_BASE_PREL:
8328 case elfcpp::R_ARM_MOVW_PREL_NC:
8329 case elfcpp::R_ARM_MOVT_PREL:
8330 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8331 case elfcpp::R_ARM_THM_MOVT_PREL:
8332 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8333 case elfcpp::R_ARM_THM_PC12:
8334 case elfcpp::R_ARM_REL32_NOI:
8335 case elfcpp::R_ARM_ALU_PC_G0_NC:
8336 case elfcpp::R_ARM_ALU_PC_G0:
8337 case elfcpp::R_ARM_ALU_PC_G1_NC:
8338 case elfcpp::R_ARM_ALU_PC_G1:
8339 case elfcpp::R_ARM_ALU_PC_G2:
8340 case elfcpp::R_ARM_LDR_PC_G1:
8341 case elfcpp::R_ARM_LDR_PC_G2:
8342 case elfcpp::R_ARM_LDRS_PC_G0:
8343 case elfcpp::R_ARM_LDRS_PC_G1:
8344 case elfcpp::R_ARM_LDRS_PC_G2:
8345 case elfcpp::R_ARM_LDC_PC_G0:
8346 case elfcpp::R_ARM_LDC_PC_G1:
8347 case elfcpp::R_ARM_LDC_PC_G2:
8348 case elfcpp::R_ARM_ALU_SB_G0_NC:
8349 case elfcpp::R_ARM_ALU_SB_G0:
8350 case elfcpp::R_ARM_ALU_SB_G1_NC:
8351 case elfcpp::R_ARM_ALU_SB_G1:
8352 case elfcpp::R_ARM_ALU_SB_G2:
8353 case elfcpp::R_ARM_LDR_SB_G0:
8354 case elfcpp::R_ARM_LDR_SB_G1:
8355 case elfcpp::R_ARM_LDR_SB_G2:
8356 case elfcpp::R_ARM_LDRS_SB_G0:
8357 case elfcpp::R_ARM_LDRS_SB_G1:
8358 case elfcpp::R_ARM_LDRS_SB_G2:
8359 case elfcpp::R_ARM_LDC_SB_G0:
8360 case elfcpp::R_ARM_LDC_SB_G1:
8361 case elfcpp::R_ARM_LDC_SB_G2:
8362 case elfcpp::R_ARM_MOVW_BREL_NC:
8363 case elfcpp::R_ARM_MOVT_BREL:
8364 case elfcpp::R_ARM_MOVW_BREL:
8365 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8366 case elfcpp::R_ARM_THM_MOVT_BREL:
8367 case elfcpp::R_ARM_THM_MOVW_BREL:
8368 case elfcpp::R_ARM_GOTOFF32:
8369 case elfcpp::R_ARM_GOTOFF12:
8370 case elfcpp::R_ARM_SBREL31:
8371 return Symbol::RELATIVE_REF;
8372
8373 case elfcpp::R_ARM_PLT32:
8374 case elfcpp::R_ARM_CALL:
8375 case elfcpp::R_ARM_JUMP24:
8376 case elfcpp::R_ARM_THM_CALL:
8377 case elfcpp::R_ARM_THM_JUMP24:
8378 case elfcpp::R_ARM_THM_JUMP19:
8379 case elfcpp::R_ARM_THM_JUMP6:
8380 case elfcpp::R_ARM_THM_JUMP11:
8381 case elfcpp::R_ARM_THM_JUMP8:
8382 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8383 // in unwind tables. It may point to functions via PLTs.
8384 // So we treat it like call/jump relocations above.
8385 case elfcpp::R_ARM_PREL31:
8386 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8387
8388 case elfcpp::R_ARM_GOT_BREL:
8389 case elfcpp::R_ARM_GOT_ABS:
8390 case elfcpp::R_ARM_GOT_PREL:
8391 // Absolute in GOT.
8392 return Symbol::ABSOLUTE_REF;
8393
8394 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8395 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8396 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8397 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8398 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8399 return Symbol::TLS_REF;
8400
8401 case elfcpp::R_ARM_TARGET1:
8402 case elfcpp::R_ARM_TARGET2:
8403 case elfcpp::R_ARM_COPY:
8404 case elfcpp::R_ARM_GLOB_DAT:
8405 case elfcpp::R_ARM_JUMP_SLOT:
8406 case elfcpp::R_ARM_RELATIVE:
8407 case elfcpp::R_ARM_PC24:
8408 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8409 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8410 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8411 default:
8412 // Not expected. We will give an error later.
8413 return 0;
8414 }
8415 }
8416
8417 // Report an unsupported relocation against a local symbol.
8418
8419 template<bool big_endian>
8420 void
8421 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8422 Sized_relobj_file<32, big_endian>* object,
8423 unsigned int r_type)
8424 {
8425 gold_error(_("%s: unsupported reloc %u against local symbol"),
8426 object->name().c_str(), r_type);
8427 }
8428
8429 // We are about to emit a dynamic relocation of type R_TYPE. If the
8430 // dynamic linker does not support it, issue an error. The GNU linker
8431 // only issues a non-PIC error for an allocated read-only section.
8432 // Here we know the section is allocated, but we don't know that it is
8433 // read-only. But we check for all the relocation types which the
8434 // glibc dynamic linker supports, so it seems appropriate to issue an
8435 // error even if the section is not read-only.
8436
8437 template<bool big_endian>
8438 void
8439 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8440 unsigned int r_type)
8441 {
8442 switch (r_type)
8443 {
8444 // These are the relocation types supported by glibc for ARM.
8445 case elfcpp::R_ARM_RELATIVE:
8446 case elfcpp::R_ARM_COPY:
8447 case elfcpp::R_ARM_GLOB_DAT:
8448 case elfcpp::R_ARM_JUMP_SLOT:
8449 case elfcpp::R_ARM_ABS32:
8450 case elfcpp::R_ARM_ABS32_NOI:
8451 case elfcpp::R_ARM_IRELATIVE:
8452 case elfcpp::R_ARM_PC24:
8453 // FIXME: The following 3 types are not supported by Android's dynamic
8454 // linker.
8455 case elfcpp::R_ARM_TLS_DTPMOD32:
8456 case elfcpp::R_ARM_TLS_DTPOFF32:
8457 case elfcpp::R_ARM_TLS_TPOFF32:
8458 return;
8459
8460 default:
8461 {
8462 // This prevents us from issuing more than one error per reloc
8463 // section. But we can still wind up issuing more than one
8464 // error per object file.
8465 if (this->issued_non_pic_error_)
8466 return;
8467 const Arm_reloc_property* reloc_property =
8468 arm_reloc_property_table->get_reloc_property(r_type);
8469 gold_assert(reloc_property != NULL);
8470 object->error(_("requires unsupported dynamic reloc %s; "
8471 "recompile with -fPIC"),
8472 reloc_property->name().c_str());
8473 this->issued_non_pic_error_ = true;
8474 return;
8475 }
8476
8477 case elfcpp::R_ARM_NONE:
8478 gold_unreachable();
8479 }
8480 }
8481
8482
8483 // Return whether we need to make a PLT entry for a relocation of the
8484 // given type against a STT_GNU_IFUNC symbol.
8485
8486 template<bool big_endian>
8487 bool
8488 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8489 Sized_relobj_file<32, big_endian>* object,
8490 unsigned int r_type)
8491 {
8492 int flags = Scan::get_reference_flags(r_type);
8493 if (flags & Symbol::TLS_REF)
8494 {
8495 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8496 object->name().c_str(), r_type);
8497 return false;
8498 }
8499 return flags != 0;
8500 }
8501
8502
8503 // Scan a relocation for a local symbol.
8504 // FIXME: This only handles a subset of relocation types used by Android
8505 // on ARM v5te devices.
8506
8507 template<bool big_endian>
8508 inline void
8509 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8510 Layout* layout,
8511 Target_arm* target,
8512 Sized_relobj_file<32, big_endian>* object,
8513 unsigned int data_shndx,
8514 Output_section* output_section,
8515 const elfcpp::Rel<32, big_endian>& reloc,
8516 unsigned int r_type,
8517 const elfcpp::Sym<32, big_endian>& lsym,
8518 bool is_discarded)
8519 {
8520 if (is_discarded)
8521 return;
8522
8523 r_type = get_real_reloc_type(r_type);
8524
8525 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8526 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8527 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8528 {
8529 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8530 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8531 }
8532
8533 switch (r_type)
8534 {
8535 case elfcpp::R_ARM_NONE:
8536 case elfcpp::R_ARM_V4BX:
8537 case elfcpp::R_ARM_GNU_VTENTRY:
8538 case elfcpp::R_ARM_GNU_VTINHERIT:
8539 break;
8540
8541 case elfcpp::R_ARM_ABS32:
8542 case elfcpp::R_ARM_ABS32_NOI:
8543 // If building a shared library (or a position-independent
8544 // executable), we need to create a dynamic relocation for
8545 // this location. The relocation applied at link time will
8546 // apply the link-time value, so we flag the location with
8547 // an R_ARM_RELATIVE relocation so the dynamic loader can
8548 // relocate it easily.
8549 if (parameters->options().output_is_position_independent())
8550 {
8551 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8552 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8553 // If we are to add more other reloc types than R_ARM_ABS32,
8554 // we need to add check_non_pic(object, r_type) here.
8555 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8556 output_section, data_shndx,
8557 reloc.get_r_offset(), is_ifunc);
8558 }
8559 break;
8560
8561 case elfcpp::R_ARM_ABS16:
8562 case elfcpp::R_ARM_ABS12:
8563 case elfcpp::R_ARM_THM_ABS5:
8564 case elfcpp::R_ARM_ABS8:
8565 case elfcpp::R_ARM_BASE_ABS:
8566 case elfcpp::R_ARM_MOVW_ABS_NC:
8567 case elfcpp::R_ARM_MOVT_ABS:
8568 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8569 case elfcpp::R_ARM_THM_MOVT_ABS:
8570 // If building a shared library (or a position-independent
8571 // executable), we need to create a dynamic relocation for
8572 // this location. Because the addend needs to remain in the
8573 // data section, we need to be careful not to apply this
8574 // relocation statically.
8575 if (parameters->options().output_is_position_independent())
8576 {
8577 check_non_pic(object, r_type);
8578 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8579 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8580 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8581 rel_dyn->add_local(object, r_sym, r_type, output_section,
8582 data_shndx, reloc.get_r_offset());
8583 else
8584 {
8585 gold_assert(lsym.get_st_value() == 0);
8586 unsigned int shndx = lsym.get_st_shndx();
8587 bool is_ordinary;
8588 shndx = object->adjust_sym_shndx(r_sym, shndx,
8589 &is_ordinary);
8590 if (!is_ordinary)
8591 object->error(_("section symbol %u has bad shndx %u"),
8592 r_sym, shndx);
8593 else
8594 rel_dyn->add_local_section(object, shndx,
8595 r_type, output_section,
8596 data_shndx, reloc.get_r_offset());
8597 }
8598 }
8599 break;
8600
8601 case elfcpp::R_ARM_REL32:
8602 case elfcpp::R_ARM_LDR_PC_G0:
8603 case elfcpp::R_ARM_SBREL32:
8604 case elfcpp::R_ARM_THM_CALL:
8605 case elfcpp::R_ARM_THM_PC8:
8606 case elfcpp::R_ARM_BASE_PREL:
8607 case elfcpp::R_ARM_PLT32:
8608 case elfcpp::R_ARM_CALL:
8609 case elfcpp::R_ARM_JUMP24:
8610 case elfcpp::R_ARM_THM_JUMP24:
8611 case elfcpp::R_ARM_SBREL31:
8612 case elfcpp::R_ARM_PREL31:
8613 case elfcpp::R_ARM_MOVW_PREL_NC:
8614 case elfcpp::R_ARM_MOVT_PREL:
8615 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8616 case elfcpp::R_ARM_THM_MOVT_PREL:
8617 case elfcpp::R_ARM_THM_JUMP19:
8618 case elfcpp::R_ARM_THM_JUMP6:
8619 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8620 case elfcpp::R_ARM_THM_PC12:
8621 case elfcpp::R_ARM_REL32_NOI:
8622 case elfcpp::R_ARM_ALU_PC_G0_NC:
8623 case elfcpp::R_ARM_ALU_PC_G0:
8624 case elfcpp::R_ARM_ALU_PC_G1_NC:
8625 case elfcpp::R_ARM_ALU_PC_G1:
8626 case elfcpp::R_ARM_ALU_PC_G2:
8627 case elfcpp::R_ARM_LDR_PC_G1:
8628 case elfcpp::R_ARM_LDR_PC_G2:
8629 case elfcpp::R_ARM_LDRS_PC_G0:
8630 case elfcpp::R_ARM_LDRS_PC_G1:
8631 case elfcpp::R_ARM_LDRS_PC_G2:
8632 case elfcpp::R_ARM_LDC_PC_G0:
8633 case elfcpp::R_ARM_LDC_PC_G1:
8634 case elfcpp::R_ARM_LDC_PC_G2:
8635 case elfcpp::R_ARM_ALU_SB_G0_NC:
8636 case elfcpp::R_ARM_ALU_SB_G0:
8637 case elfcpp::R_ARM_ALU_SB_G1_NC:
8638 case elfcpp::R_ARM_ALU_SB_G1:
8639 case elfcpp::R_ARM_ALU_SB_G2:
8640 case elfcpp::R_ARM_LDR_SB_G0:
8641 case elfcpp::R_ARM_LDR_SB_G1:
8642 case elfcpp::R_ARM_LDR_SB_G2:
8643 case elfcpp::R_ARM_LDRS_SB_G0:
8644 case elfcpp::R_ARM_LDRS_SB_G1:
8645 case elfcpp::R_ARM_LDRS_SB_G2:
8646 case elfcpp::R_ARM_LDC_SB_G0:
8647 case elfcpp::R_ARM_LDC_SB_G1:
8648 case elfcpp::R_ARM_LDC_SB_G2:
8649 case elfcpp::R_ARM_MOVW_BREL_NC:
8650 case elfcpp::R_ARM_MOVT_BREL:
8651 case elfcpp::R_ARM_MOVW_BREL:
8652 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8653 case elfcpp::R_ARM_THM_MOVT_BREL:
8654 case elfcpp::R_ARM_THM_MOVW_BREL:
8655 case elfcpp::R_ARM_THM_JUMP11:
8656 case elfcpp::R_ARM_THM_JUMP8:
8657 // We don't need to do anything for a relative addressing relocation
8658 // against a local symbol if it does not reference the GOT.
8659 break;
8660
8661 case elfcpp::R_ARM_GOTOFF32:
8662 case elfcpp::R_ARM_GOTOFF12:
8663 // We need a GOT section:
8664 target->got_section(symtab, layout);
8665 break;
8666
8667 case elfcpp::R_ARM_GOT_BREL:
8668 case elfcpp::R_ARM_GOT_PREL:
8669 {
8670 // The symbol requires a GOT entry.
8671 Arm_output_data_got<big_endian>* got =
8672 target->got_section(symtab, layout);
8673 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8674 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8675 {
8676 // If we are generating a shared object, we need to add a
8677 // dynamic RELATIVE relocation for this symbol's GOT entry.
8678 if (parameters->options().output_is_position_independent())
8679 {
8680 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8681 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8682 rel_dyn->add_local_relative(
8683 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8684 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8685 }
8686 }
8687 }
8688 break;
8689
8690 case elfcpp::R_ARM_TARGET1:
8691 case elfcpp::R_ARM_TARGET2:
8692 // This should have been mapped to another type already.
8693 // Fall through.
8694 case elfcpp::R_ARM_COPY:
8695 case elfcpp::R_ARM_GLOB_DAT:
8696 case elfcpp::R_ARM_JUMP_SLOT:
8697 case elfcpp::R_ARM_RELATIVE:
8698 // These are relocations which should only be seen by the
8699 // dynamic linker, and should never be seen here.
8700 gold_error(_("%s: unexpected reloc %u in object file"),
8701 object->name().c_str(), r_type);
8702 break;
8703
8704
8705 // These are initial TLS relocs, which are expected when
8706 // linking.
8707 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8708 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8709 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8710 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8711 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8712 {
8713 bool output_is_shared = parameters->options().shared();
8714 const tls::Tls_optimization optimized_type
8715 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8716 r_type);
8717 switch (r_type)
8718 {
8719 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8720 if (optimized_type == tls::TLSOPT_NONE)
8721 {
8722 // Create a pair of GOT entries for the module index and
8723 // dtv-relative offset.
8724 Arm_output_data_got<big_endian>* got
8725 = target->got_section(symtab, layout);
8726 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8727 unsigned int shndx = lsym.get_st_shndx();
8728 bool is_ordinary;
8729 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8730 if (!is_ordinary)
8731 {
8732 object->error(_("local symbol %u has bad shndx %u"),
8733 r_sym, shndx);
8734 break;
8735 }
8736
8737 if (!parameters->doing_static_link())
8738 got->add_local_pair_with_rel(object, r_sym, shndx,
8739 GOT_TYPE_TLS_PAIR,
8740 target->rel_dyn_section(layout),
8741 elfcpp::R_ARM_TLS_DTPMOD32);
8742 else
8743 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8744 object, r_sym);
8745 }
8746 else
8747 // FIXME: TLS optimization not supported yet.
8748 gold_unreachable();
8749 break;
8750
8751 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8752 if (optimized_type == tls::TLSOPT_NONE)
8753 {
8754 // Create a GOT entry for the module index.
8755 target->got_mod_index_entry(symtab, layout, object);
8756 }
8757 else
8758 // FIXME: TLS optimization not supported yet.
8759 gold_unreachable();
8760 break;
8761
8762 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8763 break;
8764
8765 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8766 layout->set_has_static_tls();
8767 if (optimized_type == tls::TLSOPT_NONE)
8768 {
8769 // Create a GOT entry for the tp-relative offset.
8770 Arm_output_data_got<big_endian>* got
8771 = target->got_section(symtab, layout);
8772 unsigned int r_sym =
8773 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8774 if (!parameters->doing_static_link())
8775 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8776 target->rel_dyn_section(layout),
8777 elfcpp::R_ARM_TLS_TPOFF32);
8778 else if (!object->local_has_got_offset(r_sym,
8779 GOT_TYPE_TLS_OFFSET))
8780 {
8781 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8782 unsigned int got_offset =
8783 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8784 got->add_static_reloc(got_offset,
8785 elfcpp::R_ARM_TLS_TPOFF32, object,
8786 r_sym);
8787 }
8788 }
8789 else
8790 // FIXME: TLS optimization not supported yet.
8791 gold_unreachable();
8792 break;
8793
8794 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8795 layout->set_has_static_tls();
8796 if (output_is_shared)
8797 {
8798 // We need to create a dynamic relocation.
8799 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8800 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8801 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8802 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8803 output_section, data_shndx,
8804 reloc.get_r_offset());
8805 }
8806 break;
8807
8808 default:
8809 gold_unreachable();
8810 }
8811 }
8812 break;
8813
8814 case elfcpp::R_ARM_PC24:
8815 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8816 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8817 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8818 default:
8819 unsupported_reloc_local(object, r_type);
8820 break;
8821 }
8822 }
8823
8824 // Report an unsupported relocation against a global symbol.
8825
8826 template<bool big_endian>
8827 void
8828 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8829 Sized_relobj_file<32, big_endian>* object,
8830 unsigned int r_type,
8831 Symbol* gsym)
8832 {
8833 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8834 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8835 }
8836
8837 template<bool big_endian>
8838 inline bool
8839 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8840 unsigned int r_type)
8841 {
8842 switch (r_type)
8843 {
8844 case elfcpp::R_ARM_PC24:
8845 case elfcpp::R_ARM_THM_CALL:
8846 case elfcpp::R_ARM_PLT32:
8847 case elfcpp::R_ARM_CALL:
8848 case elfcpp::R_ARM_JUMP24:
8849 case elfcpp::R_ARM_THM_JUMP24:
8850 case elfcpp::R_ARM_SBREL31:
8851 case elfcpp::R_ARM_PREL31:
8852 case elfcpp::R_ARM_THM_JUMP19:
8853 case elfcpp::R_ARM_THM_JUMP6:
8854 case elfcpp::R_ARM_THM_JUMP11:
8855 case elfcpp::R_ARM_THM_JUMP8:
8856 // All the relocations above are branches except SBREL31 and PREL31.
