* layout.h (Layout::get_executable_sections): Declare.
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 // Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
155 // Factory methods to create instruction templates in different formats.
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
176 }
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
211 // Return size of instruction template in bytes.
212 size_t
213 size() const;
214
215 // Return byte-alignment of instruction template.
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278 // Last stub type.
279 arm_stub_type_last = arm_stub_v4_veneer_bx
280 } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
319
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
356
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
412
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
435 // This may be overridden in the child class.
436 virtual void
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
444
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
451 private:
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461 };
462
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
515 {
516 if (symbol != NULL)
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
520 }
521 else
522 {
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
557 eq(const Key& k) const
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 // branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
857
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
863
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873 public:
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
904 void
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
977
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
988
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
992 { return this->prev_addralign_; }
993
994 // Reset address and file offset.
995 void
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1003
1004 private:
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076 private:
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
1081
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150 public:
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1155 { }
1156
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1159
1160 // Initialize.
1161 void
1162 init();
1163
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1178
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1219 {
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225 {
1226 *poutput = offset;
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255 public:
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1279
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
1336
1337 bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346 public:
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
1360
1361 ~Arm_output_section()
1362 { }
1363
1364 // Group input sections for stub generation.
1365 void
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1386 const Task* task);
1387
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
1423
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
1446 // Return address alignment of EXIDX input section.
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1480 bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1499 { }
1500
1501 ~Arm_relobj()
1502 { delete this->attributes_section_data_; }
1503
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1507 {
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515 {
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
1528
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
1576
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1585 {
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
1589
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1632
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1641
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1656 }
1657
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1675
1676 void
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690 private:
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1697
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1702
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1728 void
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770 public:
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1775 { }
1776
1777 ~Arm_dynobj()
1778 { delete this->attributes_section_data_; }
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
1869
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
1874 { return this->reloc_stub_; }
1875
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129 { }
2130
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2140
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2166 }
2167
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179 }
2180
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191 }
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2203
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221 }
2222
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2225 void
2226 gc_process_relocs(Symbol_table* symtab,
2227 Layout* layout,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
2240 scan_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256 // Return the value to use for a dynamic symbol which requires special
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2273
2274 // Scan the relocs during a relocatable link.
2275 void
2276 scan_relocatable_relocs(Symbol_table* symtab,
2277 Layout* layout,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
2289 // Emit relocations for a section.
2290 void
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
2304
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2307 void
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2311 size_t relnum,
2312 Output_section* output_section,
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2317 view_address,
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2320
2321 // Return whether SYM is defined by the ABI.
2322 bool
2323 do_is_defined_by_abi(const Symbol* sym) const
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325
2326 // Return whether there is a GOT section.
2327 bool
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2330
2331 // Return the size of the GOT section.
2332 section_size_type
2333 got_size() const
2334 {
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2337 }
2338
2339 // Return the number of entries in the GOT.
2340 unsigned int
2341 got_entry_count() const
2342 {
2343 if (!this->has_got_section())
2344 return 0;
2345 return this->got_size() / 4;
2346 }
2347
2348 // Return the number of entries in the PLT.
2349 unsigned int
2350 plt_entry_count() const;
2351
2352 // Return the offset of the first non-reserved PLT entry.
2353 unsigned int
2354 first_plt_entry_offset() const;
2355
2356 // Return the size of each PLT entry.
2357 unsigned int
2358 plt_entry_size() const;
2359
2360 // Map platform-specific reloc types
2361 static unsigned int
2362 get_real_reloc_type(unsigned int r_type);
2363
2364 //
2365 // Methods to support stub-generations.
2366 //
2367
2368 // Return the stub factory
2369 const Stub_factory&
2370 stub_factory() const
2371 { return this->stub_factory_; }
2372
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2376
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2381
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2385
2386 // Scan a section for stub generation.
2387 void
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2391 section_size_type);
2392
2393 // Relocate a stub.
2394 void
2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2396 Output_section*, unsigned char*, Arm_address,
2397 section_size_type);
2398
2399 // Get the default ARM target.
2400 static Target_arm<big_endian>*
2401 default_target()
2402 {
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
2407 }
2408
2409 // Whether NAME belongs to a mapping symbol.
2410 static bool
2411 is_mapping_symbol_name(const char* name)
2412 {
2413 return (name
2414 && name[0] == '$'
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2417 }
2418
2419 // Whether we work around the Cortex-A8 erratum.
2420 bool
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2423
2424 // Whether we merge exidx entries in debuginfo.
2425 bool
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2428
2429 // Whether we fix R_ARM_V4BX relocation.
2430 // 0 - do not fix
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
2433 General_options::Fix_v4bx
2434 fix_v4bx() const
2435 { return parameters->options().fix_v4bx(); }
2436
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2438 void
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2442
2443 // Apply Cortex-A8 workaround to a branch.
2444 void
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2447
2448 protected:
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2453
2454 // Make an ELF object.
2455 Object*
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2458
2459 Object*
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2463
2464 Object*
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2468
2469 Object*
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2473
2474 // Make an output section.
2475 Output_section*
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2479
2480 void
2481 do_adjust_elf_header(unsigned char* view, int len);
2482
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2485 bool
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2488
2489 bool
2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2491
2492 // Determine whether an object attribute tag takes an integer, a
2493 // string or both.
2494 int
2495 do_attribute_arg_type(int tag) const;
2496
2497 // Reorder tags during output.
2498 int
2499 do_attributes_order(int num) const;
2500
2501 // This is called when the target is selected as the default.
2502 void
2503 do_select_as_default_target()
2504 {
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2507 // as the default.
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2510 }
2511
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2515 virtual bool
2516 do_can_check_for_function_pointers() const
2517 { return true; }
2518
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2521 virtual bool
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523 {
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527 }
2528
2529 virtual void
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2531
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534 {
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536 }
2537
2538 private:
2539 // The class which scans relocations.
2540 class Scan
2541 {
2542 public:
2543 Scan()
2544 : issued_non_pic_error_(false)
2545 { }
2546
2547 static inline int
2548 get_reference_flags(unsigned int r_type);
2549
2550 inline void
2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2552 Sized_relobj_file<32, big_endian>* object,
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2556 const elfcpp::Sym<32, big_endian>& lsym,
2557 bool is_discarded);
2558
2559 inline void
2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2561 Sized_relobj_file<32, big_endian>* object,
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565 Symbol* gsym);
2566
2567 inline bool
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2569 Sized_relobj_file<32, big_endian>* ,
2570 unsigned int ,
2571 Output_section* ,
2572 const elfcpp::Rel<32, big_endian>& ,
2573 unsigned int ,
2574 const elfcpp::Sym<32, big_endian>&);
2575
2576 inline bool
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2578 Sized_relobj_file<32, big_endian>* ,
2579 unsigned int ,
2580 Output_section* ,
2581 const elfcpp::Rel<32, big_endian>& ,
2582 unsigned int , Symbol*);
2583
2584 private:
2585 static void
2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2587 unsigned int r_type);
2588
2589 static void
2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2591 unsigned int r_type, Symbol*);
2592
2593 void
2594 check_non_pic(Relobj*, unsigned int r_type);
2595
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2598 static bool
2599 symbol_needs_plt_entry(const Symbol* sym)
2600 {
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2603 return false;
2604
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2611 }
2612
2613 inline bool
2614 possible_function_pointer_reloc(unsigned int r_type);
2615
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
2618 };
2619
2620 // The class which implements relocation.
2621 class Relocate
2622 {
2623 public:
2624 Relocate()
2625 { }
2626
2627 ~Relocate()
2628 { }
2629
2630 // Return whether the static relocation needs to be applied.
2631 inline bool
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2633 unsigned int r_type,
2634 bool is_32bit,
2635 Output_section* output_section);
2636
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2639 inline bool
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
2645 unsigned char*, Arm_address,
2646 section_size_type);
2647
2648 // Return whether we want to pass flag NON_PIC_REF for this
2649 // reloc. This means the relocation type accesses a symbol not via
2650 // GOT or PLT.
2651 static inline bool
2652 reloc_is_non_pic(unsigned int r_type)
2653 {
2654 switch (r_type)
2655 {
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2666
2667 // These relocate types may use PLT entries.
2668 case elfcpp::R_ARM_CALL:
2669 case elfcpp::R_ARM_THM_CALL:
2670 case elfcpp::R_ARM_JUMP24:
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
2677 return false;
2678
2679 default:
2680 return true;
2681 }
2682 }
2683
2684 private:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2691 section_size_type);
2692
2693 };
2694
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2698 {
2699 public:
2700 unsigned int
2701 get_size_for_reloc(unsigned int, Relobj*);
2702 };
2703
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2708
2709 // Get the GOT section, creating it if necessary.
2710 Arm_output_data_got<big_endian>*
2711 got_section(Symbol_table*, Layout*);
2712
2713 // Get the GOT PLT section.
2714 Output_data_space*
2715 got_plt_section() const
2716 {
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2719 }
2720
2721 // Create a PLT entry for a global symbol.
2722 void
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2724
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2726 void
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2728
2729 // Create a GOT entry for the TLS module index.
2730 unsigned int
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2732 Sized_relobj_file<32, big_endian>* object);
2733
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2736 plt_section() const
2737 {
2738 gold_assert(this->plt_ != NULL);
2739 return this->plt_;
2740 }
2741
2742 // Get the dynamic reloc section, creating it if necessary.
2743 Reloc_section*
2744 rel_dyn_section(Layout*);
2745
2746 // Get the section to use for TLS_DESC relocations.
2747 Reloc_section*
2748 rel_tls_desc_section(Layout*) const;
2749
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2753 bool
2754 may_need_copy_reloc(Symbol* gsym)
2755 {
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
2758 }
2759
2760 // Add a potential copy relocation.
2761 void
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
2763 Sized_relobj_file<32, big_endian>* object,
2764 unsigned int shndx, Output_section* output_section,
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2766 {
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2769 object, shndx, output_section, reloc,
2770 this->rel_dyn_section(layout));
2771 }
2772
2773 // Whether two EABI versions are compatible.
2774 static bool
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2776
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2779 void
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2781
2782 // Get the secondary compatible architecture.
2783 static int
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2785
2786 // Set the secondary compatible architecture.
2787 static void
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2789
2790 static int
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2792
2793 // Helper to print AEABI enum tag value.
2794 static std::string
2795 aeabi_enum_name(unsigned int);
2796
2797 // Return string value for TAG_CPU_name.
2798 static std::string
2799 tag_cpu_name_value(unsigned int);
2800
2801 // Merge object attributes from input object and those in the output.
2802 void
2803 merge_object_attributes(const char*, const Attributes_section_data*);
2804
2805 // Helper to get an AEABI object attribute
2806 Object_attribute*
2807 get_aeabi_object_attribute(int tag) const
2808 {
2809 Attributes_section_data* pasd = this->attributes_section_data_;
2810 gold_assert(pasd != NULL);
2811 Object_attribute* attr =
2812 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2813 gold_assert(attr != NULL);
2814 return attr;
2815 }
2816
2817 //
2818 // Methods to support stub-generations.
2819 //
2820
2821 // Group input sections for stub generation.
2822 void
2823 group_sections(Layout*, section_size_type, bool, const Task*);
2824
2825 // Scan a relocation for stub generation.
2826 void
2827 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2828 const Sized_symbol<32>*, unsigned int,
2829 const Symbol_value<32>*,
2830 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2831
2832 // Scan a relocation section for stub.
2833 template<int sh_type>
2834 void
2835 scan_reloc_section_for_stubs(
2836 const Relocate_info<32, big_endian>* relinfo,
2837 const unsigned char* prelocs,
2838 size_t reloc_count,
2839 Output_section* output_section,
2840 bool needs_special_offset_handling,
2841 const unsigned char* view,
2842 elfcpp::Elf_types<32>::Elf_Addr view_address,
2843 section_size_type);
2844
2845 // Fix .ARM.exidx section coverage.
2846 void
2847 fix_exidx_coverage(Layout*, const Input_objects*,
2848 Arm_output_section<big_endian>*, Symbol_table*,
2849 const Task*);
2850
2851 // Functors for STL set.
2852 struct output_section_address_less_than
2853 {
2854 bool
2855 operator()(const Output_section* s1, const Output_section* s2) const
2856 { return s1->address() < s2->address(); }
2857 };
2858
2859 // Information about this specific target which we pass to the
2860 // general Target structure.
2861 static const Target::Target_info arm_info;
2862
2863 // The types of GOT entries needed for this platform.
2864 // These values are exposed to the ABI in an incremental link.
2865 // Do not renumber existing values without changing the version
2866 // number of the .gnu_incremental_inputs section.
2867 enum Got_type
2868 {
2869 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2870 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2871 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2872 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2873 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2874 };
2875
2876 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2877
2878 // Map input section to Arm_input_section.
2879 typedef Unordered_map<Section_id,
2880 Arm_input_section<big_endian>*,
2881 Section_id_hash>
2882 Arm_input_section_map;
2883
2884 // Map output addresses to relocs for Cortex-A8 erratum.
2885 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2886 Cortex_a8_relocs_info;
2887
2888 // The GOT section.
2889 Arm_output_data_got<big_endian>* got_;
2890 // The PLT section.
2891 Output_data_plt_arm<big_endian>* plt_;
2892 // The GOT PLT section.
2893 Output_data_space* got_plt_;
2894 // The dynamic reloc section.
2895 Reloc_section* rel_dyn_;
2896 // Relocs saved to avoid a COPY reloc.
2897 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2898 // Space for variables copied with a COPY reloc.
2899 Output_data_space* dynbss_;
2900 // Offset of the GOT entry for the TLS module index.
2901 unsigned int got_mod_index_offset_;
2902 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2903 bool tls_base_symbol_defined_;
2904 // Vector of Stub_tables created.
2905 Stub_table_list stub_tables_;
2906 // Stub factory.
2907 const Stub_factory &stub_factory_;
2908 // Whether we force PIC branch veneers.
2909 bool should_force_pic_veneer_;
2910 // Map for locating Arm_input_sections.
2911 Arm_input_section_map arm_input_section_map_;
2912 // Attributes section data in output.
2913 Attributes_section_data* attributes_section_data_;
2914 // Whether we want to fix code for Cortex-A8 erratum.
2915 bool fix_cortex_a8_;
2916 // Map addresses to relocs for Cortex-A8 erratum.
2917 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2918 };
2919
2920 template<bool big_endian>
2921 const Target::Target_info Target_arm<big_endian>::arm_info =
2922 {
2923 32, // size
2924 big_endian, // is_big_endian
2925 elfcpp::EM_ARM, // machine_code
2926 false, // has_make_symbol
2927 false, // has_resolve
2928 false, // has_code_fill
2929 true, // is_default_stack_executable
2930 false, // can_icf_inline_merge_sections
2931 '\0', // wrap_char
2932 "/usr/lib/libc.so.1", // dynamic_linker
2933 0x8000, // default_text_segment_address
2934 0x1000, // abi_pagesize (overridable by -z max-page-size)
2935 0x1000, // common_pagesize (overridable by -z common-page-size)
2936 false, // isolate_execinstr
2937 0, // rosegment_gap
2938 elfcpp::SHN_UNDEF, // small_common_shndx
2939 elfcpp::SHN_UNDEF, // large_common_shndx
2940 0, // small_common_section_flags
2941 0, // large_common_section_flags
2942 ".ARM.attributes", // attributes_section
2943 "aeabi" // attributes_vendor
2944 };
2945
2946 // Arm relocate functions class
2947 //
2948
2949 template<bool big_endian>
2950 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2951 {
2952 public:
2953 typedef enum
2954 {
2955 STATUS_OKAY, // No error during relocation.
2956 STATUS_OVERFLOW, // Relocation overflow.
2957 STATUS_BAD_RELOC // Relocation cannot be applied.
2958 } Status;
2959
2960 private:
2961 typedef Relocate_functions<32, big_endian> Base;
2962 typedef Arm_relocate_functions<big_endian> This;
2963
2964 // Encoding of imm16 argument for movt and movw ARM instructions
2965 // from ARM ARM:
2966 //
2967 // imm16 := imm4 | imm12
2968 //
2969 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2970 // +-------+---------------+-------+-------+-----------------------+
2971 // | | |imm4 | |imm12 |
2972 // +-------+---------------+-------+-------+-----------------------+
2973
2974 // Extract the relocation addend from VAL based on the ARM
2975 // instruction encoding described above.
2976 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2977 extract_arm_movw_movt_addend(
2978 typename elfcpp::Swap<32, big_endian>::Valtype val)
2979 {
2980 // According to the Elf ABI for ARM Architecture the immediate
2981 // field is sign-extended to form the addend.
2982 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2983 }
2984
2985 // Insert X into VAL based on the ARM instruction encoding described
2986 // above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 insert_val_arm_movw_movt(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val,
2990 typename elfcpp::Swap<32, big_endian>::Valtype x)
2991 {
2992 val &= 0xfff0f000;
2993 val |= x & 0x0fff;
2994 val |= (x & 0xf000) << 4;
2995 return val;
2996 }
2997
2998 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2999 // from ARM ARM:
3000 //
3001 // imm16 := imm4 | i | imm3 | imm8
3002 //
3003 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3004 // +---------+-+-----------+-------++-+-----+-------+---------------+
3005 // | |i| |imm4 || |imm3 | |imm8 |
3006 // +---------+-+-----------+-------++-+-----+-------+---------------+
3007
3008 // Extract the relocation addend from VAL based on the Thumb2
3009 // instruction encoding described above.
3010 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3011 extract_thumb_movw_movt_addend(
3012 typename elfcpp::Swap<32, big_endian>::Valtype val)
3013 {
3014 // According to the Elf ABI for ARM Architecture the immediate
3015 // field is sign-extended to form the addend.
3016 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3017 | ((val >> 15) & 0x0800)
3018 | ((val >> 4) & 0x0700)
3019 | (val & 0x00ff));
3020 }
3021
3022 // Insert X into VAL based on the Thumb2 instruction encoding
3023 // described above.
3024 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3025 insert_val_thumb_movw_movt(
3026 typename elfcpp::Swap<32, big_endian>::Valtype val,
3027 typename elfcpp::Swap<32, big_endian>::Valtype x)
3028 {
3029 val &= 0xfbf08f00;
3030 val |= (x & 0xf000) << 4;
3031 val |= (x & 0x0800) << 15;
3032 val |= (x & 0x0700) << 4;
3033 val |= (x & 0x00ff);
3034 return val;
3035 }
3036
3037 // Calculate the smallest constant Kn for the specified residual.
3038 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3039 static uint32_t
3040 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3041 {
3042 int32_t msb;
3043
3044 if (residual == 0)
3045 return 0;
3046 // Determine the most significant bit in the residual and
3047 // align the resulting value to a 2-bit boundary.
3048 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3049 ;
3050 // The desired shift is now (msb - 6), or zero, whichever
3051 // is the greater.
3052 return (((msb - 6) < 0) ? 0 : (msb - 6));
3053 }
3054
3055 // Calculate the final residual for the specified group index.
3056 // If the passed group index is less than zero, the method will return
3057 // the value of the specified residual without any change.
3058 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3059 static typename elfcpp::Swap<32, big_endian>::Valtype
3060 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3061 const int group)
3062 {
3063 for (int n = 0; n <= group; n++)
3064 {
3065 // Calculate which part of the value to mask.
3066 uint32_t shift = calc_grp_kn(residual);
3067 // Calculate the residual for the next time around.
3068 residual &= ~(residual & (0xff << shift));
3069 }
3070
3071 return residual;
3072 }
3073
3074 // Calculate the value of Gn for the specified group index.
3075 // We return it in the form of an encoded constant-and-rotation.
3076 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3077 static typename elfcpp::Swap<32, big_endian>::Valtype
3078 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3079 const int group)
3080 {
3081 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3082 uint32_t shift = 0;
3083
3084 for (int n = 0; n <= group; n++)
3085 {
3086 // Calculate which part of the value to mask.
3087 shift = calc_grp_kn(residual);
3088 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3089 gn = residual & (0xff << shift);
3090 // Calculate the residual for the next time around.
3091 residual &= ~gn;
3092 }
3093 // Return Gn in the form of an encoded constant-and-rotation.
3094 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3095 }
3096
3097 public:
3098 // Handle ARM long branches.
3099 static typename This::Status
3100 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3101 unsigned char*, const Sized_symbol<32>*,
3102 const Arm_relobj<big_endian>*, unsigned int,
3103 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3104
3105 // Handle THUMB long branches.
3106 static typename This::Status
3107 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3108 unsigned char*, const Sized_symbol<32>*,
3109 const Arm_relobj<big_endian>*, unsigned int,
3110 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3111
3112
3113 // Return the branch offset of a 32-bit THUMB branch.
3114 static inline int32_t
3115 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3116 {
3117 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3118 // involving the J1 and J2 bits.
3119 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3120 uint32_t upper = upper_insn & 0x3ffU;
3121 uint32_t lower = lower_insn & 0x7ffU;
3122 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3123 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3124 uint32_t i1 = j1 ^ s ? 0 : 1;
3125 uint32_t i2 = j2 ^ s ? 0 : 1;
3126
3127 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3128 | (upper << 12) | (lower << 1));
3129 }
3130
3131 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3132 // UPPER_INSN is the original upper instruction of the branch. Caller is
3133 // responsible for overflow checking and BLX offset adjustment.
3134 static inline uint16_t
3135 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3136 {
3137 uint32_t s = offset < 0 ? 1 : 0;
3138 uint32_t bits = static_cast<uint32_t>(offset);
3139 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3140 }
3141
3142 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3143 // LOWER_INSN is the original lower instruction of the branch. Caller is
3144 // responsible for overflow checking and BLX offset adjustment.
3145 static inline uint16_t
3146 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3147 {
3148 uint32_t s = offset < 0 ? 1 : 0;
3149 uint32_t bits = static_cast<uint32_t>(offset);
3150 return ((lower_insn & ~0x2fffU)
3151 | ((((bits >> 23) & 1) ^ !s) << 13)
3152 | ((((bits >> 22) & 1) ^ !s) << 11)
3153 | ((bits >> 1) & 0x7ffU));
3154 }
3155
3156 // Return the branch offset of a 32-bit THUMB conditional branch.
3157 static inline int32_t
3158 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3159 {
3160 uint32_t s = (upper_insn & 0x0400U) >> 10;
3161 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3162 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3163 uint32_t lower = (lower_insn & 0x07ffU);
3164 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3165
3166 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3167 }
3168
3169 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3170 // instruction. UPPER_INSN is the original upper instruction of the branch.
3171 // Caller is responsible for overflow checking.
3172 static inline uint16_t
3173 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3174 {
3175 uint32_t s = offset < 0 ? 1 : 0;
3176 uint32_t bits = static_cast<uint32_t>(offset);
3177 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3178 }
3179
3180 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3181 // instruction. LOWER_INSN is the original lower instruction of the branch.
3182 // The caller is responsible for overflow checking.
3183 static inline uint16_t
3184 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3185 {
3186 uint32_t bits = static_cast<uint32_t>(offset);
3187 uint32_t j2 = (bits & 0x00080000U) >> 19;
3188 uint32_t j1 = (bits & 0x00040000U) >> 18;
3189 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3190
3191 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3192 }
3193
3194 // R_ARM_ABS8: S + A
3195 static inline typename This::Status
3196 abs8(unsigned char* view,
3197 const Sized_relobj_file<32, big_endian>* object,
3198 const Symbol_value<32>* psymval)
3199 {
3200 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3201 Valtype* wv = reinterpret_cast<Valtype*>(view);
3202 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3203 int32_t addend = Bits<8>::sign_extend32(val);
3204 Arm_address x = psymval->value(object, addend);
3205 val = Bits<32>::bit_select32(val, x, 0xffU);
3206 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3207
3208 // R_ARM_ABS8 permits signed or unsigned results.
3209 return (Bits<8>::has_signed_unsigned_overflow32(x)
3210 ? This::STATUS_OVERFLOW
3211 : This::STATUS_OKAY);
3212 }
3213
3214 // R_ARM_THM_ABS5: S + A
3215 static inline typename This::Status
3216 thm_abs5(unsigned char* view,
3217 const Sized_relobj_file<32, big_endian>* object,
3218 const Symbol_value<32>* psymval)
3219 {
3220 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3221 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3222 Valtype* wv = reinterpret_cast<Valtype*>(view);
3223 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3224 Reltype addend = (val & 0x7e0U) >> 6;
3225 Reltype x = psymval->value(object, addend);
3226 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3227 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3228 return (Bits<5>::has_overflow32(x)
3229 ? This::STATUS_OVERFLOW
3230 : This::STATUS_OKAY);
3231 }
3232
3233 // R_ARM_ABS12: S + A
3234 static inline typename This::Status
3235 abs12(unsigned char* view,
3236 const Sized_relobj_file<32, big_endian>* object,
3237 const Symbol_value<32>* psymval)
3238 {
3239 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3240 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3241 Valtype* wv = reinterpret_cast<Valtype*>(view);
3242 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3243 Reltype addend = val & 0x0fffU;
3244 Reltype x = psymval->value(object, addend);
3245 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3246 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3247 return (Bits<12>::has_overflow32(x)
3248 ? This::STATUS_OVERFLOW
3249 : This::STATUS_OKAY);
3250 }
3251
3252 // R_ARM_ABS16: S + A
3253 static inline typename This::Status
3254 abs16(unsigned char* view,
3255 const Sized_relobj_file<32, big_endian>* object,
3256 const Symbol_value<32>* psymval)
3257 {
3258 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3259 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3260 int32_t addend = Bits<16>::sign_extend32(val);
3261 Arm_address x = psymval->value(object, addend);
3262 val = Bits<32>::bit_select32(val, x, 0xffffU);
3263 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3264
3265 // R_ARM_ABS16 permits signed or unsigned results.
3266 return (Bits<16>::has_signed_unsigned_overflow32(x)
3267 ? This::STATUS_OVERFLOW
3268 : This::STATUS_OKAY);
3269 }
3270
3271 // R_ARM_ABS32: (S + A) | T
3272 static inline typename This::Status
3273 abs32(unsigned char* view,
3274 const Sized_relobj_file<32, big_endian>* object,
3275 const Symbol_value<32>* psymval,
3276 Arm_address thumb_bit)
3277 {
3278 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3279 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3280 Valtype x = psymval->value(object, addend) | thumb_bit;
3281 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3282 return This::STATUS_OKAY;
3283 }
3284
3285 // R_ARM_REL32: (S + A) | T - P
3286 static inline typename This::Status
3287 rel32(unsigned char* view,
3288 const Sized_relobj_file<32, big_endian>* object,
3289 const Symbol_value<32>* psymval,
3290 Arm_address address,
3291 Arm_address thumb_bit)
3292 {
3293 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3294 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3295 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3296 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3297 return This::STATUS_OKAY;
3298 }
3299
3300 // R_ARM_THM_JUMP24: (S + A) | T - P
3301 static typename This::Status
3302 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3303 const Symbol_value<32>* psymval, Arm_address address,
3304 Arm_address thumb_bit);
3305
3306 // R_ARM_THM_JUMP6: S + A – P
3307 static inline typename This::Status
3308 thm_jump6(unsigned char* view,
3309 const Sized_relobj_file<32, big_endian>* object,
3310 const Symbol_value<32>* psymval,
3311 Arm_address address)
3312 {
3313 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3314 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3315 Valtype* wv = reinterpret_cast<Valtype*>(view);
3316 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3317 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3318 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3319 Reltype x = (psymval->value(object, addend) - address);
3320 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3321 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3322 // CZB does only forward jumps.
3323 return ((x > 0x007e)
3324 ? This::STATUS_OVERFLOW
3325 : This::STATUS_OKAY);
3326 }
3327
3328 // R_ARM_THM_JUMP8: S + A – P
3329 static inline typename This::Status
3330 thm_jump8(unsigned char* view,
3331 const Sized_relobj_file<32, big_endian>* object,
3332 const Symbol_value<32>* psymval,
3333 Arm_address address)
3334 {
3335 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3336 Valtype* wv = reinterpret_cast<Valtype*>(view);
3337 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3338 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3339 int32_t x = (psymval->value(object, addend) - address);
3340 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3341 | ((x & 0x01fe) >> 1)));
3342 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3343 return (Bits<9>::has_overflow32(x)
3344 ? This::STATUS_OVERFLOW
3345 : This::STATUS_OKAY);
3346 }
3347
3348 // R_ARM_THM_JUMP11: S + A – P
3349 static inline typename This::Status
3350 thm_jump11(unsigned char* view,
3351 const Sized_relobj_file<32, big_endian>* object,
3352 const Symbol_value<32>* psymval,
3353 Arm_address address)
3354 {
3355 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3356 Valtype* wv = reinterpret_cast<Valtype*>(view);
3357 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3358 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3359 int32_t x = (psymval->value(object, addend) - address);
3360 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3361 | ((x & 0x0ffe) >> 1)));
3362 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3363 return (Bits<12>::has_overflow32(x)
3364 ? This::STATUS_OVERFLOW
3365 : This::STATUS_OKAY);
3366 }
3367
3368 // R_ARM_BASE_PREL: B(S) + A - P
3369 static inline typename This::Status
3370 base_prel(unsigned char* view,
3371 Arm_address origin,
3372 Arm_address address)
3373 {
3374 Base::rel32(view, origin - address);
3375 return STATUS_OKAY;
3376 }
3377
3378 // R_ARM_BASE_ABS: B(S) + A
3379 static inline typename This::Status
3380 base_abs(unsigned char* view,
3381 Arm_address origin)
3382 {
3383 Base::rel32(view, origin);
3384 return STATUS_OKAY;
3385 }
3386
3387 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3388 static inline typename This::Status
3389 got_brel(unsigned char* view,
3390 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3391 {
3392 Base::rel32(view, got_offset);
3393 return This::STATUS_OKAY;
3394 }
3395
3396 // R_ARM_GOT_PREL: GOT(S) + A - P
3397 static inline typename This::Status
3398 got_prel(unsigned char* view,
3399 Arm_address got_entry,
3400 Arm_address address)
3401 {
3402 Base::rel32(view, got_entry - address);
3403 return This::STATUS_OKAY;
3404 }
3405
3406 // R_ARM_PREL: (S + A) | T - P
3407 static inline typename This::Status
3408 prel31(unsigned char* view,
3409 const Sized_relobj_file<32, big_endian>* object,
3410 const Symbol_value<32>* psymval,
3411 Arm_address address,
3412 Arm_address thumb_bit)
3413 {
3414 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3415 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3416 Valtype addend = Bits<31>::sign_extend32(val);
3417 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3418 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3419 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3420 return (Bits<31>::has_overflow32(x)
3421 ? This::STATUS_OVERFLOW
3422 : This::STATUS_OKAY);
3423 }
3424
3425 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3426 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3427 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3428 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3429 static inline typename This::Status
3430 movw(unsigned char* view,
3431 const Sized_relobj_file<32, big_endian>* object,
3432 const Symbol_value<32>* psymval,
3433 Arm_address relative_address_base,
3434 Arm_address thumb_bit,
3435 bool check_overflow)
3436 {
3437 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438 Valtype* wv = reinterpret_cast<Valtype*>(view);
3439 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440 Valtype addend = This::extract_arm_movw_movt_addend(val);
3441 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3442 - relative_address_base);
3443 val = This::insert_val_arm_movw_movt(val, x);
3444 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3445 return ((check_overflow && Bits<16>::has_overflow32(x))
3446 ? This::STATUS_OVERFLOW
3447 : This::STATUS_OKAY);
3448 }
3449
3450 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3451 // R_ARM_MOVT_PREL: S + A - P
3452 // R_ARM_MOVT_BREL: S + A - B(S)
3453 static inline typename This::Status
3454 movt(unsigned char* view,
3455 const Sized_relobj_file<32, big_endian>* object,
3456 const Symbol_value<32>* psymval,
3457 Arm_address relative_address_base)
3458 {
3459 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3460 Valtype* wv = reinterpret_cast<Valtype*>(view);
3461 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3462 Valtype addend = This::extract_arm_movw_movt_addend(val);
3463 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3464 val = This::insert_val_arm_movw_movt(val, x);
3465 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3466 // FIXME: IHI0044D says that we should check for overflow.
3467 return This::STATUS_OKAY;
3468 }
3469
3470 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3471 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3472 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3473 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3474 static inline typename This::Status
3475 thm_movw(unsigned char* view,
3476 const Sized_relobj_file<32, big_endian>* object,
3477 const Symbol_value<32>* psymval,
3478 Arm_address relative_address_base,
3479 Arm_address thumb_bit,
3480 bool check_overflow)
3481 {
3482 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3483 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3484 Valtype* wv = reinterpret_cast<Valtype*>(view);
3485 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3486 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3487 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3488 Reltype x =
3489 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3490 val = This::insert_val_thumb_movw_movt(val, x);
3491 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3492 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3493 return ((check_overflow && Bits<16>::has_overflow32(x))
3494 ? This::STATUS_OVERFLOW
3495 : This::STATUS_OKAY);
3496 }
3497
3498 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3499 // R_ARM_THM_MOVT_PREL: S + A - P
3500 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3501 static inline typename This::Status
3502 thm_movt(unsigned char* view,
3503 const Sized_relobj_file<32, big_endian>* object,
3504 const Symbol_value<32>* psymval,
3505 Arm_address relative_address_base)
3506 {
3507 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3508 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3509 Valtype* wv = reinterpret_cast<Valtype*>(view);
3510 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3511 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3512 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3513 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3514 val = This::insert_val_thumb_movw_movt(val, x);
3515 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3516 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3517 return This::STATUS_OKAY;
3518 }
3519
3520 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3521 static inline typename This::Status
3522 thm_alu11(unsigned char* view,
3523 const Sized_relobj_file<32, big_endian>* object,
3524 const Symbol_value<32>* psymval,
3525 Arm_address address,
3526 Arm_address thumb_bit)
3527 {
3528 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3529 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3530 Valtype* wv = reinterpret_cast<Valtype*>(view);
3531 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3532 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3533
3534 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3535 // -----------------------------------------------------------------------
3536 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3537 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3538 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3539 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3540 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3541 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3542
3543 // Determine a sign for the addend.
3544 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3545 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3546 // Thumb2 addend encoding:
3547 // imm12 := i | imm3 | imm8
3548 int32_t addend = (insn & 0xff)
3549 | ((insn & 0x00007000) >> 4)
3550 | ((insn & 0x04000000) >> 15);
3551 // Apply a sign to the added.
3552 addend *= sign;
3553
3554 int32_t x = (psymval->value(object, addend) | thumb_bit)
3555 - (address & 0xfffffffc);
3556 Reltype val = abs(x);
3557 // Mask out the value and a distinct part of the ADD/SUB opcode
3558 // (bits 7:5 of opword).
3559 insn = (insn & 0xfb0f8f00)
3560 | (val & 0xff)
3561 | ((val & 0x700) << 4)
3562 | ((val & 0x800) << 15);
3563 // Set the opcode according to whether the value to go in the
3564 // place is negative.
3565 if (x < 0)
3566 insn |= 0x00a00000;
3567
3568 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3569 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3570 return ((val > 0xfff) ?
3571 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3572 }
3573
3574 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3575 static inline typename This::Status
3576 thm_pc8(unsigned char* view,
3577 const Sized_relobj_file<32, big_endian>* object,
3578 const Symbol_value<32>* psymval,
3579 Arm_address address)
3580 {
3581 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3582 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3583 Valtype* wv = reinterpret_cast<Valtype*>(view);
3584 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3585 Reltype addend = ((insn & 0x00ff) << 2);
3586 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3587 Reltype val = abs(x);
3588 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3589
3590 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3591 return ((val > 0x03fc)
3592 ? This::STATUS_OVERFLOW
3593 : This::STATUS_OKAY);
3594 }
3595
3596 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3597 static inline typename This::Status
3598 thm_pc12(unsigned char* view,
3599 const Sized_relobj_file<32, big_endian>* object,
3600 const Symbol_value<32>* psymval,
3601 Arm_address address)
3602 {
3603 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3604 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3605 Valtype* wv = reinterpret_cast<Valtype*>(view);
3606 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3607 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3608 // Determine a sign for the addend (positive if the U bit is 1).
3609 const int sign = (insn & 0x00800000) ? 1 : -1;
3610 int32_t addend = (insn & 0xfff);
3611 // Apply a sign to the added.
3612 addend *= sign;
3613
3614 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3615 Reltype val = abs(x);
3616 // Mask out and apply the value and the U bit.
3617 insn = (insn & 0xff7ff000) | (val & 0xfff);
3618 // Set the U bit according to whether the value to go in the
3619 // place is positive.
3620 if (x >= 0)
3621 insn |= 0x00800000;
3622
3623 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3624 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3625 return ((val > 0xfff) ?
3626 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3627 }
3628
3629 // R_ARM_V4BX
3630 static inline typename This::Status
3631 v4bx(const Relocate_info<32, big_endian>* relinfo,
3632 unsigned char* view,
3633 const Arm_relobj<big_endian>* object,
3634 const Arm_address address,
3635 const bool is_interworking)
3636 {
3637
3638 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3639 Valtype* wv = reinterpret_cast<Valtype*>(view);
3640 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3641
3642 // Ensure that we have a BX instruction.
3643 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3644 const uint32_t reg = (val & 0xf);
3645 if (is_interworking && reg != 0xf)
3646 {
3647 Stub_table<big_endian>* stub_table =
3648 object->stub_table(relinfo->data_shndx);
3649 gold_assert(stub_table != NULL);
3650
3651 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3652 gold_assert(stub != NULL);
3653
3654 int32_t veneer_address =
3655 stub_table->address() + stub->offset() - 8 - address;
3656 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3657 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3658 // Replace with a branch to veneer (B <addr>)
3659 val = (val & 0xf0000000) | 0x0a000000
3660 | ((veneer_address >> 2) & 0x00ffffff);
3661 }
3662 else
3663 {
3664 // Preserve Rm (lowest four bits) and the condition code
3665 // (highest four bits). Other bits encode MOV PC,Rm.
3666 val = (val & 0xf000000f) | 0x01a0f000;
3667 }
3668 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3669 return This::STATUS_OKAY;
3670 }
3671
3672 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3673 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3674 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3675 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3676 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3677 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3678 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3679 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3680 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3681 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3682 static inline typename This::Status
3683 arm_grp_alu(unsigned char* view,
3684 const Sized_relobj_file<32, big_endian>* object,
3685 const Symbol_value<32>* psymval,
3686 const int group,
3687 Arm_address address,
3688 Arm_address thumb_bit,
3689 bool check_overflow)
3690 {
3691 gold_assert(group >= 0 && group < 3);
3692 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3693 Valtype* wv = reinterpret_cast<Valtype*>(view);
3694 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3695
3696 // ALU group relocations are allowed only for the ADD/SUB instructions.
3697 // (0x00800000 - ADD, 0x00400000 - SUB)
3698 const Valtype opcode = insn & 0x01e00000;
3699 if (opcode != 0x00800000 && opcode != 0x00400000)
3700 return This::STATUS_BAD_RELOC;
3701
3702 // Determine a sign for the addend.
3703 const int sign = (opcode == 0x00800000) ? 1 : -1;
3704 // shifter = rotate_imm * 2
3705 const uint32_t shifter = (insn & 0xf00) >> 7;
3706 // Initial addend value.
3707 int32_t addend = insn & 0xff;
3708 // Rotate addend right by shifter.
