bfd/
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 // Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
155 // Factory methods to create instruction templates in different formats.
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
176 }
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
211 // Return size of instruction template in bytes.
212 size_t
213 size() const;
214
215 // Return byte-alignment of instruction template.
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278 // Last stub type.
279 arm_stub_type_last = arm_stub_v4_veneer_bx
280 } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
319
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
356
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
412
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
435 // This may be overridden in the child class.
436 virtual void
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
444
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
451 private:
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461 };
462
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
515 {
516 if (symbol != NULL)
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
520 }
521 else
522 {
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
557 eq(const Key& k) const
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 // branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
857
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
863
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873 public:
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
904 void
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
977
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
988
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
992 { return this->prev_addralign_; }
993
994 // Reset address and file offset.
995 void
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1003
1004 private:
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076 private:
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
1081
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150 public:
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1155 { }
1156
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1159
1160 // Initialize.
1161 void
1162 init();
1163
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1178
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1219 {
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225 {
1226 *poutput = offset;
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255 public:
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1279
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
1336
1337 bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346 public:
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
1360
1361 ~Arm_output_section()
1362 { }
1363
1364 // Group input sections for stub generation.
1365 void
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1386 const Task* task);
1387
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
1423
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
1446 // Return address alignment of EXIDX input section.
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1480 bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1499 { }
1500
1501 ~Arm_relobj()
1502 { delete this->attributes_section_data_; }
1503
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1507 {
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515 {
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
1528
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
1576
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1585 {
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
1589
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1632
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1641
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1656 }
1657
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1675
1676 void
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690 private:
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1697
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1702
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1728 void
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770 public:
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1775 { }
1776
1777 ~Arm_dynobj()
1778 { delete this->attributes_section_data_; }
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
1869
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
1874 { return this->reloc_stub_; }
1875
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129 { }
2130
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2140
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2166 }
2167
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179 }
2180
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191 }
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2203
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221 }
2222
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2225 void
2226 gc_process_relocs(Symbol_table* symtab,
2227 Layout* layout,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
2240 scan_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256 // Return the value to use for a dynamic symbol which requires special
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2273
2274 // Scan the relocs during a relocatable link.
2275 void
2276 scan_relocatable_relocs(Symbol_table* symtab,
2277 Layout* layout,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
2289 // Emit relocations for a section.
2290 void
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
2304
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2307 void
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2311 size_t relnum,
2312 Output_section* output_section,
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2317 view_address,
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2320
2321 // Return whether SYM is defined by the ABI.
2322 bool
2323 do_is_defined_by_abi(const Symbol* sym) const
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325
2326 // Return whether there is a GOT section.
2327 bool
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2330
2331 // Return the size of the GOT section.
2332 section_size_type
2333 got_size() const
2334 {
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2337 }
2338
2339 // Return the number of entries in the GOT.
2340 unsigned int
2341 got_entry_count() const
2342 {
2343 if (!this->has_got_section())
2344 return 0;
2345 return this->got_size() / 4;
2346 }
2347
2348 // Return the number of entries in the PLT.
2349 unsigned int
2350 plt_entry_count() const;
2351
2352 // Return the offset of the first non-reserved PLT entry.
2353 unsigned int
2354 first_plt_entry_offset() const;
2355
2356 // Return the size of each PLT entry.
2357 unsigned int
2358 plt_entry_size() const;
2359
2360 // Map platform-specific reloc types
2361 static unsigned int
2362 get_real_reloc_type(unsigned int r_type);
2363
2364 //
2365 // Methods to support stub-generations.
2366 //
2367
2368 // Return the stub factory
2369 const Stub_factory&
2370 stub_factory() const
2371 { return this->stub_factory_; }
2372
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2376
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2381
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2385
2386 // Scan a section for stub generation.
2387 void
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2391 section_size_type);
2392
2393 // Relocate a stub.
2394 void
2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2396 Output_section*, unsigned char*, Arm_address,
2397 section_size_type);
2398
2399 // Get the default ARM target.
2400 static Target_arm<big_endian>*
2401 default_target()
2402 {
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
2407 }
2408
2409 // Whether NAME belongs to a mapping symbol.
2410 static bool
2411 is_mapping_symbol_name(const char* name)
2412 {
2413 return (name
2414 && name[0] == '$'
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2417 }
2418
2419 // Whether we work around the Cortex-A8 erratum.
2420 bool
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2423
2424 // Whether we merge exidx entries in debuginfo.
2425 bool
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2428
2429 // Whether we fix R_ARM_V4BX relocation.
2430 // 0 - do not fix
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
2433 General_options::Fix_v4bx
2434 fix_v4bx() const
2435 { return parameters->options().fix_v4bx(); }
2436
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2438 void
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2442
2443 // Apply Cortex-A8 workaround to a branch.
2444 void
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2447
2448 protected:
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2453
2454 // Make an ELF object.
2455 Object*
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2458
2459 Object*
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2463
2464 Object*
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2468
2469 Object*
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2473
2474 // Make an output section.
2475 Output_section*
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2479
2480 void
2481 do_adjust_elf_header(unsigned char* view, int len);
2482
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2485 bool
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2488
2489 bool
2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2491
2492 // Determine whether an object attribute tag takes an integer, a
2493 // string or both.
2494 int
2495 do_attribute_arg_type(int tag) const;
2496
2497 // Reorder tags during output.
2498 int
2499 do_attributes_order(int num) const;
2500
2501 // This is called when the target is selected as the default.
2502 void
2503 do_select_as_default_target()
2504 {
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2507 // as the default.
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2510 }
2511
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2515 virtual bool
2516 do_can_check_for_function_pointers() const
2517 { return true; }
2518
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2521 virtual bool
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523 {
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527 }
2528
2529 virtual void
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2531
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534 {
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536 }
2537
2538 private:
2539 // The class which scans relocations.
2540 class Scan
2541 {
2542 public:
2543 Scan()
2544 : issued_non_pic_error_(false)
2545 { }
2546
2547 static inline int
2548 get_reference_flags(unsigned int r_type);
2549
2550 inline void
2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2552 Sized_relobj_file<32, big_endian>* object,
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2556 const elfcpp::Sym<32, big_endian>& lsym,
2557 bool is_discarded);
2558
2559 inline void
2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2561 Sized_relobj_file<32, big_endian>* object,
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565 Symbol* gsym);
2566
2567 inline bool
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2569 Sized_relobj_file<32, big_endian>* ,
2570 unsigned int ,
2571 Output_section* ,
2572 const elfcpp::Rel<32, big_endian>& ,
2573 unsigned int ,
2574 const elfcpp::Sym<32, big_endian>&);
2575
2576 inline bool
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2578 Sized_relobj_file<32, big_endian>* ,
2579 unsigned int ,
2580 Output_section* ,
2581 const elfcpp::Rel<32, big_endian>& ,
2582 unsigned int , Symbol*);
2583
2584 private:
2585 static void
2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2587 unsigned int r_type);
2588
2589 static void
2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2591 unsigned int r_type, Symbol*);
2592
2593 void
2594 check_non_pic(Relobj*, unsigned int r_type);
2595
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2598 static bool
2599 symbol_needs_plt_entry(const Symbol* sym)
2600 {
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2603 return false;
2604
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2611 }
2612
2613 inline bool
2614 possible_function_pointer_reloc(unsigned int r_type);
2615
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
2618 };
2619
2620 // The class which implements relocation.
2621 class Relocate
2622 {
2623 public:
2624 Relocate()
2625 { }
2626
2627 ~Relocate()
2628 { }
2629
2630 // Return whether the static relocation needs to be applied.
2631 inline bool
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2633 unsigned int r_type,
2634 bool is_32bit,
2635 Output_section* output_section);
2636
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2639 inline bool
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
2645 unsigned char*, Arm_address,
2646 section_size_type);
2647
2648 // Return whether we want to pass flag NON_PIC_REF for this
2649 // reloc. This means the relocation type accesses a symbol not via
2650 // GOT or PLT.
2651 static inline bool
2652 reloc_is_non_pic(unsigned int r_type)
2653 {
2654 switch (r_type)
2655 {
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2666
2667 // These relocate types may use PLT entries.
2668 case elfcpp::R_ARM_CALL:
2669 case elfcpp::R_ARM_THM_CALL:
2670 case elfcpp::R_ARM_JUMP24:
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
2677 return false;
2678
2679 default:
2680 return true;
2681 }
2682 }
2683
2684 private:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2691 section_size_type);
2692
2693 };
2694
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2698 {
2699 public:
2700 unsigned int
2701 get_size_for_reloc(unsigned int, Relobj*);
2702 };
2703
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2708
2709 // Get the GOT section, creating it if necessary.
2710 Arm_output_data_got<big_endian>*
2711 got_section(Symbol_table*, Layout*);
2712
2713 // Get the GOT PLT section.
2714 Output_data_space*
2715 got_plt_section() const
2716 {
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2719 }
2720
2721 // Create a PLT entry for a global symbol.
2722 void
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2724
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2726 void
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2728
2729 // Create a GOT entry for the TLS module index.
2730 unsigned int
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2732 Sized_relobj_file<32, big_endian>* object);
2733
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2736 plt_section() const
2737 {
2738 gold_assert(this->plt_ != NULL);
2739 return this->plt_;
2740 }
2741
2742 // Get the dynamic reloc section, creating it if necessary.
2743 Reloc_section*
2744 rel_dyn_section(Layout*);
2745
2746 // Get the section to use for TLS_DESC relocations.
2747 Reloc_section*
2748 rel_tls_desc_section(Layout*) const;
2749
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2753 bool
2754 may_need_copy_reloc(Symbol* gsym)
2755 {
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
2758 }
2759
2760 // Add a potential copy relocation.
2761 void
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
2763 Sized_relobj_file<32, big_endian>* object,
2764 unsigned int shndx, Output_section* output_section,
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2766 {
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2769 object, shndx, output_section, reloc,
2770 this->rel_dyn_section(layout));
2771 }
2772
2773 // Whether two EABI versions are compatible.
2774 static bool
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2776
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2779 void
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2781
2782 // Get the secondary compatible architecture.
2783 static int
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2785
2786 // Set the secondary compatible architecture.
2787 static void
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2789
2790 static int
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2792
2793 // Helper to print AEABI enum tag value.
2794 static std::string
2795 aeabi_enum_name(unsigned int);
2796
2797 // Return string value for TAG_CPU_name.
2798 static std::string
2799 tag_cpu_name_value(unsigned int);
2800
2801 // Merge object attributes from input object and those in the output.
2802 void
2803 merge_object_attributes(const char*, const Attributes_section_data*);
2804
2805 // Helper to get an AEABI object attribute
2806 Object_attribute*
2807 get_aeabi_object_attribute(int tag) const
2808 {
2809 Attributes_section_data* pasd = this->attributes_section_data_;
2810 gold_assert(pasd != NULL);
2811 Object_attribute* attr =
2812 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2813 gold_assert(attr != NULL);
2814 return attr;
2815 }
2816
2817 //
2818 // Methods to support stub-generations.
2819 //
2820
2821 // Group input sections for stub generation.
2822 void
2823 group_sections(Layout*, section_size_type, bool, const Task*);
2824
2825 // Scan a relocation for stub generation.
2826 void
2827 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2828 const Sized_symbol<32>*, unsigned int,
2829 const Symbol_value<32>*,
2830 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2831
2832 // Scan a relocation section for stub.
2833 template<int sh_type>
2834 void
2835 scan_reloc_section_for_stubs(
2836 const Relocate_info<32, big_endian>* relinfo,
2837 const unsigned char* prelocs,
2838 size_t reloc_count,
2839 Output_section* output_section,
2840 bool needs_special_offset_handling,
2841 const unsigned char* view,
2842 elfcpp::Elf_types<32>::Elf_Addr view_address,
2843 section_size_type);
2844
2845 // Fix .ARM.exidx section coverage.
2846 void
2847 fix_exidx_coverage(Layout*, const Input_objects*,
2848 Arm_output_section<big_endian>*, Symbol_table*,
2849 const Task*);
2850
2851 // Functors for STL set.
2852 struct output_section_address_less_than
2853 {
2854 bool
2855 operator()(const Output_section* s1, const Output_section* s2) const
2856 { return s1->address() < s2->address(); }
2857 };
2858
2859 // Information about this specific target which we pass to the
2860 // general Target structure.
2861 static const Target::Target_info arm_info;
2862
2863 // The types of GOT entries needed for this platform.
2864 // These values are exposed to the ABI in an incremental link.
2865 // Do not renumber existing values without changing the version
2866 // number of the .gnu_incremental_inputs section.
2867 enum Got_type
2868 {
2869 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2870 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2871 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2872 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2873 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2874 };
2875
2876 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2877
2878 // Map input section to Arm_input_section.
2879 typedef Unordered_map<Section_id,
2880 Arm_input_section<big_endian>*,
2881 Section_id_hash>
2882 Arm_input_section_map;
2883
2884 // Map output addresses to relocs for Cortex-A8 erratum.
2885 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2886 Cortex_a8_relocs_info;
2887
2888 // The GOT section.
2889 Arm_output_data_got<big_endian>* got_;
2890 // The PLT section.
2891 Output_data_plt_arm<big_endian>* plt_;
2892 // The GOT PLT section.
2893 Output_data_space* got_plt_;
2894 // The dynamic reloc section.
2895 Reloc_section* rel_dyn_;
2896 // Relocs saved to avoid a COPY reloc.
2897 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2898 // Space for variables copied with a COPY reloc.
2899 Output_data_space* dynbss_;
2900 // Offset of the GOT entry for the TLS module index.
2901 unsigned int got_mod_index_offset_;
2902 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2903 bool tls_base_symbol_defined_;
2904 // Vector of Stub_tables created.
2905 Stub_table_list stub_tables_;
2906 // Stub factory.
2907 const Stub_factory &stub_factory_;
2908 // Whether we force PIC branch veneers.
2909 bool should_force_pic_veneer_;
2910 // Map for locating Arm_input_sections.
2911 Arm_input_section_map arm_input_section_map_;
2912 // Attributes section data in output.
2913 Attributes_section_data* attributes_section_data_;
2914 // Whether we want to fix code for Cortex-A8 erratum.
2915 bool fix_cortex_a8_;
2916 // Map addresses to relocs for Cortex-A8 erratum.
2917 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2918 };
2919
2920 template<bool big_endian>
2921 const Target::Target_info Target_arm<big_endian>::arm_info =
2922 {
2923 32, // size
2924 big_endian, // is_big_endian
2925 elfcpp::EM_ARM, // machine_code
2926 false, // has_make_symbol
2927 false, // has_resolve
2928 false, // has_code_fill
2929 true, // is_default_stack_executable
2930 false, // can_icf_inline_merge_sections
2931 '\0', // wrap_char
2932 "/usr/lib/libc.so.1", // dynamic_linker
2933 0x8000, // default_text_segment_address
2934 0x1000, // abi_pagesize (overridable by -z max-page-size)
2935 0x1000, // common_pagesize (overridable by -z common-page-size)
2936 false, // isolate_execinstr
2937 0, // rosegment_gap
2938 elfcpp::SHN_UNDEF, // small_common_shndx
2939 elfcpp::SHN_UNDEF, // large_common_shndx
2940 0, // small_common_section_flags
2941 0, // large_common_section_flags
2942 ".ARM.attributes", // attributes_section
2943 "aeabi" // attributes_vendor
2944 };
2945
2946 // Arm relocate functions class
2947 //
2948
2949 template<bool big_endian>
2950 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2951 {
2952 public:
2953 typedef enum
2954 {
2955 STATUS_OKAY, // No error during relocation.
2956 STATUS_OVERFLOW, // Relocation overflow.
2957 STATUS_BAD_RELOC // Relocation cannot be applied.
2958 } Status;
2959
2960 private:
2961 typedef Relocate_functions<32, big_endian> Base;
2962 typedef Arm_relocate_functions<big_endian> This;
2963
2964 // Encoding of imm16 argument for movt and movw ARM instructions
2965 // from ARM ARM:
2966 //
2967 // imm16 := imm4 | imm12
2968 //
2969 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2970 // +-------+---------------+-------+-------+-----------------------+
2971 // | | |imm4 | |imm12 |
2972 // +-------+---------------+-------+-------+-----------------------+
2973
2974 // Extract the relocation addend from VAL based on the ARM
2975 // instruction encoding described above.
2976 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2977 extract_arm_movw_movt_addend(
2978 typename elfcpp::Swap<32, big_endian>::Valtype val)
2979 {
2980 // According to the Elf ABI for ARM Architecture the immediate
2981 // field is sign-extended to form the addend.
2982 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2983 }
2984
2985 // Insert X into VAL based on the ARM instruction encoding described
2986 // above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 insert_val_arm_movw_movt(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val,
2990 typename elfcpp::Swap<32, big_endian>::Valtype x)
2991 {
2992 val &= 0xfff0f000;
2993 val |= x & 0x0fff;
2994 val |= (x & 0xf000) << 4;
2995 return val;
2996 }
2997
2998 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2999 // from ARM ARM:
3000 //
3001 // imm16 := imm4 | i | imm3 | imm8
3002 //
3003 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3004 // +---------+-+-----------+-------++-+-----+-------+---------------+
3005 // | |i| |imm4 || |imm3 | |imm8 |
3006 // +---------+-+-----------+-------++-+-----+-------+---------------+
3007
3008 // Extract the relocation addend from VAL based on the Thumb2
3009 // instruction encoding described above.
3010 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3011 extract_thumb_movw_movt_addend(
3012 typename elfcpp::Swap<32, big_endian>::Valtype val)
3013 {
3014 // According to the Elf ABI for ARM Architecture the immediate
3015 // field is sign-extended to form the addend.
3016 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3017 | ((val >> 15) & 0x0800)
3018 | ((val >> 4) & 0x0700)
3019 | (val & 0x00ff));
3020 }
3021
3022 // Insert X into VAL based on the Thumb2 instruction encoding
3023 // described above.
3024 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3025 insert_val_thumb_movw_movt(
3026 typename elfcpp::Swap<32, big_endian>::Valtype val,
3027 typename elfcpp::Swap<32, big_endian>::Valtype x)
3028 {
3029 val &= 0xfbf08f00;
3030 val |= (x & 0xf000) << 4;
3031 val |= (x & 0x0800) << 15;
3032 val |= (x & 0x0700) << 4;
3033 val |= (x & 0x00ff);
3034 return val;
3035 }
3036
3037 // Calculate the smallest constant Kn for the specified residual.
3038 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3039 static uint32_t
3040 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3041 {
3042 int32_t msb;
3043
3044 if (residual == 0)
3045 return 0;
3046 // Determine the most significant bit in the residual and
3047 // align the resulting value to a 2-bit boundary.
3048 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3049 ;
3050 // The desired shift is now (msb - 6), or zero, whichever
3051 // is the greater.
3052 return (((msb - 6) < 0) ? 0 : (msb - 6));
3053 }
3054
3055 // Calculate the final residual for the specified group index.
3056 // If the passed group index is less than zero, the method will return
3057 // the value of the specified residual without any change.
3058 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3059 static typename elfcpp::Swap<32, big_endian>::Valtype
3060 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3061 const int group)
3062 {
3063 for (int n = 0; n <= group; n++)
3064 {
3065 // Calculate which part of the value to mask.
3066 uint32_t shift = calc_grp_kn(residual);
3067 // Calculate the residual for the next time around.
3068 residual &= ~(residual & (0xff << shift));
3069 }
3070
3071 return residual;
3072 }
3073
3074 // Calculate the value of Gn for the specified group index.
3075 // We return it in the form of an encoded constant-and-rotation.
3076 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3077 static typename elfcpp::Swap<32, big_endian>::Valtype
3078 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3079 const int group)
3080 {
3081 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3082 uint32_t shift = 0;
3083
3084 for (int n = 0; n <= group; n++)
3085 {
3086 // Calculate which part of the value to mask.
3087 shift = calc_grp_kn(residual);
3088 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3089 gn = residual & (0xff << shift);
3090 // Calculate the residual for the next time around.
3091 residual &= ~gn;
3092 }
3093 // Return Gn in the form of an encoded constant-and-rotation.
3094 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3095 }
3096
3097 public:
3098 // Handle ARM long branches.
3099 static typename This::Status
3100 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3101 unsigned char*, const Sized_symbol<32>*,
3102 const Arm_relobj<big_endian>*, unsigned int,
3103 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3104
3105 // Handle THUMB long branches.
3106 static typename This::Status
3107 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3108 unsigned char*, const Sized_symbol<32>*,
3109 const Arm_relobj<big_endian>*, unsigned int,
3110 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3111
3112
3113 // Return the branch offset of a 32-bit THUMB branch.
3114 static inline int32_t
3115 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3116 {
3117 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3118 // involving the J1 and J2 bits.
3119 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3120 uint32_t upper = upper_insn & 0x3ffU;
3121 uint32_t lower = lower_insn & 0x7ffU;
3122 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3123 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3124 uint32_t i1 = j1 ^ s ? 0 : 1;
3125 uint32_t i2 = j2 ^ s ? 0 : 1;
3126
3127 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3128 | (upper << 12) | (lower << 1));
3129 }
3130
3131 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3132 // UPPER_INSN is the original upper instruction of the branch. Caller is
3133 // responsible for overflow checking and BLX offset adjustment.
3134 static inline uint16_t
3135 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3136 {
3137 uint32_t s = offset < 0 ? 1 : 0;
3138 uint32_t bits = static_cast<uint32_t>(offset);
3139 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3140 }
3141
3142 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3143 // LOWER_INSN is the original lower instruction of the branch. Caller is
3144 // responsible for overflow checking and BLX offset adjustment.
3145 static inline uint16_t
3146 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3147 {
3148 uint32_t s = offset < 0 ? 1 : 0;
3149 uint32_t bits = static_cast<uint32_t>(offset);
3150 return ((lower_insn & ~0x2fffU)
3151 | ((((bits >> 23) & 1) ^ !s) << 13)
3152 | ((((bits >> 22) & 1) ^ !s) << 11)
3153 | ((bits >> 1) & 0x7ffU));
3154 }
3155
3156 // Return the branch offset of a 32-bit THUMB conditional branch.
3157 static inline int32_t
3158 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3159 {
3160 uint32_t s = (upper_insn & 0x0400U) >> 10;
3161 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3162 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3163 uint32_t lower = (lower_insn & 0x07ffU);
3164 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3165
3166 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3167 }
3168
3169 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3170 // instruction. UPPER_INSN is the original upper instruction of the branch.
3171 // Caller is responsible for overflow checking.
3172 static inline uint16_t
3173 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3174 {
3175 uint32_t s = offset < 0 ? 1 : 0;
3176 uint32_t bits = static_cast<uint32_t>(offset);
3177 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3178 }
3179
3180 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3181 // instruction. LOWER_INSN is the original lower instruction of the branch.
3182 // The caller is responsible for overflow checking.
3183 static inline uint16_t
3184 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3185 {
3186 uint32_t bits = static_cast<uint32_t>(offset);
3187 uint32_t j2 = (bits & 0x00080000U) >> 19;
3188 uint32_t j1 = (bits & 0x00040000U) >> 18;
3189 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3190
3191 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3192 }
3193
3194 // R_ARM_ABS8: S + A
3195 static inline typename This::Status
3196 abs8(unsigned char* view,
3197 const Sized_relobj_file<32, big_endian>* object,
3198 const Symbol_value<32>* psymval)
3199 {
3200 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3201 Valtype* wv = reinterpret_cast<Valtype*>(view);
3202 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3203 int32_t addend = Bits<8>::sign_extend32(val);
3204 Arm_address x = psymval->value(object, addend);
3205 val = Bits<32>::bit_select32(val, x, 0xffU);
3206 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3207
3208 // R_ARM_ABS8 permits signed or unsigned results.
3209 return (Bits<8>::has_signed_unsigned_overflow32(x)
3210 ? This::STATUS_OVERFLOW
3211 : This::STATUS_OKAY);
3212 }
3213
3214 // R_ARM_THM_ABS5: S + A
3215 static inline typename This::Status
3216 thm_abs5(unsigned char* view,
3217 const Sized_relobj_file<32, big_endian>* object,
3218 const Symbol_value<32>* psymval)
3219 {
3220 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3221 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3222 Valtype* wv = reinterpret_cast<Valtype*>(view);
3223 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3224 Reltype addend = (val & 0x7e0U) >> 6;
3225 Reltype x = psymval->value(object, addend);
3226 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3227 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3228 return (Bits<5>::has_overflow32(x)
3229 ? This::STATUS_OVERFLOW
3230 : This::STATUS_OKAY);
3231 }
3232
3233 // R_ARM_ABS12: S + A
3234 static inline typename This::Status
3235 abs12(unsigned char* view,
3236 const Sized_relobj_file<32, big_endian>* object,
3237 const Symbol_value<32>* psymval)
3238 {
3239 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3240 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3241 Valtype* wv = reinterpret_cast<Valtype*>(view);
3242 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3243 Reltype addend = val & 0x0fffU;
3244 Reltype x = psymval->value(object, addend);
3245 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3246 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3247 return (Bits<12>::has_overflow32(x)
3248 ? This::STATUS_OVERFLOW
3249 : This::STATUS_OKAY);
3250 }
3251
3252 // R_ARM_ABS16: S + A
3253 static inline typename This::Status
3254 abs16(unsigned char* view,
3255 const Sized_relobj_file<32, big_endian>* object,
3256 const Symbol_value<32>* psymval)
3257 {
3258 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3259 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3260 int32_t addend = Bits<16>::sign_extend32(val);
3261 Arm_address x = psymval->value(object, addend);
3262 val = Bits<32>::bit_select32(val, x, 0xffffU);
3263 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3264
3265 // R_ARM_ABS16 permits signed or unsigned results.
3266 return (Bits<16>::has_signed_unsigned_overflow32(x)
3267 ? This::STATUS_OVERFLOW
3268 : This::STATUS_OKAY);
3269 }
3270
3271 // R_ARM_ABS32: (S + A) | T
3272 static inline typename This::Status
3273 abs32(unsigned char* view,
3274 const Sized_relobj_file<32, big_endian>* object,
3275 const Symbol_value<32>* psymval,
3276 Arm_address thumb_bit)
3277 {
3278 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3279 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3280 Valtype x = psymval->value(object, addend) | thumb_bit;
3281 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3282 return This::STATUS_OKAY;
3283 }
3284
3285 // R_ARM_REL32: (S + A) | T - P
3286 static inline typename This::Status
3287 rel32(unsigned char* view,
3288 const Sized_relobj_file<32, big_endian>* object,
3289 const Symbol_value<32>* psymval,
3290 Arm_address address,
3291 Arm_address thumb_bit)
3292 {
3293 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3294 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3295 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3296 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3297 return This::STATUS_OKAY;
3298 }
3299
3300 // R_ARM_THM_JUMP24: (S + A) | T - P
3301 static typename This::Status
3302 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3303 const Symbol_value<32>* psymval, Arm_address address,
3304 Arm_address thumb_bit);
3305
3306 // R_ARM_THM_JUMP6: S + A – P
3307 static inline typename This::Status
3308 thm_jump6(unsigned char* view,
3309 const Sized_relobj_file<32, big_endian>* object,
3310 const Symbol_value<32>* psymval,
3311 Arm_address address)
3312 {
3313 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3314 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3315 Valtype* wv = reinterpret_cast<Valtype*>(view);
3316 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3317 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3318 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3319 Reltype x = (psymval->value(object, addend) - address);
3320 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3321 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3322 // CZB does only forward jumps.
3323 return ((x > 0x007e)
3324 ? This::STATUS_OVERFLOW
3325 : This::STATUS_OKAY);
3326 }
3327
3328 // R_ARM_THM_JUMP8: S + A – P
3329 static inline typename This::Status
3330 thm_jump8(unsigned char* view,
3331 const Sized_relobj_file<32, big_endian>* object,
3332 const Symbol_value<32>* psymval,
3333 Arm_address address)
3334 {
3335 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3336 Valtype* wv = reinterpret_cast<Valtype*>(view);
3337 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3338 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3339 int32_t x = (psymval->value(object, addend) - address);
3340 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3341 | ((x & 0x01fe) >> 1)));
3342 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3343 return (Bits<9>::has_overflow32(x)
3344 ? This::STATUS_OVERFLOW
3345 : This::STATUS_OKAY);
3346 }
3347
3348 // R_ARM_THM_JUMP11: S + A – P
3349 static inline typename This::Status
3350 thm_jump11(unsigned char* view,
3351 const Sized_relobj_file<32, big_endian>* object,
3352 const Symbol_value<32>* psymval,
3353 Arm_address address)
3354 {
3355 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3356 Valtype* wv = reinterpret_cast<Valtype*>(view);
3357 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3358 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3359 int32_t x = (psymval->value(object, addend) - address);
3360 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3361 | ((x & 0x0ffe) >> 1)));
3362 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3363 return (Bits<12>::has_overflow32(x)
3364 ? This::STATUS_OVERFLOW
3365 : This::STATUS_OKAY);
3366 }
3367
3368 // R_ARM_BASE_PREL: B(S) + A - P
3369 static inline typename This::Status
3370 base_prel(unsigned char* view,
3371 Arm_address origin,
3372 Arm_address address)
3373 {
3374 Base::rel32(view, origin - address);
3375 return STATUS_OKAY;
3376 }
3377
3378 // R_ARM_BASE_ABS: B(S) + A
3379 static inline typename This::Status
3380 base_abs(unsigned char* view,
3381 Arm_address origin)
3382 {
3383 Base::rel32(view, origin);
3384 return STATUS_OKAY;
3385 }
3386
3387 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3388 static inline typename This::Status
3389 got_brel(unsigned char* view,
3390 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3391 {
3392 Base::rel32(view, got_offset);
3393 return This::STATUS_OKAY;
3394 }
3395
3396 // R_ARM_GOT_PREL: GOT(S) + A - P
3397 static inline typename This::Status
3398 got_prel(unsigned char* view,
3399 Arm_address got_entry,
3400 Arm_address address)
3401 {
3402 Base::rel32(view, got_entry - address);
3403 return This::STATUS_OKAY;
3404 }
3405
3406 // R_ARM_PREL: (S + A) | T - P
3407 static inline typename This::Status
3408 prel31(unsigned char* view,
3409 const Sized_relobj_file<32, big_endian>* object,
3410 const Symbol_value<32>* psymval,
3411 Arm_address address,
3412 Arm_address thumb_bit)
3413 {
3414 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3415 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3416 Valtype addend = Bits<31>::sign_extend32(val);
3417 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3418 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3419 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3420 return (Bits<31>::has_overflow32(x)
3421 ? This::STATUS_OVERFLOW
3422 : This::STATUS_OKAY);
3423 }
3424
3425 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3426 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3427 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3428 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3429 static inline typename This::Status
3430 movw(unsigned char* view,
3431 const Sized_relobj_file<32, big_endian>* object,
3432 const Symbol_value<32>* psymval,
3433 Arm_address relative_address_base,
3434 Arm_address thumb_bit,
3435 bool check_overflow)
3436 {
3437 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438 Valtype* wv = reinterpret_cast<Valtype*>(view);
3439 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440 Valtype addend = This::extract_arm_movw_movt_addend(val);
3441 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3442 - relative_address_base);
3443 val = This::insert_val_arm_movw_movt(val, x);
3444 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3445 return ((check_overflow && Bits<16>::has_overflow32(x))
3446 ? This::STATUS_OVERFLOW
3447 : This::STATUS_OKAY);
3448 }
3449
3450 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3451 // R_ARM_MOVT_PREL: S + A - P
3452 // R_ARM_MOVT_BREL: S + A - B(S)
3453 static inline typename This::Status
3454 movt(unsigned char* view,
3455 const Sized_relobj_file<32, big_endian>* object,
3456 const Symbol_value<32>* psymval,
3457 Arm_address relative_address_base)
3458 {
3459 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3460 Valtype* wv = reinterpret_cast<Valtype*>(view);
3461 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3462 Valtype addend = This::extract_arm_movw_movt_addend(val);
3463 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3464 val = This::insert_val_arm_movw_movt(val, x);
3465 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3466 // FIXME: IHI0044D says that we should check for overflow.
3467 return This::STATUS_OKAY;
3468 }
3469
3470 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3471 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3472 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3473 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3474 static inline typename This::Status
3475 thm_movw(unsigned char* view,
3476 const Sized_relobj_file<32, big_endian>* object,
3477 const Symbol_value<32>* psymval,
3478 Arm_address relative_address_base,
3479 Arm_address thumb_bit,
3480 bool check_overflow)
3481 {
3482 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3483 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3484 Valtype* wv = reinterpret_cast<Valtype*>(view);
3485 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3486 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3487 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3488 Reltype x =
3489 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3490 val = This::insert_val_thumb_movw_movt(val, x);
3491 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3492 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3493 return ((check_overflow && Bits<16>::has_overflow32(x))
3494 ? This::STATUS_OVERFLOW
3495 : This::STATUS_OKAY);
3496 }
3497
3498 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3499 // R_ARM_THM_MOVT_PREL: S + A - P
3500 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3501 static inline typename This::Status
3502 thm_movt(unsigned char* view,
3503 const Sized_relobj_file<32, big_endian>* object,
3504 const Symbol_value<32>* psymval,
3505 Arm_address relative_address_base)
3506 {
3507 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3508 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3509 Valtype* wv = reinterpret_cast<Valtype*>(view);
3510 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3511 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3512 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3513 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3514 val = This::insert_val_thumb_movw_movt(val, x);
3515 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3516 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3517 return This::STATUS_OKAY;
3518 }
3519
3520 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3521 static inline typename This::Status
3522 thm_alu11(unsigned char* view,
3523 const Sized_relobj_file<32, big_endian>* object,
3524 const Symbol_value<32>* psymval,
3525 Arm_address address,
3526 Arm_address thumb_bit)
3527 {
3528 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3529 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3530 Valtype* wv = reinterpret_cast<Valtype*>(view);
3531 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3532 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3533
3534 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3535 // -----------------------------------------------------------------------
3536 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3537 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3538 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3539 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3540 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3541 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3542
3543 // Determine a sign for the addend.
3544 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3545 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3546 // Thumb2 addend encoding:
3547 // imm12 := i | imm3 | imm8
3548 int32_t addend = (insn & 0xff)
3549 | ((insn & 0x00007000) >> 4)
3550 | ((insn & 0x04000000) >> 15);
3551 // Apply a sign to the added.
3552 addend *= sign;
3553
3554 int32_t x = (psymval->value(object, addend) | thumb_bit)
3555 - (address & 0xfffffffc);
3556 Reltype val = abs(x);
3557 // Mask out the value and a distinct part of the ADD/SUB opcode
3558 // (bits 7:5 of opword).
3559 insn = (insn & 0xfb0f8f00)
3560 | (val & 0xff)
3561 | ((val & 0x700) << 4)
3562 | ((val & 0x800) << 15);
3563 // Set the opcode according to whether the value to go in the
3564 // place is negative.
3565 if (x < 0)
3566 insn |= 0x00a00000;
3567
3568 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3569 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3570 return ((val > 0xfff) ?
3571 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3572 }
3573
3574 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3575 static inline typename This::Status
3576 thm_pc8(unsigned char* view,
3577 const Sized_relobj_file<32, big_endian>* object,
3578 const Symbol_value<32>* psymval,
3579 Arm_address address)
3580 {
3581 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3582 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3583 Valtype* wv = reinterpret_cast<Valtype*>(view);
3584 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3585 Reltype addend = ((insn & 0x00ff) << 2);
3586 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3587 Reltype val = abs(x);
3588 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3589
3590 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3591 return ((val > 0x03fc)
3592 ? This::STATUS_OVERFLOW
3593 : This::STATUS_OKAY);
3594 }
3595
3596 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3597 static inline typename This::Status
3598 thm_pc12(unsigned char* view,
3599 const Sized_relobj_file<32, big_endian>* object,
3600 const Symbol_value<32>* psymval,
3601 Arm_address address)
3602 {
3603 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3604 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3605 Valtype* wv = reinterpret_cast<Valtype*>(view);
3606 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3607 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3608 // Determine a sign for the addend (positive if the U bit is 1).
3609 const int sign = (insn & 0x00800000) ? 1 : -1;
3610 int32_t addend = (insn & 0xfff);
3611 // Apply a sign to the added.
3612 addend *= sign;
3613
3614 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3615 Reltype val = abs(x);
3616 // Mask out and apply the value and the U bit.
3617 insn = (insn & 0xff7ff000) | (val & 0xfff);
3618 // Set the U bit according to whether the value to go in the
3619 // place is positive.
3620 if (x >= 0)
3621 insn |= 0x00800000;
3622
3623 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3624 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3625 return ((val > 0xfff) ?
3626 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3627 }
3628
3629 // R_ARM_V4BX
3630 static inline typename This::Status
3631 v4bx(const Relocate_info<32, big_endian>* relinfo,
3632 unsigned char* view,
3633 const Arm_relobj<big_endian>* object,
3634 const Arm_address address,
3635 const bool is_interworking)
3636 {
3637
3638 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3639 Valtype* wv = reinterpret_cast<Valtype*>(view);
3640 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3641
3642 // Ensure that we have a BX instruction.
3643 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3644 const uint32_t reg = (val & 0xf);
3645 if (is_interworking && reg != 0xf)
3646 {
3647 Stub_table<big_endian>* stub_table =
3648 object->stub_table(relinfo->data_shndx);
3649 gold_assert(stub_table != NULL);
3650
3651 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3652 gold_assert(stub != NULL);
3653
3654 int32_t veneer_address =
3655 stub_table->address() + stub->offset() - 8 - address;
3656 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3657 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3658 // Replace with a branch to veneer (B <addr>)
3659 val = (val & 0xf0000000) | 0x0a000000
3660 | ((veneer_address >> 2) & 0x00ffffff);
3661 }
3662 else
3663 {
3664 // Preserve Rm (lowest four bits) and the condition code
3665 // (highest four bits). Other bits encode MOV PC,Rm.
3666 val = (val & 0xf000000f) | 0x01a0f000;
3667 }
3668 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3669 return This::STATUS_OKAY;
3670 }
3671
3672 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3673 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3674 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3675 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3676 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3677 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3678 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3679 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3680 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3681 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3682 static inline typename This::Status
3683 arm_grp_alu(unsigned char* view,
3684 const Sized_relobj_file<32, big_endian>* object,
3685 const Symbol_value<32>* psymval,
3686 const int group,
3687 Arm_address address,
3688 Arm_address thumb_bit,
3689 bool check_overflow)
3690 {
3691 gold_assert(group >= 0 && group < 3);
3692 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3693 Valtype* wv = reinterpret_cast<Valtype*>(view);
3694 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3695
3696 // ALU group relocations are allowed only for the ADD/SUB instructions.
3697 // (0x00800000 - ADD, 0x00400000 - SUB)
3698 const Valtype opcode = insn & 0x01e00000;
3699 if (opcode != 0x00800000 && opcode != 0x00400000)
3700 return This::STATUS_BAD_RELOC;
3701
3702 // Determine a sign for the addend.
3703 const int sign = (opcode == 0x00800000) ? 1 : -1;
3704 // shifter = rotate_imm * 2
3705 const uint32_t shifter = (insn & 0xf00) >> 7;
3706 // Initial addend value.
3707 int32_t addend = insn & 0xff;
3708 // Rotate addend right by shifter.
3709 addend = (addend >> shifter) | (addend << (32 - shifter));
3710 // Apply a sign to the added.