8857 return false;
8858
8859 default:
8860 // Be conservative and assume this is a function pointer.
8861 return true;
8862 }
8863 }
8864
8865 template<bool big_endian>
8866 inline bool
8867 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8868 Symbol_table*,
8869 Layout*,
8870 Target_arm<big_endian>* target,
8871 Sized_relobj_file<32, big_endian>*,
8872 unsigned int,
8873 Output_section*,
8874 const elfcpp::Rel<32, big_endian>&,
8875 unsigned int r_type,
8876 const elfcpp::Sym<32, big_endian>&)
8877 {
8878 r_type = target->get_real_reloc_type(r_type);
8879 return possible_function_pointer_reloc(r_type);
8880 }
8881
8882 template<bool big_endian>
8883 inline bool
8884 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8885 Symbol_table*,
8886 Layout*,
8887 Target_arm<big_endian>* target,
8888 Sized_relobj_file<32, big_endian>*,
8889 unsigned int,
8890 Output_section*,
8891 const elfcpp::Rel<32, big_endian>&,
8892 unsigned int r_type,
8893 Symbol* gsym)
8894 {
8895 // GOT is not a function.
8896 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8897 return false;
8898
8899 r_type = target->get_real_reloc_type(r_type);
8900 return possible_function_pointer_reloc(r_type);
8901 }
8902
8903 // Scan a relocation for a global symbol.
8904
8905 template<bool big_endian>
8906 inline void
8907 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8908 Layout* layout,
8909 Target_arm* target,
8910 Sized_relobj_file<32, big_endian>* object,
8911 unsigned int data_shndx,
8912 Output_section* output_section,
8913 const elfcpp::Rel<32, big_endian>& reloc,
8914 unsigned int r_type,
8915 Symbol* gsym)
8916 {
8917 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8918 // section. We check here to avoid creating a dynamic reloc against
8919 // _GLOBAL_OFFSET_TABLE_.
8920 if (!target->has_got_section()
8921 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8922 target->got_section(symtab, layout);
8923
8924 // A STT_GNU_IFUNC symbol may require a PLT entry.
8925 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8926 && this->reloc_needs_plt_for_ifunc(object, r_type))
8927 target->make_plt_entry(symtab, layout, gsym);
8928
8929 r_type = get_real_reloc_type(r_type);
8930 switch (r_type)
8931 {
8932 case elfcpp::R_ARM_NONE:
8933 case elfcpp::R_ARM_V4BX:
8934 case elfcpp::R_ARM_GNU_VTENTRY:
8935 case elfcpp::R_ARM_GNU_VTINHERIT:
8936 break;
8937
8938 case elfcpp::R_ARM_ABS32:
8939 case elfcpp::R_ARM_ABS16:
8940 case elfcpp::R_ARM_ABS12:
8941 case elfcpp::R_ARM_THM_ABS5:
8942 case elfcpp::R_ARM_ABS8:
8943 case elfcpp::R_ARM_BASE_ABS:
8944 case elfcpp::R_ARM_MOVW_ABS_NC:
8945 case elfcpp::R_ARM_MOVT_ABS:
8946 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8947 case elfcpp::R_ARM_THM_MOVT_ABS:
8948 case elfcpp::R_ARM_ABS32_NOI:
8949 // Absolute addressing relocations.
8950 {
8951 // Make a PLT entry if necessary.
8952 if (this->symbol_needs_plt_entry(gsym))
8953 {
8954 target->make_plt_entry(symtab, layout, gsym);
8955 // Since this is not a PC-relative relocation, we may be
8956 // taking the address of a function. In that case we need to
8957 // set the entry in the dynamic symbol table to the address of
8958 // the PLT entry.
8959 if (gsym->is_from_dynobj() && !parameters->options().shared())
8960 gsym->set_needs_dynsym_value();
8961 }
8962 // Make a dynamic relocation if necessary.
8963 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8964 {
8965 if (!parameters->options().output_is_position_independent()
8966 && gsym->may_need_copy_reloc())
8967 {
8968 target->copy_reloc(symtab, layout, object,
8969 data_shndx, output_section, gsym, reloc);
8970 }
8971 else if ((r_type == elfcpp::R_ARM_ABS32
8972 || r_type == elfcpp::R_ARM_ABS32_NOI)
8973 && gsym->type() == elfcpp::STT_GNU_IFUNC
8974 && gsym->can_use_relative_reloc(false)
8975 && !gsym->is_from_dynobj()
8976 && !gsym->is_undefined()
8977 && !gsym->is_preemptible())
8978 {
8979 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8980 // symbol. This makes a function address in a PIE executable
8981 // match the address in a shared library that it links against.
8982 Reloc_section* rel_irelative =
8983 target->rel_irelative_section(layout);
8984 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8985 rel_irelative->add_symbolless_global_addend(
8986 gsym, r_type, output_section, object,
8987 data_shndx, reloc.get_r_offset());
8988 }
8989 else if ((r_type == elfcpp::R_ARM_ABS32
8990 || r_type == elfcpp::R_ARM_ABS32_NOI)
8991 && gsym->can_use_relative_reloc(false))
8992 {
8993 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8994 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8995 output_section, object,
8996 data_shndx, reloc.get_r_offset());
8997 }
8998 else
8999 {
9000 check_non_pic(object, r_type);
9001 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9002 rel_dyn->add_global(gsym, r_type, output_section, object,
9003 data_shndx, reloc.get_r_offset());
9004 }
9005 }
9006 }
9007 break;
9008
9009 case elfcpp::R_ARM_GOTOFF32:
9010 case elfcpp::R_ARM_GOTOFF12:
9011 // We need a GOT section.
9012 target->got_section(symtab, layout);
9013 break;
9014
9015 case elfcpp::R_ARM_REL32:
9016 case elfcpp::R_ARM_LDR_PC_G0:
9017 case elfcpp::R_ARM_SBREL32:
9018 case elfcpp::R_ARM_THM_PC8:
9019 case elfcpp::R_ARM_BASE_PREL:
9020 case elfcpp::R_ARM_MOVW_PREL_NC:
9021 case elfcpp::R_ARM_MOVT_PREL:
9022 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9023 case elfcpp::R_ARM_THM_MOVT_PREL:
9024 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9025 case elfcpp::R_ARM_THM_PC12:
9026 case elfcpp::R_ARM_REL32_NOI:
9027 case elfcpp::R_ARM_ALU_PC_G0_NC:
9028 case elfcpp::R_ARM_ALU_PC_G0:
9029 case elfcpp::R_ARM_ALU_PC_G1_NC:
9030 case elfcpp::R_ARM_ALU_PC_G1:
9031 case elfcpp::R_ARM_ALU_PC_G2:
9032 case elfcpp::R_ARM_LDR_PC_G1:
9033 case elfcpp::R_ARM_LDR_PC_G2:
9034 case elfcpp::R_ARM_LDRS_PC_G0:
9035 case elfcpp::R_ARM_LDRS_PC_G1:
9036 case elfcpp::R_ARM_LDRS_PC_G2:
9037 case elfcpp::R_ARM_LDC_PC_G0:
9038 case elfcpp::R_ARM_LDC_PC_G1:
9039 case elfcpp::R_ARM_LDC_PC_G2:
9040 case elfcpp::R_ARM_ALU_SB_G0_NC:
9041 case elfcpp::R_ARM_ALU_SB_G0:
9042 case elfcpp::R_ARM_ALU_SB_G1_NC:
9043 case elfcpp::R_ARM_ALU_SB_G1:
9044 case elfcpp::R_ARM_ALU_SB_G2:
9045 case elfcpp::R_ARM_LDR_SB_G0:
9046 case elfcpp::R_ARM_LDR_SB_G1:
9047 case elfcpp::R_ARM_LDR_SB_G2:
9048 case elfcpp::R_ARM_LDRS_SB_G0:
9049 case elfcpp::R_ARM_LDRS_SB_G1:
9050 case elfcpp::R_ARM_LDRS_SB_G2:
9051 case elfcpp::R_ARM_LDC_SB_G0:
9052 case elfcpp::R_ARM_LDC_SB_G1:
9053 case elfcpp::R_ARM_LDC_SB_G2:
9054 case elfcpp::R_ARM_MOVW_BREL_NC:
9055 case elfcpp::R_ARM_MOVT_BREL:
9056 case elfcpp::R_ARM_MOVW_BREL:
9057 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9058 case elfcpp::R_ARM_THM_MOVT_BREL:
9059 case elfcpp::R_ARM_THM_MOVW_BREL:
9060 // Relative addressing relocations.
9061 {
9062 // Make a dynamic relocation if necessary.
9063 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9064 {
9065 if (parameters->options().output_is_executable()
9066 && target->may_need_copy_reloc(gsym))
9067 {
9068 target->copy_reloc(symtab, layout, object,
9069 data_shndx, output_section, gsym, reloc);
9070 }
9071 else
9072 {
9073 check_non_pic(object, r_type);
9074 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9075 rel_dyn->add_global(gsym, r_type, output_section, object,
9076 data_shndx, reloc.get_r_offset());
9077 }
9078 }
9079 }
9080 break;
9081
9082 case elfcpp::R_ARM_THM_CALL:
9083 case elfcpp::R_ARM_PLT32:
9084 case elfcpp::R_ARM_CALL:
9085 case elfcpp::R_ARM_JUMP24:
9086 case elfcpp::R_ARM_THM_JUMP24:
9087 case elfcpp::R_ARM_SBREL31:
9088 case elfcpp::R_ARM_PREL31:
9089 case elfcpp::R_ARM_THM_JUMP19:
9090 case elfcpp::R_ARM_THM_JUMP6:
9091 case elfcpp::R_ARM_THM_JUMP11:
9092 case elfcpp::R_ARM_THM_JUMP8:
9093 // All the relocation above are branches except for the PREL31 ones.
9094 // A PREL31 relocation can point to a personality function in a shared
9095 // library. In that case we want to use a PLT because we want to
9096 // call the personality routine and the dynamic linkers we care about
9097 // do not support dynamic PREL31 relocations. An REL31 relocation may
9098 // point to a function whose unwinding behaviour is being described but
9099 // we will not mistakenly generate a PLT for that because we should use
9100 // a local section symbol.
9101
9102 // If the symbol is fully resolved, this is just a relative
9103 // local reloc. Otherwise we need a PLT entry.
9104 if (gsym->final_value_is_known())
9105 break;
9106 // If building a shared library, we can also skip the PLT entry
9107 // if the symbol is defined in the output file and is protected
9108 // or hidden.
9109 if (gsym->is_defined()
9110 && !gsym->is_from_dynobj()
9111 && !gsym->is_preemptible())
9112 break;
9113 target->make_plt_entry(symtab, layout, gsym);
9114 break;
9115
9116 case elfcpp::R_ARM_GOT_BREL:
9117 case elfcpp::R_ARM_GOT_ABS:
9118 case elfcpp::R_ARM_GOT_PREL:
9119 {
9120 // The symbol requires a GOT entry.
9121 Arm_output_data_got<big_endian>* got =
9122 target->got_section(symtab, layout);
9123 if (gsym->final_value_is_known())
9124 {
9125 // For a STT_GNU_IFUNC symbol we want the PLT address.
9126 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9127 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9128 else
9129 got->add_global(gsym, GOT_TYPE_STANDARD);
9130 }
9131 else
9132 {
9133 // If this symbol is not fully resolved, we need to add a
9134 // GOT entry with a dynamic relocation.
9135 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9136 if (gsym->is_from_dynobj()
9137 || gsym->is_undefined()
9138 || gsym->is_preemptible()
9139 || (gsym->visibility() == elfcpp::STV_PROTECTED
9140 && parameters->options().shared())
9141 || (gsym->type() == elfcpp::STT_GNU_IFUNC
9142 && parameters->options().output_is_position_independent()))
9143 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
9144 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
9145 else
9146 {
9147 // For a STT_GNU_IFUNC symbol we want to write the PLT
9148 // offset into the GOT, so that function pointer
9149 // comparisons work correctly.
9150 bool is_new;
9151 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
9152 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
9153 else
9154 {
9155 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9156 // Tell the dynamic linker to use the PLT address
9157 // when resolving relocations.
9158 if (gsym->is_from_dynobj()
9159 && !parameters->options().shared())
9160 gsym->set_needs_dynsym_value();
9161 }
9162 if (is_new)
9163 rel_dyn->add_global_relative(
9164 gsym, elfcpp::R_ARM_RELATIVE, got,
9165 gsym->got_offset(GOT_TYPE_STANDARD));
9166 }
9167 }
9168 }
9169 break;
9170
9171 case elfcpp::R_ARM_TARGET1:
9172 case elfcpp::R_ARM_TARGET2:
9173 // These should have been mapped to other types already.
9174 // Fall through.
9175 case elfcpp::R_ARM_COPY:
9176 case elfcpp::R_ARM_GLOB_DAT:
9177 case elfcpp::R_ARM_JUMP_SLOT:
9178 case elfcpp::R_ARM_RELATIVE:
9179 // These are relocations which should only be seen by the
9180 // dynamic linker, and should never be seen here.
9181 gold_error(_("%s: unexpected reloc %u in object file"),
9182 object->name().c_str(), r_type);
9183 break;
9184
9185 // These are initial tls relocs, which are expected when
9186 // linking.
9187 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9188 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9189 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9190 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9191 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9192 {
9193 const bool is_final = gsym->final_value_is_known();
9194 const tls::Tls_optimization optimized_type
9195 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9196 switch (r_type)
9197 {
9198 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9199 if (optimized_type == tls::TLSOPT_NONE)
9200 {
9201 // Create a pair of GOT entries for the module index and
9202 // dtv-relative offset.
9203 Arm_output_data_got<big_endian>* got
9204 = target->got_section(symtab, layout);
9205 if (!parameters->doing_static_link())
9206 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
9207 target->rel_dyn_section(layout),
9208 elfcpp::R_ARM_TLS_DTPMOD32,
9209 elfcpp::R_ARM_TLS_DTPOFF32);
9210 else
9211 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9212 }
9213 else
9214 // FIXME: TLS optimization not supported yet.
9215 gold_unreachable();
9216 break;
9217
9218 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9219 if (optimized_type == tls::TLSOPT_NONE)
9220 {
9221 // Create a GOT entry for the module index.
9222 target->got_mod_index_entry(symtab, layout, object);
9223 }
9224 else
9225 // FIXME: TLS optimization not supported yet.
9226 gold_unreachable();
9227 break;
9228
9229 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9230 break;
9231
9232 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9233 layout->set_has_static_tls();
9234 if (optimized_type == tls::TLSOPT_NONE)
9235 {
9236 // Create a GOT entry for the tp-relative offset.
9237 Arm_output_data_got<big_endian>* got
9238 = target->got_section(symtab, layout);
9239 if (!parameters->doing_static_link())
9240 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9241 target->rel_dyn_section(layout),
9242 elfcpp::R_ARM_TLS_TPOFF32);
9243 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9244 {
9245 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9246 unsigned int got_offset =
9247 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9248 got->add_static_reloc(got_offset,
9249 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9250 }
9251 }
9252 else
9253 // FIXME: TLS optimization not supported yet.
9254 gold_unreachable();
9255 break;
9256
9257 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9258 layout->set_has_static_tls();
9259 if (parameters->options().shared())
9260 {
9261 // We need to create a dynamic relocation.
9262 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9263 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9264 output_section, object,
9265 data_shndx, reloc.get_r_offset());
9266 }
9267 break;
9268
9269 default:
9270 gold_unreachable();
9271 }
9272 }
9273 break;
9274
9275 case elfcpp::R_ARM_PC24:
9276 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9277 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9278 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9279 default:
9280 unsupported_reloc_global(object, r_type, gsym);
9281 break;
9282 }
9283 }
9284
9285 // Process relocations for gc.
9286
9287 template<bool big_endian>
9288 void
9289 Target_arm<big_endian>::gc_process_relocs(
9290 Symbol_table* symtab,
9291 Layout* layout,
9292 Sized_relobj_file<32, big_endian>* object,
9293 unsigned int data_shndx,
9294 unsigned int,
9295 const unsigned char* prelocs,
9296 size_t reloc_count,
9297 Output_section* output_section,
9298 bool needs_special_offset_handling,
9299 size_t local_symbol_count,
9300 const unsigned char* plocal_symbols)
9301 {
9302 typedef Target_arm<big_endian> Arm;
9303 typedef typename Target_arm<big_endian>::Scan Scan;
9304
9305 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
9306 symtab,
9307 layout,
9308 this,
9309 object,
9310 data_shndx,
9311 prelocs,
9312 reloc_count,
9313 output_section,
9314 needs_special_offset_handling,
9315 local_symbol_count,
9316 plocal_symbols);
9317 }
9318
9319 // Scan relocations for a section.
9320
9321 template<bool big_endian>
9322 void
9323 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9324 Layout* layout,
9325 Sized_relobj_file<32, big_endian>* object,
9326 unsigned int data_shndx,
9327 unsigned int sh_type,
9328 const unsigned char* prelocs,
9329 size_t reloc_count,
9330 Output_section* output_section,
9331 bool needs_special_offset_handling,
9332 size_t local_symbol_count,
9333 const unsigned char* plocal_symbols)
9334 {
9335 if (sh_type == elfcpp::SHT_RELA)
9336 {
9337 gold_error(_("%s: unsupported RELA reloc section"),
9338 object->name().c_str());
9339 return;
9340 }
9341
9342 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
9343 symtab,
9344 layout,
9345 this,
9346 object,
9347 data_shndx,
9348 prelocs,
9349 reloc_count,
9350 output_section,
9351 needs_special_offset_handling,
9352 local_symbol_count,
9353 plocal_symbols);
9354 }
9355
9356 // Finalize the sections.
9357
9358 template<bool big_endian>
9359 void
9360 Target_arm<big_endian>::do_finalize_sections(
9361 Layout* layout,
9362 const Input_objects* input_objects,
9363 Symbol_table*)
9364 {
9365 bool merged_any_attributes = false;
9366 // Merge processor-specific flags.
9367 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9368 p != input_objects->relobj_end();
9369 ++p)
9370 {
9371 Arm_relobj<big_endian>* arm_relobj =
9372 Arm_relobj<big_endian>::as_arm_relobj(*p);
9373 if (arm_relobj->merge_flags_and_attributes())
9374 {
9375 this->merge_processor_specific_flags(
9376 arm_relobj->name(),
9377 arm_relobj->processor_specific_flags());
9378 this->merge_object_attributes(arm_relobj->name().c_str(),
9379 arm_relobj->attributes_section_data());
9380 merged_any_attributes = true;
9381 }
9382 }
9383
9384 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9385 p != input_objects->dynobj_end();
9386 ++p)
9387 {
9388 Arm_dynobj<big_endian>* arm_dynobj =
9389 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9390 this->merge_processor_specific_flags(
9391 arm_dynobj->name(),
9392 arm_dynobj->processor_specific_flags());
9393 this->merge_object_attributes(arm_dynobj->name().c_str(),
9394 arm_dynobj->attributes_section_data());
9395 merged_any_attributes = true;
9396 }
9397
9398 // Create an empty uninitialized attribute section if we still don't have it
9399 // at this moment. This happens if there is no attributes sections in all
9400 // inputs.
9401 if (this->attributes_section_data_ == NULL)
9402 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9403
9404 const Object_attribute* cpu_arch_attr =
9405 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9406 // Check if we need to use Cortex-A8 workaround.
9407 if (parameters->options().user_set_fix_cortex_a8())
9408 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9409 else
9410 {
9411 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9412 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9413 // profile.
9414 const Object_attribute* cpu_arch_profile_attr =
9415 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9416 this->fix_cortex_a8_ =
9417 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9418 && (cpu_arch_profile_attr->int_value() == 'A'
9419 || cpu_arch_profile_attr->int_value() == 0));
9420 }
9421
9422 // Check if we can use V4BX interworking.