3709 addend = (addend >> shifter) | (addend << (32 - shifter));
3710 // Apply a sign to the added.
3711 addend *= sign;
3712
3713 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3714 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3715 // Check for overflow if required
3716 if (check_overflow
3717 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3718 return This::STATUS_OVERFLOW;
3719
3720 // Mask out the value and the ADD/SUB part of the opcode; take care
3721 // not to destroy the S bit.
3722 insn &= 0xff1ff000;
3723 // Set the opcode according to whether the value to go in the
3724 // place is negative.
3725 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3726 // Encode the offset (encoded Gn).
3727 insn |= gn;
3728
3729 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3730 return This::STATUS_OKAY;
3731 }
3732
3733 // R_ARM_LDR_PC_G0: S + A - P
3734 // R_ARM_LDR_PC_G1: S + A - P
3735 // R_ARM_LDR_PC_G2: S + A - P
3736 // R_ARM_LDR_SB_G0: S + A - B(S)
3737 // R_ARM_LDR_SB_G1: S + A - B(S)
3738 // R_ARM_LDR_SB_G2: S + A - B(S)
3739 static inline typename This::Status
3740 arm_grp_ldr(unsigned char* view,
3741 const Sized_relobj_file<32, big_endian>* object,
3742 const Symbol_value<32>* psymval,
3743 const int group,
3744 Arm_address address)
3745 {
3746 gold_assert(group >= 0 && group < 3);
3747 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3748 Valtype* wv = reinterpret_cast<Valtype*>(view);
3749 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3750
3751 const int sign = (insn & 0x00800000) ? 1 : -1;
3752 int32_t addend = (insn & 0xfff) * sign;
3753 int32_t x = (psymval->value(object, addend) - address);
3754 // Calculate the relevant G(n-1) value to obtain this stage residual.
3755 Valtype residual =
3756 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3757 if (residual >= 0x1000)
3758 return This::STATUS_OVERFLOW;
3759
3760 // Mask out the value and U bit.
3761 insn &= 0xff7ff000;
3762 // Set the U bit for non-negative values.
3763 if (x >= 0)
3764 insn |= 0x00800000;
3765 insn |= residual;
3766
3767 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3768 return This::STATUS_OKAY;
3769 }
3770
3771 // R_ARM_LDRS_PC_G0: S + A - P
3772 // R_ARM_LDRS_PC_G1: S + A - P
3773 // R_ARM_LDRS_PC_G2: S + A - P
3774 // R_ARM_LDRS_SB_G0: S + A - B(S)
3775 // R_ARM_LDRS_SB_G1: S + A - B(S)
3776 // R_ARM_LDRS_SB_G2: S + A - B(S)
3777 static inline typename This::Status
3778 arm_grp_ldrs(unsigned char* view,
3779 const Sized_relobj_file<32, big_endian>* object,
3780 const Symbol_value<32>* psymval,
3781 const int group,
3782 Arm_address address)
3783 {
3784 gold_assert(group >= 0 && group < 3);
3785 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3786 Valtype* wv = reinterpret_cast<Valtype*>(view);
3787 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3788
3789 const int sign = (insn & 0x00800000) ? 1 : -1;
3790 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3791 int32_t x = (psymval->value(object, addend) - address);
3792 // Calculate the relevant G(n-1) value to obtain this stage residual.
3793 Valtype residual =
3794 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3795 if (residual >= 0x100)
3796 return This::STATUS_OVERFLOW;
3797
3798 // Mask out the value and U bit.
3799 insn &= 0xff7ff0f0;
3800 // Set the U bit for non-negative values.
3801 if (x >= 0)
3802 insn |= 0x00800000;
3803 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3804
3805 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3806 return This::STATUS_OKAY;
3807 }
3808
3809 // R_ARM_LDC_PC_G0: S + A - P
3810 // R_ARM_LDC_PC_G1: S + A - P
3811 // R_ARM_LDC_PC_G2: S + A - P
3812 // R_ARM_LDC_SB_G0: S + A - B(S)
3813 // R_ARM_LDC_SB_G1: S + A - B(S)
3814 // R_ARM_LDC_SB_G2: S + A - B(S)
3815 static inline typename This::Status
3816 arm_grp_ldc(unsigned char* view,
3817 const Sized_relobj_file<32, big_endian>* object,
3818 const Symbol_value<32>* psymval,
3819 const int group,
3820 Arm_address address)
3821 {
3822 gold_assert(group >= 0 && group < 3);
3823 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3824 Valtype* wv = reinterpret_cast<Valtype*>(view);
3825 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3826
3827 const int sign = (insn & 0x00800000) ? 1 : -1;
3828 int32_t addend = ((insn & 0xff) << 2) * sign;
3829 int32_t x = (psymval->value(object, addend) - address);
3830 // Calculate the relevant G(n-1) value to obtain this stage residual.
3831 Valtype residual =
3832 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3833 if ((residual & 0x3) != 0 || residual >= 0x400)
3834 return This::STATUS_OVERFLOW;
3835
3836 // Mask out the value and U bit.
3837 insn &= 0xff7fff00;
3838 // Set the U bit for non-negative values.
3839 if (x >= 0)
3840 insn |= 0x00800000;
3841 insn |= (residual >> 2);
3842
3843 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3844 return This::STATUS_OKAY;
3845 }
3846 };
3847
3848 // Relocate ARM long branches. This handles relocation types
3849 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3850 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3851 // undefined and we do not use PLT in this relocation. In such a case,
3852 // the branch is converted into an NOP.
3853
3854 template<bool big_endian>
3855 typename Arm_relocate_functions<big_endian>::Status
3856 Arm_relocate_functions<big_endian>::arm_branch_common(
3857 unsigned int r_type,
3858 const Relocate_info<32, big_endian>* relinfo,
3859 unsigned char* view,
3860 const Sized_symbol<32>* gsym,
3861 const Arm_relobj<big_endian>* object,
3862 unsigned int r_sym,
3863 const Symbol_value<32>* psymval,
3864 Arm_address address,
3865 Arm_address thumb_bit,
3866 bool is_weakly_undefined_without_plt)
3867 {
3868 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3869 Valtype* wv = reinterpret_cast<Valtype*>(view);
3870 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3871
3872 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3873 && ((val & 0x0f000000UL) == 0x0a000000UL);
3874 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3875 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3876 && ((val & 0x0f000000UL) == 0x0b000000UL);
3877 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3878 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3879
3880 // Check that the instruction is valid.
3881 if (r_type == elfcpp::R_ARM_CALL)
3882 {
3883 if (!insn_is_uncond_bl && !insn_is_blx)
3884 return This::STATUS_BAD_RELOC;
3885 }
3886 else if (r_type == elfcpp::R_ARM_JUMP24)
3887 {
3888 if (!insn_is_b && !insn_is_cond_bl)
3889 return This::STATUS_BAD_RELOC;
3890 }
3891 else if (r_type == elfcpp::R_ARM_PLT32)
3892 {
3893 if (!insn_is_any_branch)
3894 return This::STATUS_BAD_RELOC;
3895 }
3896 else if (r_type == elfcpp::R_ARM_XPC25)
3897 {
3898 // FIXME: AAELF document IH0044C does not say much about it other
3899 // than it being obsolete.
3900 if (!insn_is_any_branch)
3901 return This::STATUS_BAD_RELOC;
3902 }
3903 else
3904 gold_unreachable();
3905
3906 // A branch to an undefined weak symbol is turned into a jump to
3907 // the next instruction unless a PLT entry will be created.
3908 // Do the same for local undefined symbols.
3909 // The jump to the next instruction is optimized as a NOP depending
3910 // on the architecture.
3911 const Target_arm<big_endian>* arm_target =
3912 Target_arm<big_endian>::default_target();
3913 if (is_weakly_undefined_without_plt)
3914 {
3915 gold_assert(!parameters->options().relocatable());
3916 Valtype cond = val & 0xf0000000U;
3917 if (arm_target->may_use_arm_nop())
3918 val = cond | 0x0320f000;
3919 else
3920 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3921 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3922 return This::STATUS_OKAY;
3923 }
3924
3925 Valtype addend = Bits<26>::sign_extend32(val << 2);
3926 Valtype branch_target = psymval->value(object, addend);
3927 int32_t branch_offset = branch_target - address;
3928
3929 // We need a stub if the branch offset is too large or if we need
3930 // to switch mode.
3931 bool may_use_blx = arm_target->may_use_v5t_interworking();
3932 Reloc_stub* stub = NULL;
3933
3934 if (!parameters->options().relocatable()
3935 && (Bits<26>::has_overflow32(branch_offset)
3936 || ((thumb_bit != 0)
3937 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3938 {
3939 Valtype unadjusted_branch_target = psymval->value(object, 0);
3940
3941 Stub_type stub_type =
3942 Reloc_stub::stub_type_for_reloc(r_type, address,
3943 unadjusted_branch_target,
3944 (thumb_bit != 0));
3945 if (stub_type != arm_stub_none)
3946 {
3947 Stub_table<big_endian>* stub_table =
3948 object->stub_table(relinfo->data_shndx);
3949 gold_assert(stub_table != NULL);
3950
3951 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3952 stub = stub_table->find_reloc_stub(stub_key);
3953 gold_assert(stub != NULL);
3954 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3955 branch_target = stub_table->address() + stub->offset() + addend;
3956 branch_offset = branch_target - address;
3957 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3958 }
3959 }
3960
3961 // At this point, if we still need to switch mode, the instruction
3962 // must either be a BLX or a BL that can be converted to a BLX.
3963 if (thumb_bit != 0)
3964 {
3965 // Turn BL to BLX.
3966 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3967 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3968 }
3969
3970 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3971 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3972 return (Bits<26>::has_overflow32(branch_offset)
3973 ? This::STATUS_OVERFLOW
3974 : This::STATUS_OKAY);
3975 }
3976
3977 // Relocate THUMB long branches. This handles relocation types
3978 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3979 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3980 // undefined and we do not use PLT in this relocation. In such a case,
3981 // the branch is converted into an NOP.
3982
3983 template<bool big_endian>
3984 typename Arm_relocate_functions<big_endian>::Status
3985 Arm_relocate_functions<big_endian>::thumb_branch_common(
3986 unsigned int r_type,
3987 const Relocate_info<32, big_endian>* relinfo,
3988 unsigned char* view,
3989 const Sized_symbol<32>* gsym,
3990 const Arm_relobj<big_endian>* object,
3991 unsigned int r_sym,
3992 const Symbol_value<32>* psymval,
3993 Arm_address address,
3994 Arm_address thumb_bit,
3995 bool is_weakly_undefined_without_plt)
3996 {
3997 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3998 Valtype* wv = reinterpret_cast<Valtype*>(view);
3999 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4000 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4001
4002 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4003 // into account.
4004 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4005 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4006
4007 // Check that the instruction is valid.
4008 if (r_type == elfcpp::R_ARM_THM_CALL)
4009 {
4010 if (!is_bl_insn && !is_blx_insn)
4011 return This::STATUS_BAD_RELOC;
4012 }
4013 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4014 {
4015 // This cannot be a BLX.
4016 if (!is_bl_insn)
4017 return This::STATUS_BAD_RELOC;
4018 }
4019 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4020 {
4021 // Check for Thumb to Thumb call.
4022 if (!is_blx_insn)
4023 return This::STATUS_BAD_RELOC;
4024 if (thumb_bit != 0)
4025 {
4026 gold_warning(_("%s: Thumb BLX instruction targets "
4027 "thumb function '%s'."),
4028 object->name().c_str(),
4029 (gsym ? gsym->name() : "(local)"));
4030 // Convert BLX to BL.
4031 lower_insn |= 0x1000U;
4032 }
4033 }
4034 else
4035 gold_unreachable();
4036
4037 // A branch to an undefined weak symbol is turned into a jump to
4038 // the next instruction unless a PLT entry will be created.
4039 // The jump to the next instruction is optimized as a NOP.W for
4040 // Thumb-2 enabled architectures.
4041 const Target_arm<big_endian>* arm_target =
4042 Target_arm<big_endian>::default_target();
4043 if (is_weakly_undefined_without_plt)
4044 {
4045 gold_assert(!parameters->options().relocatable());
4046 if (arm_target->may_use_thumb2_nop())
4047 {
4048 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4049 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4050 }
4051 else
4052 {
4053 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4054 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4055 }
4056 return This::STATUS_OKAY;
4057 }
4058
4059 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4060 Arm_address branch_target = psymval->value(object, addend);
4061
4062 // For BLX, bit 1 of target address comes from bit 1 of base address.
4063 bool may_use_blx = arm_target->may_use_v5t_interworking();
4064 if (thumb_bit == 0 && may_use_blx)
4065 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4066
4067 int32_t branch_offset = branch_target - address;
4068
4069 // We need a stub if the branch offset is too large or if we need
4070 // to switch mode.
4071 bool thumb2 = arm_target->using_thumb2();
4072 if (!parameters->options().relocatable()
4073 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4074 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4075 || ((thumb_bit == 0)
4076 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4077 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4078 {
4079 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4080
4081 Stub_type stub_type =
4082 Reloc_stub::stub_type_for_reloc(r_type, address,
4083 unadjusted_branch_target,
4084 (thumb_bit != 0));
4085
4086 if (stub_type != arm_stub_none)
4087 {
4088 Stub_table<big_endian>* stub_table =
4089 object->stub_table(relinfo->data_shndx);
4090 gold_assert(stub_table != NULL);
4091
4092 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4093 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4094 gold_assert(stub != NULL);
4095 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4096 branch_target = stub_table->address() + stub->offset() + addend;
4097 if (thumb_bit == 0 && may_use_blx)
4098 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4099 branch_offset = branch_target - address;
4100 }
4101 }
4102
4103 // At this point, if we still need to switch mode, the instruction
4104 // must either be a BLX or a BL that can be converted to a BLX.
4105 if (thumb_bit == 0)
4106 {
4107 gold_assert(may_use_blx
4108 && (r_type == elfcpp::R_ARM_THM_CALL
4109 || r_type == elfcpp::R_ARM_THM_XPC22));
4110 // Make sure this is a BLX.
4111 lower_insn &= ~0x1000U;
4112 }
4113 else
4114 {
4115 // Make sure this is a BL.
4116 lower_insn |= 0x1000U;
4117 }
4118
4119 // For a BLX instruction, make sure that the relocation is rounded up
4120 // to a word boundary. This follows the semantics of the instruction
4121 // which specifies that bit 1 of the target address will come from bit
4122 // 1 of the base address.
4123 if ((lower_insn & 0x5000U) == 0x4000U)
4124 gold_assert((branch_offset & 3) == 0);
4125
4126 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4127 // We use the Thumb-2 encoding, which is safe even if dealing with
4128 // a Thumb-1 instruction by virtue of our overflow check above. */
4129 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4130 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4131
4132 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4133 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4134
4135 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4136
4137 return ((thumb2
4138 ? Bits<25>::has_overflow32(branch_offset)
4139 : Bits<23>::has_overflow32(branch_offset))
4140 ? This::STATUS_OVERFLOW
4141 : This::STATUS_OKAY);
4142 }
4143
4144 // Relocate THUMB-2 long conditional branches.
4145 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4146 // undefined and we do not use PLT in this relocation. In such a case,
4147 // the branch is converted into an NOP.
4148
4149 template<bool big_endian>
4150 typename Arm_relocate_functions<big_endian>::Status
4151 Arm_relocate_functions<big_endian>::thm_jump19(
4152 unsigned char* view,
4153 const Arm_relobj<big_endian>* object,
4154 const Symbol_value<32>* psymval,
4155 Arm_address address,
4156 Arm_address thumb_bit)
4157 {
4158 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4159 Valtype* wv = reinterpret_cast<Valtype*>(view);
4160 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4161 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4162 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4163
4164 Arm_address branch_target = psymval->value(object, addend);
4165 int32_t branch_offset = branch_target - address;
4166
4167 // ??? Should handle interworking? GCC might someday try to
4168 // use this for tail calls.
4169 // FIXME: We do support thumb entry to PLT yet.
4170 if (thumb_bit == 0)
4171 {
4172 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4173 return This::STATUS_BAD_RELOC;
4174 }
4175
4176 // Put RELOCATION back into the insn.
4177 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4178 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4179
4180 // Put the relocated value back in the object file:
4181 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4182 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4183
4184 return (Bits<21>::has_overflow32(branch_offset)
4185 ? This::STATUS_OVERFLOW
4186 : This::STATUS_OKAY);
4187 }
4188
4189 // Get the GOT section, creating it if necessary.
4190
4191 template<bool big_endian>
4192 Arm_output_data_got<big_endian>*
4193 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4194 {
4195 if (this->got_ == NULL)
4196 {
4197 gold_assert(symtab != NULL && layout != NULL);
4198
4199 // When using -z now, we can treat .got as a relro section.
4200 // Without -z now, it is modified after program startup by lazy
4201 // PLT relocations.
4202 bool is_got_relro = parameters->options().now();
4203 Output_section_order got_order = (is_got_relro
4204 ? ORDER_RELRO_LAST
4205 : ORDER_DATA);
4206
4207 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4208 // .got.plt sections in output. The output .got section contains both
4209 // PLT and non-PLT GOT entries.
4210 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4211
4212 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4213 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4214 this->got_, got_order, is_got_relro);
4215
4216 // The old GNU linker creates a .got.plt section. We just
4217 // create another set of data in the .got section. Note that we
4218 // always create a PLT if we create a GOT, although the PLT
4219 // might be empty.
4220 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4221 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4222 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4223 this->got_plt_, got_order, is_got_relro);
4224
4225 // The first three entries are reserved.
4226 this->got_plt_->set_current_data_size(3 * 4);
4227
4228 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4229 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4230 Symbol_table::PREDEFINED,
4231 this->got_plt_,
4232 0, 0, elfcpp::STT_OBJECT,
4233 elfcpp::STB_LOCAL,
4234 elfcpp::STV_HIDDEN, 0,
4235 false, false);
4236 }
4237 return this->got_;
4238 }
4239
4240 // Get the dynamic reloc section, creating it if necessary.
4241
4242 template<bool big_endian>
4243 typename Target_arm<big_endian>::Reloc_section*
4244 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4245 {
4246 if (this->rel_dyn_ == NULL)
4247 {
4248 gold_assert(layout != NULL);
4249 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4250 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4251 elfcpp::SHF_ALLOC, this->rel_dyn_,
4252 ORDER_DYNAMIC_RELOCS, false);
4253 }
4254 return this->rel_dyn_;
4255 }
4256
4257 // Insn_template methods.
4258
4259 // Return byte size of an instruction template.
4260
4261 size_t
4262 Insn_template::size() const
4263 {
4264 switch (this->type())
4265 {
4266 case THUMB16_TYPE:
4267 case THUMB16_SPECIAL_TYPE:
4268 return 2;
4269 case ARM_TYPE:
4270 case THUMB32_TYPE:
4271 case DATA_TYPE:
4272 return 4;
4273 default:
4274 gold_unreachable();
4275 }
4276 }
4277
4278 // Return alignment of an instruction template.
4279
4280 unsigned
4281 Insn_template::alignment() const
4282 {
4283 switch (this->type())
4284 {
4285 case THUMB16_TYPE:
4286 case THUMB16_SPECIAL_TYPE:
4287 case THUMB32_TYPE:
4288 return 2;
4289 case ARM_TYPE:
4290 case DATA_TYPE:
4291 return 4;
4292 default:
4293 gold_unreachable();
4294 }
4295 }
4296
4297 // Stub_template methods.
4298
4299 Stub_template::Stub_template(
4300 Stub_type type, const Insn_template* insns,
4301 size_t insn_count)
4302 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4303 entry_in_thumb_mode_(false), relocs_()
4304 {
4305 off_t offset = 0;
4306
4307 // Compute byte size and alignment of stub template.
4308 for (size_t i = 0; i < insn_count; i++)
4309 {
4310 unsigned insn_alignment = insns[i].alignment();
4311 size_t insn_size = insns[i].size();
4312 gold_assert((offset & (insn_alignment - 1)) == 0);
4313 this->alignment_ = std::max(this->alignment_, insn_alignment);
4314 switch (insns[i].type())
4315 {
4316 case Insn_template::THUMB16_TYPE:
4317 case Insn_template::THUMB16_SPECIAL_TYPE:
4318 if (i == 0)
4319 this->entry_in_thumb_mode_ = true;
4320 break;
4321
4322 case Insn_template::THUMB32_TYPE:
4323 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4324 this->relocs_.push_back(Reloc(i, offset));
4325 if (i == 0)
4326 this->entry_in_thumb_mode_ = true;
4327 break;
4328
4329 case Insn_template::ARM_TYPE:
4330 // Handle cases where the target is encoded within the
4331 // instruction.
4332 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4333 this->relocs_.push_back(Reloc(i, offset));
4334 break;
4335
4336 case Insn_template::DATA_TYPE:
4337 // Entry point cannot be data.
4338 gold_assert(i != 0);
4339 this->relocs_.push_back(Reloc(i, offset));
4340 break;
4341
4342 default:
4343 gold_unreachable();
4344 }
4345 offset += insn_size;
4346 }
4347 this->size_ = offset;
4348 }
4349
4350 // Stub methods.
4351
4352 // Template to implement do_write for a specific target endianness.
4353
4354 template<bool big_endian>
4355 void inline
4356 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4357 {
4358 const Stub_template* stub_template = this->stub_template();
4359 const Insn_template* insns = stub_template->insns();
4360
4361 // FIXME: We do not handle BE8 encoding yet.
4362 unsigned char* pov = view;
4363 for (size_t i = 0; i < stub_template->insn_count(); i++)
4364 {
4365 switch (insns[i].type())
4366 {
4367 case Insn_template::THUMB16_TYPE:
4368 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4369 break;
4370 case Insn_template::THUMB16_SPECIAL_TYPE:
4371 elfcpp::Swap<16, big_endian>::writeval(
4372 pov,
4373 this->thumb16_special(i));
4374 break;
4375 case Insn_template::THUMB32_TYPE:
4376 {
4377 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4378 uint32_t lo = insns[i].data() & 0xffff;
4379 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4380 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4381 }
4382 break;
4383 case Insn_template::ARM_TYPE:
4384 case Insn_template::DATA_TYPE:
4385 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4386 break;
4387 default:
4388 gold_unreachable();
4389 }
4390 pov += insns[i].size();
4391 }
4392 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4393 }
4394
4395 // Reloc_stub::Key methods.
4396
4397 // Dump a Key as a string for debugging.
4398
4399 std::string
4400 Reloc_stub::Key::name() const
4401 {
4402 if (this->r_sym_ == invalid_index)
4403 {
4404 // Global symbol key name
4405 // <stub-type>:<symbol name>:<addend>.
4406 const std::string sym_name = this->u_.symbol->name();
4407 // We need to print two hex number and two colons. So just add 100 bytes
4408 // to the symbol name size.
4409 size_t len = sym_name.size() + 100;
4410 char* buffer = new char[len];
4411 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4412 sym_name.c_str(), this->addend_);
4413 gold_assert(c > 0 && c < static_cast<int>(len));
4414 delete[] buffer;
4415 return std::string(buffer);
4416 }
4417 else
4418 {
4419 // local symbol key name
4420 // <stub-type>:<object>:<r_sym>:<addend>.
4421 const size_t len = 200;
4422 char buffer[len];
4423 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4424 this->u_.relobj, this->r_sym_, this->addend_);
4425 gold_assert(c > 0 && c < static_cast<int>(len));
4426 return std::string(buffer);
4427 }
4428 }
4429
4430 // Reloc_stub methods.
4431
4432 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4433 // LOCATION to DESTINATION.
4434 // This code is based on the arm_type_of_stub function in
4435 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4436 // class simple.
4437
4438 Stub_type
4439 Reloc_stub::stub_type_for_reloc(
4440 unsigned int r_type,
4441 Arm_address location,
4442 Arm_address destination,
4443 bool target_is_thumb)
4444 {
4445 Stub_type stub_type = arm_stub_none;
4446
4447 // This is a bit ugly but we want to avoid using a templated class for
4448 // big and little endianities.
4449 bool may_use_blx;
4450 bool should_force_pic_veneer;
4451 bool thumb2;
4452 bool thumb_only;
4453 if (parameters->target().is_big_endian())
4454 {
4455 const Target_arm<true>* big_endian_target =
4456 Target_arm<true>::default_target();
4457 may_use_blx = big_endian_target->may_use_v5t_interworking();
4458 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4459 thumb2 = big_endian_target->using_thumb2();
4460 thumb_only = big_endian_target->using_thumb_only();
4461 }
4462 else
4463 {
4464 const Target_arm<false>* little_endian_target =
4465 Target_arm<false>::default_target();
4466 may_use_blx = little_endian_target->may_use_v5t_interworking();
4467 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4468 thumb2 = little_endian_target->using_thumb2();
4469 thumb_only = little_endian_target->using_thumb_only();
4470 }
4471
4472 int64_t branch_offset;
4473 bool output_is_position_independent =
4474 parameters->options().output_is_position_independent();
4475 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4476 {
4477 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4478 // base address (instruction address + 4).
4479 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4480 destination = Bits<32>::bit_select32(destination, location, 0x2);
4481 branch_offset = static_cast<int64_t>(destination) - location;
4482
4483 // Handle cases where:
4484 // - this call goes too far (different Thumb/Thumb2 max
4485 // distance)
4486 // - it's a Thumb->Arm call and blx is not available, or it's a
4487 // Thumb->Arm branch (not bl). A stub is needed in this case.
4488 if ((!thumb2
4489 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4490 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4491 || (thumb2
4492 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4493 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4494 || ((!target_is_thumb)
4495 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4496 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4497 {
4498 if (target_is_thumb)
4499 {
4500 // Thumb to thumb.
4501 if (!thumb_only)
4502 {
4503 stub_type = (output_is_position_independent
4504 || should_force_pic_veneer)
4505 // PIC stubs.
4506 ? ((may_use_blx
4507 && (r_type == elfcpp::R_ARM_THM_CALL))
4508 // V5T and above. Stub starts with ARM code, so
4509 // we must be able to switch mode before
4510 // reaching it, which is only possible for 'bl'
4511 // (ie R_ARM_THM_CALL relocation).
4512 ? arm_stub_long_branch_any_thumb_pic
4513 // On V4T, use Thumb code only.
4514 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4515
4516 // non-PIC stubs.
4517 : ((may_use_blx
4518 && (r_type == elfcpp::R_ARM_THM_CALL))
4519 ? arm_stub_long_branch_any_any // V5T and above.
4520 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4521 }
4522 else
4523 {
4524 stub_type = (output_is_position_independent
4525 || should_force_pic_veneer)
4526 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4527 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4528 }
4529 }
4530 else
4531 {
4532 // Thumb to arm.
4533
4534 // FIXME: We should check that the input section is from an
4535 // object that has interwork enabled.
4536
4537 stub_type = (output_is_position_independent
4538 || should_force_pic_veneer)
4539 // PIC stubs.
4540 ? ((may_use_blx
4541 && (r_type == elfcpp::R_ARM_THM_CALL))
4542 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4543 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4544
4545 // non-PIC stubs.
4546 : ((may_use_blx
4547 && (r_type == elfcpp::R_ARM_THM_CALL))
4548 ? arm_stub_long_branch_any_any // V5T and above.
4549 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4550
4551 // Handle v4t short branches.
4552 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4553 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4554 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4555 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4556 }
4557 }
4558 }
4559 else if (r_type == elfcpp::R_ARM_CALL
4560 || r_type == elfcpp::R_ARM_JUMP24
4561 || r_type == elfcpp::R_ARM_PLT32)
4562 {
4563 branch_offset = static_cast<int64_t>(destination) - location;
4564 if (target_is_thumb)
4565 {
4566 // Arm to thumb.
4567
4568 // FIXME: We should check that the input section is from an
4569 // object that has interwork enabled.
4570
4571 // We have an extra 2-bytes reach because of
4572 // the mode change (bit 24 (H) of BLX encoding).
4573 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4574 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4575 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4576 || (r_type == elfcpp::R_ARM_JUMP24)
4577 || (r_type == elfcpp::R_ARM_PLT32))
4578 {
4579 stub_type = (output_is_position_independent
4580 || should_force_pic_veneer)
4581 // PIC stubs.
4582 ? (may_use_blx
4583 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4584 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4585
4586 // non-PIC stubs.
4587 : (may_use_blx
4588 ? arm_stub_long_branch_any_any // V5T and above.
4589 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4590 }
4591 }
4592 else
4593 {
4594 // Arm to arm.
4595 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4596 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4597 {
4598 stub_type = (output_is_position_independent
4599 || should_force_pic_veneer)
4600 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4601 : arm_stub_long_branch_any_any; /// non-PIC.
4602 }
4603 }
4604 }
4605
4606 return stub_type;
4607 }
4608
4609 // Cortex_a8_stub methods.
4610
4611 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4612 // I is the position of the instruction template in the stub template.
4613
4614 uint16_t
4615 Cortex_a8_stub::do_thumb16_special(size_t i)
4616 {
4617 // The only use of this is to copy condition code from a conditional
4618 // branch being worked around to the corresponding conditional branch in
4619 // to the stub.
4620 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4621 && i == 0);
4622 uint16_t data = this->stub_template()->insns()[i].data();
4623 gold_assert((data & 0xff00U) == 0xd000U);
4624 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4625 return data;
4626 }
4627
4628 // Stub_factory methods.
4629
4630 Stub_factory::Stub_factory()
4631 {
4632 // The instruction template sequences are declared as static
4633 // objects and initialized first time the constructor runs.
4634
4635 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4636 // to reach the stub if necessary.
4637 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4638 {
4639 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4640 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4641 // dcd R_ARM_ABS32(X)
4642 };
4643
4644 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4645 // available.
4646 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4647 {
4648 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4649 Insn_template::arm_insn(0xe12fff1c), // bx ip
4650 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4651 // dcd R_ARM_ABS32(X)
4652 };
4653
4654 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4655 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4656 {
4657 Insn_template::thumb16_insn(0xb401), // push {r0}
4658 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4659 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4660 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4661 Insn_template::thumb16_insn(0x4760), // bx ip
4662 Insn_template::thumb16_insn(0xbf00), // nop
4663 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4664 // dcd R_ARM_ABS32(X)
4665 };
4666
4667 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4668 // allowed.
4669 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4670 {
4671 Insn_template::thumb16_insn(0x4778), // bx pc
4672 Insn_template::thumb16_insn(0x46c0), // nop
4673 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4674 Insn_template::arm_insn(0xe12fff1c), // bx ip
4675 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4676 // dcd R_ARM_ABS32(X)
4677 };
4678
4679 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4680 // available.
4681 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4682 {
4683 Insn_template::thumb16_insn(0x4778), // bx pc
4684 Insn_template::thumb16_insn(0x46c0), // nop
4685 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4686 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4687 // dcd R_ARM_ABS32(X)
4688 };
4689
4690 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4691 // one, when the destination is close enough.
4692 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4693 {
4694 Insn_template::thumb16_insn(0x4778), // bx pc
4695 Insn_template::thumb16_insn(0x46c0), // nop
4696 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4697 };
4698
4699 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4700 // blx to reach the stub if necessary.
4701 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4702 {
4703 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4704 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4705 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4706 // dcd R_ARM_REL32(X-4)
4707 };
4708
4709 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4710 // blx to reach the stub if necessary. We can not add into pc;
4711 // it is not guaranteed to mode switch (different in ARMv6 and
4712 // ARMv7).
4713 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4714 {
4715 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4716 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4717 Insn_template::arm_insn(0xe12fff1c), // bx ip
4718 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4719 // dcd R_ARM_REL32(X)
4720 };
4721
4722 // V4T ARM -> ARM long branch stub, PIC.
4723 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4724 {
4725 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4726 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4727 Insn_template::arm_insn(0xe12fff1c), // bx ip
4728 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4729 // dcd R_ARM_REL32(X)
4730 };
4731
4732 // V4T Thumb -> ARM long branch stub, PIC.
4733 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4734 {
4735 Insn_template::thumb16_insn(0x4778), // bx pc
4736 Insn_template::thumb16_insn(0x46c0), // nop
4737 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4738 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4739 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4740 // dcd R_ARM_REL32(X)
4741 };
4742
4743 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4744 // architectures.
4745 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4746 {
4747 Insn_template::thumb16_insn(0xb401), // push {r0}
4748 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4749 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4750 Insn_template::thumb16_insn(0x4484), // add ip, r0
4751 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4752 Insn_template::thumb16_insn(0x4760), // bx ip
4753 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4754 // dcd R_ARM_REL32(X)
4755 };
4756
4757 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4758 // allowed.
4759 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4760 {
4761 Insn_template::thumb16_insn(0x4778), // bx pc
4762 Insn_template::thumb16_insn(0x46c0), // nop
4763 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4764 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4765 Insn_template::arm_insn(0xe12fff1c), // bx ip
4766 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4767 // dcd R_ARM_REL32(X)
4768 };
4769
4770 // Cortex-A8 erratum-workaround stubs.
4771
4772 // Stub used for conditional branches (which may be beyond +/-1MB away,
4773 // so we can't use a conditional branch to reach this stub).
4774
4775 // original code:
4776 //
4777 // b<cond> X
4778 // after:
4779 //
4780 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4781 {
4782 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4783 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4784 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4785 // b.w X
4786 };
4787
4788 // Stub used for b.w and bl.w instructions.
4789
4790 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4791 {
4792 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4793 };
4794
4795 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4796 {
4797 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4798 };
4799
4800 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4801 // instruction (which switches to ARM mode) to point to this stub. Jump to
4802 // the real destination using an ARM-mode branch.
4803 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4804 {
4805 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4806 };
4807
4808 // Stub used to provide an interworking for R_ARM_V4BX relocation
4809 // (bx r[n] instruction).
4810 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4811 {
4812 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4813 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4814 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4815 };
4816
4817 // Fill in the stub template look-up table. Stub templates are constructed
4818 // per instance of Stub_factory for fast look-up without locking
4819 // in a thread-enabled environment.
4820
4821 this->stub_templates_[arm_stub_none] =
4822 new Stub_template(arm_stub_none, NULL, 0);
4823
4824 #define DEF_STUB(x) \
4825 do \
4826 { \
4827 size_t array_size \
4828 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4829 Stub_type type = arm_stub_##x; \
4830 this->stub_templates_[type] = \
4831 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4832 } \
4833 while (0);
4834
4835 DEF_STUBS
4836 #undef DEF_STUB
4837 }
4838
4839 // Stub_table methods.
4840
4841 // Remove all Cortex-A8 stub.
4842
4843 template<bool big_endian>
4844 void
4845 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4846 {
4847 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4848 p != this->cortex_a8_stubs_.end();
4849 ++p)
4850 delete p->second;
4851 this->cortex_a8_stubs_.clear();
4852 }
4853
4854 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4855
4856 template<bool big_endian>
4857 void
4858 Stub_table<big_endian>::relocate_stub(
4859 Stub* stub,
4860 const Relocate_info<32, big_endian>* relinfo,
4861 Target_arm<big_endian>* arm_target,
4862 Output_section* output_section,
4863 unsigned char* view,
4864 Arm_address address,
4865 section_size_type view_size)
4866 {
4867 const Stub_template* stub_template = stub->stub_template();
4868 if (stub_template->reloc_count() != 0)
4869 {
4870 // Adjust view to cover the stub only.
4871 section_size_type offset = stub->offset();
4872 section_size_type stub_size = stub_template->size();
4873 gold_assert(offset + stub_size <= view_size);
4874
4875 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4876 address + offset, stub_size);
4877 }
4878 }
4879
4880 // Relocate all stubs in this stub table.
4881
4882 template<bool big_endian>
4883 void
4884 Stub_table<big_endian>::relocate_stubs(
4885 const Relocate_info<32, big_endian>* relinfo,
4886 Target_arm<big_endian>* arm_target,
4887 Output_section* output_section,
4888 unsigned char* view,
4889 Arm_address address,
4890 section_size_type view_size)
4891 {
4892 // If we are passed a view bigger than the stub table's. we need to
4893 // adjust the view.
4894 gold_assert(address == this->address()
4895 && (view_size
4896 == static_cast<section_size_type>(this->data_size())));
4897
4898 // Relocate all relocation stubs.
4899 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4900 p != this->reloc_stubs_.end();
4901 ++p)
4902 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4903 address, view_size);
4904
4905 // Relocate all Cortex-A8 stubs.
4906 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4907 p != this->cortex_a8_stubs_.end();
4908 ++p)
4909 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4910 address, view_size);
4911
4912 // Relocate all ARM V4BX stubs.
4913 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4914 p != this->arm_v4bx_stubs_.end();
4915 ++p)
4916 {
4917 if (*p != NULL)
4918 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4919 address, view_size);
4920 }
4921 }
4922
4923 // Write out the stubs to file.
4924
4925 template<bool big_endian>
4926 void
4927 Stub_table<big_endian>::do_write(Output_file* of)
4928 {
4929 off_t offset = this->offset();
4930 const section_size_type oview_size =
4931 convert_to_section_size_type(this->data_size());
4932 unsigned char* const oview = of->get_output_view(offset, oview_size);
4933
4934 // Write relocation stubs.
4935 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4936 p != this->reloc_stubs_.end();
4937 ++p)
4938 {
4939 Reloc_stub* stub = p->second;
4940 Arm_address address = this->address() + stub->offset();
4941 gold_assert(address
4942 == align_address(address,
4943 stub->stub_template()->alignment()));
4944 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4945 big_endian);
4946 }
4947
4948 // Write Cortex-A8 stubs.
4949 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4950 p != this->cortex_a8_stubs_.end();
4951 ++p)
4952 {
4953 Cortex_a8_stub* stub = p->second;
4954 Arm_address address = this->address() + stub->offset();
4955 gold_assert(address
4956 == align_address(address,
4957 stub->stub_template()->alignment()));
4958 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4959 big_endian);
4960 }
4961
4962 // Write ARM V4BX relocation stubs.
4963 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4964 p != this->arm_v4bx_stubs_.end();
4965 ++p)
4966 {
4967 if (*p == NULL)
4968 continue;
4969
4970 Arm_address address = this->address() + (*p)->offset();
4971 gold_assert(address
4972 == align_address(address,
4973 (*p)->stub_template()->alignment()));
4974 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4975 big_endian);
4976 }
4977
4978 of->write_output_view(this->offset(), oview_size, oview);
4979 }
4980
4981 // Update the data size and address alignment of the stub table at the end
4982 // of a relaxation pass. Return true if either the data size or the
4983 // alignment changed in this relaxation pass.
4984
4985 template<bool big_endian>
4986 bool
4987 Stub_table<big_endian>::update_data_size_and_addralign()
4988 {
4989 // Go over all stubs in table to compute data size and address alignment.
4990 off_t size = this->reloc_stubs_size_;
4991 unsigned addralign = this->reloc_stubs_addralign_;
4992
4993 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4994 p != this->cortex_a8_stubs_.end();
4995 ++p)
4996 {
4997 const Stub_template* stub_template = p->second->stub_template();
4998 addralign = std::max(addralign, stub_template->alignment());
4999 size = (align_address(size, stub_template->alignment())
5000 + stub_template->size());
5001 }
5002
5003 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5004 p != this->arm_v4bx_stubs_.end();
5005 ++p)
5006 {
5007 if (*p == NULL)
5008 continue;
5009
5010 const Stub_template* stub_template = (*p)->stub_template();
5011 addralign = std::max(addralign, stub_template->alignment());
5012 size = (align_address(size, stub_template->alignment())
5013 + stub_template->size());
5014 }
5015
5016 // Check if either data size or alignment changed in this pass.