3711 addend *= sign;
3712
3713 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3714 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3715 // Check for overflow if required
3716 if (check_overflow
3717 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3718 return This::STATUS_OVERFLOW;
3719
3720 // Mask out the value and the ADD/SUB part of the opcode; take care
3721 // not to destroy the S bit.
3722 insn &= 0xff1ff000;
3723 // Set the opcode according to whether the value to go in the
3724 // place is negative.
3725 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3726 // Encode the offset (encoded Gn).
3727 insn |= gn;
3728
3729 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3730 return This::STATUS_OKAY;
3731 }
3732
3733 // R_ARM_LDR_PC_G0: S + A - P
3734 // R_ARM_LDR_PC_G1: S + A - P
3735 // R_ARM_LDR_PC_G2: S + A - P
3736 // R_ARM_LDR_SB_G0: S + A - B(S)
3737 // R_ARM_LDR_SB_G1: S + A - B(S)
3738 // R_ARM_LDR_SB_G2: S + A - B(S)
3739 static inline typename This::Status
3740 arm_grp_ldr(unsigned char* view,
3741 const Sized_relobj_file<32, big_endian>* object,
3742 const Symbol_value<32>* psymval,
3743 const int group,
3744 Arm_address address)
3745 {
3746 gold_assert(group >= 0 && group < 3);
3747 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3748 Valtype* wv = reinterpret_cast<Valtype*>(view);
3749 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3750
3751 const int sign = (insn & 0x00800000) ? 1 : -1;
3752 int32_t addend = (insn & 0xfff) * sign;
3753 int32_t x = (psymval->value(object, addend) - address);
3754 // Calculate the relevant G(n-1) value to obtain this stage residual.
3755 Valtype residual =
3756 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3757 if (residual >= 0x1000)
3758 return This::STATUS_OVERFLOW;
3759
3760 // Mask out the value and U bit.
3761 insn &= 0xff7ff000;
3762 // Set the U bit for non-negative values.
3763 if (x >= 0)
3764 insn |= 0x00800000;
3765 insn |= residual;
3766
3767 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3768 return This::STATUS_OKAY;
3769 }
3770
3771 // R_ARM_LDRS_PC_G0: S + A - P
3772 // R_ARM_LDRS_PC_G1: S + A - P
3773 // R_ARM_LDRS_PC_G2: S + A - P
3774 // R_ARM_LDRS_SB_G0: S + A - B(S)
3775 // R_ARM_LDRS_SB_G1: S + A - B(S)
3776 // R_ARM_LDRS_SB_G2: S + A - B(S)
3777 static inline typename This::Status
3778 arm_grp_ldrs(unsigned char* view,
3779 const Sized_relobj_file<32, big_endian>* object,
3780 const Symbol_value<32>* psymval,
3781 const int group,
3782 Arm_address address)
3783 {
3784 gold_assert(group >= 0 && group < 3);
3785 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3786 Valtype* wv = reinterpret_cast<Valtype*>(view);
3787 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3788
3789 const int sign = (insn & 0x00800000) ? 1 : -1;
3790 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3791 int32_t x = (psymval->value(object, addend) - address);
3792 // Calculate the relevant G(n-1) value to obtain this stage residual.
3793 Valtype residual =
3794 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3795 if (residual >= 0x100)
3796 return This::STATUS_OVERFLOW;
3797
3798 // Mask out the value and U bit.
3799 insn &= 0xff7ff0f0;
3800 // Set the U bit for non-negative values.
3801 if (x >= 0)
3802 insn |= 0x00800000;
3803 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3804
3805 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3806 return This::STATUS_OKAY;
3807 }
3808
3809 // R_ARM_LDC_PC_G0: S + A - P
3810 // R_ARM_LDC_PC_G1: S + A - P
3811 // R_ARM_LDC_PC_G2: S + A - P
3812 // R_ARM_LDC_SB_G0: S + A - B(S)
3813 // R_ARM_LDC_SB_G1: S + A - B(S)
3814 // R_ARM_LDC_SB_G2: S + A - B(S)
3815 static inline typename This::Status
3816 arm_grp_ldc(unsigned char* view,
3817 const Sized_relobj_file<32, big_endian>* object,
3818 const Symbol_value<32>* psymval,
3819 const int group,
3820 Arm_address address)
3821 {
3822 gold_assert(group >= 0 && group < 3);
3823 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3824 Valtype* wv = reinterpret_cast<Valtype*>(view);
3825 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3826
3827 const int sign = (insn & 0x00800000) ? 1 : -1;
3828 int32_t addend = ((insn & 0xff) << 2) * sign;
3829 int32_t x = (psymval->value(object, addend) - address);
3830 // Calculate the relevant G(n-1) value to obtain this stage residual.
3831 Valtype residual =
3832 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3833 if ((residual & 0x3) != 0 || residual >= 0x400)
3834 return This::STATUS_OVERFLOW;
3835
3836 // Mask out the value and U bit.
3837 insn &= 0xff7fff00;
3838 // Set the U bit for non-negative values.
3839 if (x >= 0)
3840 insn |= 0x00800000;
3841 insn |= (residual >> 2);
3842
3843 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3844 return This::STATUS_OKAY;
3845 }
3846 };
3847
3848 // Relocate ARM long branches. This handles relocation types
3849 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3850 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3851 // undefined and we do not use PLT in this relocation. In such a case,
3852 // the branch is converted into an NOP.
3853
3854 template<bool big_endian>
3855 typename Arm_relocate_functions<big_endian>::Status
3856 Arm_relocate_functions<big_endian>::arm_branch_common(
3857 unsigned int r_type,
3858 const Relocate_info<32, big_endian>* relinfo,
3859 unsigned char* view,
3860 const Sized_symbol<32>* gsym,
3861 const Arm_relobj<big_endian>* object,
3862 unsigned int r_sym,
3863 const Symbol_value<32>* psymval,
3864 Arm_address address,
3865 Arm_address thumb_bit,
3866 bool is_weakly_undefined_without_plt)
3867 {
3868 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3869 Valtype* wv = reinterpret_cast<Valtype*>(view);
3870 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3871
3872 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3873 && ((val & 0x0f000000UL) == 0x0a000000UL);
3874 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3875 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3876 && ((val & 0x0f000000UL) == 0x0b000000UL);
3877 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3878 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3879
3880 // Check that the instruction is valid.
3881 if (r_type == elfcpp::R_ARM_CALL)
3882 {
3883 if (!insn_is_uncond_bl && !insn_is_blx)
3884 return This::STATUS_BAD_RELOC;
3885 }
3886 else if (r_type == elfcpp::R_ARM_JUMP24)
3887 {
3888 if (!insn_is_b && !insn_is_cond_bl)
3889 return This::STATUS_BAD_RELOC;
3890 }
3891 else if (r_type == elfcpp::R_ARM_PLT32)
3892 {
3893 if (!insn_is_any_branch)
3894 return This::STATUS_BAD_RELOC;
3895 }
3896 else if (r_type == elfcpp::R_ARM_XPC25)
3897 {
3898 // FIXME: AAELF document IH0044C does not say much about it other
3899 // than it being obsolete.
3900 if (!insn_is_any_branch)
3901 return This::STATUS_BAD_RELOC;
3902 }
3903 else
3904 gold_unreachable();
3905
3906 // A branch to an undefined weak symbol is turned into a jump to
3907 // the next instruction unless a PLT entry will be created.
3908 // Do the same for local undefined symbols.
3909 // The jump to the next instruction is optimized as a NOP depending
3910 // on the architecture.
3911 const Target_arm<big_endian>* arm_target =
3912 Target_arm<big_endian>::default_target();
3913 if (is_weakly_undefined_without_plt)
3914 {
3915 gold_assert(!parameters->options().relocatable());
3916 Valtype cond = val & 0xf0000000U;
3917 if (arm_target->may_use_arm_nop())
3918 val = cond | 0x0320f000;
3919 else
3920 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3921 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3922 return This::STATUS_OKAY;
3923 }
3924
3925 Valtype addend = Bits<26>::sign_extend32(val << 2);
3926 Valtype branch_target = psymval->value(object, addend);
3927 int32_t branch_offset = branch_target - address;
3928
3929 // We need a stub if the branch offset is too large or if we need
3930 // to switch mode.
3931 bool may_use_blx = arm_target->may_use_v5t_interworking();
3932 Reloc_stub* stub = NULL;
3933
3934 if (!parameters->options().relocatable()
3935 && (Bits<26>::has_overflow32(branch_offset)
3936 || ((thumb_bit != 0)
3937 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3938 {
3939 Valtype unadjusted_branch_target = psymval->value(object, 0);
3940
3941 Stub_type stub_type =
3942 Reloc_stub::stub_type_for_reloc(r_type, address,
3943 unadjusted_branch_target,
3944 (thumb_bit != 0));
3945 if (stub_type != arm_stub_none)
3946 {
3947 Stub_table<big_endian>* stub_table =
3948 object->stub_table(relinfo->data_shndx);
3949 gold_assert(stub_table != NULL);
3950
3951 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3952 stub = stub_table->find_reloc_stub(stub_key);
3953 gold_assert(stub != NULL);
3954 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3955 branch_target = stub_table->address() + stub->offset() + addend;
3956 branch_offset = branch_target - address;
3957 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3958 }
3959 }
3960
3961 // At this point, if we still need to switch mode, the instruction
3962 // must either be a BLX or a BL that can be converted to a BLX.
3963 if (thumb_bit != 0)
3964 {
3965 // Turn BL to BLX.
3966 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3967 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3968 }
3969
3970 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3971 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3972 return (Bits<26>::has_overflow32(branch_offset)
3973 ? This::STATUS_OVERFLOW
3974 : This::STATUS_OKAY);
3975 }
3976
3977 // Relocate THUMB long branches. This handles relocation types
3978 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3979 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3980 // undefined and we do not use PLT in this relocation. In such a case,
3981 // the branch is converted into an NOP.
3982
3983 template<bool big_endian>
3984 typename Arm_relocate_functions<big_endian>::Status
3985 Arm_relocate_functions<big_endian>::thumb_branch_common(
3986 unsigned int r_type,
3987 const Relocate_info<32, big_endian>* relinfo,
3988 unsigned char* view,
3989 const Sized_symbol<32>* gsym,
3990 const Arm_relobj<big_endian>* object,
3991 unsigned int r_sym,
3992 const Symbol_value<32>* psymval,
3993 Arm_address address,
3994 Arm_address thumb_bit,
3995 bool is_weakly_undefined_without_plt)
3996 {
3997 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3998 Valtype* wv = reinterpret_cast<Valtype*>(view);
3999 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4000 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4001
4002 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4003 // into account.
4004 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4005 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4006
4007 // Check that the instruction is valid.
4008 if (r_type == elfcpp::R_ARM_THM_CALL)
4009 {
4010 if (!is_bl_insn && !is_blx_insn)
4011 return This::STATUS_BAD_RELOC;
4012 }
4013 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4014 {
4015 // This cannot be a BLX.
4016 if (!is_bl_insn)
4017 return This::STATUS_BAD_RELOC;
4018 }
4019 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4020 {
4021 // Check for Thumb to Thumb call.
4022 if (!is_blx_insn)
4023 return This::STATUS_BAD_RELOC;
4024 if (thumb_bit != 0)
4025 {
4026 gold_warning(_("%s: Thumb BLX instruction targets "
4027 "thumb function '%s'."),
4028 object->name().c_str(),
4029 (gsym ? gsym->name() : "(local)"));
4030 // Convert BLX to BL.
4031 lower_insn |= 0x1000U;
4032 }
4033 }
4034 else
4035 gold_unreachable();
4036
4037 // A branch to an undefined weak symbol is turned into a jump to
4038 // the next instruction unless a PLT entry will be created.
4039 // The jump to the next instruction is optimized as a NOP.W for
4040 // Thumb-2 enabled architectures.
4041 const Target_arm<big_endian>* arm_target =
4042 Target_arm<big_endian>::default_target();
4043 if (is_weakly_undefined_without_plt)
4044 {
4045 gold_assert(!parameters->options().relocatable());
4046 if (arm_target->may_use_thumb2_nop())
4047 {
4048 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4049 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4050 }
4051 else
4052 {
4053 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4054 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4055 }
4056 return This::STATUS_OKAY;
4057 }
4058
4059 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4060 Arm_address branch_target = psymval->value(object, addend);
4061
4062 // For BLX, bit 1 of target address comes from bit 1 of base address.
4063 bool may_use_blx = arm_target->may_use_v5t_interworking();
4064 if (thumb_bit == 0 && may_use_blx)
4065 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4066
4067 int32_t branch_offset = branch_target - address;
4068
4069 // We need a stub if the branch offset is too large or if we need
4070 // to switch mode.
4071 bool thumb2 = arm_target->using_thumb2();
4072 if (!parameters->options().relocatable()
4073 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4074 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4075 || ((thumb_bit == 0)
4076 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4077 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4078 {
4079 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4080
4081 Stub_type stub_type =
4082 Reloc_stub::stub_type_for_reloc(r_type, address,
4083 unadjusted_branch_target,
4084 (thumb_bit != 0));
4085
4086 if (stub_type != arm_stub_none)
4087 {
4088 Stub_table<big_endian>* stub_table =
4089 object->stub_table(relinfo->data_shndx);
4090 gold_assert(stub_table != NULL);
4091
4092 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4093 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4094 gold_assert(stub != NULL);
4095 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4096 branch_target = stub_table->address() + stub->offset() + addend;
4097 if (thumb_bit == 0 && may_use_blx)
4098 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4099 branch_offset = branch_target - address;
4100 }
4101 }
4102
4103 // At this point, if we still need to switch mode, the instruction
4104 // must either be a BLX or a BL that can be converted to a BLX.
4105 if (thumb_bit == 0)
4106 {
4107 gold_assert(may_use_blx
4108 && (r_type == elfcpp::R_ARM_THM_CALL
4109 || r_type == elfcpp::R_ARM_THM_XPC22));
4110 // Make sure this is a BLX.
4111 lower_insn &= ~0x1000U;
4112 }
4113 else
4114 {
4115 // Make sure this is a BL.
4116 lower_insn |= 0x1000U;
4117 }
4118
4119 // For a BLX instruction, make sure that the relocation is rounded up
4120 // to a word boundary. This follows the semantics of the instruction
4121 // which specifies that bit 1 of the target address will come from bit
4122 // 1 of the base address.
4123 if ((lower_insn & 0x5000U) == 0x4000U)
4124 gold_assert((branch_offset & 3) == 0);
4125
4126 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4127 // We use the Thumb-2 encoding, which is safe even if dealing with
4128 // a Thumb-1 instruction by virtue of our overflow check above. */
4129 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4130 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4131
4132 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4133 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4134
4135 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4136
4137 return ((thumb2
4138 ? Bits<25>::has_overflow32(branch_offset)
4139 : Bits<23>::has_overflow32(branch_offset))
4140 ? This::STATUS_OVERFLOW
4141 : This::STATUS_OKAY);
4142 }
4143
4144 // Relocate THUMB-2 long conditional branches.
4145 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4146 // undefined and we do not use PLT in this relocation. In such a case,
4147 // the branch is converted into an NOP.
4148
4149 template<bool big_endian>
4150 typename Arm_relocate_functions<big_endian>::Status
4151 Arm_relocate_functions<big_endian>::thm_jump19(
4152 unsigned char* view,
4153 const Arm_relobj<big_endian>* object,
4154 const Symbol_value<32>* psymval,
4155 Arm_address address,
4156 Arm_address thumb_bit)
4157 {
4158 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4159 Valtype* wv = reinterpret_cast<Valtype*>(view);
4160 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4161 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4162 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4163
4164 Arm_address branch_target = psymval->value(object, addend);
4165 int32_t branch_offset = branch_target - address;
4166
4167 // ??? Should handle interworking? GCC might someday try to
4168 // use this for tail calls.
4169 // FIXME: We do support thumb entry to PLT yet.
4170 if (thumb_bit == 0)
4171 {
4172 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4173 return This::STATUS_BAD_RELOC;
4174 }
4175
4176 // Put RELOCATION back into the insn.
4177 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4178 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4179
4180 // Put the relocated value back in the object file:
4181 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4182 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4183
4184 return (Bits<21>::has_overflow32(branch_offset)
4185 ? This::STATUS_OVERFLOW
4186 : This::STATUS_OKAY);
4187 }
4188
4189 // Get the GOT section, creating it if necessary.
4190
4191 template<bool big_endian>
4192 Arm_output_data_got<big_endian>*
4193 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4194 {
4195 if (this->got_ == NULL)
4196 {
4197 gold_assert(symtab != NULL && layout != NULL);
4198
4199 // When using -z now, we can treat .got as a relro section.
4200 // Without -z now, it is modified after program startup by lazy
4201 // PLT relocations.
4202 bool is_got_relro = parameters->options().now();
4203 Output_section_order got_order = (is_got_relro
4204 ? ORDER_RELRO_LAST
4205 : ORDER_DATA);
4206
4207 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4208 // .got.plt sections in output. The output .got section contains both
4209 // PLT and non-PLT GOT entries.
4210 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4211
4212 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4213 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4214 this->got_, got_order, is_got_relro);
4215
4216 // The old GNU linker creates a .got.plt section. We just
4217 // create another set of data in the .got section. Note that we
4218 // always create a PLT if we create a GOT, although the PLT
4219 // might be empty.
4220 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4221 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4222 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4223 this->got_plt_, got_order, is_got_relro);
4224
4225 // The first three entries are reserved.
4226 this->got_plt_->set_current_data_size(3 * 4);
4227
4228 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4229 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4230 Symbol_table::PREDEFINED,
4231 this->got_plt_,
4232 0, 0, elfcpp::STT_OBJECT,
4233 elfcpp::STB_LOCAL,
4234 elfcpp::STV_HIDDEN, 0,
4235 false, false);
4236 }
4237 return this->got_;
4238 }
4239
4240 // Get the dynamic reloc section, creating it if necessary.
4241
4242 template<bool big_endian>
4243 typename Target_arm<big_endian>::Reloc_section*
4244 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4245 {
4246 if (this->rel_dyn_ == NULL)
4247 {
4248 gold_assert(layout != NULL);
4249 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4250 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4251 elfcpp::SHF_ALLOC, this->rel_dyn_,
4252 ORDER_DYNAMIC_RELOCS, false);
4253 }
4254 return this->rel_dyn_;
4255 }
4256
4257 // Insn_template methods.
4258
4259 // Return byte size of an instruction template.
4260
4261 size_t
4262 Insn_template::size() const
4263 {
4264 switch (this->type())
4265 {
4266 case THUMB16_TYPE:
4267 case THUMB16_SPECIAL_TYPE:
4268 return 2;
4269 case ARM_TYPE:
4270 case THUMB32_TYPE:
4271 case DATA_TYPE:
4272 return 4;
4273 default:
4274 gold_unreachable();
4275 }
4276 }
4277
4278 // Return alignment of an instruction template.
4279
4280 unsigned
4281 Insn_template::alignment() const
4282 {
4283 switch (this->type())
4284 {
4285 case THUMB16_TYPE:
4286 case THUMB16_SPECIAL_TYPE:
4287 case THUMB32_TYPE:
4288 return 2;
4289 case ARM_TYPE:
4290 case DATA_TYPE:
4291 return 4;
4292 default:
4293 gold_unreachable();
4294 }
4295 }
4296
4297 // Stub_template methods.
4298
4299 Stub_template::Stub_template(
4300 Stub_type type, const Insn_template* insns,
4301 size_t insn_count)
4302 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4303 entry_in_thumb_mode_(false), relocs_()
4304 {
4305 off_t offset = 0;
4306
4307 // Compute byte size and alignment of stub template.
4308 for (size_t i = 0; i < insn_count; i++)
4309 {
4310 unsigned insn_alignment = insns[i].alignment();
4311 size_t insn_size = insns[i].size();
4312 gold_assert((offset & (insn_alignment - 1)) == 0);
4313 this->alignment_ = std::max(this->alignment_, insn_alignment);
4314 switch (insns[i].type())
4315 {
4316 case Insn_template::THUMB16_TYPE:
4317 case Insn_template::THUMB16_SPECIAL_TYPE:
4318 if (i == 0)
4319 this->entry_in_thumb_mode_ = true;
4320 break;
4321
4322 case Insn_template::THUMB32_TYPE:
4323 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4324 this->relocs_.push_back(Reloc(i, offset));
4325 if (i == 0)
4326 this->entry_in_thumb_mode_ = true;
4327 break;
4328
4329 case Insn_template::ARM_TYPE:
4330 // Handle cases where the target is encoded within the
4331 // instruction.
4332 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4333 this->relocs_.push_back(Reloc(i, offset));
4334 break;
4335
4336 case Insn_template::DATA_TYPE:
4337 // Entry point cannot be data.
4338 gold_assert(i != 0);
4339 this->relocs_.push_back(Reloc(i, offset));
4340 break;
4341
4342 default:
4343 gold_unreachable();
4344 }
4345 offset += insn_size;
4346 }
4347 this->size_ = offset;
4348 }
4349
4350 // Stub methods.
4351
4352 // Template to implement do_write for a specific target endianness.
4353
4354 template<bool big_endian>
4355 void inline
4356 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4357 {
4358 const Stub_template* stub_template = this->stub_template();
4359 const Insn_template* insns = stub_template->insns();
4360
4361 // FIXME: We do not handle BE8 encoding yet.
4362 unsigned char* pov = view;
4363 for (size_t i = 0; i < stub_template->insn_count(); i++)
4364 {
4365 switch (insns[i].type())
4366 {
4367 case Insn_template::THUMB16_TYPE:
4368 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4369 break;
4370 case Insn_template::THUMB16_SPECIAL_TYPE:
4371 elfcpp::Swap<16, big_endian>::writeval(
4372 pov,
4373 this->thumb16_special(i));
4374 break;
4375 case Insn_template::THUMB32_TYPE:
4376 {
4377 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4378 uint32_t lo = insns[i].data() & 0xffff;
4379 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4380 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4381 }
4382 break;
4383 case Insn_template::ARM_TYPE:
4384 case Insn_template::DATA_TYPE:
4385 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4386 break;
4387 default:
4388 gold_unreachable();
4389 }
4390 pov += insns[i].size();
4391 }
4392 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4393 }
4394
4395 // Reloc_stub::Key methods.
4396
4397 // Dump a Key as a string for debugging.
4398
4399 std::string
4400 Reloc_stub::Key::name() const
4401 {
4402 if (this->r_sym_ == invalid_index)
4403 {
4404 // Global symbol key name
4405 // <stub-type>:<symbol name>:<addend>.
4406 const std::string sym_name = this->u_.symbol->name();
4407 // We need to print two hex number and two colons. So just add 100 bytes
4408 // to the symbol name size.
4409 size_t len = sym_name.size() + 100;
4410 char* buffer = new char[len];
4411 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4412 sym_name.c_str(), this->addend_);
4413 gold_assert(c > 0 && c < static_cast<int>(len));
4414 delete[] buffer;
4415 return std::string(buffer);
4416 }
4417 else
4418 {
4419 // local symbol key name
4420 // <stub-type>:<object>:<r_sym>:<addend>.
4421 const size_t len = 200;
4422 char buffer[len];
4423 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4424 this->u_.relobj, this->r_sym_, this->addend_);
4425 gold_assert(c > 0 && c < static_cast<int>(len));
4426 return std::string(buffer);
4427 }
4428 }
4429
4430 // Reloc_stub methods.
4431
4432 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4433 // LOCATION to DESTINATION.
4434 // This code is based on the arm_type_of_stub function in
4435 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4436 // class simple.
4437
4438 Stub_type
4439 Reloc_stub::stub_type_for_reloc(
4440 unsigned int r_type,
4441 Arm_address location,
4442 Arm_address destination,
4443 bool target_is_thumb)
4444 {
4445 Stub_type stub_type = arm_stub_none;
4446
4447 // This is a bit ugly but we want to avoid using a templated class for
4448 // big and little endianities.
4449 bool may_use_blx;
4450 bool should_force_pic_veneer;
4451 bool thumb2;
4452 bool thumb_only;
4453 if (parameters->target().is_big_endian())
4454 {
4455 const Target_arm<true>* big_endian_target =
4456 Target_arm<true>::default_target();
4457 may_use_blx = big_endian_target->may_use_v5t_interworking();
4458 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4459 thumb2 = big_endian_target->using_thumb2();
4460 thumb_only = big_endian_target->using_thumb_only();
4461 }
4462 else
4463 {
4464 const Target_arm<false>* little_endian_target =
4465 Target_arm<false>::default_target();
4466 may_use_blx = little_endian_target->may_use_v5t_interworking();
4467 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4468 thumb2 = little_endian_target->using_thumb2();
4469 thumb_only = little_endian_target->using_thumb_only();
4470 }
4471
4472 int64_t branch_offset;
4473 bool output_is_position_independent =
4474 parameters->options().output_is_position_independent();
4475 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4476 {
4477 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4478 // base address (instruction address + 4).
4479 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4480 destination = Bits<32>::bit_select32(destination, location, 0x2);
4481 branch_offset = static_cast<int64_t>(destination) - location;
4482
4483 // Handle cases where:
4484 // - this call goes too far (different Thumb/Thumb2 max
4485 // distance)
4486 // - it's a Thumb->Arm call and blx is not available, or it's a
4487 // Thumb->Arm branch (not bl). A stub is needed in this case.
4488 if ((!thumb2
4489 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4490 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4491 || (thumb2
4492 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4493 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4494 || ((!target_is_thumb)
4495 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4496 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4497 {
4498 if (target_is_thumb)
4499 {
4500 // Thumb to thumb.
4501 if (!thumb_only)
4502 {
4503 stub_type = (output_is_position_independent
4504 || should_force_pic_veneer)
4505 // PIC stubs.
4506 ? ((may_use_blx
4507 && (r_type == elfcpp::R_ARM_THM_CALL))
4508 // V5T and above. Stub starts with ARM code, so
4509 // we must be able to switch mode before
4510 // reaching it, which is only possible for 'bl'
4511 // (ie R_ARM_THM_CALL relocation).
4512 ? arm_stub_long_branch_any_thumb_pic
4513 // On V4T, use Thumb code only.
4514 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4515
4516 // non-PIC stubs.
4517 : ((may_use_blx
4518 && (r_type == elfcpp::R_ARM_THM_CALL))
4519 ? arm_stub_long_branch_any_any // V5T and above.
4520 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4521 }
4522 else
4523 {
4524 stub_type = (output_is_position_independent
4525 || should_force_pic_veneer)
4526 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4527 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4528 }
4529 }
4530 else
4531 {
4532 // Thumb to arm.
4533
4534 // FIXME: We should check that the input section is from an
4535 // object that has interwork enabled.
4536
4537 stub_type = (output_is_position_independent
4538 || should_force_pic_veneer)
4539 // PIC stubs.
4540 ? ((may_use_blx
4541 && (r_type == elfcpp::R_ARM_THM_CALL))
4542 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4543 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4544
4545 // non-PIC stubs.
4546 : ((may_use_blx
4547 && (r_type == elfcpp::R_ARM_THM_CALL))
4548 ? arm_stub_long_branch_any_any // V5T and above.
4549 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4550
4551 // Handle v4t short branches.
4552 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4553 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4554 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4555 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4556 }
4557 }
4558 }
4559 else if (r_type == elfcpp::R_ARM_CALL
4560 || r_type == elfcpp::R_ARM_JUMP24
4561 || r_type == elfcpp::R_ARM_PLT32)
4562 {
4563 branch_offset = static_cast<int64_t>(destination) - location;
4564 if (target_is_thumb)
4565 {
4566 // Arm to thumb.
4567
4568 // FIXME: We should check that the input section is from an
4569 // object that has interwork enabled.
4570
4571 // We have an extra 2-bytes reach because of
4572 // the mode change (bit 24 (H) of BLX encoding).
4573 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4574 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4575 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4576 || (r_type == elfcpp::R_ARM_JUMP24)
4577 || (r_type == elfcpp::R_ARM_PLT32))
4578 {
4579 stub_type = (output_is_position_independent
4580 || should_force_pic_veneer)
4581 // PIC stubs.
4582 ? (may_use_blx
4583 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4584 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4585
4586 // non-PIC stubs.
4587 : (may_use_blx
4588 ? arm_stub_long_branch_any_any // V5T and above.
4589 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4590 }
4591 }
4592 else
4593 {
4594 // Arm to arm.
4595 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4596 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4597 {
4598 stub_type = (output_is_position_independent
4599 || should_force_pic_veneer)
4600 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4601 : arm_stub_long_branch_any_any; /// non-PIC.
4602 }
4603 }
4604 }
4605
4606 return stub_type;
4607 }
4608
4609 // Cortex_a8_stub methods.
4610
4611 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4612 // I is the position of the instruction template in the stub template.
4613
4614 uint16_t
4615 Cortex_a8_stub::do_thumb16_special(size_t i)
4616 {
4617 // The only use of this is to copy condition code from a conditional
4618 // branch being worked around to the corresponding conditional branch in
4619 // to the stub.
4620 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4621 && i == 0);
4622 uint16_t data = this->stub_template()->insns()[i].data();
4623 gold_assert((data & 0xff00U) == 0xd000U);
4624 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4625 return data;
4626 }
4627
4628 // Stub_factory methods.
4629
4630 Stub_factory::Stub_factory()
4631 {
4632 // The instruction template sequences are declared as static
4633 // objects and initialized first time the constructor runs.
4634
4635 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4636 // to reach the stub if necessary.
4637 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4638 {
4639 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4640 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4641 // dcd R_ARM_ABS32(X)
4642 };
4643
4644 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4645 // available.
4646 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4647 {
4648 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4649 Insn_template::arm_insn(0xe12fff1c), // bx ip
4650 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4651 // dcd R_ARM_ABS32(X)
4652 };
4653
4654 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4655 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4656 {
4657 Insn_template::thumb16_insn(0xb401), // push {r0}
4658 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4659 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4660 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4661 Insn_template::thumb16_insn(0x4760), // bx ip
4662 Insn_template::thumb16_insn(0xbf00), // nop
4663 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4664 // dcd R_ARM_ABS32(X)
4665 };
4666
4667 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4668 // allowed.
4669 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4670 {
4671 Insn_template::thumb16_insn(0x4778), // bx pc
4672 Insn_template::thumb16_insn(0x46c0), // nop
4673 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4674 Insn_template::arm_insn(0xe12fff1c), // bx ip
4675 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4676 // dcd R_ARM_ABS32(X)
4677 };
4678
4679 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4680 // available.
4681 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4682 {
4683 Insn_template::thumb16_insn(0x4778), // bx pc
4684 Insn_template::thumb16_insn(0x46c0), // nop
4685 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4686 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4687 // dcd R_ARM_ABS32(X)
4688 };
4689
4690 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4691 // one, when the destination is close enough.
4692 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4693 {
4694 Insn_template::thumb16_insn(0x4778), // bx pc
4695 Insn_template::thumb16_insn(0x46c0), // nop
4696 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4697 };
4698
4699 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4700 // blx to reach the stub if necessary.
4701 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4702 {
4703 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4704 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4705 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4706 // dcd R_ARM_REL32(X-4)
4707 };
4708
4709 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4710 // blx to reach the stub if necessary. We can not add into pc;
4711 // it is not guaranteed to mode switch (different in ARMv6 and
4712 // ARMv7).
4713 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4714 {
4715 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4716 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4717 Insn_template::arm_insn(0xe12fff1c), // bx ip
4718 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4719 // dcd R_ARM_REL32(X)
4720 };
4721
4722 // V4T ARM -> ARM long branch stub, PIC.
4723 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4724 {
4725 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4726 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4727 Insn_template::arm_insn(0xe12fff1c), // bx ip
4728 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4729 // dcd R_ARM_REL32(X)
4730 };
4731
4732 // V4T Thumb -> ARM long branch stub, PIC.
4733 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4734 {
4735 Insn_template::thumb16_insn(0x4778), // bx pc
4736 Insn_template::thumb16_insn(0x46c0), // nop
4737 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4738 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4739 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4740 // dcd R_ARM_REL32(X)
4741 };
4742
4743 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4744 // architectures.
4745 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4746 {
4747 Insn_template::thumb16_insn(0xb401), // push {r0}
4748 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4749 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4750 Insn_template::thumb16_insn(0x4484), // add ip, r0
4751 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4752 Insn_template::thumb16_insn(0x4760), // bx ip
4753 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4754 // dcd R_ARM_REL32(X)
4755 };
4756
4757 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4758 // allowed.
4759 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4760 {
4761 Insn_template::thumb16_insn(0x4778), // bx pc
4762 Insn_template::thumb16_insn(0x46c0), // nop
4763 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4764 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4765 Insn_template::arm_insn(0xe12fff1c), // bx ip
4766 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4767 // dcd R_ARM_REL32(X)
4768 };
4769
4770 // Cortex-A8 erratum-workaround stubs.
4771
4772 // Stub used for conditional branches (which may be beyond +/-1MB away,
4773 // so we can't use a conditional branch to reach this stub).
4774
4775 // original code:
4776 //
4777 // b<cond> X
4778 // after:
4779 //
4780 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4781 {
4782 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4783 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4784 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4785 // b.w X
4786 };
4787
4788 // Stub used for b.w and bl.w instructions.
4789
4790 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4791 {
4792 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4793 };
4794
4795 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4796 {
4797 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4798 };
4799
4800 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4801 // instruction (which switches to ARM mode) to point to this stub. Jump to
4802 // the real destination using an ARM-mode branch.
4803 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4804 {
4805 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4806 };
4807
4808 // Stub used to provide an interworking for R_ARM_V4BX relocation
4809 // (bx r[n] instruction).
4810 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4811 {
4812 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4813 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4814 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4815 };
4816
4817 // Fill in the stub template look-up table. Stub templates are constructed
4818 // per instance of Stub_factory for fast look-up without locking
4819 // in a thread-enabled environment.
4820
4821 this->stub_templates_[arm_stub_none] =
4822 new Stub_template(arm_stub_none, NULL, 0);
4823
4824 #define DEF_STUB(x) \
4825 do \
4826 { \
4827 size_t array_size \
4828 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4829 Stub_type type = arm_stub_##x; \
4830 this->stub_templates_[type] = \
4831 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4832 } \
4833 while (0);
4834
4835 DEF_STUBS
4836 #undef DEF_STUB
4837 }
4838
4839 // Stub_table methods.
4840
4841 // Remove all Cortex-A8 stub.
4842
4843 template<bool big_endian>
4844 void
4845 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4846 {
4847 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4848 p != this->cortex_a8_stubs_.end();
4849 ++p)
4850 delete p->second;
4851 this->cortex_a8_stubs_.clear();
4852 }
4853
4854 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4855
4856 template<bool big_endian>
4857 void
4858 Stub_table<big_endian>::relocate_stub(
4859 Stub* stub,
4860 const Relocate_info<32, big_endian>* relinfo,
4861 Target_arm<big_endian>* arm_target,
4862 Output_section* output_section,
4863 unsigned char* view,
4864 Arm_address address,
4865 section_size_type view_size)
4866 {
4867 const Stub_template* stub_template = stub->stub_template();
4868 if (stub_template->reloc_count() != 0)
4869 {
4870 // Adjust view to cover the stub only.
4871 section_size_type offset = stub->offset();
4872 section_size_type stub_size = stub_template->size();
4873 gold_assert(offset + stub_size <= view_size);
4874
4875 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4876 address + offset, stub_size);
4877 }
4878 }
4879
4880 // Relocate all stubs in this stub table.
4881
4882 template<bool big_endian>
4883 void
4884 Stub_table<big_endian>::relocate_stubs(
4885 const Relocate_info<32, big_endian>* relinfo,
4886 Target_arm<big_endian>* arm_target,
4887 Output_section* output_section,
4888 unsigned char* view,
4889 Arm_address address,
4890 section_size_type view_size)
4891 {
4892 // If we are passed a view bigger than the stub table's. we need to
4893 // adjust the view.
4894 gold_assert(address == this->address()
4895 && (view_size
4896 == static_cast<section_size_type>(this->data_size())));
4897
4898 // Relocate all relocation stubs.
4899 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4900 p != this->reloc_stubs_.end();
4901 ++p)
4902 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4903 address, view_size);
4904
4905 // Relocate all Cortex-A8 stubs.
4906 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4907 p != this->cortex_a8_stubs_.end();
4908 ++p)
4909 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4910 address, view_size);
4911
4912 // Relocate all ARM V4BX stubs.
4913 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4914 p != this->arm_v4bx_stubs_.end();
4915 ++p)
4916 {
4917 if (*p != NULL)
4918 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4919 address, view_size);
4920 }
4921 }
4922
4923 // Write out the stubs to file.
4924
4925 template<bool big_endian>
4926 void
4927 Stub_table<big_endian>::do_write(Output_file* of)
4928 {
4929 off_t offset = this->offset();
4930 const section_size_type oview_size =
4931 convert_to_section_size_type(this->data_size());
4932 unsigned char* const oview = of->get_output_view(offset, oview_size);
4933
4934 // Write relocation stubs.
4935 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4936 p != this->reloc_stubs_.end();
4937 ++p)
4938 {
4939 Reloc_stub* stub = p->second;
4940 Arm_address address = this->address() + stub->offset();
4941 gold_assert(address
4942 == align_address(address,
4943 stub->stub_template()->alignment()));
4944 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4945 big_endian);
4946 }
4947
4948 // Write Cortex-A8 stubs.
4949 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4950 p != this->cortex_a8_stubs_.end();
4951 ++p)
4952 {
4953 Cortex_a8_stub* stub = p->second;
4954 Arm_address address = this->address() + stub->offset();
4955 gold_assert(address
4956 == align_address(address,
4957 stub->stub_template()->alignment()));
4958 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4959 big_endian);
4960 }
4961
4962 // Write ARM V4BX relocation stubs.
4963 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4964 p != this->arm_v4bx_stubs_.end();
4965 ++p)
4966 {
4967 if (*p == NULL)
4968 continue;
4969
4970 Arm_address address = this->address() + (*p)->offset();
4971 gold_assert(address
4972 == align_address(address,
4973 (*p)->stub_template()->alignment()));
4974 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4975 big_endian);
4976 }
4977
4978 of->write_output_view(this->offset(), oview_size, oview);
4979 }
4980
4981 // Update the data size and address alignment of the stub table at the end
4982 // of a relaxation pass. Return true if either the data size or the
4983 // alignment changed in this relaxation pass.
4984
4985 template<bool big_endian>
4986 bool
4987 Stub_table<big_endian>::update_data_size_and_addralign()
4988 {
4989 // Go over all stubs in table to compute data size and address alignment.
4990 off_t size = this->reloc_stubs_size_;
4991 unsigned addralign = this->reloc_stubs_addralign_;
4992
4993 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4994 p != this->cortex_a8_stubs_.end();
4995 ++p)
4996 {
4997 const Stub_template* stub_template = p->second->stub_template();
4998 addralign = std::max(addralign, stub_template->alignment());
4999 size = (align_address(size, stub_template->alignment())
5000 + stub_template->size());
5001 }
5002
5003 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5004 p != this->arm_v4bx_stubs_.end();
5005 ++p)
5006 {
5007 if (*p == NULL)
5008 continue;
5009
5010 const Stub_template* stub_template = (*p)->stub_template();
5011 addralign = std::max(addralign, stub_template->alignment());
5012 size = (align_address(size, stub_template->alignment())
5013 + stub_template->size());
5014 }
5015
5016 // Check if either data size or alignment changed in this pass.