9423 // The V4BX interworking stub contains BX instruction,
9424 // which is not specified for some profiles.
9425 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9426 && !this->may_use_v4t_interworking())
9427 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9428 "the target profile does not support BX instruction"));
9429
9430 // Fill in some more dynamic tags.
9431 const Reloc_section* rel_plt = (this->plt_ == NULL
9432 ? NULL
9433 : this->plt_->rel_plt());
9434 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9435 this->rel_dyn_, true, false);
9436
9437 // Emit any relocs we saved in an attempt to avoid generating COPY
9438 // relocs.
9439 if (this->copy_relocs_.any_saved_relocs())
9440 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9441
9442 // Handle the .ARM.exidx section.
9443 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9444
9445 if (!parameters->options().relocatable())
9446 {
9447 if (exidx_section != NULL
9448 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9449 {
9450 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9451 // the .ARM.exidx section.
9452 if (!layout->script_options()->saw_phdrs_clause())
9453 {
9454 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9455 0)
9456 == NULL);
9457 Output_segment* exidx_segment =
9458 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9459 exidx_segment->add_output_section_to_nonload(exidx_section,
9460 elfcpp::PF_R);
9461 }
9462 }
9463 }
9464
9465 // Create an .ARM.attributes section if we have merged any attributes
9466 // from inputs.
9467 if (merged_any_attributes)
9468 {
9469 Output_attributes_section_data* attributes_section =
9470 new Output_attributes_section_data(*this->attributes_section_data_);
9471 layout->add_output_section_data(".ARM.attributes",
9472 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9473 attributes_section, ORDER_INVALID,
9474 false);
9475 }
9476
9477 // Fix up links in section EXIDX headers.
9478 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9479 p != layout->section_list().end();
9480 ++p)
9481 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9482 {
9483 Arm_output_section<big_endian>* os =
9484 Arm_output_section<big_endian>::as_arm_output_section(*p);
9485 os->set_exidx_section_link();
9486 }
9487 }
9488
9489 // Return whether a direct absolute static relocation needs to be applied.
9490 // In cases where Scan::local() or Scan::global() has created
9491 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9492 // of the relocation is carried in the data, and we must not
9493 // apply the static relocation.
9494
9495 template<bool big_endian>
9496 inline bool
9497 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9498 const Sized_symbol<32>* gsym,
9499 unsigned int r_type,
9500 bool is_32bit,
9501 Output_section* output_section)
9502 {
9503 // If the output section is not allocated, then we didn't call
9504 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9505 // the reloc here.
9506 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9507 return true;
9508
9509 int ref_flags = Scan::get_reference_flags(r_type);
9510
9511 // For local symbols, we will have created a non-RELATIVE dynamic
9512 // relocation only if (a) the output is position independent,
9513 // (b) the relocation is absolute (not pc- or segment-relative), and
9514 // (c) the relocation is not 32 bits wide.
9515 if (gsym == NULL)
9516 return !(parameters->options().output_is_position_independent()
9517 && (ref_flags & Symbol::ABSOLUTE_REF)
9518 && !is_32bit);
9519
9520 // For global symbols, we use the same helper routines used in the
9521 // scan pass. If we did not create a dynamic relocation, or if we
9522 // created a RELATIVE dynamic relocation, we should apply the static
9523 // relocation.
9524 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9525 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9526 && gsym->can_use_relative_reloc(ref_flags
9527 & Symbol::FUNCTION_CALL);
9528 return !has_dyn || is_rel;
9529 }
9530
9531 // Perform a relocation.
9532
9533 template<bool big_endian>
9534 inline bool
9535 Target_arm<big_endian>::Relocate::relocate(
9536 const Relocate_info<32, big_endian>* relinfo,
9537 unsigned int,
9538 Target_arm* target,
9539 Output_section* output_section,
9540 size_t relnum,
9541 const unsigned char* preloc,
9542 const Sized_symbol<32>* gsym,
9543 const Symbol_value<32>* psymval,
9544 unsigned char* view,
9545 Arm_address address,
9546 section_size_type view_size)
9547 {
9548 if (view == NULL)
9549 return true;
9550
9551 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9552
9553 const elfcpp::Rel<32, big_endian> rel(preloc);
9554 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
9555 r_type = get_real_reloc_type(r_type);
9556 const Arm_reloc_property* reloc_property =
9557 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9558 if (reloc_property == NULL)
9559 {
9560 std::string reloc_name =
9561 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9562 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9563 _("cannot relocate %s in object file"),
9564 reloc_name.c_str());
9565 return true;
9566 }
9567
9568 const Arm_relobj<big_endian>* object =
9569 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9570
9571 // If the final branch target of a relocation is THUMB instruction, this
9572 // is 1. Otherwise it is 0.
9573 Arm_address thumb_bit = 0;
9574 Symbol_value<32> symval;
9575 bool is_weakly_undefined_without_plt = false;
9576 bool have_got_offset = false;
9577 unsigned int got_offset = 0;
9578
9579 // If the relocation uses the GOT entry of a symbol instead of the symbol
9580 // itself, we don't care about whether the symbol is defined or what kind
9581 // of symbol it is.
9582 if (reloc_property->uses_got_entry())
9583 {
9584 // Get the GOT offset.
9585 // The GOT pointer points to the end of the GOT section.
9586 // We need to subtract the size of the GOT section to get
9587 // the actual offset to use in the relocation.
9588 // TODO: We should move GOT offset computing code in TLS relocations
9589 // to here.
9590 switch (r_type)
9591 {
9592 case elfcpp::R_ARM_GOT_BREL:
9593 case elfcpp::R_ARM_GOT_PREL:
9594 if (gsym != NULL)
9595 {
9596 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9597 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9598 - target->got_size());
9599 }
9600 else
9601 {
9602 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9603 gold_assert(object->local_has_got_offset(r_sym,
9604 GOT_TYPE_STANDARD));
9605 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9606 - target->got_size());
9607 }
9608 have_got_offset = true;
9609 break;
9610
9611 default:
9612 break;
9613 }
9614 }
9615 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9616 {
9617 if (gsym != NULL)
9618 {
9619 // This is a global symbol. Determine if we use PLT and if the
9620 // final target is THUMB.
9621 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9622 {
9623 // This uses a PLT, change the symbol value.
9624 symval.set_output_value(target->plt_address_for_global(gsym));
9625 psymval = &symval;
9626 }
9627 else if (gsym->is_weak_undefined())
9628 {
9629 // This is a weakly undefined symbol and we do not use PLT
9630 // for this relocation. A branch targeting this symbol will
9631 // be converted into an NOP.
9632 is_weakly_undefined_without_plt = true;
9633 }
9634 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9635 {
9636 // This relocation uses the symbol value but the symbol is
9637 // undefined. Exit early and have the caller reporting an
9638 // error.
9639 return true;
9640 }
9641 else
9642 {
9643 // Set thumb bit if symbol:
9644 // -Has type STT_ARM_TFUNC or
9645 // -Has type STT_FUNC, is defined and with LSB in value set.
9646 thumb_bit =
9647 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9648 || (gsym->type() == elfcpp::STT_FUNC
9649 && !gsym->is_undefined()
9650 && ((psymval->value(object, 0) & 1) != 0)))
9651 ? 1
9652 : 0);
9653 }
9654 }
9655 else
9656 {
9657 // This is a local symbol. Determine if the final target is THUMB.
9658 // We saved this information when all the local symbols were read.
9659 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9660 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9661 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9662
9663 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9664 {
9665 symval.set_output_value(
9666 target->plt_address_for_local(object, r_sym));
9667 psymval = &symval;
9668 }
9669 }
9670 }
9671 else
9672 {
9673 // This is a fake relocation synthesized for a stub. It does not have
9674 // a real symbol. We just look at the LSB of the symbol value to
9675 // determine if the target is THUMB or not.
9676 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9677 }
9678
9679 // Strip LSB if this points to a THUMB target.
9680 if (thumb_bit != 0
9681 && reloc_property->uses_thumb_bit()
9682 && ((psymval->value(object, 0) & 1) != 0))
9683 {
9684 Arm_address stripped_value =
9685 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9686 symval.set_output_value(stripped_value);
9687 psymval = &symval;
9688 }
9689
9690 // To look up relocation stubs, we need to pass the symbol table index of
9691 // a local symbol.
9692 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9693
9694 // Get the addressing origin of the output segment defining the
9695 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9696 Arm_address sym_origin = 0;
9697 if (reloc_property->uses_symbol_base())
9698 {
9699 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9700 // R_ARM_BASE_ABS with the NULL symbol will give the
9701 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9702 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9703 sym_origin = target->got_plt_section()->address();
9704 else if (gsym == NULL)
9705 sym_origin = 0;
9706 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9707 sym_origin = gsym->output_segment()->vaddr();
9708 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9709 sym_origin = gsym->output_data()->address();
9710
9711 // TODO: Assumes the segment base to be zero for the global symbols
9712 // till the proper support for the segment-base-relative addressing
9713 // will be implemented. This is consistent with GNU ld.
9714 }
9715
9716 // For relative addressing relocation, find out the relative address base.
9717 Arm_address relative_address_base = 0;
9718 switch(reloc_property->relative_address_base())
9719 {
9720 case Arm_reloc_property::RAB_NONE:
9721 // Relocations with relative address bases RAB_TLS and RAB_tp are
9722 // handled by relocate_tls. So we do not need to do anything here.
9723 case Arm_reloc_property::RAB_TLS:
9724 case Arm_reloc_property::RAB_tp:
9725 break;
9726 case Arm_reloc_property::RAB_B_S:
9727 relative_address_base = sym_origin;
9728 break;
9729 case Arm_reloc_property::RAB_GOT_ORG:
9730 relative_address_base = target->got_plt_section()->address();
9731 break;
9732 case Arm_reloc_property::RAB_P:
9733 relative_address_base = address;
9734 break;
9735 case Arm_reloc_property::RAB_Pa:
9736 relative_address_base = address & 0xfffffffcU;
9737 break;
9738 default:
9739 gold_unreachable();
9740 }
9741
9742 typename Arm_relocate_functions::Status reloc_status =
9743 Arm_relocate_functions::STATUS_OKAY;
9744 bool check_overflow = reloc_property->checks_overflow();
9745 switch (r_type)
9746 {
9747 case elfcpp::R_ARM_NONE:
9748 break;
9749
9750 case elfcpp::R_ARM_ABS8:
9751 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9752 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9753 break;
9754
9755 case elfcpp::R_ARM_ABS12:
9756 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9757 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9758 break;
9759
9760 case elfcpp::R_ARM_ABS16:
9761 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9762 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9763 break;
9764
9765 case elfcpp::R_ARM_ABS32:
9766 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9767 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9768 thumb_bit);
9769 break;
9770
9771 case elfcpp::R_ARM_ABS32_NOI:
9772 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9773 // No thumb bit for this relocation: (S + A)
9774 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9775 0);
9776 break;
9777
9778 case elfcpp::R_ARM_MOVW_ABS_NC:
9779 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9780 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9781 0, thumb_bit,
9782 check_overflow);
9783 break;
9784
9785 case elfcpp::R_ARM_MOVT_ABS:
9786 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9787 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9788 break;
9789
9790 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9791 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9792 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9793 0, thumb_bit, false);
9794 break;
9795
9796 case elfcpp::R_ARM_THM_MOVT_ABS:
9797 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9798 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9799 psymval, 0);
9800 break;
9801
9802 case elfcpp::R_ARM_MOVW_PREL_NC:
9803 case elfcpp::R_ARM_MOVW_BREL_NC:
9804 case elfcpp::R_ARM_MOVW_BREL:
9805 reloc_status =
9806 Arm_relocate_functions::movw(view, object, psymval,
9807 relative_address_base, thumb_bit,
9808 check_overflow);
9809 break;
9810
9811 case elfcpp::R_ARM_MOVT_PREL:
9812 case elfcpp::R_ARM_MOVT_BREL:
9813 reloc_status =
9814 Arm_relocate_functions::movt(view, object, psymval,
9815 relative_address_base);
9816 break;
9817
9818 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9819 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9820 case elfcpp::R_ARM_THM_MOVW_BREL:
9821 reloc_status =
9822 Arm_relocate_functions::thm_movw(view, object, psymval,
9823 relative_address_base,
9824 thumb_bit, check_overflow);
9825 break;
9826
9827 case elfcpp::R_ARM_THM_MOVT_PREL:
9828 case elfcpp::R_ARM_THM_MOVT_BREL:
9829 reloc_status =
9830 Arm_relocate_functions::thm_movt(view, object, psymval,
9831 relative_address_base);
9832 break;
9833
9834 case elfcpp::R_ARM_REL32:
9835 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9836 address, thumb_bit);
9837 break;
9838
9839 case elfcpp::R_ARM_THM_ABS5:
9840 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9841 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9842 break;
9843
9844 // Thumb long branches.
9845 case elfcpp::R_ARM_THM_CALL:
9846 case elfcpp::R_ARM_THM_XPC22:
9847 case elfcpp::R_ARM_THM_JUMP24:
9848 reloc_status =
9849 Arm_relocate_functions::thumb_branch_common(
9850 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9851 thumb_bit, is_weakly_undefined_without_plt);
9852 break;
9853
9854 case elfcpp::R_ARM_GOTOFF32:
9855 {
9856 Arm_address got_origin;
9857 got_origin = target->got_plt_section()->address();
9858 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9859 got_origin, thumb_bit);
9860 }
9861 break;
9862
9863 case elfcpp::R_ARM_BASE_PREL:
9864 gold_assert(gsym != NULL);
9865 reloc_status =
9866 Arm_relocate_functions::base_prel(view, sym_origin, address);
9867 break;
9868
9869 case elfcpp::R_ARM_BASE_ABS:
9870 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9871 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9872 break;
9873
9874 case elfcpp::R_ARM_GOT_BREL:
9875 gold_assert(have_got_offset);
9876 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9877 break;
9878
9879 case elfcpp::R_ARM_GOT_PREL:
9880 gold_assert(have_got_offset);
9881 // Get the address origin for GOT PLT, which is allocated right
9882 // after the GOT section, to calculate an absolute address of
9883 // the symbol GOT entry (got_origin + got_offset).
9884 Arm_address got_origin;
9885 got_origin = target->got_plt_section()->address();
9886 reloc_status = Arm_relocate_functions::got_prel(view,
9887 got_origin + got_offset,
9888 address);
9889 break;
9890
9891 case elfcpp::R_ARM_PLT32:
9892 case elfcpp::R_ARM_CALL:
9893 case elfcpp::R_ARM_JUMP24:
9894 case elfcpp::R_ARM_XPC25:
9895 gold_assert(gsym == NULL
9896 || gsym->has_plt_offset()
9897 || gsym->final_value_is_known()
9898 || (gsym->is_defined()
9899 && !gsym->is_from_dynobj()
9900 && !gsym->is_preemptible()));
9901 reloc_status =
9902 Arm_relocate_functions::arm_branch_common(
9903 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9904 thumb_bit, is_weakly_undefined_without_plt);
9905 break;
9906
9907 case elfcpp::R_ARM_THM_JUMP19:
9908 reloc_status =
9909 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9910 thumb_bit);
9911 break;
9912
9913 case elfcpp::R_ARM_THM_JUMP6:
9914 reloc_status =
9915 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9916 break;
9917
9918 case elfcpp::R_ARM_THM_JUMP8:
9919 reloc_status =
9920 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9921 break;
9922
9923 case elfcpp::R_ARM_THM_JUMP11:
9924 reloc_status =
9925 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9926 break;
9927
9928 case elfcpp::R_ARM_PREL31:
9929 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9930 address, thumb_bit);
9931 break;
9932
9933 case elfcpp::R_ARM_V4BX:
9934 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9935 {
9936 const bool is_v4bx_interworking =
9937 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9938 reloc_status =
9939 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9940 is_v4bx_interworking);
9941 }
9942 break;
9943
9944 case elfcpp::R_ARM_THM_PC8:
9945 reloc_status =
9946 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9947 break;
9948
9949 case elfcpp::R_ARM_THM_PC12:
9950 reloc_status =
9951 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9952 break;
9953
9954 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9955 reloc_status =
9956 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9957 thumb_bit);
9958 break;
9959
9960 case elfcpp::R_ARM_ALU_PC_G0_NC:
9961 case elfcpp::R_ARM_ALU_PC_G0:
9962 case elfcpp::R_ARM_ALU_PC_G1_NC:
9963 case elfcpp::R_ARM_ALU_PC_G1:
9964 case elfcpp::R_ARM_ALU_PC_G2:
9965 case elfcpp::R_ARM_ALU_SB_G0_NC:
9966 case elfcpp::R_ARM_ALU_SB_G0:
9967 case elfcpp::R_ARM_ALU_SB_G1_NC:
9968 case elfcpp::R_ARM_ALU_SB_G1:
9969 case elfcpp::R_ARM_ALU_SB_G2:
9970 reloc_status =
9971 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9972 reloc_property->group_index(),
9973 relative_address_base,
9974 thumb_bit, check_overflow);
9975 break;
9976
9977 case elfcpp::R_ARM_LDR_PC_G0:
9978 case elfcpp::R_ARM_LDR_PC_G1:
9979 case elfcpp::R_ARM_LDR_PC_G2:
9980 case elfcpp::R_ARM_LDR_SB_G0:
9981 case elfcpp::R_ARM_LDR_SB_G1:
9982 case elfcpp::R_ARM_LDR_SB_G2:
9983 reloc_status =
9984 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9985 reloc_property->group_index(),
9986 relative_address_base);
9987 break;
9988
9989 case elfcpp::R_ARM_LDRS_PC_G0:
9990 case elfcpp::R_ARM_LDRS_PC_G1:
9991 case elfcpp::R_ARM_LDRS_PC_G2:
9992 case elfcpp::R_ARM_LDRS_SB_G0:
9993 case elfcpp::R_ARM_LDRS_SB_G1:
9994 case elfcpp::R_ARM_LDRS_SB_G2:
9995 reloc_status =
9996 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9997 reloc_property->group_index(),
9998 relative_address_base);
9999 break;
10000
10001 case elfcpp::R_ARM_LDC_PC_G0:
10002 case elfcpp::R_ARM_LDC_PC_G1:
10003 case elfcpp::R_ARM_LDC_PC_G2:
10004 case elfcpp::R_ARM_LDC_SB_G0:
10005 case elfcpp::R_ARM_LDC_SB_G1:
10006 case elfcpp::R_ARM_LDC_SB_G2:
10007 reloc_status =
10008 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
10009 reloc_property->group_index(),
10010 relative_address_base);
10011 break;
10012
10013 // These are initial tls relocs, which are expected when
10014 // linking.
10015 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10016 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10017 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10018 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10019 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10020 reloc_status =
10021 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
10022 view, address, view_size);
10023 break;
10024
10025 // The known and unknown unsupported and/or deprecated relocations.
10026 case elfcpp::R_ARM_PC24:
10027 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
10028 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
10029 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
10030 default:
10031 // Just silently leave the method. We should get an appropriate error
10032 // message in the scan methods.
10033 break;
10034 }
10035
10036 // Report any errors.
10037 switch (reloc_status)
10038 {
10039 case Arm_relocate_functions::STATUS_OKAY:
10040 break;
10041 case Arm_relocate_functions::STATUS_OVERFLOW:
10042 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10043 _("relocation overflow in %s"),
10044 reloc_property->name().c_str());
10045 break;
10046 case Arm_relocate_functions::STATUS_BAD_RELOC:
10047 gold_error_at_location(
10048 relinfo,
10049 relnum,
10050 rel.get_r_offset(),
10051 _("unexpected opcode while processing relocation %s"),
10052 reloc_property->name().c_str());
10053 break;
10054 default:
10055 gold_unreachable();
10056 }
10057
10058 return true;
10059 }
10060
10061 // Perform a TLS relocation.