5017 // Update prev_data_size_ and prev_addralign_. These will be used
5018 // as the current data size and address alignment for the next pass.
5019 bool changed = size != this->prev_data_size_;
5020 this->prev_data_size_ = size;
5021
5022 if (addralign != this->prev_addralign_)
5023 changed = true;
5024 this->prev_addralign_ = addralign;
5025
5026 return changed;
5027 }
5028
5029 // Finalize the stubs. This sets the offsets of the stubs within the stub
5030 // table. It also marks all input sections needing Cortex-A8 workaround.
5031
5032 template<bool big_endian>
5033 void
5034 Stub_table<big_endian>::finalize_stubs()
5035 {
5036 off_t off = this->reloc_stubs_size_;
5037 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5038 p != this->cortex_a8_stubs_.end();
5039 ++p)
5040 {
5041 Cortex_a8_stub* stub = p->second;
5042 const Stub_template* stub_template = stub->stub_template();
5043 uint64_t stub_addralign = stub_template->alignment();
5044 off = align_address(off, stub_addralign);
5045 stub->set_offset(off);
5046 off += stub_template->size();
5047
5048 // Mark input section so that we can determine later if a code section
5049 // needs the Cortex-A8 workaround quickly.
5050 Arm_relobj<big_endian>* arm_relobj =
5051 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5052 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5053 }
5054
5055 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5056 p != this->arm_v4bx_stubs_.end();
5057 ++p)
5058 {
5059 if (*p == NULL)
5060 continue;
5061
5062 const Stub_template* stub_template = (*p)->stub_template();
5063 uint64_t stub_addralign = stub_template->alignment();
5064 off = align_address(off, stub_addralign);
5065 (*p)->set_offset(off);
5066 off += stub_template->size();
5067 }
5068
5069 gold_assert(off <= this->prev_data_size_);
5070 }
5071
5072 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5073 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5074 // of the address range seen by the linker.
5075
5076 template<bool big_endian>
5077 void
5078 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5079 Target_arm<big_endian>* arm_target,
5080 unsigned char* view,
5081 Arm_address view_address,
5082 section_size_type view_size)
5083 {
5084 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5085 for (Cortex_a8_stub_list::const_iterator p =
5086 this->cortex_a8_stubs_.lower_bound(view_address);
5087 ((p != this->cortex_a8_stubs_.end())
5088 && (p->first < (view_address + view_size)));
5089 ++p)
5090 {
5091 // We do not store the THUMB bit in the LSB of either the branch address
5092 // or the stub offset. There is no need to strip the LSB.
5093 Arm_address branch_address = p->first;
5094 const Cortex_a8_stub* stub = p->second;
5095 Arm_address stub_address = this->address() + stub->offset();
5096
5097 // Offset of the branch instruction relative to this view.
5098 section_size_type offset =
5099 convert_to_section_size_type(branch_address - view_address);
5100 gold_assert((offset + 4) <= view_size);
5101
5102 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5103 view + offset, branch_address);
5104 }
5105 }
5106
5107 // Arm_input_section methods.
5108
5109 // Initialize an Arm_input_section.
5110
5111 template<bool big_endian>
5112 void
5113 Arm_input_section<big_endian>::init()
5114 {
5115 Relobj* relobj = this->relobj();
5116 unsigned int shndx = this->shndx();
5117
5118 // We have to cache original size, alignment and contents to avoid locking
5119 // the original file.
5120 this->original_addralign_ =
5121 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5122
5123 // This is not efficient but we expect only a small number of relaxed
5124 // input sections for stubs.
5125 section_size_type section_size;
5126 const unsigned char* section_contents =
5127 relobj->section_contents(shndx, &section_size, false);
5128 this->original_size_ =
5129 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5130
5131 gold_assert(this->original_contents_ == NULL);
5132 this->original_contents_ = new unsigned char[section_size];
5133 memcpy(this->original_contents_, section_contents, section_size);
5134
5135 // We want to make this look like the original input section after
5136 // output sections are finalized.
5137 Output_section* os = relobj->output_section(shndx);
5138 off_t offset = relobj->output_section_offset(shndx);
5139 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5140 this->set_address(os->address() + offset);
5141 this->set_file_offset(os->offset() + offset);
5142
5143 this->set_current_data_size(this->original_size_);
5144 this->finalize_data_size();
5145 }
5146
5147 template<bool big_endian>
5148 void
5149 Arm_input_section<big_endian>::do_write(Output_file* of)
5150 {
5151 // We have to write out the original section content.
5152 gold_assert(this->original_contents_ != NULL);
5153 of->write(this->offset(), this->original_contents_,
5154 this->original_size_);
5155
5156 // If this owns a stub table and it is not empty, write it.
5157 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5158 this->stub_table_->write(of);
5159 }
5160
5161 // Finalize data size.
5162
5163 template<bool big_endian>
5164 void
5165 Arm_input_section<big_endian>::set_final_data_size()
5166 {
5167 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5168
5169 if (this->is_stub_table_owner())
5170 {
5171 this->stub_table_->finalize_data_size();
5172 off = align_address(off, this->stub_table_->addralign());
5173 off += this->stub_table_->data_size();
5174 }
5175 this->set_data_size(off);
5176 }
5177
5178 // Reset address and file offset.
5179
5180 template<bool big_endian>
5181 void
5182 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5183 {
5184 // Size of the original input section contents.
5185 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5186
5187 // If this is a stub table owner, account for the stub table size.
5188 if (this->is_stub_table_owner())
5189 {
5190 Stub_table<big_endian>* stub_table = this->stub_table_;
5191
5192 // Reset the stub table's address and file offset. The
5193 // current data size for child will be updated after that.
5194 stub_table_->reset_address_and_file_offset();
5195 off = align_address(off, stub_table_->addralign());
5196 off += stub_table->current_data_size();
5197 }
5198
5199 this->set_current_data_size(off);
5200 }
5201
5202 // Arm_exidx_cantunwind methods.
5203
5204 // Write this to Output file OF for a fixed endianness.
5205
5206 template<bool big_endian>
5207 void
5208 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5209 {
5210 off_t offset = this->offset();
5211 const section_size_type oview_size = 8;
5212 unsigned char* const oview = of->get_output_view(offset, oview_size);
5213
5214 Output_section* os = this->relobj_->output_section(this->shndx_);
5215 gold_assert(os != NULL);
5216
5217 Arm_relobj<big_endian>* arm_relobj =
5218 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5219 Arm_address output_offset =
5220 arm_relobj->get_output_section_offset(this->shndx_);
5221 Arm_address section_start;
5222 section_size_type section_size;
5223
5224 // Find out the end of the text section referred by this.
5225 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5226 {
5227 section_start = os->address() + output_offset;
5228 const Arm_exidx_input_section* exidx_input_section =
5229 arm_relobj->exidx_input_section_by_link(this->shndx_);
5230 gold_assert(exidx_input_section != NULL);
5231 section_size =
5232 convert_to_section_size_type(exidx_input_section->text_size());
5233 }
5234 else
5235 {
5236 // Currently this only happens for a relaxed section.
5237 const Output_relaxed_input_section* poris =
5238 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5239 gold_assert(poris != NULL);
5240 section_start = poris->address();
5241 section_size = convert_to_section_size_type(poris->data_size());
5242 }
5243
5244 // We always append this to the end of an EXIDX section.
5245 Arm_address output_address = section_start + section_size;
5246
5247 // Write out the entry. The first word either points to the beginning
5248 // or after the end of a text section. The second word is the special
5249 // EXIDX_CANTUNWIND value.
5250 uint32_t prel31_offset = output_address - this->address();
5251 if (Bits<31>::has_overflow32(offset))
5252 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5253 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5254 prel31_offset & 0x7fffffffU);
5255 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5256 elfcpp::EXIDX_CANTUNWIND);
5257
5258 of->write_output_view(this->offset(), oview_size, oview);
5259 }
5260
5261 // Arm_exidx_merged_section methods.
5262
5263 // Constructor for Arm_exidx_merged_section.
5264 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5265 // SECTION_OFFSET_MAP points to a section offset map describing how
5266 // parts of the input section are mapped to output. DELETED_BYTES is
5267 // the number of bytes deleted from the EXIDX input section.
5268
5269 Arm_exidx_merged_section::Arm_exidx_merged_section(
5270 const Arm_exidx_input_section& exidx_input_section,
5271 const Arm_exidx_section_offset_map& section_offset_map,
5272 uint32_t deleted_bytes)
5273 : Output_relaxed_input_section(exidx_input_section.relobj(),
5274 exidx_input_section.shndx(),
5275 exidx_input_section.addralign()),
5276 exidx_input_section_(exidx_input_section),
5277 section_offset_map_(section_offset_map)
5278 {
5279 // If we retain or discard the whole EXIDX input section, we would
5280 // not be here.
5281 gold_assert(deleted_bytes != 0
5282 && deleted_bytes != this->exidx_input_section_.size());
5283
5284 // Fix size here so that we do not need to implement set_final_data_size.
5285 uint32_t size = exidx_input_section.size() - deleted_bytes;
5286 this->set_data_size(size);
5287 this->fix_data_size();
5288
5289 // Allocate buffer for section contents and build contents.
5290 this->section_contents_ = new unsigned char[size];
5291 }
5292
5293 // Build the contents of a merged EXIDX output section.
5294
5295 void
5296 Arm_exidx_merged_section::build_contents(
5297 const unsigned char* original_contents,
5298 section_size_type original_size)
5299 {
5300 // Go over spans of input offsets and write only those that are not
5301 // discarded.
5302 section_offset_type in_start = 0;
5303 section_offset_type out_start = 0;
5304 section_offset_type in_max =
5305 convert_types<section_offset_type>(original_size);
5306 section_offset_type out_max =
5307 convert_types<section_offset_type>(this->data_size());
5308 for (Arm_exidx_section_offset_map::const_iterator p =
5309 this->section_offset_map_.begin();
5310 p != this->section_offset_map_.end();
5311 ++p)
5312 {
5313 section_offset_type in_end = p->first;
5314 gold_assert(in_end >= in_start);
5315 section_offset_type out_end = p->second;
5316 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5317 if (out_end != -1)
5318 {
5319 size_t out_chunk_size =
5320 convert_types<size_t>(out_end - out_start + 1);
5321
5322 gold_assert(out_chunk_size == in_chunk_size
5323 && in_end < in_max && out_end < out_max);
5324
5325 memcpy(this->section_contents_ + out_start,
5326 original_contents + in_start,
5327 out_chunk_size);
5328 out_start += out_chunk_size;
5329 }
5330 in_start += in_chunk_size;
5331 }
5332 }
5333
5334 // Given an input OBJECT, an input section index SHNDX within that
5335 // object, and an OFFSET relative to the start of that input
5336 // section, return whether or not the corresponding offset within
5337 // the output section is known. If this function returns true, it
5338 // sets *POUTPUT to the output offset. The value -1 indicates that
5339 // this input offset is being discarded.
5340
5341 bool
5342 Arm_exidx_merged_section::do_output_offset(
5343 const Relobj* relobj,
5344 unsigned int shndx,
5345 section_offset_type offset,
5346 section_offset_type* poutput) const
5347 {
5348 // We only handle offsets for the original EXIDX input section.
5349 if (relobj != this->exidx_input_section_.relobj()
5350 || shndx != this->exidx_input_section_.shndx())
5351 return false;
5352
5353 section_offset_type section_size =
5354 convert_types<section_offset_type>(this->exidx_input_section_.size());
5355 if (offset < 0 || offset >= section_size)
5356 // Input offset is out of valid range.
5357 *poutput = -1;
5358 else
5359 {
5360 // We need to look up the section offset map to determine the output
5361 // offset. Find the reference point in map that is first offset
5362 // bigger than or equal to this offset.
5363 Arm_exidx_section_offset_map::const_iterator p =
5364 this->section_offset_map_.lower_bound(offset);
5365
5366 // The section offset maps are build such that this should not happen if
5367 // input offset is in the valid range.
5368 gold_assert(p != this->section_offset_map_.end());
5369
5370 // We need to check if this is dropped.
5371 section_offset_type ref = p->first;
5372 section_offset_type mapped_ref = p->second;
5373
5374 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5375 // Offset is present in output.
5376 *poutput = mapped_ref + (offset - ref);
5377 else
5378 // Offset is discarded owing to EXIDX entry merging.
5379 *poutput = -1;
5380 }
5381
5382 return true;
5383 }
5384
5385 // Write this to output file OF.
5386
5387 void
5388 Arm_exidx_merged_section::do_write(Output_file* of)
5389 {
5390 off_t offset = this->offset();
5391 const section_size_type oview_size = this->data_size();
5392 unsigned char* const oview = of->get_output_view(offset, oview_size);
5393
5394 Output_section* os = this->relobj()->output_section(this->shndx());
5395 gold_assert(os != NULL);
5396
5397 memcpy(oview, this->section_contents_, oview_size);
5398 of->write_output_view(this->offset(), oview_size, oview);
5399 }
5400
5401 // Arm_exidx_fixup methods.
5402
5403 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5404 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5405 // points to the end of the last seen EXIDX section.
5406
5407 void
5408 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5409 {
5410 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5411 && this->last_input_section_ != NULL)
5412 {
5413 Relobj* relobj = this->last_input_section_->relobj();
5414 unsigned int text_shndx = this->last_input_section_->link();
5415 Arm_exidx_cantunwind* cantunwind =
5416 new Arm_exidx_cantunwind(relobj, text_shndx);
5417 this->exidx_output_section_->add_output_section_data(cantunwind);
5418 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5419 }
5420 }
5421
5422 // Process an EXIDX section entry in input. Return whether this entry
5423 // can be deleted in the output. SECOND_WORD in the second word of the
5424 // EXIDX entry.
5425
5426 bool
5427 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5428 {
5429 bool delete_entry;
5430 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5431 {
5432 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5433 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5434 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5435 }
5436 else if ((second_word & 0x80000000) != 0)
5437 {
5438 // Inlined unwinding data. Merge if equal to previous.
5439 delete_entry = (merge_exidx_entries_
5440 && this->last_unwind_type_ == UT_INLINED_ENTRY
5441 && this->last_inlined_entry_ == second_word);
5442 this->last_unwind_type_ = UT_INLINED_ENTRY;
5443 this->last_inlined_entry_ = second_word;
5444 }
5445 else
5446 {
5447 // Normal table entry. In theory we could merge these too,
5448 // but duplicate entries are likely to be much less common.
5449 delete_entry = false;
5450 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5451 }
5452 return delete_entry;
5453 }
5454
5455 // Update the current section offset map during EXIDX section fix-up.
5456 // If there is no map, create one. INPUT_OFFSET is the offset of a
5457 // reference point, DELETED_BYTES is the number of deleted by in the
5458 // section so far. If DELETE_ENTRY is true, the reference point and
5459 // all offsets after the previous reference point are discarded.
5460
5461 void
5462 Arm_exidx_fixup::update_offset_map(
5463 section_offset_type input_offset,
5464 section_size_type deleted_bytes,
5465 bool delete_entry)
5466 {
5467 if (this->section_offset_map_ == NULL)
5468 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5469 section_offset_type output_offset;
5470 if (delete_entry)
5471 output_offset = Arm_exidx_input_section::invalid_offset;
5472 else
5473 output_offset = input_offset - deleted_bytes;
5474 (*this->section_offset_map_)[input_offset] = output_offset;
5475 }
5476
5477 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5478 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5479 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5480 // If some entries are merged, also store a pointer to a newly created
5481 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5482 // owns the map and is responsible for releasing it after use.
5483
5484 template<bool big_endian>
5485 uint32_t
5486 Arm_exidx_fixup::process_exidx_section(
5487 const Arm_exidx_input_section* exidx_input_section,
5488 const unsigned char* section_contents,
5489 section_size_type section_size,
5490 Arm_exidx_section_offset_map** psection_offset_map)
5491 {
5492 Relobj* relobj = exidx_input_section->relobj();
5493 unsigned shndx = exidx_input_section->shndx();
5494
5495 if ((section_size % 8) != 0)
5496 {
5497 // Something is wrong with this section. Better not touch it.
5498 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5499 relobj->name().c_str(), shndx);
5500 this->last_input_section_ = exidx_input_section;
5501 this->last_unwind_type_ = UT_NONE;
5502 return 0;
5503 }
5504
5505 uint32_t deleted_bytes = 0;
5506 bool prev_delete_entry = false;
5507 gold_assert(this->section_offset_map_ == NULL);
5508
5509 for (section_size_type i = 0; i < section_size; i += 8)
5510 {
5511 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5512 const Valtype* wv =
5513 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5514 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5515
5516 bool delete_entry = this->process_exidx_entry(second_word);
5517
5518 // Entry deletion causes changes in output offsets. We use a std::map
5519 // to record these. And entry (x, y) means input offset x
5520 // is mapped to output offset y. If y is invalid_offset, then x is
5521 // dropped in the output. Because of the way std::map::lower_bound
5522 // works, we record the last offset in a region w.r.t to keeping or
5523 // dropping. If there is no entry (x0, y0) for an input offset x0,
5524 // the output offset y0 of it is determined by the output offset y1 of
5525 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5526 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5527 // y0 is also -1.
5528 if (delete_entry != prev_delete_entry && i != 0)
5529 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5530
5531 // Update total deleted bytes for this entry.
5532 if (delete_entry)
5533 deleted_bytes += 8;
5534
5535 prev_delete_entry = delete_entry;
5536 }
5537
5538 // If section offset map is not NULL, make an entry for the end of
5539 // section.
5540 if (this->section_offset_map_ != NULL)
5541 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5542
5543 *psection_offset_map = this->section_offset_map_;
5544 this->section_offset_map_ = NULL;
5545 this->last_input_section_ = exidx_input_section;
5546
5547 // Set the first output text section so that we can link the EXIDX output
5548 // section to it. Ignore any EXIDX input section that is completely merged.
5549 if (this->first_output_text_section_ == NULL
5550 && deleted_bytes != section_size)
5551 {
5552 unsigned int link = exidx_input_section->link();
5553 Output_section* os = relobj->output_section(link);
5554 gold_assert(os != NULL);
5555 this->first_output_text_section_ = os;
5556 }
5557
5558 return deleted_bytes;
5559 }
5560
5561 // Arm_output_section methods.
5562
5563 // Create a stub group for input sections from BEGIN to END. OWNER
5564 // points to the input section to be the owner a new stub table.
5565
5566 template<bool big_endian>
5567 void
5568 Arm_output_section<big_endian>::create_stub_group(
5569 Input_section_list::const_iterator begin,
5570 Input_section_list::const_iterator end,
5571 Input_section_list::const_iterator owner,
5572 Target_arm<big_endian>* target,
5573 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5574 const Task* task)
5575 {
5576 // We use a different kind of relaxed section in an EXIDX section.
5577 // The static casting from Output_relaxed_input_section to
5578 // Arm_input_section is invalid in an EXIDX section. We are okay
5579 // because we should not be calling this for an EXIDX section.
5580 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5581
5582 // Currently we convert ordinary input sections into relaxed sections only
5583 // at this point but we may want to support creating relaxed input section
5584 // very early. So we check here to see if owner is already a relaxed
5585 // section.
5586
5587 Arm_input_section<big_endian>* arm_input_section;
5588 if (owner->is_relaxed_input_section())
5589 {
5590 arm_input_section =
5591 Arm_input_section<big_endian>::as_arm_input_section(
5592 owner->relaxed_input_section());
5593 }
5594 else
5595 {
5596 gold_assert(owner->is_input_section());
5597 // Create a new relaxed input section. We need to lock the original
5598 // file.
5599 Task_lock_obj<Object> tl(task, owner->relobj());
5600 arm_input_section =
5601 target->new_arm_input_section(owner->relobj(), owner->shndx());
5602 new_relaxed_sections->push_back(arm_input_section);
5603 }
5604
5605 // Create a stub table.
5606 Stub_table<big_endian>* stub_table =
5607 target->new_stub_table(arm_input_section);
5608
5609 arm_input_section->set_stub_table(stub_table);
5610
5611 Input_section_list::const_iterator p = begin;
5612 Input_section_list::const_iterator prev_p;
5613
5614 // Look for input sections or relaxed input sections in [begin ... end].
5615 do
5616 {
5617 if (p->is_input_section() || p->is_relaxed_input_section())
5618 {
5619 // The stub table information for input sections live
5620 // in their objects.
5621 Arm_relobj<big_endian>* arm_relobj =
5622 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5623 arm_relobj->set_stub_table(p->shndx(), stub_table);
5624 }
5625 prev_p = p++;
5626 }
5627 while (prev_p != end);
5628 }
5629
5630 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5631 // of stub groups. We grow a stub group by adding input section until the
5632 // size is just below GROUP_SIZE. The last input section will be converted
5633 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5634 // input section after the stub table, effectively double the group size.
5635 //
5636 // This is similar to the group_sections() function in elf32-arm.c but is
5637 // implemented differently.
5638
5639 template<bool big_endian>
5640 void
5641 Arm_output_section<big_endian>::group_sections(
5642 section_size_type group_size,
5643 bool stubs_always_after_branch,
5644 Target_arm<big_endian>* target,
5645 const Task* task)
5646 {
5647 // States for grouping.
5648 typedef enum
5649 {
5650 // No group is being built.
5651 NO_GROUP,
5652 // A group is being built but the stub table is not found yet.
5653 // We keep group a stub group until the size is just under GROUP_SIZE.
5654 // The last input section in the group will be used as the stub table.
5655 FINDING_STUB_SECTION,
5656 // A group is being built and we have already found a stub table.
5657 // We enter this state to grow a stub group by adding input section
5658 // after the stub table. This effectively doubles the group size.
5659 HAS_STUB_SECTION
5660 } State;
5661
5662 // Any newly created relaxed sections are stored here.
5663 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5664
5665 State state = NO_GROUP;
5666 section_size_type off = 0;
5667 section_size_type group_begin_offset = 0;
5668 section_size_type group_end_offset = 0;
5669 section_size_type stub_table_end_offset = 0;
5670 Input_section_list::const_iterator group_begin =
5671 this->input_sections().end();
5672 Input_section_list::const_iterator stub_table =
5673 this->input_sections().end();
5674 Input_section_list::const_iterator group_end = this->input_sections().end();
5675 for (Input_section_list::const_iterator p = this->input_sections().begin();
5676 p != this->input_sections().end();
5677 ++p)
5678 {
5679 section_size_type section_begin_offset =
5680 align_address(off, p->addralign());
5681 section_size_type section_end_offset =
5682 section_begin_offset + p->data_size();
5683
5684 // Check to see if we should group the previously seen sections.
5685 switch (state)
5686 {
5687 case NO_GROUP:
5688 break;
5689
5690 case FINDING_STUB_SECTION:
5691 // Adding this section makes the group larger than GROUP_SIZE.
5692 if (section_end_offset - group_begin_offset >= group_size)
5693 {
5694 if (stubs_always_after_branch)
5695 {
5696 gold_assert(group_end != this->input_sections().end());
5697 this->create_stub_group(group_begin, group_end, group_end,
5698 target, &new_relaxed_sections,
5699 task);
5700 state = NO_GROUP;
5701 }
5702 else
5703 {
5704 // But wait, there's more! Input sections up to
5705 // stub_group_size bytes after the stub table can be
5706 // handled by it too.
5707 state = HAS_STUB_SECTION;
5708 stub_table = group_end;
5709 stub_table_end_offset = group_end_offset;
5710 }
5711 }
5712 break;
5713
5714 case HAS_STUB_SECTION:
5715 // Adding this section makes the post stub-section group larger
5716 // than GROUP_SIZE.
5717 if (section_end_offset - stub_table_end_offset >= group_size)
5718 {
5719 gold_assert(group_end != this->input_sections().end());
5720 this->create_stub_group(group_begin, group_end, stub_table,
5721 target, &new_relaxed_sections, task);
5722 state = NO_GROUP;
5723 }
5724 break;
5725
5726 default:
5727 gold_unreachable();
5728 }
5729
5730 // If we see an input section and currently there is no group, start
5731 // a new one. Skip any empty sections. We look at the data size
5732 // instead of calling p->relobj()->section_size() to avoid locking.
5733 if ((p->is_input_section() || p->is_relaxed_input_section())
5734 && (p->data_size() != 0))
5735 {
5736 if (state == NO_GROUP)
5737 {
5738 state = FINDING_STUB_SECTION;
5739 group_begin = p;
5740 group_begin_offset = section_begin_offset;
5741 }
5742
5743 // Keep track of the last input section seen.
5744 group_end = p;
5745 group_end_offset = section_end_offset;
5746 }
5747
5748 off = section_end_offset;
5749 }
5750
5751 // Create a stub group for any ungrouped sections.
5752 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5753 {
5754 gold_assert(group_end != this->input_sections().end());
5755 this->create_stub_group(group_begin, group_end,
5756 (state == FINDING_STUB_SECTION
5757 ? group_end
5758 : stub_table),
5759 target, &new_relaxed_sections, task);
5760 }
5761
5762 // Convert input section into relaxed input section in a batch.
5763 if (!new_relaxed_sections.empty())
5764 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5765
5766 // Update the section offsets
5767 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5768 {
5769 Arm_relobj<big_endian>* arm_relobj =
5770 Arm_relobj<big_endian>::as_arm_relobj(
5771 new_relaxed_sections[i]->relobj());
5772 unsigned int shndx = new_relaxed_sections[i]->shndx();
5773 // Tell Arm_relobj that this input section is converted.
5774 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5775 }
5776 }
5777
5778 // Append non empty text sections in this to LIST in ascending
5779 // order of their position in this.
5780
5781 template<bool big_endian>
5782 void
5783 Arm_output_section<big_endian>::append_text_sections_to_list(
5784 Text_section_list* list)
5785 {
5786 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5787
5788 for (Input_section_list::const_iterator p = this->input_sections().begin();
5789 p != this->input_sections().end();
5790 ++p)
5791 {
5792 // We only care about plain or relaxed input sections. We also
5793 // ignore any merged sections.
5794 if (p->is_input_section() || p->is_relaxed_input_section())
5795 list->push_back(Text_section_list::value_type(p->relobj(),
5796 p->shndx()));
5797 }
5798 }
5799
5800 template<bool big_endian>
5801 void
5802 Arm_output_section<big_endian>::fix_exidx_coverage(
5803 Layout* layout,
5804 const Text_section_list& sorted_text_sections,
5805 Symbol_table* symtab,
5806 bool merge_exidx_entries,
5807 const Task* task)
5808 {
5809 // We should only do this for the EXIDX output section.
5810 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5811
5812 // We don't want the relaxation loop to undo these changes, so we discard
5813 // the current saved states and take another one after the fix-up.
5814 this->discard_states();
5815
5816 // Remove all input sections.
5817 uint64_t address = this->address();
5818 typedef std::list<Output_section::Input_section> Input_section_list;
5819 Input_section_list input_sections;
5820 this->reset_address_and_file_offset();
5821 this->get_input_sections(address, std::string(""), &input_sections);
5822
5823 if (!this->input_sections().empty())
5824 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5825
5826 // Go through all the known input sections and record them.
5827 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5828 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5829 Section_id_hash> Text_to_exidx_map;
5830 Text_to_exidx_map text_to_exidx_map;
5831 for (Input_section_list::const_iterator p = input_sections.begin();
5832 p != input_sections.end();
5833 ++p)
5834 {
5835 // This should never happen. At this point, we should only see
5836 // plain EXIDX input sections.
5837 gold_assert(!p->is_relaxed_input_section());
5838 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5839 }
5840
5841 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5842
5843 // Go over the sorted text sections.
5844 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5845 Section_id_set processed_input_sections;
5846 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5847 p != sorted_text_sections.end();
5848 ++p)
5849 {
5850 Relobj* relobj = p->first;
5851 unsigned int shndx = p->second;
5852
5853 Arm_relobj<big_endian>* arm_relobj =
5854 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5855 const Arm_exidx_input_section* exidx_input_section =
5856 arm_relobj->exidx_input_section_by_link(shndx);
5857
5858 // If this text section has no EXIDX section or if the EXIDX section
5859 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5860 // of the last seen EXIDX section.
5861 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5862 {
5863 exidx_fixup.add_exidx_cantunwind_as_needed();
5864 continue;
5865 }
5866
5867 Relobj* exidx_relobj = exidx_input_section->relobj();
5868 unsigned int exidx_shndx = exidx_input_section->shndx();
5869 Section_id sid(exidx_relobj, exidx_shndx);
5870 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5871 if (iter == text_to_exidx_map.end())
5872 {
5873 // This is odd. We have not seen this EXIDX input section before.
5874 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5875 // issue a warning instead. We assume the user knows what he
5876 // or she is doing. Otherwise, this is an error.
5877 if (layout->script_options()->saw_sections_clause())
5878 gold_warning(_("unwinding may not work because EXIDX input section"
5879 " %u of %s is not in EXIDX output section"),
5880 exidx_shndx, exidx_relobj->name().c_str());
5881 else
5882 gold_error(_("unwinding may not work because EXIDX input section"
5883 " %u of %s is not in EXIDX output section"),
5884 exidx_shndx, exidx_relobj->name().c_str());
5885
5886 exidx_fixup.add_exidx_cantunwind_as_needed();
5887 continue;
5888 }
5889
5890 // We need to access the contents of the EXIDX section, lock the
5891 // object here.
5892 Task_lock_obj<Object> tl(task, exidx_relobj);
5893 section_size_type exidx_size;
5894 const unsigned char* exidx_contents =
5895 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5896
5897 // Fix up coverage and append input section to output data list.
5898 Arm_exidx_section_offset_map* section_offset_map = NULL;
5899 uint32_t deleted_bytes =
5900 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5901 exidx_contents,
5902 exidx_size,
5903 &section_offset_map);
5904
5905 if (deleted_bytes == exidx_input_section->size())
5906 {
5907 // The whole EXIDX section got merged. Remove it from output.
5908 gold_assert(section_offset_map == NULL);
5909 exidx_relobj->set_output_section(exidx_shndx, NULL);
5910
5911 // All local symbols defined in this input section will be dropped.
5912 // We need to adjust output local symbol count.
5913 arm_relobj->set_output_local_symbol_count_needs_update();
5914 }
5915 else if (deleted_bytes > 0)
5916 {
5917 // Some entries are merged. We need to convert this EXIDX input
5918 // section into a relaxed section.
5919 gold_assert(section_offset_map != NULL);
5920
5921 Arm_exidx_merged_section* merged_section =
5922 new Arm_exidx_merged_section(*exidx_input_section,
5923 *section_offset_map, deleted_bytes);
5924 merged_section->build_contents(exidx_contents, exidx_size);
5925
5926 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5927 this->add_relaxed_input_section(layout, merged_section, secname);
5928 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5929
5930 // All local symbols defined in discarded portions of this input
5931 // section will be dropped. We need to adjust output local symbol
5932 // count.
5933 arm_relobj->set_output_local_symbol_count_needs_update();
5934 }
5935 else
5936 {
5937 // Just add back the EXIDX input section.
5938 gold_assert(section_offset_map == NULL);
5939 const Output_section::Input_section* pis = iter->second;
5940 gold_assert(pis->is_input_section());
5941 this->add_script_input_section(*pis);
5942 }
5943
5944 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5945 }
5946
5947 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5948 exidx_fixup.add_exidx_cantunwind_as_needed();
5949
5950 // Remove any known EXIDX input sections that are not processed.
5951 for (Input_section_list::const_iterator p = input_sections.begin();
5952 p != input_sections.end();
5953 ++p)
5954 {
5955 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5956 == processed_input_sections.end())
5957 {
5958 // We discard a known EXIDX section because its linked
5959 // text section has been folded by ICF. We also discard an
5960 // EXIDX section with error, the output does not matter in this
5961 // case. We do this to avoid triggering asserts.
5962 Arm_relobj<big_endian>* arm_relobj =
5963 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5964 const Arm_exidx_input_section* exidx_input_section =
5965 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5966 gold_assert(exidx_input_section != NULL);
5967 if (!exidx_input_section->has_errors())
5968 {
5969 unsigned int text_shndx = exidx_input_section->link();
5970 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5971 }
5972
5973 // Remove this from link. We also need to recount the
5974 // local symbols.
5975 p->relobj()->set_output_section(p->shndx(), NULL);
5976 arm_relobj->set_output_local_symbol_count_needs_update();
5977 }
5978 }
5979
5980 // Link exidx output section to the first seen output section and
5981 // set correct entry size.
5982 this->set_link_section(exidx_fixup.first_output_text_section());
5983 this->set_entsize(8);
5984
5985 // Make changes permanent.
5986 this->save_states();
5987 this->set_section_offsets_need_adjustment();
5988 }
5989
5990 // Link EXIDX output sections to text output sections.
5991
5992 template<bool big_endian>
5993 void
5994 Arm_output_section<big_endian>::set_exidx_section_link()
5995 {
5996 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5997 if (!this->input_sections().empty())
5998 {
5999 Input_section_list::const_iterator p = this->input_sections().begin();
6000 Arm_relobj<big_endian>* arm_relobj =
6001 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6002 unsigned exidx_shndx = p->shndx();
6003 const Arm_exidx_input_section* exidx_input_section =
6004 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6005 gold_assert(exidx_input_section != NULL);
6006 unsigned int text_shndx = exidx_input_section->link();
6007 Output_section* os = arm_relobj->output_section(text_shndx);
6008 this->set_link_section(os);
6009 }
6010 }
6011
6012 // Arm_relobj methods.
6013
6014 // Determine if an input section is scannable for stub processing. SHDR is
6015 // the header of the section and SHNDX is the section index. OS is the output
6016 // section for the input section and SYMTAB is the global symbol table used to
6017 // look up ICF information.
6018
6019 template<bool big_endian>
6020 bool
6021 Arm_relobj<big_endian>::section_is_scannable(
6022 const elfcpp::Shdr<32, big_endian>& shdr,
6023 unsigned int shndx,
6024 const Output_section* os,
6025 const Symbol_table* symtab)
6026 {
6027 // Skip any empty sections, unallocated sections or sections whose
6028 // type are not SHT_PROGBITS.
6029 if (shdr.get_sh_size() == 0
6030 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6031 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6032 return false;
6033
6034 // Skip any discarded or ICF'ed sections.
6035 if (os == NULL || symtab->is_section_folded(this, shndx))
6036 return false;
6037
6038 // If this requires special offset handling, check to see if it is
6039 // a relaxed section. If this is not, then it is a merged section that
6040 // we cannot handle.
6041 if (this->is_output_section_offset_invalid(shndx))
6042 {
6043 const Output_relaxed_input_section* poris =
6044 os->find_relaxed_input_section(this, shndx);
6045 if (poris == NULL)
6046 return false;
6047 }
6048
6049 return true;
6050 }
6051
6052 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6053 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6054
6055 template<bool big_endian>
6056 bool
6057 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6058 const elfcpp::Shdr<32, big_endian>& shdr,
6059 const Relobj::Output_sections& out_sections,
6060 const Symbol_table* symtab,
6061 const unsigned char* pshdrs)
6062 {
6063 unsigned int sh_type = shdr.get_sh_type();
6064 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6065 return false;
6066
6067 // Ignore empty section.
6068 off_t sh_size = shdr.get_sh_size();
6069 if (sh_size == 0)
6070 return false;
6071
6072 // Ignore reloc section with unexpected symbol table. The
6073 // error will be reported in the final link.
6074 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6075 return false;
6076
6077 unsigned int reloc_size;
6078 if (sh_type == elfcpp::SHT_REL)
6079 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6080 else
6081 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6082
6083 // Ignore reloc section with unexpected entsize or uneven size.
6084 // The error will be reported in the final link.
6085 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6086 return false;
6087
6088 // Ignore reloc section with bad info. This error will be
6089 // reported in the final link.
6090 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6091 if (index >= this->shnum())
6092 return false;
6093
6094 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6095 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6096 return this->section_is_scannable(text_shdr, index,
6097 out_sections[index], symtab);
6098 }
6099
6100 // Return the output address of either a plain input section or a relaxed
6101 // input section. SHNDX is the section index. We define and use this
6102 // instead of calling Output_section::output_address because that is slow
6103 // for large output.
6104
6105 template<bool big_endian>
6106 Arm_address
6107 Arm_relobj<big_endian>::simple_input_section_output_address(
6108 unsigned int shndx,
6109 Output_section* os)
6110 {
6111 if (this->is_output_section_offset_invalid(shndx))
6112 {
6113 const Output_relaxed_input_section* poris =
6114 os->find_relaxed_input_section(this, shndx);
6115 // We do not handle merged sections here.
6116 gold_assert(poris != NULL);
6117 return poris->address();
6118 }
6119 else
6120 return os->address() + this->get_output_section_offset(shndx);
6121 }
6122
6123 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6124 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6125
6126 template<bool big_endian>
6127 bool
6128 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6129 const elfcpp::Shdr<32, big_endian>& shdr,
6130 unsigned int shndx,
6131 Output_section* os,
6132 const Symbol_table* symtab)
6133 {
6134 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6135 return false;
6136
6137 // If the section does not cross any 4K-boundaries, it does not need to
6138 // be scanned.
6139 Arm_address address = this->simple_input_section_output_address(shndx, os);
6140 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6141 return false;
6142
6143 return true;
6144 }
6145
6146 // Scan a section for Cortex-A8 workaround.
6147
6148 template<bool big_endian>
6149 void
6150 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6151 const elfcpp::Shdr<32, big_endian>& shdr,
6152 unsigned int shndx,
6153 Output_section* os,
6154 Target_arm<big_endian>* arm_target)
6155 {
6156 // Look for the first mapping symbol in this section. It should be
6157 // at (shndx, 0).
6158 Mapping_symbol_position section_start(shndx, 0);
6159 typename Mapping_symbols_info::const_iterator p =
6160 this->mapping_symbols_info_.lower_bound(section_start);
6161
6162 // There are no mapping symbols for this section. Treat it as a data-only
6163 // section. Issue a warning if section is marked as containing
6164 // instructions.
6165 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6166 {
6167 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6168 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6169 "erratum because it has no mapping symbols."),
6170 shndx, this->name().c_str());
6171 return;
6172 }
6173
6174 Arm_address output_address =
6175 this->simple_input_section_output_address(shndx, os);
6176
6177 // Get the section contents.
6178 section_size_type input_view_size = 0;
6179 const unsigned char* input_view =
6180 this->section_contents(shndx, &input_view_size, false);
6181
6182 // We need to go through the mapping symbols to determine what to
6183 // scan. There are two reasons. First, we should look at THUMB code and
6184 // THUMB code only. Second, we only want to look at the 4K-page boundary
6185 // to speed up the scanning.
6186
6187 while (p != this->mapping_symbols_info_.end()
6188 && p->first.first == shndx)
6189 {
6190 typename Mapping_symbols_info::const_iterator next =
6191 this->mapping_symbols_info_.upper_bound(p->first);
6192
6193 // Only scan part of a section with THUMB code.
6194 if (p->second == 't')
6195 {
6196 // Determine the end of this range.