5017 // Update prev_data_size_ and prev_addralign_. These will be used
5018 // as the current data size and address alignment for the next pass.
5019 bool changed = size != this->prev_data_size_;
5020 this->prev_data_size_ = size;
5021
5022 if (addralign != this->prev_addralign_)
5023 changed = true;
5024 this->prev_addralign_ = addralign;
5025
5026 return changed;
5027 }
5028
5029 // Finalize the stubs. This sets the offsets of the stubs within the stub
5030 // table. It also marks all input sections needing Cortex-A8 workaround.
5031
5032 template<bool big_endian>
5033 void
5034 Stub_table<big_endian>::finalize_stubs()
5035 {
5036 off_t off = this->reloc_stubs_size_;
5037 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5038 p != this->cortex_a8_stubs_.end();
5039 ++p)
5040 {
5041 Cortex_a8_stub* stub = p->second;
5042 const Stub_template* stub_template = stub->stub_template();
5043 uint64_t stub_addralign = stub_template->alignment();
5044 off = align_address(off, stub_addralign);
5045 stub->set_offset(off);
5046 off += stub_template->size();
5047
5048 // Mark input section so that we can determine later if a code section
5049 // needs the Cortex-A8 workaround quickly.
5050 Arm_relobj<big_endian>* arm_relobj =
5051 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5052 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5053 }
5054
5055 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5056 p != this->arm_v4bx_stubs_.end();
5057 ++p)
5058 {
5059 if (*p == NULL)
5060 continue;
5061
5062 const Stub_template* stub_template = (*p)->stub_template();
5063 uint64_t stub_addralign = stub_template->alignment();
5064 off = align_address(off, stub_addralign);
5065 (*p)->set_offset(off);
5066 off += stub_template->size();
5067 }
5068
5069 gold_assert(off <= this->prev_data_size_);
5070 }
5071
5072 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5073 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5074 // of the address range seen by the linker.
5075
5076 template<bool big_endian>
5077 void
5078 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5079 Target_arm<big_endian>* arm_target,
5080 unsigned char* view,
5081 Arm_address view_address,
5082 section_size_type view_size)
5083 {
5084 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5085 for (Cortex_a8_stub_list::const_iterator p =
5086 this->cortex_a8_stubs_.lower_bound(view_address);
5087 ((p != this->cortex_a8_stubs_.end())
5088 && (p->first < (view_address + view_size)));
5089 ++p)
5090 {
5091 // We do not store the THUMB bit in the LSB of either the branch address
5092 // or the stub offset. There is no need to strip the LSB.
5093 Arm_address branch_address = p->first;
5094 const Cortex_a8_stub* stub = p->second;
5095 Arm_address stub_address = this->address() + stub->offset();
5096
5097 // Offset of the branch instruction relative to this view.
5098 section_size_type offset =
5099 convert_to_section_size_type(branch_address - view_address);
5100 gold_assert((offset + 4) <= view_size);
5101
5102 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5103 view + offset, branch_address);
5104 }
5105 }
5106
5107 // Arm_input_section methods.
5108
5109 // Initialize an Arm_input_section.
5110
5111 template<bool big_endian>
5112 void
5113 Arm_input_section<big_endian>::init()
5114 {
5115 Relobj* relobj = this->relobj();
5116 unsigned int shndx = this->shndx();
5117
5118 // We have to cache original size, alignment and contents to avoid locking
5119 // the original file.
5120 this->original_addralign_ =
5121 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5122
5123 // This is not efficient but we expect only a small number of relaxed
5124 // input sections for stubs.
5125 section_size_type section_size;
5126 const unsigned char* section_contents =
5127 relobj->section_contents(shndx, &section_size, false);
5128 this->original_size_ =
5129 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5130
5131 gold_assert(this->original_contents_ == NULL);
5132 this->original_contents_ = new unsigned char[section_size];
5133 memcpy(this->original_contents_, section_contents, section_size);
5134
5135 // We want to make this look like the original input section after
5136 // output sections are finalized.
5137 Output_section* os = relobj->output_section(shndx);
5138 off_t offset = relobj->output_section_offset(shndx);
5139 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5140 this->set_address(os->address() + offset);
5141 this->set_file_offset(os->offset() + offset);
5142
5143 this->set_current_data_size(this->original_size_);
5144 this->finalize_data_size();
5145 }
5146
5147 template<bool big_endian>
5148 void
5149 Arm_input_section<big_endian>::do_write(Output_file* of)
5150 {
5151 // We have to write out the original section content.
5152 gold_assert(this->original_contents_ != NULL);
5153 of->write(this->offset(), this->original_contents_,
5154 this->original_size_);
5155
5156 // If this owns a stub table and it is not empty, write it.
5157 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5158 this->stub_table_->write(of);
5159 }
5160
5161 // Finalize data size.
5162
5163 template<bool big_endian>
5164 void
5165 Arm_input_section<big_endian>::set_final_data_size()
5166 {
5167 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5168
5169 if (this->is_stub_table_owner())
5170 {
5171 this->stub_table_->finalize_data_size();
5172 off = align_address(off, this->stub_table_->addralign());
5173 off += this->stub_table_->data_size();
5174 }
5175 this->set_data_size(off);
5176 }
5177
5178 // Reset address and file offset.
5179
5180 template<bool big_endian>
5181 void
5182 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5183 {
5184 // Size of the original input section contents.
5185 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5186
5187 // If this is a stub table owner, account for the stub table size.
5188 if (this->is_stub_table_owner())
5189 {
5190 Stub_table<big_endian>* stub_table = this->stub_table_;
5191
5192 // Reset the stub table's address and file offset. The
5193 // current data size for child will be updated after that.
5194 stub_table_->reset_address_and_file_offset();
5195 off = align_address(off, stub_table_->addralign());
5196 off += stub_table->current_data_size();
5197 }
5198
5199 this->set_current_data_size(off);
5200 }
5201
5202 // Arm_exidx_cantunwind methods.
5203
5204 // Write this to Output file OF for a fixed endianness.
5205
5206 template<bool big_endian>
5207 void
5208 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5209 {
5210 off_t offset = this->offset();
5211 const section_size_type oview_size = 8;
5212 unsigned char* const oview = of->get_output_view(offset, oview_size);
5213
5214 Output_section* os = this->relobj_->output_section(this->shndx_);
5215 gold_assert(os != NULL);
5216
5217 Arm_relobj<big_endian>* arm_relobj =
5218 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5219 Arm_address output_offset =
5220 arm_relobj->get_output_section_offset(this->shndx_);
5221 Arm_address section_start;
5222 section_size_type section_size;
5223
5224 // Find out the end of the text section referred by this.
5225 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5226 {
5227 section_start = os->address() + output_offset;
5228 const Arm_exidx_input_section* exidx_input_section =
5229 arm_relobj->exidx_input_section_by_link(this->shndx_);
5230 gold_assert(exidx_input_section != NULL);
5231 section_size =
5232 convert_to_section_size_type(exidx_input_section->text_size());
5233 }
5234 else
5235 {
5236 // Currently this only happens for a relaxed section.
5237 const Output_relaxed_input_section* poris =
5238 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5239 gold_assert(poris != NULL);
5240 section_start = poris->address();
5241 section_size = convert_to_section_size_type(poris->data_size());
5242 }
5243
5244 // We always append this to the end of an EXIDX section.
5245 Arm_address output_address = section_start + section_size;
5246
5247 // Write out the entry. The first word either points to the beginning
5248 // or after the end of a text section. The second word is the special
5249 // EXIDX_CANTUNWIND value.
5250 uint32_t prel31_offset = output_address - this->address();
5251 if (Bits<31>::has_overflow32(offset))
5252 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5253 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5254 prel31_offset & 0x7fffffffU);
5255 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5256 elfcpp::EXIDX_CANTUNWIND);
5257
5258 of->write_output_view(this->offset(), oview_size, oview);
5259 }
5260
5261 // Arm_exidx_merged_section methods.
5262
5263 // Constructor for Arm_exidx_merged_section.
5264 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5265 // SECTION_OFFSET_MAP points to a section offset map describing how
5266 // parts of the input section are mapped to output. DELETED_BYTES is
5267 // the number of bytes deleted from the EXIDX input section.
5268
5269 Arm_exidx_merged_section::Arm_exidx_merged_section(
5270 const Arm_exidx_input_section& exidx_input_section,
5271 const Arm_exidx_section_offset_map& section_offset_map,
5272 uint32_t deleted_bytes)
5273 : Output_relaxed_input_section(exidx_input_section.relobj(),
5274 exidx_input_section.shndx(),
5275 exidx_input_section.addralign()),
5276 exidx_input_section_(exidx_input_section),
5277 section_offset_map_(section_offset_map)
5278 {
5279 // If we retain or discard the whole EXIDX input section, we would
5280 // not be here.
5281 gold_assert(deleted_bytes != 0
5282 && deleted_bytes != this->exidx_input_section_.size());
5283
5284 // Fix size here so that we do not need to implement set_final_data_size.
5285 uint32_t size = exidx_input_section.size() - deleted_bytes;
5286 this->set_data_size(size);
5287 this->fix_data_size();
5288
5289 // Allocate buffer for section contents and build contents.
5290 this->section_contents_ = new unsigned char[size];
5291 }
5292
5293 // Build the contents of a merged EXIDX output section.
5294
5295 void
5296 Arm_exidx_merged_section::build_contents(
5297 const unsigned char* original_contents,
5298 section_size_type original_size)
5299 {
5300 // Go over spans of input offsets and write only those that are not
5301 // discarded.
5302 section_offset_type in_start = 0;
5303 section_offset_type out_start = 0;
5304 section_offset_type in_max =
5305 convert_types<section_offset_type>(original_size);
5306 section_offset_type out_max =
5307 convert_types<section_offset_type>(this->data_size());
5308 for (Arm_exidx_section_offset_map::const_iterator p =
5309 this->section_offset_map_.begin();
5310 p != this->section_offset_map_.end();
5311 ++p)
5312 {
5313 section_offset_type in_end = p->first;
5314 gold_assert(in_end >= in_start);
5315 section_offset_type out_end = p->second;
5316 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5317 if (out_end != -1)
5318 {
5319 size_t out_chunk_size =
5320 convert_types<size_t>(out_end - out_start + 1);
5321
5322 gold_assert(out_chunk_size == in_chunk_size
5323 && in_end < in_max && out_end < out_max);
5324
5325 memcpy(this->section_contents_ + out_start,
5326 original_contents + in_start,
5327 out_chunk_size);
5328 out_start += out_chunk_size;
5329 }
5330 in_start += in_chunk_size;
5331 }
5332 }
5333
5334 // Given an input OBJECT, an input section index SHNDX within that
5335 // object, and an OFFSET relative to the start of that input
5336 // section, return whether or not the corresponding offset within
5337 // the output section is known. If this function returns true, it
5338 // sets *POUTPUT to the output offset. The value -1 indicates that
5339 // this input offset is being discarded.
5340
5341 bool
5342 Arm_exidx_merged_section::do_output_offset(
5343 const Relobj* relobj,
5344 unsigned int shndx,
5345 section_offset_type offset,
5346 section_offset_type* poutput) const
5347 {
5348 // We only handle offsets for the original EXIDX input section.
5349 if (relobj != this->exidx_input_section_.relobj()
5350 || shndx != this->exidx_input_section_.shndx())
5351 return false;
5352
5353 section_offset_type section_size =
5354 convert_types<section_offset_type>(this->exidx_input_section_.size());
5355 if (offset < 0 || offset >= section_size)
5356 // Input offset is out of valid range.
5357 *poutput = -1;
5358 else
5359 {
5360 // We need to look up the section offset map to determine the output
5361 // offset. Find the reference point in map that is first offset
5362 // bigger than or equal to this offset.
5363 Arm_exidx_section_offset_map::const_iterator p =
5364 this->section_offset_map_.lower_bound(offset);
5365
5366 // The section offset maps are build such that this should not happen if
5367 // input offset is in the valid range.
5368 gold_assert(p != this->section_offset_map_.end());
5369
5370 // We need to check if this is dropped.
5371 section_offset_type ref = p->first;
5372 section_offset_type mapped_ref = p->second;
5373
5374 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5375 // Offset is present in output.
5376 *poutput = mapped_ref + (offset - ref);
5377 else
5378 // Offset is discarded owing to EXIDX entry merging.
5379 *poutput = -1;
5380 }
5381
5382 return true;
5383 }
5384
5385 // Write this to output file OF.
5386
5387 void
5388 Arm_exidx_merged_section::do_write(Output_file* of)
5389 {
5390 off_t offset = this->offset();
5391 const section_size_type oview_size = this->data_size();
5392 unsigned char* const oview = of->get_output_view(offset, oview_size);
5393
5394 Output_section* os = this->relobj()->output_section(this->shndx());
5395 gold_assert(os != NULL);
5396
5397 memcpy(oview, this->section_contents_, oview_size);
5398 of->write_output_view(this->offset(), oview_size, oview);
5399 }
5400
5401 // Arm_exidx_fixup methods.
5402
5403 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5404 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5405 // points to the end of the last seen EXIDX section.
5406
5407 void
5408 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5409 {
5410 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5411 && this->last_input_section_ != NULL)
5412 {
5413 Relobj* relobj = this->last_input_section_->relobj();
5414 unsigned int text_shndx = this->last_input_section_->link();
5415 Arm_exidx_cantunwind* cantunwind =
5416 new Arm_exidx_cantunwind(relobj, text_shndx);
5417 this->exidx_output_section_->add_output_section_data(cantunwind);
5418 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5419 }
5420 }
5421
5422 // Process an EXIDX section entry in input. Return whether this entry
5423 // can be deleted in the output. SECOND_WORD in the second word of the
5424 // EXIDX entry.
5425
5426 bool
5427 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5428 {
5429 bool delete_entry;
5430 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5431 {
5432 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5433 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5434 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5435 }
5436 else if ((second_word & 0x80000000) != 0)
5437 {
5438 // Inlined unwinding data. Merge if equal to previous.
5439 delete_entry = (merge_exidx_entries_
5440 && this->last_unwind_type_ == UT_INLINED_ENTRY
5441 && this->last_inlined_entry_ == second_word);
5442 this->last_unwind_type_ = UT_INLINED_ENTRY;
5443 this->last_inlined_entry_ = second_word;
5444 }
5445 else
5446 {
5447 // Normal table entry. In theory we could merge these too,
5448 // but duplicate entries are likely to be much less common.
5449 delete_entry = false;
5450 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5451 }
5452 return delete_entry;
5453 }
5454
5455 // Update the current section offset map during EXIDX section fix-up.
5456 // If there is no map, create one. INPUT_OFFSET is the offset of a
5457 // reference point, DELETED_BYTES is the number of deleted by in the
5458 // section so far. If DELETE_ENTRY is true, the reference point and
5459 // all offsets after the previous reference point are discarded.
5460
5461 void
5462 Arm_exidx_fixup::update_offset_map(
5463 section_offset_type input_offset,
5464 section_size_type deleted_bytes,
5465 bool delete_entry)
5466 {
5467 if (this->section_offset_map_ == NULL)
5468 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5469 section_offset_type output_offset;
5470 if (delete_entry)
5471 output_offset = Arm_exidx_input_section::invalid_offset;
5472 else
5473 output_offset = input_offset - deleted_bytes;
5474 (*this->section_offset_map_)[input_offset] = output_offset;
5475 }
5476
5477 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5478 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5479 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5480 // If some entries are merged, also store a pointer to a newly created
5481 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5482 // owns the map and is responsible for releasing it after use.
5483
5484 template<bool big_endian>
5485 uint32_t
5486 Arm_exidx_fixup::process_exidx_section(
5487 const Arm_exidx_input_section* exidx_input_section,
5488 const unsigned char* section_contents,
5489 section_size_type section_size,
5490 Arm_exidx_section_offset_map** psection_offset_map)
5491 {
5492 Relobj* relobj = exidx_input_section->relobj();
5493 unsigned shndx = exidx_input_section->shndx();
5494
5495 if ((section_size % 8) != 0)
5496 {
5497 // Something is wrong with this section. Better not touch it.
5498 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5499 relobj->name().c_str(), shndx);
5500 this->last_input_section_ = exidx_input_section;
5501 this->last_unwind_type_ = UT_NONE;
5502 return 0;
5503 }
5504
5505 uint32_t deleted_bytes = 0;
5506 bool prev_delete_entry = false;
5507 gold_assert(this->section_offset_map_ == NULL);
5508
5509 for (section_size_type i = 0; i < section_size; i += 8)
5510 {
5511 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5512 const Valtype* wv =
5513 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5514 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5515
5516 bool delete_entry = this->process_exidx_entry(second_word);
5517
5518 // Entry deletion causes changes in output offsets. We use a std::map
5519 // to record these. And entry (x, y) means input offset x
5520 // is mapped to output offset y. If y is invalid_offset, then x is
5521 // dropped in the output. Because of the way std::map::lower_bound
5522 // works, we record the last offset in a region w.r.t to keeping or
5523 // dropping. If there is no entry (x0, y0) for an input offset x0,
5524 // the output offset y0 of it is determined by the output offset y1 of
5525 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5526 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5527 // y0 is also -1.
5528 if (delete_entry != prev_delete_entry && i != 0)
5529 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5530
5531 // Update total deleted bytes for this entry.
5532 if (delete_entry)
5533 deleted_bytes += 8;
5534
5535 prev_delete_entry = delete_entry;
5536 }
5537
5538 // If section offset map is not NULL, make an entry for the end of
5539 // section.
5540 if (this->section_offset_map_ != NULL)
5541 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5542
5543 *psection_offset_map = this->section_offset_map_;
5544 this->section_offset_map_ = NULL;
5545 this->last_input_section_ = exidx_input_section;
5546
5547 // Set the first output text section so that we can link the EXIDX output
5548 // section to it. Ignore any EXIDX input section that is completely merged.
5549 if (this->first_output_text_section_ == NULL
5550 && deleted_bytes != section_size)
5551 {
5552 unsigned int link = exidx_input_section->link();
5553 Output_section* os = relobj->output_section(link);
5554 gold_assert(os != NULL);
5555 this->first_output_text_section_ = os;
5556 }
5557
5558 return deleted_bytes;
5559 }
5560
5561 // Arm_output_section methods.
5562
5563 // Create a stub group for input sections from BEGIN to END. OWNER
5564 // points to the input section to be the owner a new stub table.
5565
5566 template<bool big_endian>
5567 void
5568 Arm_output_section<big_endian>::create_stub_group(
5569 Input_section_list::const_iterator begin,
5570 Input_section_list::const_iterator end,
5571 Input_section_list::const_iterator owner,
5572 Target_arm<big_endian>* target,
5573 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5574 const Task* task)
5575 {
5576 // We use a different kind of relaxed section in an EXIDX section.
5577 // The static casting from Output_relaxed_input_section to
5578 // Arm_input_section is invalid in an EXIDX section. We are okay
5579 // because we should not be calling this for an EXIDX section.
5580 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5581
5582 // Currently we convert ordinary input sections into relaxed sections only
5583 // at this point but we may want to support creating relaxed input section
5584 // very early. So we check here to see if owner is already a relaxed
5585 // section.
5586
5587 Arm_input_section<big_endian>* arm_input_section;
5588 if (owner->is_relaxed_input_section())
5589 {
5590 arm_input_section =
5591 Arm_input_section<big_endian>::as_arm_input_section(
5592 owner->relaxed_input_section());
5593 }
5594 else
5595 {
5596 gold_assert(owner->is_input_section());
5597 // Create a new relaxed input section. We need to lock the original
5598 // file.
5599 Task_lock_obj<Object> tl(task, owner->relobj());
5600 arm_input_section =
5601 target->new_arm_input_section(owner->relobj(), owner->shndx());
5602 new_relaxed_sections->push_back(arm_input_section);
5603 }
5604
5605 // Create a stub table.
5606 Stub_table<big_endian>* stub_table =
5607 target->new_stub_table(arm_input_section);
5608
5609 arm_input_section->set_stub_table(stub_table);
5610
5611 Input_section_list::const_iterator p = begin;
5612 Input_section_list::const_iterator prev_p;
5613
5614 // Look for input sections or relaxed input sections in [begin ... end].
5615 do
5616 {
5617 if (p->is_input_section() || p->is_relaxed_input_section())
5618 {
5619 // The stub table information for input sections live
5620 // in their objects.
5621 Arm_relobj<big_endian>* arm_relobj =
5622 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5623 arm_relobj->set_stub_table(p->shndx(), stub_table);
5624 }
5625 prev_p = p++;
5626 }
5627 while (prev_p != end);
5628 }
5629
5630 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5631 // of stub groups. We grow a stub group by adding input section until the
5632 // size is just below GROUP_SIZE. The last input section will be converted
5633 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5634 // input section after the stub table, effectively double the group size.
5635 //
5636 // This is similar to the group_sections() function in elf32-arm.c but is
5637 // implemented differently.
5638
5639 template<bool big_endian>
5640 void
5641 Arm_output_section<big_endian>::group_sections(
5642 section_size_type group_size,
5643 bool stubs_always_after_branch,
5644 Target_arm<big_endian>* target,
5645 const Task* task)
5646 {
5647 // We only care about sections containing code.
5648 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5649 return;
5650
5651 // States for grouping.
5652 typedef enum
5653 {
5654 // No group is being built.
5655 NO_GROUP,
5656 // A group is being built but the stub table is not found yet.
5657 // We keep group a stub group until the size is just under GROUP_SIZE.
5658 // The last input section in the group will be used as the stub table.
5659 FINDING_STUB_SECTION,
5660 // A group is being built and we have already found a stub table.
5661 // We enter this state to grow a stub group by adding input section
5662 // after the stub table. This effectively doubles the group size.
5663 HAS_STUB_SECTION
5664 } State;
5665
5666 // Any newly created relaxed sections are stored here.
5667 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5668
5669 State state = NO_GROUP;
5670 section_size_type off = 0;
5671 section_size_type group_begin_offset = 0;
5672 section_size_type group_end_offset = 0;
5673 section_size_type stub_table_end_offset = 0;
5674 Input_section_list::const_iterator group_begin =
5675 this->input_sections().end();
5676 Input_section_list::const_iterator stub_table =
5677 this->input_sections().end();
5678 Input_section_list::const_iterator group_end = this->input_sections().end();
5679 for (Input_section_list::const_iterator p = this->input_sections().begin();
5680 p != this->input_sections().end();
5681 ++p)
5682 {
5683 section_size_type section_begin_offset =
5684 align_address(off, p->addralign());
5685 section_size_type section_end_offset =
5686 section_begin_offset + p->data_size();
5687
5688 // Check to see if we should group the previously seen sections.
5689 switch (state)
5690 {
5691 case NO_GROUP:
5692 break;
5693
5694 case FINDING_STUB_SECTION:
5695 // Adding this section makes the group larger than GROUP_SIZE.
5696 if (section_end_offset - group_begin_offset >= group_size)
5697 {
5698 if (stubs_always_after_branch)
5699 {
5700 gold_assert(group_end != this->input_sections().end());
5701 this->create_stub_group(group_begin, group_end, group_end,
5702 target, &new_relaxed_sections,
5703 task);
5704 state = NO_GROUP;
5705 }
5706 else
5707 {
5708 // But wait, there's more! Input sections up to
5709 // stub_group_size bytes after the stub table can be
5710 // handled by it too.
5711 state = HAS_STUB_SECTION;
5712 stub_table = group_end;
5713 stub_table_end_offset = group_end_offset;
5714 }
5715 }
5716 break;
5717
5718 case HAS_STUB_SECTION:
5719 // Adding this section makes the post stub-section group larger
5720 // than GROUP_SIZE.
5721 if (section_end_offset - stub_table_end_offset >= group_size)
5722 {
5723 gold_assert(group_end != this->input_sections().end());
5724 this->create_stub_group(group_begin, group_end, stub_table,
5725 target, &new_relaxed_sections, task);
5726 state = NO_GROUP;
5727 }
5728 break;
5729
5730 default:
5731 gold_unreachable();
5732 }
5733
5734 // If we see an input section and currently there is no group, start
5735 // a new one. Skip any empty sections. We look at the data size
5736 // instead of calling p->relobj()->section_size() to avoid locking.
5737 if ((p->is_input_section() || p->is_relaxed_input_section())
5738 && (p->data_size() != 0))
5739 {
5740 if (state == NO_GROUP)
5741 {
5742 state = FINDING_STUB_SECTION;
5743 group_begin = p;
5744 group_begin_offset = section_begin_offset;
5745 }
5746
5747 // Keep track of the last input section seen.
5748 group_end = p;
5749 group_end_offset = section_end_offset;
5750 }
5751
5752 off = section_end_offset;
5753 }
5754
5755 // Create a stub group for any ungrouped sections.
5756 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5757 {
5758 gold_assert(group_end != this->input_sections().end());
5759 this->create_stub_group(group_begin, group_end,
5760 (state == FINDING_STUB_SECTION
5761 ? group_end
5762 : stub_table),
5763 target, &new_relaxed_sections, task);
5764 }
5765
5766 // Convert input section into relaxed input section in a batch.
5767 if (!new_relaxed_sections.empty())
5768 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5769
5770 // Update the section offsets
5771 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5772 {
5773 Arm_relobj<big_endian>* arm_relobj =
5774 Arm_relobj<big_endian>::as_arm_relobj(
5775 new_relaxed_sections[i]->relobj());
5776 unsigned int shndx = new_relaxed_sections[i]->shndx();
5777 // Tell Arm_relobj that this input section is converted.
5778 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5779 }
5780 }
5781
5782 // Append non empty text sections in this to LIST in ascending
5783 // order of their position in this.
5784
5785 template<bool big_endian>
5786 void
5787 Arm_output_section<big_endian>::append_text_sections_to_list(
5788 Text_section_list* list)
5789 {
5790 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5791
5792 for (Input_section_list::const_iterator p = this->input_sections().begin();
5793 p != this->input_sections().end();
5794 ++p)
5795 {
5796 // We only care about plain or relaxed input sections. We also
5797 // ignore any merged sections.
5798 if (p->is_input_section() || p->is_relaxed_input_section())
5799 list->push_back(Text_section_list::value_type(p->relobj(),
5800 p->shndx()));
5801 }
5802 }
5803
5804 template<bool big_endian>
5805 void
5806 Arm_output_section<big_endian>::fix_exidx_coverage(
5807 Layout* layout,
5808 const Text_section_list& sorted_text_sections,
5809 Symbol_table* symtab,
5810 bool merge_exidx_entries,
5811 const Task* task)
5812 {
5813 // We should only do this for the EXIDX output section.
5814 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5815
5816 // We don't want the relaxation loop to undo these changes, so we discard
5817 // the current saved states and take another one after the fix-up.
5818 this->discard_states();
5819
5820 // Remove all input sections.
5821 uint64_t address = this->address();
5822 typedef std::list<Output_section::Input_section> Input_section_list;
5823 Input_section_list input_sections;
5824 this->reset_address_and_file_offset();
5825 this->get_input_sections(address, std::string(""), &input_sections);
5826
5827 if (!this->input_sections().empty())
5828 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5829
5830 // Go through all the known input sections and record them.
5831 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5832 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5833 Section_id_hash> Text_to_exidx_map;
5834 Text_to_exidx_map text_to_exidx_map;
5835 for (Input_section_list::const_iterator p = input_sections.begin();
5836 p != input_sections.end();
5837 ++p)
5838 {
5839 // This should never happen. At this point, we should only see
5840 // plain EXIDX input sections.
5841 gold_assert(!p->is_relaxed_input_section());
5842 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5843 }
5844
5845 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5846
5847 // Go over the sorted text sections.
5848 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5849 Section_id_set processed_input_sections;
5850 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5851 p != sorted_text_sections.end();
5852 ++p)
5853 {
5854 Relobj* relobj = p->first;
5855 unsigned int shndx = p->second;
5856
5857 Arm_relobj<big_endian>* arm_relobj =
5858 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5859 const Arm_exidx_input_section* exidx_input_section =
5860 arm_relobj->exidx_input_section_by_link(shndx);
5861
5862 // If this text section has no EXIDX section or if the EXIDX section
5863 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5864 // of the last seen EXIDX section.
5865 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5866 {
5867 exidx_fixup.add_exidx_cantunwind_as_needed();
5868 continue;
5869 }
5870
5871 Relobj* exidx_relobj = exidx_input_section->relobj();
5872 unsigned int exidx_shndx = exidx_input_section->shndx();
5873 Section_id sid(exidx_relobj, exidx_shndx);
5874 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5875 if (iter == text_to_exidx_map.end())
5876 {
5877 // This is odd. We have not seen this EXIDX input section before.
5878 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5879 // issue a warning instead. We assume the user knows what he
5880 // or she is doing. Otherwise, this is an error.
5881 if (layout->script_options()->saw_sections_clause())
5882 gold_warning(_("unwinding may not work because EXIDX input section"
5883 " %u of %s is not in EXIDX output section"),
5884 exidx_shndx, exidx_relobj->name().c_str());
5885 else
5886 gold_error(_("unwinding may not work because EXIDX input section"
5887 " %u of %s is not in EXIDX output section"),
5888 exidx_shndx, exidx_relobj->name().c_str());
5889
5890 exidx_fixup.add_exidx_cantunwind_as_needed();
5891 continue;
5892 }
5893
5894 // We need to access the contents of the EXIDX section, lock the
5895 // object here.
5896 Task_lock_obj<Object> tl(task, exidx_relobj);
5897 section_size_type exidx_size;
5898 const unsigned char* exidx_contents =
5899 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5900
5901 // Fix up coverage and append input section to output data list.
5902 Arm_exidx_section_offset_map* section_offset_map = NULL;
5903 uint32_t deleted_bytes =
5904 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5905 exidx_contents,
5906 exidx_size,
5907 &section_offset_map);
5908
5909 if (deleted_bytes == exidx_input_section->size())
5910 {
5911 // The whole EXIDX section got merged. Remove it from output.
5912 gold_assert(section_offset_map == NULL);
5913 exidx_relobj->set_output_section(exidx_shndx, NULL);
5914
5915 // All local symbols defined in this input section will be dropped.
5916 // We need to adjust output local symbol count.
5917 arm_relobj->set_output_local_symbol_count_needs_update();
5918 }
5919 else if (deleted_bytes > 0)
5920 {
5921 // Some entries are merged. We need to convert this EXIDX input
5922 // section into a relaxed section.
5923 gold_assert(section_offset_map != NULL);
5924
5925 Arm_exidx_merged_section* merged_section =
5926 new Arm_exidx_merged_section(*exidx_input_section,
5927 *section_offset_map, deleted_bytes);
5928 merged_section->build_contents(exidx_contents, exidx_size);
5929
5930 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5931 this->add_relaxed_input_section(layout, merged_section, secname);
5932 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5933
5934 // All local symbols defined in discarded portions of this input
5935 // section will be dropped. We need to adjust output local symbol
5936 // count.
5937 arm_relobj->set_output_local_symbol_count_needs_update();
5938 }
5939 else
5940 {
5941 // Just add back the EXIDX input section.
5942 gold_assert(section_offset_map == NULL);
5943 const Output_section::Input_section* pis = iter->second;
5944 gold_assert(pis->is_input_section());
5945 this->add_script_input_section(*pis);
5946 }
5947
5948 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5949 }
5950
5951 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5952 exidx_fixup.add_exidx_cantunwind_as_needed();
5953
5954 // Remove any known EXIDX input sections that are not processed.
5955 for (Input_section_list::const_iterator p = input_sections.begin();
5956 p != input_sections.end();
5957 ++p)
5958 {
5959 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5960 == processed_input_sections.end())
5961 {
5962 // We discard a known EXIDX section because its linked
5963 // text section has been folded by ICF. We also discard an
5964 // EXIDX section with error, the output does not matter in this
5965 // case. We do this to avoid triggering asserts.
5966 Arm_relobj<big_endian>* arm_relobj =
5967 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5968 const Arm_exidx_input_section* exidx_input_section =
5969 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5970 gold_assert(exidx_input_section != NULL);
5971 if (!exidx_input_section->has_errors())
5972 {
5973 unsigned int text_shndx = exidx_input_section->link();
5974 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5975 }
5976
5977 // Remove this from link. We also need to recount the
5978 // local symbols.
5979 p->relobj()->set_output_section(p->shndx(), NULL);
5980 arm_relobj->set_output_local_symbol_count_needs_update();
5981 }
5982 }
5983
5984 // Link exidx output section to the first seen output section and
5985 // set correct entry size.
5986 this->set_link_section(exidx_fixup.first_output_text_section());
5987 this->set_entsize(8);
5988
5989 // Make changes permanent.
5990 this->save_states();
5991 this->set_section_offsets_need_adjustment();
5992 }
5993
5994 // Link EXIDX output sections to text output sections.
5995
5996 template<bool big_endian>
5997 void
5998 Arm_output_section<big_endian>::set_exidx_section_link()
5999 {
6000 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6001 if (!this->input_sections().empty())
6002 {
6003 Input_section_list::const_iterator p = this->input_sections().begin();
6004 Arm_relobj<big_endian>* arm_relobj =
6005 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6006 unsigned exidx_shndx = p->shndx();
6007 const Arm_exidx_input_section* exidx_input_section =
6008 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6009 gold_assert(exidx_input_section != NULL);
6010 unsigned int text_shndx = exidx_input_section->link();
6011 Output_section* os = arm_relobj->output_section(text_shndx);
6012 this->set_link_section(os);
6013 }
6014 }
6015
6016 // Arm_relobj methods.
6017
6018 // Determine if an input section is scannable for stub processing. SHDR is
6019 // the header of the section and SHNDX is the section index. OS is the output
6020 // section for the input section and SYMTAB is the global symbol table used to
6021 // look up ICF information.
6022
6023 template<bool big_endian>
6024 bool
6025 Arm_relobj<big_endian>::section_is_scannable(
6026 const elfcpp::Shdr<32, big_endian>& shdr,
6027 unsigned int shndx,
6028 const Output_section* os,
6029 const Symbol_table* symtab)
6030 {
6031 // Skip any empty sections, unallocated sections or sections whose
6032 // type are not SHT_PROGBITS.
6033 if (shdr.get_sh_size() == 0
6034 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6035 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6036 return false;
6037
6038 // Skip any discarded or ICF'ed sections.
6039 if (os == NULL || symtab->is_section_folded(this, shndx))
6040 return false;
6041
6042 // If this requires special offset handling, check to see if it is
6043 // a relaxed section. If this is not, then it is a merged section that
6044 // we cannot handle.
6045 if (this->is_output_section_offset_invalid(shndx))
6046 {
6047 const Output_relaxed_input_section* poris =
6048 os->find_relaxed_input_section(this, shndx);
6049 if (poris == NULL)
6050 return false;
6051 }
6052
6053 return true;
6054 }
6055
6056 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6057 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6058
6059 template<bool big_endian>
6060 bool
6061 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6062 const elfcpp::Shdr<32, big_endian>& shdr,
6063 const Relobj::Output_sections& out_sections,
6064 const Symbol_table* symtab,
6065 const unsigned char* pshdrs)
6066 {
6067 unsigned int sh_type = shdr.get_sh_type();
6068 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6069 return false;
6070
6071 // Ignore empty section.
6072 off_t sh_size = shdr.get_sh_size();
6073 if (sh_size == 0)
6074 return false;
6075
6076 // Ignore reloc section with unexpected symbol table. The
6077 // error will be reported in the final link.
6078 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6079 return false;
6080
6081 unsigned int reloc_size;
6082 if (sh_type == elfcpp::SHT_REL)
6083 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6084 else
6085 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6086
6087 // Ignore reloc section with unexpected entsize or uneven size.
6088 // The error will be reported in the final link.
6089 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6090 return false;
6091
6092 // Ignore reloc section with bad info. This error will be
6093 // reported in the final link.
6094 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6095 if (index >= this->shnum())
6096 return false;
6097
6098 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6099 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6100 return this->section_is_scannable(text_shdr, index,
6101 out_sections[index], symtab);
6102 }
6103
6104 // Return the output address of either a plain input section or a relaxed
6105 // input section. SHNDX is the section index. We define and use this
6106 // instead of calling Output_section::output_address because that is slow
6107 // for large output.
6108
6109 template<bool big_endian>
6110 Arm_address
6111 Arm_relobj<big_endian>::simple_input_section_output_address(
6112 unsigned int shndx,
6113 Output_section* os)
6114 {
6115 if (this->is_output_section_offset_invalid(shndx))
6116 {
6117 const Output_relaxed_input_section* poris =
6118 os->find_relaxed_input_section(this, shndx);
6119 // We do not handle merged sections here.
6120 gold_assert(poris != NULL);
6121 return poris->address();
6122 }
6123 else
6124 return os->address() + this->get_output_section_offset(shndx);
6125 }
6126
6127 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6128 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6129
6130 template<bool big_endian>
6131 bool
6132 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6133 const elfcpp::Shdr<32, big_endian>& shdr,
6134 unsigned int shndx,
6135 Output_section* os,
6136 const Symbol_table* symtab)
6137 {
6138 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6139 return false;
6140
6141 // If the section does not cross any 4K-boundaries, it does not need to
6142 // be scanned.
6143 Arm_address address = this->simple_input_section_output_address(shndx, os);
6144 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6145 return false;
6146
6147 return true;
6148 }
6149
6150 // Scan a section for Cortex-A8 workaround.
6151
6152 template<bool big_endian>
6153 void
6154 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6155 const elfcpp::Shdr<32, big_endian>& shdr,
6156 unsigned int shndx,
6157 Output_section* os,
6158 Target_arm<big_endian>* arm_target)
6159 {
6160 // Look for the first mapping symbol in this section. It should be
6161 // at (shndx, 0).
6162 Mapping_symbol_position section_start(shndx, 0);
6163 typename Mapping_symbols_info::const_iterator p =
6164 this->mapping_symbols_info_.lower_bound(section_start);
6165
6166 // There are no mapping symbols for this section. Treat it as a data-only
6167 // section. Issue a warning if section is marked as containing
6168 // instructions.
6169 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6170 {
6171 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6172 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6173 "erratum because it has no mapping symbols."),
6174 shndx, this->name().c_str());
6175 return;
6176 }
6177
6178 Arm_address output_address =
6179 this->simple_input_section_output_address(shndx, os);
6180
6181 // Get the section contents.
6182 section_size_type input_view_size = 0;
6183 const unsigned char* input_view =
6184 this->section_contents(shndx, &input_view_size, false);
6185
6186 // We need to go through the mapping symbols to determine what to
6187 // scan. There are two reasons. First, we should look at THUMB code and
6188 // THUMB code only. Second, we only want to look at the 4K-page boundary
6189 // to speed up the scanning.
6190
6191 while (p != this->mapping_symbols_info_.end()
6192 && p->first.first == shndx)
6193 {
6194 typename Mapping_symbols_info::const_iterator next =
6195 this->mapping_symbols_info_.upper_bound(p->first);
6196
6197 // Only scan part of a section with THUMB code.
6198 if (p->second == 't')
6199 {
6200 // Determine the end of this range.