10062
10063 template<bool big_endian>
10064 inline typename Arm_relocate_functions<big_endian>::Status
10065 Target_arm<big_endian>::Relocate::relocate_tls(
10066 const Relocate_info<32, big_endian>* relinfo,
10067 Target_arm<big_endian>* target,
10068 size_t relnum,
10069 const elfcpp::Rel<32, big_endian>& rel,
10070 unsigned int r_type,
10071 const Sized_symbol<32>* gsym,
10072 const Symbol_value<32>* psymval,
10073 unsigned char* view,
10074 elfcpp::Elf_types<32>::Elf_Addr address,
10075 section_size_type /*view_size*/ )
10076 {
10077 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
10078 typedef Relocate_functions<32, big_endian> RelocFuncs;
10079 Output_segment* tls_segment = relinfo->layout->tls_segment();
10080
10081 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
10082
10083 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
10084
10085 const bool is_final = (gsym == NULL
10086 ? !parameters->options().shared()
10087 : gsym->final_value_is_known());
10088 const tls::Tls_optimization optimized_type
10089 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
10090 switch (r_type)
10091 {
10092 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10093 {
10094 unsigned int got_type = GOT_TYPE_TLS_PAIR;
10095 unsigned int got_offset;
10096 if (gsym != NULL)
10097 {
10098 gold_assert(gsym->has_got_offset(got_type));
10099 got_offset = gsym->got_offset(got_type) - target->got_size();
10100 }
10101 else
10102 {
10103 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10104 gold_assert(object->local_has_got_offset(r_sym, got_type));
10105 got_offset = (object->local_got_offset(r_sym, got_type)
10106 - target->got_size());
10107 }
10108 if (optimized_type == tls::TLSOPT_NONE)
10109 {
10110 Arm_address got_entry =
10111 target->got_plt_section()->address() + got_offset;
10112
10113 // Relocate the field with the PC relative offset of the pair of
10114 // GOT entries.
10115 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10116 return ArmRelocFuncs::STATUS_OKAY;
10117 }
10118 }
10119 break;
10120
10121 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10122 if (optimized_type == tls::TLSOPT_NONE)
10123 {
10124 // Relocate the field with the offset of the GOT entry for
10125 // the module index.
10126 unsigned int got_offset;
10127 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
10128 - target->got_size());
10129 Arm_address got_entry =
10130 target->got_plt_section()->address() + got_offset;
10131
10132 // Relocate the field with the PC relative offset of the pair of
10133 // GOT entries.
10134 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10135 return ArmRelocFuncs::STATUS_OKAY;
10136 }
10137 break;
10138
10139 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10140 RelocFuncs::rel32_unaligned(view, value);
10141 return ArmRelocFuncs::STATUS_OKAY;
10142
10143 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10144 if (optimized_type == tls::TLSOPT_NONE)
10145 {
10146 // Relocate the field with the offset of the GOT entry for
10147 // the tp-relative offset of the symbol.
10148 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
10149 unsigned int got_offset;
10150 if (gsym != NULL)
10151 {
10152 gold_assert(gsym->has_got_offset(got_type));
10153 got_offset = gsym->got_offset(got_type);
10154 }
10155 else
10156 {
10157 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10158 gold_assert(object->local_has_got_offset(r_sym, got_type));
10159 got_offset = object->local_got_offset(r_sym, got_type);
10160 }
10161
10162 // All GOT offsets are relative to the end of the GOT.
10163 got_offset -= target->got_size();
10164
10165 Arm_address got_entry =
10166 target->got_plt_section()->address() + got_offset;
10167
10168 // Relocate the field with the PC relative offset of the GOT entry.
10169 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10170 return ArmRelocFuncs::STATUS_OKAY;
10171 }
10172 break;
10173
10174 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10175 // If we're creating a shared library, a dynamic relocation will
10176 // have been created for this location, so do not apply it now.
10177 if (!parameters->options().shared())
10178 {
10179 gold_assert(tls_segment != NULL);
10180
10181 // $tp points to the TCB, which is followed by the TLS, so we
10182 // need to add TCB size to the offset.
10183 Arm_address aligned_tcb_size =
10184 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
10185 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
10186
10187 }
10188 return ArmRelocFuncs::STATUS_OKAY;
10189
10190 default:
10191 gold_unreachable();
10192 }
10193
10194 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10195 _("unsupported reloc %u"),
10196 r_type);
10197 return ArmRelocFuncs::STATUS_BAD_RELOC;
10198 }
10199
10200 // Relocate section data.
10201
10202 template<bool big_endian>
10203 void
10204 Target_arm<big_endian>::relocate_section(
10205 const Relocate_info<32, big_endian>* relinfo,
10206 unsigned int sh_type,
10207 const unsigned char* prelocs,
10208 size_t reloc_count,
10209 Output_section* output_section,
10210 bool needs_special_offset_handling,
10211 unsigned char* view,
10212 Arm_address address,
10213 section_size_type view_size,
10214 const Reloc_symbol_changes* reloc_symbol_changes)
10215 {
10216 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10217 gold_assert(sh_type == elfcpp::SHT_REL);
10218
10219 // See if we are relocating a relaxed input section. If so, the view
10220 // covers the whole output section and we need to adjust accordingly.
10221 if (needs_special_offset_handling)
10222 {
10223 const Output_relaxed_input_section* poris =
10224 output_section->find_relaxed_input_section(relinfo->object,
10225 relinfo->data_shndx);
10226 if (poris != NULL)
10227 {
10228 Arm_address section_address = poris->address();
10229 section_size_type section_size = poris->data_size();
10230
10231 gold_assert((section_address >= address)
10232 && ((section_address + section_size)
10233 <= (address + view_size)));
10234
10235 off_t offset = section_address - address;
10236 view += offset;
10237 address += offset;
10238 view_size = section_size;
10239 }
10240 }
10241
10242 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
10243 gold::Default_comdat_behavior, Classify_reloc>(
10244 relinfo,
10245 this,
10246 prelocs,
10247 reloc_count,
10248 output_section,
10249 needs_special_offset_handling,
10250 view,
10251 address,
10252 view_size,
10253 reloc_symbol_changes);
10254 }
10255
10256 // Return the size of a relocation while scanning during a relocatable
10257 // link.
10258
10259 template<bool big_endian>
10260 unsigned int
10261 Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
10262 unsigned int r_type,
10263 Relobj* object)
10264 {
10265 r_type = get_real_reloc_type(r_type);
10266 const Arm_reloc_property* arp =
10267 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10268 if (arp != NULL)
10269 return arp->size();
10270 else
10271 {
10272 std::string reloc_name =
10273 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10274 gold_error(_("%s: unexpected %s in object file"),
10275 object->name().c_str(), reloc_name.c_str());
10276 return 0;
10277 }
10278 }
10279
10280 // Scan the relocs during a relocatable link.
10281
10282 template<bool big_endian>
10283 void
10284 Target_arm<big_endian>::scan_relocatable_relocs(
10285 Symbol_table* symtab,
10286 Layout* layout,
10287 Sized_relobj_file<32, big_endian>* object,
10288 unsigned int data_shndx,
10289 unsigned int sh_type,
10290 const unsigned char* prelocs,
10291 size_t reloc_count,
10292 Output_section* output_section,
10293 bool needs_special_offset_handling,
10294 size_t local_symbol_count,
10295 const unsigned char* plocal_symbols,
10296 Relocatable_relocs* rr)
10297 {
10298 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
10299 Scan_relocatable_relocs;
10300
10301 gold_assert(sh_type == elfcpp::SHT_REL);
10302
10303 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
10304 symtab,
10305 layout,
10306 object,
10307 data_shndx,
10308 prelocs,
10309 reloc_count,
10310 output_section,
10311 needs_special_offset_handling,
10312 local_symbol_count,
10313 plocal_symbols,
10314 rr);
10315 }
10316
10317 // Scan the relocs for --emit-relocs.
10318
10319 template<bool big_endian>
10320 void
10321 Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
10322 Layout* layout,
10323 Sized_relobj_file<32, big_endian>* object,
10324 unsigned int data_shndx,
10325 unsigned int sh_type,
10326 const unsigned char* prelocs,
10327 size_t reloc_count,
10328 Output_section* output_section,
10329 bool needs_special_offset_handling,
10330 size_t local_symbol_count,
10331 const unsigned char* plocal_syms,
10332 Relocatable_relocs* rr)
10333 {
10334 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
10335 Classify_reloc;
10336 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10337 Emit_relocs_strategy;
10338
10339 gold_assert(sh_type == elfcpp::SHT_REL);
10340
10341 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
10342 symtab,
10343 layout,
10344 object,
10345 data_shndx,
10346 prelocs,
10347 reloc_count,
10348 output_section,
10349 needs_special_offset_handling,
10350 local_symbol_count,
10351 plocal_syms,
10352 rr);
10353 }
10354
10355 // Emit relocations for a section.
10356
10357 template<bool big_endian>
10358 void
10359 Target_arm<big_endian>::relocate_relocs(
10360 const Relocate_info<32, big_endian>* relinfo,
10361 unsigned int sh_type,
10362 const unsigned char* prelocs,
10363 size_t reloc_count,
10364 Output_section* output_section,
10365 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10366 unsigned char* view,
10367 Arm_address view_address,
10368 section_size_type view_size,
10369 unsigned char* reloc_view,
10370 section_size_type reloc_view_size)
10371 {
10372 gold_assert(sh_type == elfcpp::SHT_REL);
10373
10374 gold::relocate_relocs<32, big_endian, Classify_reloc>(
10375 relinfo,
10376 prelocs,
10377 reloc_count,
10378 output_section,
10379 offset_in_output_section,
10380 view,
10381 view_address,
10382 view_size,
10383 reloc_view,
10384 reloc_view_size);
10385 }
10386
10387 // Perform target-specific processing in a relocatable link. This is
10388 // only used if we use the relocation strategy RELOC_SPECIAL.
10389
10390 template<bool big_endian>
10391 void
10392 Target_arm<big_endian>::relocate_special_relocatable(
10393 const Relocate_info<32, big_endian>* relinfo,
10394 unsigned int sh_type,
10395 const unsigned char* preloc_in,
10396 size_t relnum,
10397 Output_section* output_section,
10398 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10399 unsigned char* view,
10400 elfcpp::Elf_types<32>::Elf_Addr view_address,
10401 section_size_type,
10402 unsigned char* preloc_out)
10403 {
10404 // We can only handle REL type relocation sections.
10405 gold_assert(sh_type == elfcpp::SHT_REL);
10406
10407 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10408 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10409 Reltype_write;
10410 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10411
10412 const Arm_relobj<big_endian>* object =
10413 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10414 const unsigned int local_count = object->local_symbol_count();
10415
10416 Reltype reloc(preloc_in);
10417 Reltype_write reloc_write(preloc_out);
10418
10419 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10420 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10421 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10422
10423 const Arm_reloc_property* arp =
10424 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10425 gold_assert(arp != NULL);
10426
10427 // Get the new symbol index.
10428 // We only use RELOC_SPECIAL strategy in local relocations.
10429 gold_assert(r_sym < local_count);
10430
10431 // We are adjusting a section symbol. We need to find
10432 // the symbol table index of the section symbol for
10433 // the output section corresponding to input section
10434 // in which this symbol is defined.
10435 bool is_ordinary;
10436 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10437 gold_assert(is_ordinary);
10438 Output_section* os = object->output_section(shndx);
10439 gold_assert(os != NULL);
10440 gold_assert(os->needs_symtab_index());
10441 unsigned int new_symndx = os->symtab_index();
10442
10443 // Get the new offset--the location in the output section where
10444 // this relocation should be applied.
10445
10446 Arm_address offset = reloc.get_r_offset();
10447 Arm_address new_offset;
10448 if (offset_in_output_section != invalid_address)
10449 new_offset = offset + offset_in_output_section;
10450 else
10451 {
10452 section_offset_type sot_offset =
10453 convert_types<section_offset_type, Arm_address>(offset);
10454 section_offset_type new_sot_offset =
10455 output_section->output_offset(object, relinfo->data_shndx,
10456 sot_offset);
10457 gold_assert(new_sot_offset != -1);
10458 new_offset = new_sot_offset;
10459 }
10460
10461 // In an object file, r_offset is an offset within the section.
10462 // In an executable or dynamic object, generated by
10463 // --emit-relocs, r_offset is an absolute address.
10464 if (!parameters->options().relocatable())
10465 {
10466 new_offset += view_address;
10467 if (offset_in_output_section != invalid_address)
10468 new_offset -= offset_in_output_section;
10469 }
10470
10471 reloc_write.put_r_offset(new_offset);
10472 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10473
10474 // Handle the reloc addend.
10475 // The relocation uses a section symbol in the input file.
10476 // We are adjusting it to use a section symbol in the output
10477 // file. The input section symbol refers to some address in
10478 // the input section. We need the relocation in the output
10479 // file to refer to that same address. This adjustment to
10480 // the addend is the same calculation we use for a simple
10481 // absolute relocation for the input section symbol.
10482
10483 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10484
10485 // Handle THUMB bit.
10486 Symbol_value<32> symval;
10487 Arm_address thumb_bit =
10488 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10489 if (thumb_bit != 0
10490 && arp->uses_thumb_bit()
10491 && ((psymval->value(object, 0) & 1) != 0))
10492 {
10493 Arm_address stripped_value =
10494 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10495 symval.set_output_value(stripped_value);
10496 psymval = &symval;
10497 }
10498
10499 unsigned char* paddend = view + offset;
10500 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10501 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10502 switch (r_type)
10503 {
10504 case elfcpp::R_ARM_ABS8:
10505 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10506 psymval);
10507 break;
10508
10509 case elfcpp::R_ARM_ABS12:
10510 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10511 psymval);
10512 break;
10513
10514 case elfcpp::R_ARM_ABS16:
10515 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10516 psymval);
10517 break;
10518
10519 case elfcpp::R_ARM_THM_ABS5:
10520 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10521 object,
10522 psymval);
10523 break;
10524
10525 case elfcpp::R_ARM_MOVW_ABS_NC:
10526 case elfcpp::R_ARM_MOVW_PREL_NC:
10527 case elfcpp::R_ARM_MOVW_BREL_NC:
10528 case elfcpp::R_ARM_MOVW_BREL:
10529 reloc_status = Arm_relocate_functions<big_endian>::movw(
10530 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10531 break;
10532
10533 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10534 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10535 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10536 case elfcpp::R_ARM_THM_MOVW_BREL:
10537 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10538 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10539 break;
10540
10541 case elfcpp::R_ARM_THM_CALL:
10542 case elfcpp::R_ARM_THM_XPC22:
10543 case elfcpp::R_ARM_THM_JUMP24:
10544 reloc_status =
10545 Arm_relocate_functions<big_endian>::thumb_branch_common(
10546 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10547 false);
10548 break;
10549
10550 case elfcpp::R_ARM_PLT32:
10551 case elfcpp::R_ARM_CALL:
10552 case elfcpp::R_ARM_JUMP24:
10553 case elfcpp::R_ARM_XPC25:
10554 reloc_status =
10555 Arm_relocate_functions<big_endian>::arm_branch_common(
10556 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10557 false);
10558 break;
10559
10560 case elfcpp::R_ARM_THM_JUMP19:
10561 reloc_status =
10562 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10563 psymval, 0, thumb_bit);
10564 break;
10565
10566 case elfcpp::R_ARM_THM_JUMP6:
10567 reloc_status =
10568 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10569 0);
10570 break;
10571
10572 case elfcpp::R_ARM_THM_JUMP8:
10573 reloc_status =
10574 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10575 0);
10576 break;
10577
10578 case elfcpp::R_ARM_THM_JUMP11:
10579 reloc_status =
10580 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10581 0);
10582 break;
10583
10584 case elfcpp::R_ARM_PREL31:
10585 reloc_status =
10586 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10587 thumb_bit);
10588 break;
10589
10590 case elfcpp::R_ARM_THM_PC8:
10591 reloc_status =
10592 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10593 0);
10594 break;
10595
10596 case elfcpp::R_ARM_THM_PC12:
10597 reloc_status =
10598 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10599 0);
10600 break;
10601
10602 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10603 reloc_status =
10604 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10605 0, thumb_bit);
10606 break;
10607
10608 // These relocation truncate relocation results so we cannot handle them
10609 // in a relocatable link.
10610 case elfcpp::R_ARM_MOVT_ABS:
10611 case elfcpp::R_ARM_THM_MOVT_ABS:
10612 case elfcpp::R_ARM_MOVT_PREL:
10613 case elfcpp::R_ARM_MOVT_BREL:
10614 case elfcpp::R_ARM_THM_MOVT_PREL:
10615 case elfcpp::R_ARM_THM_MOVT_BREL:
10616 case elfcpp::R_ARM_ALU_PC_G0_NC:
10617 case elfcpp::R_ARM_ALU_PC_G0:
10618 case elfcpp::R_ARM_ALU_PC_G1_NC:
10619 case elfcpp::R_ARM_ALU_PC_G1:
10620 case elfcpp::R_ARM_ALU_PC_G2:
10621 case elfcpp::R_ARM_ALU_SB_G0_NC:
10622 case elfcpp::R_ARM_ALU_SB_G0:
10623 case elfcpp::R_ARM_ALU_SB_G1_NC:
10624 case elfcpp::R_ARM_ALU_SB_G1:
10625 case elfcpp::R_ARM_ALU_SB_G2:
10626 case elfcpp::R_ARM_LDR_PC_G0:
10627 case elfcpp::R_ARM_LDR_PC_G1:
10628 case elfcpp::R_ARM_LDR_PC_G2:
10629 case elfcpp::R_ARM_LDR_SB_G0:
10630 case elfcpp::R_ARM_LDR_SB_G1:
10631 case elfcpp::R_ARM_LDR_SB_G2:
10632 case elfcpp::R_ARM_LDRS_PC_G0:
10633 case elfcpp::R_ARM_LDRS_PC_G1:
10634 case elfcpp::R_ARM_LDRS_PC_G2:
10635 case elfcpp::R_ARM_LDRS_SB_G0:
10636 case elfcpp::R_ARM_LDRS_SB_G1:
10637 case elfcpp::R_ARM_LDRS_SB_G2:
10638 case elfcpp::R_ARM_LDC_PC_G0:
10639 case elfcpp::R_ARM_LDC_PC_G1:
10640 case elfcpp::R_ARM_LDC_PC_G2:
10641 case elfcpp::R_ARM_LDC_SB_G0:
10642 case elfcpp::R_ARM_LDC_SB_G1:
10643 case elfcpp::R_ARM_LDC_SB_G2:
10644 gold_error(_("cannot handle %s in a relocatable link"),
10645 arp->name().c_str());
10646 break;
10647
10648 default:
10649 gold_unreachable();
10650 }
10651
10652 // Report any errors.
10653 switch (reloc_status)
10654 {
10655 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10656 break;
10657 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10658 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10659 _("relocation overflow in %s"),
10660 arp->name().c_str());
10661 break;
10662 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10663 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10664 _("unexpected opcode while processing relocation %s"),
10665 arp->name().c_str());
10666 break;
10667 default:
10668 gold_unreachable();
10669 }
10670 }
10671
10672 // Return the value to use for a dynamic symbol which requires special
10673 // treatment. This is how we support equality comparisons of function
10674 // pointers across shared library boundaries, as described in the
10675 // processor specific ABI supplement.
10676
10677 template<bool big_endian>
10678 uint64_t
10679 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10680 {
10681 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10682 return this->plt_address_for_global(gsym);
10683 }
10684
10685 // Map platform-specific relocs to real relocs
10686 //
10687 template<bool big_endian>
10688 unsigned int
10689 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10690 {
10691 switch (r_type)
10692 {
10693 case elfcpp::R_ARM_TARGET1:
10694 // This is either R_ARM_ABS32 or R_ARM_REL32;
10695 return elfcpp::R_ARM_ABS32;
10696
10697 case elfcpp::R_ARM_TARGET2:
10698 // This can be any reloc type but usually is R_ARM_GOT_PREL
10699 return elfcpp::R_ARM_GOT_PREL;
10700
10701 default:
10702 return r_type;
10703 }
10704 }
10705
10706 // Whether if two EABI versions V1 and V2 are compatible.