6197 section_size_type span_start =
6198 convert_to_section_size_type(p->first.second);
6199 section_size_type span_end;
6200 if (next != this->mapping_symbols_info_.end()
6201 && next->first.first == shndx)
6202 span_end = convert_to_section_size_type(next->first.second);
6203 else
6204 span_end = convert_to_section_size_type(shdr.get_sh_size());
6205
6206 if (((span_start + output_address) & ~0xfffUL)
6207 != ((span_end + output_address - 1) & ~0xfffUL))
6208 {
6209 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6210 span_start, span_end,
6211 input_view,
6212 output_address);
6213 }
6214 }
6215
6216 p = next;
6217 }
6218 }
6219
6220 // Scan relocations for stub generation.
6221
6222 template<bool big_endian>
6223 void
6224 Arm_relobj<big_endian>::scan_sections_for_stubs(
6225 Target_arm<big_endian>* arm_target,
6226 const Symbol_table* symtab,
6227 const Layout* layout)
6228 {
6229 unsigned int shnum = this->shnum();
6230 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6231
6232 // Read the section headers.
6233 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6234 shnum * shdr_size,
6235 true, true);
6236
6237 // To speed up processing, we set up hash tables for fast lookup of
6238 // input offsets to output addresses.
6239 this->initialize_input_to_output_maps();
6240
6241 const Relobj::Output_sections& out_sections(this->output_sections());
6242
6243 Relocate_info<32, big_endian> relinfo;
6244 relinfo.symtab = symtab;
6245 relinfo.layout = layout;
6246 relinfo.object = this;
6247
6248 // Do relocation stubs scanning.
6249 const unsigned char* p = pshdrs + shdr_size;
6250 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6251 {
6252 const elfcpp::Shdr<32, big_endian> shdr(p);
6253 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6254 pshdrs))
6255 {
6256 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6257 Arm_address output_offset = this->get_output_section_offset(index);
6258 Arm_address output_address;
6259 if (output_offset != invalid_address)
6260 output_address = out_sections[index]->address() + output_offset;
6261 else
6262 {
6263 // Currently this only happens for a relaxed section.
6264 const Output_relaxed_input_section* poris =
6265 out_sections[index]->find_relaxed_input_section(this, index);
6266 gold_assert(poris != NULL);
6267 output_address = poris->address();
6268 }
6269
6270 // Get the relocations.
6271 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6272 shdr.get_sh_size(),
6273 true, false);
6274
6275 // Get the section contents. This does work for the case in which
6276 // we modify the contents of an input section. We need to pass the
6277 // output view under such circumstances.
6278 section_size_type input_view_size = 0;
6279 const unsigned char* input_view =
6280 this->section_contents(index, &input_view_size, false);
6281
6282 relinfo.reloc_shndx = i;
6283 relinfo.data_shndx = index;
6284 unsigned int sh_type = shdr.get_sh_type();
6285 unsigned int reloc_size;
6286 if (sh_type == elfcpp::SHT_REL)
6287 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6288 else
6289 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6290
6291 Output_section* os = out_sections[index];
6292 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6293 shdr.get_sh_size() / reloc_size,
6294 os,
6295 output_offset == invalid_address,
6296 input_view, output_address,
6297 input_view_size);
6298 }
6299 }
6300
6301 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6302 // after its relocation section, if there is one, is processed for
6303 // relocation stubs. Merging this loop with the one above would have been
6304 // complicated since we would have had to make sure that relocation stub
6305 // scanning is done first.
6306 if (arm_target->fix_cortex_a8())
6307 {
6308 const unsigned char* p = pshdrs + shdr_size;
6309 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6310 {
6311 const elfcpp::Shdr<32, big_endian> shdr(p);
6312 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6313 out_sections[i],
6314 symtab))
6315 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6316 arm_target);
6317 }
6318 }
6319
6320 // After we've done the relocations, we release the hash tables,
6321 // since we no longer need them.
6322 this->free_input_to_output_maps();
6323 }
6324
6325 // Count the local symbols. The ARM backend needs to know if a symbol
6326 // is a THUMB function or not. For global symbols, it is easy because
6327 // the Symbol object keeps the ELF symbol type. For local symbol it is
6328 // harder because we cannot access this information. So we override the
6329 // do_count_local_symbol in parent and scan local symbols to mark
6330 // THUMB functions. This is not the most efficient way but I do not want to
6331 // slow down other ports by calling a per symbol target hook inside
6332 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6333
6334 template<bool big_endian>
6335 void
6336 Arm_relobj<big_endian>::do_count_local_symbols(
6337 Stringpool_template<char>* pool,
6338 Stringpool_template<char>* dynpool)
6339 {
6340 // We need to fix-up the values of any local symbols whose type are
6341 // STT_ARM_TFUNC.
6342
6343 // Ask parent to count the local symbols.
6344 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6345 const unsigned int loccount = this->local_symbol_count();
6346 if (loccount == 0)
6347 return;
6348
6349 // Initialize the thumb function bit-vector.
6350 std::vector<bool> empty_vector(loccount, false);
6351 this->local_symbol_is_thumb_function_.swap(empty_vector);
6352
6353 // Read the symbol table section header.
6354 const unsigned int symtab_shndx = this->symtab_shndx();
6355 elfcpp::Shdr<32, big_endian>
6356 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6357 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6358
6359 // Read the local symbols.
6360 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6361 gold_assert(loccount == symtabshdr.get_sh_info());
6362 off_t locsize = loccount * sym_size;
6363 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6364 locsize, true, true);
6365
6366 // For mapping symbol processing, we need to read the symbol names.
6367 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6368 if (strtab_shndx >= this->shnum())
6369 {
6370 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6371 return;
6372 }
6373
6374 elfcpp::Shdr<32, big_endian>
6375 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6376 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6377 {
6378 this->error(_("symbol table name section has wrong type: %u"),
6379 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6380 return;
6381 }
6382 const char* pnames =
6383 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6384 strtabshdr.get_sh_size(),
6385 false, false));
6386
6387 // Loop over the local symbols and mark any local symbols pointing
6388 // to THUMB functions.
6389
6390 // Skip the first dummy symbol.
6391 psyms += sym_size;
6392 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6393 this->local_values();
6394 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6395 {
6396 elfcpp::Sym<32, big_endian> sym(psyms);
6397 elfcpp::STT st_type = sym.get_st_type();
6398 Symbol_value<32>& lv((*plocal_values)[i]);
6399 Arm_address input_value = lv.input_value();
6400
6401 // Check to see if this is a mapping symbol.
6402 const char* sym_name = pnames + sym.get_st_name();
6403 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6404 {
6405 bool is_ordinary;
6406 unsigned int input_shndx =
6407 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6408 gold_assert(is_ordinary);
6409
6410 // Strip of LSB in case this is a THUMB symbol.
6411 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6412 this->mapping_symbols_info_[msp] = sym_name[1];
6413 }
6414
6415 if (st_type == elfcpp::STT_ARM_TFUNC
6416 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6417 {
6418 // This is a THUMB function. Mark this and canonicalize the
6419 // symbol value by setting LSB.
6420 this->local_symbol_is_thumb_function_[i] = true;
6421 if ((input_value & 1) == 0)
6422 lv.set_input_value(input_value | 1);
6423 }
6424 }
6425 }
6426
6427 // Relocate sections.
6428 template<bool big_endian>
6429 void
6430 Arm_relobj<big_endian>::do_relocate_sections(
6431 const Symbol_table* symtab,
6432 const Layout* layout,
6433 const unsigned char* pshdrs,
6434 Output_file* of,
6435 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6436 {
6437 // Call parent to relocate sections.
6438 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6439 pshdrs, of, pviews);
6440
6441 // We do not generate stubs if doing a relocatable link.
6442 if (parameters->options().relocatable())
6443 return;
6444
6445 // Relocate stub tables.
6446 unsigned int shnum = this->shnum();
6447
6448 Target_arm<big_endian>* arm_target =
6449 Target_arm<big_endian>::default_target();
6450
6451 Relocate_info<32, big_endian> relinfo;
6452 relinfo.symtab = symtab;
6453 relinfo.layout = layout;
6454 relinfo.object = this;
6455
6456 for (unsigned int i = 1; i < shnum; ++i)
6457 {
6458 Arm_input_section<big_endian>* arm_input_section =
6459 arm_target->find_arm_input_section(this, i);
6460
6461 if (arm_input_section != NULL
6462 && arm_input_section->is_stub_table_owner()
6463 && !arm_input_section->stub_table()->empty())
6464 {
6465 // We cannot discard a section if it owns a stub table.
6466 Output_section* os = this->output_section(i);
6467 gold_assert(os != NULL);
6468
6469 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6470 relinfo.reloc_shdr = NULL;
6471 relinfo.data_shndx = i;
6472 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6473
6474 gold_assert((*pviews)[i].view != NULL);
6475
6476 // We are passed the output section view. Adjust it to cover the
6477 // stub table only.
6478 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6479 gold_assert((stub_table->address() >= (*pviews)[i].address)
6480 && ((stub_table->address() + stub_table->data_size())
6481 <= (*pviews)[i].address + (*pviews)[i].view_size));
6482
6483 off_t offset = stub_table->address() - (*pviews)[i].address;
6484 unsigned char* view = (*pviews)[i].view + offset;
6485 Arm_address address = stub_table->address();
6486 section_size_type view_size = stub_table->data_size();
6487
6488 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6489 view_size);
6490 }
6491
6492 // Apply Cortex A8 workaround if applicable.
6493 if (this->section_has_cortex_a8_workaround(i))
6494 {
6495 unsigned char* view = (*pviews)[i].view;
6496 Arm_address view_address = (*pviews)[i].address;
6497 section_size_type view_size = (*pviews)[i].view_size;
6498 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6499
6500 // Adjust view to cover section.
6501 Output_section* os = this->output_section(i);
6502 gold_assert(os != NULL);
6503 Arm_address section_address =
6504 this->simple_input_section_output_address(i, os);
6505 uint64_t section_size = this->section_size(i);
6506
6507 gold_assert(section_address >= view_address
6508 && ((section_address + section_size)
6509 <= (view_address + view_size)));
6510
6511 unsigned char* section_view = view + (section_address - view_address);
6512
6513 // Apply the Cortex-A8 workaround to the output address range
6514 // corresponding to this input section.
6515 stub_table->apply_cortex_a8_workaround_to_address_range(
6516 arm_target,
6517 section_view,
6518 section_address,
6519 section_size);
6520 }
6521 }
6522 }
6523
6524 // Find the linked text section of an EXIDX section by looking at the first
6525 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6526 // must be linked to its associated code section via the sh_link field of
6527 // its section header. However, some tools are broken and the link is not
6528 // always set. LD just drops such an EXIDX section silently, causing the
6529 // associated code not unwindabled. Here we try a little bit harder to
6530 // discover the linked code section.
6531 //
6532 // PSHDR points to the section header of a relocation section of an EXIDX
6533 // section. If we can find a linked text section, return true and
6534 // store the text section index in the location PSHNDX. Otherwise
6535 // return false.
6536
6537 template<bool big_endian>
6538 bool
6539 Arm_relobj<big_endian>::find_linked_text_section(
6540 const unsigned char* pshdr,
6541 const unsigned char* psyms,
6542 unsigned int* pshndx)
6543 {
6544 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6545
6546 // If there is no relocation, we cannot find the linked text section.
6547 size_t reloc_size;
6548 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6549 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6550 else
6551 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6552 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6553
6554 // Get the relocations.
6555 const unsigned char* prelocs =
6556 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6557
6558 // Find the REL31 relocation for the first word of the first EXIDX entry.
6559 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6560 {
6561 Arm_address r_offset;
6562 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6563 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6564 {
6565 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6566 r_info = reloc.get_r_info();
6567 r_offset = reloc.get_r_offset();
6568 }
6569 else
6570 {
6571 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6572 r_info = reloc.get_r_info();
6573 r_offset = reloc.get_r_offset();
6574 }
6575
6576 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6577 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6578 continue;
6579
6580 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6581 if (r_sym == 0
6582 || r_sym >= this->local_symbol_count()
6583 || r_offset != 0)
6584 continue;
6585
6586 // This is the relocation for the first word of the first EXIDX entry.
6587 // We expect to see a local section symbol.
6588 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6589 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6590 if (sym.get_st_type() == elfcpp::STT_SECTION)
6591 {
6592 bool is_ordinary;
6593 *pshndx =
6594 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6595 gold_assert(is_ordinary);
6596 return true;
6597 }
6598 else
6599 return false;
6600 }
6601
6602 return false;
6603 }
6604
6605 // Make an EXIDX input section object for an EXIDX section whose index is
6606 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6607 // is the section index of the linked text section.
6608
6609 template<bool big_endian>
6610 void
6611 Arm_relobj<big_endian>::make_exidx_input_section(
6612 unsigned int shndx,
6613 const elfcpp::Shdr<32, big_endian>& shdr,
6614 unsigned int text_shndx,
6615 const elfcpp::Shdr<32, big_endian>& text_shdr)
6616 {
6617 // Create an Arm_exidx_input_section object for this EXIDX section.
6618 Arm_exidx_input_section* exidx_input_section =
6619 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6620 shdr.get_sh_addralign(),
6621 text_shdr.get_sh_size());
6622
6623 gold_assert(this->exidx_section_map_[shndx] == NULL);
6624 this->exidx_section_map_[shndx] = exidx_input_section;
6625
6626 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6627 {
6628 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6629 this->section_name(shndx).c_str(), shndx, text_shndx,
6630 this->name().c_str());
6631 exidx_input_section->set_has_errors();
6632 }
6633 else if (this->exidx_section_map_[text_shndx] != NULL)
6634 {
6635 unsigned other_exidx_shndx =
6636 this->exidx_section_map_[text_shndx]->shndx();
6637 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6638 "%s(%u) in %s"),
6639 this->section_name(shndx).c_str(), shndx,
6640 this->section_name(other_exidx_shndx).c_str(),
6641 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6642 text_shndx, this->name().c_str());
6643 exidx_input_section->set_has_errors();
6644 }
6645 else
6646 this->exidx_section_map_[text_shndx] = exidx_input_section;
6647
6648 // Check section flags of text section.
6649 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6650 {
6651 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6652 " in %s"),
6653 this->section_name(shndx).c_str(), shndx,
6654 this->section_name(text_shndx).c_str(), text_shndx,
6655 this->name().c_str());
6656 exidx_input_section->set_has_errors();
6657 }
6658 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6659 // I would like to make this an error but currently ld just ignores
6660 // this.
6661 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6662 "%s(%u) in %s"),
6663 this->section_name(shndx).c_str(), shndx,
6664 this->section_name(text_shndx).c_str(), text_shndx,
6665 this->name().c_str());
6666 }
6667
6668 // Read the symbol information.
6669
6670 template<bool big_endian>
6671 void
6672 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6673 {
6674 // Call parent class to read symbol information.
6675 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6676
6677 // If this input file is a binary file, it has no processor
6678 // specific flags and attributes section.
6679 Input_file::Format format = this->input_file()->format();
6680 if (format != Input_file::FORMAT_ELF)
6681 {
6682 gold_assert(format == Input_file::FORMAT_BINARY);
6683 this->merge_flags_and_attributes_ = false;
6684 return;
6685 }
6686
6687 // Read processor-specific flags in ELF file header.
6688 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6689 elfcpp::Elf_sizes<32>::ehdr_size,
6690 true, false);
6691 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6692 this->processor_specific_flags_ = ehdr.get_e_flags();
6693
6694 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6695 // sections.
6696 std::vector<unsigned int> deferred_exidx_sections;
6697 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6698 const unsigned char* pshdrs = sd->section_headers->data();
6699 const unsigned char* ps = pshdrs + shdr_size;
6700 bool must_merge_flags_and_attributes = false;
6701 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6702 {
6703 elfcpp::Shdr<32, big_endian> shdr(ps);
6704
6705 // Sometimes an object has no contents except the section name string
6706 // table and an empty symbol table with the undefined symbol. We
6707 // don't want to merge processor-specific flags from such an object.
6708 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6709 {
6710 // Symbol table is not empty.
6711 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6712 elfcpp::Elf_sizes<32>::sym_size;
6713 if (shdr.get_sh_size() > sym_size)
6714 must_merge_flags_and_attributes = true;
6715 }
6716 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6717 // If this is neither an empty symbol table nor a string table,
6718 // be conservative.
6719 must_merge_flags_and_attributes = true;
6720
6721 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6722 {
6723 gold_assert(this->attributes_section_data_ == NULL);
6724 section_offset_type section_offset = shdr.get_sh_offset();
6725 section_size_type section_size =
6726 convert_to_section_size_type(shdr.get_sh_size());
6727 const unsigned char* view =
6728 this->get_view(section_offset, section_size, true, false);
6729 this->attributes_section_data_ =
6730 new Attributes_section_data(view, section_size);
6731 }
6732 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6733 {
6734 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6735 if (text_shndx == elfcpp::SHN_UNDEF)
6736 deferred_exidx_sections.push_back(i);
6737 else
6738 {
6739 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6740 + text_shndx * shdr_size);
6741 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6742 }
6743 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6744 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6745 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6746 this->section_name(i).c_str(), this->name().c_str());
6747 }
6748 }
6749
6750 // This is rare.
6751 if (!must_merge_flags_and_attributes)
6752 {
6753 gold_assert(deferred_exidx_sections.empty());
6754 this->merge_flags_and_attributes_ = false;
6755 return;
6756 }
6757
6758 // Some tools are broken and they do not set the link of EXIDX sections.
6759 // We look at the first relocation to figure out the linked sections.
6760 if (!deferred_exidx_sections.empty())
6761 {
6762 // We need to go over the section headers again to find the mapping
6763 // from sections being relocated to their relocation sections. This is
6764 // a bit inefficient as we could do that in the loop above. However,
6765 // we do not expect any deferred EXIDX sections normally. So we do not
6766 // want to slow down the most common path.
6767 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6768 Reloc_map reloc_map;
6769 ps = pshdrs + shdr_size;
6770 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6771 {
6772 elfcpp::Shdr<32, big_endian> shdr(ps);
6773 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6774 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6775 {
6776 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6777 if (info_shndx >= this->shnum())
6778 gold_error(_("relocation section %u has invalid info %u"),
6779 i, info_shndx);
6780 Reloc_map::value_type value(info_shndx, i);
6781 std::pair<Reloc_map::iterator, bool> result =
6782 reloc_map.insert(value);
6783 if (!result.second)
6784 gold_error(_("section %u has multiple relocation sections "
6785 "%u and %u"),
6786 info_shndx, i, reloc_map[info_shndx]);
6787 }
6788 }
6789
6790 // Read the symbol table section header.
6791 const unsigned int symtab_shndx = this->symtab_shndx();
6792 elfcpp::Shdr<32, big_endian>
6793 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6794 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6795
6796 // Read the local symbols.
6797 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6798 const unsigned int loccount = this->local_symbol_count();
6799 gold_assert(loccount == symtabshdr.get_sh_info());
6800 off_t locsize = loccount * sym_size;
6801 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6802 locsize, true, true);
6803
6804 // Process the deferred EXIDX sections.
6805 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6806 {
6807 unsigned int shndx = deferred_exidx_sections[i];
6808 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6809 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6810 Reloc_map::const_iterator it = reloc_map.find(shndx);
6811 if (it != reloc_map.end())
6812 find_linked_text_section(pshdrs + it->second * shdr_size,
6813 psyms, &text_shndx);
6814 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6815 + text_shndx * shdr_size);
6816 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6817 }
6818 }
6819 }
6820
6821 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6822 // sections for unwinding. These sections are referenced implicitly by
6823 // text sections linked in the section headers. If we ignore these implicit
6824 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6825 // will be garbage-collected incorrectly. Hence we override the same function
6826 // in the base class to handle these implicit references.
6827
6828 template<bool big_endian>
6829 void
6830 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6831 Layout* layout,
6832 Read_relocs_data* rd)
6833 {
6834 // First, call base class method to process relocations in this object.
6835 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6836
6837 // If --gc-sections is not specified, there is nothing more to do.
6838 // This happens when --icf is used but --gc-sections is not.
6839 if (!parameters->options().gc_sections())
6840 return;
6841
6842 unsigned int shnum = this->shnum();
6843 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6844 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6845 shnum * shdr_size,
6846 true, true);
6847
6848 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6849 // to these from the linked text sections.
6850 const unsigned char* ps = pshdrs + shdr_size;
6851 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6852 {
6853 elfcpp::Shdr<32, big_endian> shdr(ps);
6854 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6855 {
6856 // Found an .ARM.exidx section, add it to the set of reachable
6857 // sections from its linked text section.
6858 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6859 symtab->gc()->add_reference(this, text_shndx, this, i);
6860 }
6861 }
6862 }
6863
6864 // Update output local symbol count. Owing to EXIDX entry merging, some local
6865 // symbols will be removed in output. Adjust output local symbol count
6866 // accordingly. We can only changed the static output local symbol count. It
6867 // is too late to change the dynamic symbols.
6868
6869 template<bool big_endian>
6870 void
6871 Arm_relobj<big_endian>::update_output_local_symbol_count()
6872 {
6873 // Caller should check that this needs updating. We want caller checking
6874 // because output_local_symbol_count_needs_update() is most likely inlined.
6875 gold_assert(this->output_local_symbol_count_needs_update_);
6876
6877 gold_assert(this->symtab_shndx() != -1U);
6878 if (this->symtab_shndx() == 0)
6879 {
6880 // This object has no symbols. Weird but legal.
6881 return;
6882 }
6883
6884 // Read the symbol table section header.
6885 const unsigned int symtab_shndx = this->symtab_shndx();
6886 elfcpp::Shdr<32, big_endian>
6887 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6888 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6889
6890 // Read the local symbols.
6891 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6892 const unsigned int loccount = this->local_symbol_count();
6893 gold_assert(loccount == symtabshdr.get_sh_info());
6894 off_t locsize = loccount * sym_size;
6895 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6896 locsize, true, true);
6897
6898 // Loop over the local symbols.
6899
6900 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6901 Output_sections;
6902 const Output_sections& out_sections(this->output_sections());
6903 unsigned int shnum = this->shnum();
6904 unsigned int count = 0;
6905 // Skip the first, dummy, symbol.
6906 psyms += sym_size;
6907 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6908 {
6909 elfcpp::Sym<32, big_endian> sym(psyms);
6910
6911 Symbol_value<32>& lv((*this->local_values())[i]);
6912
6913 // This local symbol was already discarded by do_count_local_symbols.
6914 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6915 continue;
6916
6917 bool is_ordinary;
6918 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6919 &is_ordinary);
6920
6921 if (shndx < shnum)
6922 {
6923 Output_section* os = out_sections[shndx];
6924
6925 // This local symbol no longer has an output section. Discard it.
6926 if (os == NULL)
6927 {
6928 lv.set_no_output_symtab_entry();
6929 continue;
6930 }
6931
6932 // Currently we only discard parts of EXIDX input sections.
6933 // We explicitly check for a merged EXIDX input section to avoid
6934 // calling Output_section_data::output_offset unless necessary.
6935 if ((this->get_output_section_offset(shndx) == invalid_address)
6936 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6937 {
6938 section_offset_type output_offset =
6939 os->output_offset(this, shndx, lv.input_value());
6940 if (output_offset == -1)
6941 {
6942 // This symbol is defined in a part of an EXIDX input section
6943 // that is discarded due to entry merging.
6944 lv.set_no_output_symtab_entry();
6945 continue;
6946 }
6947 }
6948 }
6949
6950 ++count;
6951 }
6952
6953 this->set_output_local_symbol_count(count);
6954 this->output_local_symbol_count_needs_update_ = false;
6955 }
6956
6957 // Arm_dynobj methods.
6958
6959 // Read the symbol information.
6960
6961 template<bool big_endian>
6962 void
6963 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6964 {
6965 // Call parent class to read symbol information.
6966 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6967
6968 // Read processor-specific flags in ELF file header.
6969 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6970 elfcpp::Elf_sizes<32>::ehdr_size,
6971 true, false);
6972 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6973 this->processor_specific_flags_ = ehdr.get_e_flags();
6974
6975 // Read the attributes section if there is one.
6976 // We read from the end because gas seems to put it near the end of
6977 // the section headers.
6978 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6979 const unsigned char* ps =
6980 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6981 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6982 {
6983 elfcpp::Shdr<32, big_endian> shdr(ps);
6984 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6985 {
6986 section_offset_type section_offset = shdr.get_sh_offset();
6987 section_size_type section_size =
6988 convert_to_section_size_type(shdr.get_sh_size());
6989 const unsigned char* view =
6990 this->get_view(section_offset, section_size, true, false);
6991 this->attributes_section_data_ =
6992 new Attributes_section_data(view, section_size);
6993 break;
6994 }
6995 }
6996 }
6997
6998 // Stub_addend_reader methods.
6999
7000 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7001
7002 template<bool big_endian>
7003 elfcpp::Elf_types<32>::Elf_Swxword
7004 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7005 unsigned int r_type,
7006 const unsigned char* view,
7007 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7008 {
7009 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7010
7011 switch (r_type)
7012 {
7013 case elfcpp::R_ARM_CALL:
7014 case elfcpp::R_ARM_JUMP24:
7015 case elfcpp::R_ARM_PLT32:
7016 {
7017 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7018 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7019 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7020 return Bits<26>::sign_extend32(val << 2);
7021 }
7022
7023 case elfcpp::R_ARM_THM_CALL:
7024 case elfcpp::R_ARM_THM_JUMP24:
7025 case elfcpp::R_ARM_THM_XPC22:
7026 {
7027 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7028 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7029 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7030 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7031 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7032 }
7033
7034 case elfcpp::R_ARM_THM_JUMP19:
7035 {
7036 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7037 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7038 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7039 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7040 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7041 }
7042
7043 default:
7044 gold_unreachable();
7045 }
7046 }
7047
7048 // Arm_output_data_got methods.
7049
7050 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7051 // The first one is initialized to be 1, which is the module index for
7052 // the main executable and the second one 0. A reloc of the type
7053 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7054 // be applied by gold. GSYM is a global symbol.
7055 //
7056 template<bool big_endian>
7057 void
7058 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7059 unsigned int got_type,
7060 Symbol* gsym)
7061 {
7062 if (gsym->has_got_offset(got_type))
7063 return;
7064
7065 // We are doing a static link. Just mark it as belong to module 1,
7066 // the executable.
7067 unsigned int got_offset = this->add_constant(1);
7068 gsym->set_got_offset(got_type, got_offset);
7069 got_offset = this->add_constant(0);
7070 this->static_relocs_.push_back(Static_reloc(got_offset,
7071 elfcpp::R_ARM_TLS_DTPOFF32,
7072 gsym));
7073 }
7074
7075 // Same as the above but for a local symbol.
7076
7077 template<bool big_endian>
7078 void
7079 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7080 unsigned int got_type,
7081 Sized_relobj_file<32, big_endian>* object,
7082 unsigned int index)
7083 {
7084 if (object->local_has_got_offset(index, got_type))
7085 return;
7086
7087 // We are doing a static link. Just mark it as belong to module 1,
7088 // the executable.
7089 unsigned int got_offset = this->add_constant(1);
7090 object->set_local_got_offset(index, got_type, got_offset);
7091 got_offset = this->add_constant(0);
7092 this->static_relocs_.push_back(Static_reloc(got_offset,
7093 elfcpp::R_ARM_TLS_DTPOFF32,
7094 object, index));
7095 }
7096
7097 template<bool big_endian>
7098 void
7099 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7100 {
7101 // Call parent to write out GOT.
7102 Output_data_got<32, big_endian>::do_write(of);
7103
7104 // We are done if there is no fix up.
7105 if (this->static_relocs_.empty())
7106 return;
7107
7108 gold_assert(parameters->doing_static_link());
7109
7110 const off_t offset = this->offset();
7111 const section_size_type oview_size =
7112 convert_to_section_size_type(this->data_size());
7113 unsigned char* const oview = of->get_output_view(offset, oview_size);
7114
7115 Output_segment* tls_segment = this->layout_->tls_segment();
7116 gold_assert(tls_segment != NULL);
7117
7118 // The thread pointer $tp points to the TCB, which is followed by the
7119 // TLS. So we need to adjust $tp relative addressing by this amount.
7120 Arm_address aligned_tcb_size =
7121 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7122
7123 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7124 {
7125 Static_reloc& reloc(this->static_relocs_[i]);
7126
7127 Arm_address value;
7128 if (!reloc.symbol_is_global())
7129 {
7130 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7131 const Symbol_value<32>* psymval =
7132 reloc.relobj()->local_symbol(reloc.index());
7133
7134 // We are doing static linking. Issue an error and skip this
7135 // relocation if the symbol is undefined or in a discarded_section.
7136 bool is_ordinary;
7137 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7138 if ((shndx == elfcpp::SHN_UNDEF)
7139 || (is_ordinary
7140 && shndx != elfcpp::SHN_UNDEF
7141 && !object->is_section_included(shndx)
7142 && !this->symbol_table_->is_section_folded(object, shndx)))
7143 {
7144 gold_error(_("undefined or discarded local symbol %u from "
7145 " object %s in GOT"),
7146 reloc.index(), reloc.relobj()->name().c_str());
7147 continue;
7148 }
7149
7150 value = psymval->value(object, 0);
7151 }
7152 else
7153 {
7154 const Symbol* gsym = reloc.symbol();
7155 gold_assert(gsym != NULL);
7156 if (gsym->is_forwarder())
7157 gsym = this->symbol_table_->resolve_forwards(gsym);
7158
7159 // We are doing static linking. Issue an error and skip this
7160 // relocation if the symbol is undefined or in a discarded_section
7161 // unless it is a weakly_undefined symbol.
7162 if ((gsym->is_defined_in_discarded_section()
7163 || gsym->is_undefined())
7164 && !gsym->is_weak_undefined())
7165 {
7166 gold_error(_("undefined or discarded symbol %s in GOT"),
7167 gsym->name());
7168 continue;
7169 }
7170
7171 if (!gsym->is_weak_undefined())
7172 {
7173 const Sized_symbol<32>* sym =
7174 static_cast<const Sized_symbol<32>*>(gsym);
7175 value = sym->value();
7176 }
7177 else
7178 value = 0;
7179 }
7180
7181 unsigned got_offset = reloc.got_offset();
7182 gold_assert(got_offset < oview_size);
7183
7184 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7185 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7186 Valtype x;
7187 switch (reloc.r_type())
7188 {
7189 case elfcpp::R_ARM_TLS_DTPOFF32:
7190 x = value;
7191 break;
7192 case elfcpp::R_ARM_TLS_TPOFF32:
7193 x = value + aligned_tcb_size;
7194 break;
7195 default:
7196 gold_unreachable();
7197 }
7198 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7199 }
7200
7201 of->write_output_view(offset, oview_size, oview);
7202 }
7203
7204 // A class to handle the PLT data.
7205 // This is an abstract base class that handles most of the linker details
7206 // but does not know the actual contents of PLT entries. The derived
7207 // classes below fill in those details.
7208
7209 template<bool big_endian>
7210 class Output_data_plt_arm : public Output_section_data
7211 {
7212 public:
7213 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7214 Reloc_section;
7215
7216 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7217
7218 // Add an entry to the PLT.
7219 void
7220 add_entry(Symbol* gsym);
7221
7222 // Return the .rel.plt section data.
7223 const Reloc_section*
7224 rel_plt() const
7225 { return this->rel_; }
7226
7227 // Return the number of PLT entries.
7228 unsigned int
7229 entry_count() const
7230 { return this->count_; }
7231
7232 // Return the offset of the first non-reserved PLT entry.
7233 unsigned int
7234 first_plt_entry_offset() const
7235 { return this->do_first_plt_entry_offset(); }
7236
7237 // Return the size of a PLT entry.
7238 unsigned int
7239 get_plt_entry_size() const
7240 { return this->do_get_plt_entry_size(); }
7241
7242 protected:
7243 // Fill in the first PLT entry.
7244 void
7245 fill_first_plt_entry(unsigned char* pov,
7246 Arm_address got_address,
7247 Arm_address plt_address)
7248 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7249
7250 void
7251 fill_plt_entry(unsigned char* pov,
7252 Arm_address got_address,
7253 Arm_address plt_address,
7254 unsigned int got_offset,
7255 unsigned int plt_offset)
7256 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7257
7258 virtual unsigned int
7259 do_first_plt_entry_offset() const = 0;
7260
7261 virtual unsigned int
7262 do_get_plt_entry_size() const = 0;
7263
7264 virtual void
7265 do_fill_first_plt_entry(unsigned char* pov,
7266 Arm_address got_address,
7267 Arm_address plt_address) = 0;
7268
7269 virtual void
7270 do_fill_plt_entry(unsigned char* pov,
7271 Arm_address got_address,
7272 Arm_address plt_address,
7273 unsigned int got_offset,
7274 unsigned int plt_offset) = 0;
7275
7276 void
7277 do_adjust_output_section(Output_section* os);
7278
7279 // Write to a map file.
7280 void
7281 do_print_to_mapfile(Mapfile* mapfile) const
7282 { mapfile->print_output_data(this, _("** PLT")); }
7283
7284 private:
7285 // Set the final size.
7286 void
7287 set_final_data_size()
7288 {
7289 this->set_data_size(this->first_plt_entry_offset()
7290 + this->count_ * this->get_plt_entry_size());
7291 }
7292
7293 // Write out the PLT data.
7294 void
7295 do_write(Output_file*);
7296
7297 // The reloc section.
7298 Reloc_section* rel_;
7299 // The .got.plt section.
7300 Output_data_space* got_plt_;
7301 // The number of PLT entries.
7302 unsigned int count_;
7303 };
7304
7305 // Create the PLT section. The ordinary .got section is an argument,
7306 // since we need to refer to the start. We also create our own .got
7307 // section just for PLT entries.
7308
7309 template<bool big_endian>
7310 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7311 uint64_t addralign,
7312 Output_data_space* got_plt)
7313 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7314 {
7315 this->rel_ = new Reloc_section(false);
7316 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7317 elfcpp::SHF_ALLOC, this->rel_,
7318 ORDER_DYNAMIC_PLT_RELOCS, false);
7319 }
7320
7321 template<bool big_endian>
7322 void
7323 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7324 {
7325 os->set_entsize(0);
7326 }
7327
7328 // Add an entry to the PLT.
7329
7330 template<bool big_endian>
7331 void
7332 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7333 {
7334 gold_assert(!gsym->has_plt_offset());
7335
7336 // Note that when setting the PLT offset we skip the initial
7337 // reserved PLT entry.
7338 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7339 + this->first_plt_entry_offset());
7340
7341 ++this->count_;
7342
7343 section_offset_type got_offset = this->got_plt_->current_data_size();
7344
7345 // Every PLT entry needs a GOT entry which points back to the PLT
7346 // entry (this will be changed by the dynamic linker, normally
7347 // lazily when the function is called).
7348 this->got_plt_->set_current_data_size(got_offset + 4);
7349
7350 // Every PLT entry needs a reloc.
7351 gsym->set_needs_dynsym_entry();
7352 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7353 got_offset);
7354
7355 // Note that we don't need to save the symbol. The contents of the
7356 // PLT are independent of which symbols are used. The symbols only
7357 // appear in the relocations.
7358 }
7359
7360 template<bool big_endian>
7361 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7362 {
7363 public:
7364 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7365 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7366 { }
7367
7368 protected:
7369 // Return the offset of the first non-reserved PLT entry.
7370 virtual unsigned int
7371 do_first_plt_entry_offset() const
7372 { return sizeof(first_plt_entry); }
7373
7374 // Return the size of a PLT entry.
7375 virtual unsigned int
7376 do_get_plt_entry_size() const
7377 { return sizeof(plt_entry); }
7378
7379 virtual void
7380 do_fill_first_plt_entry(unsigned char* pov,
7381 Arm_address got_address,
7382 Arm_address plt_address);
7383
7384 virtual void
7385 do_fill_plt_entry(unsigned char* pov,
7386 Arm_address got_address,
7387 Arm_address plt_address,
7388 unsigned int got_offset,
7389 unsigned int plt_offset);
7390
7391 private:
7392 // Template for the first PLT entry.
7393 static const uint32_t first_plt_entry[5];
7394
7395 // Template for subsequent PLT entries.
7396 static const uint32_t plt_entry[3];
7397 };
7398
7399 // ARM PLTs.
7400 // FIXME: This is not very flexible. Right now this has only been tested
7401 // on armv5te. If we are to support additional architecture features like
7402 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7403
7404 // The first entry in the PLT.
7405 template<bool big_endian>
7406 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7407 {
7408 0xe52de004, // str lr, [sp, #-4]!
7409 0xe59fe004, // ldr lr, [pc, #4]
7410 0xe08fe00e, // add lr, pc, lr
7411 0xe5bef008, // ldr pc, [lr, #8]!
7412 0x00000000, // &GOT[0] - .
7413 };
7414
7415 template<bool big_endian>
7416 void
7417 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7418 unsigned char* pov,
7419 Arm_address got_address,
7420 Arm_address plt_address)
7421 {
7422 // Write first PLT entry. All but the last word are constants.
7423 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7424 / sizeof(plt_entry[0]));
7425 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7426 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7427 // Last word in first PLT entry is &GOT[0] - .
7428 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7429 got_address - (plt_address + 16));
7430 }
7431
7432 // Subsequent entries in the PLT.
7433
7434 template<bool big_endian>
7435 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7436 {
7437 0xe28fc600, // add ip, pc, #0xNN00000
7438 0xe28cca00, // add ip, ip, #0xNN000
7439 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7440 };
7441
7442 template<bool big_endian>
7443 void
7444 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7445 unsigned char* pov,
7446 Arm_address got_address,
7447 Arm_address plt_address,
7448 unsigned int got_offset,
7449 unsigned int plt_offset)
7450 {
7451 int32_t offset = ((got_address + got_offset)
7452 - (plt_address + plt_offset + 8));
7453
7454 gold_assert(offset >= 0 && offset < 0x0fffffff);
7455 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7456 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7457 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7458 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7459 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7460 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7461 }
7462
7463 // Write out the PLT. This uses the hand-coded instructions above,
7464 // and adjusts them as needed. This is all specified by the arm ELF
7465 // Processor Supplement.
7466
7467 template<bool big_endian>
7468 void
7469 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7470 {
7471 const off_t offset = this->offset();
7472 const section_size_type oview_size =
7473 convert_to_section_size_type(this->data_size());
7474 unsigned char* const oview = of->get_output_view(offset, oview_size);
7475
7476 const off_t got_file_offset = this->got_plt_->offset();
7477 const section_size_type got_size =
7478 convert_to_section_size_type(this->got_plt_->data_size());
7479 unsigned char* const got_view = of->get_output_view(got_file_offset,
7480 got_size);
7481 unsigned char* pov = oview;
7482
7483 Arm_address plt_address = this->address();
7484 Arm_address got_address = this->got_plt_->address();
7485
7486 // Write first PLT entry.
7487 this->fill_first_plt_entry(pov, got_address, plt_address);
7488 pov += this->first_plt_entry_offset();
7489
7490 unsigned char* got_pov = got_view;
7491
7492 memset(got_pov, 0, 12);
7493 got_pov += 12;
7494
7495 unsigned int plt_offset = this->first_plt_entry_offset();
7496 unsigned int got_offset = 12;
7497 const unsigned int count = this->count_;
7498 for (unsigned int i = 0;
7499 i < count;
7500 ++i,
7501 pov += this->get_plt_entry_size(),
7502 got_pov += 4,
7503 plt_offset += this->get_plt_entry_size(),
7504 got_offset += 4)
7505 {
7506 // Set and adjust the PLT entry itself.