6201 section_size_type span_start =
6202 convert_to_section_size_type(p->first.second);
6203 section_size_type span_end;
6204 if (next != this->mapping_symbols_info_.end()
6205 && next->first.first == shndx)
6206 span_end = convert_to_section_size_type(next->first.second);
6207 else
6208 span_end = convert_to_section_size_type(shdr.get_sh_size());
6209
6210 if (((span_start + output_address) & ~0xfffUL)
6211 != ((span_end + output_address - 1) & ~0xfffUL))
6212 {
6213 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6214 span_start, span_end,
6215 input_view,
6216 output_address);
6217 }
6218 }
6219
6220 p = next;
6221 }
6222 }
6223
6224 // Scan relocations for stub generation.
6225
6226 template<bool big_endian>
6227 void
6228 Arm_relobj<big_endian>::scan_sections_for_stubs(
6229 Target_arm<big_endian>* arm_target,
6230 const Symbol_table* symtab,
6231 const Layout* layout)
6232 {
6233 unsigned int shnum = this->shnum();
6234 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6235
6236 // Read the section headers.
6237 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6238 shnum * shdr_size,
6239 true, true);
6240
6241 // To speed up processing, we set up hash tables for fast lookup of
6242 // input offsets to output addresses.
6243 this->initialize_input_to_output_maps();
6244
6245 const Relobj::Output_sections& out_sections(this->output_sections());
6246
6247 Relocate_info<32, big_endian> relinfo;
6248 relinfo.symtab = symtab;
6249 relinfo.layout = layout;
6250 relinfo.object = this;
6251
6252 // Do relocation stubs scanning.
6253 const unsigned char* p = pshdrs + shdr_size;
6254 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6255 {
6256 const elfcpp::Shdr<32, big_endian> shdr(p);
6257 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6258 pshdrs))
6259 {
6260 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6261 Arm_address output_offset = this->get_output_section_offset(index);
6262 Arm_address output_address;
6263 if (output_offset != invalid_address)
6264 output_address = out_sections[index]->address() + output_offset;
6265 else
6266 {
6267 // Currently this only happens for a relaxed section.
6268 const Output_relaxed_input_section* poris =
6269 out_sections[index]->find_relaxed_input_section(this, index);
6270 gold_assert(poris != NULL);
6271 output_address = poris->address();
6272 }
6273
6274 // Get the relocations.
6275 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6276 shdr.get_sh_size(),
6277 true, false);
6278
6279 // Get the section contents. This does work for the case in which
6280 // we modify the contents of an input section. We need to pass the
6281 // output view under such circumstances.
6282 section_size_type input_view_size = 0;
6283 const unsigned char* input_view =
6284 this->section_contents(index, &input_view_size, false);
6285
6286 relinfo.reloc_shndx = i;
6287 relinfo.data_shndx = index;
6288 unsigned int sh_type = shdr.get_sh_type();
6289 unsigned int reloc_size;
6290 if (sh_type == elfcpp::SHT_REL)
6291 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6292 else
6293 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6294
6295 Output_section* os = out_sections[index];
6296 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6297 shdr.get_sh_size() / reloc_size,
6298 os,
6299 output_offset == invalid_address,
6300 input_view, output_address,
6301 input_view_size);
6302 }
6303 }
6304
6305 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6306 // after its relocation section, if there is one, is processed for
6307 // relocation stubs. Merging this loop with the one above would have been
6308 // complicated since we would have had to make sure that relocation stub
6309 // scanning is done first.
6310 if (arm_target->fix_cortex_a8())
6311 {
6312 const unsigned char* p = pshdrs + shdr_size;
6313 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6314 {
6315 const elfcpp::Shdr<32, big_endian> shdr(p);
6316 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6317 out_sections[i],
6318 symtab))
6319 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6320 arm_target);
6321 }
6322 }
6323
6324 // After we've done the relocations, we release the hash tables,
6325 // since we no longer need them.
6326 this->free_input_to_output_maps();
6327 }
6328
6329 // Count the local symbols. The ARM backend needs to know if a symbol
6330 // is a THUMB function or not. For global symbols, it is easy because
6331 // the Symbol object keeps the ELF symbol type. For local symbol it is
6332 // harder because we cannot access this information. So we override the
6333 // do_count_local_symbol in parent and scan local symbols to mark
6334 // THUMB functions. This is not the most efficient way but I do not want to
6335 // slow down other ports by calling a per symbol target hook inside
6336 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6337
6338 template<bool big_endian>
6339 void
6340 Arm_relobj<big_endian>::do_count_local_symbols(
6341 Stringpool_template<char>* pool,
6342 Stringpool_template<char>* dynpool)
6343 {
6344 // We need to fix-up the values of any local symbols whose type are
6345 // STT_ARM_TFUNC.
6346
6347 // Ask parent to count the local symbols.
6348 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6349 const unsigned int loccount = this->local_symbol_count();
6350 if (loccount == 0)
6351 return;
6352
6353 // Initialize the thumb function bit-vector.
6354 std::vector<bool> empty_vector(loccount, false);
6355 this->local_symbol_is_thumb_function_.swap(empty_vector);
6356
6357 // Read the symbol table section header.
6358 const unsigned int symtab_shndx = this->symtab_shndx();
6359 elfcpp::Shdr<32, big_endian>
6360 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6361 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6362
6363 // Read the local symbols.
6364 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6365 gold_assert(loccount == symtabshdr.get_sh_info());
6366 off_t locsize = loccount * sym_size;
6367 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6368 locsize, true, true);
6369
6370 // For mapping symbol processing, we need to read the symbol names.
6371 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6372 if (strtab_shndx >= this->shnum())
6373 {
6374 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6375 return;
6376 }
6377
6378 elfcpp::Shdr<32, big_endian>
6379 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6380 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6381 {
6382 this->error(_("symbol table name section has wrong type: %u"),
6383 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6384 return;
6385 }
6386 const char* pnames =
6387 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6388 strtabshdr.get_sh_size(),
6389 false, false));
6390
6391 // Loop over the local symbols and mark any local symbols pointing
6392 // to THUMB functions.
6393
6394 // Skip the first dummy symbol.
6395 psyms += sym_size;
6396 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6397 this->local_values();
6398 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6399 {
6400 elfcpp::Sym<32, big_endian> sym(psyms);
6401 elfcpp::STT st_type = sym.get_st_type();
6402 Symbol_value<32>& lv((*plocal_values)[i]);
6403 Arm_address input_value = lv.input_value();
6404
6405 // Check to see if this is a mapping symbol.
6406 const char* sym_name = pnames + sym.get_st_name();
6407 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6408 {
6409 bool is_ordinary;
6410 unsigned int input_shndx =
6411 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6412 gold_assert(is_ordinary);
6413
6414 // Strip of LSB in case this is a THUMB symbol.
6415 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6416 this->mapping_symbols_info_[msp] = sym_name[1];
6417 }
6418
6419 if (st_type == elfcpp::STT_ARM_TFUNC
6420 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6421 {
6422 // This is a THUMB function. Mark this and canonicalize the
6423 // symbol value by setting LSB.
6424 this->local_symbol_is_thumb_function_[i] = true;
6425 if ((input_value & 1) == 0)
6426 lv.set_input_value(input_value | 1);
6427 }
6428 }
6429 }
6430
6431 // Relocate sections.
6432 template<bool big_endian>
6433 void
6434 Arm_relobj<big_endian>::do_relocate_sections(
6435 const Symbol_table* symtab,
6436 const Layout* layout,
6437 const unsigned char* pshdrs,
6438 Output_file* of,
6439 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6440 {
6441 // Call parent to relocate sections.
6442 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6443 pshdrs, of, pviews);
6444
6445 // We do not generate stubs if doing a relocatable link.
6446 if (parameters->options().relocatable())
6447 return;
6448
6449 // Relocate stub tables.
6450 unsigned int shnum = this->shnum();
6451
6452 Target_arm<big_endian>* arm_target =
6453 Target_arm<big_endian>::default_target();
6454
6455 Relocate_info<32, big_endian> relinfo;
6456 relinfo.symtab = symtab;
6457 relinfo.layout = layout;
6458 relinfo.object = this;
6459
6460 for (unsigned int i = 1; i < shnum; ++i)
6461 {
6462 Arm_input_section<big_endian>* arm_input_section =
6463 arm_target->find_arm_input_section(this, i);
6464
6465 if (arm_input_section != NULL
6466 && arm_input_section->is_stub_table_owner()
6467 && !arm_input_section->stub_table()->empty())
6468 {
6469 // We cannot discard a section if it owns a stub table.
6470 Output_section* os = this->output_section(i);
6471 gold_assert(os != NULL);
6472
6473 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6474 relinfo.reloc_shdr = NULL;
6475 relinfo.data_shndx = i;
6476 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6477
6478 gold_assert((*pviews)[i].view != NULL);
6479
6480 // We are passed the output section view. Adjust it to cover the
6481 // stub table only.
6482 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6483 gold_assert((stub_table->address() >= (*pviews)[i].address)
6484 && ((stub_table->address() + stub_table->data_size())
6485 <= (*pviews)[i].address + (*pviews)[i].view_size));
6486
6487 off_t offset = stub_table->address() - (*pviews)[i].address;
6488 unsigned char* view = (*pviews)[i].view + offset;
6489 Arm_address address = stub_table->address();
6490 section_size_type view_size = stub_table->data_size();
6491
6492 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6493 view_size);
6494 }
6495
6496 // Apply Cortex A8 workaround if applicable.
6497 if (this->section_has_cortex_a8_workaround(i))
6498 {
6499 unsigned char* view = (*pviews)[i].view;
6500 Arm_address view_address = (*pviews)[i].address;
6501 section_size_type view_size = (*pviews)[i].view_size;
6502 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6503
6504 // Adjust view to cover section.
6505 Output_section* os = this->output_section(i);
6506 gold_assert(os != NULL);
6507 Arm_address section_address =
6508 this->simple_input_section_output_address(i, os);
6509 uint64_t section_size = this->section_size(i);
6510
6511 gold_assert(section_address >= view_address
6512 && ((section_address + section_size)
6513 <= (view_address + view_size)));
6514
6515 unsigned char* section_view = view + (section_address - view_address);
6516
6517 // Apply the Cortex-A8 workaround to the output address range
6518 // corresponding to this input section.
6519 stub_table->apply_cortex_a8_workaround_to_address_range(
6520 arm_target,
6521 section_view,
6522 section_address,
6523 section_size);
6524 }
6525 }
6526 }
6527
6528 // Find the linked text section of an EXIDX section by looking at the first
6529 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6530 // must be linked to its associated code section via the sh_link field of
6531 // its section header. However, some tools are broken and the link is not
6532 // always set. LD just drops such an EXIDX section silently, causing the
6533 // associated code not unwindabled. Here we try a little bit harder to
6534 // discover the linked code section.
6535 //
6536 // PSHDR points to the section header of a relocation section of an EXIDX
6537 // section. If we can find a linked text section, return true and
6538 // store the text section index in the location PSHNDX. Otherwise
6539 // return false.
6540
6541 template<bool big_endian>
6542 bool
6543 Arm_relobj<big_endian>::find_linked_text_section(
6544 const unsigned char* pshdr,
6545 const unsigned char* psyms,
6546 unsigned int* pshndx)
6547 {
6548 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6549
6550 // If there is no relocation, we cannot find the linked text section.
6551 size_t reloc_size;
6552 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6553 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6554 else
6555 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6556 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6557
6558 // Get the relocations.
6559 const unsigned char* prelocs =
6560 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6561
6562 // Find the REL31 relocation for the first word of the first EXIDX entry.
6563 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6564 {
6565 Arm_address r_offset;
6566 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6567 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6568 {
6569 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6570 r_info = reloc.get_r_info();
6571 r_offset = reloc.get_r_offset();
6572 }
6573 else
6574 {
6575 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6576 r_info = reloc.get_r_info();
6577 r_offset = reloc.get_r_offset();
6578 }
6579
6580 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6581 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6582 continue;
6583
6584 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6585 if (r_sym == 0
6586 || r_sym >= this->local_symbol_count()
6587 || r_offset != 0)
6588 continue;
6589
6590 // This is the relocation for the first word of the first EXIDX entry.
6591 // We expect to see a local section symbol.
6592 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6593 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6594 if (sym.get_st_type() == elfcpp::STT_SECTION)
6595 {
6596 bool is_ordinary;
6597 *pshndx =
6598 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6599 gold_assert(is_ordinary);
6600 return true;
6601 }
6602 else
6603 return false;
6604 }
6605
6606 return false;
6607 }
6608
6609 // Make an EXIDX input section object for an EXIDX section whose index is
6610 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6611 // is the section index of the linked text section.
6612
6613 template<bool big_endian>
6614 void
6615 Arm_relobj<big_endian>::make_exidx_input_section(
6616 unsigned int shndx,
6617 const elfcpp::Shdr<32, big_endian>& shdr,
6618 unsigned int text_shndx,
6619 const elfcpp::Shdr<32, big_endian>& text_shdr)
6620 {
6621 // Create an Arm_exidx_input_section object for this EXIDX section.
6622 Arm_exidx_input_section* exidx_input_section =
6623 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6624 shdr.get_sh_addralign(),
6625 text_shdr.get_sh_size());
6626
6627 gold_assert(this->exidx_section_map_[shndx] == NULL);
6628 this->exidx_section_map_[shndx] = exidx_input_section;
6629
6630 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6631 {
6632 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6633 this->section_name(shndx).c_str(), shndx, text_shndx,
6634 this->name().c_str());
6635 exidx_input_section->set_has_errors();
6636 }
6637 else if (this->exidx_section_map_[text_shndx] != NULL)
6638 {
6639 unsigned other_exidx_shndx =
6640 this->exidx_section_map_[text_shndx]->shndx();
6641 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6642 "%s(%u) in %s"),
6643 this->section_name(shndx).c_str(), shndx,
6644 this->section_name(other_exidx_shndx).c_str(),
6645 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6646 text_shndx, this->name().c_str());
6647 exidx_input_section->set_has_errors();
6648 }
6649 else
6650 this->exidx_section_map_[text_shndx] = exidx_input_section;
6651
6652 // Check section flags of text section.
6653 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6654 {
6655 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6656 " in %s"),
6657 this->section_name(shndx).c_str(), shndx,
6658 this->section_name(text_shndx).c_str(), text_shndx,
6659 this->name().c_str());
6660 exidx_input_section->set_has_errors();
6661 }
6662 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6663 // I would like to make this an error but currently ld just ignores
6664 // this.
6665 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6666 "%s(%u) in %s"),
6667 this->section_name(shndx).c_str(), shndx,
6668 this->section_name(text_shndx).c_str(), text_shndx,
6669 this->name().c_str());
6670 }
6671
6672 // Read the symbol information.
6673
6674 template<bool big_endian>
6675 void
6676 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6677 {
6678 // Call parent class to read symbol information.
6679 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6680
6681 // If this input file is a binary file, it has no processor
6682 // specific flags and attributes section.
6683 Input_file::Format format = this->input_file()->format();
6684 if (format != Input_file::FORMAT_ELF)
6685 {
6686 gold_assert(format == Input_file::FORMAT_BINARY);
6687 this->merge_flags_and_attributes_ = false;
6688 return;
6689 }
6690
6691 // Read processor-specific flags in ELF file header.
6692 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6693 elfcpp::Elf_sizes<32>::ehdr_size,
6694 true, false);
6695 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6696 this->processor_specific_flags_ = ehdr.get_e_flags();
6697
6698 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6699 // sections.
6700 std::vector<unsigned int> deferred_exidx_sections;
6701 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6702 const unsigned char* pshdrs = sd->section_headers->data();
6703 const unsigned char* ps = pshdrs + shdr_size;
6704 bool must_merge_flags_and_attributes = false;
6705 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6706 {
6707 elfcpp::Shdr<32, big_endian> shdr(ps);
6708
6709 // Sometimes an object has no contents except the section name string
6710 // table and an empty symbol table with the undefined symbol. We
6711 // don't want to merge processor-specific flags from such an object.
6712 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6713 {
6714 // Symbol table is not empty.
6715 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6716 elfcpp::Elf_sizes<32>::sym_size;
6717 if (shdr.get_sh_size() > sym_size)
6718 must_merge_flags_and_attributes = true;
6719 }
6720 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6721 // If this is neither an empty symbol table nor a string table,
6722 // be conservative.
6723 must_merge_flags_and_attributes = true;
6724
6725 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6726 {
6727 gold_assert(this->attributes_section_data_ == NULL);
6728 section_offset_type section_offset = shdr.get_sh_offset();
6729 section_size_type section_size =
6730 convert_to_section_size_type(shdr.get_sh_size());
6731 const unsigned char* view =
6732 this->get_view(section_offset, section_size, true, false);
6733 this->attributes_section_data_ =
6734 new Attributes_section_data(view, section_size);
6735 }
6736 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6737 {
6738 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6739 if (text_shndx == elfcpp::SHN_UNDEF)
6740 deferred_exidx_sections.push_back(i);
6741 else
6742 {
6743 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6744 + text_shndx * shdr_size);
6745 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6746 }
6747 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6748 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6749 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6750 this->section_name(i).c_str(), this->name().c_str());
6751 }
6752 }
6753
6754 // This is rare.
6755 if (!must_merge_flags_and_attributes)
6756 {
6757 gold_assert(deferred_exidx_sections.empty());
6758 this->merge_flags_and_attributes_ = false;
6759 return;
6760 }
6761
6762 // Some tools are broken and they do not set the link of EXIDX sections.
6763 // We look at the first relocation to figure out the linked sections.
6764 if (!deferred_exidx_sections.empty())
6765 {
6766 // We need to go over the section headers again to find the mapping
6767 // from sections being relocated to their relocation sections. This is
6768 // a bit inefficient as we could do that in the loop above. However,
6769 // we do not expect any deferred EXIDX sections normally. So we do not
6770 // want to slow down the most common path.
6771 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6772 Reloc_map reloc_map;
6773 ps = pshdrs + shdr_size;
6774 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6775 {
6776 elfcpp::Shdr<32, big_endian> shdr(ps);
6777 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6778 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6779 {
6780 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6781 if (info_shndx >= this->shnum())
6782 gold_error(_("relocation section %u has invalid info %u"),
6783 i, info_shndx);
6784 Reloc_map::value_type value(info_shndx, i);
6785 std::pair<Reloc_map::iterator, bool> result =
6786 reloc_map.insert(value);
6787 if (!result.second)
6788 gold_error(_("section %u has multiple relocation sections "
6789 "%u and %u"),
6790 info_shndx, i, reloc_map[info_shndx]);
6791 }
6792 }
6793
6794 // Read the symbol table section header.
6795 const unsigned int symtab_shndx = this->symtab_shndx();
6796 elfcpp::Shdr<32, big_endian>
6797 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6798 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6799
6800 // Read the local symbols.
6801 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6802 const unsigned int loccount = this->local_symbol_count();
6803 gold_assert(loccount == symtabshdr.get_sh_info());
6804 off_t locsize = loccount * sym_size;
6805 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6806 locsize, true, true);
6807
6808 // Process the deferred EXIDX sections.
6809 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6810 {
6811 unsigned int shndx = deferred_exidx_sections[i];
6812 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6813 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6814 Reloc_map::const_iterator it = reloc_map.find(shndx);
6815 if (it != reloc_map.end())
6816 find_linked_text_section(pshdrs + it->second * shdr_size,
6817 psyms, &text_shndx);
6818 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6819 + text_shndx * shdr_size);
6820 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6821 }
6822 }
6823 }
6824
6825 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6826 // sections for unwinding. These sections are referenced implicitly by
6827 // text sections linked in the section headers. If we ignore these implicit
6828 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6829 // will be garbage-collected incorrectly. Hence we override the same function
6830 // in the base class to handle these implicit references.
6831
6832 template<bool big_endian>
6833 void
6834 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6835 Layout* layout,
6836 Read_relocs_data* rd)
6837 {
6838 // First, call base class method to process relocations in this object.
6839 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6840
6841 // If --gc-sections is not specified, there is nothing more to do.
6842 // This happens when --icf is used but --gc-sections is not.
6843 if (!parameters->options().gc_sections())
6844 return;
6845
6846 unsigned int shnum = this->shnum();
6847 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6848 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6849 shnum * shdr_size,
6850 true, true);
6851
6852 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6853 // to these from the linked text sections.
6854 const unsigned char* ps = pshdrs + shdr_size;
6855 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6856 {
6857 elfcpp::Shdr<32, big_endian> shdr(ps);
6858 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6859 {
6860 // Found an .ARM.exidx section, add it to the set of reachable
6861 // sections from its linked text section.
6862 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6863 symtab->gc()->add_reference(this, text_shndx, this, i);
6864 }
6865 }
6866 }
6867
6868 // Update output local symbol count. Owing to EXIDX entry merging, some local
6869 // symbols will be removed in output. Adjust output local symbol count
6870 // accordingly. We can only changed the static output local symbol count. It
6871 // is too late to change the dynamic symbols.
6872
6873 template<bool big_endian>
6874 void
6875 Arm_relobj<big_endian>::update_output_local_symbol_count()
6876 {
6877 // Caller should check that this needs updating. We want caller checking
6878 // because output_local_symbol_count_needs_update() is most likely inlined.
6879 gold_assert(this->output_local_symbol_count_needs_update_);
6880
6881 gold_assert(this->symtab_shndx() != -1U);
6882 if (this->symtab_shndx() == 0)
6883 {
6884 // This object has no symbols. Weird but legal.
6885 return;
6886 }
6887
6888 // Read the symbol table section header.
6889 const unsigned int symtab_shndx = this->symtab_shndx();
6890 elfcpp::Shdr<32, big_endian>
6891 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6892 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6893
6894 // Read the local symbols.
6895 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6896 const unsigned int loccount = this->local_symbol_count();
6897 gold_assert(loccount == symtabshdr.get_sh_info());
6898 off_t locsize = loccount * sym_size;
6899 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6900 locsize, true, true);
6901
6902 // Loop over the local symbols.
6903
6904 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6905 Output_sections;
6906 const Output_sections& out_sections(this->output_sections());
6907 unsigned int shnum = this->shnum();
6908 unsigned int count = 0;
6909 // Skip the first, dummy, symbol.
6910 psyms += sym_size;
6911 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6912 {
6913 elfcpp::Sym<32, big_endian> sym(psyms);
6914
6915 Symbol_value<32>& lv((*this->local_values())[i]);
6916
6917 // This local symbol was already discarded by do_count_local_symbols.
6918 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6919 continue;
6920
6921 bool is_ordinary;
6922 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6923 &is_ordinary);
6924
6925 if (shndx < shnum)
6926 {
6927 Output_section* os = out_sections[shndx];
6928
6929 // This local symbol no longer has an output section. Discard it.
6930 if (os == NULL)
6931 {
6932 lv.set_no_output_symtab_entry();
6933 continue;
6934 }
6935
6936 // Currently we only discard parts of EXIDX input sections.
6937 // We explicitly check for a merged EXIDX input section to avoid
6938 // calling Output_section_data::output_offset unless necessary.
6939 if ((this->get_output_section_offset(shndx) == invalid_address)
6940 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6941 {
6942 section_offset_type output_offset =
6943 os->output_offset(this, shndx, lv.input_value());
6944 if (output_offset == -1)
6945 {
6946 // This symbol is defined in a part of an EXIDX input section
6947 // that is discarded due to entry merging.
6948 lv.set_no_output_symtab_entry();
6949 continue;
6950 }
6951 }
6952 }
6953
6954 ++count;
6955 }
6956
6957 this->set_output_local_symbol_count(count);
6958 this->output_local_symbol_count_needs_update_ = false;
6959 }
6960
6961 // Arm_dynobj methods.
6962
6963 // Read the symbol information.
6964
6965 template<bool big_endian>
6966 void
6967 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6968 {
6969 // Call parent class to read symbol information.
6970 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6971
6972 // Read processor-specific flags in ELF file header.
6973 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6974 elfcpp::Elf_sizes<32>::ehdr_size,
6975 true, false);
6976 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6977 this->processor_specific_flags_ = ehdr.get_e_flags();
6978
6979 // Read the attributes section if there is one.
6980 // We read from the end because gas seems to put it near the end of
6981 // the section headers.
6982 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6983 const unsigned char* ps =
6984 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6985 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6986 {
6987 elfcpp::Shdr<32, big_endian> shdr(ps);
6988 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6989 {
6990 section_offset_type section_offset = shdr.get_sh_offset();
6991 section_size_type section_size =
6992 convert_to_section_size_type(shdr.get_sh_size());
6993 const unsigned char* view =
6994 this->get_view(section_offset, section_size, true, false);
6995 this->attributes_section_data_ =
6996 new Attributes_section_data(view, section_size);
6997 break;
6998 }
6999 }
7000 }
7001
7002 // Stub_addend_reader methods.
7003
7004 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7005
7006 template<bool big_endian>
7007 elfcpp::Elf_types<32>::Elf_Swxword
7008 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7009 unsigned int r_type,
7010 const unsigned char* view,
7011 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7012 {
7013 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7014
7015 switch (r_type)
7016 {
7017 case elfcpp::R_ARM_CALL:
7018 case elfcpp::R_ARM_JUMP24:
7019 case elfcpp::R_ARM_PLT32:
7020 {
7021 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7022 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7023 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7024 return Bits<26>::sign_extend32(val << 2);
7025 }
7026
7027 case elfcpp::R_ARM_THM_CALL:
7028 case elfcpp::R_ARM_THM_JUMP24:
7029 case elfcpp::R_ARM_THM_XPC22:
7030 {
7031 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7032 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7033 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7034 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7035 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7036 }
7037
7038 case elfcpp::R_ARM_THM_JUMP19:
7039 {
7040 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7041 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7042 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7043 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7044 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7045 }
7046
7047 default:
7048 gold_unreachable();
7049 }
7050 }
7051
7052 // Arm_output_data_got methods.
7053
7054 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7055 // The first one is initialized to be 1, which is the module index for
7056 // the main executable and the second one 0. A reloc of the type
7057 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7058 // be applied by gold. GSYM is a global symbol.
7059 //
7060 template<bool big_endian>
7061 void
7062 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7063 unsigned int got_type,
7064 Symbol* gsym)
7065 {
7066 if (gsym->has_got_offset(got_type))
7067 return;
7068
7069 // We are doing a static link. Just mark it as belong to module 1,
7070 // the executable.
7071 unsigned int got_offset = this->add_constant(1);
7072 gsym->set_got_offset(got_type, got_offset);
7073 got_offset = this->add_constant(0);
7074 this->static_relocs_.push_back(Static_reloc(got_offset,
7075 elfcpp::R_ARM_TLS_DTPOFF32,
7076 gsym));
7077 }
7078
7079 // Same as the above but for a local symbol.
7080
7081 template<bool big_endian>
7082 void
7083 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7084 unsigned int got_type,
7085 Sized_relobj_file<32, big_endian>* object,
7086 unsigned int index)
7087 {
7088 if (object->local_has_got_offset(index, got_type))
7089 return;
7090
7091 // We are doing a static link. Just mark it as belong to module 1,
7092 // the executable.
7093 unsigned int got_offset = this->add_constant(1);
7094 object->set_local_got_offset(index, got_type, got_offset);
7095 got_offset = this->add_constant(0);
7096 this->static_relocs_.push_back(Static_reloc(got_offset,
7097 elfcpp::R_ARM_TLS_DTPOFF32,
7098 object, index));
7099 }
7100
7101 template<bool big_endian>
7102 void
7103 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7104 {
7105 // Call parent to write out GOT.
7106 Output_data_got<32, big_endian>::do_write(of);
7107
7108 // We are done if there is no fix up.
7109 if (this->static_relocs_.empty())
7110 return;
7111
7112 gold_assert(parameters->doing_static_link());
7113
7114 const off_t offset = this->offset();
7115 const section_size_type oview_size =
7116 convert_to_section_size_type(this->data_size());
7117 unsigned char* const oview = of->get_output_view(offset, oview_size);
7118
7119 Output_segment* tls_segment = this->layout_->tls_segment();
7120 gold_assert(tls_segment != NULL);
7121
7122 // The thread pointer $tp points to the TCB, which is followed by the
7123 // TLS. So we need to adjust $tp relative addressing by this amount.
7124 Arm_address aligned_tcb_size =
7125 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7126
7127 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7128 {
7129 Static_reloc& reloc(this->static_relocs_[i]);
7130
7131 Arm_address value;
7132 if (!reloc.symbol_is_global())
7133 {
7134 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7135 const Symbol_value<32>* psymval =
7136 reloc.relobj()->local_symbol(reloc.index());
7137
7138 // We are doing static linking. Issue an error and skip this
7139 // relocation if the symbol is undefined or in a discarded_section.
7140 bool is_ordinary;
7141 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7142 if ((shndx == elfcpp::SHN_UNDEF)
7143 || (is_ordinary
7144 && shndx != elfcpp::SHN_UNDEF
7145 && !object->is_section_included(shndx)
7146 && !this->symbol_table_->is_section_folded(object, shndx)))
7147 {
7148 gold_error(_("undefined or discarded local symbol %u from "
7149 " object %s in GOT"),
7150 reloc.index(), reloc.relobj()->name().c_str());
7151 continue;
7152 }
7153
7154 value = psymval->value(object, 0);
7155 }
7156 else
7157 {
7158 const Symbol* gsym = reloc.symbol();
7159 gold_assert(gsym != NULL);
7160 if (gsym->is_forwarder())
7161 gsym = this->symbol_table_->resolve_forwards(gsym);
7162
7163 // We are doing static linking. Issue an error and skip this
7164 // relocation if the symbol is undefined or in a discarded_section
7165 // unless it is a weakly_undefined symbol.
7166 if ((gsym->is_defined_in_discarded_section()
7167 || gsym->is_undefined())
7168 && !gsym->is_weak_undefined())
7169 {
7170 gold_error(_("undefined or discarded symbol %s in GOT"),
7171 gsym->name());
7172 continue;
7173 }
7174
7175 if (!gsym->is_weak_undefined())
7176 {
7177 const Sized_symbol<32>* sym =
7178 static_cast<const Sized_symbol<32>*>(gsym);
7179 value = sym->value();
7180 }
7181 else
7182 value = 0;
7183 }
7184
7185 unsigned got_offset = reloc.got_offset();
7186 gold_assert(got_offset < oview_size);
7187
7188 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7189 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7190 Valtype x;
7191 switch (reloc.r_type())
7192 {
7193 case elfcpp::R_ARM_TLS_DTPOFF32:
7194 x = value;
7195 break;
7196 case elfcpp::R_ARM_TLS_TPOFF32:
7197 x = value + aligned_tcb_size;
7198 break;
7199 default:
7200 gold_unreachable();
7201 }
7202 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7203 }
7204
7205 of->write_output_view(offset, oview_size, oview);
7206 }
7207
7208 // A class to handle the PLT data.
7209 // This is an abstract base class that handles most of the linker details
7210 // but does not know the actual contents of PLT entries. The derived
7211 // classes below fill in those details.
7212
7213 template<bool big_endian>
7214 class Output_data_plt_arm : public Output_section_data
7215 {
7216 public:
7217 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7218 Reloc_section;
7219
7220 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7221
7222 // Add an entry to the PLT.
7223 void
7224 add_entry(Symbol* gsym);
7225
7226 // Return the .rel.plt section data.
7227 const Reloc_section*
7228 rel_plt() const
7229 { return this->rel_; }
7230
7231 // Return the number of PLT entries.
7232 unsigned int
7233 entry_count() const
7234 { return this->count_; }
7235
7236 // Return the offset of the first non-reserved PLT entry.
7237 unsigned int
7238 first_plt_entry_offset() const
7239 { return this->do_first_plt_entry_offset(); }
7240
7241 // Return the size of a PLT entry.
7242 unsigned int
7243 get_plt_entry_size() const
7244 { return this->do_get_plt_entry_size(); }
7245
7246 protected:
7247 // Fill in the first PLT entry.
7248 void
7249 fill_first_plt_entry(unsigned char* pov,
7250 Arm_address got_address,
7251 Arm_address plt_address)
7252 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7253
7254 void
7255 fill_plt_entry(unsigned char* pov,
7256 Arm_address got_address,
7257 Arm_address plt_address,
7258 unsigned int got_offset,
7259 unsigned int plt_offset)
7260 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7261
7262 virtual unsigned int
7263 do_first_plt_entry_offset() const = 0;
7264
7265 virtual unsigned int
7266 do_get_plt_entry_size() const = 0;
7267
7268 virtual void
7269 do_fill_first_plt_entry(unsigned char* pov,
7270 Arm_address got_address,
7271 Arm_address plt_address) = 0;
7272
7273 virtual void
7274 do_fill_plt_entry(unsigned char* pov,
7275 Arm_address got_address,
7276 Arm_address plt_address,
7277 unsigned int got_offset,
7278 unsigned int plt_offset) = 0;
7279
7280 void
7281 do_adjust_output_section(Output_section* os);
7282
7283 // Write to a map file.
7284 void
7285 do_print_to_mapfile(Mapfile* mapfile) const
7286 { mapfile->print_output_data(this, _("** PLT")); }
7287
7288 private:
7289 // Set the final size.
7290 void
7291 set_final_data_size()
7292 {
7293 this->set_data_size(this->first_plt_entry_offset()
7294 + this->count_ * this->get_plt_entry_size());
7295 }
7296
7297 // Write out the PLT data.
7298 void
7299 do_write(Output_file*);
7300
7301 // The reloc section.
7302 Reloc_section* rel_;
7303 // The .got.plt section.
7304 Output_data_space* got_plt_;
7305 // The number of PLT entries.
7306 unsigned int count_;
7307 };
7308
7309 // Create the PLT section. The ordinary .got section is an argument,
7310 // since we need to refer to the start. We also create our own .got
7311 // section just for PLT entries.
7312
7313 template<bool big_endian>
7314 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7315 uint64_t addralign,
7316 Output_data_space* got_plt)
7317 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7318 {
7319 this->rel_ = new Reloc_section(false);
7320 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7321 elfcpp::SHF_ALLOC, this->rel_,
7322 ORDER_DYNAMIC_PLT_RELOCS, false);
7323 }
7324
7325 template<bool big_endian>
7326 void
7327 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7328 {
7329 os->set_entsize(0);
7330 }
7331
7332 // Add an entry to the PLT.
7333
7334 template<bool big_endian>
7335 void
7336 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7337 {
7338 gold_assert(!gsym->has_plt_offset());
7339
7340 // Note that when setting the PLT offset we skip the initial
7341 // reserved PLT entry.
7342 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7343 + this->first_plt_entry_offset());
7344
7345 ++this->count_;
7346
7347 section_offset_type got_offset = this->got_plt_->current_data_size();
7348
7349 // Every PLT entry needs a GOT entry which points back to the PLT
7350 // entry (this will be changed by the dynamic linker, normally
7351 // lazily when the function is called).
7352 this->got_plt_->set_current_data_size(got_offset + 4);
7353
7354 // Every PLT entry needs a reloc.
7355 gsym->set_needs_dynsym_entry();
7356 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7357 got_offset);
7358
7359 // Note that we don't need to save the symbol. The contents of the
7360 // PLT are independent of which symbols are used. The symbols only
7361 // appear in the relocations.
7362 }
7363
7364 template<bool big_endian>
7365 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7366 {
7367 public:
7368 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7369 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7370 { }
7371
7372 protected:
7373 // Return the offset of the first non-reserved PLT entry.
7374 virtual unsigned int
7375 do_first_plt_entry_offset() const
7376 { return sizeof(first_plt_entry); }
7377
7378 // Return the size of a PLT entry.
7379 virtual unsigned int
7380 do_get_plt_entry_size() const
7381 { return sizeof(plt_entry); }
7382
7383 virtual void
7384 do_fill_first_plt_entry(unsigned char* pov,
7385 Arm_address got_address,
7386 Arm_address plt_address);
7387
7388 virtual void
7389 do_fill_plt_entry(unsigned char* pov,
7390 Arm_address got_address,
7391 Arm_address plt_address,
7392 unsigned int got_offset,
7393 unsigned int plt_offset);
7394
7395 private:
7396 // Template for the first PLT entry.
7397 static const uint32_t first_plt_entry[5];
7398
7399 // Template for subsequent PLT entries.
7400 static const uint32_t plt_entry[3];
7401 };
7402
7403 // ARM PLTs.
7404 // FIXME: This is not very flexible. Right now this has only been tested
7405 // on armv5te. If we are to support additional architecture features like
7406 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7407
7408 // The first entry in the PLT.
7409 template<bool big_endian>
7410 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7411 {
7412 0xe52de004, // str lr, [sp, #-4]!
7413 0xe59fe004, // ldr lr, [pc, #4]
7414 0xe08fe00e, // add lr, pc, lr
7415 0xe5bef008, // ldr pc, [lr, #8]!
7416 0x00000000, // &GOT[0] - .
7417 };
7418
7419 template<bool big_endian>
7420 void
7421 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7422 unsigned char* pov,
7423 Arm_address got_address,
7424 Arm_address plt_address)
7425 {
7426 // Write first PLT entry. All but the last word are constants.
7427 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7428 / sizeof(plt_entry[0]));
7429 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7430 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7431 // Last word in first PLT entry is &GOT[0] - .
7432 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7433 got_address - (plt_address + 16));
7434 }
7435
7436 // Subsequent entries in the PLT.
7437
7438 template<bool big_endian>
7439 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7440 {
7441 0xe28fc600, // add ip, pc, #0xNN00000
7442 0xe28cca00, // add ip, ip, #0xNN000
7443 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7444 };
7445
7446 template<bool big_endian>
7447 void
7448 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7449 unsigned char* pov,
7450 Arm_address got_address,
7451 Arm_address plt_address,
7452 unsigned int got_offset,
7453 unsigned int plt_offset)
7454 {
7455 int32_t offset = ((got_address + got_offset)
7456 - (plt_address + plt_offset + 8));
7457
7458 gold_assert(offset >= 0 && offset < 0x0fffffff);
7459 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7460 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7461 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7462 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7463 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7464 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7465 }
7466
7467 // Write out the PLT. This uses the hand-coded instructions above,
7468 // and adjusts them as needed. This is all specified by the arm ELF
7469 // Processor Supplement.
7470
7471 template<bool big_endian>
7472 void
7473 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7474 {
7475 const off_t offset = this->offset();
7476 const section_size_type oview_size =
7477 convert_to_section_size_type(this->data_size());
7478 unsigned char* const oview = of->get_output_view(offset, oview_size);
7479
7480 const off_t got_file_offset = this->got_plt_->offset();
7481 const section_size_type got_size =
7482 convert_to_section_size_type(this->got_plt_->data_size());
7483 unsigned char* const got_view = of->get_output_view(got_file_offset,
7484 got_size);
7485 unsigned char* pov = oview;
7486
7487 Arm_address plt_address = this->address();
7488 Arm_address got_address = this->got_plt_->address();
7489
7490 // Write first PLT entry.
7491 this->fill_first_plt_entry(pov, got_address, plt_address);
7492 pov += this->first_plt_entry_offset();
7493
7494 unsigned char* got_pov = got_view;
7495
7496 memset(got_pov, 0, 12);
7497 got_pov += 12;
7498
7499 unsigned int plt_offset = this->first_plt_entry_offset();
7500 unsigned int got_offset = 12;
7501 const unsigned int count = this->count_;
7502 for (unsigned int i = 0;
7503 i < count;
7504 ++i,
7505 pov += this->get_plt_entry_size(),
7506 got_pov += 4,
7507 plt_offset += this->get_plt_entry_size(),
7508 got_offset += 4)
7509 {
7510 // Set and adjust the PLT entry itself.