10707
10708 template<bool big_endian>
10709 bool
10710 Target_arm<big_endian>::are_eabi_versions_compatible(
10711 elfcpp::Elf_Word v1,
10712 elfcpp::Elf_Word v2)
10713 {
10714 // v4 and v5 are the same spec before and after it was released,
10715 // so allow mixing them.
10716 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10717 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10718 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10719 return true;
10720
10721 return v1 == v2;
10722 }
10723
10724 // Combine FLAGS from an input object called NAME and the processor-specific
10725 // flags in the ELF header of the output. Much of this is adapted from the
10726 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10727 // in bfd/elf32-arm.c.
10728
10729 template<bool big_endian>
10730 void
10731 Target_arm<big_endian>::merge_processor_specific_flags(
10732 const std::string& name,
10733 elfcpp::Elf_Word flags)
10734 {
10735 if (this->are_processor_specific_flags_set())
10736 {
10737 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10738
10739 // Nothing to merge if flags equal to those in output.
10740 if (flags == out_flags)
10741 return;
10742
10743 // Complain about various flag mismatches.
10744 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10745 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10746 if (!this->are_eabi_versions_compatible(version1, version2)
10747 && parameters->options().warn_mismatch())
10748 gold_error(_("Source object %s has EABI version %d but output has "
10749 "EABI version %d."),
10750 name.c_str(),
10751 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10752 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10753 }
10754 else
10755 {
10756 // If the input is the default architecture and had the default
10757 // flags then do not bother setting the flags for the output
10758 // architecture, instead allow future merges to do this. If no
10759 // future merges ever set these flags then they will retain their
10760 // uninitialised values, which surprise surprise, correspond
10761 // to the default values.
10762 if (flags == 0)
10763 return;
10764
10765 // This is the first time, just copy the flags.
10766 // We only copy the EABI version for now.
10767 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10768 }
10769 }
10770
10771 // Adjust ELF file header.
10772 template<bool big_endian>
10773 void
10774 Target_arm<big_endian>::do_adjust_elf_header(
10775 unsigned char* view,
10776 int len)
10777 {
10778 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10779
10780 elfcpp::Ehdr<32, big_endian> ehdr(view);
10781 elfcpp::Elf_Word flags = this->processor_specific_flags();
10782 unsigned char e_ident[elfcpp::EI_NIDENT];
10783 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10784
10785 if (elfcpp::arm_eabi_version(flags)
10786 == elfcpp::EF_ARM_EABI_UNKNOWN)
10787 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10788 else
10789 e_ident[elfcpp::EI_OSABI] = 0;
10790 e_ident[elfcpp::EI_ABIVERSION] = 0;
10791
10792 // Do EF_ARM_BE8 adjustment.
10793 if (parameters->options().be8() && !big_endian)
10794 gold_error("BE8 images only valid in big-endian mode.");
10795 if (parameters->options().be8())
10796 {
10797 flags |= elfcpp::EF_ARM_BE8;
10798 this->set_processor_specific_flags(flags);
10799 }
10800
10801 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10802 // as appropriate.
10803 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10804 {
10805 elfcpp::Elf_Half type = ehdr.get_e_type();
10806 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10807 {
10808 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10809 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10810 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10811 else
10812 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10813 this->set_processor_specific_flags(flags);
10814 }
10815 }
10816 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10817 oehdr.put_e_ident(e_ident);
10818 oehdr.put_e_flags(this->processor_specific_flags());
10819 }
10820
10821 // do_make_elf_object to override the same function in the base class.
10822 // We need to use a target-specific sub-class of
10823 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10824 // Hence we need to have our own ELF object creation.
10825
10826 template<bool big_endian>
10827 Object*
10828 Target_arm<big_endian>::do_make_elf_object(
10829 const std::string& name,
10830 Input_file* input_file,
10831 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10832 {
10833 int et = ehdr.get_e_type();
10834 // ET_EXEC files are valid input for --just-symbols/-R,
10835 // and we treat them as relocatable objects.
10836 if (et == elfcpp::ET_REL
10837 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10838 {
10839 Arm_relobj<big_endian>* obj =
10840 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10841 obj->setup();
10842 return obj;
10843 }
10844 else if (et == elfcpp::ET_DYN)
10845 {
10846 Sized_dynobj<32, big_endian>* obj =
10847 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10848 obj->setup();
10849 return obj;
10850 }
10851 else
10852 {
10853 gold_error(_("%s: unsupported ELF file type %d"),
10854 name.c_str(), et);
10855 return NULL;
10856 }
10857 }
10858
10859 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10860 // Returns -1 if no architecture could be read.
10861 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10862
10863 template<bool big_endian>
10864 int
10865 Target_arm<big_endian>::get_secondary_compatible_arch(
10866 const Attributes_section_data* pasd)
10867 {
10868 const Object_attribute* known_attributes =
10869 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10870
10871 // Note: the tag and its argument below are uleb128 values, though
10872 // currently-defined values fit in one byte for each.
10873 const std::string& sv =
10874 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10875 if (sv.size() == 2
10876 && sv.data()[0] == elfcpp::Tag_CPU_arch
10877 && (sv.data()[1] & 128) != 128)
10878 return sv.data()[1];
10879
10880 // This tag is "safely ignorable", so don't complain if it looks funny.
10881 return -1;
10882 }
10883
10884 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10885 // The tag is removed if ARCH is -1.
10886 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10887
10888 template<bool big_endian>
10889 void
10890 Target_arm<big_endian>::set_secondary_compatible_arch(
10891 Attributes_section_data* pasd,
10892 int arch)
10893 {
10894 Object_attribute* known_attributes =
10895 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10896
10897 if (arch == -1)
10898 {
10899 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10900 return;
10901 }
10902
10903 // Note: the tag and its argument below are uleb128 values, though
10904 // currently-defined values fit in one byte for each.
10905 char sv[3];
10906 sv[0] = elfcpp::Tag_CPU_arch;
10907 gold_assert(arch != 0);
10908 sv[1] = arch;
10909 sv[2] = '\0';
10910
10911 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10912 }
10913
10914 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10915 // into account.
10916 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10917
10918 template<bool big_endian>
10919 int
10920 Target_arm<big_endian>::tag_cpu_arch_combine(
10921 const char* name,
10922 int oldtag,
10923 int* secondary_compat_out,
10924 int newtag,
10925 int secondary_compat)
10926 {
10927 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10928 static const int v6t2[] =
10929 {
10930 T(V6T2), // PRE_V4.
10931 T(V6T2), // V4.
10932 T(V6T2), // V4T.
10933 T(V6T2), // V5T.
10934 T(V6T2), // V5TE.
10935 T(V6T2), // V5TEJ.
10936 T(V6T2), // V6.
10937 T(V7), // V6KZ.
10938 T(V6T2) // V6T2.
10939 };
10940 static const int v6k[] =
10941 {
10942 T(V6K), // PRE_V4.
10943 T(V6K), // V4.
10944 T(V6K), // V4T.
10945 T(V6K), // V5T.
10946 T(V6K), // V5TE.
10947 T(V6K), // V5TEJ.
10948 T(V6K), // V6.
10949 T(V6KZ), // V6KZ.
10950 T(V7), // V6T2.
10951 T(V6K) // V6K.
10952 };
10953 static const int v7[] =
10954 {
10955 T(V7), // PRE_V4.
10956 T(V7), // V4.
10957 T(V7), // V4T.
10958 T(V7), // V5T.
10959 T(V7), // V5TE.
10960 T(V7), // V5TEJ.
10961 T(V7), // V6.
10962 T(V7), // V6KZ.
10963 T(V7), // V6T2.
10964 T(V7), // V6K.
10965 T(V7) // V7.
10966 };
10967 static const int v6_m[] =
10968 {
10969 -1, // PRE_V4.
10970 -1, // V4.
10971 T(V6K), // V4T.
10972 T(V6K), // V5T.
10973 T(V6K), // V5TE.
10974 T(V6K), // V5TEJ.
10975 T(V6K), // V6.
10976 T(V6KZ), // V6KZ.
10977 T(V7), // V6T2.
10978 T(V6K), // V6K.
10979 T(V7), // V7.
10980 T(V6_M) // V6_M.
10981 };
10982 static const int v6s_m[] =
10983 {
10984 -1, // PRE_V4.
10985 -1, // V4.
10986 T(V6K), // V4T.
10987 T(V6K), // V5T.
10988 T(V6K), // V5TE.
10989 T(V6K), // V5TEJ.
10990 T(V6K), // V6.
10991 T(V6KZ), // V6KZ.
10992 T(V7), // V6T2.
10993 T(V6K), // V6K.
10994 T(V7), // V7.
10995 T(V6S_M), // V6_M.
10996 T(V6S_M) // V6S_M.
10997 };
10998 static const int v7e_m[] =
10999 {
11000 -1, // PRE_V4.
11001 -1, // V4.
11002 T(V7E_M), // V4T.
11003 T(V7E_M), // V5T.
11004 T(V7E_M), // V5TE.
11005 T(V7E_M), // V5TEJ.
11006 T(V7E_M), // V6.
11007 T(V7E_M), // V6KZ.
11008 T(V7E_M), // V6T2.
11009 T(V7E_M), // V6K.
11010 T(V7E_M), // V7.
11011 T(V7E_M), // V6_M.
11012 T(V7E_M), // V6S_M.
11013 T(V7E_M) // V7E_M.
11014 };
11015 static const int v8[] =
11016 {
11017 T(V8), // PRE_V4.
11018 T(V8), // V4.
11019 T(V8), // V4T.
11020 T(V8), // V5T.
11021 T(V8), // V5TE.
11022 T(V8), // V5TEJ.
11023 T(V8), // V6.
11024 T(V8), // V6KZ.
11025 T(V8), // V6T2.
11026 T(V8), // V6K.
11027 T(V8), // V7.
11028 T(V8), // V6_M.
11029 T(V8), // V6S_M.
11030 T(V8), // V7E_M.
11031 T(V8) // V8.
11032 };
11033 static const int v4t_plus_v6_m[] =
11034 {
11035 -1, // PRE_V4.
11036 -1, // V4.
11037 T(V4T), // V4T.
11038 T(V5T), // V5T.
11039 T(V5TE), // V5TE.
11040 T(V5TEJ), // V5TEJ.
11041 T(V6), // V6.
11042 T(V6KZ), // V6KZ.
11043 T(V6T2), // V6T2.
11044 T(V6K), // V6K.
11045 T(V7), // V7.
11046 T(V6_M), // V6_M.
11047 T(V6S_M), // V6S_M.
11048 T(V7E_M), // V7E_M.
11049 T(V8), // V8.
11050 T(V4T_PLUS_V6_M) // V4T plus V6_M.
11051 };
11052 static const int* comb[] =
11053 {
11054 v6t2,
11055 v6k,
11056 v7,
11057 v6_m,
11058 v6s_m,
11059 v7e_m,
11060 v8,
11061 // Pseudo-architecture.
11062 v4t_plus_v6_m
11063 };
11064
11065 // Check we've not got a higher architecture than we know about.
11066
11067 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
11068 {
11069 gold_error(_("%s: unknown CPU architecture"), name);
11070 return -1;
11071 }
11072
11073 // Override old tag if we have a Tag_also_compatible_with on the output.
11074
11075 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11076 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11077 oldtag = T(V4T_PLUS_V6_M);
11078
11079 // And override the new tag if we have a Tag_also_compatible_with on the
11080 // input.
11081
11082 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11083 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11084 newtag = T(V4T_PLUS_V6_M);
11085
11086 // Architectures before V6KZ add features monotonically.
11087 int tagh = std::max(oldtag, newtag);
11088 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
11089 return tagh;
11090
11091 int tagl = std::min(oldtag, newtag);
11092 int result = comb[tagh - T(V6T2)][tagl];
11093
11094 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11095 // as the canonical version.
11096 if (result == T(V4T_PLUS_V6_M))
11097 {
11098 result = T(V4T);
11099 *secondary_compat_out = T(V6_M);
11100 }
11101 else
11102 *secondary_compat_out = -1;
11103
11104 if (result == -1)
11105 {
11106 gold_error(_("%s: conflicting CPU architectures %d/%d"),
11107 name, oldtag, newtag);
11108 return -1;
11109 }
11110
11111 return result;
11112 #undef T
11113 }
11114
11115 // Helper to print AEABI enum tag value.
11116
11117 template<bool big_endian>
11118 std::string
11119 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
11120 {
11121 static const char* aeabi_enum_names[] =
11122 { "", "variable-size", "32-bit", "" };
11123 const size_t aeabi_enum_names_size =
11124 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
11125
11126 if (value < aeabi_enum_names_size)
11127 return std::string(aeabi_enum_names[value]);
11128 else
11129 {
11130 char buffer[100];
11131 sprintf(buffer, "<unknown value %u>", value);
11132 return std::string(buffer);
11133 }
11134 }
11135
11136 // Return the string value to store in TAG_CPU_name.
11137
11138 template<bool big_endian>
11139 std::string
11140 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
11141 {
11142 static const char* name_table[] = {
11143 // These aren't real CPU names, but we can't guess
11144 // that from the architecture version alone.
11145 "Pre v4",
11146 "ARM v4",
11147 "ARM v4T",
11148 "ARM v5T",
11149 "ARM v5TE",
11150 "ARM v5TEJ",
11151 "ARM v6",
11152 "ARM v6KZ",
11153 "ARM v6T2",
11154 "ARM v6K",
11155 "ARM v7",
11156 "ARM v6-M",
11157 "ARM v6S-M",
11158 "ARM v7E-M",
11159 "ARM v8"
11160 };
11161 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
11162
11163 if (value < name_table_size)
11164 return std::string(name_table[value]);
11165 else
11166 {
11167 char buffer[100];
11168 sprintf(buffer, "<unknown CPU value %u>", value);
11169 return std::string(buffer);
11170 }
11171 }
11172
11173 // Query attributes object to see if integer divide instructions may be
11174 // present in an object.
11175
11176 template<bool big_endian>
11177 bool
11178 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
11179 const Object_attribute* div_attr)
11180 {
11181 switch (div_attr->int_value())
11182 {
11183 case 0:
11184 // Integer divide allowed if instruction contained in
11185 // archetecture.
11186 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11187 return true;
11188 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
11189 return true;
11190 else
11191 return false;
11192
11193 case 1:
11194 // Integer divide explicitly prohibited.
11195 return false;
11196
11197 default:
11198 // Unrecognised case - treat as allowing divide everywhere.
11199 case 2:
11200 // Integer divide allowed in ARM state.
11201 return true;
11202 }
11203 }
11204
11205 // Query attributes object to see if integer divide instructions are
11206 // forbidden to be in the object. This is not the inverse of
11207 // attributes_accept_div.
11208
11209 template<bool big_endian>
11210 bool
11211 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
11212 {
11213 return div_attr->int_value() == 1;
11214 }
11215
11216 // Merge object attributes from input file called NAME with those of the
11217 // output. The input object attributes are in the object pointed by PASD.
11218
11219 template<bool big_endian>
11220 void
11221 Target_arm<big_endian>::merge_object_attributes(
11222 const char* name,
11223 const Attributes_section_data* pasd)
11224 {
11225 // Return if there is no attributes section data.
11226 if (pasd == NULL)
11227 return;
11228
11229 // If output has no object attributes, just copy.
11230 const int vendor = Object_attribute::OBJ_ATTR_PROC;
11231 if (this->attributes_section_data_ == NULL)
11232 {
11233 this->attributes_section_data_ = new Attributes_section_data(*pasd);
11234 Object_attribute* out_attr =
11235 this->attributes_section_data_->known_attributes(vendor);
11236
11237 // We do not output objects with Tag_MPextension_use_legacy - we move
11238 // the attribute's value to Tag_MPextension_use. */
11239 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
11240 {
11241 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
11242 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
11243 != out_attr[elfcpp::Tag_MPextension_use].int_value())
11244 {
11245 gold_error(_("%s has both the current and legacy "
11246 "Tag_MPextension_use attributes"),
11247 name);
11248 }
11249
11250 out_attr[elfcpp::Tag_MPextension_use] =
11251 out_attr[elfcpp::Tag_MPextension_use_legacy];
11252 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11253 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11254 }
11255
11256 return;
11257 }
11258
11259 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11260 Object_attribute* out_attr =
11261 this->attributes_section_data_->known_attributes(vendor);
11262
11263 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11264 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11265 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11266 {
11267 // Ignore mismatches if the object doesn't use floating point. */
11268 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11269 == elfcpp::AEABI_FP_number_model_none
11270 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11271 != elfcpp::AEABI_FP_number_model_none
11272 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11273 == elfcpp::AEABI_VFP_args_compatible))
11274 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11275 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11276 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11277 != elfcpp::AEABI_FP_number_model_none
11278 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11279 != elfcpp::AEABI_VFP_args_compatible
11280 && parameters->options().warn_mismatch())
11281 gold_error(_("%s uses VFP register arguments, output does not"),
11282 name);
11283 }
11284
11285 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11286 {
11287 // Merge this attribute with existing attributes.
11288 switch (i)
11289 {
11290 case elfcpp::Tag_CPU_raw_name:
11291 case elfcpp::Tag_CPU_name:
11292 // These are merged after Tag_CPU_arch.
11293 break;
11294
11295 case elfcpp::Tag_ABI_optimization_goals:
11296 case elfcpp::Tag_ABI_FP_optimization_goals:
11297 // Use the first value seen.
11298 break;
11299
11300 case elfcpp::Tag_CPU_arch:
11301 {
11302 unsigned int saved_out_attr = out_attr->int_value();
11303 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11304 int secondary_compat =
11305 this->get_secondary_compatible_arch(pasd);
11306 int secondary_compat_out =
11307 this->get_secondary_compatible_arch(
11308 this->attributes_section_data_);
11309 out_attr[i].set_int_value(
11310 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11311 &secondary_compat_out,
11312 in_attr[i].int_value(),
11313 secondary_compat));
11314 this->set_secondary_compatible_arch(this->attributes_section_data_,
11315 secondary_compat_out);
11316
11317 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11318 if (out_attr[i].int_value() == saved_out_attr)
11319 ; // Leave the names alone.
11320 else if (out_attr[i].int_value() == in_attr[i].int_value())
11321 {
11322 // The output architecture has been changed to match the
11323 // input architecture. Use the input names.
11324 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11325 in_attr[elfcpp::Tag_CPU_name].string_value());
11326 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11327 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11328 }
11329 else
11330 {
11331 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11332 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11333 }
11334
11335 // If we still don't have a value for Tag_CPU_name,
11336 // make one up now. Tag_CPU_raw_name remains blank.
11337 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11338 {
11339 const std::string cpu_name =
11340 this->tag_cpu_name_value(out_attr[i].int_value());
11341 // FIXME: If we see an unknown CPU, this will be set
11342 // to "<unknown CPU n>", where n is the attribute value.
11343 // This is different from BFD, which leaves the name alone.
11344 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11345 }
11346 }
11347 break;
11348
11349 case elfcpp::Tag_ARM_ISA_use:
11350 case elfcpp::Tag_THUMB_ISA_use:
11351 case elfcpp::Tag_WMMX_arch:
11352 case elfcpp::Tag_Advanced_SIMD_arch:
11353 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11354 case elfcpp::Tag_ABI_FP_rounding:
11355 case elfcpp::Tag_ABI_FP_exceptions:
11356 case elfcpp::Tag_ABI_FP_user_exceptions:
11357 case elfcpp::Tag_ABI_FP_number_model:
11358 case elfcpp::Tag_VFP_HP_extension:
11359 case elfcpp::Tag_CPU_unaligned_access:
11360 case elfcpp::Tag_T2EE_use:
11361 case elfcpp::Tag_Virtualization_use:
11362 case elfcpp::Tag_MPextension_use:
11363 // Use the largest value specified.
11364 if (in_attr[i].int_value() > out_attr[i].int_value())
11365 out_attr[i].set_int_value(in_attr[i].int_value());
11366 break;
11367
11368 case elfcpp::Tag_ABI_align8_preserved:
11369 case elfcpp::Tag_ABI_PCS_RO_data:
11370 // Use the smallest value specified.