7507 this->fill_plt_entry(pov, got_address, plt_address,
7508 got_offset, plt_offset);
7509
7510 // Set the entry in the GOT.
7511 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7512 }
7513
7514 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7515 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7516
7517 of->write_output_view(offset, oview_size, oview);
7518 of->write_output_view(got_file_offset, got_size, got_view);
7519 }
7520
7521 // Create a PLT entry for a global symbol.
7522
7523 template<bool big_endian>
7524 void
7525 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7526 Symbol* gsym)
7527 {
7528 if (gsym->has_plt_offset())
7529 return;
7530
7531 if (this->plt_ == NULL)
7532 {
7533 // Create the GOT sections first.
7534 this->got_section(symtab, layout);
7535
7536 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7537
7538 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7539 (elfcpp::SHF_ALLOC
7540 | elfcpp::SHF_EXECINSTR),
7541 this->plt_, ORDER_PLT, false);
7542 }
7543 this->plt_->add_entry(gsym);
7544 }
7545
7546 // Return the number of entries in the PLT.
7547
7548 template<bool big_endian>
7549 unsigned int
7550 Target_arm<big_endian>::plt_entry_count() const
7551 {
7552 if (this->plt_ == NULL)
7553 return 0;
7554 return this->plt_->entry_count();
7555 }
7556
7557 // Return the offset of the first non-reserved PLT entry.
7558
7559 template<bool big_endian>
7560 unsigned int
7561 Target_arm<big_endian>::first_plt_entry_offset() const
7562 {
7563 return this->plt_->first_plt_entry_offset();
7564 }
7565
7566 // Return the size of each PLT entry.
7567
7568 template<bool big_endian>
7569 unsigned int
7570 Target_arm<big_endian>::plt_entry_size() const
7571 {
7572 return this->plt_->get_plt_entry_size();
7573 }
7574
7575 // Get the section to use for TLS_DESC relocations.
7576
7577 template<bool big_endian>
7578 typename Target_arm<big_endian>::Reloc_section*
7579 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7580 {
7581 return this->plt_section()->rel_tls_desc(layout);
7582 }
7583
7584 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7585
7586 template<bool big_endian>
7587 void
7588 Target_arm<big_endian>::define_tls_base_symbol(
7589 Symbol_table* symtab,
7590 Layout* layout)
7591 {
7592 if (this->tls_base_symbol_defined_)
7593 return;
7594
7595 Output_segment* tls_segment = layout->tls_segment();
7596 if (tls_segment != NULL)
7597 {
7598 bool is_exec = parameters->options().output_is_executable();
7599 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7600 Symbol_table::PREDEFINED,
7601 tls_segment, 0, 0,
7602 elfcpp::STT_TLS,
7603 elfcpp::STB_LOCAL,
7604 elfcpp::STV_HIDDEN, 0,
7605 (is_exec
7606 ? Symbol::SEGMENT_END
7607 : Symbol::SEGMENT_START),
7608 true);
7609 }
7610 this->tls_base_symbol_defined_ = true;
7611 }
7612
7613 // Create a GOT entry for the TLS module index.
7614
7615 template<bool big_endian>
7616 unsigned int
7617 Target_arm<big_endian>::got_mod_index_entry(
7618 Symbol_table* symtab,
7619 Layout* layout,
7620 Sized_relobj_file<32, big_endian>* object)
7621 {
7622 if (this->got_mod_index_offset_ == -1U)
7623 {
7624 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7625 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7626 unsigned int got_offset;
7627 if (!parameters->doing_static_link())
7628 {
7629 got_offset = got->add_constant(0);
7630 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7631 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7632 got_offset);
7633 }
7634 else
7635 {
7636 // We are doing a static link. Just mark it as belong to module 1,
7637 // the executable.
7638 got_offset = got->add_constant(1);
7639 }
7640
7641 got->add_constant(0);
7642 this->got_mod_index_offset_ = got_offset;
7643 }
7644 return this->got_mod_index_offset_;
7645 }
7646
7647 // Optimize the TLS relocation type based on what we know about the
7648 // symbol. IS_FINAL is true if the final address of this symbol is
7649 // known at link time.
7650
7651 template<bool big_endian>
7652 tls::Tls_optimization
7653 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7654 {
7655 // FIXME: Currently we do not do any TLS optimization.
7656 return tls::TLSOPT_NONE;
7657 }
7658
7659 // Get the Reference_flags for a particular relocation.
7660
7661 template<bool big_endian>
7662 int
7663 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7664 {
7665 switch (r_type)
7666 {
7667 case elfcpp::R_ARM_NONE:
7668 case elfcpp::R_ARM_V4BX:
7669 case elfcpp::R_ARM_GNU_VTENTRY:
7670 case elfcpp::R_ARM_GNU_VTINHERIT:
7671 // No symbol reference.
7672 return 0;
7673
7674 case elfcpp::R_ARM_ABS32:
7675 case elfcpp::R_ARM_ABS16:
7676 case elfcpp::R_ARM_ABS12:
7677 case elfcpp::R_ARM_THM_ABS5:
7678 case elfcpp::R_ARM_ABS8:
7679 case elfcpp::R_ARM_BASE_ABS:
7680 case elfcpp::R_ARM_MOVW_ABS_NC:
7681 case elfcpp::R_ARM_MOVT_ABS:
7682 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7683 case elfcpp::R_ARM_THM_MOVT_ABS:
7684 case elfcpp::R_ARM_ABS32_NOI:
7685 return Symbol::ABSOLUTE_REF;
7686
7687 case elfcpp::R_ARM_REL32:
7688 case elfcpp::R_ARM_LDR_PC_G0:
7689 case elfcpp::R_ARM_SBREL32:
7690 case elfcpp::R_ARM_THM_PC8:
7691 case elfcpp::R_ARM_BASE_PREL:
7692 case elfcpp::R_ARM_MOVW_PREL_NC:
7693 case elfcpp::R_ARM_MOVT_PREL:
7694 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7695 case elfcpp::R_ARM_THM_MOVT_PREL:
7696 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7697 case elfcpp::R_ARM_THM_PC12:
7698 case elfcpp::R_ARM_REL32_NOI:
7699 case elfcpp::R_ARM_ALU_PC_G0_NC:
7700 case elfcpp::R_ARM_ALU_PC_G0:
7701 case elfcpp::R_ARM_ALU_PC_G1_NC:
7702 case elfcpp::R_ARM_ALU_PC_G1:
7703 case elfcpp::R_ARM_ALU_PC_G2:
7704 case elfcpp::R_ARM_LDR_PC_G1:
7705 case elfcpp::R_ARM_LDR_PC_G2:
7706 case elfcpp::R_ARM_LDRS_PC_G0:
7707 case elfcpp::R_ARM_LDRS_PC_G1:
7708 case elfcpp::R_ARM_LDRS_PC_G2:
7709 case elfcpp::R_ARM_LDC_PC_G0:
7710 case elfcpp::R_ARM_LDC_PC_G1:
7711 case elfcpp::R_ARM_LDC_PC_G2:
7712 case elfcpp::R_ARM_ALU_SB_G0_NC:
7713 case elfcpp::R_ARM_ALU_SB_G0:
7714 case elfcpp::R_ARM_ALU_SB_G1_NC:
7715 case elfcpp::R_ARM_ALU_SB_G1:
7716 case elfcpp::R_ARM_ALU_SB_G2:
7717 case elfcpp::R_ARM_LDR_SB_G0:
7718 case elfcpp::R_ARM_LDR_SB_G1:
7719 case elfcpp::R_ARM_LDR_SB_G2:
7720 case elfcpp::R_ARM_LDRS_SB_G0:
7721 case elfcpp::R_ARM_LDRS_SB_G1:
7722 case elfcpp::R_ARM_LDRS_SB_G2:
7723 case elfcpp::R_ARM_LDC_SB_G0:
7724 case elfcpp::R_ARM_LDC_SB_G1:
7725 case elfcpp::R_ARM_LDC_SB_G2:
7726 case elfcpp::R_ARM_MOVW_BREL_NC:
7727 case elfcpp::R_ARM_MOVT_BREL:
7728 case elfcpp::R_ARM_MOVW_BREL:
7729 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7730 case elfcpp::R_ARM_THM_MOVT_BREL:
7731 case elfcpp::R_ARM_THM_MOVW_BREL:
7732 case elfcpp::R_ARM_GOTOFF32:
7733 case elfcpp::R_ARM_GOTOFF12:
7734 case elfcpp::R_ARM_SBREL31:
7735 return Symbol::RELATIVE_REF;
7736
7737 case elfcpp::R_ARM_PLT32:
7738 case elfcpp::R_ARM_CALL:
7739 case elfcpp::R_ARM_JUMP24:
7740 case elfcpp::R_ARM_THM_CALL:
7741 case elfcpp::R_ARM_THM_JUMP24:
7742 case elfcpp::R_ARM_THM_JUMP19:
7743 case elfcpp::R_ARM_THM_JUMP6:
7744 case elfcpp::R_ARM_THM_JUMP11:
7745 case elfcpp::R_ARM_THM_JUMP8:
7746 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7747 // in unwind tables. It may point to functions via PLTs.
7748 // So we treat it like call/jump relocations above.
7749 case elfcpp::R_ARM_PREL31:
7750 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7751
7752 case elfcpp::R_ARM_GOT_BREL:
7753 case elfcpp::R_ARM_GOT_ABS:
7754 case elfcpp::R_ARM_GOT_PREL:
7755 // Absolute in GOT.
7756 return Symbol::ABSOLUTE_REF;
7757
7758 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7759 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7760 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7761 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7762 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7763 return Symbol::TLS_REF;
7764
7765 case elfcpp::R_ARM_TARGET1:
7766 case elfcpp::R_ARM_TARGET2:
7767 case elfcpp::R_ARM_COPY:
7768 case elfcpp::R_ARM_GLOB_DAT:
7769 case elfcpp::R_ARM_JUMP_SLOT:
7770 case elfcpp::R_ARM_RELATIVE:
7771 case elfcpp::R_ARM_PC24:
7772 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7773 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7774 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7775 default:
7776 // Not expected. We will give an error later.
7777 return 0;
7778 }
7779 }
7780
7781 // Report an unsupported relocation against a local symbol.
7782
7783 template<bool big_endian>
7784 void
7785 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7786 Sized_relobj_file<32, big_endian>* object,
7787 unsigned int r_type)
7788 {
7789 gold_error(_("%s: unsupported reloc %u against local symbol"),
7790 object->name().c_str(), r_type);
7791 }
7792
7793 // We are about to emit a dynamic relocation of type R_TYPE. If the
7794 // dynamic linker does not support it, issue an error. The GNU linker
7795 // only issues a non-PIC error for an allocated read-only section.
7796 // Here we know the section is allocated, but we don't know that it is
7797 // read-only. But we check for all the relocation types which the
7798 // glibc dynamic linker supports, so it seems appropriate to issue an
7799 // error even if the section is not read-only.
7800
7801 template<bool big_endian>
7802 void
7803 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7804 unsigned int r_type)
7805 {
7806 switch (r_type)
7807 {
7808 // These are the relocation types supported by glibc for ARM.
7809 case elfcpp::R_ARM_RELATIVE:
7810 case elfcpp::R_ARM_COPY:
7811 case elfcpp::R_ARM_GLOB_DAT:
7812 case elfcpp::R_ARM_JUMP_SLOT:
7813 case elfcpp::R_ARM_ABS32:
7814 case elfcpp::R_ARM_ABS32_NOI:
7815 case elfcpp::R_ARM_PC24:
7816 // FIXME: The following 3 types are not supported by Android's dynamic
7817 // linker.
7818 case elfcpp::R_ARM_TLS_DTPMOD32:
7819 case elfcpp::R_ARM_TLS_DTPOFF32:
7820 case elfcpp::R_ARM_TLS_TPOFF32:
7821 return;
7822
7823 default:
7824 {
7825 // This prevents us from issuing more than one error per reloc
7826 // section. But we can still wind up issuing more than one
7827 // error per object file.
7828 if (this->issued_non_pic_error_)
7829 return;
7830 const Arm_reloc_property* reloc_property =
7831 arm_reloc_property_table->get_reloc_property(r_type);
7832 gold_assert(reloc_property != NULL);
7833 object->error(_("requires unsupported dynamic reloc %s; "
7834 "recompile with -fPIC"),
7835 reloc_property->name().c_str());
7836 this->issued_non_pic_error_ = true;
7837 return;
7838 }
7839
7840 case elfcpp::R_ARM_NONE:
7841 gold_unreachable();
7842 }
7843 }
7844
7845 // Scan a relocation for a local symbol.
7846 // FIXME: This only handles a subset of relocation types used by Android
7847 // on ARM v5te devices.
7848
7849 template<bool big_endian>
7850 inline void
7851 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7852 Layout* layout,
7853 Target_arm* target,
7854 Sized_relobj_file<32, big_endian>* object,
7855 unsigned int data_shndx,
7856 Output_section* output_section,
7857 const elfcpp::Rel<32, big_endian>& reloc,
7858 unsigned int r_type,
7859 const elfcpp::Sym<32, big_endian>& lsym,
7860 bool is_discarded)
7861 {
7862 if (is_discarded)
7863 return;
7864
7865 r_type = get_real_reloc_type(r_type);
7866 switch (r_type)
7867 {
7868 case elfcpp::R_ARM_NONE:
7869 case elfcpp::R_ARM_V4BX:
7870 case elfcpp::R_ARM_GNU_VTENTRY:
7871 case elfcpp::R_ARM_GNU_VTINHERIT:
7872 break;
7873
7874 case elfcpp::R_ARM_ABS32:
7875 case elfcpp::R_ARM_ABS32_NOI:
7876 // If building a shared library (or a position-independent
7877 // executable), we need to create a dynamic relocation for
7878 // this location. The relocation applied at link time will
7879 // apply the link-time value, so we flag the location with
7880 // an R_ARM_RELATIVE relocation so the dynamic loader can
7881 // relocate it easily.
7882 if (parameters->options().output_is_position_independent())
7883 {
7884 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7885 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7886 // If we are to add more other reloc types than R_ARM_ABS32,
7887 // we need to add check_non_pic(object, r_type) here.
7888 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7889 output_section, data_shndx,
7890 reloc.get_r_offset());
7891 }
7892 break;
7893
7894 case elfcpp::R_ARM_ABS16:
7895 case elfcpp::R_ARM_ABS12:
7896 case elfcpp::R_ARM_THM_ABS5:
7897 case elfcpp::R_ARM_ABS8:
7898 case elfcpp::R_ARM_BASE_ABS:
7899 case elfcpp::R_ARM_MOVW_ABS_NC:
7900 case elfcpp::R_ARM_MOVT_ABS:
7901 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7902 case elfcpp::R_ARM_THM_MOVT_ABS:
7903 // If building a shared library (or a position-independent
7904 // executable), we need to create a dynamic relocation for
7905 // this location. Because the addend needs to remain in the
7906 // data section, we need to be careful not to apply this
7907 // relocation statically.
7908 if (parameters->options().output_is_position_independent())
7909 {
7910 check_non_pic(object, r_type);
7911 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7912 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7913 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7914 rel_dyn->add_local(object, r_sym, r_type, output_section,
7915 data_shndx, reloc.get_r_offset());
7916 else
7917 {
7918 gold_assert(lsym.get_st_value() == 0);
7919 unsigned int shndx = lsym.get_st_shndx();
7920 bool is_ordinary;
7921 shndx = object->adjust_sym_shndx(r_sym, shndx,
7922 &is_ordinary);
7923 if (!is_ordinary)
7924 object->error(_("section symbol %u has bad shndx %u"),
7925 r_sym, shndx);
7926 else
7927 rel_dyn->add_local_section(object, shndx,
7928 r_type, output_section,
7929 data_shndx, reloc.get_r_offset());
7930 }
7931 }
7932 break;
7933
7934 case elfcpp::R_ARM_REL32:
7935 case elfcpp::R_ARM_LDR_PC_G0:
7936 case elfcpp::R_ARM_SBREL32:
7937 case elfcpp::R_ARM_THM_CALL:
7938 case elfcpp::R_ARM_THM_PC8:
7939 case elfcpp::R_ARM_BASE_PREL:
7940 case elfcpp::R_ARM_PLT32:
7941 case elfcpp::R_ARM_CALL:
7942 case elfcpp::R_ARM_JUMP24:
7943 case elfcpp::R_ARM_THM_JUMP24:
7944 case elfcpp::R_ARM_SBREL31:
7945 case elfcpp::R_ARM_PREL31:
7946 case elfcpp::R_ARM_MOVW_PREL_NC:
7947 case elfcpp::R_ARM_MOVT_PREL:
7948 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7949 case elfcpp::R_ARM_THM_MOVT_PREL:
7950 case elfcpp::R_ARM_THM_JUMP19:
7951 case elfcpp::R_ARM_THM_JUMP6:
7952 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7953 case elfcpp::R_ARM_THM_PC12:
7954 case elfcpp::R_ARM_REL32_NOI:
7955 case elfcpp::R_ARM_ALU_PC_G0_NC:
7956 case elfcpp::R_ARM_ALU_PC_G0:
7957 case elfcpp::R_ARM_ALU_PC_G1_NC:
7958 case elfcpp::R_ARM_ALU_PC_G1:
7959 case elfcpp::R_ARM_ALU_PC_G2:
7960 case elfcpp::R_ARM_LDR_PC_G1:
7961 case elfcpp::R_ARM_LDR_PC_G2:
7962 case elfcpp::R_ARM_LDRS_PC_G0:
7963 case elfcpp::R_ARM_LDRS_PC_G1:
7964 case elfcpp::R_ARM_LDRS_PC_G2:
7965 case elfcpp::R_ARM_LDC_PC_G0:
7966 case elfcpp::R_ARM_LDC_PC_G1:
7967 case elfcpp::R_ARM_LDC_PC_G2:
7968 case elfcpp::R_ARM_ALU_SB_G0_NC:
7969 case elfcpp::R_ARM_ALU_SB_G0:
7970 case elfcpp::R_ARM_ALU_SB_G1_NC:
7971 case elfcpp::R_ARM_ALU_SB_G1:
7972 case elfcpp::R_ARM_ALU_SB_G2:
7973 case elfcpp::R_ARM_LDR_SB_G0:
7974 case elfcpp::R_ARM_LDR_SB_G1:
7975 case elfcpp::R_ARM_LDR_SB_G2:
7976 case elfcpp::R_ARM_LDRS_SB_G0:
7977 case elfcpp::R_ARM_LDRS_SB_G1:
7978 case elfcpp::R_ARM_LDRS_SB_G2:
7979 case elfcpp::R_ARM_LDC_SB_G0:
7980 case elfcpp::R_ARM_LDC_SB_G1:
7981 case elfcpp::R_ARM_LDC_SB_G2:
7982 case elfcpp::R_ARM_MOVW_BREL_NC:
7983 case elfcpp::R_ARM_MOVT_BREL:
7984 case elfcpp::R_ARM_MOVW_BREL:
7985 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7986 case elfcpp::R_ARM_THM_MOVT_BREL:
7987 case elfcpp::R_ARM_THM_MOVW_BREL:
7988 case elfcpp::R_ARM_THM_JUMP11:
7989 case elfcpp::R_ARM_THM_JUMP8:
7990 // We don't need to do anything for a relative addressing relocation
7991 // against a local symbol if it does not reference the GOT.
7992 break;
7993
7994 case elfcpp::R_ARM_GOTOFF32:
7995 case elfcpp::R_ARM_GOTOFF12:
7996 // We need a GOT section:
7997 target->got_section(symtab, layout);
7998 break;
7999
8000 case elfcpp::R_ARM_GOT_BREL:
8001 case elfcpp::R_ARM_GOT_PREL:
8002 {
8003 // The symbol requires a GOT entry.
8004 Arm_output_data_got<big_endian>* got =
8005 target->got_section(symtab, layout);
8006 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8007 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8008 {
8009 // If we are generating a shared object, we need to add a
8010 // dynamic RELATIVE relocation for this symbol's GOT entry.
8011 if (parameters->options().output_is_position_independent())
8012 {
8013 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8014 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8015 rel_dyn->add_local_relative(
8016 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8017 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8018 }
8019 }
8020 }
8021 break;
8022
8023 case elfcpp::R_ARM_TARGET1:
8024 case elfcpp::R_ARM_TARGET2:
8025 // This should have been mapped to another type already.
8026 // Fall through.
8027 case elfcpp::R_ARM_COPY:
8028 case elfcpp::R_ARM_GLOB_DAT:
8029 case elfcpp::R_ARM_JUMP_SLOT:
8030 case elfcpp::R_ARM_RELATIVE:
8031 // These are relocations which should only be seen by the
8032 // dynamic linker, and should never be seen here.
8033 gold_error(_("%s: unexpected reloc %u in object file"),
8034 object->name().c_str(), r_type);
8035 break;
8036
8037
8038 // These are initial TLS relocs, which are expected when
8039 // linking.
8040 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8041 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8042 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8043 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8044 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8045 {
8046 bool output_is_shared = parameters->options().shared();
8047 const tls::Tls_optimization optimized_type
8048 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8049 r_type);
8050 switch (r_type)
8051 {
8052 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8053 if (optimized_type == tls::TLSOPT_NONE)
8054 {
8055 // Create a pair of GOT entries for the module index and
8056 // dtv-relative offset.
8057 Arm_output_data_got<big_endian>* got
8058 = target->got_section(symtab, layout);
8059 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8060 unsigned int shndx = lsym.get_st_shndx();
8061 bool is_ordinary;
8062 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8063 if (!is_ordinary)
8064 {
8065 object->error(_("local symbol %u has bad shndx %u"),
8066 r_sym, shndx);
8067 break;
8068 }
8069
8070 if (!parameters->doing_static_link())
8071 got->add_local_pair_with_rel(object, r_sym, shndx,
8072 GOT_TYPE_TLS_PAIR,
8073 target->rel_dyn_section(layout),
8074 elfcpp::R_ARM_TLS_DTPMOD32);
8075 else
8076 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8077 object, r_sym);
8078 }
8079 else
8080 // FIXME: TLS optimization not supported yet.
8081 gold_unreachable();
8082 break;
8083
8084 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8085 if (optimized_type == tls::TLSOPT_NONE)
8086 {
8087 // Create a GOT entry for the module index.
8088 target->got_mod_index_entry(symtab, layout, object);
8089 }
8090 else
8091 // FIXME: TLS optimization not supported yet.
8092 gold_unreachable();
8093 break;
8094
8095 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8096 break;
8097
8098 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8099 layout->set_has_static_tls();
8100 if (optimized_type == tls::TLSOPT_NONE)
8101 {
8102 // Create a GOT entry for the tp-relative offset.
8103 Arm_output_data_got<big_endian>* got
8104 = target->got_section(symtab, layout);
8105 unsigned int r_sym =
8106 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8107 if (!parameters->doing_static_link())
8108 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8109 target->rel_dyn_section(layout),
8110 elfcpp::R_ARM_TLS_TPOFF32);
8111 else if (!object->local_has_got_offset(r_sym,
8112 GOT_TYPE_TLS_OFFSET))
8113 {
8114 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8115 unsigned int got_offset =
8116 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8117 got->add_static_reloc(got_offset,
8118 elfcpp::R_ARM_TLS_TPOFF32, object,
8119 r_sym);
8120 }
8121 }
8122 else
8123 // FIXME: TLS optimization not supported yet.
8124 gold_unreachable();
8125 break;
8126
8127 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8128 layout->set_has_static_tls();
8129 if (output_is_shared)
8130 {
8131 // We need to create a dynamic relocation.
8132 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8133 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8134 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8135 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8136 output_section, data_shndx,
8137 reloc.get_r_offset());
8138 }
8139 break;
8140
8141 default:
8142 gold_unreachable();
8143 }
8144 }
8145 break;
8146
8147 case elfcpp::R_ARM_PC24:
8148 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8149 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8150 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8151 default:
8152 unsupported_reloc_local(object, r_type);
8153 break;
8154 }
8155 }
8156
8157 // Report an unsupported relocation against a global symbol.
8158
8159 template<bool big_endian>
8160 void
8161 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8162 Sized_relobj_file<32, big_endian>* object,
8163 unsigned int r_type,
8164 Symbol* gsym)
8165 {
8166 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8167 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8168 }
8169
8170 template<bool big_endian>
8171 inline bool
8172 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8173 unsigned int r_type)
8174 {
8175 switch (r_type)
8176 {
8177 case elfcpp::R_ARM_PC24:
8178 case elfcpp::R_ARM_THM_CALL:
8179 case elfcpp::R_ARM_PLT32:
8180 case elfcpp::R_ARM_CALL:
8181 case elfcpp::R_ARM_JUMP24:
8182 case elfcpp::R_ARM_THM_JUMP24:
8183 case elfcpp::R_ARM_SBREL31:
8184 case elfcpp::R_ARM_PREL31:
8185 case elfcpp::R_ARM_THM_JUMP19:
8186 case elfcpp::R_ARM_THM_JUMP6:
8187 case elfcpp::R_ARM_THM_JUMP11:
8188 case elfcpp::R_ARM_THM_JUMP8:
8189 // All the relocations above are branches except SBREL31 and PREL31.
8190 return false;
8191
8192 default:
8193 // Be conservative and assume this is a function pointer.
8194 return true;
8195 }
8196 }
8197
8198 template<bool big_endian>
8199 inline bool
8200 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8201 Symbol_table*,
8202 Layout*,
8203 Target_arm<big_endian>* target,
8204 Sized_relobj_file<32, big_endian>*,
8205 unsigned int,
8206 Output_section*,
8207 const elfcpp::Rel<32, big_endian>&,
8208 unsigned int r_type,
8209 const elfcpp::Sym<32, big_endian>&)
8210 {
8211 r_type = target->get_real_reloc_type(r_type);
8212 return possible_function_pointer_reloc(r_type);
8213 }
8214
8215 template<bool big_endian>
8216 inline bool
8217 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8218 Symbol_table*,
8219 Layout*,
8220 Target_arm<big_endian>* target,
8221 Sized_relobj_file<32, big_endian>*,
8222 unsigned int,
8223 Output_section*,
8224 const elfcpp::Rel<32, big_endian>&,
8225 unsigned int r_type,
8226 Symbol* gsym)
8227 {
8228 // GOT is not a function.
8229 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8230 return false;
8231
8232 r_type = target->get_real_reloc_type(r_type);
8233 return possible_function_pointer_reloc(r_type);
8234 }
8235
8236 // Scan a relocation for a global symbol.
8237
8238 template<bool big_endian>
8239 inline void
8240 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8241 Layout* layout,
8242 Target_arm* target,
8243 Sized_relobj_file<32, big_endian>* object,
8244 unsigned int data_shndx,
8245 Output_section* output_section,
8246 const elfcpp::Rel<32, big_endian>& reloc,
8247 unsigned int r_type,
8248 Symbol* gsym)
8249 {
8250 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8251 // section. We check here to avoid creating a dynamic reloc against
8252 // _GLOBAL_OFFSET_TABLE_.
8253 if (!target->has_got_section()
8254 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8255 target->got_section(symtab, layout);
8256
8257 r_type = get_real_reloc_type(r_type);
8258 switch (r_type)
8259 {
8260 case elfcpp::R_ARM_NONE:
8261 case elfcpp::R_ARM_V4BX:
8262 case elfcpp::R_ARM_GNU_VTENTRY:
8263 case elfcpp::R_ARM_GNU_VTINHERIT:
8264 break;
8265
8266 case elfcpp::R_ARM_ABS32:
8267 case elfcpp::R_ARM_ABS16:
8268 case elfcpp::R_ARM_ABS12:
8269 case elfcpp::R_ARM_THM_ABS5:
8270 case elfcpp::R_ARM_ABS8:
8271 case elfcpp::R_ARM_BASE_ABS:
8272 case elfcpp::R_ARM_MOVW_ABS_NC:
8273 case elfcpp::R_ARM_MOVT_ABS:
8274 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8275 case elfcpp::R_ARM_THM_MOVT_ABS:
8276 case elfcpp::R_ARM_ABS32_NOI:
8277 // Absolute addressing relocations.
8278 {
8279 // Make a PLT entry if necessary.
8280 if (this->symbol_needs_plt_entry(gsym))
8281 {
8282 target->make_plt_entry(symtab, layout, gsym);
8283 // Since this is not a PC-relative relocation, we may be
8284 // taking the address of a function. In that case we need to
8285 // set the entry in the dynamic symbol table to the address of
8286 // the PLT entry.
8287 if (gsym->is_from_dynobj() && !parameters->options().shared())
8288 gsym->set_needs_dynsym_value();
8289 }
8290 // Make a dynamic relocation if necessary.
8291 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8292 {
8293 if (gsym->may_need_copy_reloc())
8294 {
8295 target->copy_reloc(symtab, layout, object,
8296 data_shndx, output_section, gsym, reloc);
8297 }
8298 else if ((r_type == elfcpp::R_ARM_ABS32
8299 || r_type == elfcpp::R_ARM_ABS32_NOI)
8300 && gsym->can_use_relative_reloc(false))
8301 {
8302 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8303 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8304 output_section, object,
8305 data_shndx, reloc.get_r_offset());
8306 }
8307 else
8308 {
8309 check_non_pic(object, r_type);
8310 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8311 rel_dyn->add_global(gsym, r_type, output_section, object,
8312 data_shndx, reloc.get_r_offset());
8313 }
8314 }
8315 }
8316 break;
8317
8318 case elfcpp::R_ARM_GOTOFF32:
8319 case elfcpp::R_ARM_GOTOFF12:
8320 // We need a GOT section.
8321 target->got_section(symtab, layout);
8322 break;
8323
8324 case elfcpp::R_ARM_REL32:
8325 case elfcpp::R_ARM_LDR_PC_G0:
8326 case elfcpp::R_ARM_SBREL32:
8327 case elfcpp::R_ARM_THM_PC8:
8328 case elfcpp::R_ARM_BASE_PREL:
8329 case elfcpp::R_ARM_MOVW_PREL_NC:
8330 case elfcpp::R_ARM_MOVT_PREL:
8331 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8332 case elfcpp::R_ARM_THM_MOVT_PREL:
8333 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8334 case elfcpp::R_ARM_THM_PC12:
8335 case elfcpp::R_ARM_REL32_NOI:
8336 case elfcpp::R_ARM_ALU_PC_G0_NC:
8337 case elfcpp::R_ARM_ALU_PC_G0:
8338 case elfcpp::R_ARM_ALU_PC_G1_NC:
8339 case elfcpp::R_ARM_ALU_PC_G1:
8340 case elfcpp::R_ARM_ALU_PC_G2:
8341 case elfcpp::R_ARM_LDR_PC_G1:
8342 case elfcpp::R_ARM_LDR_PC_G2:
8343 case elfcpp::R_ARM_LDRS_PC_G0:
8344 case elfcpp::R_ARM_LDRS_PC_G1:
8345 case elfcpp::R_ARM_LDRS_PC_G2:
8346 case elfcpp::R_ARM_LDC_PC_G0:
8347 case elfcpp::R_ARM_LDC_PC_G1:
8348 case elfcpp::R_ARM_LDC_PC_G2:
8349 case elfcpp::R_ARM_ALU_SB_G0_NC:
8350 case elfcpp::R_ARM_ALU_SB_G0:
8351 case elfcpp::R_ARM_ALU_SB_G1_NC:
8352 case elfcpp::R_ARM_ALU_SB_G1:
8353 case elfcpp::R_ARM_ALU_SB_G2:
8354 case elfcpp::R_ARM_LDR_SB_G0:
8355 case elfcpp::R_ARM_LDR_SB_G1:
8356 case elfcpp::R_ARM_LDR_SB_G2:
8357 case elfcpp::R_ARM_LDRS_SB_G0:
8358 case elfcpp::R_ARM_LDRS_SB_G1:
8359 case elfcpp::R_ARM_LDRS_SB_G2:
8360 case elfcpp::R_ARM_LDC_SB_G0:
8361 case elfcpp::R_ARM_LDC_SB_G1:
8362 case elfcpp::R_ARM_LDC_SB_G2:
8363 case elfcpp::R_ARM_MOVW_BREL_NC:
8364 case elfcpp::R_ARM_MOVT_BREL:
8365 case elfcpp::R_ARM_MOVW_BREL:
8366 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8367 case elfcpp::R_ARM_THM_MOVT_BREL:
8368 case elfcpp::R_ARM_THM_MOVW_BREL:
8369 // Relative addressing relocations.
8370 {
8371 // Make a dynamic relocation if necessary.
8372 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8373 {
8374 if (target->may_need_copy_reloc(gsym))
8375 {
8376 target->copy_reloc(symtab, layout, object,
8377 data_shndx, output_section, gsym, reloc);
8378 }
8379 else
8380 {
8381 check_non_pic(object, r_type);
8382 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8383 rel_dyn->add_global(gsym, r_type, output_section, object,
8384 data_shndx, reloc.get_r_offset());
8385 }
8386 }
8387 }
8388 break;
8389
8390 case elfcpp::R_ARM_THM_CALL:
8391 case elfcpp::R_ARM_PLT32:
8392 case elfcpp::R_ARM_CALL:
8393 case elfcpp::R_ARM_JUMP24:
8394 case elfcpp::R_ARM_THM_JUMP24:
8395 case elfcpp::R_ARM_SBREL31:
8396 case elfcpp::R_ARM_PREL31:
8397 case elfcpp::R_ARM_THM_JUMP19:
8398 case elfcpp::R_ARM_THM_JUMP6:
8399 case elfcpp::R_ARM_THM_JUMP11:
8400 case elfcpp::R_ARM_THM_JUMP8:
8401 // All the relocation above are branches except for the PREL31 ones.
8402 // A PREL31 relocation can point to a personality function in a shared
8403 // library. In that case we want to use a PLT because we want to
8404 // call the personality routine and the dynamic linkers we care about
8405 // do not support dynamic PREL31 relocations. An REL31 relocation may
8406 // point to a function whose unwinding behaviour is being described but
8407 // we will not mistakenly generate a PLT for that because we should use
8408 // a local section symbol.
8409
8410 // If the symbol is fully resolved, this is just a relative
8411 // local reloc. Otherwise we need a PLT entry.
8412 if (gsym->final_value_is_known())
8413 break;
8414 // If building a shared library, we can also skip the PLT entry
8415 // if the symbol is defined in the output file and is protected
8416 // or hidden.
8417 if (gsym->is_defined()
8418 && !gsym->is_from_dynobj()
8419 && !gsym->is_preemptible())
8420 break;
8421 target->make_plt_entry(symtab, layout, gsym);
8422 break;
8423
8424 case elfcpp::R_ARM_GOT_BREL:
8425 case elfcpp::R_ARM_GOT_ABS:
8426 case elfcpp::R_ARM_GOT_PREL:
8427 {
8428 // The symbol requires a GOT entry.
8429 Arm_output_data_got<big_endian>* got =
8430 target->got_section(symtab, layout);
8431 if (gsym->final_value_is_known())
8432 got->add_global(gsym, GOT_TYPE_STANDARD);
8433 else
8434 {
8435 // If this symbol is not fully resolved, we need to add a
8436 // GOT entry with a dynamic relocation.
8437 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8438 if (gsym->is_from_dynobj()
8439 || gsym->is_undefined()
8440 || gsym->is_preemptible()
8441 || (gsym->visibility() == elfcpp::STV_PROTECTED
8442 && parameters->options().shared()))
8443 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8444 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8445 else
8446 {
8447 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8448 rel_dyn->add_global_relative(
8449 gsym, elfcpp::R_ARM_RELATIVE, got,
8450 gsym->got_offset(GOT_TYPE_STANDARD));
8451 }
8452 }
8453 }
8454 break;
8455
8456 case elfcpp::R_ARM_TARGET1:
8457 case elfcpp::R_ARM_TARGET2:
8458 // These should have been mapped to other types already.
8459 // Fall through.
8460 case elfcpp::R_ARM_COPY:
8461 case elfcpp::R_ARM_GLOB_DAT:
8462 case elfcpp::R_ARM_JUMP_SLOT:
8463 case elfcpp::R_ARM_RELATIVE:
8464 // These are relocations which should only be seen by the
8465 // dynamic linker, and should never be seen here.
8466 gold_error(_("%s: unexpected reloc %u in object file"),
8467 object->name().c_str(), r_type);
8468 break;
8469
8470 // These are initial tls relocs, which are expected when
8471 // linking.
8472 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8473 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8474 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8475 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8476 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8477 {
8478 const bool is_final = gsym->final_value_is_known();
8479 const tls::Tls_optimization optimized_type
8480 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8481 switch (r_type)
8482 {
8483 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8484 if (optimized_type == tls::TLSOPT_NONE)
8485 {
8486 // Create a pair of GOT entries for the module index and
8487 // dtv-relative offset.
8488 Arm_output_data_got<big_endian>* got
8489 = target->got_section(symtab, layout);
8490 if (!parameters->doing_static_link())
8491 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8492 target->rel_dyn_section(layout),
8493 elfcpp::R_ARM_TLS_DTPMOD32,
8494 elfcpp::R_ARM_TLS_DTPOFF32);
8495 else
8496 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8497 }
8498 else
8499 // FIXME: TLS optimization not supported yet.
8500 gold_unreachable();
8501 break;
8502
8503 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8504 if (optimized_type == tls::TLSOPT_NONE)
8505 {
8506 // Create a GOT entry for the module index.
8507 target->got_mod_index_entry(symtab, layout, object);
8508 }
8509 else
8510 // FIXME: TLS optimization not supported yet.
8511 gold_unreachable();
8512 break;
8513
8514 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8515 break;
8516
8517 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8518 layout->set_has_static_tls();
8519 if (optimized_type == tls::TLSOPT_NONE)
8520 {
8521 // Create a GOT entry for the tp-relative offset.
8522 Arm_output_data_got<big_endian>* got
8523 = target->got_section(symtab, layout);
8524 if (!parameters->doing_static_link())
8525 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8526 target->rel_dyn_section(layout),
8527 elfcpp::R_ARM_TLS_TPOFF32);
8528 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8529 {
8530 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8531 unsigned int got_offset =
8532 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8533 got->add_static_reloc(got_offset,
8534 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8535 }
8536 }
8537 else
8538 // FIXME: TLS optimization not supported yet.
8539 gold_unreachable();
8540 break;
8541
8542 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8543 layout->set_has_static_tls();
8544 if (parameters->options().shared())
8545 {
8546 // We need to create a dynamic relocation.
8547 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8548 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8549 output_section, object,
8550 data_shndx, reloc.get_r_offset());
8551 }
8552 break;
8553
8554 default:
8555 gold_unreachable();
8556 }
8557 }
8558 break;
8559
8560 case elfcpp::R_ARM_PC24:
8561 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8562 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8563 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8564 default:
8565 unsupported_reloc_global(object, r_type, gsym);
8566 break;
8567 }
8568 }
8569
8570 // Process relocations for gc.