7511 this->fill_plt_entry(pov, got_address, plt_address,
7512 got_offset, plt_offset);
7513
7514 // Set the entry in the GOT.
7515 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7516 }
7517
7518 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7519 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7520
7521 of->write_output_view(offset, oview_size, oview);
7522 of->write_output_view(got_file_offset, got_size, got_view);
7523 }
7524
7525 // Create a PLT entry for a global symbol.
7526
7527 template<bool big_endian>
7528 void
7529 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7530 Symbol* gsym)
7531 {
7532 if (gsym->has_plt_offset())
7533 return;
7534
7535 if (this->plt_ == NULL)
7536 {
7537 // Create the GOT sections first.
7538 this->got_section(symtab, layout);
7539
7540 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7541
7542 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7543 (elfcpp::SHF_ALLOC
7544 | elfcpp::SHF_EXECINSTR),
7545 this->plt_, ORDER_PLT, false);
7546 }
7547 this->plt_->add_entry(gsym);
7548 }
7549
7550 // Return the number of entries in the PLT.
7551
7552 template<bool big_endian>
7553 unsigned int
7554 Target_arm<big_endian>::plt_entry_count() const
7555 {
7556 if (this->plt_ == NULL)
7557 return 0;
7558 return this->plt_->entry_count();
7559 }
7560
7561 // Return the offset of the first non-reserved PLT entry.
7562
7563 template<bool big_endian>
7564 unsigned int
7565 Target_arm<big_endian>::first_plt_entry_offset() const
7566 {
7567 return this->plt_->first_plt_entry_offset();
7568 }
7569
7570 // Return the size of each PLT entry.
7571
7572 template<bool big_endian>
7573 unsigned int
7574 Target_arm<big_endian>::plt_entry_size() const
7575 {
7576 return this->plt_->get_plt_entry_size();
7577 }
7578
7579 // Get the section to use for TLS_DESC relocations.
7580
7581 template<bool big_endian>
7582 typename Target_arm<big_endian>::Reloc_section*
7583 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7584 {
7585 return this->plt_section()->rel_tls_desc(layout);
7586 }
7587
7588 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7589
7590 template<bool big_endian>
7591 void
7592 Target_arm<big_endian>::define_tls_base_symbol(
7593 Symbol_table* symtab,
7594 Layout* layout)
7595 {
7596 if (this->tls_base_symbol_defined_)
7597 return;
7598
7599 Output_segment* tls_segment = layout->tls_segment();
7600 if (tls_segment != NULL)
7601 {
7602 bool is_exec = parameters->options().output_is_executable();
7603 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7604 Symbol_table::PREDEFINED,
7605 tls_segment, 0, 0,
7606 elfcpp::STT_TLS,
7607 elfcpp::STB_LOCAL,
7608 elfcpp::STV_HIDDEN, 0,
7609 (is_exec
7610 ? Symbol::SEGMENT_END
7611 : Symbol::SEGMENT_START),
7612 true);
7613 }
7614 this->tls_base_symbol_defined_ = true;
7615 }
7616
7617 // Create a GOT entry for the TLS module index.
7618
7619 template<bool big_endian>
7620 unsigned int
7621 Target_arm<big_endian>::got_mod_index_entry(
7622 Symbol_table* symtab,
7623 Layout* layout,
7624 Sized_relobj_file<32, big_endian>* object)
7625 {
7626 if (this->got_mod_index_offset_ == -1U)
7627 {
7628 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7629 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7630 unsigned int got_offset;
7631 if (!parameters->doing_static_link())
7632 {
7633 got_offset = got->add_constant(0);
7634 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7635 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7636 got_offset);
7637 }
7638 else
7639 {
7640 // We are doing a static link. Just mark it as belong to module 1,
7641 // the executable.
7642 got_offset = got->add_constant(1);
7643 }
7644
7645 got->add_constant(0);
7646 this->got_mod_index_offset_ = got_offset;
7647 }
7648 return this->got_mod_index_offset_;
7649 }
7650
7651 // Optimize the TLS relocation type based on what we know about the
7652 // symbol. IS_FINAL is true if the final address of this symbol is
7653 // known at link time.
7654
7655 template<bool big_endian>
7656 tls::Tls_optimization
7657 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7658 {
7659 // FIXME: Currently we do not do any TLS optimization.
7660 return tls::TLSOPT_NONE;
7661 }
7662
7663 // Get the Reference_flags for a particular relocation.
7664
7665 template<bool big_endian>
7666 int
7667 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7668 {
7669 switch (r_type)
7670 {
7671 case elfcpp::R_ARM_NONE:
7672 case elfcpp::R_ARM_V4BX:
7673 case elfcpp::R_ARM_GNU_VTENTRY:
7674 case elfcpp::R_ARM_GNU_VTINHERIT:
7675 // No symbol reference.
7676 return 0;
7677
7678 case elfcpp::R_ARM_ABS32:
7679 case elfcpp::R_ARM_ABS16:
7680 case elfcpp::R_ARM_ABS12:
7681 case elfcpp::R_ARM_THM_ABS5:
7682 case elfcpp::R_ARM_ABS8:
7683 case elfcpp::R_ARM_BASE_ABS:
7684 case elfcpp::R_ARM_MOVW_ABS_NC:
7685 case elfcpp::R_ARM_MOVT_ABS:
7686 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7687 case elfcpp::R_ARM_THM_MOVT_ABS:
7688 case elfcpp::R_ARM_ABS32_NOI:
7689 return Symbol::ABSOLUTE_REF;
7690
7691 case elfcpp::R_ARM_REL32:
7692 case elfcpp::R_ARM_LDR_PC_G0:
7693 case elfcpp::R_ARM_SBREL32:
7694 case elfcpp::R_ARM_THM_PC8:
7695 case elfcpp::R_ARM_BASE_PREL:
7696 case elfcpp::R_ARM_MOVW_PREL_NC:
7697 case elfcpp::R_ARM_MOVT_PREL:
7698 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7699 case elfcpp::R_ARM_THM_MOVT_PREL:
7700 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7701 case elfcpp::R_ARM_THM_PC12:
7702 case elfcpp::R_ARM_REL32_NOI:
7703 case elfcpp::R_ARM_ALU_PC_G0_NC:
7704 case elfcpp::R_ARM_ALU_PC_G0:
7705 case elfcpp::R_ARM_ALU_PC_G1_NC:
7706 case elfcpp::R_ARM_ALU_PC_G1:
7707 case elfcpp::R_ARM_ALU_PC_G2:
7708 case elfcpp::R_ARM_LDR_PC_G1:
7709 case elfcpp::R_ARM_LDR_PC_G2:
7710 case elfcpp::R_ARM_LDRS_PC_G0:
7711 case elfcpp::R_ARM_LDRS_PC_G1:
7712 case elfcpp::R_ARM_LDRS_PC_G2:
7713 case elfcpp::R_ARM_LDC_PC_G0:
7714 case elfcpp::R_ARM_LDC_PC_G1:
7715 case elfcpp::R_ARM_LDC_PC_G2:
7716 case elfcpp::R_ARM_ALU_SB_G0_NC:
7717 case elfcpp::R_ARM_ALU_SB_G0:
7718 case elfcpp::R_ARM_ALU_SB_G1_NC:
7719 case elfcpp::R_ARM_ALU_SB_G1:
7720 case elfcpp::R_ARM_ALU_SB_G2:
7721 case elfcpp::R_ARM_LDR_SB_G0:
7722 case elfcpp::R_ARM_LDR_SB_G1:
7723 case elfcpp::R_ARM_LDR_SB_G2:
7724 case elfcpp::R_ARM_LDRS_SB_G0:
7725 case elfcpp::R_ARM_LDRS_SB_G1:
7726 case elfcpp::R_ARM_LDRS_SB_G2:
7727 case elfcpp::R_ARM_LDC_SB_G0:
7728 case elfcpp::R_ARM_LDC_SB_G1:
7729 case elfcpp::R_ARM_LDC_SB_G2:
7730 case elfcpp::R_ARM_MOVW_BREL_NC:
7731 case elfcpp::R_ARM_MOVT_BREL:
7732 case elfcpp::R_ARM_MOVW_BREL:
7733 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7734 case elfcpp::R_ARM_THM_MOVT_BREL:
7735 case elfcpp::R_ARM_THM_MOVW_BREL:
7736 case elfcpp::R_ARM_GOTOFF32:
7737 case elfcpp::R_ARM_GOTOFF12:
7738 case elfcpp::R_ARM_SBREL31:
7739 return Symbol::RELATIVE_REF;
7740
7741 case elfcpp::R_ARM_PLT32:
7742 case elfcpp::R_ARM_CALL:
7743 case elfcpp::R_ARM_JUMP24:
7744 case elfcpp::R_ARM_THM_CALL:
7745 case elfcpp::R_ARM_THM_JUMP24:
7746 case elfcpp::R_ARM_THM_JUMP19:
7747 case elfcpp::R_ARM_THM_JUMP6:
7748 case elfcpp::R_ARM_THM_JUMP11:
7749 case elfcpp::R_ARM_THM_JUMP8:
7750 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7751 // in unwind tables. It may point to functions via PLTs.
7752 // So we treat it like call/jump relocations above.
7753 case elfcpp::R_ARM_PREL31:
7754 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7755
7756 case elfcpp::R_ARM_GOT_BREL:
7757 case elfcpp::R_ARM_GOT_ABS:
7758 case elfcpp::R_ARM_GOT_PREL:
7759 // Absolute in GOT.
7760 return Symbol::ABSOLUTE_REF;
7761
7762 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7763 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7764 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7765 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7766 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7767 return Symbol::TLS_REF;
7768
7769 case elfcpp::R_ARM_TARGET1:
7770 case elfcpp::R_ARM_TARGET2:
7771 case elfcpp::R_ARM_COPY:
7772 case elfcpp::R_ARM_GLOB_DAT:
7773 case elfcpp::R_ARM_JUMP_SLOT:
7774 case elfcpp::R_ARM_RELATIVE:
7775 case elfcpp::R_ARM_PC24:
7776 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7777 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7778 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7779 default:
7780 // Not expected. We will give an error later.
7781 return 0;
7782 }
7783 }
7784
7785 // Report an unsupported relocation against a local symbol.
7786
7787 template<bool big_endian>
7788 void
7789 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7790 Sized_relobj_file<32, big_endian>* object,
7791 unsigned int r_type)
7792 {
7793 gold_error(_("%s: unsupported reloc %u against local symbol"),
7794 object->name().c_str(), r_type);
7795 }
7796
7797 // We are about to emit a dynamic relocation of type R_TYPE. If the
7798 // dynamic linker does not support it, issue an error. The GNU linker
7799 // only issues a non-PIC error for an allocated read-only section.
7800 // Here we know the section is allocated, but we don't know that it is
7801 // read-only. But we check for all the relocation types which the
7802 // glibc dynamic linker supports, so it seems appropriate to issue an
7803 // error even if the section is not read-only.
7804
7805 template<bool big_endian>
7806 void
7807 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7808 unsigned int r_type)
7809 {
7810 switch (r_type)
7811 {
7812 // These are the relocation types supported by glibc for ARM.
7813 case elfcpp::R_ARM_RELATIVE:
7814 case elfcpp::R_ARM_COPY:
7815 case elfcpp::R_ARM_GLOB_DAT:
7816 case elfcpp::R_ARM_JUMP_SLOT:
7817 case elfcpp::R_ARM_ABS32:
7818 case elfcpp::R_ARM_ABS32_NOI:
7819 case elfcpp::R_ARM_PC24:
7820 // FIXME: The following 3 types are not supported by Android's dynamic
7821 // linker.
7822 case elfcpp::R_ARM_TLS_DTPMOD32:
7823 case elfcpp::R_ARM_TLS_DTPOFF32:
7824 case elfcpp::R_ARM_TLS_TPOFF32:
7825 return;
7826
7827 default:
7828 {
7829 // This prevents us from issuing more than one error per reloc
7830 // section. But we can still wind up issuing more than one
7831 // error per object file.
7832 if (this->issued_non_pic_error_)
7833 return;
7834 const Arm_reloc_property* reloc_property =
7835 arm_reloc_property_table->get_reloc_property(r_type);
7836 gold_assert(reloc_property != NULL);
7837 object->error(_("requires unsupported dynamic reloc %s; "
7838 "recompile with -fPIC"),
7839 reloc_property->name().c_str());
7840 this->issued_non_pic_error_ = true;
7841 return;
7842 }
7843
7844 case elfcpp::R_ARM_NONE:
7845 gold_unreachable();
7846 }
7847 }
7848
7849 // Scan a relocation for a local symbol.
7850 // FIXME: This only handles a subset of relocation types used by Android
7851 // on ARM v5te devices.
7852
7853 template<bool big_endian>
7854 inline void
7855 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7856 Layout* layout,
7857 Target_arm* target,
7858 Sized_relobj_file<32, big_endian>* object,
7859 unsigned int data_shndx,
7860 Output_section* output_section,
7861 const elfcpp::Rel<32, big_endian>& reloc,
7862 unsigned int r_type,
7863 const elfcpp::Sym<32, big_endian>& lsym,
7864 bool is_discarded)
7865 {
7866 if (is_discarded)
7867 return;
7868
7869 r_type = get_real_reloc_type(r_type);
7870 switch (r_type)
7871 {
7872 case elfcpp::R_ARM_NONE:
7873 case elfcpp::R_ARM_V4BX:
7874 case elfcpp::R_ARM_GNU_VTENTRY:
7875 case elfcpp::R_ARM_GNU_VTINHERIT:
7876 break;
7877
7878 case elfcpp::R_ARM_ABS32:
7879 case elfcpp::R_ARM_ABS32_NOI:
7880 // If building a shared library (or a position-independent
7881 // executable), we need to create a dynamic relocation for
7882 // this location. The relocation applied at link time will
7883 // apply the link-time value, so we flag the location with
7884 // an R_ARM_RELATIVE relocation so the dynamic loader can
7885 // relocate it easily.
7886 if (parameters->options().output_is_position_independent())
7887 {
7888 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7889 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7890 // If we are to add more other reloc types than R_ARM_ABS32,
7891 // we need to add check_non_pic(object, r_type) here.
7892 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7893 output_section, data_shndx,
7894 reloc.get_r_offset());
7895 }
7896 break;
7897
7898 case elfcpp::R_ARM_ABS16:
7899 case elfcpp::R_ARM_ABS12:
7900 case elfcpp::R_ARM_THM_ABS5:
7901 case elfcpp::R_ARM_ABS8:
7902 case elfcpp::R_ARM_BASE_ABS:
7903 case elfcpp::R_ARM_MOVW_ABS_NC:
7904 case elfcpp::R_ARM_MOVT_ABS:
7905 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7906 case elfcpp::R_ARM_THM_MOVT_ABS:
7907 // If building a shared library (or a position-independent
7908 // executable), we need to create a dynamic relocation for
7909 // this location. Because the addend needs to remain in the
7910 // data section, we need to be careful not to apply this
7911 // relocation statically.
7912 if (parameters->options().output_is_position_independent())
7913 {
7914 check_non_pic(object, r_type);
7915 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7916 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7917 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7918 rel_dyn->add_local(object, r_sym, r_type, output_section,
7919 data_shndx, reloc.get_r_offset());
7920 else
7921 {
7922 gold_assert(lsym.get_st_value() == 0);
7923 unsigned int shndx = lsym.get_st_shndx();
7924 bool is_ordinary;
7925 shndx = object->adjust_sym_shndx(r_sym, shndx,
7926 &is_ordinary);
7927 if (!is_ordinary)
7928 object->error(_("section symbol %u has bad shndx %u"),
7929 r_sym, shndx);
7930 else
7931 rel_dyn->add_local_section(object, shndx,
7932 r_type, output_section,
7933 data_shndx, reloc.get_r_offset());
7934 }
7935 }
7936 break;
7937
7938 case elfcpp::R_ARM_REL32:
7939 case elfcpp::R_ARM_LDR_PC_G0:
7940 case elfcpp::R_ARM_SBREL32:
7941 case elfcpp::R_ARM_THM_CALL:
7942 case elfcpp::R_ARM_THM_PC8:
7943 case elfcpp::R_ARM_BASE_PREL:
7944 case elfcpp::R_ARM_PLT32:
7945 case elfcpp::R_ARM_CALL:
7946 case elfcpp::R_ARM_JUMP24:
7947 case elfcpp::R_ARM_THM_JUMP24:
7948 case elfcpp::R_ARM_SBREL31:
7949 case elfcpp::R_ARM_PREL31:
7950 case elfcpp::R_ARM_MOVW_PREL_NC:
7951 case elfcpp::R_ARM_MOVT_PREL:
7952 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7953 case elfcpp::R_ARM_THM_MOVT_PREL:
7954 case elfcpp::R_ARM_THM_JUMP19:
7955 case elfcpp::R_ARM_THM_JUMP6:
7956 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7957 case elfcpp::R_ARM_THM_PC12:
7958 case elfcpp::R_ARM_REL32_NOI:
7959 case elfcpp::R_ARM_ALU_PC_G0_NC:
7960 case elfcpp::R_ARM_ALU_PC_G0:
7961 case elfcpp::R_ARM_ALU_PC_G1_NC:
7962 case elfcpp::R_ARM_ALU_PC_G1:
7963 case elfcpp::R_ARM_ALU_PC_G2:
7964 case elfcpp::R_ARM_LDR_PC_G1:
7965 case elfcpp::R_ARM_LDR_PC_G2:
7966 case elfcpp::R_ARM_LDRS_PC_G0:
7967 case elfcpp::R_ARM_LDRS_PC_G1:
7968 case elfcpp::R_ARM_LDRS_PC_G2:
7969 case elfcpp::R_ARM_LDC_PC_G0:
7970 case elfcpp::R_ARM_LDC_PC_G1:
7971 case elfcpp::R_ARM_LDC_PC_G2:
7972 case elfcpp::R_ARM_ALU_SB_G0_NC:
7973 case elfcpp::R_ARM_ALU_SB_G0:
7974 case elfcpp::R_ARM_ALU_SB_G1_NC:
7975 case elfcpp::R_ARM_ALU_SB_G1:
7976 case elfcpp::R_ARM_ALU_SB_G2:
7977 case elfcpp::R_ARM_LDR_SB_G0:
7978 case elfcpp::R_ARM_LDR_SB_G1:
7979 case elfcpp::R_ARM_LDR_SB_G2:
7980 case elfcpp::R_ARM_LDRS_SB_G0:
7981 case elfcpp::R_ARM_LDRS_SB_G1:
7982 case elfcpp::R_ARM_LDRS_SB_G2:
7983 case elfcpp::R_ARM_LDC_SB_G0:
7984 case elfcpp::R_ARM_LDC_SB_G1:
7985 case elfcpp::R_ARM_LDC_SB_G2:
7986 case elfcpp::R_ARM_MOVW_BREL_NC:
7987 case elfcpp::R_ARM_MOVT_BREL:
7988 case elfcpp::R_ARM_MOVW_BREL:
7989 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7990 case elfcpp::R_ARM_THM_MOVT_BREL:
7991 case elfcpp::R_ARM_THM_MOVW_BREL:
7992 case elfcpp::R_ARM_THM_JUMP11:
7993 case elfcpp::R_ARM_THM_JUMP8:
7994 // We don't need to do anything for a relative addressing relocation
7995 // against a local symbol if it does not reference the GOT.
7996 break;
7997
7998 case elfcpp::R_ARM_GOTOFF32:
7999 case elfcpp::R_ARM_GOTOFF12:
8000 // We need a GOT section:
8001 target->got_section(symtab, layout);
8002 break;
8003
8004 case elfcpp::R_ARM_GOT_BREL:
8005 case elfcpp::R_ARM_GOT_PREL:
8006 {
8007 // The symbol requires a GOT entry.
8008 Arm_output_data_got<big_endian>* got =
8009 target->got_section(symtab, layout);
8010 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8011 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8012 {
8013 // If we are generating a shared object, we need to add a
8014 // dynamic RELATIVE relocation for this symbol's GOT entry.
8015 if (parameters->options().output_is_position_independent())
8016 {
8017 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8018 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8019 rel_dyn->add_local_relative(
8020 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8021 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8022 }
8023 }
8024 }
8025 break;
8026
8027 case elfcpp::R_ARM_TARGET1:
8028 case elfcpp::R_ARM_TARGET2:
8029 // This should have been mapped to another type already.
8030 // Fall through.
8031 case elfcpp::R_ARM_COPY:
8032 case elfcpp::R_ARM_GLOB_DAT:
8033 case elfcpp::R_ARM_JUMP_SLOT:
8034 case elfcpp::R_ARM_RELATIVE:
8035 // These are relocations which should only be seen by the
8036 // dynamic linker, and should never be seen here.
8037 gold_error(_("%s: unexpected reloc %u in object file"),
8038 object->name().c_str(), r_type);
8039 break;
8040
8041
8042 // These are initial TLS relocs, which are expected when
8043 // linking.
8044 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8045 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8046 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8047 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8048 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8049 {
8050 bool output_is_shared = parameters->options().shared();
8051 const tls::Tls_optimization optimized_type
8052 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8053 r_type);
8054 switch (r_type)
8055 {
8056 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8057 if (optimized_type == tls::TLSOPT_NONE)
8058 {
8059 // Create a pair of GOT entries for the module index and
8060 // dtv-relative offset.
8061 Arm_output_data_got<big_endian>* got
8062 = target->got_section(symtab, layout);
8063 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8064 unsigned int shndx = lsym.get_st_shndx();
8065 bool is_ordinary;
8066 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8067 if (!is_ordinary)
8068 {
8069 object->error(_("local symbol %u has bad shndx %u"),
8070 r_sym, shndx);
8071 break;
8072 }
8073
8074 if (!parameters->doing_static_link())
8075 got->add_local_pair_with_rel(object, r_sym, shndx,
8076 GOT_TYPE_TLS_PAIR,
8077 target->rel_dyn_section(layout),
8078 elfcpp::R_ARM_TLS_DTPMOD32);
8079 else
8080 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8081 object, r_sym);
8082 }
8083 else
8084 // FIXME: TLS optimization not supported yet.
8085 gold_unreachable();
8086 break;
8087
8088 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8089 if (optimized_type == tls::TLSOPT_NONE)
8090 {
8091 // Create a GOT entry for the module index.
8092 target->got_mod_index_entry(symtab, layout, object);
8093 }
8094 else
8095 // FIXME: TLS optimization not supported yet.
8096 gold_unreachable();
8097 break;
8098
8099 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8100 break;
8101
8102 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8103 layout->set_has_static_tls();
8104 if (optimized_type == tls::TLSOPT_NONE)
8105 {
8106 // Create a GOT entry for the tp-relative offset.
8107 Arm_output_data_got<big_endian>* got
8108 = target->got_section(symtab, layout);
8109 unsigned int r_sym =
8110 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8111 if (!parameters->doing_static_link())
8112 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8113 target->rel_dyn_section(layout),
8114 elfcpp::R_ARM_TLS_TPOFF32);
8115 else if (!object->local_has_got_offset(r_sym,
8116 GOT_TYPE_TLS_OFFSET))
8117 {
8118 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8119 unsigned int got_offset =
8120 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8121 got->add_static_reloc(got_offset,
8122 elfcpp::R_ARM_TLS_TPOFF32, object,
8123 r_sym);
8124 }
8125 }
8126 else
8127 // FIXME: TLS optimization not supported yet.
8128 gold_unreachable();
8129 break;
8130
8131 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8132 layout->set_has_static_tls();
8133 if (output_is_shared)
8134 {
8135 // We need to create a dynamic relocation.
8136 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8137 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8138 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8139 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8140 output_section, data_shndx,
8141 reloc.get_r_offset());
8142 }
8143 break;
8144
8145 default:
8146 gold_unreachable();
8147 }
8148 }
8149 break;
8150
8151 case elfcpp::R_ARM_PC24:
8152 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8153 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8154 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8155 default:
8156 unsupported_reloc_local(object, r_type);
8157 break;
8158 }
8159 }
8160
8161 // Report an unsupported relocation against a global symbol.
8162
8163 template<bool big_endian>
8164 void
8165 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8166 Sized_relobj_file<32, big_endian>* object,
8167 unsigned int r_type,
8168 Symbol* gsym)
8169 {
8170 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8171 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8172 }
8173
8174 template<bool big_endian>
8175 inline bool
8176 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8177 unsigned int r_type)
8178 {
8179 switch (r_type)
8180 {
8181 case elfcpp::R_ARM_PC24:
8182 case elfcpp::R_ARM_THM_CALL:
8183 case elfcpp::R_ARM_PLT32:
8184 case elfcpp::R_ARM_CALL:
8185 case elfcpp::R_ARM_JUMP24:
8186 case elfcpp::R_ARM_THM_JUMP24:
8187 case elfcpp::R_ARM_SBREL31:
8188 case elfcpp::R_ARM_PREL31:
8189 case elfcpp::R_ARM_THM_JUMP19:
8190 case elfcpp::R_ARM_THM_JUMP6:
8191 case elfcpp::R_ARM_THM_JUMP11:
8192 case elfcpp::R_ARM_THM_JUMP8:
8193 // All the relocations above are branches except SBREL31 and PREL31.
8194 return false;
8195
8196 default:
8197 // Be conservative and assume this is a function pointer.
8198 return true;
8199 }
8200 }
8201
8202 template<bool big_endian>
8203 inline bool
8204 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8205 Symbol_table*,
8206 Layout*,
8207 Target_arm<big_endian>* target,
8208 Sized_relobj_file<32, big_endian>*,
8209 unsigned int,
8210 Output_section*,
8211 const elfcpp::Rel<32, big_endian>&,
8212 unsigned int r_type,
8213 const elfcpp::Sym<32, big_endian>&)
8214 {
8215 r_type = target->get_real_reloc_type(r_type);
8216 return possible_function_pointer_reloc(r_type);
8217 }
8218
8219 template<bool big_endian>
8220 inline bool
8221 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8222 Symbol_table*,
8223 Layout*,
8224 Target_arm<big_endian>* target,
8225 Sized_relobj_file<32, big_endian>*,
8226 unsigned int,
8227 Output_section*,
8228 const elfcpp::Rel<32, big_endian>&,
8229 unsigned int r_type,
8230 Symbol* gsym)
8231 {
8232 // GOT is not a function.
8233 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8234 return false;
8235
8236 r_type = target->get_real_reloc_type(r_type);
8237 return possible_function_pointer_reloc(r_type);
8238 }
8239
8240 // Scan a relocation for a global symbol.
8241
8242 template<bool big_endian>
8243 inline void
8244 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8245 Layout* layout,
8246 Target_arm* target,
8247 Sized_relobj_file<32, big_endian>* object,
8248 unsigned int data_shndx,
8249 Output_section* output_section,
8250 const elfcpp::Rel<32, big_endian>& reloc,
8251 unsigned int r_type,
8252 Symbol* gsym)
8253 {
8254 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8255 // section. We check here to avoid creating a dynamic reloc against
8256 // _GLOBAL_OFFSET_TABLE_.
8257 if (!target->has_got_section()
8258 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8259 target->got_section(symtab, layout);
8260
8261 r_type = get_real_reloc_type(r_type);
8262 switch (r_type)
8263 {
8264 case elfcpp::R_ARM_NONE:
8265 case elfcpp::R_ARM_V4BX:
8266 case elfcpp::R_ARM_GNU_VTENTRY:
8267 case elfcpp::R_ARM_GNU_VTINHERIT:
8268 break;
8269
8270 case elfcpp::R_ARM_ABS32:
8271 case elfcpp::R_ARM_ABS16:
8272 case elfcpp::R_ARM_ABS12:
8273 case elfcpp::R_ARM_THM_ABS5:
8274 case elfcpp::R_ARM_ABS8:
8275 case elfcpp::R_ARM_BASE_ABS:
8276 case elfcpp::R_ARM_MOVW_ABS_NC:
8277 case elfcpp::R_ARM_MOVT_ABS:
8278 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8279 case elfcpp::R_ARM_THM_MOVT_ABS:
8280 case elfcpp::R_ARM_ABS32_NOI:
8281 // Absolute addressing relocations.
8282 {
8283 // Make a PLT entry if necessary.
8284 if (this->symbol_needs_plt_entry(gsym))
8285 {
8286 target->make_plt_entry(symtab, layout, gsym);
8287 // Since this is not a PC-relative relocation, we may be
8288 // taking the address of a function. In that case we need to
8289 // set the entry in the dynamic symbol table to the address of
8290 // the PLT entry.
8291 if (gsym->is_from_dynobj() && !parameters->options().shared())
8292 gsym->set_needs_dynsym_value();
8293 }
8294 // Make a dynamic relocation if necessary.
8295 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8296 {
8297 if (gsym->may_need_copy_reloc())
8298 {
8299 target->copy_reloc(symtab, layout, object,
8300 data_shndx, output_section, gsym, reloc);
8301 }
8302 else if ((r_type == elfcpp::R_ARM_ABS32
8303 || r_type == elfcpp::R_ARM_ABS32_NOI)
8304 && gsym->can_use_relative_reloc(false))
8305 {
8306 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8307 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8308 output_section, object,
8309 data_shndx, reloc.get_r_offset());
8310 }
8311 else
8312 {
8313 check_non_pic(object, r_type);
8314 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8315 rel_dyn->add_global(gsym, r_type, output_section, object,
8316 data_shndx, reloc.get_r_offset());
8317 }
8318 }
8319 }
8320 break;
8321
8322 case elfcpp::R_ARM_GOTOFF32:
8323 case elfcpp::R_ARM_GOTOFF12:
8324 // We need a GOT section.
8325 target->got_section(symtab, layout);
8326 break;
8327
8328 case elfcpp::R_ARM_REL32:
8329 case elfcpp::R_ARM_LDR_PC_G0:
8330 case elfcpp::R_ARM_SBREL32:
8331 case elfcpp::R_ARM_THM_PC8:
8332 case elfcpp::R_ARM_BASE_PREL:
8333 case elfcpp::R_ARM_MOVW_PREL_NC:
8334 case elfcpp::R_ARM_MOVT_PREL:
8335 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8336 case elfcpp::R_ARM_THM_MOVT_PREL:
8337 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8338 case elfcpp::R_ARM_THM_PC12:
8339 case elfcpp::R_ARM_REL32_NOI:
8340 case elfcpp::R_ARM_ALU_PC_G0_NC:
8341 case elfcpp::R_ARM_ALU_PC_G0:
8342 case elfcpp::R_ARM_ALU_PC_G1_NC:
8343 case elfcpp::R_ARM_ALU_PC_G1:
8344 case elfcpp::R_ARM_ALU_PC_G2:
8345 case elfcpp::R_ARM_LDR_PC_G1:
8346 case elfcpp::R_ARM_LDR_PC_G2:
8347 case elfcpp::R_ARM_LDRS_PC_G0:
8348 case elfcpp::R_ARM_LDRS_PC_G1:
8349 case elfcpp::R_ARM_LDRS_PC_G2:
8350 case elfcpp::R_ARM_LDC_PC_G0:
8351 case elfcpp::R_ARM_LDC_PC_G1:
8352 case elfcpp::R_ARM_LDC_PC_G2:
8353 case elfcpp::R_ARM_ALU_SB_G0_NC:
8354 case elfcpp::R_ARM_ALU_SB_G0:
8355 case elfcpp::R_ARM_ALU_SB_G1_NC:
8356 case elfcpp::R_ARM_ALU_SB_G1:
8357 case elfcpp::R_ARM_ALU_SB_G2:
8358 case elfcpp::R_ARM_LDR_SB_G0:
8359 case elfcpp::R_ARM_LDR_SB_G1:
8360 case elfcpp::R_ARM_LDR_SB_G2:
8361 case elfcpp::R_ARM_LDRS_SB_G0:
8362 case elfcpp::R_ARM_LDRS_SB_G1:
8363 case elfcpp::R_ARM_LDRS_SB_G2:
8364 case elfcpp::R_ARM_LDC_SB_G0:
8365 case elfcpp::R_ARM_LDC_SB_G1:
8366 case elfcpp::R_ARM_LDC_SB_G2:
8367 case elfcpp::R_ARM_MOVW_BREL_NC:
8368 case elfcpp::R_ARM_MOVT_BREL:
8369 case elfcpp::R_ARM_MOVW_BREL:
8370 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8371 case elfcpp::R_ARM_THM_MOVT_BREL:
8372 case elfcpp::R_ARM_THM_MOVW_BREL:
8373 // Relative addressing relocations.
8374 {
8375 // Make a dynamic relocation if necessary.
8376 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8377 {
8378 if (target->may_need_copy_reloc(gsym))
8379 {
8380 target->copy_reloc(symtab, layout, object,
8381 data_shndx, output_section, gsym, reloc);
8382 }
8383 else
8384 {
8385 check_non_pic(object, r_type);
8386 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8387 rel_dyn->add_global(gsym, r_type, output_section, object,
8388 data_shndx, reloc.get_r_offset());
8389 }
8390 }
8391 }
8392 break;
8393
8394 case elfcpp::R_ARM_THM_CALL:
8395 case elfcpp::R_ARM_PLT32:
8396 case elfcpp::R_ARM_CALL:
8397 case elfcpp::R_ARM_JUMP24:
8398 case elfcpp::R_ARM_THM_JUMP24:
8399 case elfcpp::R_ARM_SBREL31:
8400 case elfcpp::R_ARM_PREL31:
8401 case elfcpp::R_ARM_THM_JUMP19:
8402 case elfcpp::R_ARM_THM_JUMP6:
8403 case elfcpp::R_ARM_THM_JUMP11:
8404 case elfcpp::R_ARM_THM_JUMP8:
8405 // All the relocation above are branches except for the PREL31 ones.
8406 // A PREL31 relocation can point to a personality function in a shared
8407 // library. In that case we want to use a PLT because we want to
8408 // call the personality routine and the dynamic linkers we care about
8409 // do not support dynamic PREL31 relocations. An REL31 relocation may
8410 // point to a function whose unwinding behaviour is being described but
8411 // we will not mistakenly generate a PLT for that because we should use
8412 // a local section symbol.
8413
8414 // If the symbol is fully resolved, this is just a relative
8415 // local reloc. Otherwise we need a PLT entry.
8416 if (gsym->final_value_is_known())
8417 break;
8418 // If building a shared library, we can also skip the PLT entry
8419 // if the symbol is defined in the output file and is protected
8420 // or hidden.
8421 if (gsym->is_defined()
8422 && !gsym->is_from_dynobj()
8423 && !gsym->is_preemptible())
8424 break;
8425 target->make_plt_entry(symtab, layout, gsym);
8426 break;
8427
8428 case elfcpp::R_ARM_GOT_BREL:
8429 case elfcpp::R_ARM_GOT_ABS:
8430 case elfcpp::R_ARM_GOT_PREL:
8431 {
8432 // The symbol requires a GOT entry.
8433 Arm_output_data_got<big_endian>* got =
8434 target->got_section(symtab, layout);
8435 if (gsym->final_value_is_known())
8436 got->add_global(gsym, GOT_TYPE_STANDARD);
8437 else
8438 {
8439 // If this symbol is not fully resolved, we need to add a
8440 // GOT entry with a dynamic relocation.
8441 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8442 if (gsym->is_from_dynobj()
8443 || gsym->is_undefined()
8444 || gsym->is_preemptible()
8445 || (gsym->visibility() == elfcpp::STV_PROTECTED
8446 && parameters->options().shared()))
8447 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8448 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8449 else
8450 {
8451 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8452 rel_dyn->add_global_relative(
8453 gsym, elfcpp::R_ARM_RELATIVE, got,
8454 gsym->got_offset(GOT_TYPE_STANDARD));
8455 }
8456 }
8457 }
8458 break;
8459
8460 case elfcpp::R_ARM_TARGET1:
8461 case elfcpp::R_ARM_TARGET2:
8462 // These should have been mapped to other types already.
8463 // Fall through.
8464 case elfcpp::R_ARM_COPY:
8465 case elfcpp::R_ARM_GLOB_DAT:
8466 case elfcpp::R_ARM_JUMP_SLOT:
8467 case elfcpp::R_ARM_RELATIVE:
8468 // These are relocations which should only be seen by the
8469 // dynamic linker, and should never be seen here.
8470 gold_error(_("%s: unexpected reloc %u in object file"),
8471 object->name().c_str(), r_type);
8472 break;
8473
8474 // These are initial tls relocs, which are expected when
8475 // linking.
8476 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8477 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8478 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8479 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8480 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8481 {
8482 const bool is_final = gsym->final_value_is_known();
8483 const tls::Tls_optimization optimized_type
8484 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8485 switch (r_type)
8486 {
8487 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8488 if (optimized_type == tls::TLSOPT_NONE)
8489 {
8490 // Create a pair of GOT entries for the module index and
8491 // dtv-relative offset.
8492 Arm_output_data_got<big_endian>* got
8493 = target->got_section(symtab, layout);
8494 if (!parameters->doing_static_link())
8495 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8496 target->rel_dyn_section(layout),
8497 elfcpp::R_ARM_TLS_DTPMOD32,
8498 elfcpp::R_ARM_TLS_DTPOFF32);
8499 else
8500 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8501 }
8502 else
8503 // FIXME: TLS optimization not supported yet.
8504 gold_unreachable();
8505 break;
8506
8507 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8508 if (optimized_type == tls::TLSOPT_NONE)
8509 {
8510 // Create a GOT entry for the module index.
8511 target->got_mod_index_entry(symtab, layout, object);
8512 }
8513 else
8514 // FIXME: TLS optimization not supported yet.
8515 gold_unreachable();
8516 break;
8517
8518 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8519 break;
8520
8521 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8522 layout->set_has_static_tls();
8523 if (optimized_type == tls::TLSOPT_NONE)
8524 {
8525 // Create a GOT entry for the tp-relative offset.
8526 Arm_output_data_got<big_endian>* got
8527 = target->got_section(symtab, layout);
8528 if (!parameters->doing_static_link())
8529 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8530 target->rel_dyn_section(layout),
8531 elfcpp::R_ARM_TLS_TPOFF32);
8532 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8533 {
8534 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8535 unsigned int got_offset =
8536 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8537 got->add_static_reloc(got_offset,
8538 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8539 }
8540 }
8541 else
8542 // FIXME: TLS optimization not supported yet.
8543 gold_unreachable();
8544 break;
8545
8546 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8547 layout->set_has_static_tls();
8548 if (parameters->options().shared())
8549 {
8550 // We need to create a dynamic relocation.
8551 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8552 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8553 output_section, object,
8554 data_shndx, reloc.get_r_offset());
8555 }
8556 break;
8557
8558 default:
8559 gold_unreachable();
8560 }
8561 }
8562 break;
8563
8564 case elfcpp::R_ARM_PC24:
8565 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8566 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8567 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8568 default:
8569 unsupported_reloc_global(object, r_type, gsym);
8570 break;
8571 }
8572 }
8573
8574 // Process relocations for gc.