11371 if (in_attr[i].int_value() < out_attr[i].int_value())
11372 out_attr[i].set_int_value(in_attr[i].int_value());
11373 break;
11374
11375 case elfcpp::Tag_ABI_align8_needed:
11376 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11377 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11378 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11379 == 0)))
11380 {
11381 // This error message should be enabled once all non-conforming
11382 // binaries in the toolchain have had the attributes set
11383 // properly.
11384 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11385 // name);
11386 }
11387 // Fall through.
11388 case elfcpp::Tag_ABI_FP_denormal:
11389 case elfcpp::Tag_ABI_PCS_GOT_use:
11390 {
11391 // These tags have 0 = don't care, 1 = strong requirement,
11392 // 2 = weak requirement.
11393 static const int order_021[3] = {0, 2, 1};
11394
11395 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11396 // value if greater than 2 (for future-proofing).
11397 if ((in_attr[i].int_value() > 2
11398 && in_attr[i].int_value() > out_attr[i].int_value())
11399 || (in_attr[i].int_value() <= 2
11400 && out_attr[i].int_value() <= 2
11401 && (order_021[in_attr[i].int_value()]
11402 > order_021[out_attr[i].int_value()])))
11403 out_attr[i].set_int_value(in_attr[i].int_value());
11404 }
11405 break;
11406
11407 case elfcpp::Tag_CPU_arch_profile:
11408 if (out_attr[i].int_value() != in_attr[i].int_value())
11409 {
11410 // 0 will merge with anything.
11411 // 'A' and 'S' merge to 'A'.
11412 // 'R' and 'S' merge to 'R'.
11413 // 'M' and 'A|R|S' is an error.
11414 if (out_attr[i].int_value() == 0
11415 || (out_attr[i].int_value() == 'S'
11416 && (in_attr[i].int_value() == 'A'
11417 || in_attr[i].int_value() == 'R')))
11418 out_attr[i].set_int_value(in_attr[i].int_value());
11419 else if (in_attr[i].int_value() == 0
11420 || (in_attr[i].int_value() == 'S'
11421 && (out_attr[i].int_value() == 'A'
11422 || out_attr[i].int_value() == 'R')))
11423 ; // Do nothing.
11424 else if (parameters->options().warn_mismatch())
11425 {
11426 gold_error
11427 (_("conflicting architecture profiles %c/%c"),
11428 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11429 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11430 }
11431 }
11432 break;
11433 case elfcpp::Tag_VFP_arch:
11434 {
11435 static const struct
11436 {
11437 int ver;
11438 int regs;
11439 } vfp_versions[7] =
11440 {
11441 {0, 0},
11442 {1, 16},
11443 {2, 16},
11444 {3, 32},
11445 {3, 16},
11446 {4, 32},
11447 {4, 16}
11448 };
11449
11450 // Values greater than 6 aren't defined, so just pick the
11451 // biggest.
11452 if (in_attr[i].int_value() > 6
11453 && in_attr[i].int_value() > out_attr[i].int_value())
11454 {
11455 *out_attr = *in_attr;
11456 break;
11457 }
11458 // The output uses the superset of input features
11459 // (ISA version) and registers.
11460 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11461 vfp_versions[out_attr[i].int_value()].ver);
11462 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11463 vfp_versions[out_attr[i].int_value()].regs);
11464 // This assumes all possible supersets are also a valid
11465 // options.
11466 int newval;
11467 for (newval = 6; newval > 0; newval--)
11468 {
11469 if (regs == vfp_versions[newval].regs
11470 && ver == vfp_versions[newval].ver)
11471 break;
11472 }
11473 out_attr[i].set_int_value(newval);
11474 }
11475 break;
11476 case elfcpp::Tag_PCS_config:
11477 if (out_attr[i].int_value() == 0)
11478 out_attr[i].set_int_value(in_attr[i].int_value());
11479 else if (in_attr[i].int_value() != 0
11480 && out_attr[i].int_value() != 0
11481 && parameters->options().warn_mismatch())
11482 {
11483 // It's sometimes ok to mix different configs, so this is only
11484 // a warning.
11485 gold_warning(_("%s: conflicting platform configuration"), name);
11486 }
11487 break;
11488 case elfcpp::Tag_ABI_PCS_R9_use:
11489 if (in_attr[i].int_value() != out_attr[i].int_value()
11490 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11491 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11492 && parameters->options().warn_mismatch())
11493 {
11494 gold_error(_("%s: conflicting use of R9"), name);
11495 }
11496 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11497 out_attr[i].set_int_value(in_attr[i].int_value());
11498 break;
11499 case elfcpp::Tag_ABI_PCS_RW_data:
11500 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11501 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11502 != elfcpp::AEABI_R9_SB)
11503 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11504 != elfcpp::AEABI_R9_unused)
11505 && parameters->options().warn_mismatch())
11506 {
11507 gold_error(_("%s: SB relative addressing conflicts with use "
11508 "of R9"),
11509 name);
11510 }
11511 // Use the smallest value specified.
11512 if (in_attr[i].int_value() < out_attr[i].int_value())
11513 out_attr[i].set_int_value(in_attr[i].int_value());
11514 break;
11515 case elfcpp::Tag_ABI_PCS_wchar_t:
11516 if (out_attr[i].int_value()
11517 && in_attr[i].int_value()
11518 && out_attr[i].int_value() != in_attr[i].int_value()
11519 && parameters->options().warn_mismatch()
11520 && parameters->options().wchar_size_warning())
11521 {
11522 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11523 "use %u-byte wchar_t; use of wchar_t values "
11524 "across objects may fail"),
11525 name, in_attr[i].int_value(),
11526 out_attr[i].int_value());
11527 }
11528 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11529 out_attr[i].set_int_value(in_attr[i].int_value());
11530 break;
11531 case elfcpp::Tag_ABI_enum_size:
11532 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11533 {
11534 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11535 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11536 {
11537 // The existing object is compatible with anything.
11538 // Use whatever requirements the new object has.
11539 out_attr[i].set_int_value(in_attr[i].int_value());
11540 }
11541 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11542 && out_attr[i].int_value() != in_attr[i].int_value()
11543 && parameters->options().warn_mismatch()
11544 && parameters->options().enum_size_warning())
11545 {
11546 unsigned int in_value = in_attr[i].int_value();
11547 unsigned int out_value = out_attr[i].int_value();
11548 gold_warning(_("%s uses %s enums yet the output is to use "
11549 "%s enums; use of enum values across objects "
11550 "may fail"),
11551 name,
11552 this->aeabi_enum_name(in_value).c_str(),
11553 this->aeabi_enum_name(out_value).c_str());
11554 }
11555 }
11556 break;
11557 case elfcpp::Tag_ABI_VFP_args:
11558 // Already done.
11559 break;
11560 case elfcpp::Tag_ABI_WMMX_args:
11561 if (in_attr[i].int_value() != out_attr[i].int_value()
11562 && parameters->options().warn_mismatch())
11563 {
11564 gold_error(_("%s uses iWMMXt register arguments, output does "
11565 "not"),
11566 name);
11567 }
11568 break;
11569 case Object_attribute::Tag_compatibility:
11570 // Merged in target-independent code.
11571 break;
11572 case elfcpp::Tag_ABI_HardFP_use:
11573 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11574 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11575 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11576 out_attr[i].set_int_value(3);
11577 else if (in_attr[i].int_value() > out_attr[i].int_value())
11578 out_attr[i].set_int_value(in_attr[i].int_value());
11579 break;
11580 case elfcpp::Tag_ABI_FP_16bit_format:
11581 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11582 {
11583 if (in_attr[i].int_value() != out_attr[i].int_value()
11584 && parameters->options().warn_mismatch())
11585 gold_error(_("fp16 format mismatch between %s and output"),
11586 name);
11587 }
11588 if (in_attr[i].int_value() != 0)
11589 out_attr[i].set_int_value(in_attr[i].int_value());
11590 break;
11591
11592 case elfcpp::Tag_DIV_use:
11593 {
11594 // A value of zero on input means that the divide
11595 // instruction may be used if available in the base
11596 // architecture as specified via Tag_CPU_arch and
11597 // Tag_CPU_arch_profile. A value of 1 means that the user
11598 // did not want divide instructions. A value of 2
11599 // explicitly means that divide instructions were allowed
11600 // in ARM and Thumb state.
11601 int arch = this->
11602 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11603 int_value();
11604 int profile = this->
11605 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11606 int_value();
11607 if (in_attr[i].int_value() == out_attr[i].int_value())
11608 {
11609 // Do nothing.
11610 }
11611 else if (attributes_forbid_div(&in_attr[i])
11612 && !attributes_accept_div(arch, profile, &out_attr[i]))
11613 out_attr[i].set_int_value(1);
11614 else if (attributes_forbid_div(&out_attr[i])
11615 && attributes_accept_div(arch, profile, &in_attr[i]))
11616 out_attr[i].set_int_value(in_attr[i].int_value());
11617 else if (in_attr[i].int_value() == 2)
11618 out_attr[i].set_int_value(in_attr[i].int_value());
11619 }
11620 break;
11621
11622 case elfcpp::Tag_MPextension_use_legacy:
11623 // We don't output objects with Tag_MPextension_use_legacy - we
11624 // move the value to Tag_MPextension_use.
11625 if (in_attr[i].int_value() != 0
11626 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11627 {
11628 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11629 != in_attr[i].int_value())
11630 {
11631 gold_error(_("%s has has both the current and legacy "
11632 "Tag_MPextension_use attributes"),
11633 name);
11634 }
11635 }
11636
11637 if (in_attr[i].int_value()
11638 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11639 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11640
11641 break;
11642
11643 case elfcpp::Tag_nodefaults:
11644 // This tag is set if it exists, but the value is unused (and is
11645 // typically zero). We don't actually need to do anything here -
11646 // the merge happens automatically when the type flags are merged
11647 // below.
11648 break;
11649 case elfcpp::Tag_also_compatible_with:
11650 // Already done in Tag_CPU_arch.
11651 break;
11652 case elfcpp::Tag_conformance:
11653 // Keep the attribute if it matches. Throw it away otherwise.
11654 // No attribute means no claim to conform.
11655 if (in_attr[i].string_value() != out_attr[i].string_value())
11656 out_attr[i].set_string_value("");
11657 break;
11658
11659 default:
11660 {
11661 const char* err_object = NULL;
11662
11663 // The "known_obj_attributes" table does contain some undefined
11664 // attributes. Ensure that there are unused.
11665 if (out_attr[i].int_value() != 0
11666 || out_attr[i].string_value() != "")
11667 err_object = "output";
11668 else if (in_attr[i].int_value() != 0
11669 || in_attr[i].string_value() != "")
11670 err_object = name;
11671
11672 if (err_object != NULL
11673 && parameters->options().warn_mismatch())
11674 {
11675 // Attribute numbers >=64 (mod 128) can be safely ignored.
11676 if ((i & 127) < 64)
11677 gold_error(_("%s: unknown mandatory EABI object attribute "
11678 "%d"),
11679 err_object, i);
11680 else
11681 gold_warning(_("%s: unknown EABI object attribute %d"),
11682 err_object, i);
11683 }
11684
11685 // Only pass on attributes that match in both inputs.
11686 if (!in_attr[i].matches(out_attr[i]))
11687 {
11688 out_attr[i].set_int_value(0);
11689 out_attr[i].set_string_value("");
11690 }
11691 }
11692 }
11693
11694 // If out_attr was copied from in_attr then it won't have a type yet.
11695 if (in_attr[i].type() && !out_attr[i].type())
11696 out_attr[i].set_type(in_attr[i].type());
11697 }
11698
11699 // Merge Tag_compatibility attributes and any common GNU ones.
11700 this->attributes_section_data_->merge(name, pasd);
11701
11702 // Check for any attributes not known on ARM.
11703 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11704 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11705 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11706 Other_attributes* out_other_attributes =
11707 this->attributes_section_data_->other_attributes(vendor);
11708 Other_attributes::iterator out_iter = out_other_attributes->begin();
11709
11710 while (in_iter != in_other_attributes->end()
11711 || out_iter != out_other_attributes->end())
11712 {
11713 const char* err_object = NULL;
11714 int err_tag = 0;
11715
11716 // The tags for each list are in numerical order.
11717 // If the tags are equal, then merge.
11718 if (out_iter != out_other_attributes->end()
11719 && (in_iter == in_other_attributes->end()
11720 || in_iter->first > out_iter->first))
11721 {
11722 // This attribute only exists in output. We can't merge, and we
11723 // don't know what the tag means, so delete it.
11724 err_object = "output";
11725 err_tag = out_iter->first;
11726 int saved_tag = out_iter->first;
11727 delete out_iter->second;
11728 out_other_attributes->erase(out_iter);
11729 out_iter = out_other_attributes->upper_bound(saved_tag);
11730 }
11731 else if (in_iter != in_other_attributes->end()
11732 && (out_iter != out_other_attributes->end()
11733 || in_iter->first < out_iter->first))
11734 {
11735 // This attribute only exists in input. We can't merge, and we
11736 // don't know what the tag means, so ignore it.
11737 err_object = name;
11738 err_tag = in_iter->first;
11739 ++in_iter;
11740 }
11741 else // The tags are equal.
11742 {
11743 // As present, all attributes in the list are unknown, and
11744 // therefore can't be merged meaningfully.
11745 err_object = "output";
11746 err_tag = out_iter->first;
11747
11748 // Only pass on attributes that match in both inputs.
11749 if (!in_iter->second->matches(*(out_iter->second)))
11750 {
11751 // No match. Delete the attribute.
11752 int saved_tag = out_iter->first;
11753 delete out_iter->second;
11754 out_other_attributes->erase(out_iter);
11755 out_iter = out_other_attributes->upper_bound(saved_tag);
11756 }
11757 else
11758 {
11759 // Matched. Keep the attribute and move to the next.
11760 ++out_iter;
11761 ++in_iter;
11762 }
11763 }
11764
11765 if (err_object && parameters->options().warn_mismatch())
11766 {
11767 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11768 if ((err_tag & 127) < 64)
11769 {
11770 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11771 err_object, err_tag);
11772 }
11773 else
11774 {
11775 gold_warning(_("%s: unknown EABI object attribute %d"),
11776 err_object, err_tag);
11777 }
11778 }
11779 }
11780 }
11781
11782 // Stub-generation methods for Target_arm.
11783
11784 // Make a new Arm_input_section object.
11785
11786 template<bool big_endian>
11787 Arm_input_section<big_endian>*
11788 Target_arm<big_endian>::new_arm_input_section(
11789 Relobj* relobj,
11790 unsigned int shndx)
11791 {
11792 Section_id sid(relobj, shndx);
11793
11794 Arm_input_section<big_endian>* arm_input_section =
11795 new Arm_input_section<big_endian>(relobj, shndx);
11796 arm_input_section->init();
11797
11798 // Register new Arm_input_section in map for look-up.
11799 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11800 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11801
11802 // Make sure that it we have not created another Arm_input_section
11803 // for this input section already.
11804 gold_assert(ins.second);
11805
11806 return arm_input_section;
11807 }
11808
11809 // Find the Arm_input_section object corresponding to the SHNDX-th input
11810 // section of RELOBJ.
11811
11812 template<bool big_endian>
11813 Arm_input_section<big_endian>*
11814 Target_arm<big_endian>::find_arm_input_section(
11815 Relobj* relobj,
11816 unsigned int shndx) const
11817 {
11818 Section_id sid(relobj, shndx);
11819 typename Arm_input_section_map::const_iterator p =
11820 this->arm_input_section_map_.find(sid);
11821 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11822 }
11823
11824 // Make a new stub table.
11825
11826 template<bool big_endian>
11827 Stub_table<big_endian>*
11828 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11829 {
11830 Stub_table<big_endian>* stub_table =
11831 new Stub_table<big_endian>(owner);
11832 this->stub_tables_.push_back(stub_table);
11833
11834 stub_table->set_address(owner->address() + owner->data_size());
11835 stub_table->set_file_offset(owner->offset() + owner->data_size());
11836 stub_table->finalize_data_size();
11837
11838 return stub_table;
11839 }
11840
11841 // Scan a relocation for stub generation.
11842
11843 template<bool big_endian>
11844 void
11845 Target_arm<big_endian>::scan_reloc_for_stub(
11846 const Relocate_info<32, big_endian>* relinfo,
11847 unsigned int r_type,
11848 const Sized_symbol<32>* gsym,
11849 unsigned int r_sym,
11850 const Symbol_value<32>* psymval,
11851 elfcpp::Elf_types<32>::Elf_Swxword addend,
11852 Arm_address address)
11853 {
11854 const Arm_relobj<big_endian>* arm_relobj =
11855 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11856
11857 bool target_is_thumb;
11858 Symbol_value<32> symval;
11859 if (gsym != NULL)
11860 {
11861 // This is a global symbol. Determine if we use PLT and if the
11862 // final target is THUMB.
11863 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11864 {
11865 // This uses a PLT, change the symbol value.
11866 symval.set_output_value(this->plt_address_for_global(gsym));
11867 psymval = &symval;
11868 target_is_thumb = false;
11869 }
11870 else if (gsym->is_undefined())
11871 // There is no need to generate a stub symbol is undefined.
11872 return;
11873 else
11874 {
11875 target_is_thumb =
11876 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11877 || (gsym->type() == elfcpp::STT_FUNC
11878 && !gsym->is_undefined()
11879 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11880 }
11881 }
11882 else
11883 {
11884 // This is a local symbol. Determine if the final target is THUMB.
11885 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11886 }
11887
11888 // Strip LSB if this points to a THUMB target.
11889 const Arm_reloc_property* reloc_property =
11890 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11891 gold_assert(reloc_property != NULL);
11892 if (target_is_thumb
11893 && reloc_property->uses_thumb_bit()
11894 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11895 {
11896 Arm_address stripped_value =
11897 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11898 symval.set_output_value(stripped_value);
11899 psymval = &symval;
11900 }
11901
11902 // Get the symbol value.
11903 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11904
11905 // Owing to pipelining, the PC relative branches below actually skip
11906 // two instructions when the branch offset is 0.
11907 Arm_address destination;
11908 switch (r_type)
11909 {
11910 case elfcpp::R_ARM_CALL:
11911 case elfcpp::R_ARM_JUMP24:
11912 case elfcpp::R_ARM_PLT32:
11913 // ARM branches.
11914 destination = value + addend + 8;
11915 break;
11916 case elfcpp::R_ARM_THM_CALL:
11917 case elfcpp::R_ARM_THM_XPC22:
11918 case elfcpp::R_ARM_THM_JUMP24:
11919 case elfcpp::R_ARM_THM_JUMP19:
11920 // THUMB branches.
11921 destination = value + addend + 4;
11922 break;
11923 default:
11924 gold_unreachable();
11925 }
11926
11927 Reloc_stub* stub = NULL;
11928 Stub_type stub_type =
11929 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11930 target_is_thumb);
11931 if (stub_type != arm_stub_none)
11932 {
11933 // Try looking up an existing stub from a stub table.
11934 Stub_table<big_endian>* stub_table =
11935 arm_relobj->stub_table(relinfo->data_shndx);
11936 gold_assert(stub_table != NULL);
11937
11938 // Locate stub by destination.
11939 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11940
11941 // Create a stub if there is not one already
11942 stub = stub_table->find_reloc_stub(stub_key);
11943 if (stub == NULL)
11944 {
11945 // create a new stub and add it to stub table.
11946 stub = this->stub_factory().make_reloc_stub(stub_type);
11947 stub_table->add_reloc_stub(stub, stub_key);
11948 }
11949
11950 // Record the destination address.
11951 stub->set_destination_address(destination
11952 | (target_is_thumb ? 1 : 0));
11953 }
11954
11955 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11956 if (this->fix_cortex_a8_
11957 && (r_type == elfcpp::R_ARM_THM_JUMP24
11958 || r_type == elfcpp::R_ARM_THM_JUMP19
11959 || r_type == elfcpp::R_ARM_THM_CALL
11960 || r_type == elfcpp::R_ARM_THM_XPC22)
11961 && (address & 0xfffU) == 0xffeU)
11962 {
11963 // Found a candidate. Note we haven't checked the destination is
11964 // within 4K here: if we do so (and don't create a record) we can't
11965 // tell that a branch should have been relocated when scanning later.