8571
8572 template<bool big_endian>
8573 void
8574 Target_arm<big_endian>::gc_process_relocs(
8575 Symbol_table* symtab,
8576 Layout* layout,
8577 Sized_relobj_file<32, big_endian>* object,
8578 unsigned int data_shndx,
8579 unsigned int,
8580 const unsigned char* prelocs,
8581 size_t reloc_count,
8582 Output_section* output_section,
8583 bool needs_special_offset_handling,
8584 size_t local_symbol_count,
8585 const unsigned char* plocal_symbols)
8586 {
8587 typedef Target_arm<big_endian> Arm;
8588 typedef typename Target_arm<big_endian>::Scan Scan;
8589
8590 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8591 typename Target_arm::Relocatable_size_for_reloc>(
8592 symtab,
8593 layout,
8594 this,
8595 object,
8596 data_shndx,
8597 prelocs,
8598 reloc_count,
8599 output_section,
8600 needs_special_offset_handling,
8601 local_symbol_count,
8602 plocal_symbols);
8603 }
8604
8605 // Scan relocations for a section.
8606
8607 template<bool big_endian>
8608 void
8609 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8610 Layout* layout,
8611 Sized_relobj_file<32, big_endian>* object,
8612 unsigned int data_shndx,
8613 unsigned int sh_type,
8614 const unsigned char* prelocs,
8615 size_t reloc_count,
8616 Output_section* output_section,
8617 bool needs_special_offset_handling,
8618 size_t local_symbol_count,
8619 const unsigned char* plocal_symbols)
8620 {
8621 typedef typename Target_arm<big_endian>::Scan Scan;
8622 if (sh_type == elfcpp::SHT_RELA)
8623 {
8624 gold_error(_("%s: unsupported RELA reloc section"),
8625 object->name().c_str());
8626 return;
8627 }
8628
8629 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8630 symtab,
8631 layout,
8632 this,
8633 object,
8634 data_shndx,
8635 prelocs,
8636 reloc_count,
8637 output_section,
8638 needs_special_offset_handling,
8639 local_symbol_count,
8640 plocal_symbols);
8641 }
8642
8643 // Finalize the sections.
8644
8645 template<bool big_endian>
8646 void
8647 Target_arm<big_endian>::do_finalize_sections(
8648 Layout* layout,
8649 const Input_objects* input_objects,
8650 Symbol_table*)
8651 {
8652 bool merged_any_attributes = false;
8653 // Merge processor-specific flags.
8654 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8655 p != input_objects->relobj_end();
8656 ++p)
8657 {
8658 Arm_relobj<big_endian>* arm_relobj =
8659 Arm_relobj<big_endian>::as_arm_relobj(*p);
8660 if (arm_relobj->merge_flags_and_attributes())
8661 {
8662 this->merge_processor_specific_flags(
8663 arm_relobj->name(),
8664 arm_relobj->processor_specific_flags());
8665 this->merge_object_attributes(arm_relobj->name().c_str(),
8666 arm_relobj->attributes_section_data());
8667 merged_any_attributes = true;
8668 }
8669 }
8670
8671 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8672 p != input_objects->dynobj_end();
8673 ++p)
8674 {
8675 Arm_dynobj<big_endian>* arm_dynobj =
8676 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8677 this->merge_processor_specific_flags(
8678 arm_dynobj->name(),
8679 arm_dynobj->processor_specific_flags());
8680 this->merge_object_attributes(arm_dynobj->name().c_str(),
8681 arm_dynobj->attributes_section_data());
8682 merged_any_attributes = true;
8683 }
8684
8685 // Create an empty uninitialized attribute section if we still don't have it
8686 // at this moment. This happens if there is no attributes sections in all
8687 // inputs.
8688 if (this->attributes_section_data_ == NULL)
8689 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8690
8691 const Object_attribute* cpu_arch_attr =
8692 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8693 // Check if we need to use Cortex-A8 workaround.
8694 if (parameters->options().user_set_fix_cortex_a8())
8695 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8696 else
8697 {
8698 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8699 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8700 // profile.
8701 const Object_attribute* cpu_arch_profile_attr =
8702 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8703 this->fix_cortex_a8_ =
8704 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8705 && (cpu_arch_profile_attr->int_value() == 'A'
8706 || cpu_arch_profile_attr->int_value() == 0));
8707 }
8708
8709 // Check if we can use V4BX interworking.
8710 // The V4BX interworking stub contains BX instruction,
8711 // which is not specified for some profiles.
8712 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8713 && !this->may_use_v4t_interworking())
8714 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8715 "the target profile does not support BX instruction"));
8716
8717 // Fill in some more dynamic tags.
8718 const Reloc_section* rel_plt = (this->plt_ == NULL
8719 ? NULL
8720 : this->plt_->rel_plt());
8721 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8722 this->rel_dyn_, true, false);
8723
8724 // Emit any relocs we saved in an attempt to avoid generating COPY
8725 // relocs.
8726 if (this->copy_relocs_.any_saved_relocs())
8727 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8728
8729 // Handle the .ARM.exidx section.
8730 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8731
8732 if (!parameters->options().relocatable())
8733 {
8734 if (exidx_section != NULL
8735 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8736 {
8737 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8738 // the .ARM.exidx section.
8739 if (!layout->script_options()->saw_phdrs_clause())
8740 {
8741 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8742 0)
8743 == NULL);
8744 Output_segment* exidx_segment =
8745 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8746 exidx_segment->add_output_section_to_nonload(exidx_section,
8747 elfcpp::PF_R);
8748 }
8749 }
8750 }
8751
8752 // Create an .ARM.attributes section if we have merged any attributes
8753 // from inputs.
8754 if (merged_any_attributes)
8755 {
8756 Output_attributes_section_data* attributes_section =
8757 new Output_attributes_section_data(*this->attributes_section_data_);
8758 layout->add_output_section_data(".ARM.attributes",
8759 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8760 attributes_section, ORDER_INVALID,
8761 false);
8762 }
8763
8764 // Fix up links in section EXIDX headers.
8765 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8766 p != layout->section_list().end();
8767 ++p)
8768 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8769 {
8770 Arm_output_section<big_endian>* os =
8771 Arm_output_section<big_endian>::as_arm_output_section(*p);
8772 os->set_exidx_section_link();
8773 }
8774 }
8775
8776 // Return whether a direct absolute static relocation needs to be applied.
8777 // In cases where Scan::local() or Scan::global() has created
8778 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8779 // of the relocation is carried in the data, and we must not
8780 // apply the static relocation.
8781
8782 template<bool big_endian>
8783 inline bool
8784 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8785 const Sized_symbol<32>* gsym,
8786 unsigned int r_type,
8787 bool is_32bit,
8788 Output_section* output_section)
8789 {
8790 // If the output section is not allocated, then we didn't call
8791 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8792 // the reloc here.
8793 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8794 return true;
8795
8796 int ref_flags = Scan::get_reference_flags(r_type);
8797
8798 // For local symbols, we will have created a non-RELATIVE dynamic
8799 // relocation only if (a) the output is position independent,
8800 // (b) the relocation is absolute (not pc- or segment-relative), and
8801 // (c) the relocation is not 32 bits wide.
8802 if (gsym == NULL)
8803 return !(parameters->options().output_is_position_independent()
8804 && (ref_flags & Symbol::ABSOLUTE_REF)
8805 && !is_32bit);
8806
8807 // For global symbols, we use the same helper routines used in the
8808 // scan pass. If we did not create a dynamic relocation, or if we
8809 // created a RELATIVE dynamic relocation, we should apply the static
8810 // relocation.
8811 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8812 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8813 && gsym->can_use_relative_reloc(ref_flags
8814 & Symbol::FUNCTION_CALL);
8815 return !has_dyn || is_rel;
8816 }
8817
8818 // Perform a relocation.
8819
8820 template<bool big_endian>
8821 inline bool
8822 Target_arm<big_endian>::Relocate::relocate(
8823 const Relocate_info<32, big_endian>* relinfo,
8824 Target_arm* target,
8825 Output_section* output_section,
8826 size_t relnum,
8827 const elfcpp::Rel<32, big_endian>& rel,
8828 unsigned int r_type,
8829 const Sized_symbol<32>* gsym,
8830 const Symbol_value<32>* psymval,
8831 unsigned char* view,
8832 Arm_address address,
8833 section_size_type view_size)
8834 {
8835 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8836
8837 r_type = get_real_reloc_type(r_type);
8838 const Arm_reloc_property* reloc_property =
8839 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8840 if (reloc_property == NULL)
8841 {
8842 std::string reloc_name =
8843 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8844 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8845 _("cannot relocate %s in object file"),
8846 reloc_name.c_str());
8847 return true;
8848 }
8849
8850 const Arm_relobj<big_endian>* object =
8851 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8852
8853 // If the final branch target of a relocation is THUMB instruction, this
8854 // is 1. Otherwise it is 0.
8855 Arm_address thumb_bit = 0;
8856 Symbol_value<32> symval;
8857 bool is_weakly_undefined_without_plt = false;
8858 bool have_got_offset = false;
8859 unsigned int got_offset = 0;
8860
8861 // If the relocation uses the GOT entry of a symbol instead of the symbol
8862 // itself, we don't care about whether the symbol is defined or what kind
8863 // of symbol it is.
8864 if (reloc_property->uses_got_entry())
8865 {
8866 // Get the GOT offset.
8867 // The GOT pointer points to the end of the GOT section.
8868 // We need to subtract the size of the GOT section to get
8869 // the actual offset to use in the relocation.
8870 // TODO: We should move GOT offset computing code in TLS relocations
8871 // to here.
8872 switch (r_type)
8873 {
8874 case elfcpp::R_ARM_GOT_BREL:
8875 case elfcpp::R_ARM_GOT_PREL:
8876 if (gsym != NULL)
8877 {
8878 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8879 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8880 - target->got_size());
8881 }
8882 else
8883 {
8884 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8885 gold_assert(object->local_has_got_offset(r_sym,
8886 GOT_TYPE_STANDARD));
8887 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8888 - target->got_size());
8889 }
8890 have_got_offset = true;
8891 break;
8892
8893 default:
8894 break;
8895 }
8896 }
8897 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8898 {
8899 if (gsym != NULL)
8900 {
8901 // This is a global symbol. Determine if we use PLT and if the
8902 // final target is THUMB.
8903 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8904 {
8905 // This uses a PLT, change the symbol value.
8906 symval.set_output_value(target->plt_section()->address()
8907 + gsym->plt_offset());
8908 psymval = &symval;
8909 }
8910 else if (gsym->is_weak_undefined())
8911 {
8912 // This is a weakly undefined symbol and we do not use PLT
8913 // for this relocation. A branch targeting this symbol will
8914 // be converted into an NOP.
8915 is_weakly_undefined_without_plt = true;
8916 }
8917 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8918 {
8919 // This relocation uses the symbol value but the symbol is
8920 // undefined. Exit early and have the caller reporting an
8921 // error.
8922 return true;
8923 }
8924 else
8925 {
8926 // Set thumb bit if symbol:
8927 // -Has type STT_ARM_TFUNC or
8928 // -Has type STT_FUNC, is defined and with LSB in value set.
8929 thumb_bit =
8930 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8931 || (gsym->type() == elfcpp::STT_FUNC
8932 && !gsym->is_undefined()
8933 && ((psymval->value(object, 0) & 1) != 0)))
8934 ? 1
8935 : 0);
8936 }
8937 }
8938 else
8939 {
8940 // This is a local symbol. Determine if the final target is THUMB.
8941 // We saved this information when all the local symbols were read.
8942 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8943 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8944 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8945 }
8946 }
8947 else
8948 {
8949 // This is a fake relocation synthesized for a stub. It does not have
8950 // a real symbol. We just look at the LSB of the symbol value to
8951 // determine if the target is THUMB or not.
8952 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8953 }
8954
8955 // Strip LSB if this points to a THUMB target.
8956 if (thumb_bit != 0
8957 && reloc_property->uses_thumb_bit()
8958 && ((psymval->value(object, 0) & 1) != 0))
8959 {
8960 Arm_address stripped_value =
8961 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8962 symval.set_output_value(stripped_value);
8963 psymval = &symval;
8964 }
8965
8966 // To look up relocation stubs, we need to pass the symbol table index of
8967 // a local symbol.
8968 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8969
8970 // Get the addressing origin of the output segment defining the
8971 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8972 Arm_address sym_origin = 0;
8973 if (reloc_property->uses_symbol_base())
8974 {
8975 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8976 // R_ARM_BASE_ABS with the NULL symbol will give the
8977 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8978 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8979 sym_origin = target->got_plt_section()->address();
8980 else if (gsym == NULL)
8981 sym_origin = 0;
8982 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8983 sym_origin = gsym->output_segment()->vaddr();
8984 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8985 sym_origin = gsym->output_data()->address();
8986
8987 // TODO: Assumes the segment base to be zero for the global symbols
8988 // till the proper support for the segment-base-relative addressing
8989 // will be implemented. This is consistent with GNU ld.
8990 }
8991
8992 // For relative addressing relocation, find out the relative address base.
8993 Arm_address relative_address_base = 0;
8994 switch(reloc_property->relative_address_base())
8995 {
8996 case Arm_reloc_property::RAB_NONE:
8997 // Relocations with relative address bases RAB_TLS and RAB_tp are
8998 // handled by relocate_tls. So we do not need to do anything here.
8999 case Arm_reloc_property::RAB_TLS:
9000 case Arm_reloc_property::RAB_tp:
9001 break;
9002 case Arm_reloc_property::RAB_B_S:
9003 relative_address_base = sym_origin;
9004 break;
9005 case Arm_reloc_property::RAB_GOT_ORG:
9006 relative_address_base = target->got_plt_section()->address();
9007 break;
9008 case Arm_reloc_property::RAB_P:
9009 relative_address_base = address;
9010 break;
9011 case Arm_reloc_property::RAB_Pa:
9012 relative_address_base = address & 0xfffffffcU;
9013 break;
9014 default:
9015 gold_unreachable();
9016 }
9017
9018 typename Arm_relocate_functions::Status reloc_status =
9019 Arm_relocate_functions::STATUS_OKAY;
9020 bool check_overflow = reloc_property->checks_overflow();
9021 switch (r_type)
9022 {
9023 case elfcpp::R_ARM_NONE:
9024 break;
9025
9026 case elfcpp::R_ARM_ABS8:
9027 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9028 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9029 break;
9030
9031 case elfcpp::R_ARM_ABS12:
9032 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9033 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9034 break;
9035
9036 case elfcpp::R_ARM_ABS16:
9037 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9038 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9039 break;
9040
9041 case elfcpp::R_ARM_ABS32:
9042 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9043 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9044 thumb_bit);
9045 break;
9046
9047 case elfcpp::R_ARM_ABS32_NOI:
9048 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9049 // No thumb bit for this relocation: (S + A)
9050 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9051 0);
9052 break;
9053
9054 case elfcpp::R_ARM_MOVW_ABS_NC:
9055 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9056 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9057 0, thumb_bit,
9058 check_overflow);
9059 break;
9060
9061 case elfcpp::R_ARM_MOVT_ABS:
9062 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9063 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9064 break;
9065
9066 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9067 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9068 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9069 0, thumb_bit, false);
9070 break;
9071
9072 case elfcpp::R_ARM_THM_MOVT_ABS:
9073 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9074 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9075 psymval, 0);
9076 break;
9077
9078 case elfcpp::R_ARM_MOVW_PREL_NC:
9079 case elfcpp::R_ARM_MOVW_BREL_NC:
9080 case elfcpp::R_ARM_MOVW_BREL:
9081 reloc_status =
9082 Arm_relocate_functions::movw(view, object, psymval,
9083 relative_address_base, thumb_bit,
9084 check_overflow);
9085 break;
9086
9087 case elfcpp::R_ARM_MOVT_PREL:
9088 case elfcpp::R_ARM_MOVT_BREL:
9089 reloc_status =
9090 Arm_relocate_functions::movt(view, object, psymval,
9091 relative_address_base);
9092 break;
9093
9094 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9095 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9096 case elfcpp::R_ARM_THM_MOVW_BREL:
9097 reloc_status =
9098 Arm_relocate_functions::thm_movw(view, object, psymval,
9099 relative_address_base,
9100 thumb_bit, check_overflow);
9101 break;
9102
9103 case elfcpp::R_ARM_THM_MOVT_PREL:
9104 case elfcpp::R_ARM_THM_MOVT_BREL:
9105 reloc_status =
9106 Arm_relocate_functions::thm_movt(view, object, psymval,
9107 relative_address_base);
9108 break;
9109
9110 case elfcpp::R_ARM_REL32:
9111 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9112 address, thumb_bit);
9113 break;
9114
9115 case elfcpp::R_ARM_THM_ABS5:
9116 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9117 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9118 break;
9119
9120 // Thumb long branches.
9121 case elfcpp::R_ARM_THM_CALL:
9122 case elfcpp::R_ARM_THM_XPC22:
9123 case elfcpp::R_ARM_THM_JUMP24:
9124 reloc_status =
9125 Arm_relocate_functions::thumb_branch_common(
9126 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9127 thumb_bit, is_weakly_undefined_without_plt);
9128 break;
9129
9130 case elfcpp::R_ARM_GOTOFF32:
9131 {
9132 Arm_address got_origin;
9133 got_origin = target->got_plt_section()->address();
9134 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9135 got_origin, thumb_bit);
9136 }
9137 break;
9138
9139 case elfcpp::R_ARM_BASE_PREL:
9140 gold_assert(gsym != NULL);
9141 reloc_status =
9142 Arm_relocate_functions::base_prel(view, sym_origin, address);
9143 break;
9144
9145 case elfcpp::R_ARM_BASE_ABS:
9146 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9147 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9148 break;
9149
9150 case elfcpp::R_ARM_GOT_BREL:
9151 gold_assert(have_got_offset);
9152 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9153 break;
9154
9155 case elfcpp::R_ARM_GOT_PREL:
9156 gold_assert(have_got_offset);
9157 // Get the address origin for GOT PLT, which is allocated right
9158 // after the GOT section, to calculate an absolute address of
9159 // the symbol GOT entry (got_origin + got_offset).
9160 Arm_address got_origin;
9161 got_origin = target->got_plt_section()->address();
9162 reloc_status = Arm_relocate_functions::got_prel(view,
9163 got_origin + got_offset,
9164 address);
9165 break;
9166
9167 case elfcpp::R_ARM_PLT32:
9168 case elfcpp::R_ARM_CALL:
9169 case elfcpp::R_ARM_JUMP24:
9170 case elfcpp::R_ARM_XPC25:
9171 gold_assert(gsym == NULL
9172 || gsym->has_plt_offset()
9173 || gsym->final_value_is_known()
9174 || (gsym->is_defined()
9175 && !gsym->is_from_dynobj()
9176 && !gsym->is_preemptible()));
9177 reloc_status =
9178 Arm_relocate_functions::arm_branch_common(
9179 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9180 thumb_bit, is_weakly_undefined_without_plt);
9181 break;
9182
9183 case elfcpp::R_ARM_THM_JUMP19:
9184 reloc_status =
9185 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9186 thumb_bit);
9187 break;
9188
9189 case elfcpp::R_ARM_THM_JUMP6:
9190 reloc_status =
9191 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9192 break;
9193
9194 case elfcpp::R_ARM_THM_JUMP8:
9195 reloc_status =
9196 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9197 break;
9198
9199 case elfcpp::R_ARM_THM_JUMP11:
9200 reloc_status =
9201 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9202 break;
9203
9204 case elfcpp::R_ARM_PREL31:
9205 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9206 address, thumb_bit);
9207 break;
9208
9209 case elfcpp::R_ARM_V4BX:
9210 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9211 {
9212 const bool is_v4bx_interworking =
9213 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9214 reloc_status =
9215 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9216 is_v4bx_interworking);
9217 }
9218 break;
9219
9220 case elfcpp::R_ARM_THM_PC8:
9221 reloc_status =
9222 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9223 break;
9224
9225 case elfcpp::R_ARM_THM_PC12:
9226 reloc_status =
9227 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9228 break;
9229
9230 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9231 reloc_status =
9232 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9233 thumb_bit);
9234 break;
9235
9236 case elfcpp::R_ARM_ALU_PC_G0_NC:
9237 case elfcpp::R_ARM_ALU_PC_G0:
9238 case elfcpp::R_ARM_ALU_PC_G1_NC:
9239 case elfcpp::R_ARM_ALU_PC_G1:
9240 case elfcpp::R_ARM_ALU_PC_G2:
9241 case elfcpp::R_ARM_ALU_SB_G0_NC:
9242 case elfcpp::R_ARM_ALU_SB_G0:
9243 case elfcpp::R_ARM_ALU_SB_G1_NC:
9244 case elfcpp::R_ARM_ALU_SB_G1:
9245 case elfcpp::R_ARM_ALU_SB_G2:
9246 reloc_status =
9247 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9248 reloc_property->group_index(),
9249 relative_address_base,
9250 thumb_bit, check_overflow);
9251 break;
9252
9253 case elfcpp::R_ARM_LDR_PC_G0:
9254 case elfcpp::R_ARM_LDR_PC_G1:
9255 case elfcpp::R_ARM_LDR_PC_G2:
9256 case elfcpp::R_ARM_LDR_SB_G0:
9257 case elfcpp::R_ARM_LDR_SB_G1:
9258 case elfcpp::R_ARM_LDR_SB_G2:
9259 reloc_status =
9260 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9261 reloc_property->group_index(),
9262 relative_address_base);
9263 break;
9264
9265 case elfcpp::R_ARM_LDRS_PC_G0:
9266 case elfcpp::R_ARM_LDRS_PC_G1:
9267 case elfcpp::R_ARM_LDRS_PC_G2:
9268 case elfcpp::R_ARM_LDRS_SB_G0:
9269 case elfcpp::R_ARM_LDRS_SB_G1:
9270 case elfcpp::R_ARM_LDRS_SB_G2:
9271 reloc_status =
9272 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9273 reloc_property->group_index(),
9274 relative_address_base);
9275 break;
9276
9277 case elfcpp::R_ARM_LDC_PC_G0:
9278 case elfcpp::R_ARM_LDC_PC_G1:
9279 case elfcpp::R_ARM_LDC_PC_G2:
9280 case elfcpp::R_ARM_LDC_SB_G0:
9281 case elfcpp::R_ARM_LDC_SB_G1:
9282 case elfcpp::R_ARM_LDC_SB_G2:
9283 reloc_status =
9284 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9285 reloc_property->group_index(),
9286 relative_address_base);
9287 break;
9288
9289 // These are initial tls relocs, which are expected when
9290 // linking.
9291 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9292 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9293 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9294 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9295 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9296 reloc_status =
9297 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9298 view, address, view_size);
9299 break;
9300
9301 // The known and unknown unsupported and/or deprecated relocations.
9302 case elfcpp::R_ARM_PC24:
9303 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9304 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9305 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9306 default:
9307 // Just silently leave the method. We should get an appropriate error
9308 // message in the scan methods.
9309 break;
9310 }
9311
9312 // Report any errors.
9313 switch (reloc_status)
9314 {
9315 case Arm_relocate_functions::STATUS_OKAY:
9316 break;
9317 case Arm_relocate_functions::STATUS_OVERFLOW:
9318 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9319 _("relocation overflow in %s"),
9320 reloc_property->name().c_str());
9321 break;
9322 case Arm_relocate_functions::STATUS_BAD_RELOC:
9323 gold_error_at_location(
9324 relinfo,
9325 relnum,
9326 rel.get_r_offset(),
9327 _("unexpected opcode while processing relocation %s"),
9328 reloc_property->name().c_str());
9329 break;
9330 default:
9331 gold_unreachable();
9332 }
9333
9334 return true;
9335 }
9336
9337 // Perform a TLS relocation.
9338
9339 template<bool big_endian>
9340 inline typename Arm_relocate_functions<big_endian>::Status
9341 Target_arm<big_endian>::Relocate::relocate_tls(
9342 const Relocate_info<32, big_endian>* relinfo,
9343 Target_arm<big_endian>* target,
9344 size_t relnum,
9345 const elfcpp::Rel<32, big_endian>& rel,
9346 unsigned int r_type,
9347 const Sized_symbol<32>* gsym,
9348 const Symbol_value<32>* psymval,
9349 unsigned char* view,
9350 elfcpp::Elf_types<32>::Elf_Addr address,
9351 section_size_type /*view_size*/ )
9352 {
9353 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9354 typedef Relocate_functions<32, big_endian> RelocFuncs;
9355 Output_segment* tls_segment = relinfo->layout->tls_segment();
9356
9357 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9358
9359 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9360
9361 const bool is_final = (gsym == NULL
9362 ? !parameters->options().shared()
9363 : gsym->final_value_is_known());
9364 const tls::Tls_optimization optimized_type
9365 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9366 switch (r_type)
9367 {
9368 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9369 {
9370 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9371 unsigned int got_offset;
9372 if (gsym != NULL)
9373 {
9374 gold_assert(gsym->has_got_offset(got_type));
9375 got_offset = gsym->got_offset(got_type) - target->got_size();
9376 }
9377 else
9378 {
9379 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9380 gold_assert(object->local_has_got_offset(r_sym, got_type));
9381 got_offset = (object->local_got_offset(r_sym, got_type)
9382 - target->got_size());
9383 }
9384 if (optimized_type == tls::TLSOPT_NONE)
9385 {
9386 Arm_address got_entry =
9387 target->got_plt_section()->address() + got_offset;
9388
9389 // Relocate the field with the PC relative offset of the pair of
9390 // GOT entries.
9391 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9392 return ArmRelocFuncs::STATUS_OKAY;
9393 }
9394 }
9395 break;
9396
9397 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9398 if (optimized_type == tls::TLSOPT_NONE)
9399 {
9400 // Relocate the field with the offset of the GOT entry for
9401 // the module index.
9402 unsigned int got_offset;
9403 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9404 - target->got_size());
9405 Arm_address got_entry =
9406 target->got_plt_section()->address() + got_offset;
9407
9408 // Relocate the field with the PC relative offset of the pair of
9409 // GOT entries.
9410 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9411 return ArmRelocFuncs::STATUS_OKAY;
9412 }
9413 break;
9414
9415 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9416 RelocFuncs::rel32_unaligned(view, value);
9417 return ArmRelocFuncs::STATUS_OKAY;
9418
9419 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9420 if (optimized_type == tls::TLSOPT_NONE)
9421 {
9422 // Relocate the field with the offset of the GOT entry for
9423 // the tp-relative offset of the symbol.
9424 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9425 unsigned int got_offset;
9426 if (gsym != NULL)
9427 {
9428 gold_assert(gsym->has_got_offset(got_type));
9429 got_offset = gsym->got_offset(got_type);
9430 }
9431 else
9432 {
9433 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9434 gold_assert(object->local_has_got_offset(r_sym, got_type));
9435 got_offset = object->local_got_offset(r_sym, got_type);
9436 }
9437
9438 // All GOT offsets are relative to the end of the GOT.
9439 got_offset -= target->got_size();
9440
9441 Arm_address got_entry =
9442 target->got_plt_section()->address() + got_offset;
9443
9444 // Relocate the field with the PC relative offset of the GOT entry.
9445 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9446 return ArmRelocFuncs::STATUS_OKAY;
9447 }
9448 break;
9449
9450 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9451 // If we're creating a shared library, a dynamic relocation will
9452 // have been created for this location, so do not apply it now.
9453 if (!parameters->options().shared())
9454 {
9455 gold_assert(tls_segment != NULL);
9456
9457 // $tp points to the TCB, which is followed by the TLS, so we
9458 // need to add TCB size to the offset.
9459 Arm_address aligned_tcb_size =
9460 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9461 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9462
9463 }
9464 return ArmRelocFuncs::STATUS_OKAY;
9465
9466 default:
9467 gold_unreachable();
9468 }
9469
9470 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9471 _("unsupported reloc %u"),
9472 r_type);
9473 return ArmRelocFuncs::STATUS_BAD_RELOC;
9474 }
9475
9476 // Relocate section data.
9477
9478 template<bool big_endian>
9479 void
9480 Target_arm<big_endian>::relocate_section(
9481 const Relocate_info<32, big_endian>* relinfo,
9482 unsigned int sh_type,
9483 const unsigned char* prelocs,
9484 size_t reloc_count,
9485 Output_section* output_section,
9486 bool needs_special_offset_handling,
9487 unsigned char* view,
9488 Arm_address address,
9489 section_size_type view_size,
9490 const Reloc_symbol_changes* reloc_symbol_changes)
9491 {
9492 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9493 gold_assert(sh_type == elfcpp::SHT_REL);
9494
9495 // See if we are relocating a relaxed input section. If so, the view
9496 // covers the whole output section and we need to adjust accordingly.
9497 if (needs_special_offset_handling)
9498 {
9499 const Output_relaxed_input_section* poris =
9500 output_section->find_relaxed_input_section(relinfo->object,
9501 relinfo->data_shndx);
9502 if (poris != NULL)
9503 {
9504 Arm_address section_address = poris->address();
9505 section_size_type section_size = poris->data_size();
9506
9507 gold_assert((section_address >= address)
9508 && ((section_address + section_size)
9509 <= (address + view_size)));
9510
9511 off_t offset = section_address - address;
9512 view += offset;
9513 address += offset;
9514 view_size = section_size;
9515 }
9516 }
9517
9518 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9519 Arm_relocate, gold::Default_comdat_behavior>(
9520 relinfo,
9521 this,
9522 prelocs,
9523 reloc_count,
9524 output_section,
9525 needs_special_offset_handling,
9526 view,
9527 address,
9528 view_size,
9529 reloc_symbol_changes);
9530 }
9531
9532 // Return the size of a relocation while scanning during a relocatable
9533 // link.
9534
9535 template<bool big_endian>
9536 unsigned int
9537 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9538 unsigned int r_type,
9539 Relobj* object)
9540 {
9541 r_type = get_real_reloc_type(r_type);
9542 const Arm_reloc_property* arp =
9543 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9544 if (arp != NULL)
9545 return arp->size();
9546 else
9547 {
9548 std::string reloc_name =
9549 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9550 gold_error(_("%s: unexpected %s in object file"),
9551 object->name().c_str(), reloc_name.c_str());
9552 return 0;
9553 }
9554 }
9555
9556 // Scan the relocs during a relocatable link.
9557
9558 template<bool big_endian>
9559 void
9560 Target_arm<big_endian>::scan_relocatable_relocs(
9561 Symbol_table* symtab,
9562 Layout* layout,
9563 Sized_relobj_file<32, big_endian>* object,
9564 unsigned int data_shndx,
9565 unsigned int sh_type,
9566 const unsigned char* prelocs,
9567 size_t reloc_count,
9568 Output_section* output_section,
9569 bool needs_special_offset_handling,
9570 size_t local_symbol_count,
9571 const unsigned char* plocal_symbols,
9572 Relocatable_relocs* rr)
9573 {
9574 gold_assert(sh_type == elfcpp::SHT_REL);
9575
9576 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9577 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9578
9579 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9580 Scan_relocatable_relocs>(
9581 symtab,
9582 layout,
9583 object,
9584 data_shndx,
9585 prelocs,
9586 reloc_count,
9587 output_section,
9588 needs_special_offset_handling,
9589 local_symbol_count,
9590 plocal_symbols,
9591 rr);
9592 }
9593
9594 // Emit relocations for a section.
9595
9596 template<bool big_endian>
9597 void
9598 Target_arm<big_endian>::relocate_relocs(
9599 const Relocate_info<32, big_endian>* relinfo,
9600 unsigned int sh_type,
9601 const unsigned char* prelocs,
9602 size_t reloc_count,
9603 Output_section* output_section,
9604 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9605 const Relocatable_relocs* rr,
9606 unsigned char* view,
9607 Arm_address view_address,
9608 section_size_type view_size,
9609 unsigned char* reloc_view,
9610 section_size_type reloc_view_size)
9611 {
9612 gold_assert(sh_type == elfcpp::SHT_REL);
9613
9614 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
9615 relinfo,
9616 prelocs,
9617 reloc_count,
9618 output_section,
9619 offset_in_output_section,
9620 rr,
9621 view,
9622 view_address,
9623 view_size,
9624 reloc_view,
9625 reloc_view_size);
9626 }
9627
9628 // Perform target-specific processing in a relocatable link. This is
9629 // only used if we use the relocation strategy RELOC_SPECIAL.
9630
9631 template<bool big_endian>
9632 void
9633 Target_arm<big_endian>::relocate_special_relocatable(
9634 const Relocate_info<32, big_endian>* relinfo,
9635 unsigned int sh_type,
9636 const unsigned char* preloc_in,
9637 size_t relnum,
9638 Output_section* output_section,
9639 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9640 unsigned char* view,
9641 elfcpp::Elf_types<32>::Elf_Addr view_address,
9642 section_size_type,
9643 unsigned char* preloc_out)
9644 {
9645 // We can only handle REL type relocation sections.
9646 gold_assert(sh_type == elfcpp::SHT_REL);
9647
9648 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9649 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9650 Reltype_write;
9651 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9652
9653 const Arm_relobj<big_endian>* object =
9654 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9655 const unsigned int local_count = object->local_symbol_count();
9656
9657 Reltype reloc(preloc_in);
9658 Reltype_write reloc_write(preloc_out);
9659
9660 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9661 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9662 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9663
9664 const Arm_reloc_property* arp =
9665 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9666 gold_assert(arp != NULL);
9667
9668 // Get the new symbol index.
9669 // We only use RELOC_SPECIAL strategy in local relocations.
9670 gold_assert(r_sym < local_count);
9671
9672 // We are adjusting a section symbol. We need to find
9673 // the symbol table index of the section symbol for
9674 // the output section corresponding to input section
9675 // in which this symbol is defined.
9676 bool is_ordinary;
9677 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9678 gold_assert(is_ordinary);
9679 Output_section* os = object->output_section(shndx);
9680 gold_assert(os != NULL);
9681 gold_assert(os->needs_symtab_index());
9682 unsigned int new_symndx = os->symtab_index();
9683
9684 // Get the new offset--the location in the output section where
9685 // this relocation should be applied.
9686
9687 Arm_address offset = reloc.get_r_offset();
9688 Arm_address new_offset;
9689 if (offset_in_output_section != invalid_address)
9690 new_offset = offset + offset_in_output_section;
9691 else
9692 {
9693 section_offset_type sot_offset =
9694 convert_types<section_offset_type, Arm_address>(offset);
9695 section_offset_type new_sot_offset =
9696 output_section->output_offset(object, relinfo->data_shndx,
9697 sot_offset);
9698 gold_assert(new_sot_offset != -1);
9699 new_offset = new_sot_offset;
9700 }
9701
9702 // In an object file, r_offset is an offset within the section.
9703 // In an executable or dynamic object, generated by
9704 // --emit-relocs, r_offset is an absolute address.
9705 if (!parameters->options().relocatable())
9706 {
9707 new_offset += view_address;
9708 if (offset_in_output_section != invalid_address)
9709 new_offset -= offset_in_output_section;
9710 }
9711
9712 reloc_write.put_r_offset(new_offset);
9713 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9714
9715 // Handle the reloc addend.
9716 // The relocation uses a section symbol in the input file.
9717 // We are adjusting it to use a section symbol in the output
9718 // file. The input section symbol refers to some address in
9719 // the input section. We need the relocation in the output
9720 // file to refer to that same address. This adjustment to
9721 // the addend is the same calculation we use for a simple
9722 // absolute relocation for the input section symbol.
9723
9724 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9725
9726 // Handle THUMB bit.
9727 Symbol_value<32> symval;
9728 Arm_address thumb_bit =
9729 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9730 if (thumb_bit != 0
9731 && arp->uses_thumb_bit()
9732 && ((psymval->value(object, 0) & 1) != 0))
9733 {
9734 Arm_address stripped_value =
9735 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9736 symval.set_output_value(stripped_value);
9737 psymval = &symval;
9738 }
9739
9740 unsigned char* paddend = view + offset;
9741 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9742 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9743 switch (r_type)
9744 {
9745 case elfcpp::R_ARM_ABS8:
9746 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9747 psymval);
9748 break;
9749
9750 case elfcpp::R_ARM_ABS12:
9751 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9752 psymval);
9753 break;
9754
9755 case elfcpp::R_ARM_ABS16:
9756 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9757 psymval);
9758 break;
9759
9760 case elfcpp::R_ARM_THM_ABS5:
9761 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9762 object,
9763 psymval);
9764 break;
9765
9766 case elfcpp::R_ARM_MOVW_ABS_NC:
9767 case elfcpp::R_ARM_MOVW_PREL_NC:
9768 case elfcpp::R_ARM_MOVW_BREL_NC:
9769 case elfcpp::R_ARM_MOVW_BREL:
9770 reloc_status = Arm_relocate_functions<big_endian>::movw(
9771 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9772 break;
9773
9774 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9775 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9776 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9777 case elfcpp::R_ARM_THM_MOVW_BREL:
9778 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9779 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9780 break;
9781
9782 case elfcpp::R_ARM_THM_CALL:
9783 case elfcpp::R_ARM_THM_XPC22:
9784 case elfcpp::R_ARM_THM_JUMP24:
9785 reloc_status =
9786 Arm_relocate_functions<big_endian>::thumb_branch_common(
9787 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9788 false);
9789 break;
9790
9791 case elfcpp::R_ARM_PLT32:
9792 case elfcpp::R_ARM_CALL:
9793 case elfcpp::R_ARM_JUMP24:
9794 case elfcpp::R_ARM_XPC25:
9795 reloc_status =
9796 Arm_relocate_functions<big_endian>::arm_branch_common(
9797 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9798 false);
9799 break;
9800
9801 case elfcpp::R_ARM_THM_JUMP19:
9802 reloc_status =
9803 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9804 psymval, 0, thumb_bit);
9805 break;
9806
9807 case elfcpp::R_ARM_THM_JUMP6:
9808 reloc_status =
9809 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9810 0);
9811 break;
9812
9813 case elfcpp::R_ARM_THM_JUMP8:
9814 reloc_status =
9815 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9816 0);
9817 break;
9818
9819 case elfcpp::R_ARM_THM_JUMP11:
9820 reloc_status =
9821 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9822 0);
9823 break;
9824
9825 case elfcpp::R_ARM_PREL31:
9826 reloc_status =
9827 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9828 thumb_bit);
9829 break;
9830
9831 case elfcpp::R_ARM_THM_PC8:
9832 reloc_status =
9833 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9834 0);
9835 break;
9836
9837 case elfcpp::R_ARM_THM_PC12:
9838 reloc_status =
9839 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9840 0);
9841 break;
9842
9843 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9844 reloc_status =
9845 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9846 0, thumb_bit);
9847 break;
9848
9849 // These relocation truncate relocation results so we cannot handle them
9850 // in a relocatable link.