8575
8576 template<bool big_endian>
8577 void
8578 Target_arm<big_endian>::gc_process_relocs(
8579 Symbol_table* symtab,
8580 Layout* layout,
8581 Sized_relobj_file<32, big_endian>* object,
8582 unsigned int data_shndx,
8583 unsigned int,
8584 const unsigned char* prelocs,
8585 size_t reloc_count,
8586 Output_section* output_section,
8587 bool needs_special_offset_handling,
8588 size_t local_symbol_count,
8589 const unsigned char* plocal_symbols)
8590 {
8591 typedef Target_arm<big_endian> Arm;
8592 typedef typename Target_arm<big_endian>::Scan Scan;
8593
8594 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8595 typename Target_arm::Relocatable_size_for_reloc>(
8596 symtab,
8597 layout,
8598 this,
8599 object,
8600 data_shndx,
8601 prelocs,
8602 reloc_count,
8603 output_section,
8604 needs_special_offset_handling,
8605 local_symbol_count,
8606 plocal_symbols);
8607 }
8608
8609 // Scan relocations for a section.
8610
8611 template<bool big_endian>
8612 void
8613 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8614 Layout* layout,
8615 Sized_relobj_file<32, big_endian>* object,
8616 unsigned int data_shndx,
8617 unsigned int sh_type,
8618 const unsigned char* prelocs,
8619 size_t reloc_count,
8620 Output_section* output_section,
8621 bool needs_special_offset_handling,
8622 size_t local_symbol_count,
8623 const unsigned char* plocal_symbols)
8624 {
8625 typedef typename Target_arm<big_endian>::Scan Scan;
8626 if (sh_type == elfcpp::SHT_RELA)
8627 {
8628 gold_error(_("%s: unsupported RELA reloc section"),
8629 object->name().c_str());
8630 return;
8631 }
8632
8633 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8634 symtab,
8635 layout,
8636 this,
8637 object,
8638 data_shndx,
8639 prelocs,
8640 reloc_count,
8641 output_section,
8642 needs_special_offset_handling,
8643 local_symbol_count,
8644 plocal_symbols);
8645 }
8646
8647 // Finalize the sections.
8648
8649 template<bool big_endian>
8650 void
8651 Target_arm<big_endian>::do_finalize_sections(
8652 Layout* layout,
8653 const Input_objects* input_objects,
8654 Symbol_table*)
8655 {
8656 bool merged_any_attributes = false;
8657 // Merge processor-specific flags.
8658 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8659 p != input_objects->relobj_end();
8660 ++p)
8661 {
8662 Arm_relobj<big_endian>* arm_relobj =
8663 Arm_relobj<big_endian>::as_arm_relobj(*p);
8664 if (arm_relobj->merge_flags_and_attributes())
8665 {
8666 this->merge_processor_specific_flags(
8667 arm_relobj->name(),
8668 arm_relobj->processor_specific_flags());
8669 this->merge_object_attributes(arm_relobj->name().c_str(),
8670 arm_relobj->attributes_section_data());
8671 merged_any_attributes = true;
8672 }
8673 }
8674
8675 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8676 p != input_objects->dynobj_end();
8677 ++p)
8678 {
8679 Arm_dynobj<big_endian>* arm_dynobj =
8680 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8681 this->merge_processor_specific_flags(
8682 arm_dynobj->name(),
8683 arm_dynobj->processor_specific_flags());
8684 this->merge_object_attributes(arm_dynobj->name().c_str(),
8685 arm_dynobj->attributes_section_data());
8686 merged_any_attributes = true;
8687 }
8688
8689 // Create an empty uninitialized attribute section if we still don't have it
8690 // at this moment. This happens if there is no attributes sections in all
8691 // inputs.
8692 if (this->attributes_section_data_ == NULL)
8693 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8694
8695 const Object_attribute* cpu_arch_attr =
8696 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8697 // Check if we need to use Cortex-A8 workaround.
8698 if (parameters->options().user_set_fix_cortex_a8())
8699 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8700 else
8701 {
8702 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8703 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8704 // profile.
8705 const Object_attribute* cpu_arch_profile_attr =
8706 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8707 this->fix_cortex_a8_ =
8708 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8709 && (cpu_arch_profile_attr->int_value() == 'A'
8710 || cpu_arch_profile_attr->int_value() == 0));
8711 }
8712
8713 // Check if we can use V4BX interworking.
8714 // The V4BX interworking stub contains BX instruction,
8715 // which is not specified for some profiles.
8716 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8717 && !this->may_use_v4t_interworking())
8718 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8719 "the target profile does not support BX instruction"));
8720
8721 // Fill in some more dynamic tags.
8722 const Reloc_section* rel_plt = (this->plt_ == NULL
8723 ? NULL
8724 : this->plt_->rel_plt());
8725 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8726 this->rel_dyn_, true, false);
8727
8728 // Emit any relocs we saved in an attempt to avoid generating COPY
8729 // relocs.
8730 if (this->copy_relocs_.any_saved_relocs())
8731 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8732
8733 // Handle the .ARM.exidx section.
8734 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8735
8736 if (!parameters->options().relocatable())
8737 {
8738 if (exidx_section != NULL
8739 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8740 {
8741 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8742 // the .ARM.exidx section.
8743 if (!layout->script_options()->saw_phdrs_clause())
8744 {
8745 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8746 0)
8747 == NULL);
8748 Output_segment* exidx_segment =
8749 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8750 exidx_segment->add_output_section_to_nonload(exidx_section,
8751 elfcpp::PF_R);
8752 }
8753 }
8754 }
8755
8756 // Create an .ARM.attributes section if we have merged any attributes
8757 // from inputs.
8758 if (merged_any_attributes)
8759 {
8760 Output_attributes_section_data* attributes_section =
8761 new Output_attributes_section_data(*this->attributes_section_data_);
8762 layout->add_output_section_data(".ARM.attributes",
8763 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8764 attributes_section, ORDER_INVALID,
8765 false);
8766 }
8767
8768 // Fix up links in section EXIDX headers.
8769 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8770 p != layout->section_list().end();
8771 ++p)
8772 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8773 {
8774 Arm_output_section<big_endian>* os =
8775 Arm_output_section<big_endian>::as_arm_output_section(*p);
8776 os->set_exidx_section_link();
8777 }
8778 }
8779
8780 // Return whether a direct absolute static relocation needs to be applied.
8781 // In cases where Scan::local() or Scan::global() has created
8782 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8783 // of the relocation is carried in the data, and we must not
8784 // apply the static relocation.
8785
8786 template<bool big_endian>
8787 inline bool
8788 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8789 const Sized_symbol<32>* gsym,
8790 unsigned int r_type,
8791 bool is_32bit,
8792 Output_section* output_section)
8793 {
8794 // If the output section is not allocated, then we didn't call
8795 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8796 // the reloc here.
8797 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8798 return true;
8799
8800 int ref_flags = Scan::get_reference_flags(r_type);
8801
8802 // For local symbols, we will have created a non-RELATIVE dynamic
8803 // relocation only if (a) the output is position independent,
8804 // (b) the relocation is absolute (not pc- or segment-relative), and
8805 // (c) the relocation is not 32 bits wide.
8806 if (gsym == NULL)
8807 return !(parameters->options().output_is_position_independent()
8808 && (ref_flags & Symbol::ABSOLUTE_REF)
8809 && !is_32bit);
8810
8811 // For global symbols, we use the same helper routines used in the
8812 // scan pass. If we did not create a dynamic relocation, or if we
8813 // created a RELATIVE dynamic relocation, we should apply the static
8814 // relocation.
8815 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8816 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8817 && gsym->can_use_relative_reloc(ref_flags
8818 & Symbol::FUNCTION_CALL);
8819 return !has_dyn || is_rel;
8820 }
8821
8822 // Perform a relocation.
8823
8824 template<bool big_endian>
8825 inline bool
8826 Target_arm<big_endian>::Relocate::relocate(
8827 const Relocate_info<32, big_endian>* relinfo,
8828 Target_arm* target,
8829 Output_section* output_section,
8830 size_t relnum,
8831 const elfcpp::Rel<32, big_endian>& rel,
8832 unsigned int r_type,
8833 const Sized_symbol<32>* gsym,
8834 const Symbol_value<32>* psymval,
8835 unsigned char* view,
8836 Arm_address address,
8837 section_size_type view_size)
8838 {
8839 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8840
8841 r_type = get_real_reloc_type(r_type);
8842 const Arm_reloc_property* reloc_property =
8843 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8844 if (reloc_property == NULL)
8845 {
8846 std::string reloc_name =
8847 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8848 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8849 _("cannot relocate %s in object file"),
8850 reloc_name.c_str());
8851 return true;
8852 }
8853
8854 const Arm_relobj<big_endian>* object =
8855 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8856
8857 // If the final branch target of a relocation is THUMB instruction, this
8858 // is 1. Otherwise it is 0.
8859 Arm_address thumb_bit = 0;
8860 Symbol_value<32> symval;
8861 bool is_weakly_undefined_without_plt = false;
8862 bool have_got_offset = false;
8863 unsigned int got_offset = 0;
8864
8865 // If the relocation uses the GOT entry of a symbol instead of the symbol
8866 // itself, we don't care about whether the symbol is defined or what kind
8867 // of symbol it is.
8868 if (reloc_property->uses_got_entry())
8869 {
8870 // Get the GOT offset.
8871 // The GOT pointer points to the end of the GOT section.
8872 // We need to subtract the size of the GOT section to get
8873 // the actual offset to use in the relocation.
8874 // TODO: We should move GOT offset computing code in TLS relocations
8875 // to here.
8876 switch (r_type)
8877 {
8878 case elfcpp::R_ARM_GOT_BREL:
8879 case elfcpp::R_ARM_GOT_PREL:
8880 if (gsym != NULL)
8881 {
8882 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8883 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8884 - target->got_size());
8885 }
8886 else
8887 {
8888 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8889 gold_assert(object->local_has_got_offset(r_sym,
8890 GOT_TYPE_STANDARD));
8891 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8892 - target->got_size());
8893 }
8894 have_got_offset = true;
8895 break;
8896
8897 default:
8898 break;
8899 }
8900 }
8901 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8902 {
8903 if (gsym != NULL)
8904 {
8905 // This is a global symbol. Determine if we use PLT and if the
8906 // final target is THUMB.
8907 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8908 {
8909 // This uses a PLT, change the symbol value.
8910 symval.set_output_value(target->plt_section()->address()
8911 + gsym->plt_offset());
8912 psymval = &symval;
8913 }
8914 else if (gsym->is_weak_undefined())
8915 {
8916 // This is a weakly undefined symbol and we do not use PLT
8917 // for this relocation. A branch targeting this symbol will
8918 // be converted into an NOP.
8919 is_weakly_undefined_without_plt = true;
8920 }
8921 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8922 {
8923 // This relocation uses the symbol value but the symbol is
8924 // undefined. Exit early and have the caller reporting an
8925 // error.
8926 return true;
8927 }
8928 else
8929 {
8930 // Set thumb bit if symbol:
8931 // -Has type STT_ARM_TFUNC or
8932 // -Has type STT_FUNC, is defined and with LSB in value set.
8933 thumb_bit =
8934 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8935 || (gsym->type() == elfcpp::STT_FUNC
8936 && !gsym->is_undefined()
8937 && ((psymval->value(object, 0) & 1) != 0)))
8938 ? 1
8939 : 0);
8940 }
8941 }
8942 else
8943 {
8944 // This is a local symbol. Determine if the final target is THUMB.
8945 // We saved this information when all the local symbols were read.
8946 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8947 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8948 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8949 }
8950 }
8951 else
8952 {
8953 // This is a fake relocation synthesized for a stub. It does not have
8954 // a real symbol. We just look at the LSB of the symbol value to
8955 // determine if the target is THUMB or not.
8956 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8957 }
8958
8959 // Strip LSB if this points to a THUMB target.
8960 if (thumb_bit != 0
8961 && reloc_property->uses_thumb_bit()
8962 && ((psymval->value(object, 0) & 1) != 0))
8963 {
8964 Arm_address stripped_value =
8965 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8966 symval.set_output_value(stripped_value);
8967 psymval = &symval;
8968 }
8969
8970 // To look up relocation stubs, we need to pass the symbol table index of
8971 // a local symbol.
8972 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8973
8974 // Get the addressing origin of the output segment defining the
8975 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8976 Arm_address sym_origin = 0;
8977 if (reloc_property->uses_symbol_base())
8978 {
8979 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8980 // R_ARM_BASE_ABS with the NULL symbol will give the
8981 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8982 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8983 sym_origin = target->got_plt_section()->address();
8984 else if (gsym == NULL)
8985 sym_origin = 0;
8986 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8987 sym_origin = gsym->output_segment()->vaddr();
8988 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8989 sym_origin = gsym->output_data()->address();
8990
8991 // TODO: Assumes the segment base to be zero for the global symbols
8992 // till the proper support for the segment-base-relative addressing
8993 // will be implemented. This is consistent with GNU ld.
8994 }
8995
8996 // For relative addressing relocation, find out the relative address base.
8997 Arm_address relative_address_base = 0;
8998 switch(reloc_property->relative_address_base())
8999 {
9000 case Arm_reloc_property::RAB_NONE:
9001 // Relocations with relative address bases RAB_TLS and RAB_tp are
9002 // handled by relocate_tls. So we do not need to do anything here.
9003 case Arm_reloc_property::RAB_TLS:
9004 case Arm_reloc_property::RAB_tp:
9005 break;
9006 case Arm_reloc_property::RAB_B_S:
9007 relative_address_base = sym_origin;
9008 break;
9009 case Arm_reloc_property::RAB_GOT_ORG:
9010 relative_address_base = target->got_plt_section()->address();
9011 break;
9012 case Arm_reloc_property::RAB_P:
9013 relative_address_base = address;
9014 break;
9015 case Arm_reloc_property::RAB_Pa:
9016 relative_address_base = address & 0xfffffffcU;
9017 break;
9018 default:
9019 gold_unreachable();
9020 }
9021
9022 typename Arm_relocate_functions::Status reloc_status =
9023 Arm_relocate_functions::STATUS_OKAY;
9024 bool check_overflow = reloc_property->checks_overflow();
9025 switch (r_type)
9026 {
9027 case elfcpp::R_ARM_NONE:
9028 break;
9029
9030 case elfcpp::R_ARM_ABS8:
9031 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9032 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9033 break;
9034
9035 case elfcpp::R_ARM_ABS12:
9036 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9037 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9038 break;
9039
9040 case elfcpp::R_ARM_ABS16:
9041 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9042 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9043 break;
9044
9045 case elfcpp::R_ARM_ABS32:
9046 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9047 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9048 thumb_bit);
9049 break;
9050
9051 case elfcpp::R_ARM_ABS32_NOI:
9052 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9053 // No thumb bit for this relocation: (S + A)
9054 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9055 0);
9056 break;
9057
9058 case elfcpp::R_ARM_MOVW_ABS_NC:
9059 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9060 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9061 0, thumb_bit,
9062 check_overflow);
9063 break;
9064
9065 case elfcpp::R_ARM_MOVT_ABS:
9066 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9067 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9068 break;
9069
9070 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9071 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9072 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9073 0, thumb_bit, false);
9074 break;
9075
9076 case elfcpp::R_ARM_THM_MOVT_ABS:
9077 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9078 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9079 psymval, 0);
9080 break;
9081
9082 case elfcpp::R_ARM_MOVW_PREL_NC:
9083 case elfcpp::R_ARM_MOVW_BREL_NC:
9084 case elfcpp::R_ARM_MOVW_BREL:
9085 reloc_status =
9086 Arm_relocate_functions::movw(view, object, psymval,
9087 relative_address_base, thumb_bit,
9088 check_overflow);
9089 break;
9090
9091 case elfcpp::R_ARM_MOVT_PREL:
9092 case elfcpp::R_ARM_MOVT_BREL:
9093 reloc_status =
9094 Arm_relocate_functions::movt(view, object, psymval,
9095 relative_address_base);
9096 break;
9097
9098 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9099 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9100 case elfcpp::R_ARM_THM_MOVW_BREL:
9101 reloc_status =
9102 Arm_relocate_functions::thm_movw(view, object, psymval,
9103 relative_address_base,
9104 thumb_bit, check_overflow);
9105 break;
9106
9107 case elfcpp::R_ARM_THM_MOVT_PREL:
9108 case elfcpp::R_ARM_THM_MOVT_BREL:
9109 reloc_status =
9110 Arm_relocate_functions::thm_movt(view, object, psymval,
9111 relative_address_base);
9112 break;
9113
9114 case elfcpp::R_ARM_REL32:
9115 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9116 address, thumb_bit);
9117 break;
9118
9119 case elfcpp::R_ARM_THM_ABS5:
9120 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9121 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9122 break;
9123
9124 // Thumb long branches.
9125 case elfcpp::R_ARM_THM_CALL:
9126 case elfcpp::R_ARM_THM_XPC22:
9127 case elfcpp::R_ARM_THM_JUMP24:
9128 reloc_status =
9129 Arm_relocate_functions::thumb_branch_common(
9130 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9131 thumb_bit, is_weakly_undefined_without_plt);
9132 break;
9133
9134 case elfcpp::R_ARM_GOTOFF32:
9135 {
9136 Arm_address got_origin;
9137 got_origin = target->got_plt_section()->address();
9138 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9139 got_origin, thumb_bit);
9140 }
9141 break;
9142
9143 case elfcpp::R_ARM_BASE_PREL:
9144 gold_assert(gsym != NULL);
9145 reloc_status =
9146 Arm_relocate_functions::base_prel(view, sym_origin, address);
9147 break;
9148
9149 case elfcpp::R_ARM_BASE_ABS:
9150 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9151 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9152 break;
9153
9154 case elfcpp::R_ARM_GOT_BREL:
9155 gold_assert(have_got_offset);
9156 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9157 break;
9158
9159 case elfcpp::R_ARM_GOT_PREL:
9160 gold_assert(have_got_offset);
9161 // Get the address origin for GOT PLT, which is allocated right
9162 // after the GOT section, to calculate an absolute address of
9163 // the symbol GOT entry (got_origin + got_offset).
9164 Arm_address got_origin;
9165 got_origin = target->got_plt_section()->address();
9166 reloc_status = Arm_relocate_functions::got_prel(view,
9167 got_origin + got_offset,
9168 address);
9169 break;
9170
9171 case elfcpp::R_ARM_PLT32:
9172 case elfcpp::R_ARM_CALL:
9173 case elfcpp::R_ARM_JUMP24:
9174 case elfcpp::R_ARM_XPC25:
9175 gold_assert(gsym == NULL
9176 || gsym->has_plt_offset()
9177 || gsym->final_value_is_known()
9178 || (gsym->is_defined()
9179 && !gsym->is_from_dynobj()
9180 && !gsym->is_preemptible()));
9181 reloc_status =
9182 Arm_relocate_functions::arm_branch_common(
9183 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9184 thumb_bit, is_weakly_undefined_without_plt);
9185 break;
9186
9187 case elfcpp::R_ARM_THM_JUMP19:
9188 reloc_status =
9189 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9190 thumb_bit);
9191 break;
9192
9193 case elfcpp::R_ARM_THM_JUMP6:
9194 reloc_status =
9195 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9196 break;
9197
9198 case elfcpp::R_ARM_THM_JUMP8:
9199 reloc_status =
9200 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9201 break;
9202
9203 case elfcpp::R_ARM_THM_JUMP11:
9204 reloc_status =
9205 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9206 break;
9207
9208 case elfcpp::R_ARM_PREL31:
9209 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9210 address, thumb_bit);
9211 break;
9212
9213 case elfcpp::R_ARM_V4BX:
9214 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9215 {
9216 const bool is_v4bx_interworking =
9217 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9218 reloc_status =
9219 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9220 is_v4bx_interworking);
9221 }
9222 break;
9223
9224 case elfcpp::R_ARM_THM_PC8:
9225 reloc_status =
9226 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9227 break;
9228
9229 case elfcpp::R_ARM_THM_PC12:
9230 reloc_status =
9231 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9232 break;
9233
9234 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9235 reloc_status =
9236 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9237 thumb_bit);
9238 break;
9239
9240 case elfcpp::R_ARM_ALU_PC_G0_NC:
9241 case elfcpp::R_ARM_ALU_PC_G0:
9242 case elfcpp::R_ARM_ALU_PC_G1_NC:
9243 case elfcpp::R_ARM_ALU_PC_G1:
9244 case elfcpp::R_ARM_ALU_PC_G2:
9245 case elfcpp::R_ARM_ALU_SB_G0_NC:
9246 case elfcpp::R_ARM_ALU_SB_G0:
9247 case elfcpp::R_ARM_ALU_SB_G1_NC:
9248 case elfcpp::R_ARM_ALU_SB_G1:
9249 case elfcpp::R_ARM_ALU_SB_G2:
9250 reloc_status =
9251 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9252 reloc_property->group_index(),
9253 relative_address_base,
9254 thumb_bit, check_overflow);
9255 break;
9256
9257 case elfcpp::R_ARM_LDR_PC_G0:
9258 case elfcpp::R_ARM_LDR_PC_G1:
9259 case elfcpp::R_ARM_LDR_PC_G2:
9260 case elfcpp::R_ARM_LDR_SB_G0:
9261 case elfcpp::R_ARM_LDR_SB_G1:
9262 case elfcpp::R_ARM_LDR_SB_G2:
9263 reloc_status =
9264 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9265 reloc_property->group_index(),
9266 relative_address_base);
9267 break;
9268
9269 case elfcpp::R_ARM_LDRS_PC_G0:
9270 case elfcpp::R_ARM_LDRS_PC_G1:
9271 case elfcpp::R_ARM_LDRS_PC_G2:
9272 case elfcpp::R_ARM_LDRS_SB_G0:
9273 case elfcpp::R_ARM_LDRS_SB_G1:
9274 case elfcpp::R_ARM_LDRS_SB_G2:
9275 reloc_status =
9276 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9277 reloc_property->group_index(),
9278 relative_address_base);
9279 break;
9280
9281 case elfcpp::R_ARM_LDC_PC_G0:
9282 case elfcpp::R_ARM_LDC_PC_G1:
9283 case elfcpp::R_ARM_LDC_PC_G2:
9284 case elfcpp::R_ARM_LDC_SB_G0:
9285 case elfcpp::R_ARM_LDC_SB_G1:
9286 case elfcpp::R_ARM_LDC_SB_G2:
9287 reloc_status =
9288 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9289 reloc_property->group_index(),
9290 relative_address_base);
9291 break;
9292
9293 // These are initial tls relocs, which are expected when
9294 // linking.
9295 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9296 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9297 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9298 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9299 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9300 reloc_status =
9301 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9302 view, address, view_size);
9303 break;
9304
9305 // The known and unknown unsupported and/or deprecated relocations.
9306 case elfcpp::R_ARM_PC24:
9307 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9308 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9309 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9310 default:
9311 // Just silently leave the method. We should get an appropriate error
9312 // message in the scan methods.
9313 break;
9314 }
9315
9316 // Report any errors.
9317 switch (reloc_status)
9318 {
9319 case Arm_relocate_functions::STATUS_OKAY:
9320 break;
9321 case Arm_relocate_functions::STATUS_OVERFLOW:
9322 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9323 _("relocation overflow in %s"),
9324 reloc_property->name().c_str());
9325 break;
9326 case Arm_relocate_functions::STATUS_BAD_RELOC:
9327 gold_error_at_location(
9328 relinfo,
9329 relnum,
9330 rel.get_r_offset(),
9331 _("unexpected opcode while processing relocation %s"),
9332 reloc_property->name().c_str());
9333 break;
9334 default:
9335 gold_unreachable();
9336 }
9337
9338 return true;
9339 }
9340
9341 // Perform a TLS relocation.
9342
9343 template<bool big_endian>
9344 inline typename Arm_relocate_functions<big_endian>::Status
9345 Target_arm<big_endian>::Relocate::relocate_tls(
9346 const Relocate_info<32, big_endian>* relinfo,
9347 Target_arm<big_endian>* target,
9348 size_t relnum,
9349 const elfcpp::Rel<32, big_endian>& rel,
9350 unsigned int r_type,
9351 const Sized_symbol<32>* gsym,
9352 const Symbol_value<32>* psymval,
9353 unsigned char* view,
9354 elfcpp::Elf_types<32>::Elf_Addr address,
9355 section_size_type /*view_size*/ )
9356 {
9357 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9358 typedef Relocate_functions<32, big_endian> RelocFuncs;
9359 Output_segment* tls_segment = relinfo->layout->tls_segment();
9360
9361 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9362
9363 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9364
9365 const bool is_final = (gsym == NULL
9366 ? !parameters->options().shared()
9367 : gsym->final_value_is_known());
9368 const tls::Tls_optimization optimized_type
9369 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9370 switch (r_type)
9371 {
9372 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9373 {
9374 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9375 unsigned int got_offset;
9376 if (gsym != NULL)
9377 {
9378 gold_assert(gsym->has_got_offset(got_type));
9379 got_offset = gsym->got_offset(got_type) - target->got_size();
9380 }
9381 else
9382 {
9383 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9384 gold_assert(object->local_has_got_offset(r_sym, got_type));
9385 got_offset = (object->local_got_offset(r_sym, got_type)
9386 - target->got_size());
9387 }
9388 if (optimized_type == tls::TLSOPT_NONE)
9389 {
9390 Arm_address got_entry =
9391 target->got_plt_section()->address() + got_offset;
9392
9393 // Relocate the field with the PC relative offset of the pair of
9394 // GOT entries.
9395 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9396 return ArmRelocFuncs::STATUS_OKAY;
9397 }
9398 }
9399 break;
9400
9401 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9402 if (optimized_type == tls::TLSOPT_NONE)
9403 {
9404 // Relocate the field with the offset of the GOT entry for
9405 // the module index.
9406 unsigned int got_offset;
9407 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9408 - target->got_size());
9409 Arm_address got_entry =
9410 target->got_plt_section()->address() + got_offset;
9411
9412 // Relocate the field with the PC relative offset of the pair of
9413 // GOT entries.
9414 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9415 return ArmRelocFuncs::STATUS_OKAY;
9416 }
9417 break;
9418
9419 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9420 RelocFuncs::rel32_unaligned(view, value);
9421 return ArmRelocFuncs::STATUS_OKAY;
9422
9423 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9424 if (optimized_type == tls::TLSOPT_NONE)
9425 {
9426 // Relocate the field with the offset of the GOT entry for
9427 // the tp-relative offset of the symbol.
9428 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9429 unsigned int got_offset;
9430 if (gsym != NULL)
9431 {
9432 gold_assert(gsym->has_got_offset(got_type));
9433 got_offset = gsym->got_offset(got_type);
9434 }
9435 else
9436 {
9437 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9438 gold_assert(object->local_has_got_offset(r_sym, got_type));
9439 got_offset = object->local_got_offset(r_sym, got_type);
9440 }
9441
9442 // All GOT offsets are relative to the end of the GOT.
9443 got_offset -= target->got_size();
9444
9445 Arm_address got_entry =
9446 target->got_plt_section()->address() + got_offset;
9447
9448 // Relocate the field with the PC relative offset of the GOT entry.
9449 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9450 return ArmRelocFuncs::STATUS_OKAY;
9451 }
9452 break;
9453
9454 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9455 // If we're creating a shared library, a dynamic relocation will
9456 // have been created for this location, so do not apply it now.
9457 if (!parameters->options().shared())
9458 {
9459 gold_assert(tls_segment != NULL);
9460
9461 // $tp points to the TCB, which is followed by the TLS, so we
9462 // need to add TCB size to the offset.
9463 Arm_address aligned_tcb_size =
9464 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9465 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9466
9467 }
9468 return ArmRelocFuncs::STATUS_OKAY;
9469
9470 default:
9471 gold_unreachable();
9472 }
9473
9474 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9475 _("unsupported reloc %u"),
9476 r_type);
9477 return ArmRelocFuncs::STATUS_BAD_RELOC;
9478 }
9479
9480 // Relocate section data.
9481
9482 template<bool big_endian>
9483 void
9484 Target_arm<big_endian>::relocate_section(
9485 const Relocate_info<32, big_endian>* relinfo,
9486 unsigned int sh_type,
9487 const unsigned char* prelocs,
9488 size_t reloc_count,
9489 Output_section* output_section,
9490 bool needs_special_offset_handling,
9491 unsigned char* view,
9492 Arm_address address,
9493 section_size_type view_size,
9494 const Reloc_symbol_changes* reloc_symbol_changes)
9495 {
9496 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9497 gold_assert(sh_type == elfcpp::SHT_REL);
9498
9499 // See if we are relocating a relaxed input section. If so, the view
9500 // covers the whole output section and we need to adjust accordingly.
9501 if (needs_special_offset_handling)
9502 {
9503 const Output_relaxed_input_section* poris =
9504 output_section->find_relaxed_input_section(relinfo->object,
9505 relinfo->data_shndx);
9506 if (poris != NULL)
9507 {
9508 Arm_address section_address = poris->address();
9509 section_size_type section_size = poris->data_size();
9510
9511 gold_assert((section_address >= address)
9512 && ((section_address + section_size)
9513 <= (address + view_size)));
9514
9515 off_t offset = section_address - address;
9516 view += offset;
9517 address += offset;
9518 view_size = section_size;
9519 }
9520 }
9521
9522 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9523 Arm_relocate, gold::Default_comdat_behavior>(
9524 relinfo,
9525 this,
9526 prelocs,
9527 reloc_count,
9528 output_section,
9529 needs_special_offset_handling,
9530 view,
9531 address,
9532 view_size,
9533 reloc_symbol_changes);
9534 }
9535
9536 // Return the size of a relocation while scanning during a relocatable
9537 // link.
9538
9539 template<bool big_endian>
9540 unsigned int
9541 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9542 unsigned int r_type,
9543 Relobj* object)
9544 {
9545 r_type = get_real_reloc_type(r_type);
9546 const Arm_reloc_property* arp =
9547 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9548 if (arp != NULL)
9549 return arp->size();
9550 else
9551 {
9552 std::string reloc_name =
9553 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9554 gold_error(_("%s: unexpected %s in object file"),
9555 object->name().c_str(), reloc_name.c_str());
9556 return 0;
9557 }
9558 }
9559
9560 // Scan the relocs during a relocatable link.
9561
9562 template<bool big_endian>
9563 void
9564 Target_arm<big_endian>::scan_relocatable_relocs(
9565 Symbol_table* symtab,
9566 Layout* layout,
9567 Sized_relobj_file<32, big_endian>* object,
9568 unsigned int data_shndx,
9569 unsigned int sh_type,
9570 const unsigned char* prelocs,
9571 size_t reloc_count,
9572 Output_section* output_section,
9573 bool needs_special_offset_handling,
9574 size_t local_symbol_count,
9575 const unsigned char* plocal_symbols,
9576 Relocatable_relocs* rr)
9577 {
9578 gold_assert(sh_type == elfcpp::SHT_REL);
9579
9580 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9581 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9582
9583 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9584 Scan_relocatable_relocs>(
9585 symtab,
9586 layout,
9587 object,
9588 data_shndx,
9589 prelocs,
9590 reloc_count,
9591 output_section,
9592 needs_special_offset_handling,
9593 local_symbol_count,
9594 plocal_symbols,
9595 rr);
9596 }
9597
9598 // Emit relocations for a section.
9599
9600 template<bool big_endian>
9601 void
9602 Target_arm<big_endian>::relocate_relocs(
9603 const Relocate_info<32, big_endian>* relinfo,
9604 unsigned int sh_type,
9605 const unsigned char* prelocs,
9606 size_t reloc_count,
9607 Output_section* output_section,
9608 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9609 const Relocatable_relocs* rr,
9610 unsigned char* view,
9611 Arm_address view_address,
9612 section_size_type view_size,
9613 unsigned char* reloc_view,
9614 section_size_type reloc_view_size)
9615 {
9616 gold_assert(sh_type == elfcpp::SHT_REL);
9617
9618 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
9619 relinfo,
9620 prelocs,
9621 reloc_count,
9622 output_section,
9623 offset_in_output_section,
9624 rr,
9625 view,
9626 view_address,
9627 view_size,
9628 reloc_view,
9629 reloc_view_size);
9630 }
9631
9632 // Perform target-specific processing in a relocatable link. This is
9633 // only used if we use the relocation strategy RELOC_SPECIAL.
9634
9635 template<bool big_endian>
9636 void
9637 Target_arm<big_endian>::relocate_special_relocatable(
9638 const Relocate_info<32, big_endian>* relinfo,
9639 unsigned int sh_type,
9640 const unsigned char* preloc_in,
9641 size_t relnum,
9642 Output_section* output_section,
9643 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9644 unsigned char* view,
9645 elfcpp::Elf_types<32>::Elf_Addr view_address,
9646 section_size_type,
9647 unsigned char* preloc_out)
9648 {
9649 // We can only handle REL type relocation sections.
9650 gold_assert(sh_type == elfcpp::SHT_REL);
9651
9652 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9653 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9654 Reltype_write;
9655 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9656
9657 const Arm_relobj<big_endian>* object =
9658 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9659 const unsigned int local_count = object->local_symbol_count();
9660
9661 Reltype reloc(preloc_in);
9662 Reltype_write reloc_write(preloc_out);
9663
9664 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9665 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9666 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9667
9668 const Arm_reloc_property* arp =
9669 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9670 gold_assert(arp != NULL);
9671
9672 // Get the new symbol index.
9673 // We only use RELOC_SPECIAL strategy in local relocations.
9674 gold_assert(r_sym < local_count);
9675
9676 // We are adjusting a section symbol. We need to find
9677 // the symbol table index of the section symbol for
9678 // the output section corresponding to input section
9679 // in which this symbol is defined.
9680 bool is_ordinary;
9681 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9682 gold_assert(is_ordinary);
9683 Output_section* os = object->output_section(shndx);
9684 gold_assert(os != NULL);
9685 gold_assert(os->needs_symtab_index());
9686 unsigned int new_symndx = os->symtab_index();
9687
9688 // Get the new offset--the location in the output section where
9689 // this relocation should be applied.
9690
9691 Arm_address offset = reloc.get_r_offset();
9692 Arm_address new_offset;
9693 if (offset_in_output_section != invalid_address)
9694 new_offset = offset + offset_in_output_section;
9695 else
9696 {
9697 section_offset_type sot_offset =
9698 convert_types<section_offset_type, Arm_address>(offset);
9699 section_offset_type new_sot_offset =
9700 output_section->output_offset(object, relinfo->data_shndx,
9701 sot_offset);
9702 gold_assert(new_sot_offset != -1);
9703 new_offset = new_sot_offset;
9704 }
9705
9706 // In an object file, r_offset is an offset within the section.
9707 // In an executable or dynamic object, generated by
9708 // --emit-relocs, r_offset is an absolute address.
9709 if (!parameters->options().relocatable())
9710 {
9711 new_offset += view_address;
9712 if (offset_in_output_section != invalid_address)
9713 new_offset -= offset_in_output_section;
9714 }
9715
9716 reloc_write.put_r_offset(new_offset);
9717 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9718
9719 // Handle the reloc addend.
9720 // The relocation uses a section symbol in the input file.
9721 // We are adjusting it to use a section symbol in the output
9722 // file. The input section symbol refers to some address in
9723 // the input section. We need the relocation in the output
9724 // file to refer to that same address. This adjustment to
9725 // the addend is the same calculation we use for a simple
9726 // absolute relocation for the input section symbol.
9727
9728 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9729
9730 // Handle THUMB bit.
9731 Symbol_value<32> symval;
9732 Arm_address thumb_bit =
9733 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9734 if (thumb_bit != 0
9735 && arp->uses_thumb_bit()
9736 && ((psymval->value(object, 0) & 1) != 0))
9737 {
9738 Arm_address stripped_value =
9739 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9740 symval.set_output_value(stripped_value);
9741 psymval = &symval;
9742 }
9743
9744 unsigned char* paddend = view + offset;
9745 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9746 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9747 switch (r_type)
9748 {
9749 case elfcpp::R_ARM_ABS8:
9750 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9751 psymval);
9752 break;
9753
9754 case elfcpp::R_ARM_ABS12:
9755 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9756 psymval);
9757 break;
9758
9759 case elfcpp::R_ARM_ABS16:
9760 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9761 psymval);
9762 break;
9763
9764 case elfcpp::R_ARM_THM_ABS5:
9765 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9766 object,
9767 psymval);
9768 break;
9769
9770 case elfcpp::R_ARM_MOVW_ABS_NC:
9771 case elfcpp::R_ARM_MOVW_PREL_NC:
9772 case elfcpp::R_ARM_MOVW_BREL_NC:
9773 case elfcpp::R_ARM_MOVW_BREL:
9774 reloc_status = Arm_relocate_functions<big_endian>::movw(
9775 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9776 break;
9777
9778 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9779 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9780 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9781 case elfcpp::R_ARM_THM_MOVW_BREL:
9782 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9783 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9784 break;
9785
9786 case elfcpp::R_ARM_THM_CALL:
9787 case elfcpp::R_ARM_THM_XPC22:
9788 case elfcpp::R_ARM_THM_JUMP24:
9789 reloc_status =
9790 Arm_relocate_functions<big_endian>::thumb_branch_common(
9791 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9792 false);
9793 break;
9794
9795 case elfcpp::R_ARM_PLT32:
9796 case elfcpp::R_ARM_CALL:
9797 case elfcpp::R_ARM_JUMP24:
9798 case elfcpp::R_ARM_XPC25:
9799 reloc_status =
9800 Arm_relocate_functions<big_endian>::arm_branch_common(
9801 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9802 false);
9803 break;
9804
9805 case elfcpp::R_ARM_THM_JUMP19:
9806 reloc_status =
9807 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9808 psymval, 0, thumb_bit);
9809 break;
9810
9811 case elfcpp::R_ARM_THM_JUMP6:
9812 reloc_status =
9813 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9814 0);
9815 break;
9816
9817 case elfcpp::R_ARM_THM_JUMP8:
9818 reloc_status =
9819 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9820 0);
9821 break;
9822
9823 case elfcpp::R_ARM_THM_JUMP11:
9824 reloc_status =
9825 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9826 0);
9827 break;
9828
9829 case elfcpp::R_ARM_PREL31:
9830 reloc_status =
9831 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9832 thumb_bit);
9833 break;
9834
9835 case elfcpp::R_ARM_THM_PC8:
9836 reloc_status =
9837 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9838 0);
9839 break;
9840
9841 case elfcpp::R_ARM_THM_PC12:
9842 reloc_status =
9843 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9844 0);
9845 break;
9846
9847 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9848 reloc_status =
9849 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9850 0, thumb_bit);
9851 break;
9852
9853 // These relocation truncate relocation results so we cannot handle them
9854 // in a relocatable link.