11966 this->cortex_a8_relocs_info_[address] =
11967 new Cortex_a8_reloc(stub, r_type,
11968 destination | (target_is_thumb ? 1 : 0));
11969 }
11970 }
11971
11972 // This function scans a relocation sections for stub generation.
11973 // The template parameter Relocate must be a class type which provides
11974 // a single function, relocate(), which implements the machine
11975 // specific part of a relocation.
11976
11977 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11978 // SHT_REL or SHT_RELA.
11979
11980 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11981 // of relocs. OUTPUT_SECTION is the output section.
11982 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11983 // mapped to output offsets.
11984
11985 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11986 // VIEW_SIZE is the size. These refer to the input section, unless
11987 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11988 // the output section.
11989
11990 template<bool big_endian>
11991 template<int sh_type>
11992 void inline
11993 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11994 const Relocate_info<32, big_endian>* relinfo,
11995 const unsigned char* prelocs,
11996 size_t reloc_count,
11997 Output_section* output_section,
11998 bool needs_special_offset_handling,
11999 const unsigned char* view,
12000 elfcpp::Elf_types<32>::Elf_Addr view_address,
12001 section_size_type)
12002 {
12003 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
12004 const int reloc_size =
12005 Reloc_types<sh_type, 32, big_endian>::reloc_size;
12006
12007 Arm_relobj<big_endian>* arm_object =
12008 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
12009 unsigned int local_count = arm_object->local_symbol_count();
12010
12011 gold::Default_comdat_behavior default_comdat_behavior;
12012 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
12013
12014 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
12015 {
12016 Reltype reloc(prelocs);
12017
12018 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
12019 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
12020 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
12021
12022 r_type = this->get_real_reloc_type(r_type);
12023
12024 // Only a few relocation types need stubs.
12025 if ((r_type != elfcpp::R_ARM_CALL)
12026 && (r_type != elfcpp::R_ARM_JUMP24)
12027 && (r_type != elfcpp::R_ARM_PLT32)
12028 && (r_type != elfcpp::R_ARM_THM_CALL)
12029 && (r_type != elfcpp::R_ARM_THM_XPC22)
12030 && (r_type != elfcpp::R_ARM_THM_JUMP24)
12031 && (r_type != elfcpp::R_ARM_THM_JUMP19)
12032 && (r_type != elfcpp::R_ARM_V4BX))
12033 continue;
12034
12035 section_offset_type offset =
12036 convert_to_section_size_type(reloc.get_r_offset());
12037
12038 if (needs_special_offset_handling)
12039 {
12040 offset = output_section->output_offset(relinfo->object,
12041 relinfo->data_shndx,
12042 offset);
12043 if (offset == -1)
12044 continue;
12045 }
12046
12047 // Create a v4bx stub if --fix-v4bx-interworking is used.
12048 if (r_type == elfcpp::R_ARM_V4BX)
12049 {
12050 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
12051 {
12052 // Get the BX instruction.
12053 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
12054 const Valtype* wv =
12055 reinterpret_cast<const Valtype*>(view + offset);
12056 elfcpp::Elf_types<32>::Elf_Swxword insn =
12057 elfcpp::Swap<32, big_endian>::readval(wv);
12058 const uint32_t reg = (insn & 0xf);
12059
12060 if (reg < 0xf)
12061 {
12062 // Try looking up an existing stub from a stub table.
12063 Stub_table<big_endian>* stub_table =
12064 arm_object->stub_table(relinfo->data_shndx);
12065 gold_assert(stub_table != NULL);
12066
12067 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
12068 {
12069 // create a new stub and add it to stub table.
12070 Arm_v4bx_stub* stub =
12071 this->stub_factory().make_arm_v4bx_stub(reg);
12072 gold_assert(stub != NULL);
12073 stub_table->add_arm_v4bx_stub(stub);
12074 }
12075 }
12076 }
12077 continue;
12078 }
12079
12080 // Get the addend.
12081 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
12082 elfcpp::Elf_types<32>::Elf_Swxword addend =
12083 stub_addend_reader(r_type, view + offset, reloc);
12084
12085 const Sized_symbol<32>* sym;
12086
12087 Symbol_value<32> symval;
12088 const Symbol_value<32> *psymval;
12089 bool is_defined_in_discarded_section;
12090 unsigned int shndx;
12091 if (r_sym < local_count)
12092 {
12093 sym = NULL;
12094 psymval = arm_object->local_symbol(r_sym);
12095
12096 // If the local symbol belongs to a section we are discarding,
12097 // and that section is a debug section, try to find the
12098 // corresponding kept section and map this symbol to its
12099 // counterpart in the kept section. The symbol must not
12100 // correspond to a section we are folding.
12101 bool is_ordinary;
12102 shndx = psymval->input_shndx(&is_ordinary);
12103 is_defined_in_discarded_section =
12104 (is_ordinary
12105 && shndx != elfcpp::SHN_UNDEF
12106 && !arm_object->is_section_included(shndx)
12107 && !relinfo->symtab->is_section_folded(arm_object, shndx));
12108
12109 // We need to compute the would-be final value of this local
12110 // symbol.
12111 if (!is_defined_in_discarded_section)
12112 {
12113 typedef Sized_relobj_file<32, big_endian> ObjType;
12114 typename ObjType::Compute_final_local_value_status status =
12115 arm_object->compute_final_local_value(r_sym, psymval, &symval,
12116 relinfo->symtab);
12117 if (status == ObjType::CFLV_OK)
12118 {
12119 // Currently we cannot handle a branch to a target in
12120 // a merged section. If this is the case, issue an error
12121 // and also free the merge symbol value.
12122 if (!symval.has_output_value())
12123 {
12124 const std::string& section_name =
12125 arm_object->section_name(shndx);
12126 arm_object->error(_("cannot handle branch to local %u "
12127 "in a merged section %s"),
12128 r_sym, section_name.c_str());
12129 }
12130 psymval = &symval;
12131 }
12132 else
12133 {
12134 // We cannot determine the final value.
12135 continue;
12136 }
12137 }
12138 }
12139 else
12140 {
12141 const Symbol* gsym;
12142 gsym = arm_object->global_symbol(r_sym);
12143 gold_assert(gsym != NULL);
12144 if (gsym->is_forwarder())
12145 gsym = relinfo->symtab->resolve_forwards(gsym);
12146
12147 sym = static_cast<const Sized_symbol<32>*>(gsym);
12148 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
12149 symval.set_output_symtab_index(sym->symtab_index());
12150 else
12151 symval.set_no_output_symtab_entry();
12152
12153 // We need to compute the would-be final value of this global
12154 // symbol.
12155 const Symbol_table* symtab = relinfo->symtab;
12156 const Sized_symbol<32>* sized_symbol =
12157 symtab->get_sized_symbol<32>(gsym);
12158 Symbol_table::Compute_final_value_status status;
12159 Arm_address value =
12160 symtab->compute_final_value<32>(sized_symbol, &status);
12161
12162 // Skip this if the symbol has not output section.
12163 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
12164 continue;
12165 symval.set_output_value(value);
12166
12167 if (gsym->type() == elfcpp::STT_TLS)
12168 symval.set_is_tls_symbol();
12169 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
12170 symval.set_is_ifunc_symbol();
12171 psymval = &symval;
12172
12173 is_defined_in_discarded_section =
12174 (gsym->is_defined_in_discarded_section()
12175 && gsym->is_undefined());
12176 shndx = 0;
12177 }
12178
12179 Symbol_value<32> symval2;
12180 if (is_defined_in_discarded_section)
12181 {
12182 if (comdat_behavior == CB_UNDETERMINED)
12183 {
12184 std::string name = arm_object->section_name(relinfo->data_shndx);
12185 comdat_behavior = default_comdat_behavior.get(name.c_str());
12186 }
12187 if (comdat_behavior == CB_PRETEND)
12188 {
12189 // FIXME: This case does not work for global symbols.
12190 // We have no place to store the original section index.
12191 // Fortunately this does not matter for comdat sections,
12192 // only for sections explicitly discarded by a linker
12193 // script.
12194 bool found;
12195 typename elfcpp::Elf_types<32>::Elf_Addr value =
12196 arm_object->map_to_kept_section(shndx, &found);
12197 if (found)
12198 symval2.set_output_value(value + psymval->input_value());
12199 else
12200 symval2.set_output_value(0);
12201 }
12202 else
12203 {
12204 if (comdat_behavior == CB_WARNING)
12205 gold_warning_at_location(relinfo, i, offset,
12206 _("relocation refers to discarded "
12207 "section"));
12208 symval2.set_output_value(0);
12209 }
12210 symval2.set_no_output_symtab_entry();
12211 psymval = &symval2;
12212 }
12213
12214 // If symbol is a section symbol, we don't know the actual type of
12215 // destination. Give up.
12216 if (psymval->is_section_symbol())
12217 continue;
12218
12219 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
12220 addend, view_address + offset);
12221 }
12222 }
12223
12224 // Scan an input section for stub generation.
12225
12226 template<bool big_endian>
12227 void
12228 Target_arm<big_endian>::scan_section_for_stubs(
12229 const Relocate_info<32, big_endian>* relinfo,
12230 unsigned int sh_type,
12231 const unsigned char* prelocs,
12232 size_t reloc_count,
12233 Output_section* output_section,
12234 bool needs_special_offset_handling,
12235 const unsigned char* view,
12236 Arm_address view_address,
12237 section_size_type view_size)
12238 {
12239 if (sh_type == elfcpp::SHT_REL)
12240 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
12241 relinfo,
12242 prelocs,
12243 reloc_count,
12244 output_section,
12245 needs_special_offset_handling,
12246 view,
12247 view_address,
12248 view_size);
12249 else if (sh_type == elfcpp::SHT_RELA)
12250 // We do not support RELA type relocations yet. This is provided for
12251 // completeness.
12252 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12253 relinfo,
12254 prelocs,
12255 reloc_count,
12256 output_section,
12257 needs_special_offset_handling,
12258 view,
12259 view_address,
12260 view_size);
12261 else
12262 gold_unreachable();
12263 }
12264
12265 // Group input sections for stub generation.
12266 //
12267 // We group input sections in an output section so that the total size,
12268 // including any padding space due to alignment is smaller than GROUP_SIZE
12269 // unless the only input section in group is bigger than GROUP_SIZE already.
12270 // Then an ARM stub table is created to follow the last input section
12271 // in group. For each group an ARM stub table is created an is placed
12272 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12273 // extend the group after the stub table.
12274
12275 template<bool big_endian>
12276 void
12277 Target_arm<big_endian>::group_sections(
12278 Layout* layout,
12279 section_size_type group_size,
12280 bool stubs_always_after_branch,
12281 const Task* task)
12282 {
12283 // Group input sections and insert stub table
12284 Layout::Section_list section_list;
12285 layout->get_executable_sections(&section_list);
12286 for (Layout::Section_list::const_iterator p = section_list.begin();
12287 p != section_list.end();
12288 ++p)
12289 {
12290 Arm_output_section<big_endian>* output_section =
12291 Arm_output_section<big_endian>::as_arm_output_section(*p);
12292 output_section->group_sections(group_size, stubs_always_after_branch,
12293 this, task);
12294 }
12295 }
12296
12297 // Relaxation hook. This is where we do stub generation.
12298
12299 template<bool big_endian>
12300 bool
12301 Target_arm<big_endian>::do_relax(
12302 int pass,
12303 const Input_objects* input_objects,
12304 Symbol_table* symtab,
12305 Layout* layout,
12306 const Task* task)
12307 {
12308 // No need to generate stubs if this is a relocatable link.
12309 gold_assert(!parameters->options().relocatable());
12310
12311 // If this is the first pass, we need to group input sections into
12312 // stub groups.
12313 bool done_exidx_fixup = false;
12314 typedef typename Stub_table_list::iterator Stub_table_iterator;
12315 if (pass == 1)
12316 {
12317 // Determine the stub group size. The group size is the absolute
12318 // value of the parameter --stub-group-size. If --stub-group-size
12319 // is passed a negative value, we restrict stubs to be always after
12320 // the stubbed branches.
12321 int32_t stub_group_size_param =
12322 parameters->options().stub_group_size();
12323 bool stubs_always_after_branch = stub_group_size_param < 0;
12324 section_size_type stub_group_size = abs(stub_group_size_param);
12325
12326 if (stub_group_size == 1)
12327 {
12328 // Default value.
12329 // Thumb branch range is +-4MB has to be used as the default
12330 // maximum size (a given section can contain both ARM and Thumb
12331 // code, so the worst case has to be taken into account). If we are
12332 // fixing cortex-a8 errata, the branch range has to be even smaller,
12333 // since wide conditional branch has a range of +-1MB only.
12334 //
12335 // This value is 48K less than that, which allows for 4096
12336 // 12-byte stubs. If we exceed that, then we will fail to link.
12337 // The user will have to relink with an explicit group size
12338 // option.
12339 stub_group_size = 4145152;
12340 }
12341
12342 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12343 // page as the first half of a 32-bit branch straddling two 4K pages.
12344 // This is a crude way of enforcing that. In addition, long conditional
12345 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12346 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12347 // cortex-A8 stubs from long conditional branches.
12348 if (this->fix_cortex_a8_)
12349 {
12350 stubs_always_after_branch = true;
12351 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12352 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12353 }
12354
12355 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12356
12357 // Also fix .ARM.exidx section coverage.
12358 Arm_output_section<big_endian>* exidx_output_section = NULL;
12359 for (Layout::Section_list::const_iterator p =
12360 layout->section_list().begin();
12361 p != layout->section_list().end();
12362 ++p)
12363 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12364 {
12365 if (exidx_output_section == NULL)
12366 exidx_output_section =
12367 Arm_output_section<big_endian>::as_arm_output_section(*p);
12368 else
12369 // We cannot handle this now.
12370 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12371 "non-relocatable link"),
12372 exidx_output_section->name(),
12373 (*p)->name());
12374 }
12375
12376 if (exidx_output_section != NULL)
12377 {
12378 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12379 symtab, task);
12380 done_exidx_fixup = true;
12381 }
12382 }
12383 else
12384 {
12385 // If this is not the first pass, addresses and file offsets have
12386 // been reset at this point, set them here.
12387 for (Stub_table_iterator sp = this->stub_tables_.begin();
12388 sp != this->stub_tables_.end();
12389 ++sp)
12390 {
12391 Arm_input_section<big_endian>* owner = (*sp)->owner();
12392 off_t off = align_address(owner->original_size(),
12393 (*sp)->addralign());
12394 (*sp)->set_address_and_file_offset(owner->address() + off,
12395 owner->offset() + off);
12396 }
12397 }
12398
12399 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12400 // beginning of each relaxation pass, just blow away all the stubs.
12401 // Alternatively, we could selectively remove only the stubs and reloc
12402 // information for code sections that have moved since the last pass.
12403 // That would require more book-keeping.
12404 if (this->fix_cortex_a8_)
12405 {
12406 // Clear all Cortex-A8 reloc information.
12407 for (typename Cortex_a8_relocs_info::const_iterator p =
12408 this->cortex_a8_relocs_info_.begin();
12409 p != this->cortex_a8_relocs_info_.end();
12410 ++p)
12411 delete p->second;
12412 this->cortex_a8_relocs_info_.clear();
12413
12414 // Remove all Cortex-A8 stubs.
12415 for (Stub_table_iterator sp = this->stub_tables_.begin();
12416 sp != this->stub_tables_.end();
12417 ++sp)
12418 (*sp)->remove_all_cortex_a8_stubs();
12419 }
12420
12421 // Scan relocs for relocation stubs
12422 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12423 op != input_objects->relobj_end();
12424 ++op)
12425 {
12426 Arm_relobj<big_endian>* arm_relobj =
12427 Arm_relobj<big_endian>::as_arm_relobj(*op);
12428 // Lock the object so we can read from it. This is only called
12429 // single-threaded from Layout::finalize, so it is OK to lock.
12430 Task_lock_obj<Object> tl(task, arm_relobj);
12431 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12432 }
12433
12434 // Check all stub tables to see if any of them have their data sizes
12435 // or addresses alignments changed. These are the only things that
12436 // matter.
12437 bool any_stub_table_changed = false;
12438 Unordered_set<const Output_section*> sections_needing_adjustment;
12439 for (Stub_table_iterator sp = this->stub_tables_.begin();
12440 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12441 ++sp)
12442 {
12443 if ((*sp)->update_data_size_and_addralign())
12444 {
12445 // Update data size of stub table owner.
12446 Arm_input_section<big_endian>* owner = (*sp)->owner();
12447 uint64_t address = owner->address();
12448 off_t offset = owner->offset();
12449 owner->reset_address_and_file_offset();
12450 owner->set_address_and_file_offset(address, offset);
12451
12452 sections_needing_adjustment.insert(owner->output_section());
12453 any_stub_table_changed = true;
12454 }
12455 }
12456
12457 // Output_section_data::output_section() returns a const pointer but we
12458 // need to update output sections, so we record all output sections needing
12459 // update above and scan the sections here to find out what sections need
12460 // to be updated.
12461 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12462 p != layout->section_list().end();
12463 ++p)
12464 {
12465 if (sections_needing_adjustment.find(*p)
12466 != sections_needing_adjustment.end())
12467 (*p)->set_section_offsets_need_adjustment();
12468 }
12469
12470 // Stop relaxation if no EXIDX fix-up and no stub table change.
12471 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12472
12473 // Finalize the stubs in the last relaxation pass.
12474 if (!continue_relaxation)
12475 {
12476 for (Stub_table_iterator sp = this->stub_tables_.begin();
12477 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12478 ++sp)
12479 (*sp)->finalize_stubs();
12480
12481 // Update output local symbol counts of objects if necessary.
12482 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12483 op != input_objects->relobj_end();
12484 ++op)
12485 {
12486 Arm_relobj<big_endian>* arm_relobj =
12487 Arm_relobj<big_endian>::as_arm_relobj(*op);
12488
12489 // Update output local symbol counts. We need to discard local
12490 // symbols defined in parts of input sections that are discarded by
12491 // relaxation.
12492 if (arm_relobj->output_local_symbol_count_needs_update())
12493 {
12494 // We need to lock the object's file to update it.
12495 Task_lock_obj<Object> tl(task, arm_relobj);
12496 arm_relobj->update_output_local_symbol_count();
12497 }
12498 }
12499 }
12500
12501 return continue_relaxation;
12502 }
12503
12504 // Relocate a stub.
12505
12506 template<bool big_endian>
12507 void
12508 Target_arm<big_endian>::relocate_stub(
12509 Stub* stub,
12510 const Relocate_info<32, big_endian>* relinfo,
12511 Output_section* output_section,
12512 unsigned char* view,
12513 Arm_address address,
12514 section_size_type view_size)
12515 {
12516 Relocate relocate;
12517 const Stub_template* stub_template = stub->stub_template();
12518 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12519 {
12520 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12521 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12522
12523 unsigned int r_type = insn->r_type();
12524 section_size_type reloc_offset = stub_template->reloc_offset(i);
12525 section_size_type reloc_size = insn->size();
12526 gold_assert(reloc_offset + reloc_size <= view_size);
12527
12528 // This is the address of the stub destination.
12529 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12530 Symbol_value<32> symval;
12531 symval.set_output_value(target);
12532
12533 // Synthesize a fake reloc just in case. We don't have a symbol so
12534 // we use 0.
12535 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12536 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12537 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12538 reloc_write.put_r_offset(reloc_offset);
12539 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12540
12541 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12542 this->fake_relnum_for_stubs, reloc_buffer,
12543 NULL, &symval, view + reloc_offset,
12544 address + reloc_offset, reloc_size);
12545 }
12546 }
12547
12548 // Determine whether an object attribute tag takes an integer, a
12549 // string or both.
12550
12551 template<bool big_endian>
12552 int
12553 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12554 {
12555 if (tag == Object_attribute::Tag_compatibility)
12556 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12557 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12558 else if (tag == elfcpp::Tag_nodefaults)
12559 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12560 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12561 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12562 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12563 else if (tag < 32)
12564 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12565 else
12566 return ((tag & 1) != 0
12567 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12568 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12569 }
12570
12571 // Reorder attributes.