9851 case elfcpp::R_ARM_MOVT_ABS:
9852 case elfcpp::R_ARM_THM_MOVT_ABS:
9853 case elfcpp::R_ARM_MOVT_PREL:
9854 case elfcpp::R_ARM_MOVT_BREL:
9855 case elfcpp::R_ARM_THM_MOVT_PREL:
9856 case elfcpp::R_ARM_THM_MOVT_BREL:
9857 case elfcpp::R_ARM_ALU_PC_G0_NC:
9858 case elfcpp::R_ARM_ALU_PC_G0:
9859 case elfcpp::R_ARM_ALU_PC_G1_NC:
9860 case elfcpp::R_ARM_ALU_PC_G1:
9861 case elfcpp::R_ARM_ALU_PC_G2:
9862 case elfcpp::R_ARM_ALU_SB_G0_NC:
9863 case elfcpp::R_ARM_ALU_SB_G0:
9864 case elfcpp::R_ARM_ALU_SB_G1_NC:
9865 case elfcpp::R_ARM_ALU_SB_G1:
9866 case elfcpp::R_ARM_ALU_SB_G2:
9867 case elfcpp::R_ARM_LDR_PC_G0:
9868 case elfcpp::R_ARM_LDR_PC_G1:
9869 case elfcpp::R_ARM_LDR_PC_G2:
9870 case elfcpp::R_ARM_LDR_SB_G0:
9871 case elfcpp::R_ARM_LDR_SB_G1:
9872 case elfcpp::R_ARM_LDR_SB_G2:
9873 case elfcpp::R_ARM_LDRS_PC_G0:
9874 case elfcpp::R_ARM_LDRS_PC_G1:
9875 case elfcpp::R_ARM_LDRS_PC_G2:
9876 case elfcpp::R_ARM_LDRS_SB_G0:
9877 case elfcpp::R_ARM_LDRS_SB_G1:
9878 case elfcpp::R_ARM_LDRS_SB_G2:
9879 case elfcpp::R_ARM_LDC_PC_G0:
9880 case elfcpp::R_ARM_LDC_PC_G1:
9881 case elfcpp::R_ARM_LDC_PC_G2:
9882 case elfcpp::R_ARM_LDC_SB_G0:
9883 case elfcpp::R_ARM_LDC_SB_G1:
9884 case elfcpp::R_ARM_LDC_SB_G2:
9885 gold_error(_("cannot handle %s in a relocatable link"),
9886 arp->name().c_str());
9887 break;
9888
9889 default:
9890 gold_unreachable();
9891 }
9892
9893 // Report any errors.
9894 switch (reloc_status)
9895 {
9896 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9897 break;
9898 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9899 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9900 _("relocation overflow in %s"),
9901 arp->name().c_str());
9902 break;
9903 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9904 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9905 _("unexpected opcode while processing relocation %s"),
9906 arp->name().c_str());
9907 break;
9908 default:
9909 gold_unreachable();
9910 }
9911 }
9912
9913 // Return the value to use for a dynamic symbol which requires special
9914 // treatment. This is how we support equality comparisons of function
9915 // pointers across shared library boundaries, as described in the
9916 // processor specific ABI supplement.
9917
9918 template<bool big_endian>
9919 uint64_t
9920 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9921 {
9922 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9923 return this->plt_section()->address() + gsym->plt_offset();
9924 }
9925
9926 // Map platform-specific relocs to real relocs
9927 //
9928 template<bool big_endian>
9929 unsigned int
9930 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9931 {
9932 switch (r_type)
9933 {
9934 case elfcpp::R_ARM_TARGET1:
9935 // This is either R_ARM_ABS32 or R_ARM_REL32;
9936 return elfcpp::R_ARM_ABS32;
9937
9938 case elfcpp::R_ARM_TARGET2:
9939 // This can be any reloc type but usually is R_ARM_GOT_PREL
9940 return elfcpp::R_ARM_GOT_PREL;
9941
9942 default:
9943 return r_type;
9944 }
9945 }
9946
9947 // Whether if two EABI versions V1 and V2 are compatible.
9948
9949 template<bool big_endian>
9950 bool
9951 Target_arm<big_endian>::are_eabi_versions_compatible(
9952 elfcpp::Elf_Word v1,
9953 elfcpp::Elf_Word v2)
9954 {
9955 // v4 and v5 are the same spec before and after it was released,
9956 // so allow mixing them.
9957 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9958 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9959 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9960 return true;
9961
9962 return v1 == v2;
9963 }
9964
9965 // Combine FLAGS from an input object called NAME and the processor-specific
9966 // flags in the ELF header of the output. Much of this is adapted from the
9967 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9968 // in bfd/elf32-arm.c.
9969
9970 template<bool big_endian>
9971 void
9972 Target_arm<big_endian>::merge_processor_specific_flags(
9973 const std::string& name,
9974 elfcpp::Elf_Word flags)
9975 {
9976 if (this->are_processor_specific_flags_set())
9977 {
9978 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9979
9980 // Nothing to merge if flags equal to those in output.
9981 if (flags == out_flags)
9982 return;
9983
9984 // Complain about various flag mismatches.
9985 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9986 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9987 if (!this->are_eabi_versions_compatible(version1, version2)
9988 && parameters->options().warn_mismatch())
9989 gold_error(_("Source object %s has EABI version %d but output has "
9990 "EABI version %d."),
9991 name.c_str(),
9992 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9993 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9994 }
9995 else
9996 {
9997 // If the input is the default architecture and had the default
9998 // flags then do not bother setting the flags for the output
9999 // architecture, instead allow future merges to do this. If no
10000 // future merges ever set these flags then they will retain their
10001 // uninitialised values, which surprise surprise, correspond
10002 // to the default values.
10003 if (flags == 0)
10004 return;
10005
10006 // This is the first time, just copy the flags.
10007 // We only copy the EABI version for now.
10008 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10009 }
10010 }
10011
10012 // Adjust ELF file header.
10013 template<bool big_endian>
10014 void
10015 Target_arm<big_endian>::do_adjust_elf_header(
10016 unsigned char* view,
10017 int len)
10018 {
10019 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10020
10021 elfcpp::Ehdr<32, big_endian> ehdr(view);
10022 elfcpp::Elf_Word flags = this->processor_specific_flags();
10023 unsigned char e_ident[elfcpp::EI_NIDENT];
10024 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10025
10026 if (elfcpp::arm_eabi_version(flags)
10027 == elfcpp::EF_ARM_EABI_UNKNOWN)
10028 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10029 else
10030 e_ident[elfcpp::EI_OSABI] = 0;
10031 e_ident[elfcpp::EI_ABIVERSION] = 0;
10032
10033 // FIXME: Do EF_ARM_BE8 adjustment.
10034
10035 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10036 // as appropriate.
10037 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10038 {
10039 elfcpp::Elf_Half type = ehdr.get_e_type();
10040 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10041 {
10042 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10043 if (attr->int_value())
10044 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10045 else
10046 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10047 this->set_processor_specific_flags(flags);
10048 }
10049 }
10050 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10051 oehdr.put_e_ident(e_ident);
10052 }
10053
10054 // do_make_elf_object to override the same function in the base class.
10055 // We need to use a target-specific sub-class of
10056 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10057 // Hence we need to have our own ELF object creation.
10058
10059 template<bool big_endian>
10060 Object*
10061 Target_arm<big_endian>::do_make_elf_object(
10062 const std::string& name,
10063 Input_file* input_file,
10064 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10065 {
10066 int et = ehdr.get_e_type();
10067 // ET_EXEC files are valid input for --just-symbols/-R,
10068 // and we treat them as relocatable objects.
10069 if (et == elfcpp::ET_REL
10070 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10071 {
10072 Arm_relobj<big_endian>* obj =
10073 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10074 obj->setup();
10075 return obj;
10076 }
10077 else if (et == elfcpp::ET_DYN)
10078 {
10079 Sized_dynobj<32, big_endian>* obj =
10080 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10081 obj->setup();
10082 return obj;
10083 }
10084 else
10085 {
10086 gold_error(_("%s: unsupported ELF file type %d"),
10087 name.c_str(), et);
10088 return NULL;
10089 }
10090 }
10091
10092 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10093 // Returns -1 if no architecture could be read.
10094 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10095
10096 template<bool big_endian>
10097 int
10098 Target_arm<big_endian>::get_secondary_compatible_arch(
10099 const Attributes_section_data* pasd)
10100 {
10101 const Object_attribute* known_attributes =
10102 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10103
10104 // Note: the tag and its argument below are uleb128 values, though
10105 // currently-defined values fit in one byte for each.
10106 const std::string& sv =
10107 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10108 if (sv.size() == 2
10109 && sv.data()[0] == elfcpp::Tag_CPU_arch
10110 && (sv.data()[1] & 128) != 128)
10111 return sv.data()[1];
10112
10113 // This tag is "safely ignorable", so don't complain if it looks funny.
10114 return -1;
10115 }
10116
10117 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10118 // The tag is removed if ARCH is -1.
10119 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10120
10121 template<bool big_endian>
10122 void
10123 Target_arm<big_endian>::set_secondary_compatible_arch(
10124 Attributes_section_data* pasd,
10125 int arch)
10126 {
10127 Object_attribute* known_attributes =
10128 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10129
10130 if (arch == -1)
10131 {
10132 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10133 return;
10134 }
10135
10136 // Note: the tag and its argument below are uleb128 values, though
10137 // currently-defined values fit in one byte for each.
10138 char sv[3];
10139 sv[0] = elfcpp::Tag_CPU_arch;
10140 gold_assert(arch != 0);
10141 sv[1] = arch;
10142 sv[2] = '\0';
10143
10144 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10145 }
10146
10147 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10148 // into account.
10149 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10150
10151 template<bool big_endian>
10152 int
10153 Target_arm<big_endian>::tag_cpu_arch_combine(
10154 const char* name,
10155 int oldtag,
10156 int* secondary_compat_out,
10157 int newtag,
10158 int secondary_compat)
10159 {
10160 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10161 static const int v6t2[] =
10162 {
10163 T(V6T2), // PRE_V4.
10164 T(V6T2), // V4.
10165 T(V6T2), // V4T.
10166 T(V6T2), // V5T.
10167 T(V6T2), // V5TE.
10168 T(V6T2), // V5TEJ.
10169 T(V6T2), // V6.
10170 T(V7), // V6KZ.
10171 T(V6T2) // V6T2.
10172 };
10173 static const int v6k[] =
10174 {
10175 T(V6K), // PRE_V4.
10176 T(V6K), // V4.
10177 T(V6K), // V4T.
10178 T(V6K), // V5T.
10179 T(V6K), // V5TE.
10180 T(V6K), // V5TEJ.
10181 T(V6K), // V6.
10182 T(V6KZ), // V6KZ.
10183 T(V7), // V6T2.
10184 T(V6K) // V6K.
10185 };
10186 static const int v7[] =
10187 {
10188 T(V7), // PRE_V4.
10189 T(V7), // V4.
10190 T(V7), // V4T.
10191 T(V7), // V5T.
10192 T(V7), // V5TE.
10193 T(V7), // V5TEJ.
10194 T(V7), // V6.
10195 T(V7), // V6KZ.
10196 T(V7), // V6T2.
10197 T(V7), // V6K.
10198 T(V7) // V7.
10199 };
10200 static const int v6_m[] =
10201 {
10202 -1, // PRE_V4.
10203 -1, // V4.
10204 T(V6K), // V4T.
10205 T(V6K), // V5T.
10206 T(V6K), // V5TE.
10207 T(V6K), // V5TEJ.
10208 T(V6K), // V6.
10209 T(V6KZ), // V6KZ.
10210 T(V7), // V6T2.
10211 T(V6K), // V6K.
10212 T(V7), // V7.
10213 T(V6_M) // V6_M.
10214 };
10215 static const int v6s_m[] =
10216 {
10217 -1, // PRE_V4.
10218 -1, // V4.
10219 T(V6K), // V4T.
10220 T(V6K), // V5T.
10221 T(V6K), // V5TE.
10222 T(V6K), // V5TEJ.
10223 T(V6K), // V6.
10224 T(V6KZ), // V6KZ.
10225 T(V7), // V6T2.
10226 T(V6K), // V6K.
10227 T(V7), // V7.
10228 T(V6S_M), // V6_M.
10229 T(V6S_M) // V6S_M.
10230 };
10231 static const int v7e_m[] =
10232 {
10233 -1, // PRE_V4.
10234 -1, // V4.
10235 T(V7E_M), // V4T.
10236 T(V7E_M), // V5T.
10237 T(V7E_M), // V5TE.
10238 T(V7E_M), // V5TEJ.
10239 T(V7E_M), // V6.
10240 T(V7E_M), // V6KZ.
10241 T(V7E_M), // V6T2.
10242 T(V7E_M), // V6K.
10243 T(V7E_M), // V7.
10244 T(V7E_M), // V6_M.
10245 T(V7E_M), // V6S_M.
10246 T(V7E_M) // V7E_M.
10247 };
10248 static const int v4t_plus_v6_m[] =
10249 {
10250 -1, // PRE_V4.
10251 -1, // V4.
10252 T(V4T), // V4T.
10253 T(V5T), // V5T.
10254 T(V5TE), // V5TE.
10255 T(V5TEJ), // V5TEJ.
10256 T(V6), // V6.
10257 T(V6KZ), // V6KZ.
10258 T(V6T2), // V6T2.
10259 T(V6K), // V6K.
10260 T(V7), // V7.
10261 T(V6_M), // V6_M.
10262 T(V6S_M), // V6S_M.
10263 T(V7E_M), // V7E_M.
10264 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10265 };
10266 static const int* comb[] =
10267 {
10268 v6t2,
10269 v6k,
10270 v7,
10271 v6_m,
10272 v6s_m,
10273 v7e_m,
10274 // Pseudo-architecture.
10275 v4t_plus_v6_m
10276 };
10277
10278 // Check we've not got a higher architecture than we know about.
10279
10280 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10281 {
10282 gold_error(_("%s: unknown CPU architecture"), name);
10283 return -1;
10284 }
10285
10286 // Override old tag if we have a Tag_also_compatible_with on the output.
10287
10288 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10289 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10290 oldtag = T(V4T_PLUS_V6_M);
10291
10292 // And override the new tag if we have a Tag_also_compatible_with on the
10293 // input.
10294
10295 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10296 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10297 newtag = T(V4T_PLUS_V6_M);
10298
10299 // Architectures before V6KZ add features monotonically.
10300 int tagh = std::max(oldtag, newtag);
10301 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10302 return tagh;
10303
10304 int tagl = std::min(oldtag, newtag);
10305 int result = comb[tagh - T(V6T2)][tagl];
10306
10307 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10308 // as the canonical version.
10309 if (result == T(V4T_PLUS_V6_M))
10310 {
10311 result = T(V4T);
10312 *secondary_compat_out = T(V6_M);
10313 }
10314 else
10315 *secondary_compat_out = -1;
10316
10317 if (result == -1)
10318 {
10319 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10320 name, oldtag, newtag);
10321 return -1;
10322 }
10323
10324 return result;
10325 #undef T
10326 }
10327
10328 // Helper to print AEABI enum tag value.
10329
10330 template<bool big_endian>
10331 std::string
10332 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10333 {
10334 static const char* aeabi_enum_names[] =
10335 { "", "variable-size", "32-bit", "" };
10336 const size_t aeabi_enum_names_size =
10337 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10338
10339 if (value < aeabi_enum_names_size)
10340 return std::string(aeabi_enum_names[value]);
10341 else
10342 {
10343 char buffer[100];
10344 sprintf(buffer, "<unknown value %u>", value);
10345 return std::string(buffer);
10346 }
10347 }
10348
10349 // Return the string value to store in TAG_CPU_name.
10350
10351 template<bool big_endian>
10352 std::string
10353 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10354 {
10355 static const char* name_table[] = {
10356 // These aren't real CPU names, but we can't guess
10357 // that from the architecture version alone.
10358 "Pre v4",
10359 "ARM v4",
10360 "ARM v4T",
10361 "ARM v5T",
10362 "ARM v5TE",
10363 "ARM v5TEJ",
10364 "ARM v6",
10365 "ARM v6KZ",
10366 "ARM v6T2",
10367 "ARM v6K",
10368 "ARM v7",
10369 "ARM v6-M",
10370 "ARM v6S-M",
10371 "ARM v7E-M"
10372 };
10373 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10374
10375 if (value < name_table_size)
10376 return std::string(name_table[value]);
10377 else
10378 {
10379 char buffer[100];
10380 sprintf(buffer, "<unknown CPU value %u>", value);
10381 return std::string(buffer);
10382 }
10383 }
10384
10385 // Merge object attributes from input file called NAME with those of the
10386 // output. The input object attributes are in the object pointed by PASD.
10387
10388 template<bool big_endian>
10389 void
10390 Target_arm<big_endian>::merge_object_attributes(
10391 const char* name,
10392 const Attributes_section_data* pasd)
10393 {
10394 // Return if there is no attributes section data.
10395 if (pasd == NULL)
10396 return;
10397
10398 // If output has no object attributes, just copy.
10399 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10400 if (this->attributes_section_data_ == NULL)
10401 {
10402 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10403 Object_attribute* out_attr =
10404 this->attributes_section_data_->known_attributes(vendor);
10405
10406 // We do not output objects with Tag_MPextension_use_legacy - we move
10407 // the attribute's value to Tag_MPextension_use. */
10408 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10409 {
10410 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10411 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10412 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10413 {
10414 gold_error(_("%s has both the current and legacy "
10415 "Tag_MPextension_use attributes"),
10416 name);
10417 }
10418
10419 out_attr[elfcpp::Tag_MPextension_use] =
10420 out_attr[elfcpp::Tag_MPextension_use_legacy];
10421 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10422 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10423 }
10424
10425 return;
10426 }
10427
10428 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10429 Object_attribute* out_attr =
10430 this->attributes_section_data_->known_attributes(vendor);
10431
10432 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10433 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10434 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10435 {
10436 // Ignore mismatches if the object doesn't use floating point. */
10437 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10438 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10439 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10440 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10441 && parameters->options().warn_mismatch())
10442 gold_error(_("%s uses VFP register arguments, output does not"),
10443 name);
10444 }
10445
10446 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10447 {
10448 // Merge this attribute with existing attributes.
10449 switch (i)
10450 {
10451 case elfcpp::Tag_CPU_raw_name:
10452 case elfcpp::Tag_CPU_name:
10453 // These are merged after Tag_CPU_arch.
10454 break;
10455
10456 case elfcpp::Tag_ABI_optimization_goals:
10457 case elfcpp::Tag_ABI_FP_optimization_goals:
10458 // Use the first value seen.
10459 break;
10460
10461 case elfcpp::Tag_CPU_arch:
10462 {
10463 unsigned int saved_out_attr = out_attr->int_value();
10464 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10465 int secondary_compat =
10466 this->get_secondary_compatible_arch(pasd);
10467 int secondary_compat_out =
10468 this->get_secondary_compatible_arch(
10469 this->attributes_section_data_);
10470 out_attr[i].set_int_value(
10471 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10472 &secondary_compat_out,
10473 in_attr[i].int_value(),
10474 secondary_compat));
10475 this->set_secondary_compatible_arch(this->attributes_section_data_,
10476 secondary_compat_out);
10477
10478 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10479 if (out_attr[i].int_value() == saved_out_attr)
10480 ; // Leave the names alone.
10481 else if (out_attr[i].int_value() == in_attr[i].int_value())
10482 {
10483 // The output architecture has been changed to match the
10484 // input architecture. Use the input names.
10485 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10486 in_attr[elfcpp::Tag_CPU_name].string_value());
10487 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10488 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10489 }
10490 else
10491 {
10492 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10493 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10494 }
10495
10496 // If we still don't have a value for Tag_CPU_name,
10497 // make one up now. Tag_CPU_raw_name remains blank.
10498 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10499 {
10500 const std::string cpu_name =
10501 this->tag_cpu_name_value(out_attr[i].int_value());
10502 // FIXME: If we see an unknown CPU, this will be set
10503 // to "<unknown CPU n>", where n is the attribute value.
10504 // This is different from BFD, which leaves the name alone.
10505 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10506 }
10507 }
10508 break;
10509
10510 case elfcpp::Tag_ARM_ISA_use:
10511 case elfcpp::Tag_THUMB_ISA_use:
10512 case elfcpp::Tag_WMMX_arch:
10513 case elfcpp::Tag_Advanced_SIMD_arch:
10514 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10515 case elfcpp::Tag_ABI_FP_rounding:
10516 case elfcpp::Tag_ABI_FP_exceptions:
10517 case elfcpp::Tag_ABI_FP_user_exceptions:
10518 case elfcpp::Tag_ABI_FP_number_model:
10519 case elfcpp::Tag_VFP_HP_extension:
10520 case elfcpp::Tag_CPU_unaligned_access:
10521 case elfcpp::Tag_T2EE_use:
10522 case elfcpp::Tag_Virtualization_use:
10523 case elfcpp::Tag_MPextension_use:
10524 // Use the largest value specified.
10525 if (in_attr[i].int_value() > out_attr[i].int_value())
10526 out_attr[i].set_int_value(in_attr[i].int_value());
10527 break;
10528
10529 case elfcpp::Tag_ABI_align8_preserved:
10530 case elfcpp::Tag_ABI_PCS_RO_data:
10531 // Use the smallest value specified.
10532 if (in_attr[i].int_value() < out_attr[i].int_value())
10533 out_attr[i].set_int_value(in_attr[i].int_value());
10534 break;
10535
10536 case elfcpp::Tag_ABI_align8_needed:
10537 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10538 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10539 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10540 == 0)))
10541 {
10542 // This error message should be enabled once all non-conforming
10543 // binaries in the toolchain have had the attributes set
10544 // properly.
10545 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10546 // name);
10547 }
10548 // Fall through.
10549 case elfcpp::Tag_ABI_FP_denormal:
10550 case elfcpp::Tag_ABI_PCS_GOT_use:
10551 {
10552 // These tags have 0 = don't care, 1 = strong requirement,
10553 // 2 = weak requirement.
10554 static const int order_021[3] = {0, 2, 1};
10555
10556 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10557 // value if greater than 2 (for future-proofing).
10558 if ((in_attr[i].int_value() > 2
10559 && in_attr[i].int_value() > out_attr[i].int_value())
10560 || (in_attr[i].int_value() <= 2
10561 && out_attr[i].int_value() <= 2
10562 && (order_021[in_attr[i].int_value()]
10563 > order_021[out_attr[i].int_value()])))
10564 out_attr[i].set_int_value(in_attr[i].int_value());
10565 }
10566 break;
10567
10568 case elfcpp::Tag_CPU_arch_profile:
10569 if (out_attr[i].int_value() != in_attr[i].int_value())
10570 {
10571 // 0 will merge with anything.
10572 // 'A' and 'S' merge to 'A'.
10573 // 'R' and 'S' merge to 'R'.
10574 // 'M' and 'A|R|S' is an error.
10575 if (out_attr[i].int_value() == 0
10576 || (out_attr[i].int_value() == 'S'
10577 && (in_attr[i].int_value() == 'A'
10578 || in_attr[i].int_value() == 'R')))
10579 out_attr[i].set_int_value(in_attr[i].int_value());
10580 else if (in_attr[i].int_value() == 0
10581 || (in_attr[i].int_value() == 'S'
10582 && (out_attr[i].int_value() == 'A'
10583 || out_attr[i].int_value() == 'R')))
10584 ; // Do nothing.
10585 else if (parameters->options().warn_mismatch())
10586 {
10587 gold_error
10588 (_("conflicting architecture profiles %c/%c"),
10589 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10590 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10591 }
10592 }
10593 break;
10594 case elfcpp::Tag_VFP_arch:
10595 {
10596 static const struct
10597 {
10598 int ver;
10599 int regs;
10600 } vfp_versions[7] =
10601 {
10602 {0, 0},
10603 {1, 16},
10604 {2, 16},
10605 {3, 32},
10606 {3, 16},
10607 {4, 32},
10608 {4, 16}
10609 };
10610
10611 // Values greater than 6 aren't defined, so just pick the
10612 // biggest.
10613 if (in_attr[i].int_value() > 6
10614 && in_attr[i].int_value() > out_attr[i].int_value())
10615 {
10616 *out_attr = *in_attr;
10617 break;
10618 }
10619 // The output uses the superset of input features
10620 // (ISA version) and registers.
10621 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10622 vfp_versions[out_attr[i].int_value()].ver);
10623 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10624 vfp_versions[out_attr[i].int_value()].regs);
10625 // This assumes all possible supersets are also a valid
10626 // options.
10627 int newval;
10628 for (newval = 6; newval > 0; newval--)
10629 {
10630 if (regs == vfp_versions[newval].regs
10631 && ver == vfp_versions[newval].ver)
10632 break;
10633 }
10634 out_attr[i].set_int_value(newval);
10635 }
10636 break;
10637 case elfcpp::Tag_PCS_config:
10638 if (out_attr[i].int_value() == 0)
10639 out_attr[i].set_int_value(in_attr[i].int_value());
10640 else if (in_attr[i].int_value() != 0
10641 && out_attr[i].int_value() != 0
10642 && parameters->options().warn_mismatch())
10643 {
10644 // It's sometimes ok to mix different configs, so this is only
10645 // a warning.
10646 gold_warning(_("%s: conflicting platform configuration"), name);
10647 }
10648 break;
10649 case elfcpp::Tag_ABI_PCS_R9_use:
10650 if (in_attr[i].int_value() != out_attr[i].int_value()
10651 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10652 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10653 && parameters->options().warn_mismatch())
10654 {
10655 gold_error(_("%s: conflicting use of R9"), name);
10656 }
10657 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10658 out_attr[i].set_int_value(in_attr[i].int_value());
10659 break;
10660 case elfcpp::Tag_ABI_PCS_RW_data:
10661 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10662 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10663 != elfcpp::AEABI_R9_SB)
10664 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10665 != elfcpp::AEABI_R9_unused)
10666 && parameters->options().warn_mismatch())
10667 {
10668 gold_error(_("%s: SB relative addressing conflicts with use "
10669 "of R9"),
10670 name);
10671 }
10672 // Use the smallest value specified.
10673 if (in_attr[i].int_value() < out_attr[i].int_value())
10674 out_attr[i].set_int_value(in_attr[i].int_value());
10675 break;
10676 case elfcpp::Tag_ABI_PCS_wchar_t:
10677 if (out_attr[i].int_value()
10678 && in_attr[i].int_value()
10679 && out_attr[i].int_value() != in_attr[i].int_value()
10680 && parameters->options().warn_mismatch()
10681 && parameters->options().wchar_size_warning())
10682 {
10683 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10684 "use %u-byte wchar_t; use of wchar_t values "
10685 "across objects may fail"),
10686 name, in_attr[i].int_value(),
10687 out_attr[i].int_value());
10688 }
10689 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10690 out_attr[i].set_int_value(in_attr[i].int_value());
10691 break;
10692 case elfcpp::Tag_ABI_enum_size:
10693 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10694 {
10695 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10696 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10697 {
10698 // The existing object is compatible with anything.
10699 // Use whatever requirements the new object has.
10700 out_attr[i].set_int_value(in_attr[i].int_value());
10701 }
10702 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10703 && out_attr[i].int_value() != in_attr[i].int_value()
10704 && parameters->options().warn_mismatch()
10705 && parameters->options().enum_size_warning())
10706 {
10707 unsigned int in_value = in_attr[i].int_value();
10708 unsigned int out_value = out_attr[i].int_value();
10709 gold_warning(_("%s uses %s enums yet the output is to use "
10710 "%s enums; use of enum values across objects "
10711 "may fail"),
10712 name,
10713 this->aeabi_enum_name(in_value).c_str(),
10714 this->aeabi_enum_name(out_value).c_str());
10715 }
10716 }
10717 break;
10718 case elfcpp::Tag_ABI_VFP_args:
10719 // Already done.
10720 break;
10721 case elfcpp::Tag_ABI_WMMX_args:
10722 if (in_attr[i].int_value() != out_attr[i].int_value()
10723 && parameters->options().warn_mismatch())
10724 {
10725 gold_error(_("%s uses iWMMXt register arguments, output does "
10726 "not"),
10727 name);
10728 }
10729 break;
10730 case Object_attribute::Tag_compatibility:
10731 // Merged in target-independent code.
10732 break;
10733 case elfcpp::Tag_ABI_HardFP_use:
10734 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10735 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10736 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10737 out_attr[i].set_int_value(3);
10738 else if (in_attr[i].int_value() > out_attr[i].int_value())
10739 out_attr[i].set_int_value(in_attr[i].int_value());
10740 break;
10741 case elfcpp::Tag_ABI_FP_16bit_format:
10742 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10743 {
10744 if (in_attr[i].int_value() != out_attr[i].int_value()
10745 && parameters->options().warn_mismatch())
10746 gold_error(_("fp16 format mismatch between %s and output"),
10747 name);
10748 }
10749 if (in_attr[i].int_value() != 0)
10750 out_attr[i].set_int_value(in_attr[i].int_value());
10751 break;
10752
10753 case elfcpp::Tag_DIV_use:
10754 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10755 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10756 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10757 // CPU. We will merge as follows: If the input attribute's value
10758 // is one then the output attribute's value remains unchanged. If
10759 // the input attribute's value is zero or two then if the output
10760 // attribute's value is one the output value is set to the input
10761 // value, otherwise the output value must be the same as the
10762 // inputs. */
10763 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10764 {
10765 if (in_attr[i].int_value() != out_attr[i].int_value())
10766 {
10767 gold_error(_("DIV usage mismatch between %s and output"),
10768 name);
10769 }
10770 }
10771
10772 if (in_attr[i].int_value() != 1)
10773 out_attr[i].set_int_value(in_attr[i].int_value());
10774
10775 break;
10776
10777 case elfcpp::Tag_MPextension_use_legacy:
10778 // We don't output objects with Tag_MPextension_use_legacy - we
10779 // move the value to Tag_MPextension_use.
10780 if (in_attr[i].int_value() != 0
10781 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10782 {
10783 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10784 != in_attr[i].int_value())
10785 {
10786 gold_error(_("%s has has both the current and legacy "
10787 "Tag_MPextension_use attributes"),
10788 name);
10789 }
10790 }
10791
10792 if (in_attr[i].int_value()
10793 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10794 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10795
10796 break;
10797
10798 case elfcpp::Tag_nodefaults:
10799 // This tag is set if it exists, but the value is unused (and is
10800 // typically zero). We don't actually need to do anything here -
10801 // the merge happens automatically when the type flags are merged
10802 // below.
10803 break;
10804 case elfcpp::Tag_also_compatible_with:
10805 // Already done in Tag_CPU_arch.
10806 break;
10807 case elfcpp::Tag_conformance:
10808 // Keep the attribute if it matches. Throw it away otherwise.
10809 // No attribute means no claim to conform.
10810 if (in_attr[i].string_value() != out_attr[i].string_value())
10811 out_attr[i].set_string_value("");
10812 break;
10813
10814 default:
10815 {
10816 const char* err_object = NULL;
10817
10818 // The "known_obj_attributes" table does contain some undefined
10819 // attributes. Ensure that there are unused.
10820 if (out_attr[i].int_value() != 0
10821 || out_attr[i].string_value() != "")
10822 err_object = "output";
10823 else if (in_attr[i].int_value() != 0
10824 || in_attr[i].string_value() != "")
10825 err_object = name;
10826
10827 if (err_object != NULL
10828 && parameters->options().warn_mismatch())
10829 {
10830 // Attribute numbers >=64 (mod 128) can be safely ignored.
10831 if ((i & 127) < 64)
10832 gold_error(_("%s: unknown mandatory EABI object attribute "
10833 "%d"),
10834 err_object, i);
10835 else
10836 gold_warning(_("%s: unknown EABI object attribute %d"),
10837 err_object, i);
10838 }
10839
10840 // Only pass on attributes that match in both inputs.
10841 if (!in_attr[i].matches(out_attr[i]))
10842 {
10843 out_attr[i].set_int_value(0);
10844 out_attr[i].set_string_value("");
10845 }
10846 }
10847 }
10848
10849 // If out_attr was copied from in_attr then it won't have a type yet.
10850 if (in_attr[i].type() && !out_attr[i].type())
10851 out_attr[i].set_type(in_attr[i].type());
10852 }
10853
10854 // Merge Tag_compatibility attributes and any common GNU ones.
10855 this->attributes_section_data_->merge(name, pasd);
10856
10857 // Check for any attributes not known on ARM.
10858 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10859 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10860 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10861 Other_attributes* out_other_attributes =
10862 this->attributes_section_data_->other_attributes(vendor);
10863 Other_attributes::iterator out_iter = out_other_attributes->begin();
10864
10865 while (in_iter != in_other_attributes->end()
10866 || out_iter != out_other_attributes->end())
10867 {
10868 const char* err_object = NULL;
10869 int err_tag = 0;
10870
10871 // The tags for each list are in numerical order.
10872 // If the tags are equal, then merge.
10873 if (out_iter != out_other_attributes->end()
10874 && (in_iter == in_other_attributes->end()
10875 || in_iter->first > out_iter->first))
10876 {
10877 // This attribute only exists in output. We can't merge, and we
10878 // don't know what the tag means, so delete it.
10879 err_object = "output";
10880 err_tag = out_iter->first;
10881 int saved_tag = out_iter->first;
10882 delete out_iter->second;
10883 out_other_attributes->erase(out_iter);
10884 out_iter = out_other_attributes->upper_bound(saved_tag);
10885 }
10886 else if (in_iter != in_other_attributes->end()
10887 && (out_iter != out_other_attributes->end()
10888 || in_iter->first < out_iter->first))
10889 {
10890 // This attribute only exists in input. We can't merge, and we
10891 // don't know what the tag means, so ignore it.
10892 err_object = name;
10893 err_tag = in_iter->first;
10894 ++in_iter;
10895 }
10896 else // The tags are equal.
10897 {
10898 // As present, all attributes in the list are unknown, and
10899 // therefore can't be merged meaningfully.
10900 err_object = "output";
10901 err_tag = out_iter->first;
10902
10903 // Only pass on attributes that match in both inputs.
10904 if (!in_iter->second->matches(*(out_iter->second)))
10905 {
10906 // No match. Delete the attribute.
10907 int saved_tag = out_iter->first;
10908 delete out_iter->second;
10909 out_other_attributes->erase(out_iter);
10910 out_iter = out_other_attributes->upper_bound(saved_tag);
10911 }
10912 else
10913 {
10914 // Matched. Keep the attribute and move to the next.
10915 ++out_iter;
10916 ++in_iter;
10917 }
10918 }
10919
10920 if (err_object && parameters->options().warn_mismatch())
10921 {
10922 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10923 if ((err_tag & 127) < 64)
10924 {
10925 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10926 err_object, err_tag);
10927 }
10928 else
10929 {
10930 gold_warning(_("%s: unknown EABI object attribute %d"),
10931 err_object, err_tag);
10932 }
10933 }
10934 }
10935 }
10936
10937 // Stub-generation methods for Target_arm.
10938
10939 // Make a new Arm_input_section object.
10940
10941 template<bool big_endian>
10942 Arm_input_section<big_endian>*
10943 Target_arm<big_endian>::new_arm_input_section(
10944 Relobj* relobj,
10945 unsigned int shndx)
10946 {
10947 Section_id sid(relobj, shndx);
10948
10949 Arm_input_section<big_endian>* arm_input_section =
10950 new Arm_input_section<big_endian>(relobj, shndx);
10951 arm_input_section->init();
10952
10953 // Register new Arm_input_section in map for look-up.
10954 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10955 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10956
10957 // Make sure that it we have not created another Arm_input_section
10958 // for this input section already.
10959 gold_assert(ins.second);
10960
10961 return arm_input_section;
10962 }
10963
10964 // Find the Arm_input_section object corresponding to the SHNDX-th input
10965 // section of RELOBJ.
10966
10967 template<bool big_endian>
10968 Arm_input_section<big_endian>*
10969 Target_arm<big_endian>::find_arm_input_section(
10970 Relobj* relobj,
10971 unsigned int shndx) const
10972 {
10973 Section_id sid(relobj, shndx);
10974 typename Arm_input_section_map::const_iterator p =
10975 this->arm_input_section_map_.find(sid);
10976 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10977 }
10978
10979 // Make a new stub table.
10980
10981 template<bool big_endian>
10982 Stub_table<big_endian>*
10983 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10984 {
10985 Stub_table<big_endian>* stub_table =
10986 new Stub_table<big_endian>(owner);
10987 this->stub_tables_.push_back(stub_table);
10988
10989 stub_table->set_address(owner->address() + owner->data_size());
10990 stub_table->set_file_offset(owner->offset() + owner->data_size());
10991 stub_table->finalize_data_size();
10992
10993 return stub_table;
10994 }
10995
10996 // Scan a relocation for stub generation.
10997
10998 template<bool big_endian>
10999 void
11000 Target_arm<big_endian>::scan_reloc_for_stub(
11001 const Relocate_info<32, big_endian>* relinfo,
11002 unsigned int r_type,
11003 const Sized_symbol<32>* gsym,
11004 unsigned int r_sym,
11005 const Symbol_value<32>* psymval,
11006 elfcpp::Elf_types<32>::Elf_Swxword addend,
11007 Arm_address address)
11008 {
11009 const Arm_relobj<big_endian>* arm_relobj =
11010 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11011
11012 bool target_is_thumb;
11013 Symbol_value<32> symval;
11014 if (gsym != NULL)
11015 {
11016 // This is a global symbol. Determine if we use PLT and if the
11017 // final target is THUMB.
11018 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11019 {
11020 // This uses a PLT, change the symbol value.
11021 symval.set_output_value(this->plt_section()->address()
11022 + gsym->plt_offset());
11023 psymval = &symval;
11024 target_is_thumb = false;
11025 }
11026 else if (gsym->is_undefined())
11027 // There is no need to generate a stub symbol is undefined.
11028 return;
11029 else
11030 {
11031 target_is_thumb =
11032 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11033 || (gsym->type() == elfcpp::STT_FUNC
11034 && !gsym->is_undefined()
11035 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11036 }
11037 }
11038 else
11039 {
11040 // This is a local symbol. Determine if the final target is THUMB.
11041 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11042 }
11043
11044 // Strip LSB if this points to a THUMB target.
11045 const Arm_reloc_property* reloc_property =
11046 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11047 gold_assert(reloc_property != NULL);
11048 if (target_is_thumb
11049 && reloc_property->uses_thumb_bit()
11050 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11051 {
11052 Arm_address stripped_value =
11053 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11054 symval.set_output_value(stripped_value);
11055 psymval = &symval;
11056 }
11057
11058 // Get the symbol value.
11059 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11060
11061 // Owing to pipelining, the PC relative branches below actually skip
11062 // two instructions when the branch offset is 0.
11063 Arm_address destination;
11064 switch (r_type)
11065 {
11066 case elfcpp::R_ARM_CALL:
11067 case elfcpp::R_ARM_JUMP24:
11068 case elfcpp::R_ARM_PLT32:
11069 // ARM branches.
11070 destination = value + addend + 8;
11071 break;
11072 case elfcpp::R_ARM_THM_CALL:
11073 case elfcpp::R_ARM_THM_XPC22:
11074 case elfcpp::R_ARM_THM_JUMP24:
11075 case elfcpp::R_ARM_THM_JUMP19:
11076 // THUMB branches.
11077 destination = value + addend + 4;
11078 break;
11079 default:
11080 gold_unreachable();
11081 }
11082
11083 Reloc_stub* stub = NULL;
11084 Stub_type stub_type =
11085 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11086 target_is_thumb);
11087 if (stub_type != arm_stub_none)
11088 {
11089 // Try looking up an existing stub from a stub table.
11090 Stub_table<big_endian>* stub_table =
11091 arm_relobj->stub_table(relinfo->data_shndx);
11092 gold_assert(stub_table != NULL);
11093
11094 // Locate stub by destination.
11095 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11096
11097 // Create a stub if there is not one already
11098 stub = stub_table->find_reloc_stub(stub_key);
11099 if (stub == NULL)
11100 {
11101 // create a new stub and add it to stub table.
11102 stub = this->stub_factory().make_reloc_stub(stub_type);
11103 stub_table->add_reloc_stub(stub, stub_key);
11104 }
11105
11106 // Record the destination address.