9855 case elfcpp::R_ARM_MOVT_ABS:
9856 case elfcpp::R_ARM_THM_MOVT_ABS:
9857 case elfcpp::R_ARM_MOVT_PREL:
9858 case elfcpp::R_ARM_MOVT_BREL:
9859 case elfcpp::R_ARM_THM_MOVT_PREL:
9860 case elfcpp::R_ARM_THM_MOVT_BREL:
9861 case elfcpp::R_ARM_ALU_PC_G0_NC:
9862 case elfcpp::R_ARM_ALU_PC_G0:
9863 case elfcpp::R_ARM_ALU_PC_G1_NC:
9864 case elfcpp::R_ARM_ALU_PC_G1:
9865 case elfcpp::R_ARM_ALU_PC_G2:
9866 case elfcpp::R_ARM_ALU_SB_G0_NC:
9867 case elfcpp::R_ARM_ALU_SB_G0:
9868 case elfcpp::R_ARM_ALU_SB_G1_NC:
9869 case elfcpp::R_ARM_ALU_SB_G1:
9870 case elfcpp::R_ARM_ALU_SB_G2:
9871 case elfcpp::R_ARM_LDR_PC_G0:
9872 case elfcpp::R_ARM_LDR_PC_G1:
9873 case elfcpp::R_ARM_LDR_PC_G2:
9874 case elfcpp::R_ARM_LDR_SB_G0:
9875 case elfcpp::R_ARM_LDR_SB_G1:
9876 case elfcpp::R_ARM_LDR_SB_G2:
9877 case elfcpp::R_ARM_LDRS_PC_G0:
9878 case elfcpp::R_ARM_LDRS_PC_G1:
9879 case elfcpp::R_ARM_LDRS_PC_G2:
9880 case elfcpp::R_ARM_LDRS_SB_G0:
9881 case elfcpp::R_ARM_LDRS_SB_G1:
9882 case elfcpp::R_ARM_LDRS_SB_G2:
9883 case elfcpp::R_ARM_LDC_PC_G0:
9884 case elfcpp::R_ARM_LDC_PC_G1:
9885 case elfcpp::R_ARM_LDC_PC_G2:
9886 case elfcpp::R_ARM_LDC_SB_G0:
9887 case elfcpp::R_ARM_LDC_SB_G1:
9888 case elfcpp::R_ARM_LDC_SB_G2:
9889 gold_error(_("cannot handle %s in a relocatable link"),
9890 arp->name().c_str());
9891 break;
9892
9893 default:
9894 gold_unreachable();
9895 }
9896
9897 // Report any errors.
9898 switch (reloc_status)
9899 {
9900 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9901 break;
9902 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9903 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9904 _("relocation overflow in %s"),
9905 arp->name().c_str());
9906 break;
9907 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9908 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9909 _("unexpected opcode while processing relocation %s"),
9910 arp->name().c_str());
9911 break;
9912 default:
9913 gold_unreachable();
9914 }
9915 }
9916
9917 // Return the value to use for a dynamic symbol which requires special
9918 // treatment. This is how we support equality comparisons of function
9919 // pointers across shared library boundaries, as described in the
9920 // processor specific ABI supplement.
9921
9922 template<bool big_endian>
9923 uint64_t
9924 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9925 {
9926 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9927 return this->plt_section()->address() + gsym->plt_offset();
9928 }
9929
9930 // Map platform-specific relocs to real relocs
9931 //
9932 template<bool big_endian>
9933 unsigned int
9934 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9935 {
9936 switch (r_type)
9937 {
9938 case elfcpp::R_ARM_TARGET1:
9939 // This is either R_ARM_ABS32 or R_ARM_REL32;
9940 return elfcpp::R_ARM_ABS32;
9941
9942 case elfcpp::R_ARM_TARGET2:
9943 // This can be any reloc type but usually is R_ARM_GOT_PREL
9944 return elfcpp::R_ARM_GOT_PREL;
9945
9946 default:
9947 return r_type;
9948 }
9949 }
9950
9951 // Whether if two EABI versions V1 and V2 are compatible.
9952
9953 template<bool big_endian>
9954 bool
9955 Target_arm<big_endian>::are_eabi_versions_compatible(
9956 elfcpp::Elf_Word v1,
9957 elfcpp::Elf_Word v2)
9958 {
9959 // v4 and v5 are the same spec before and after it was released,
9960 // so allow mixing them.
9961 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9962 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9963 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9964 return true;
9965
9966 return v1 == v2;
9967 }
9968
9969 // Combine FLAGS from an input object called NAME and the processor-specific
9970 // flags in the ELF header of the output. Much of this is adapted from the
9971 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9972 // in bfd/elf32-arm.c.
9973
9974 template<bool big_endian>
9975 void
9976 Target_arm<big_endian>::merge_processor_specific_flags(
9977 const std::string& name,
9978 elfcpp::Elf_Word flags)
9979 {
9980 if (this->are_processor_specific_flags_set())
9981 {
9982 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9983
9984 // Nothing to merge if flags equal to those in output.
9985 if (flags == out_flags)
9986 return;
9987
9988 // Complain about various flag mismatches.
9989 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9990 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9991 if (!this->are_eabi_versions_compatible(version1, version2)
9992 && parameters->options().warn_mismatch())
9993 gold_error(_("Source object %s has EABI version %d but output has "
9994 "EABI version %d."),
9995 name.c_str(),
9996 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9997 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9998 }
9999 else
10000 {
10001 // If the input is the default architecture and had the default
10002 // flags then do not bother setting the flags for the output
10003 // architecture, instead allow future merges to do this. If no
10004 // future merges ever set these flags then they will retain their
10005 // uninitialised values, which surprise surprise, correspond
10006 // to the default values.
10007 if (flags == 0)
10008 return;
10009
10010 // This is the first time, just copy the flags.
10011 // We only copy the EABI version for now.
10012 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10013 }
10014 }
10015
10016 // Adjust ELF file header.
10017 template<bool big_endian>
10018 void
10019 Target_arm<big_endian>::do_adjust_elf_header(
10020 unsigned char* view,
10021 int len)
10022 {
10023 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10024
10025 elfcpp::Ehdr<32, big_endian> ehdr(view);
10026 elfcpp::Elf_Word flags = this->processor_specific_flags();
10027 unsigned char e_ident[elfcpp::EI_NIDENT];
10028 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10029
10030 if (elfcpp::arm_eabi_version(flags)
10031 == elfcpp::EF_ARM_EABI_UNKNOWN)
10032 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10033 else
10034 e_ident[elfcpp::EI_OSABI] = 0;
10035 e_ident[elfcpp::EI_ABIVERSION] = 0;
10036
10037 // FIXME: Do EF_ARM_BE8 adjustment.
10038
10039 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10040 // as appropriate.
10041 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10042 {
10043 elfcpp::Elf_Half type = ehdr.get_e_type();
10044 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10045 {
10046 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10047 if (attr->int_value())
10048 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10049 else
10050 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10051 this->set_processor_specific_flags(flags);
10052 }
10053 }
10054 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10055 oehdr.put_e_ident(e_ident);
10056 }
10057
10058 // do_make_elf_object to override the same function in the base class.
10059 // We need to use a target-specific sub-class of
10060 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10061 // Hence we need to have our own ELF object creation.
10062
10063 template<bool big_endian>
10064 Object*
10065 Target_arm<big_endian>::do_make_elf_object(
10066 const std::string& name,
10067 Input_file* input_file,
10068 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10069 {
10070 int et = ehdr.get_e_type();
10071 // ET_EXEC files are valid input for --just-symbols/-R,
10072 // and we treat them as relocatable objects.
10073 if (et == elfcpp::ET_REL
10074 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10075 {
10076 Arm_relobj<big_endian>* obj =
10077 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10078 obj->setup();
10079 return obj;
10080 }
10081 else if (et == elfcpp::ET_DYN)
10082 {
10083 Sized_dynobj<32, big_endian>* obj =
10084 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10085 obj->setup();
10086 return obj;
10087 }
10088 else
10089 {
10090 gold_error(_("%s: unsupported ELF file type %d"),
10091 name.c_str(), et);
10092 return NULL;
10093 }
10094 }
10095
10096 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10097 // Returns -1 if no architecture could be read.
10098 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10099
10100 template<bool big_endian>
10101 int
10102 Target_arm<big_endian>::get_secondary_compatible_arch(
10103 const Attributes_section_data* pasd)
10104 {
10105 const Object_attribute* known_attributes =
10106 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10107
10108 // Note: the tag and its argument below are uleb128 values, though
10109 // currently-defined values fit in one byte for each.
10110 const std::string& sv =
10111 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10112 if (sv.size() == 2
10113 && sv.data()[0] == elfcpp::Tag_CPU_arch
10114 && (sv.data()[1] & 128) != 128)
10115 return sv.data()[1];
10116
10117 // This tag is "safely ignorable", so don't complain if it looks funny.
10118 return -1;
10119 }
10120
10121 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10122 // The tag is removed if ARCH is -1.
10123 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10124
10125 template<bool big_endian>
10126 void
10127 Target_arm<big_endian>::set_secondary_compatible_arch(
10128 Attributes_section_data* pasd,
10129 int arch)
10130 {
10131 Object_attribute* known_attributes =
10132 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10133
10134 if (arch == -1)
10135 {
10136 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10137 return;
10138 }
10139
10140 // Note: the tag and its argument below are uleb128 values, though
10141 // currently-defined values fit in one byte for each.
10142 char sv[3];
10143 sv[0] = elfcpp::Tag_CPU_arch;
10144 gold_assert(arch != 0);
10145 sv[1] = arch;
10146 sv[2] = '\0';
10147
10148 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10149 }
10150
10151 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10152 // into account.
10153 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10154
10155 template<bool big_endian>
10156 int
10157 Target_arm<big_endian>::tag_cpu_arch_combine(
10158 const char* name,
10159 int oldtag,
10160 int* secondary_compat_out,
10161 int newtag,
10162 int secondary_compat)
10163 {
10164 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10165 static const int v6t2[] =
10166 {
10167 T(V6T2), // PRE_V4.
10168 T(V6T2), // V4.
10169 T(V6T2), // V4T.
10170 T(V6T2), // V5T.
10171 T(V6T2), // V5TE.
10172 T(V6T2), // V5TEJ.
10173 T(V6T2), // V6.
10174 T(V7), // V6KZ.
10175 T(V6T2) // V6T2.
10176 };
10177 static const int v6k[] =
10178 {
10179 T(V6K), // PRE_V4.
10180 T(V6K), // V4.
10181 T(V6K), // V4T.
10182 T(V6K), // V5T.
10183 T(V6K), // V5TE.
10184 T(V6K), // V5TEJ.
10185 T(V6K), // V6.
10186 T(V6KZ), // V6KZ.
10187 T(V7), // V6T2.
10188 T(V6K) // V6K.
10189 };
10190 static const int v7[] =
10191 {
10192 T(V7), // PRE_V4.
10193 T(V7), // V4.
10194 T(V7), // V4T.
10195 T(V7), // V5T.
10196 T(V7), // V5TE.
10197 T(V7), // V5TEJ.
10198 T(V7), // V6.
10199 T(V7), // V6KZ.
10200 T(V7), // V6T2.
10201 T(V7), // V6K.
10202 T(V7) // V7.
10203 };
10204 static const int v6_m[] =
10205 {
10206 -1, // PRE_V4.
10207 -1, // V4.
10208 T(V6K), // V4T.
10209 T(V6K), // V5T.
10210 T(V6K), // V5TE.
10211 T(V6K), // V5TEJ.
10212 T(V6K), // V6.
10213 T(V6KZ), // V6KZ.
10214 T(V7), // V6T2.
10215 T(V6K), // V6K.
10216 T(V7), // V7.
10217 T(V6_M) // V6_M.
10218 };
10219 static const int v6s_m[] =
10220 {
10221 -1, // PRE_V4.
10222 -1, // V4.
10223 T(V6K), // V4T.
10224 T(V6K), // V5T.
10225 T(V6K), // V5TE.
10226 T(V6K), // V5TEJ.
10227 T(V6K), // V6.
10228 T(V6KZ), // V6KZ.
10229 T(V7), // V6T2.
10230 T(V6K), // V6K.
10231 T(V7), // V7.
10232 T(V6S_M), // V6_M.
10233 T(V6S_M) // V6S_M.
10234 };
10235 static const int v7e_m[] =
10236 {
10237 -1, // PRE_V4.
10238 -1, // V4.
10239 T(V7E_M), // V4T.
10240 T(V7E_M), // V5T.
10241 T(V7E_M), // V5TE.
10242 T(V7E_M), // V5TEJ.
10243 T(V7E_M), // V6.
10244 T(V7E_M), // V6KZ.
10245 T(V7E_M), // V6T2.
10246 T(V7E_M), // V6K.
10247 T(V7E_M), // V7.
10248 T(V7E_M), // V6_M.
10249 T(V7E_M), // V6S_M.
10250 T(V7E_M) // V7E_M.
10251 };
10252 static const int v4t_plus_v6_m[] =
10253 {
10254 -1, // PRE_V4.
10255 -1, // V4.
10256 T(V4T), // V4T.
10257 T(V5T), // V5T.
10258 T(V5TE), // V5TE.
10259 T(V5TEJ), // V5TEJ.
10260 T(V6), // V6.
10261 T(V6KZ), // V6KZ.
10262 T(V6T2), // V6T2.
10263 T(V6K), // V6K.
10264 T(V7), // V7.
10265 T(V6_M), // V6_M.
10266 T(V6S_M), // V6S_M.
10267 T(V7E_M), // V7E_M.
10268 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10269 };
10270 static const int* comb[] =
10271 {
10272 v6t2,
10273 v6k,
10274 v7,
10275 v6_m,
10276 v6s_m,
10277 v7e_m,
10278 // Pseudo-architecture.
10279 v4t_plus_v6_m
10280 };
10281
10282 // Check we've not got a higher architecture than we know about.
10283
10284 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10285 {
10286 gold_error(_("%s: unknown CPU architecture"), name);
10287 return -1;
10288 }
10289
10290 // Override old tag if we have a Tag_also_compatible_with on the output.
10291
10292 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10293 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10294 oldtag = T(V4T_PLUS_V6_M);
10295
10296 // And override the new tag if we have a Tag_also_compatible_with on the
10297 // input.
10298
10299 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10300 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10301 newtag = T(V4T_PLUS_V6_M);
10302
10303 // Architectures before V6KZ add features monotonically.
10304 int tagh = std::max(oldtag, newtag);
10305 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10306 return tagh;
10307
10308 int tagl = std::min(oldtag, newtag);
10309 int result = comb[tagh - T(V6T2)][tagl];
10310
10311 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10312 // as the canonical version.
10313 if (result == T(V4T_PLUS_V6_M))
10314 {
10315 result = T(V4T);
10316 *secondary_compat_out = T(V6_M);
10317 }
10318 else
10319 *secondary_compat_out = -1;
10320
10321 if (result == -1)
10322 {
10323 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10324 name, oldtag, newtag);
10325 return -1;
10326 }
10327
10328 return result;
10329 #undef T
10330 }
10331
10332 // Helper to print AEABI enum tag value.
10333
10334 template<bool big_endian>
10335 std::string
10336 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10337 {
10338 static const char* aeabi_enum_names[] =
10339 { "", "variable-size", "32-bit", "" };
10340 const size_t aeabi_enum_names_size =
10341 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10342
10343 if (value < aeabi_enum_names_size)
10344 return std::string(aeabi_enum_names[value]);
10345 else
10346 {
10347 char buffer[100];
10348 sprintf(buffer, "<unknown value %u>", value);
10349 return std::string(buffer);
10350 }
10351 }
10352
10353 // Return the string value to store in TAG_CPU_name.
10354
10355 template<bool big_endian>
10356 std::string
10357 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10358 {
10359 static const char* name_table[] = {
10360 // These aren't real CPU names, but we can't guess
10361 // that from the architecture version alone.
10362 "Pre v4",
10363 "ARM v4",
10364 "ARM v4T",
10365 "ARM v5T",
10366 "ARM v5TE",
10367 "ARM v5TEJ",
10368 "ARM v6",
10369 "ARM v6KZ",
10370 "ARM v6T2",
10371 "ARM v6K",
10372 "ARM v7",
10373 "ARM v6-M",
10374 "ARM v6S-M",
10375 "ARM v7E-M"
10376 };
10377 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10378
10379 if (value < name_table_size)
10380 return std::string(name_table[value]);
10381 else
10382 {
10383 char buffer[100];
10384 sprintf(buffer, "<unknown CPU value %u>", value);
10385 return std::string(buffer);
10386 }
10387 }
10388
10389 // Merge object attributes from input file called NAME with those of the
10390 // output. The input object attributes are in the object pointed by PASD.
10391
10392 template<bool big_endian>
10393 void
10394 Target_arm<big_endian>::merge_object_attributes(
10395 const char* name,
10396 const Attributes_section_data* pasd)
10397 {
10398 // Return if there is no attributes section data.
10399 if (pasd == NULL)
10400 return;
10401
10402 // If output has no object attributes, just copy.
10403 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10404 if (this->attributes_section_data_ == NULL)
10405 {
10406 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10407 Object_attribute* out_attr =
10408 this->attributes_section_data_->known_attributes(vendor);
10409
10410 // We do not output objects with Tag_MPextension_use_legacy - we move
10411 // the attribute's value to Tag_MPextension_use. */
10412 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10413 {
10414 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10415 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10416 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10417 {
10418 gold_error(_("%s has both the current and legacy "
10419 "Tag_MPextension_use attributes"),
10420 name);
10421 }
10422
10423 out_attr[elfcpp::Tag_MPextension_use] =
10424 out_attr[elfcpp::Tag_MPextension_use_legacy];
10425 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10426 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10427 }
10428
10429 return;
10430 }
10431
10432 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10433 Object_attribute* out_attr =
10434 this->attributes_section_data_->known_attributes(vendor);
10435
10436 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10437 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10438 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10439 {
10440 // Ignore mismatches if the object doesn't use floating point. */
10441 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10442 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10443 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10444 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10445 && parameters->options().warn_mismatch())
10446 gold_error(_("%s uses VFP register arguments, output does not"),
10447 name);
10448 }
10449
10450 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10451 {
10452 // Merge this attribute with existing attributes.
10453 switch (i)
10454 {
10455 case elfcpp::Tag_CPU_raw_name:
10456 case elfcpp::Tag_CPU_name:
10457 // These are merged after Tag_CPU_arch.
10458 break;
10459
10460 case elfcpp::Tag_ABI_optimization_goals:
10461 case elfcpp::Tag_ABI_FP_optimization_goals:
10462 // Use the first value seen.
10463 break;
10464
10465 case elfcpp::Tag_CPU_arch:
10466 {
10467 unsigned int saved_out_attr = out_attr->int_value();
10468 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10469 int secondary_compat =
10470 this->get_secondary_compatible_arch(pasd);
10471 int secondary_compat_out =
10472 this->get_secondary_compatible_arch(
10473 this->attributes_section_data_);
10474 out_attr[i].set_int_value(
10475 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10476 &secondary_compat_out,
10477 in_attr[i].int_value(),
10478 secondary_compat));
10479 this->set_secondary_compatible_arch(this->attributes_section_data_,
10480 secondary_compat_out);
10481
10482 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10483 if (out_attr[i].int_value() == saved_out_attr)
10484 ; // Leave the names alone.
10485 else if (out_attr[i].int_value() == in_attr[i].int_value())
10486 {
10487 // The output architecture has been changed to match the
10488 // input architecture. Use the input names.
10489 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10490 in_attr[elfcpp::Tag_CPU_name].string_value());
10491 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10492 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10493 }
10494 else
10495 {
10496 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10497 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10498 }
10499
10500 // If we still don't have a value for Tag_CPU_name,
10501 // make one up now. Tag_CPU_raw_name remains blank.
10502 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10503 {
10504 const std::string cpu_name =
10505 this->tag_cpu_name_value(out_attr[i].int_value());
10506 // FIXME: If we see an unknown CPU, this will be set
10507 // to "<unknown CPU n>", where n is the attribute value.
10508 // This is different from BFD, which leaves the name alone.
10509 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10510 }
10511 }
10512 break;
10513
10514 case elfcpp::Tag_ARM_ISA_use:
10515 case elfcpp::Tag_THUMB_ISA_use:
10516 case elfcpp::Tag_WMMX_arch:
10517 case elfcpp::Tag_Advanced_SIMD_arch:
10518 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10519 case elfcpp::Tag_ABI_FP_rounding:
10520 case elfcpp::Tag_ABI_FP_exceptions:
10521 case elfcpp::Tag_ABI_FP_user_exceptions:
10522 case elfcpp::Tag_ABI_FP_number_model:
10523 case elfcpp::Tag_VFP_HP_extension:
10524 case elfcpp::Tag_CPU_unaligned_access:
10525 case elfcpp::Tag_T2EE_use:
10526 case elfcpp::Tag_Virtualization_use:
10527 case elfcpp::Tag_MPextension_use:
10528 // Use the largest value specified.
10529 if (in_attr[i].int_value() > out_attr[i].int_value())
10530 out_attr[i].set_int_value(in_attr[i].int_value());
10531 break;
10532
10533 case elfcpp::Tag_ABI_align8_preserved:
10534 case elfcpp::Tag_ABI_PCS_RO_data:
10535 // Use the smallest value specified.
10536 if (in_attr[i].int_value() < out_attr[i].int_value())
10537 out_attr[i].set_int_value(in_attr[i].int_value());
10538 break;
10539
10540 case elfcpp::Tag_ABI_align8_needed:
10541 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10542 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10543 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10544 == 0)))
10545 {
10546 // This error message should be enabled once all non-conforming
10547 // binaries in the toolchain have had the attributes set
10548 // properly.
10549 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10550 // name);
10551 }
10552 // Fall through.
10553 case elfcpp::Tag_ABI_FP_denormal:
10554 case elfcpp::Tag_ABI_PCS_GOT_use:
10555 {
10556 // These tags have 0 = don't care, 1 = strong requirement,
10557 // 2 = weak requirement.
10558 static const int order_021[3] = {0, 2, 1};
10559
10560 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10561 // value if greater than 2 (for future-proofing).
10562 if ((in_attr[i].int_value() > 2
10563 && in_attr[i].int_value() > out_attr[i].int_value())
10564 || (in_attr[i].int_value() <= 2
10565 && out_attr[i].int_value() <= 2
10566 && (order_021[in_attr[i].int_value()]
10567 > order_021[out_attr[i].int_value()])))
10568 out_attr[i].set_int_value(in_attr[i].int_value());
10569 }
10570 break;
10571
10572 case elfcpp::Tag_CPU_arch_profile:
10573 if (out_attr[i].int_value() != in_attr[i].int_value())
10574 {
10575 // 0 will merge with anything.
10576 // 'A' and 'S' merge to 'A'.
10577 // 'R' and 'S' merge to 'R'.
10578 // 'M' and 'A|R|S' is an error.
10579 if (out_attr[i].int_value() == 0
10580 || (out_attr[i].int_value() == 'S'
10581 && (in_attr[i].int_value() == 'A'
10582 || in_attr[i].int_value() == 'R')))
10583 out_attr[i].set_int_value(in_attr[i].int_value());
10584 else if (in_attr[i].int_value() == 0
10585 || (in_attr[i].int_value() == 'S'
10586 && (out_attr[i].int_value() == 'A'
10587 || out_attr[i].int_value() == 'R')))
10588 ; // Do nothing.
10589 else if (parameters->options().warn_mismatch())
10590 {
10591 gold_error
10592 (_("conflicting architecture profiles %c/%c"),
10593 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10594 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10595 }
10596 }
10597 break;
10598 case elfcpp::Tag_VFP_arch:
10599 {
10600 static const struct
10601 {
10602 int ver;
10603 int regs;
10604 } vfp_versions[7] =
10605 {
10606 {0, 0},
10607 {1, 16},
10608 {2, 16},
10609 {3, 32},
10610 {3, 16},
10611 {4, 32},
10612 {4, 16}
10613 };
10614
10615 // Values greater than 6 aren't defined, so just pick the
10616 // biggest.
10617 if (in_attr[i].int_value() > 6
10618 && in_attr[i].int_value() > out_attr[i].int_value())
10619 {
10620 *out_attr = *in_attr;
10621 break;
10622 }
10623 // The output uses the superset of input features
10624 // (ISA version) and registers.
10625 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10626 vfp_versions[out_attr[i].int_value()].ver);
10627 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10628 vfp_versions[out_attr[i].int_value()].regs);
10629 // This assumes all possible supersets are also a valid
10630 // options.
10631 int newval;
10632 for (newval = 6; newval > 0; newval--)
10633 {
10634 if (regs == vfp_versions[newval].regs
10635 && ver == vfp_versions[newval].ver)
10636 break;
10637 }
10638 out_attr[i].set_int_value(newval);
10639 }
10640 break;
10641 case elfcpp::Tag_PCS_config:
10642 if (out_attr[i].int_value() == 0)
10643 out_attr[i].set_int_value(in_attr[i].int_value());
10644 else if (in_attr[i].int_value() != 0
10645 && out_attr[i].int_value() != 0
10646 && parameters->options().warn_mismatch())
10647 {
10648 // It's sometimes ok to mix different configs, so this is only
10649 // a warning.
10650 gold_warning(_("%s: conflicting platform configuration"), name);
10651 }
10652 break;
10653 case elfcpp::Tag_ABI_PCS_R9_use:
10654 if (in_attr[i].int_value() != out_attr[i].int_value()
10655 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10656 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10657 && parameters->options().warn_mismatch())
10658 {
10659 gold_error(_("%s: conflicting use of R9"), name);
10660 }
10661 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10662 out_attr[i].set_int_value(in_attr[i].int_value());
10663 break;
10664 case elfcpp::Tag_ABI_PCS_RW_data:
10665 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10666 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10667 != elfcpp::AEABI_R9_SB)
10668 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10669 != elfcpp::AEABI_R9_unused)
10670 && parameters->options().warn_mismatch())
10671 {
10672 gold_error(_("%s: SB relative addressing conflicts with use "
10673 "of R9"),
10674 name);
10675 }
10676 // Use the smallest value specified.
10677 if (in_attr[i].int_value() < out_attr[i].int_value())
10678 out_attr[i].set_int_value(in_attr[i].int_value());
10679 break;
10680 case elfcpp::Tag_ABI_PCS_wchar_t:
10681 if (out_attr[i].int_value()
10682 && in_attr[i].int_value()
10683 && out_attr[i].int_value() != in_attr[i].int_value()
10684 && parameters->options().warn_mismatch()
10685 && parameters->options().wchar_size_warning())
10686 {
10687 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10688 "use %u-byte wchar_t; use of wchar_t values "
10689 "across objects may fail"),
10690 name, in_attr[i].int_value(),
10691 out_attr[i].int_value());
10692 }
10693 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10694 out_attr[i].set_int_value(in_attr[i].int_value());
10695 break;
10696 case elfcpp::Tag_ABI_enum_size:
10697 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10698 {
10699 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10700 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10701 {
10702 // The existing object is compatible with anything.
10703 // Use whatever requirements the new object has.
10704 out_attr[i].set_int_value(in_attr[i].int_value());
10705 }
10706 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10707 && out_attr[i].int_value() != in_attr[i].int_value()
10708 && parameters->options().warn_mismatch()
10709 && parameters->options().enum_size_warning())
10710 {
10711 unsigned int in_value = in_attr[i].int_value();
10712 unsigned int out_value = out_attr[i].int_value();
10713 gold_warning(_("%s uses %s enums yet the output is to use "
10714 "%s enums; use of enum values across objects "
10715 "may fail"),
10716 name,
10717 this->aeabi_enum_name(in_value).c_str(),
10718 this->aeabi_enum_name(out_value).c_str());
10719 }
10720 }
10721 break;
10722 case elfcpp::Tag_ABI_VFP_args:
10723 // Already done.
10724 break;
10725 case elfcpp::Tag_ABI_WMMX_args:
10726 if (in_attr[i].int_value() != out_attr[i].int_value()
10727 && parameters->options().warn_mismatch())
10728 {
10729 gold_error(_("%s uses iWMMXt register arguments, output does "
10730 "not"),
10731 name);
10732 }
10733 break;
10734 case Object_attribute::Tag_compatibility:
10735 // Merged in target-independent code.
10736 break;
10737 case elfcpp::Tag_ABI_HardFP_use:
10738 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10739 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10740 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10741 out_attr[i].set_int_value(3);
10742 else if (in_attr[i].int_value() > out_attr[i].int_value())
10743 out_attr[i].set_int_value(in_attr[i].int_value());
10744 break;
10745 case elfcpp::Tag_ABI_FP_16bit_format:
10746 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10747 {
10748 if (in_attr[i].int_value() != out_attr[i].int_value()
10749 && parameters->options().warn_mismatch())
10750 gold_error(_("fp16 format mismatch between %s and output"),
10751 name);
10752 }
10753 if (in_attr[i].int_value() != 0)
10754 out_attr[i].set_int_value(in_attr[i].int_value());
10755 break;
10756
10757 case elfcpp::Tag_DIV_use:
10758 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10759 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10760 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10761 // CPU. We will merge as follows: If the input attribute's value
10762 // is one then the output attribute's value remains unchanged. If
10763 // the input attribute's value is zero or two then if the output
10764 // attribute's value is one the output value is set to the input
10765 // value, otherwise the output value must be the same as the
10766 // inputs. */
10767 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10768 {
10769 if (in_attr[i].int_value() != out_attr[i].int_value())
10770 {
10771 gold_error(_("DIV usage mismatch between %s and output"),
10772 name);
10773 }
10774 }
10775
10776 if (in_attr[i].int_value() != 1)
10777 out_attr[i].set_int_value(in_attr[i].int_value());
10778
10779 break;
10780
10781 case elfcpp::Tag_MPextension_use_legacy:
10782 // We don't output objects with Tag_MPextension_use_legacy - we
10783 // move the value to Tag_MPextension_use.
10784 if (in_attr[i].int_value() != 0
10785 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10786 {
10787 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10788 != in_attr[i].int_value())
10789 {
10790 gold_error(_("%s has has both the current and legacy "
10791 "Tag_MPextension_use attributes"),
10792 name);
10793 }
10794 }
10795
10796 if (in_attr[i].int_value()
10797 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10798 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10799
10800 break;
10801
10802 case elfcpp::Tag_nodefaults:
10803 // This tag is set if it exists, but the value is unused (and is
10804 // typically zero). We don't actually need to do anything here -
10805 // the merge happens automatically when the type flags are merged
10806 // below.
10807 break;
10808 case elfcpp::Tag_also_compatible_with:
10809 // Already done in Tag_CPU_arch.
10810 break;
10811 case elfcpp::Tag_conformance:
10812 // Keep the attribute if it matches. Throw it away otherwise.
10813 // No attribute means no claim to conform.
10814 if (in_attr[i].string_value() != out_attr[i].string_value())
10815 out_attr[i].set_string_value("");
10816 break;
10817
10818 default:
10819 {
10820 const char* err_object = NULL;
10821
10822 // The "known_obj_attributes" table does contain some undefined
10823 // attributes. Ensure that there are unused.
10824 if (out_attr[i].int_value() != 0
10825 || out_attr[i].string_value() != "")
10826 err_object = "output";
10827 else if (in_attr[i].int_value() != 0
10828 || in_attr[i].string_value() != "")
10829 err_object = name;
10830
10831 if (err_object != NULL
10832 && parameters->options().warn_mismatch())
10833 {
10834 // Attribute numbers >=64 (mod 128) can be safely ignored.
10835 if ((i & 127) < 64)
10836 gold_error(_("%s: unknown mandatory EABI object attribute "
10837 "%d"),
10838 err_object, i);
10839 else
10840 gold_warning(_("%s: unknown EABI object attribute %d"),
10841 err_object, i);
10842 }
10843
10844 // Only pass on attributes that match in both inputs.
10845 if (!in_attr[i].matches(out_attr[i]))
10846 {
10847 out_attr[i].set_int_value(0);
10848 out_attr[i].set_string_value("");
10849 }
10850 }
10851 }
10852
10853 // If out_attr was copied from in_attr then it won't have a type yet.
10854 if (in_attr[i].type() && !out_attr[i].type())
10855 out_attr[i].set_type(in_attr[i].type());
10856 }
10857
10858 // Merge Tag_compatibility attributes and any common GNU ones.
10859 this->attributes_section_data_->merge(name, pasd);
10860
10861 // Check for any attributes not known on ARM.
10862 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10863 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10864 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10865 Other_attributes* out_other_attributes =
10866 this->attributes_section_data_->other_attributes(vendor);
10867 Other_attributes::iterator out_iter = out_other_attributes->begin();
10868
10869 while (in_iter != in_other_attributes->end()
10870 || out_iter != out_other_attributes->end())
10871 {
10872 const char* err_object = NULL;
10873 int err_tag = 0;
10874
10875 // The tags for each list are in numerical order.
10876 // If the tags are equal, then merge.
10877 if (out_iter != out_other_attributes->end()
10878 && (in_iter == in_other_attributes->end()
10879 || in_iter->first > out_iter->first))
10880 {
10881 // This attribute only exists in output. We can't merge, and we
10882 // don't know what the tag means, so delete it.
10883 err_object = "output";
10884 err_tag = out_iter->first;
10885 int saved_tag = out_iter->first;
10886 delete out_iter->second;
10887 out_other_attributes->erase(out_iter);
10888 out_iter = out_other_attributes->upper_bound(saved_tag);
10889 }
10890 else if (in_iter != in_other_attributes->end()
10891 && (out_iter != out_other_attributes->end()
10892 || in_iter->first < out_iter->first))
10893 {
10894 // This attribute only exists in input. We can't merge, and we
10895 // don't know what the tag means, so ignore it.
10896 err_object = name;
10897 err_tag = in_iter->first;
10898 ++in_iter;
10899 }
10900 else // The tags are equal.
10901 {
10902 // As present, all attributes in the list are unknown, and
10903 // therefore can't be merged meaningfully.
10904 err_object = "output";
10905 err_tag = out_iter->first;
10906
10907 // Only pass on attributes that match in both inputs.
10908 if (!in_iter->second->matches(*(out_iter->second)))
10909 {
10910 // No match. Delete the attribute.
10911 int saved_tag = out_iter->first;
10912 delete out_iter->second;
10913 out_other_attributes->erase(out_iter);
10914 out_iter = out_other_attributes->upper_bound(saved_tag);
10915 }
10916 else
10917 {
10918 // Matched. Keep the attribute and move to the next.
10919 ++out_iter;
10920 ++in_iter;
10921 }
10922 }
10923
10924 if (err_object && parameters->options().warn_mismatch())
10925 {
10926 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10927 if ((err_tag & 127) < 64)
10928 {
10929 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10930 err_object, err_tag);
10931 }
10932 else
10933 {
10934 gold_warning(_("%s: unknown EABI object attribute %d"),
10935 err_object, err_tag);
10936 }
10937 }
10938 }
10939 }
10940
10941 // Stub-generation methods for Target_arm.
10942
10943 // Make a new Arm_input_section object.
10944
10945 template<bool big_endian>
10946 Arm_input_section<big_endian>*
10947 Target_arm<big_endian>::new_arm_input_section(
10948 Relobj* relobj,
10949 unsigned int shndx)
10950 {
10951 Section_id sid(relobj, shndx);
10952
10953 Arm_input_section<big_endian>* arm_input_section =
10954 new Arm_input_section<big_endian>(relobj, shndx);
10955 arm_input_section->init();
10956
10957 // Register new Arm_input_section in map for look-up.
10958 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10959 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10960
10961 // Make sure that it we have not created another Arm_input_section
10962 // for this input section already.
10963 gold_assert(ins.second);
10964
10965 return arm_input_section;
10966 }
10967
10968 // Find the Arm_input_section object corresponding to the SHNDX-th input
10969 // section of RELOBJ.
10970
10971 template<bool big_endian>
10972 Arm_input_section<big_endian>*
10973 Target_arm<big_endian>::find_arm_input_section(
10974 Relobj* relobj,
10975 unsigned int shndx) const
10976 {
10977 Section_id sid(relobj, shndx);
10978 typename Arm_input_section_map::const_iterator p =
10979 this->arm_input_section_map_.find(sid);
10980 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10981 }
10982
10983 // Make a new stub table.
10984
10985 template<bool big_endian>
10986 Stub_table<big_endian>*
10987 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10988 {
10989 Stub_table<big_endian>* stub_table =
10990 new Stub_table<big_endian>(owner);
10991 this->stub_tables_.push_back(stub_table);
10992
10993 stub_table->set_address(owner->address() + owner->data_size());
10994 stub_table->set_file_offset(owner->offset() + owner->data_size());
10995 stub_table->finalize_data_size();
10996
10997 return stub_table;
10998 }
10999
11000 // Scan a relocation for stub generation.
11001
11002 template<bool big_endian>
11003 void
11004 Target_arm<big_endian>::scan_reloc_for_stub(
11005 const Relocate_info<32, big_endian>* relinfo,
11006 unsigned int r_type,
11007 const Sized_symbol<32>* gsym,
11008 unsigned int r_sym,
11009 const Symbol_value<32>* psymval,
11010 elfcpp::Elf_types<32>::Elf_Swxword addend,
11011 Arm_address address)
11012 {
11013 const Arm_relobj<big_endian>* arm_relobj =
11014 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11015
11016 bool target_is_thumb;
11017 Symbol_value<32> symval;
11018 if (gsym != NULL)
11019 {
11020 // This is a global symbol. Determine if we use PLT and if the
11021 // final target is THUMB.
11022 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11023 {
11024 // This uses a PLT, change the symbol value.
11025 symval.set_output_value(this->plt_section()->address()
11026 + gsym->plt_offset());
11027 psymval = &symval;
11028 target_is_thumb = false;
11029 }
11030 else if (gsym->is_undefined())
11031 // There is no need to generate a stub symbol is undefined.
11032 return;
11033 else
11034 {
11035 target_is_thumb =
11036 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11037 || (gsym->type() == elfcpp::STT_FUNC
11038 && !gsym->is_undefined()
11039 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11040 }
11041 }
11042 else
11043 {
11044 // This is a local symbol. Determine if the final target is THUMB.
11045 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11046 }
11047
11048 // Strip LSB if this points to a THUMB target.
11049 const Arm_reloc_property* reloc_property =
11050 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11051 gold_assert(reloc_property != NULL);
11052 if (target_is_thumb
11053 && reloc_property->uses_thumb_bit()
11054 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11055 {
11056 Arm_address stripped_value =
11057 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11058 symval.set_output_value(stripped_value);
11059 psymval = &symval;
11060 }
11061
11062 // Get the symbol value.
11063 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11064
11065 // Owing to pipelining, the PC relative branches below actually skip
11066 // two instructions when the branch offset is 0.
11067 Arm_address destination;
11068 switch (r_type)
11069 {
11070 case elfcpp::R_ARM_CALL:
11071 case elfcpp::R_ARM_JUMP24:
11072 case elfcpp::R_ARM_PLT32:
11073 // ARM branches.
11074 destination = value + addend + 8;
11075 break;
11076 case elfcpp::R_ARM_THM_CALL:
11077 case elfcpp::R_ARM_THM_XPC22:
11078 case elfcpp::R_ARM_THM_JUMP24:
11079 case elfcpp::R_ARM_THM_JUMP19:
11080 // THUMB branches.
11081 destination = value + addend + 4;
11082 break;
11083 default:
11084 gold_unreachable();
11085 }
11086
11087 Reloc_stub* stub = NULL;
11088 Stub_type stub_type =
11089 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11090 target_is_thumb);
11091 if (stub_type != arm_stub_none)
11092 {
11093 // Try looking up an existing stub from a stub table.
11094 Stub_table<big_endian>* stub_table =
11095 arm_relobj->stub_table(relinfo->data_shndx);
11096 gold_assert(stub_table != NULL);
11097
11098 // Locate stub by destination.
11099 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11100
11101 // Create a stub if there is not one already
11102 stub = stub_table->find_reloc_stub(stub_key);
11103 if (stub == NULL)
11104 {
11105 // create a new stub and add it to stub table.
11106 stub = this->stub_factory().make_reloc_stub(stub_type);
11107 stub_table->add_reloc_stub(stub, stub_key);
11108 }
11109
11110 // Record the destination address.