12572 //
12573 // The ABI defines that Tag_conformance should be emitted first, and that
12574 // Tag_nodefaults should be second (if either is defined). This sets those
12575 // two positions, and bumps up the position of all the remaining tags to
12576 // compensate.
12577
12578 template<bool big_endian>
12579 int
12580 Target_arm<big_endian>::do_attributes_order(int num) const
12581 {
12582 // Reorder the known object attributes in output. We want to move
12583 // Tag_conformance to position 4 and Tag_conformance to position 5
12584 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12585 if (num == 4)
12586 return elfcpp::Tag_conformance;
12587 if (num == 5)
12588 return elfcpp::Tag_nodefaults;
12589 if ((num - 2) < elfcpp::Tag_nodefaults)
12590 return num - 2;
12591 if ((num - 1) < elfcpp::Tag_conformance)
12592 return num - 1;
12593 return num;
12594 }
12595
12596 // Scan a span of THUMB code for Cortex-A8 erratum.
12597
12598 template<bool big_endian>
12599 void
12600 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12601 Arm_relobj<big_endian>* arm_relobj,
12602 unsigned int shndx,
12603 section_size_type span_start,
12604 section_size_type span_end,
12605 const unsigned char* view,
12606 Arm_address address)
12607 {
12608 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12609 //
12610 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12611 // The branch target is in the same 4KB region as the
12612 // first half of the branch.
12613 // The instruction before the branch is a 32-bit
12614 // length non-branch instruction.
12615 section_size_type i = span_start;
12616 bool last_was_32bit = false;
12617 bool last_was_branch = false;
12618 while (i < span_end)
12619 {
12620 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12621 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12622 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12623 bool is_blx = false, is_b = false;
12624 bool is_bl = false, is_bcc = false;
12625
12626 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12627 if (insn_32bit)
12628 {
12629 // Load the rest of the insn (in manual-friendly order).
12630 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12631
12632 // Encoding T4: B<c>.W.
12633 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12634 // Encoding T1: BL<c>.W.
12635 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12636 // Encoding T2: BLX<c>.W.
12637 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12638 // Encoding T3: B<c>.W (not permitted in IT block).
12639 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12640 && (insn & 0x07f00000U) != 0x03800000U);
12641 }
12642
12643 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12644
12645 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12646 // page boundary and it follows 32-bit non-branch instruction,
12647 // we need to work around.
12648 if (is_32bit_branch
12649 && ((address + i) & 0xfffU) == 0xffeU
12650 && last_was_32bit
12651 && !last_was_branch)
12652 {
12653 // Check to see if there is a relocation stub for this branch.
12654 bool force_target_arm = false;
12655 bool force_target_thumb = false;
12656 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12657 Cortex_a8_relocs_info::const_iterator p =
12658 this->cortex_a8_relocs_info_.find(address + i);
12659
12660 if (p != this->cortex_a8_relocs_info_.end())
12661 {
12662 cortex_a8_reloc = p->second;
12663 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12664
12665 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12666 && !target_is_thumb)
12667 force_target_arm = true;
12668 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12669 && target_is_thumb)
12670 force_target_thumb = true;
12671 }
12672
12673 off_t offset;
12674 Stub_type stub_type = arm_stub_none;
12675
12676 // Check if we have an offending branch instruction.
12677 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12678 uint16_t lower_insn = insn & 0xffffU;
12679 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12680
12681 if (cortex_a8_reloc != NULL
12682 && cortex_a8_reloc->reloc_stub() != NULL)
12683 // We've already made a stub for this instruction, e.g.
12684 // it's a long branch or a Thumb->ARM stub. Assume that
12685 // stub will suffice to work around the A8 erratum (see
12686 // setting of always_after_branch above).
12687 ;
12688 else if (is_bcc)
12689 {
12690 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12691 lower_insn);
12692 stub_type = arm_stub_a8_veneer_b_cond;
12693 }
12694 else if (is_b || is_bl || is_blx)
12695 {
12696 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12697 lower_insn);
12698 if (is_blx)
12699 offset &= ~3;
12700
12701 stub_type = (is_blx
12702 ? arm_stub_a8_veneer_blx
12703 : (is_bl
12704 ? arm_stub_a8_veneer_bl
12705 : arm_stub_a8_veneer_b));
12706 }
12707
12708 if (stub_type != arm_stub_none)
12709 {
12710 Arm_address pc_for_insn = address + i + 4;
12711
12712 // The original instruction is a BL, but the target is
12713 // an ARM instruction. If we were not making a stub,
12714 // the BL would have been converted to a BLX. Use the
12715 // BLX stub instead in that case.
12716 if (this->may_use_v5t_interworking() && force_target_arm
12717 && stub_type == arm_stub_a8_veneer_bl)
12718 {
12719 stub_type = arm_stub_a8_veneer_blx;
12720 is_blx = true;
12721 is_bl = false;
12722 }
12723 // Conversely, if the original instruction was
12724 // BLX but the target is Thumb mode, use the BL stub.
12725 else if (force_target_thumb
12726 && stub_type == arm_stub_a8_veneer_blx)
12727 {
12728 stub_type = arm_stub_a8_veneer_bl;
12729 is_blx = false;
12730 is_bl = true;
12731 }
12732
12733 if (is_blx)
12734 pc_for_insn &= ~3;
12735
12736 // If we found a relocation, use the proper destination,
12737 // not the offset in the (unrelocated) instruction.
12738 // Note this is always done if we switched the stub type above.
12739 if (cortex_a8_reloc != NULL)
12740 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12741
12742 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12743
12744 // Add a new stub if destination address in in the same page.
12745 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12746 {
12747 Cortex_a8_stub* stub =
12748 this->stub_factory_.make_cortex_a8_stub(stub_type,
12749 arm_relobj, shndx,
12750 address + i,
12751 target, insn);
12752 Stub_table<big_endian>* stub_table =
12753 arm_relobj->stub_table(shndx);
12754 gold_assert(stub_table != NULL);
12755 stub_table->add_cortex_a8_stub(address + i, stub);
12756 }
12757 }
12758 }
12759
12760 i += insn_32bit ? 4 : 2;
12761 last_was_32bit = insn_32bit;
12762 last_was_branch = is_32bit_branch;
12763 }
12764 }
12765
12766 // Apply the Cortex-A8 workaround.
12767
12768 template<bool big_endian>
12769 void
12770 Target_arm<big_endian>::apply_cortex_a8_workaround(
12771 const Cortex_a8_stub* stub,
12772 Arm_address stub_address,
12773 unsigned char* insn_view,
12774 Arm_address insn_address)
12775 {
12776 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12777 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12778 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12779 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12780 off_t branch_offset = stub_address - (insn_address + 4);
12781
12782 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12783 switch (stub->stub_template()->type())
12784 {
12785 case arm_stub_a8_veneer_b_cond:
12786 // For a conditional branch, we re-write it to be an unconditional
12787 // branch to the stub. We use the THUMB-2 encoding here.
12788 upper_insn = 0xf000U;
12789 lower_insn = 0xb800U;
12790 // Fall through
12791 case arm_stub_a8_veneer_b:
12792 case arm_stub_a8_veneer_bl:
12793 case arm_stub_a8_veneer_blx:
12794 if ((lower_insn & 0x5000U) == 0x4000U)
12795 // For a BLX instruction, make sure that the relocation is
12796 // rounded up to a word boundary. This follows the semantics of
12797 // the instruction which specifies that bit 1 of the target
12798 // address will come from bit 1 of the base address.
12799 branch_offset = (branch_offset + 2) & ~3;
12800
12801 // Put BRANCH_OFFSET back into the insn.
12802 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12803 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12804 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12805 break;
12806
12807 default:
12808 gold_unreachable();
12809 }
12810
12811 // Put the relocated value back in the object file:
12812 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12813 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12814 }
12815
12816 // Target selector for ARM. Note this is never instantiated directly.
12817 // It's only used in Target_selector_arm_nacl, below.
12818
12819 template<bool big_endian>
12820 class Target_selector_arm : public Target_selector
12821 {
12822 public:
12823 Target_selector_arm()
12824 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12825 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12826 (big_endian ? "armelfb" : "armelf"))
12827 { }
12828
12829 Target*
12830 do_instantiate_target()
12831 { return new Target_arm<big_endian>(); }
12832 };
12833
12834 // Fix .ARM.exidx section coverage.
12835
12836 template<bool big_endian>
12837 void
12838 Target_arm<big_endian>::fix_exidx_coverage(
12839 Layout* layout,
12840 const Input_objects* input_objects,
12841 Arm_output_section<big_endian>* exidx_section,
12842 Symbol_table* symtab,
12843 const Task* task)
12844 {
12845 // We need to look at all the input sections in output in ascending
12846 // order of of output address. We do that by building a sorted list
12847 // of output sections by addresses. Then we looks at the output sections
12848 // in order. The input sections in an output section are already sorted
12849 // by addresses within the output section.
12850
12851 typedef std::set<Output_section*, output_section_address_less_than>
12852 Sorted_output_section_list;
12853 Sorted_output_section_list sorted_output_sections;
12854
12855 // Find out all the output sections of input sections pointed by
12856 // EXIDX input sections.
12857 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12858 p != input_objects->relobj_end();
12859 ++p)
12860 {
12861 Arm_relobj<big_endian>* arm_relobj =
12862 Arm_relobj<big_endian>::as_arm_relobj(*p);
12863 std::vector<unsigned int> shndx_list;
12864 arm_relobj->get_exidx_shndx_list(&shndx_list);
12865 for (size_t i = 0; i < shndx_list.size(); ++i)
12866 {
12867 const Arm_exidx_input_section* exidx_input_section =
12868 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12869 gold_assert(exidx_input_section != NULL);
12870 if (!exidx_input_section->has_errors())
12871 {
12872 unsigned int text_shndx = exidx_input_section->link();
12873 Output_section* os = arm_relobj->output_section(text_shndx);
12874 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12875 sorted_output_sections.insert(os);
12876 }
12877 }
12878 }
12879
12880 // Go over the output sections in ascending order of output addresses.
12881 typedef typename Arm_output_section<big_endian>::Text_section_list
12882 Text_section_list;
12883 Text_section_list sorted_text_sections;
12884 for (typename Sorted_output_section_list::iterator p =
12885 sorted_output_sections.begin();
12886 p != sorted_output_sections.end();
12887 ++p)
12888 {
12889 Arm_output_section<big_endian>* arm_output_section =
12890 Arm_output_section<big_endian>::as_arm_output_section(*p);
12891 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12892 }
12893
12894 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12895 merge_exidx_entries(), task);
12896 }
12897
12898 template<bool big_endian>
12899 void
12900 Target_arm<big_endian>::do_define_standard_symbols(
12901 Symbol_table* symtab,
12902 Layout* layout)
12903 {
12904 // Handle the .ARM.exidx section.
12905 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12906
12907 if (exidx_section != NULL)
12908 {
12909 // Create __exidx_start and __exidx_end symbols.
12910 symtab->define_in_output_data("__exidx_start",
12911 NULL, // version
12912 Symbol_table::PREDEFINED,
12913 exidx_section,
12914 0, // value
12915 0, // symsize
12916 elfcpp::STT_NOTYPE,
12917 elfcpp::STB_GLOBAL,
12918 elfcpp::STV_HIDDEN,
12919 0, // nonvis
12920 false, // offset_is_from_end
12921 true); // only_if_ref
12922
12923 symtab->define_in_output_data("__exidx_end",
12924 NULL, // version
12925 Symbol_table::PREDEFINED,
12926 exidx_section,
12927 0, // value
12928 0, // symsize
12929 elfcpp::STT_NOTYPE,
12930 elfcpp::STB_GLOBAL,
12931 elfcpp::STV_HIDDEN,
12932 0, // nonvis
12933 true, // offset_is_from_end
12934 true); // only_if_ref
12935 }
12936 else
12937 {
12938 // Define __exidx_start and __exidx_end even when .ARM.exidx
12939 // section is missing to match ld's behaviour.
12940 symtab->define_as_constant("__exidx_start", NULL,
12941 Symbol_table::PREDEFINED,
12942 0, 0, elfcpp::STT_OBJECT,
12943 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12944 true, false);
12945 symtab->define_as_constant("__exidx_end", NULL,
12946 Symbol_table::PREDEFINED,
12947 0, 0, elfcpp::STT_OBJECT,
12948 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12949 true, false);
12950 }
12951 }
12952
12953 // NaCl variant. It uses different PLT contents.
12954
12955 template<bool big_endian>
12956 class Output_data_plt_arm_nacl;
12957
12958 template<bool big_endian>
12959 class Target_arm_nacl : public Target_arm<big_endian>
12960 {
12961 public:
12962 Target_arm_nacl()
12963 : Target_arm<big_endian>(&arm_nacl_info)
12964 { }
12965
12966 protected:
12967 virtual Output_data_plt_arm<big_endian>*
12968 do_make_data_plt(
12969 Layout* layout,
12970 Arm_output_data_got<big_endian>* got,
12971 Output_data_space* got_plt,
12972 Output_data_space* got_irelative)
12973 { return new Output_data_plt_arm_nacl<big_endian>(
12974 layout, got, got_plt, got_irelative); }
12975
12976 private:
12977 static const Target::Target_info arm_nacl_info;
12978 };
12979
12980 template<bool big_endian>
12981 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12982 {
12983 32, // size
12984 big_endian, // is_big_endian
12985 elfcpp::EM_ARM, // machine_code
12986 false, // has_make_symbol
12987 false, // has_resolve
12988 false, // has_code_fill
12989 true, // is_default_stack_executable
12990 false, // can_icf_inline_merge_sections
12991 '\0', // wrap_char
12992 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12993 0x20000, // default_text_segment_address
12994 0x10000, // abi_pagesize (overridable by -z max-page-size)
12995 0x10000, // common_pagesize (overridable by -z common-page-size)
12996 true, // isolate_execinstr
12997 0x10000000, // rosegment_gap
12998 elfcpp::SHN_UNDEF, // small_common_shndx
12999 elfcpp::SHN_UNDEF, // large_common_shndx
13000 0, // small_common_section_flags
13001 0, // large_common_section_flags
13002 ".ARM.attributes", // attributes_section
13003 "aeabi", // attributes_vendor
13004 "_start", // entry_symbol_name
13005 32, // hash_entry_size
13006 };
13007
13008 template<bool big_endian>
13009 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
13010 {
13011 public:
13012 Output_data_plt_arm_nacl(
13013 Layout* layout,
13014 Arm_output_data_got<big_endian>* got,
13015 Output_data_space* got_plt,
13016 Output_data_space* got_irelative)
13017 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
13018 { }
13019
13020 protected:
13021 // Return the offset of the first non-reserved PLT entry.
13022 virtual unsigned int
13023 do_first_plt_entry_offset() const
13024 { return sizeof(first_plt_entry); }
13025
13026 // Return the size of a PLT entry.
13027 virtual unsigned int
13028 do_get_plt_entry_size() const
13029 { return sizeof(plt_entry); }
13030
13031 virtual void
13032 do_fill_first_plt_entry(unsigned char* pov,
13033 Arm_address got_address,
13034 Arm_address plt_address);
13035
13036 virtual void
13037 do_fill_plt_entry(unsigned char* pov,
13038 Arm_address got_address,
13039 Arm_address plt_address,
13040 unsigned int got_offset,
13041 unsigned int plt_offset);
13042
13043 private:
13044 inline uint32_t arm_movw_immediate(uint32_t value)
13045 {
13046 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
13047 }
13048
13049 inline uint32_t arm_movt_immediate(uint32_t value)
13050 {
13051 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
13052 }
13053
13054 // Template for the first PLT entry.
13055 static const uint32_t first_plt_entry[16];
13056
13057 // Template for subsequent PLT entries.
13058 static const uint32_t plt_entry[4];
13059 };
13060
13061 // The first entry in the PLT.
13062 template<bool big_endian>
13063 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
13064 {
13065 // First bundle:
13066 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
13067 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
13068 0xe08cc00f, // add ip, ip, pc
13069 0xe52dc008, // str ip, [sp, #-8]!
13070 // Second bundle:
13071 0xe3ccc103, // bic ip, ip, #0xc0000000
13072 0xe59cc000, // ldr ip, [ip]
13073 0xe3ccc13f, // bic ip, ip, #0xc000000f
13074 0xe12fff1c, // bx ip
13075 // Third bundle:
13076 0xe320f000, // nop
13077 0xe320f000, // nop
13078 0xe320f000, // nop
13079 // .Lplt_tail:
13080 0xe50dc004, // str ip, [sp, #-4]
13081 // Fourth bundle:
13082 0xe3ccc103, // bic ip, ip, #0xc0000000
13083 0xe59cc000, // ldr ip, [ip]
13084 0xe3ccc13f, // bic ip, ip, #0xc000000f
13085 0xe12fff1c, // bx ip
13086 };
13087
13088 template<bool big_endian>
13089 void
13090 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
13091 unsigned char* pov,
13092 Arm_address got_address,
13093 Arm_address plt_address)
13094 {
13095 // Write first PLT entry. All but first two words are constants.
13096 const size_t num_first_plt_words = (sizeof(first_plt_entry)
13097 / sizeof(first_plt_entry[0]));
13098
13099 int32_t got_displacement = got_address + 8 - (plt_address + 16);
13100
13101 elfcpp::Swap<32, big_endian>::writeval
13102 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
13103 elfcpp::Swap<32, big_endian>::writeval
13104 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
13105
13106 for (size_t i = 2; i < num_first_plt_words; ++i)
13107 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
13108 }
13109
13110 // Subsequent entries in the PLT.
13111
13112 template<bool big_endian>
13113 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
13114 {
13115 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
13116 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
13117 0xe08cc00f, // add ip, ip, pc
13118 0xea000000, // b .Lplt_tail
13119 };
13120
13121 template<bool big_endian>
13122 void
13123 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
13124 unsigned char* pov,
13125 Arm_address got_address,
13126 Arm_address plt_address,
13127 unsigned int got_offset,
13128 unsigned int plt_offset)
13129 {
13130 // Calculate the displacement between the PLT slot and the
13131 // common tail that's part of the special initial PLT slot.
13132 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
13133 - (plt_address + plt_offset
13134 + sizeof(plt_entry) + sizeof(uint32_t)));
13135 gold_assert((tail_displacement & 3) == 0);
13136 tail_displacement >>= 2;
13137
13138 gold_assert ((tail_displacement & 0xff000000) == 0
13139 || (-tail_displacement & 0xff000000) == 0);
13140
13141 // Calculate the displacement between the PLT slot and the entry
13142 // in the GOT. The offset accounts for the value produced by
13143 // adding to pc in the penultimate instruction of the PLT stub.
13144 const int32_t got_displacement = (got_address + got_offset
13145 - (plt_address + sizeof(plt_entry)));
13146
13147 elfcpp::Swap<32, big_endian>::writeval
13148 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
13149 elfcpp::Swap<32, big_endian>::writeval
13150 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
13151 elfcpp::Swap<32, big_endian>::writeval
13152 (pov + 8, plt_entry[2]);
13153 elfcpp::Swap<32, big_endian>::writeval
13154 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
13155 }
13156
13157 // Target selectors.
13158
13159 template<bool big_endian>
13160 class Target_selector_arm_nacl
13161 : public Target_selector_nacl<Target_selector_arm<big_endian>,
13162 Target_arm_nacl<big_endian> >
13163 {
13164 public:
13165 Target_selector_arm_nacl()
13166 : Target_selector_nacl<Target_selector_arm<big_endian>,
13167 Target_arm_nacl<big_endian> >(
13168 "arm",
13169 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
13170 big_endian ? "armelfb_nacl" : "armelf_nacl")
13171 { }
13172 };
13173
13174 Target_selector_arm_nacl<false> target_selector_arm;
13175 Target_selector_arm_nacl<true> target_selector_armbe;
13176
13177 } // End anonymous namespace.
This page took 0.314437 seconds and 5 git commands to generate.