11107 stub->set_destination_address(destination
11108 | (target_is_thumb ? 1 : 0));
11109 }
11110
11111 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11112 if (this->fix_cortex_a8_
11113 && (r_type == elfcpp::R_ARM_THM_JUMP24
11114 || r_type == elfcpp::R_ARM_THM_JUMP19
11115 || r_type == elfcpp::R_ARM_THM_CALL
11116 || r_type == elfcpp::R_ARM_THM_XPC22)
11117 && (address & 0xfffU) == 0xffeU)
11118 {
11119 // Found a candidate. Note we haven't checked the destination is
11120 // within 4K here: if we do so (and don't create a record) we can't
11121 // tell that a branch should have been relocated when scanning later.
11122 this->cortex_a8_relocs_info_[address] =
11123 new Cortex_a8_reloc(stub, r_type,
11124 destination | (target_is_thumb ? 1 : 0));
11125 }
11126 }
11127
11128 // This function scans a relocation sections for stub generation.
11129 // The template parameter Relocate must be a class type which provides
11130 // a single function, relocate(), which implements the machine
11131 // specific part of a relocation.
11132
11133 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11134 // SHT_REL or SHT_RELA.
11135
11136 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11137 // of relocs. OUTPUT_SECTION is the output section.
11138 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11139 // mapped to output offsets.
11140
11141 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11142 // VIEW_SIZE is the size. These refer to the input section, unless
11143 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11144 // the output section.
11145
11146 template<bool big_endian>
11147 template<int sh_type>
11148 void inline
11149 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11150 const Relocate_info<32, big_endian>* relinfo,
11151 const unsigned char* prelocs,
11152 size_t reloc_count,
11153 Output_section* output_section,
11154 bool needs_special_offset_handling,
11155 const unsigned char* view,
11156 elfcpp::Elf_types<32>::Elf_Addr view_address,
11157 section_size_type)
11158 {
11159 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11160 const int reloc_size =
11161 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11162
11163 Arm_relobj<big_endian>* arm_object =
11164 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11165 unsigned int local_count = arm_object->local_symbol_count();
11166
11167 gold::Default_comdat_behavior default_comdat_behavior;
11168 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11169
11170 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11171 {
11172 Reltype reloc(prelocs);
11173
11174 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11175 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11176 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11177
11178 r_type = this->get_real_reloc_type(r_type);
11179
11180 // Only a few relocation types need stubs.
11181 if ((r_type != elfcpp::R_ARM_CALL)
11182 && (r_type != elfcpp::R_ARM_JUMP24)
11183 && (r_type != elfcpp::R_ARM_PLT32)
11184 && (r_type != elfcpp::R_ARM_THM_CALL)
11185 && (r_type != elfcpp::R_ARM_THM_XPC22)
11186 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11187 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11188 && (r_type != elfcpp::R_ARM_V4BX))
11189 continue;
11190
11191 section_offset_type offset =
11192 convert_to_section_size_type(reloc.get_r_offset());
11193
11194 if (needs_special_offset_handling)
11195 {
11196 offset = output_section->output_offset(relinfo->object,
11197 relinfo->data_shndx,
11198 offset);
11199 if (offset == -1)
11200 continue;
11201 }
11202
11203 // Create a v4bx stub if --fix-v4bx-interworking is used.
11204 if (r_type == elfcpp::R_ARM_V4BX)
11205 {
11206 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11207 {
11208 // Get the BX instruction.
11209 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11210 const Valtype* wv =
11211 reinterpret_cast<const Valtype*>(view + offset);
11212 elfcpp::Elf_types<32>::Elf_Swxword insn =
11213 elfcpp::Swap<32, big_endian>::readval(wv);
11214 const uint32_t reg = (insn & 0xf);
11215
11216 if (reg < 0xf)
11217 {
11218 // Try looking up an existing stub from a stub table.
11219 Stub_table<big_endian>* stub_table =
11220 arm_object->stub_table(relinfo->data_shndx);
11221 gold_assert(stub_table != NULL);
11222
11223 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11224 {
11225 // create a new stub and add it to stub table.
11226 Arm_v4bx_stub* stub =
11227 this->stub_factory().make_arm_v4bx_stub(reg);
11228 gold_assert(stub != NULL);
11229 stub_table->add_arm_v4bx_stub(stub);
11230 }
11231 }
11232 }
11233 continue;
11234 }
11235
11236 // Get the addend.
11237 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11238 elfcpp::Elf_types<32>::Elf_Swxword addend =
11239 stub_addend_reader(r_type, view + offset, reloc);
11240
11241 const Sized_symbol<32>* sym;
11242
11243 Symbol_value<32> symval;
11244 const Symbol_value<32> *psymval;
11245 bool is_defined_in_discarded_section;
11246 unsigned int shndx;
11247 if (r_sym < local_count)
11248 {
11249 sym = NULL;
11250 psymval = arm_object->local_symbol(r_sym);
11251
11252 // If the local symbol belongs to a section we are discarding,
11253 // and that section is a debug section, try to find the
11254 // corresponding kept section and map this symbol to its
11255 // counterpart in the kept section. The symbol must not
11256 // correspond to a section we are folding.
11257 bool is_ordinary;
11258 shndx = psymval->input_shndx(&is_ordinary);
11259 is_defined_in_discarded_section =
11260 (is_ordinary
11261 && shndx != elfcpp::SHN_UNDEF
11262 && !arm_object->is_section_included(shndx)
11263 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11264
11265 // We need to compute the would-be final value of this local
11266 // symbol.
11267 if (!is_defined_in_discarded_section)
11268 {
11269 typedef Sized_relobj_file<32, big_endian> ObjType;
11270 typename ObjType::Compute_final_local_value_status status =
11271 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11272 relinfo->symtab);
11273 if (status == ObjType::CFLV_OK)
11274 {
11275 // Currently we cannot handle a branch to a target in
11276 // a merged section. If this is the case, issue an error
11277 // and also free the merge symbol value.
11278 if (!symval.has_output_value())
11279 {
11280 const std::string& section_name =
11281 arm_object->section_name(shndx);
11282 arm_object->error(_("cannot handle branch to local %u "
11283 "in a merged section %s"),
11284 r_sym, section_name.c_str());
11285 }
11286 psymval = &symval;
11287 }
11288 else
11289 {
11290 // We cannot determine the final value.
11291 continue;
11292 }
11293 }
11294 }
11295 else
11296 {
11297 const Symbol* gsym;
11298 gsym = arm_object->global_symbol(r_sym);
11299 gold_assert(gsym != NULL);
11300 if (gsym->is_forwarder())
11301 gsym = relinfo->symtab->resolve_forwards(gsym);
11302
11303 sym = static_cast<const Sized_symbol<32>*>(gsym);
11304 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11305 symval.set_output_symtab_index(sym->symtab_index());
11306 else
11307 symval.set_no_output_symtab_entry();
11308
11309 // We need to compute the would-be final value of this global
11310 // symbol.
11311 const Symbol_table* symtab = relinfo->symtab;
11312 const Sized_symbol<32>* sized_symbol =
11313 symtab->get_sized_symbol<32>(gsym);
11314 Symbol_table::Compute_final_value_status status;
11315 Arm_address value =
11316 symtab->compute_final_value<32>(sized_symbol, &status);
11317
11318 // Skip this if the symbol has not output section.
11319 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11320 continue;
11321 symval.set_output_value(value);
11322
11323 if (gsym->type() == elfcpp::STT_TLS)
11324 symval.set_is_tls_symbol();
11325 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11326 symval.set_is_ifunc_symbol();
11327 psymval = &symval;
11328
11329 is_defined_in_discarded_section =
11330 (gsym->is_defined_in_discarded_section()
11331 && gsym->is_undefined());
11332 shndx = 0;
11333 }
11334
11335 Symbol_value<32> symval2;
11336 if (is_defined_in_discarded_section)
11337 {
11338 if (comdat_behavior == CB_UNDETERMINED)
11339 {
11340 std::string name = arm_object->section_name(relinfo->data_shndx);
11341 comdat_behavior = default_comdat_behavior.get(name.c_str());
11342 }
11343 if (comdat_behavior == CB_PRETEND)
11344 {
11345 // FIXME: This case does not work for global symbols.
11346 // We have no place to store the original section index.
11347 // Fortunately this does not matter for comdat sections,
11348 // only for sections explicitly discarded by a linker
11349 // script.
11350 bool found;
11351 typename elfcpp::Elf_types<32>::Elf_Addr value =
11352 arm_object->map_to_kept_section(shndx, &found);
11353 if (found)
11354 symval2.set_output_value(value + psymval->input_value());
11355 else
11356 symval2.set_output_value(0);
11357 }
11358 else
11359 {
11360 if (comdat_behavior == CB_WARNING)
11361 gold_warning_at_location(relinfo, i, offset,
11362 _("relocation refers to discarded "
11363 "section"));
11364 symval2.set_output_value(0);
11365 }
11366 symval2.set_no_output_symtab_entry();
11367 psymval = &symval2;
11368 }
11369
11370 // If symbol is a section symbol, we don't know the actual type of
11371 // destination. Give up.
11372 if (psymval->is_section_symbol())
11373 continue;
11374
11375 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11376 addend, view_address + offset);
11377 }
11378 }
11379
11380 // Scan an input section for stub generation.
11381
11382 template<bool big_endian>
11383 void
11384 Target_arm<big_endian>::scan_section_for_stubs(
11385 const Relocate_info<32, big_endian>* relinfo,
11386 unsigned int sh_type,
11387 const unsigned char* prelocs,
11388 size_t reloc_count,
11389 Output_section* output_section,
11390 bool needs_special_offset_handling,
11391 const unsigned char* view,
11392 Arm_address view_address,
11393 section_size_type view_size)
11394 {
11395 if (sh_type == elfcpp::SHT_REL)
11396 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11397 relinfo,
11398 prelocs,
11399 reloc_count,
11400 output_section,
11401 needs_special_offset_handling,
11402 view,
11403 view_address,
11404 view_size);
11405 else if (sh_type == elfcpp::SHT_RELA)
11406 // We do not support RELA type relocations yet. This is provided for
11407 // completeness.
11408 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11409 relinfo,
11410 prelocs,
11411 reloc_count,
11412 output_section,
11413 needs_special_offset_handling,
11414 view,
11415 view_address,
11416 view_size);
11417 else
11418 gold_unreachable();
11419 }
11420
11421 // Group input sections for stub generation.
11422 //
11423 // We group input sections in an output section so that the total size,
11424 // including any padding space due to alignment is smaller than GROUP_SIZE
11425 // unless the only input section in group is bigger than GROUP_SIZE already.
11426 // Then an ARM stub table is created to follow the last input section
11427 // in group. For each group an ARM stub table is created an is placed
11428 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11429 // extend the group after the stub table.
11430
11431 template<bool big_endian>
11432 void
11433 Target_arm<big_endian>::group_sections(
11434 Layout* layout,
11435 section_size_type group_size,
11436 bool stubs_always_after_branch,
11437 const Task* task)
11438 {
11439 // Group input sections and insert stub table
11440 Layout::Section_list section_list;
11441 layout->get_executable_sections(&section_list);
11442 for (Layout::Section_list::const_iterator p = section_list.begin();
11443 p != section_list.end();
11444 ++p)
11445 {
11446 Arm_output_section<big_endian>* output_section =
11447 Arm_output_section<big_endian>::as_arm_output_section(*p);
11448 output_section->group_sections(group_size, stubs_always_after_branch,
11449 this, task);
11450 }
11451 }
11452
11453 // Relaxation hook. This is where we do stub generation.
11454
11455 template<bool big_endian>
11456 bool
11457 Target_arm<big_endian>::do_relax(
11458 int pass,
11459 const Input_objects* input_objects,
11460 Symbol_table* symtab,
11461 Layout* layout,
11462 const Task* task)
11463 {
11464 // No need to generate stubs if this is a relocatable link.
11465 gold_assert(!parameters->options().relocatable());
11466
11467 // If this is the first pass, we need to group input sections into
11468 // stub groups.
11469 bool done_exidx_fixup = false;
11470 typedef typename Stub_table_list::iterator Stub_table_iterator;
11471 if (pass == 1)
11472 {
11473 // Determine the stub group size. The group size is the absolute
11474 // value of the parameter --stub-group-size. If --stub-group-size
11475 // is passed a negative value, we restrict stubs to be always after
11476 // the stubbed branches.
11477 int32_t stub_group_size_param =
11478 parameters->options().stub_group_size();
11479 bool stubs_always_after_branch = stub_group_size_param < 0;
11480 section_size_type stub_group_size = abs(stub_group_size_param);
11481
11482 if (stub_group_size == 1)
11483 {
11484 // Default value.
11485 // Thumb branch range is +-4MB has to be used as the default
11486 // maximum size (a given section can contain both ARM and Thumb
11487 // code, so the worst case has to be taken into account). If we are
11488 // fixing cortex-a8 errata, the branch range has to be even smaller,
11489 // since wide conditional branch has a range of +-1MB only.
11490 //
11491 // This value is 48K less than that, which allows for 4096
11492 // 12-byte stubs. If we exceed that, then we will fail to link.
11493 // The user will have to relink with an explicit group size
11494 // option.
11495 stub_group_size = 4145152;
11496 }
11497
11498 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11499 // page as the first half of a 32-bit branch straddling two 4K pages.
11500 // This is a crude way of enforcing that. In addition, long conditional
11501 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11502 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11503 // cortex-A8 stubs from long conditional branches.
11504 if (this->fix_cortex_a8_)
11505 {
11506 stubs_always_after_branch = true;
11507 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11508 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11509 }
11510
11511 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11512
11513 // Also fix .ARM.exidx section coverage.
11514 Arm_output_section<big_endian>* exidx_output_section = NULL;
11515 for (Layout::Section_list::const_iterator p =
11516 layout->section_list().begin();
11517 p != layout->section_list().end();
11518 ++p)
11519 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11520 {
11521 if (exidx_output_section == NULL)
11522 exidx_output_section =
11523 Arm_output_section<big_endian>::as_arm_output_section(*p);
11524 else
11525 // We cannot handle this now.
11526 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11527 "non-relocatable link"),
11528 exidx_output_section->name(),
11529 (*p)->name());
11530 }
11531
11532 if (exidx_output_section != NULL)
11533 {
11534 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11535 symtab, task);
11536 done_exidx_fixup = true;
11537 }
11538 }
11539 else
11540 {
11541 // If this is not the first pass, addresses and file offsets have
11542 // been reset at this point, set them here.
11543 for (Stub_table_iterator sp = this->stub_tables_.begin();
11544 sp != this->stub_tables_.end();
11545 ++sp)
11546 {
11547 Arm_input_section<big_endian>* owner = (*sp)->owner();
11548 off_t off = align_address(owner->original_size(),
11549 (*sp)->addralign());
11550 (*sp)->set_address_and_file_offset(owner->address() + off,
11551 owner->offset() + off);
11552 }
11553 }
11554
11555 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11556 // beginning of each relaxation pass, just blow away all the stubs.
11557 // Alternatively, we could selectively remove only the stubs and reloc
11558 // information for code sections that have moved since the last pass.
11559 // That would require more book-keeping.
11560 if (this->fix_cortex_a8_)
11561 {
11562 // Clear all Cortex-A8 reloc information.
11563 for (typename Cortex_a8_relocs_info::const_iterator p =
11564 this->cortex_a8_relocs_info_.begin();
11565 p != this->cortex_a8_relocs_info_.end();
11566 ++p)
11567 delete p->second;
11568 this->cortex_a8_relocs_info_.clear();
11569
11570 // Remove all Cortex-A8 stubs.
11571 for (Stub_table_iterator sp = this->stub_tables_.begin();
11572 sp != this->stub_tables_.end();
11573 ++sp)
11574 (*sp)->remove_all_cortex_a8_stubs();
11575 }
11576
11577 // Scan relocs for relocation stubs
11578 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11579 op != input_objects->relobj_end();
11580 ++op)
11581 {
11582 Arm_relobj<big_endian>* arm_relobj =
11583 Arm_relobj<big_endian>::as_arm_relobj(*op);
11584 // Lock the object so we can read from it. This is only called
11585 // single-threaded from Layout::finalize, so it is OK to lock.
11586 Task_lock_obj<Object> tl(task, arm_relobj);
11587 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11588 }
11589
11590 // Check all stub tables to see if any of them have their data sizes
11591 // or addresses alignments changed. These are the only things that
11592 // matter.
11593 bool any_stub_table_changed = false;
11594 Unordered_set<const Output_section*> sections_needing_adjustment;
11595 for (Stub_table_iterator sp = this->stub_tables_.begin();
11596 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11597 ++sp)
11598 {
11599 if ((*sp)->update_data_size_and_addralign())
11600 {
11601 // Update data size of stub table owner.
11602 Arm_input_section<big_endian>* owner = (*sp)->owner();
11603 uint64_t address = owner->address();
11604 off_t offset = owner->offset();
11605 owner->reset_address_and_file_offset();
11606 owner->set_address_and_file_offset(address, offset);
11607
11608 sections_needing_adjustment.insert(owner->output_section());
11609 any_stub_table_changed = true;
11610 }
11611 }
11612
11613 // Output_section_data::output_section() returns a const pointer but we
11614 // need to update output sections, so we record all output sections needing
11615 // update above and scan the sections here to find out what sections need
11616 // to be updated.
11617 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11618 p != layout->section_list().end();
11619 ++p)
11620 {
11621 if (sections_needing_adjustment.find(*p)
11622 != sections_needing_adjustment.end())
11623 (*p)->set_section_offsets_need_adjustment();
11624 }
11625
11626 // Stop relaxation if no EXIDX fix-up and no stub table change.
11627 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11628
11629 // Finalize the stubs in the last relaxation pass.
11630 if (!continue_relaxation)
11631 {
11632 for (Stub_table_iterator sp = this->stub_tables_.begin();
11633 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11634 ++sp)
11635 (*sp)->finalize_stubs();
11636
11637 // Update output local symbol counts of objects if necessary.
11638 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11639 op != input_objects->relobj_end();
11640 ++op)
11641 {
11642 Arm_relobj<big_endian>* arm_relobj =
11643 Arm_relobj<big_endian>::as_arm_relobj(*op);
11644
11645 // Update output local symbol counts. We need to discard local
11646 // symbols defined in parts of input sections that are discarded by
11647 // relaxation.
11648 if (arm_relobj->output_local_symbol_count_needs_update())
11649 {
11650 // We need to lock the object's file to update it.
11651 Task_lock_obj<Object> tl(task, arm_relobj);
11652 arm_relobj->update_output_local_symbol_count();
11653 }
11654 }
11655 }
11656
11657 return continue_relaxation;
11658 }
11659
11660 // Relocate a stub.
11661
11662 template<bool big_endian>
11663 void
11664 Target_arm<big_endian>::relocate_stub(
11665 Stub* stub,
11666 const Relocate_info<32, big_endian>* relinfo,
11667 Output_section* output_section,
11668 unsigned char* view,
11669 Arm_address address,
11670 section_size_type view_size)
11671 {
11672 Relocate relocate;
11673 const Stub_template* stub_template = stub->stub_template();
11674 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11675 {
11676 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11677 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11678
11679 unsigned int r_type = insn->r_type();
11680 section_size_type reloc_offset = stub_template->reloc_offset(i);
11681 section_size_type reloc_size = insn->size();
11682 gold_assert(reloc_offset + reloc_size <= view_size);
11683
11684 // This is the address of the stub destination.
11685 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11686 Symbol_value<32> symval;
11687 symval.set_output_value(target);
11688
11689 // Synthesize a fake reloc just in case. We don't have a symbol so
11690 // we use 0.
11691 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11692 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11693 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11694 reloc_write.put_r_offset(reloc_offset);
11695 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11696 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11697
11698 relocate.relocate(relinfo, this, output_section,
11699 this->fake_relnum_for_stubs, rel, r_type,
11700 NULL, &symval, view + reloc_offset,
11701 address + reloc_offset, reloc_size);
11702 }
11703 }
11704
11705 // Determine whether an object attribute tag takes an integer, a
11706 // string or both.
11707
11708 template<bool big_endian>
11709 int
11710 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11711 {
11712 if (tag == Object_attribute::Tag_compatibility)
11713 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11714 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11715 else if (tag == elfcpp::Tag_nodefaults)
11716 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11717 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11718 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11719 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11720 else if (tag < 32)
11721 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11722 else
11723 return ((tag & 1) != 0
11724 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11725 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11726 }
11727
11728 // Reorder attributes.
11729 //
11730 // The ABI defines that Tag_conformance should be emitted first, and that
11731 // Tag_nodefaults should be second (if either is defined). This sets those
11732 // two positions, and bumps up the position of all the remaining tags to
11733 // compensate.
11734
11735 template<bool big_endian>
11736 int
11737 Target_arm<big_endian>::do_attributes_order(int num) const
11738 {
11739 // Reorder the known object attributes in output. We want to move
11740 // Tag_conformance to position 4 and Tag_conformance to position 5
11741 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11742 if (num == 4)
11743 return elfcpp::Tag_conformance;
11744 if (num == 5)
11745 return elfcpp::Tag_nodefaults;
11746 if ((num - 2) < elfcpp::Tag_nodefaults)
11747 return num - 2;
11748 if ((num - 1) < elfcpp::Tag_conformance)
11749 return num - 1;
11750 return num;
11751 }
11752
11753 // Scan a span of THUMB code for Cortex-A8 erratum.
11754
11755 template<bool big_endian>
11756 void
11757 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11758 Arm_relobj<big_endian>* arm_relobj,
11759 unsigned int shndx,
11760 section_size_type span_start,
11761 section_size_type span_end,
11762 const unsigned char* view,
11763 Arm_address address)
11764 {
11765 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11766 //
11767 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11768 // The branch target is in the same 4KB region as the
11769 // first half of the branch.
11770 // The instruction before the branch is a 32-bit
11771 // length non-branch instruction.
11772 section_size_type i = span_start;
11773 bool last_was_32bit = false;
11774 bool last_was_branch = false;
11775 while (i < span_end)
11776 {
11777 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11778 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11779 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11780 bool is_blx = false, is_b = false;
11781 bool is_bl = false, is_bcc = false;
11782
11783 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11784 if (insn_32bit)
11785 {
11786 // Load the rest of the insn (in manual-friendly order).
11787 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11788
11789 // Encoding T4: B<c>.W.
11790 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11791 // Encoding T1: BL<c>.W.
11792 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11793 // Encoding T2: BLX<c>.W.
11794 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11795 // Encoding T3: B<c>.W (not permitted in IT block).
11796 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11797 && (insn & 0x07f00000U) != 0x03800000U);
11798 }
11799
11800 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11801
11802 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11803 // page boundary and it follows 32-bit non-branch instruction,
11804 // we need to work around.
11805 if (is_32bit_branch
11806 && ((address + i) & 0xfffU) == 0xffeU
11807 && last_was_32bit
11808 && !last_was_branch)
11809 {
11810 // Check to see if there is a relocation stub for this branch.
11811 bool force_target_arm = false;
11812 bool force_target_thumb = false;
11813 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11814 Cortex_a8_relocs_info::const_iterator p =
11815 this->cortex_a8_relocs_info_.find(address + i);
11816
11817 if (p != this->cortex_a8_relocs_info_.end())
11818 {
11819 cortex_a8_reloc = p->second;
11820 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11821
11822 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11823 && !target_is_thumb)
11824 force_target_arm = true;
11825 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11826 && target_is_thumb)
11827 force_target_thumb = true;
11828 }
11829
11830 off_t offset;
11831 Stub_type stub_type = arm_stub_none;
11832
11833 // Check if we have an offending branch instruction.
11834 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11835 uint16_t lower_insn = insn & 0xffffU;
11836 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11837
11838 if (cortex_a8_reloc != NULL
11839 && cortex_a8_reloc->reloc_stub() != NULL)
11840 // We've already made a stub for this instruction, e.g.
11841 // it's a long branch or a Thumb->ARM stub. Assume that
11842 // stub will suffice to work around the A8 erratum (see
11843 // setting of always_after_branch above).
11844 ;
11845 else if (is_bcc)
11846 {
11847 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11848 lower_insn);
11849 stub_type = arm_stub_a8_veneer_b_cond;
11850 }
11851 else if (is_b || is_bl || is_blx)
11852 {
11853 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11854 lower_insn);
11855 if (is_blx)
11856 offset &= ~3;
11857
11858 stub_type = (is_blx
11859 ? arm_stub_a8_veneer_blx
11860 : (is_bl
11861 ? arm_stub_a8_veneer_bl
11862 : arm_stub_a8_veneer_b));
11863 }
11864
11865 if (stub_type != arm_stub_none)
11866 {
11867 Arm_address pc_for_insn = address + i + 4;
11868
11869 // The original instruction is a BL, but the target is
11870 // an ARM instruction. If we were not making a stub,
11871 // the BL would have been converted to a BLX. Use the
11872 // BLX stub instead in that case.
11873 if (this->may_use_v5t_interworking() && force_target_arm
11874 && stub_type == arm_stub_a8_veneer_bl)
11875 {
11876 stub_type = arm_stub_a8_veneer_blx;
11877 is_blx = true;
11878 is_bl = false;
11879 }
11880 // Conversely, if the original instruction was
11881 // BLX but the target is Thumb mode, use the BL stub.
11882 else if (force_target_thumb
11883 && stub_type == arm_stub_a8_veneer_blx)
11884 {
11885 stub_type = arm_stub_a8_veneer_bl;
11886 is_blx = false;
11887 is_bl = true;
11888 }
11889
11890 if (is_blx)
11891 pc_for_insn &= ~3;
11892
11893 // If we found a relocation, use the proper destination,
11894 // not the offset in the (unrelocated) instruction.
11895 // Note this is always done if we switched the stub type above.
11896 if (cortex_a8_reloc != NULL)
11897 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11898
11899 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11900
11901 // Add a new stub if destination address in in the same page.
11902 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11903 {
11904 Cortex_a8_stub* stub =
11905 this->stub_factory_.make_cortex_a8_stub(stub_type,
11906 arm_relobj, shndx,
11907 address + i,
11908 target, insn);
11909 Stub_table<big_endian>* stub_table =
11910 arm_relobj->stub_table(shndx);
11911 gold_assert(stub_table != NULL);
11912 stub_table->add_cortex_a8_stub(address + i, stub);
11913 }
11914 }
11915 }
11916
11917 i += insn_32bit ? 4 : 2;
11918 last_was_32bit = insn_32bit;
11919 last_was_branch = is_32bit_branch;
11920 }
11921 }
11922
11923 // Apply the Cortex-A8 workaround.
11924
11925 template<bool big_endian>
11926 void
11927 Target_arm<big_endian>::apply_cortex_a8_workaround(
11928 const Cortex_a8_stub* stub,
11929 Arm_address stub_address,
11930 unsigned char* insn_view,
11931 Arm_address insn_address)
11932 {
11933 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11934 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11935 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11936 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11937 off_t branch_offset = stub_address - (insn_address + 4);
11938
11939 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11940 switch (stub->stub_template()->type())
11941 {
11942 case arm_stub_a8_veneer_b_cond:
11943 // For a conditional branch, we re-write it to be an unconditional
11944 // branch to the stub. We use the THUMB-2 encoding here.
11945 upper_insn = 0xf000U;
11946 lower_insn = 0xb800U;
11947 // Fall through
11948 case arm_stub_a8_veneer_b:
11949 case arm_stub_a8_veneer_bl:
11950 case arm_stub_a8_veneer_blx:
11951 if ((lower_insn & 0x5000U) == 0x4000U)
11952 // For a BLX instruction, make sure that the relocation is
11953 // rounded up to a word boundary. This follows the semantics of
11954 // the instruction which specifies that bit 1 of the target
11955 // address will come from bit 1 of the base address.
11956 branch_offset = (branch_offset + 2) & ~3;
11957
11958 // Put BRANCH_OFFSET back into the insn.
11959 gold_assert(!Bits<25>::has_overflow32(branch_offset));
11960 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11961 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11962 break;
11963
11964 default:
11965 gold_unreachable();
11966 }
11967
11968 // Put the relocated value back in the object file:
11969 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11970 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11971 }
11972
11973 // Target selector for ARM. Note this is never instantiated directly.
11974 // It's only used in Target_selector_arm_nacl, below.
11975
11976 template<bool big_endian>
11977 class Target_selector_arm : public Target_selector
11978 {
11979 public:
11980 Target_selector_arm()
11981 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11982 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11983 (big_endian ? "armelfb" : "armelf"))
11984 { }
11985
11986 Target*
11987 do_instantiate_target()
11988 { return new Target_arm<big_endian>(); }
11989 };
11990
11991 // Fix .ARM.exidx section coverage.
11992
11993 template<bool big_endian>
11994 void
11995 Target_arm<big_endian>::fix_exidx_coverage(
11996 Layout* layout,
11997 const Input_objects* input_objects,
11998 Arm_output_section<big_endian>* exidx_section,
11999 Symbol_table* symtab,
12000 const Task* task)
12001 {
12002 // We need to look at all the input sections in output in ascending
12003 // order of of output address. We do that by building a sorted list
12004 // of output sections by addresses. Then we looks at the output sections
12005 // in order. The input sections in an output section are already sorted
12006 // by addresses within the output section.
12007
12008 typedef std::set<Output_section*, output_section_address_less_than>
12009 Sorted_output_section_list;
12010 Sorted_output_section_list sorted_output_sections;
12011
12012 // Find out all the output sections of input sections pointed by
12013 // EXIDX input sections.
12014 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12015 p != input_objects->relobj_end();
12016 ++p)
12017 {
12018 Arm_relobj<big_endian>* arm_relobj =
12019 Arm_relobj<big_endian>::as_arm_relobj(*p);
12020 std::vector<unsigned int> shndx_list;
12021 arm_relobj->get_exidx_shndx_list(&shndx_list);
12022 for (size_t i = 0; i < shndx_list.size(); ++i)
12023 {
12024 const Arm_exidx_input_section* exidx_input_section =
12025 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12026 gold_assert(exidx_input_section != NULL);
12027 if (!exidx_input_section->has_errors())
12028 {
12029 unsigned int text_shndx = exidx_input_section->link();
12030 Output_section* os = arm_relobj->output_section(text_shndx);
12031 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12032 sorted_output_sections.insert(os);
12033 }
12034 }
12035 }
12036
12037 // Go over the output sections in ascending order of output addresses.
12038 typedef typename Arm_output_section<big_endian>::Text_section_list
12039 Text_section_list;
12040 Text_section_list sorted_text_sections;
12041 for (typename Sorted_output_section_list::iterator p =
12042 sorted_output_sections.begin();
12043 p != sorted_output_sections.end();
12044 ++p)
12045 {
12046 Arm_output_section<big_endian>* arm_output_section =
12047 Arm_output_section<big_endian>::as_arm_output_section(*p);
12048 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12049 }
12050
12051 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12052 merge_exidx_entries(), task);
12053 }
12054
12055 template<bool big_endian>
12056 void
12057 Target_arm<big_endian>::do_define_standard_symbols(
12058 Symbol_table* symtab,
12059 Layout* layout)
12060 {
12061 // Handle the .ARM.exidx section.
12062 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12063
12064 if (exidx_section != NULL)
12065 {
12066 // Create __exidx_start and __exidx_end symbols.
12067 symtab->define_in_output_data("__exidx_start",
12068 NULL, // version
12069 Symbol_table::PREDEFINED,
12070 exidx_section,
12071 0, // value
12072 0, // symsize
12073 elfcpp::STT_NOTYPE,
12074 elfcpp::STB_GLOBAL,
12075 elfcpp::STV_HIDDEN,
12076 0, // nonvis
12077 false, // offset_is_from_end
12078 true); // only_if_ref
12079
12080 symtab->define_in_output_data("__exidx_end",
12081 NULL, // version
12082 Symbol_table::PREDEFINED,
12083 exidx_section,
12084 0, // value
12085 0, // symsize
12086 elfcpp::STT_NOTYPE,
12087 elfcpp::STB_GLOBAL,
12088 elfcpp::STV_HIDDEN,
12089 0, // nonvis
12090 true, // offset_is_from_end
12091 true); // only_if_ref
12092 }
12093 else
12094 {
12095 // Define __exidx_start and __exidx_end even when .ARM.exidx
12096 // section is missing to match ld's behaviour.
12097 symtab->define_as_constant("__exidx_start", NULL,
12098 Symbol_table::PREDEFINED,
12099 0, 0, elfcpp::STT_OBJECT,
12100 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12101 true, false);
12102 symtab->define_as_constant("__exidx_end", NULL,
12103 Symbol_table::PREDEFINED,
12104 0, 0, elfcpp::STT_OBJECT,
12105 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12106 true, false);
12107 }
12108 }
12109
12110 // NaCl variant. It uses different PLT contents.
12111
12112 template<bool big_endian>
12113 class Output_data_plt_arm_nacl;
12114
12115 template<bool big_endian>
12116 class Target_arm_nacl : public Target_arm<big_endian>
12117 {
12118 public:
12119 Target_arm_nacl()
12120 : Target_arm<big_endian>(&arm_nacl_info)
12121 { }
12122
12123 protected:
12124 virtual Output_data_plt_arm<big_endian>*
12125 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12126 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12127
12128 private:
12129 static const Target::Target_info arm_nacl_info;
12130 };
12131
12132 template<bool big_endian>
12133 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12134 {
12135 32, // size
12136 big_endian, // is_big_endian
12137 elfcpp::EM_ARM, // machine_code
12138 false, // has_make_symbol
12139 false, // has_resolve
12140 false, // has_code_fill
12141 true, // is_default_stack_executable
12142 false, // can_icf_inline_merge_sections
12143 '\0', // wrap_char
12144 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12145 0x20000, // default_text_segment_address
12146 0x10000, // abi_pagesize (overridable by -z max-page-size)
12147 0x10000, // common_pagesize (overridable by -z common-page-size)
12148 true, // isolate_execinstr
12149 0x10000000, // rosegment_gap
12150 elfcpp::SHN_UNDEF, // small_common_shndx
12151 elfcpp::SHN_UNDEF, // large_common_shndx
12152 0, // small_common_section_flags
12153 0, // large_common_section_flags
12154 ".ARM.attributes", // attributes_section
12155 "aeabi" // attributes_vendor
12156 };
12157
12158 template<bool big_endian>
12159 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12160 {
12161 public:
12162 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12163 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12164 { }
12165
12166 protected:
12167 // Return the offset of the first non-reserved PLT entry.
12168 virtual unsigned int
12169 do_first_plt_entry_offset() const
12170 { return sizeof(first_plt_entry); }
12171
12172 // Return the size of a PLT entry.
12173 virtual unsigned int
12174 do_get_plt_entry_size() const
12175 { return sizeof(plt_entry); }
12176
12177 virtual void
12178 do_fill_first_plt_entry(unsigned char* pov,
12179 Arm_address got_address,
12180 Arm_address plt_address);
12181
12182 virtual void
12183 do_fill_plt_entry(unsigned char* pov,
12184 Arm_address got_address,
12185 Arm_address plt_address,
12186 unsigned int got_offset,
12187 unsigned int plt_offset);
12188
12189 private:
12190 inline uint32_t arm_movw_immediate(uint32_t value)
12191 {
12192 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12193 }
12194
12195 inline uint32_t arm_movt_immediate(uint32_t value)
12196 {
12197 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12198 }
12199
12200 // Template for the first PLT entry.
12201 static const uint32_t first_plt_entry[16];
12202
12203 // Template for subsequent PLT entries.
12204 static const uint32_t plt_entry[4];
12205 };
12206
12207 // The first entry in the PLT.
12208 template<bool big_endian>
12209 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12210 {
12211 // First bundle:
12212 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12213 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12214 0xe08cc00f, // add ip, ip, pc
12215 0xe52dc008, // str ip, [sp, #-8]!
12216 // Second bundle:
12217 0xe3ccc103, // bic ip, ip, #0xc0000000
12218 0xe59cc000, // ldr ip, [ip]
12219 0xe3ccc13f, // bic ip, ip, #0xc000000f
12220 0xe12fff1c, // bx ip
12221 // Third bundle:
12222 0xe320f000, // nop
12223 0xe320f000, // nop
12224 0xe320f000, // nop
12225 // .Lplt_tail:
12226 0xe50dc004, // str ip, [sp, #-4]
12227 // Fourth bundle:
12228 0xe3ccc103, // bic ip, ip, #0xc0000000
12229 0xe59cc000, // ldr ip, [ip]
12230 0xe3ccc13f, // bic ip, ip, #0xc000000f
12231 0xe12fff1c, // bx ip
12232 };
12233
12234 template<bool big_endian>
12235 void
12236 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12237 unsigned char* pov,
12238 Arm_address got_address,
12239 Arm_address plt_address)
12240 {
12241 // Write first PLT entry. All but first two words are constants.
12242 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12243 / sizeof(first_plt_entry[0]));
12244
12245 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12246
12247 elfcpp::Swap<32, big_endian>::writeval
12248 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12249 elfcpp::Swap<32, big_endian>::writeval
12250 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12251
12252 for (size_t i = 2; i < num_first_plt_words; ++i)
12253 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12254 }
12255
12256 // Subsequent entries in the PLT.
12257
12258 template<bool big_endian>
12259 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12260 {
12261 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12262 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12263 0xe08cc00f, // add ip, ip, pc
12264 0xea000000, // b .Lplt_tail
12265 };
12266
12267 template<bool big_endian>
12268 void
12269 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12270 unsigned char* pov,
12271 Arm_address got_address,
12272 Arm_address plt_address,
12273 unsigned int got_offset,
12274 unsigned int plt_offset)
12275 {
12276 // Calculate the displacement between the PLT slot and the
12277 // common tail that's part of the special initial PLT slot.
12278 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12279 - (plt_address + plt_offset
12280 + sizeof(plt_entry) + sizeof(uint32_t)));
12281 gold_assert((tail_displacement & 3) == 0);
12282 tail_displacement >>= 2;
12283
12284 gold_assert ((tail_displacement & 0xff000000) == 0
12285 || (-tail_displacement & 0xff000000) == 0);
12286
12287 // Calculate the displacement between the PLT slot and the entry
12288 // in the GOT. The offset accounts for the value produced by
12289 // adding to pc in the penultimate instruction of the PLT stub.
12290 const int32_t got_displacement = (got_address + got_offset
12291 - (plt_address + sizeof(plt_entry)));
12292
12293 elfcpp::Swap<32, big_endian>::writeval
12294 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12295 elfcpp::Swap<32, big_endian>::writeval
12296 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12297 elfcpp::Swap<32, big_endian>::writeval
12298 (pov + 8, plt_entry[2]);
12299 elfcpp::Swap<32, big_endian>::writeval
12300 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12301 }
12302
12303 // Target selectors.
12304
12305 template<bool big_endian>
12306 class Target_selector_arm_nacl
12307 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12308 Target_arm_nacl<big_endian> >
12309 {
12310 public:
12311 Target_selector_arm_nacl()
12312 : Target_selector_nacl<Target_selector_arm<big_endian>,
12313 Target_arm_nacl<big_endian> >(
12314 "arm",
12315 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12316 big_endian ? "armelfb_nacl" : "armelf_nacl")
12317 { }
12318 };
12319
12320 Target_selector_arm_nacl<false> target_selector_arm;
12321 Target_selector_arm_nacl<true> target_selector_armbe;
12322
12323 } // End anonymous namespace.
This page took 0.285 seconds and 5 git commands to generate.