11111 stub->set_destination_address(destination
11112 | (target_is_thumb ? 1 : 0));
11113 }
11114
11115 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11116 if (this->fix_cortex_a8_
11117 && (r_type == elfcpp::R_ARM_THM_JUMP24
11118 || r_type == elfcpp::R_ARM_THM_JUMP19
11119 || r_type == elfcpp::R_ARM_THM_CALL
11120 || r_type == elfcpp::R_ARM_THM_XPC22)
11121 && (address & 0xfffU) == 0xffeU)
11122 {
11123 // Found a candidate. Note we haven't checked the destination is
11124 // within 4K here: if we do so (and don't create a record) we can't
11125 // tell that a branch should have been relocated when scanning later.
11126 this->cortex_a8_relocs_info_[address] =
11127 new Cortex_a8_reloc(stub, r_type,
11128 destination | (target_is_thumb ? 1 : 0));
11129 }
11130 }
11131
11132 // This function scans a relocation sections for stub generation.
11133 // The template parameter Relocate must be a class type which provides
11134 // a single function, relocate(), which implements the machine
11135 // specific part of a relocation.
11136
11137 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11138 // SHT_REL or SHT_RELA.
11139
11140 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11141 // of relocs. OUTPUT_SECTION is the output section.
11142 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11143 // mapped to output offsets.
11144
11145 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11146 // VIEW_SIZE is the size. These refer to the input section, unless
11147 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11148 // the output section.
11149
11150 template<bool big_endian>
11151 template<int sh_type>
11152 void inline
11153 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11154 const Relocate_info<32, big_endian>* relinfo,
11155 const unsigned char* prelocs,
11156 size_t reloc_count,
11157 Output_section* output_section,
11158 bool needs_special_offset_handling,
11159 const unsigned char* view,
11160 elfcpp::Elf_types<32>::Elf_Addr view_address,
11161 section_size_type)
11162 {
11163 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11164 const int reloc_size =
11165 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11166
11167 Arm_relobj<big_endian>* arm_object =
11168 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11169 unsigned int local_count = arm_object->local_symbol_count();
11170
11171 gold::Default_comdat_behavior default_comdat_behavior;
11172 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11173
11174 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11175 {
11176 Reltype reloc(prelocs);
11177
11178 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11179 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11180 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11181
11182 r_type = this->get_real_reloc_type(r_type);
11183
11184 // Only a few relocation types need stubs.
11185 if ((r_type != elfcpp::R_ARM_CALL)
11186 && (r_type != elfcpp::R_ARM_JUMP24)
11187 && (r_type != elfcpp::R_ARM_PLT32)
11188 && (r_type != elfcpp::R_ARM_THM_CALL)
11189 && (r_type != elfcpp::R_ARM_THM_XPC22)
11190 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11191 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11192 && (r_type != elfcpp::R_ARM_V4BX))
11193 continue;
11194
11195 section_offset_type offset =
11196 convert_to_section_size_type(reloc.get_r_offset());
11197
11198 if (needs_special_offset_handling)
11199 {
11200 offset = output_section->output_offset(relinfo->object,
11201 relinfo->data_shndx,
11202 offset);
11203 if (offset == -1)
11204 continue;
11205 }
11206
11207 // Create a v4bx stub if --fix-v4bx-interworking is used.
11208 if (r_type == elfcpp::R_ARM_V4BX)
11209 {
11210 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11211 {
11212 // Get the BX instruction.
11213 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11214 const Valtype* wv =
11215 reinterpret_cast<const Valtype*>(view + offset);
11216 elfcpp::Elf_types<32>::Elf_Swxword insn =
11217 elfcpp::Swap<32, big_endian>::readval(wv);
11218 const uint32_t reg = (insn & 0xf);
11219
11220 if (reg < 0xf)
11221 {
11222 // Try looking up an existing stub from a stub table.
11223 Stub_table<big_endian>* stub_table =
11224 arm_object->stub_table(relinfo->data_shndx);
11225 gold_assert(stub_table != NULL);
11226
11227 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11228 {
11229 // create a new stub and add it to stub table.
11230 Arm_v4bx_stub* stub =
11231 this->stub_factory().make_arm_v4bx_stub(reg);
11232 gold_assert(stub != NULL);
11233 stub_table->add_arm_v4bx_stub(stub);
11234 }
11235 }
11236 }
11237 continue;
11238 }
11239
11240 // Get the addend.
11241 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11242 elfcpp::Elf_types<32>::Elf_Swxword addend =
11243 stub_addend_reader(r_type, view + offset, reloc);
11244
11245 const Sized_symbol<32>* sym;
11246
11247 Symbol_value<32> symval;
11248 const Symbol_value<32> *psymval;
11249 bool is_defined_in_discarded_section;
11250 unsigned int shndx;
11251 if (r_sym < local_count)
11252 {
11253 sym = NULL;
11254 psymval = arm_object->local_symbol(r_sym);
11255
11256 // If the local symbol belongs to a section we are discarding,
11257 // and that section is a debug section, try to find the
11258 // corresponding kept section and map this symbol to its
11259 // counterpart in the kept section. The symbol must not
11260 // correspond to a section we are folding.
11261 bool is_ordinary;
11262 shndx = psymval->input_shndx(&is_ordinary);
11263 is_defined_in_discarded_section =
11264 (is_ordinary
11265 && shndx != elfcpp::SHN_UNDEF
11266 && !arm_object->is_section_included(shndx)
11267 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11268
11269 // We need to compute the would-be final value of this local
11270 // symbol.
11271 if (!is_defined_in_discarded_section)
11272 {
11273 typedef Sized_relobj_file<32, big_endian> ObjType;
11274 typename ObjType::Compute_final_local_value_status status =
11275 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11276 relinfo->symtab);
11277 if (status == ObjType::CFLV_OK)
11278 {
11279 // Currently we cannot handle a branch to a target in
11280 // a merged section. If this is the case, issue an error
11281 // and also free the merge symbol value.
11282 if (!symval.has_output_value())
11283 {
11284 const std::string& section_name =
11285 arm_object->section_name(shndx);
11286 arm_object->error(_("cannot handle branch to local %u "
11287 "in a merged section %s"),
11288 r_sym, section_name.c_str());
11289 }
11290 psymval = &symval;
11291 }
11292 else
11293 {
11294 // We cannot determine the final value.
11295 continue;
11296 }
11297 }
11298 }
11299 else
11300 {
11301 const Symbol* gsym;
11302 gsym = arm_object->global_symbol(r_sym);
11303 gold_assert(gsym != NULL);
11304 if (gsym->is_forwarder())
11305 gsym = relinfo->symtab->resolve_forwards(gsym);
11306
11307 sym = static_cast<const Sized_symbol<32>*>(gsym);
11308 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11309 symval.set_output_symtab_index(sym->symtab_index());
11310 else
11311 symval.set_no_output_symtab_entry();
11312
11313 // We need to compute the would-be final value of this global
11314 // symbol.
11315 const Symbol_table* symtab = relinfo->symtab;
11316 const Sized_symbol<32>* sized_symbol =
11317 symtab->get_sized_symbol<32>(gsym);
11318 Symbol_table::Compute_final_value_status status;
11319 Arm_address value =
11320 symtab->compute_final_value<32>(sized_symbol, &status);
11321
11322 // Skip this if the symbol has not output section.
11323 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11324 continue;
11325 symval.set_output_value(value);
11326
11327 if (gsym->type() == elfcpp::STT_TLS)
11328 symval.set_is_tls_symbol();
11329 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11330 symval.set_is_ifunc_symbol();
11331 psymval = &symval;
11332
11333 is_defined_in_discarded_section =
11334 (gsym->is_defined_in_discarded_section()
11335 && gsym->is_undefined());
11336 shndx = 0;
11337 }
11338
11339 Symbol_value<32> symval2;
11340 if (is_defined_in_discarded_section)
11341 {
11342 if (comdat_behavior == CB_UNDETERMINED)
11343 {
11344 std::string name = arm_object->section_name(relinfo->data_shndx);
11345 comdat_behavior = default_comdat_behavior.get(name.c_str());
11346 }
11347 if (comdat_behavior == CB_PRETEND)
11348 {
11349 // FIXME: This case does not work for global symbols.
11350 // We have no place to store the original section index.
11351 // Fortunately this does not matter for comdat sections,
11352 // only for sections explicitly discarded by a linker
11353 // script.
11354 bool found;
11355 typename elfcpp::Elf_types<32>::Elf_Addr value =
11356 arm_object->map_to_kept_section(shndx, &found);
11357 if (found)
11358 symval2.set_output_value(value + psymval->input_value());
11359 else
11360 symval2.set_output_value(0);
11361 }
11362 else
11363 {
11364 if (comdat_behavior == CB_WARNING)
11365 gold_warning_at_location(relinfo, i, offset,
11366 _("relocation refers to discarded "
11367 "section"));
11368 symval2.set_output_value(0);
11369 }
11370 symval2.set_no_output_symtab_entry();
11371 psymval = &symval2;
11372 }
11373
11374 // If symbol is a section symbol, we don't know the actual type of
11375 // destination. Give up.
11376 if (psymval->is_section_symbol())
11377 continue;
11378
11379 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11380 addend, view_address + offset);
11381 }
11382 }
11383
11384 // Scan an input section for stub generation.
11385
11386 template<bool big_endian>
11387 void
11388 Target_arm<big_endian>::scan_section_for_stubs(
11389 const Relocate_info<32, big_endian>* relinfo,
11390 unsigned int sh_type,
11391 const unsigned char* prelocs,
11392 size_t reloc_count,
11393 Output_section* output_section,
11394 bool needs_special_offset_handling,
11395 const unsigned char* view,
11396 Arm_address view_address,
11397 section_size_type view_size)
11398 {
11399 if (sh_type == elfcpp::SHT_REL)
11400 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11401 relinfo,
11402 prelocs,
11403 reloc_count,
11404 output_section,
11405 needs_special_offset_handling,
11406 view,
11407 view_address,
11408 view_size);
11409 else if (sh_type == elfcpp::SHT_RELA)
11410 // We do not support RELA type relocations yet. This is provided for
11411 // completeness.
11412 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11413 relinfo,
11414 prelocs,
11415 reloc_count,
11416 output_section,
11417 needs_special_offset_handling,
11418 view,
11419 view_address,
11420 view_size);
11421 else
11422 gold_unreachable();
11423 }
11424
11425 // Group input sections for stub generation.
11426 //
11427 // We group input sections in an output section so that the total size,
11428 // including any padding space due to alignment is smaller than GROUP_SIZE
11429 // unless the only input section in group is bigger than GROUP_SIZE already.
11430 // Then an ARM stub table is created to follow the last input section
11431 // in group. For each group an ARM stub table is created an is placed
11432 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11433 // extend the group after the stub table.
11434
11435 template<bool big_endian>
11436 void
11437 Target_arm<big_endian>::group_sections(
11438 Layout* layout,
11439 section_size_type group_size,
11440 bool stubs_always_after_branch,
11441 const Task* task)
11442 {
11443 // Group input sections and insert stub table
11444 Layout::Section_list section_list;
11445 layout->get_allocated_sections(&section_list);
11446 for (Layout::Section_list::const_iterator p = section_list.begin();
11447 p != section_list.end();
11448 ++p)
11449 {
11450 Arm_output_section<big_endian>* output_section =
11451 Arm_output_section<big_endian>::as_arm_output_section(*p);
11452 output_section->group_sections(group_size, stubs_always_after_branch,
11453 this, task);
11454 }
11455 }
11456
11457 // Relaxation hook. This is where we do stub generation.
11458
11459 template<bool big_endian>
11460 bool
11461 Target_arm<big_endian>::do_relax(
11462 int pass,
11463 const Input_objects* input_objects,
11464 Symbol_table* symtab,
11465 Layout* layout,
11466 const Task* task)
11467 {
11468 // No need to generate stubs if this is a relocatable link.
11469 gold_assert(!parameters->options().relocatable());
11470
11471 // If this is the first pass, we need to group input sections into
11472 // stub groups.
11473 bool done_exidx_fixup = false;
11474 typedef typename Stub_table_list::iterator Stub_table_iterator;
11475 if (pass == 1)
11476 {
11477 // Determine the stub group size. The group size is the absolute
11478 // value of the parameter --stub-group-size. If --stub-group-size
11479 // is passed a negative value, we restrict stubs to be always after
11480 // the stubbed branches.
11481 int32_t stub_group_size_param =
11482 parameters->options().stub_group_size();
11483 bool stubs_always_after_branch = stub_group_size_param < 0;
11484 section_size_type stub_group_size = abs(stub_group_size_param);
11485
11486 if (stub_group_size == 1)
11487 {
11488 // Default value.
11489 // Thumb branch range is +-4MB has to be used as the default
11490 // maximum size (a given section can contain both ARM and Thumb
11491 // code, so the worst case has to be taken into account). If we are
11492 // fixing cortex-a8 errata, the branch range has to be even smaller,
11493 // since wide conditional branch has a range of +-1MB only.
11494 //
11495 // This value is 48K less than that, which allows for 4096
11496 // 12-byte stubs. If we exceed that, then we will fail to link.
11497 // The user will have to relink with an explicit group size
11498 // option.
11499 stub_group_size = 4145152;
11500 }
11501
11502 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11503 // page as the first half of a 32-bit branch straddling two 4K pages.
11504 // This is a crude way of enforcing that. In addition, long conditional
11505 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11506 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11507 // cortex-A8 stubs from long conditional branches.
11508 if (this->fix_cortex_a8_)
11509 {
11510 stubs_always_after_branch = true;
11511 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11512 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11513 }
11514
11515 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11516
11517 // Also fix .ARM.exidx section coverage.
11518 Arm_output_section<big_endian>* exidx_output_section = NULL;
11519 for (Layout::Section_list::const_iterator p =
11520 layout->section_list().begin();
11521 p != layout->section_list().end();
11522 ++p)
11523 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11524 {
11525 if (exidx_output_section == NULL)
11526 exidx_output_section =
11527 Arm_output_section<big_endian>::as_arm_output_section(*p);
11528 else
11529 // We cannot handle this now.
11530 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11531 "non-relocatable link"),
11532 exidx_output_section->name(),
11533 (*p)->name());
11534 }
11535
11536 if (exidx_output_section != NULL)
11537 {
11538 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11539 symtab, task);
11540 done_exidx_fixup = true;
11541 }
11542 }
11543 else
11544 {
11545 // If this is not the first pass, addresses and file offsets have
11546 // been reset at this point, set them here.
11547 for (Stub_table_iterator sp = this->stub_tables_.begin();
11548 sp != this->stub_tables_.end();
11549 ++sp)
11550 {
11551 Arm_input_section<big_endian>* owner = (*sp)->owner();
11552 off_t off = align_address(owner->original_size(),
11553 (*sp)->addralign());
11554 (*sp)->set_address_and_file_offset(owner->address() + off,
11555 owner->offset() + off);
11556 }
11557 }
11558
11559 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11560 // beginning of each relaxation pass, just blow away all the stubs.
11561 // Alternatively, we could selectively remove only the stubs and reloc
11562 // information for code sections that have moved since the last pass.
11563 // That would require more book-keeping.
11564 if (this->fix_cortex_a8_)
11565 {
11566 // Clear all Cortex-A8 reloc information.
11567 for (typename Cortex_a8_relocs_info::const_iterator p =
11568 this->cortex_a8_relocs_info_.begin();
11569 p != this->cortex_a8_relocs_info_.end();
11570 ++p)
11571 delete p->second;
11572 this->cortex_a8_relocs_info_.clear();
11573
11574 // Remove all Cortex-A8 stubs.
11575 for (Stub_table_iterator sp = this->stub_tables_.begin();
11576 sp != this->stub_tables_.end();
11577 ++sp)
11578 (*sp)->remove_all_cortex_a8_stubs();
11579 }
11580
11581 // Scan relocs for relocation stubs
11582 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11583 op != input_objects->relobj_end();
11584 ++op)
11585 {
11586 Arm_relobj<big_endian>* arm_relobj =
11587 Arm_relobj<big_endian>::as_arm_relobj(*op);
11588 // Lock the object so we can read from it. This is only called
11589 // single-threaded from Layout::finalize, so it is OK to lock.
11590 Task_lock_obj<Object> tl(task, arm_relobj);
11591 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11592 }
11593
11594 // Check all stub tables to see if any of them have their data sizes
11595 // or addresses alignments changed. These are the only things that
11596 // matter.
11597 bool any_stub_table_changed = false;
11598 Unordered_set<const Output_section*> sections_needing_adjustment;
11599 for (Stub_table_iterator sp = this->stub_tables_.begin();
11600 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11601 ++sp)
11602 {
11603 if ((*sp)->update_data_size_and_addralign())
11604 {
11605 // Update data size of stub table owner.
11606 Arm_input_section<big_endian>* owner = (*sp)->owner();
11607 uint64_t address = owner->address();
11608 off_t offset = owner->offset();
11609 owner->reset_address_and_file_offset();
11610 owner->set_address_and_file_offset(address, offset);
11611
11612 sections_needing_adjustment.insert(owner->output_section());
11613 any_stub_table_changed = true;
11614 }
11615 }
11616
11617 // Output_section_data::output_section() returns a const pointer but we
11618 // need to update output sections, so we record all output sections needing
11619 // update above and scan the sections here to find out what sections need
11620 // to be updated.
11621 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11622 p != layout->section_list().end();
11623 ++p)
11624 {
11625 if (sections_needing_adjustment.find(*p)
11626 != sections_needing_adjustment.end())
11627 (*p)->set_section_offsets_need_adjustment();
11628 }
11629
11630 // Stop relaxation if no EXIDX fix-up and no stub table change.
11631 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11632
11633 // Finalize the stubs in the last relaxation pass.
11634 if (!continue_relaxation)
11635 {
11636 for (Stub_table_iterator sp = this->stub_tables_.begin();
11637 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11638 ++sp)
11639 (*sp)->finalize_stubs();
11640
11641 // Update output local symbol counts of objects if necessary.
11642 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11643 op != input_objects->relobj_end();
11644 ++op)
11645 {
11646 Arm_relobj<big_endian>* arm_relobj =
11647 Arm_relobj<big_endian>::as_arm_relobj(*op);
11648
11649 // Update output local symbol counts. We need to discard local
11650 // symbols defined in parts of input sections that are discarded by
11651 // relaxation.
11652 if (arm_relobj->output_local_symbol_count_needs_update())
11653 {
11654 // We need to lock the object's file to update it.
11655 Task_lock_obj<Object> tl(task, arm_relobj);
11656 arm_relobj->update_output_local_symbol_count();
11657 }
11658 }
11659 }
11660
11661 return continue_relaxation;
11662 }
11663
11664 // Relocate a stub.
11665
11666 template<bool big_endian>
11667 void
11668 Target_arm<big_endian>::relocate_stub(
11669 Stub* stub,
11670 const Relocate_info<32, big_endian>* relinfo,
11671 Output_section* output_section,
11672 unsigned char* view,
11673 Arm_address address,
11674 section_size_type view_size)
11675 {
11676 Relocate relocate;
11677 const Stub_template* stub_template = stub->stub_template();
11678 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11679 {
11680 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11681 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11682
11683 unsigned int r_type = insn->r_type();
11684 section_size_type reloc_offset = stub_template->reloc_offset(i);
11685 section_size_type reloc_size = insn->size();
11686 gold_assert(reloc_offset + reloc_size <= view_size);
11687
11688 // This is the address of the stub destination.
11689 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11690 Symbol_value<32> symval;
11691 symval.set_output_value(target);
11692
11693 // Synthesize a fake reloc just in case. We don't have a symbol so
11694 // we use 0.
11695 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11696 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11697 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11698 reloc_write.put_r_offset(reloc_offset);
11699 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11700 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11701
11702 relocate.relocate(relinfo, this, output_section,
11703 this->fake_relnum_for_stubs, rel, r_type,
11704 NULL, &symval, view + reloc_offset,
11705 address + reloc_offset, reloc_size);
11706 }
11707 }
11708
11709 // Determine whether an object attribute tag takes an integer, a
11710 // string or both.
11711
11712 template<bool big_endian>
11713 int
11714 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11715 {
11716 if (tag == Object_attribute::Tag_compatibility)
11717 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11718 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11719 else if (tag == elfcpp::Tag_nodefaults)
11720 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11721 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11722 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11723 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11724 else if (tag < 32)
11725 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11726 else
11727 return ((tag & 1) != 0
11728 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11729 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11730 }
11731
11732 // Reorder attributes.
11733 //
11734 // The ABI defines that Tag_conformance should be emitted first, and that
11735 // Tag_nodefaults should be second (if either is defined). This sets those
11736 // two positions, and bumps up the position of all the remaining tags to
11737 // compensate.
11738
11739 template<bool big_endian>
11740 int
11741 Target_arm<big_endian>::do_attributes_order(int num) const
11742 {
11743 // Reorder the known object attributes in output. We want to move
11744 // Tag_conformance to position 4 and Tag_conformance to position 5
11745 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11746 if (num == 4)
11747 return elfcpp::Tag_conformance;
11748 if (num == 5)
11749 return elfcpp::Tag_nodefaults;
11750 if ((num - 2) < elfcpp::Tag_nodefaults)
11751 return num - 2;
11752 if ((num - 1) < elfcpp::Tag_conformance)
11753 return num - 1;
11754 return num;
11755 }
11756
11757 // Scan a span of THUMB code for Cortex-A8 erratum.
11758
11759 template<bool big_endian>
11760 void
11761 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11762 Arm_relobj<big_endian>* arm_relobj,
11763 unsigned int shndx,
11764 section_size_type span_start,
11765 section_size_type span_end,
11766 const unsigned char* view,
11767 Arm_address address)
11768 {
11769 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11770 //
11771 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11772 // The branch target is in the same 4KB region as the
11773 // first half of the branch.
11774 // The instruction before the branch is a 32-bit
11775 // length non-branch instruction.
11776 section_size_type i = span_start;
11777 bool last_was_32bit = false;
11778 bool last_was_branch = false;
11779 while (i < span_end)
11780 {
11781 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11782 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11783 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11784 bool is_blx = false, is_b = false;
11785 bool is_bl = false, is_bcc = false;
11786
11787 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11788 if (insn_32bit)
11789 {
11790 // Load the rest of the insn (in manual-friendly order).
11791 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11792
11793 // Encoding T4: B<c>.W.
11794 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11795 // Encoding T1: BL<c>.W.
11796 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11797 // Encoding T2: BLX<c>.W.
11798 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11799 // Encoding T3: B<c>.W (not permitted in IT block).
11800 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11801 && (insn & 0x07f00000U) != 0x03800000U);
11802 }
11803
11804 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11805
11806 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11807 // page boundary and it follows 32-bit non-branch instruction,
11808 // we need to work around.
11809 if (is_32bit_branch
11810 && ((address + i) & 0xfffU) == 0xffeU
11811 && last_was_32bit
11812 && !last_was_branch)
11813 {
11814 // Check to see if there is a relocation stub for this branch.
11815 bool force_target_arm = false;
11816 bool force_target_thumb = false;
11817 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11818 Cortex_a8_relocs_info::const_iterator p =
11819 this->cortex_a8_relocs_info_.find(address + i);
11820
11821 if (p != this->cortex_a8_relocs_info_.end())
11822 {
11823 cortex_a8_reloc = p->second;
11824 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11825
11826 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11827 && !target_is_thumb)
11828 force_target_arm = true;
11829 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11830 && target_is_thumb)
11831 force_target_thumb = true;
11832 }
11833
11834 off_t offset;
11835 Stub_type stub_type = arm_stub_none;
11836
11837 // Check if we have an offending branch instruction.
11838 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11839 uint16_t lower_insn = insn & 0xffffU;
11840 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11841
11842 if (cortex_a8_reloc != NULL
11843 && cortex_a8_reloc->reloc_stub() != NULL)
11844 // We've already made a stub for this instruction, e.g.
11845 // it's a long branch or a Thumb->ARM stub. Assume that
11846 // stub will suffice to work around the A8 erratum (see
11847 // setting of always_after_branch above).
11848 ;
11849 else if (is_bcc)
11850 {
11851 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11852 lower_insn);
11853 stub_type = arm_stub_a8_veneer_b_cond;
11854 }
11855 else if (is_b || is_bl || is_blx)
11856 {
11857 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11858 lower_insn);
11859 if (is_blx)
11860 offset &= ~3;
11861
11862 stub_type = (is_blx
11863 ? arm_stub_a8_veneer_blx
11864 : (is_bl
11865 ? arm_stub_a8_veneer_bl
11866 : arm_stub_a8_veneer_b));
11867 }
11868
11869 if (stub_type != arm_stub_none)
11870 {
11871 Arm_address pc_for_insn = address + i + 4;
11872
11873 // The original instruction is a BL, but the target is
11874 // an ARM instruction. If we were not making a stub,
11875 // the BL would have been converted to a BLX. Use the
11876 // BLX stub instead in that case.
11877 if (this->may_use_v5t_interworking() && force_target_arm
11878 && stub_type == arm_stub_a8_veneer_bl)
11879 {
11880 stub_type = arm_stub_a8_veneer_blx;
11881 is_blx = true;
11882 is_bl = false;
11883 }
11884 // Conversely, if the original instruction was
11885 // BLX but the target is Thumb mode, use the BL stub.
11886 else if (force_target_thumb
11887 && stub_type == arm_stub_a8_veneer_blx)
11888 {
11889 stub_type = arm_stub_a8_veneer_bl;
11890 is_blx = false;
11891 is_bl = true;
11892 }
11893
11894 if (is_blx)
11895 pc_for_insn &= ~3;
11896
11897 // If we found a relocation, use the proper destination,
11898 // not the offset in the (unrelocated) instruction.
11899 // Note this is always done if we switched the stub type above.
11900 if (cortex_a8_reloc != NULL)
11901 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11902
11903 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11904
11905 // Add a new stub if destination address in in the same page.
11906 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11907 {
11908 Cortex_a8_stub* stub =
11909 this->stub_factory_.make_cortex_a8_stub(stub_type,
11910 arm_relobj, shndx,
11911 address + i,
11912 target, insn);
11913 Stub_table<big_endian>* stub_table =
11914 arm_relobj->stub_table(shndx);
11915 gold_assert(stub_table != NULL);
11916 stub_table->add_cortex_a8_stub(address + i, stub);
11917 }
11918 }
11919 }
11920
11921 i += insn_32bit ? 4 : 2;
11922 last_was_32bit = insn_32bit;
11923 last_was_branch = is_32bit_branch;
11924 }
11925 }
11926
11927 // Apply the Cortex-A8 workaround.
11928
11929 template<bool big_endian>
11930 void
11931 Target_arm<big_endian>::apply_cortex_a8_workaround(
11932 const Cortex_a8_stub* stub,
11933 Arm_address stub_address,
11934 unsigned char* insn_view,
11935 Arm_address insn_address)
11936 {
11937 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11938 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11939 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11940 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11941 off_t branch_offset = stub_address - (insn_address + 4);
11942
11943 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11944 switch (stub->stub_template()->type())
11945 {
11946 case arm_stub_a8_veneer_b_cond:
11947 // For a conditional branch, we re-write it to be an unconditional
11948 // branch to the stub. We use the THUMB-2 encoding here.
11949 upper_insn = 0xf000U;
11950 lower_insn = 0xb800U;
11951 // Fall through
11952 case arm_stub_a8_veneer_b:
11953 case arm_stub_a8_veneer_bl:
11954 case arm_stub_a8_veneer_blx:
11955 if ((lower_insn & 0x5000U) == 0x4000U)
11956 // For a BLX instruction, make sure that the relocation is
11957 // rounded up to a word boundary. This follows the semantics of
11958 // the instruction which specifies that bit 1 of the target
11959 // address will come from bit 1 of the base address.
11960 branch_offset = (branch_offset + 2) & ~3;
11961
11962 // Put BRANCH_OFFSET back into the insn.
11963 gold_assert(!Bits<25>::has_overflow32(branch_offset));
11964 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11965 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11966 break;
11967
11968 default:
11969 gold_unreachable();
11970 }
11971
11972 // Put the relocated value back in the object file:
11973 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11974 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11975 }
11976
11977 // Target selector for ARM. Note this is never instantiated directly.
11978 // It's only used in Target_selector_arm_nacl, below.
11979
11980 template<bool big_endian>
11981 class Target_selector_arm : public Target_selector
11982 {
11983 public:
11984 Target_selector_arm()
11985 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11986 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11987 (big_endian ? "armelfb" : "armelf"))
11988 { }
11989
11990 Target*
11991 do_instantiate_target()
11992 { return new Target_arm<big_endian>(); }
11993 };
11994
11995 // Fix .ARM.exidx section coverage.
11996
11997 template<bool big_endian>
11998 void
11999 Target_arm<big_endian>::fix_exidx_coverage(
12000 Layout* layout,
12001 const Input_objects* input_objects,
12002 Arm_output_section<big_endian>* exidx_section,
12003 Symbol_table* symtab,
12004 const Task* task)
12005 {
12006 // We need to look at all the input sections in output in ascending
12007 // order of of output address. We do that by building a sorted list
12008 // of output sections by addresses. Then we looks at the output sections
12009 // in order. The input sections in an output section are already sorted
12010 // by addresses within the output section.
12011
12012 typedef std::set<Output_section*, output_section_address_less_than>
12013 Sorted_output_section_list;
12014 Sorted_output_section_list sorted_output_sections;
12015
12016 // Find out all the output sections of input sections pointed by
12017 // EXIDX input sections.
12018 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12019 p != input_objects->relobj_end();
12020 ++p)
12021 {
12022 Arm_relobj<big_endian>* arm_relobj =
12023 Arm_relobj<big_endian>::as_arm_relobj(*p);
12024 std::vector<unsigned int> shndx_list;
12025 arm_relobj->get_exidx_shndx_list(&shndx_list);
12026 for (size_t i = 0; i < shndx_list.size(); ++i)
12027 {
12028 const Arm_exidx_input_section* exidx_input_section =
12029 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12030 gold_assert(exidx_input_section != NULL);
12031 if (!exidx_input_section->has_errors())
12032 {
12033 unsigned int text_shndx = exidx_input_section->link();
12034 Output_section* os = arm_relobj->output_section(text_shndx);
12035 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12036 sorted_output_sections.insert(os);
12037 }
12038 }
12039 }
12040
12041 // Go over the output sections in ascending order of output addresses.
12042 typedef typename Arm_output_section<big_endian>::Text_section_list
12043 Text_section_list;
12044 Text_section_list sorted_text_sections;
12045 for (typename Sorted_output_section_list::iterator p =
12046 sorted_output_sections.begin();
12047 p != sorted_output_sections.end();
12048 ++p)
12049 {
12050 Arm_output_section<big_endian>* arm_output_section =
12051 Arm_output_section<big_endian>::as_arm_output_section(*p);
12052 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12053 }
12054
12055 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12056 merge_exidx_entries(), task);
12057 }
12058
12059 template<bool big_endian>
12060 void
12061 Target_arm<big_endian>::do_define_standard_symbols(
12062 Symbol_table* symtab,
12063 Layout* layout)
12064 {
12065 // Handle the .ARM.exidx section.
12066 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12067
12068 if (exidx_section != NULL)
12069 {
12070 // Create __exidx_start and __exidx_end symbols.
12071 symtab->define_in_output_data("__exidx_start",
12072 NULL, // version
12073 Symbol_table::PREDEFINED,
12074 exidx_section,
12075 0, // value
12076 0, // symsize
12077 elfcpp::STT_NOTYPE,
12078 elfcpp::STB_GLOBAL,
12079 elfcpp::STV_HIDDEN,
12080 0, // nonvis
12081 false, // offset_is_from_end
12082 true); // only_if_ref
12083
12084 symtab->define_in_output_data("__exidx_end",
12085 NULL, // version
12086 Symbol_table::PREDEFINED,
12087 exidx_section,
12088 0, // value
12089 0, // symsize
12090 elfcpp::STT_NOTYPE,
12091 elfcpp::STB_GLOBAL,
12092 elfcpp::STV_HIDDEN,
12093 0, // nonvis
12094 true, // offset_is_from_end
12095 true); // only_if_ref
12096 }
12097 else
12098 {
12099 // Define __exidx_start and __exidx_end even when .ARM.exidx
12100 // section is missing to match ld's behaviour.
12101 symtab->define_as_constant("__exidx_start", NULL,
12102 Symbol_table::PREDEFINED,
12103 0, 0, elfcpp::STT_OBJECT,
12104 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12105 true, false);
12106 symtab->define_as_constant("__exidx_end", NULL,
12107 Symbol_table::PREDEFINED,
12108 0, 0, elfcpp::STT_OBJECT,
12109 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12110 true, false);
12111 }
12112 }
12113
12114 // NaCl variant. It uses different PLT contents.
12115
12116 template<bool big_endian>
12117 class Output_data_plt_arm_nacl;
12118
12119 template<bool big_endian>
12120 class Target_arm_nacl : public Target_arm<big_endian>
12121 {
12122 public:
12123 Target_arm_nacl()
12124 : Target_arm<big_endian>(&arm_nacl_info)
12125 { }
12126
12127 protected:
12128 virtual Output_data_plt_arm<big_endian>*
12129 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12130 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12131
12132 private:
12133 static const Target::Target_info arm_nacl_info;
12134 };
12135
12136 template<bool big_endian>
12137 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12138 {
12139 32, // size
12140 big_endian, // is_big_endian
12141 elfcpp::EM_ARM, // machine_code
12142 false, // has_make_symbol
12143 false, // has_resolve
12144 false, // has_code_fill
12145 true, // is_default_stack_executable
12146 false, // can_icf_inline_merge_sections
12147 '\0', // wrap_char
12148 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12149 0x20000, // default_text_segment_address
12150 0x10000, // abi_pagesize (overridable by -z max-page-size)
12151 0x10000, // common_pagesize (overridable by -z common-page-size)
12152 true, // isolate_execinstr
12153 0x10000000, // rosegment_gap
12154 elfcpp::SHN_UNDEF, // small_common_shndx
12155 elfcpp::SHN_UNDEF, // large_common_shndx
12156 0, // small_common_section_flags
12157 0, // large_common_section_flags
12158 ".ARM.attributes", // attributes_section
12159 "aeabi" // attributes_vendor
12160 };
12161
12162 template<bool big_endian>
12163 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12164 {
12165 public:
12166 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12167 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12168 { }
12169
12170 protected:
12171 // Return the offset of the first non-reserved PLT entry.
12172 virtual unsigned int
12173 do_first_plt_entry_offset() const
12174 { return sizeof(first_plt_entry); }
12175
12176 // Return the size of a PLT entry.
12177 virtual unsigned int
12178 do_get_plt_entry_size() const
12179 { return sizeof(plt_entry); }
12180
12181 virtual void
12182 do_fill_first_plt_entry(unsigned char* pov,
12183 Arm_address got_address,
12184 Arm_address plt_address);
12185
12186 virtual void
12187 do_fill_plt_entry(unsigned char* pov,
12188 Arm_address got_address,
12189 Arm_address plt_address,
12190 unsigned int got_offset,
12191 unsigned int plt_offset);
12192
12193 private:
12194 inline uint32_t arm_movw_immediate(uint32_t value)
12195 {
12196 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12197 }
12198
12199 inline uint32_t arm_movt_immediate(uint32_t value)
12200 {
12201 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12202 }
12203
12204 // Template for the first PLT entry.
12205 static const uint32_t first_plt_entry[16];
12206
12207 // Template for subsequent PLT entries.
12208 static const uint32_t plt_entry[4];
12209 };
12210
12211 // The first entry in the PLT.
12212 template<bool big_endian>
12213 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12214 {
12215 // First bundle:
12216 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12217 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12218 0xe08cc00f, // add ip, ip, pc
12219 0xe52dc008, // str ip, [sp, #-8]!
12220 // Second bundle:
12221 0xe3ccc103, // bic ip, ip, #0xc0000000
12222 0xe59cc000, // ldr ip, [ip]
12223 0xe3ccc13f, // bic ip, ip, #0xc000000f
12224 0xe12fff1c, // bx ip
12225 // Third bundle:
12226 0xe320f000, // nop
12227 0xe320f000, // nop
12228 0xe320f000, // nop
12229 // .Lplt_tail:
12230 0xe50dc004, // str ip, [sp, #-4]
12231 // Fourth bundle:
12232 0xe3ccc103, // bic ip, ip, #0xc0000000
12233 0xe59cc000, // ldr ip, [ip]
12234 0xe3ccc13f, // bic ip, ip, #0xc000000f
12235 0xe12fff1c, // bx ip
12236 };
12237
12238 template<bool big_endian>
12239 void
12240 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12241 unsigned char* pov,
12242 Arm_address got_address,
12243 Arm_address plt_address)
12244 {
12245 // Write first PLT entry. All but first two words are constants.
12246 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12247 / sizeof(first_plt_entry[0]));
12248
12249 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12250
12251 elfcpp::Swap<32, big_endian>::writeval
12252 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12253 elfcpp::Swap<32, big_endian>::writeval
12254 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12255
12256 for (size_t i = 2; i < num_first_plt_words; ++i)
12257 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12258 }
12259
12260 // Subsequent entries in the PLT.
12261
12262 template<bool big_endian>
12263 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12264 {
12265 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12266 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12267 0xe08cc00f, // add ip, ip, pc
12268 0xea000000, // b .Lplt_tail
12269 };
12270
12271 template<bool big_endian>
12272 void
12273 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12274 unsigned char* pov,
12275 Arm_address got_address,
12276 Arm_address plt_address,
12277 unsigned int got_offset,
12278 unsigned int plt_offset)
12279 {
12280 // Calculate the displacement between the PLT slot and the
12281 // common tail that's part of the special initial PLT slot.
12282 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12283 - (plt_address + plt_offset
12284 + sizeof(plt_entry) + sizeof(uint32_t)));
12285 gold_assert((tail_displacement & 3) == 0);
12286 tail_displacement >>= 2;
12287
12288 gold_assert ((tail_displacement & 0xff000000) == 0
12289 || (-tail_displacement & 0xff000000) == 0);
12290
12291 // Calculate the displacement between the PLT slot and the entry
12292 // in the GOT. The offset accounts for the value produced by
12293 // adding to pc in the penultimate instruction of the PLT stub.
12294 const int32_t got_displacement = (got_address + got_offset
12295 - (plt_address + sizeof(plt_entry)));
12296
12297 elfcpp::Swap<32, big_endian>::writeval
12298 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12299 elfcpp::Swap<32, big_endian>::writeval
12300 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12301 elfcpp::Swap<32, big_endian>::writeval
12302 (pov + 8, plt_entry[2]);
12303 elfcpp::Swap<32, big_endian>::writeval
12304 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12305 }
12306
12307 // Target selectors.
12308
12309 template<bool big_endian>
12310 class Target_selector_arm_nacl
12311 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12312 Target_arm_nacl<big_endian> >
12313 {
12314 public:
12315 Target_selector_arm_nacl()
12316 : Target_selector_nacl<Target_selector_arm<big_endian>,
12317 Target_arm_nacl<big_endian> >(
12318 "arm",
12319 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12320 big_endian ? "armelfb_nacl" : "armelf_nacl")
12321 { }
12322 };
12323
12324 Target_selector_arm_nacl<false> target_selector_arm;
12325 Target_selector_arm_nacl<true> target_selector_armbe;
12326
12327 } // End anonymous namespace.
This page took 0.300526 seconds and 5 git commands to generate.