2011-07-05 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
110 //
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
151 // Factory methods to create instruction templates in different formats.
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
210
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
440
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457 };
458
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
511 {
512 if (symbol != NULL)
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
516 }
517 else
518 {
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 //
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
989
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072 private:
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146 public:
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1151 { }
1152
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1174
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221 {
1222 *poutput = offset;
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251 public:
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
1332
1333 bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342 public:
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1382 const Task* task);
1383
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
1442 // Return address alignment of EXIDX input section.
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1476 bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1495 { }
1496
1497 ~Arm_relobj()
1498 { delete this->attributes_section_data_; }
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1503 {
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511 {
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686 private:
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1693
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1698
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1724 void
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766 public:
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1771 { }
1772
1773 ~Arm_dynobj()
1774 { delete this->attributes_section_data_; }
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097 default:
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2100 }
2101 }
2102 }
2103 };
2104
2105 // Utilities for manipulating integers of up to 32-bits
2106
2107 namespace utils
2108 {
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2114 {
2115 gold_assert(no_bits >= 0 && no_bits <= 32);
2116 if (no_bits == 32)
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119 bits &= mask;
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123 }
2124
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2127 static inline bool
2128 has_overflow(uint32_t bits)
2129 {
2130 gold_assert(no_bits >= 0 && no_bits <= 32);
2131 if (no_bits == 32)
2132 return false;
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2137 }
2138
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2144 static inline bool
2145 has_signed_unsigned_overflow(uint32_t bits)
2146 {
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2148 if (no_bits == 32)
2149 return false;
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2154 }
2155
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2162 };
2163
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2166 {
2167 public:
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169 Reloc_section;
2170
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
2174 Target_arm()
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180 may_use_blx_(false), should_force_pic_veneer_(false),
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2183 { }
2184
2185 // Whether we can use BLX.
2186 bool
2187 may_use_blx() const
2188 { return this->may_use_blx_; }
2189
2190 // Set use-BLX flag.
2191 void
2192 set_may_use_blx(bool value)
2193 { this->may_use_blx_ = value; }
2194
2195 // Whether we force PCI branch veneers.
2196 bool
2197 should_force_pic_veneer() const
2198 { return this->should_force_pic_veneer_; }
2199
2200 // Set PIC veneer flag.
2201 void
2202 set_should_force_pic_veneer(bool value)
2203 { this->should_force_pic_veneer_ = value; }
2204
2205 // Whether we use THUMB-2 instructions.
2206 bool
2207 using_thumb2() const
2208 {
2209 Object_attribute* attr =
2210 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2211 int arch = attr->int_value();
2212 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2213 }
2214
2215 // Whether we use THUMB/THUMB-2 instructions only.
2216 bool
2217 using_thumb_only() const
2218 {
2219 Object_attribute* attr =
2220 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2221
2222 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2223 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2224 return true;
2225 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2226 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2227 return false;
2228 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2229 return attr->int_value() == 'M';
2230 }
2231
2232 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2233 bool
2234 may_use_arm_nop() const
2235 {
2236 Object_attribute* attr =
2237 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2238 int arch = attr->int_value();
2239 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2240 || arch == elfcpp::TAG_CPU_ARCH_V6K
2241 || arch == elfcpp::TAG_CPU_ARCH_V7
2242 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2243 }
2244
2245 // Whether we have THUMB-2 NOP.W instruction.
2246 bool
2247 may_use_thumb2_nop() const
2248 {
2249 Object_attribute* attr =
2250 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2251 int arch = attr->int_value();
2252 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2253 || arch == elfcpp::TAG_CPU_ARCH_V7
2254 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2255 }
2256
2257 // Process the relocations to determine unreferenced sections for
2258 // garbage collection.
2259 void
2260 gc_process_relocs(Symbol_table* symtab,
2261 Layout* layout,
2262 Sized_relobj_file<32, big_endian>* object,
2263 unsigned int data_shndx,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 size_t local_symbol_count,
2270 const unsigned char* plocal_symbols);
2271
2272 // Scan the relocations to look for symbol adjustments.
2273 void
2274 scan_relocs(Symbol_table* symtab,
2275 Layout* layout,
2276 Sized_relobj_file<32, big_endian>* object,
2277 unsigned int data_shndx,
2278 unsigned int sh_type,
2279 const unsigned char* prelocs,
2280 size_t reloc_count,
2281 Output_section* output_section,
2282 bool needs_special_offset_handling,
2283 size_t local_symbol_count,
2284 const unsigned char* plocal_symbols);
2285
2286 // Finalize the sections.
2287 void
2288 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2289
2290 // Return the value to use for a dynamic symbol which requires special
2291 // treatment.
2292 uint64_t
2293 do_dynsym_value(const Symbol*) const;
2294
2295 // Relocate a section.
2296 void
2297 relocate_section(const Relocate_info<32, big_endian>*,
2298 unsigned int sh_type,
2299 const unsigned char* prelocs,
2300 size_t reloc_count,
2301 Output_section* output_section,
2302 bool needs_special_offset_handling,
2303 unsigned char* view,
2304 Arm_address view_address,
2305 section_size_type view_size,
2306 const Reloc_symbol_changes*);
2307
2308 // Scan the relocs during a relocatable link.
2309 void
2310 scan_relocatable_relocs(Symbol_table* symtab,
2311 Layout* layout,
2312 Sized_relobj_file<32, big_endian>* object,
2313 unsigned int data_shndx,
2314 unsigned int sh_type,
2315 const unsigned char* prelocs,
2316 size_t reloc_count,
2317 Output_section* output_section,
2318 bool needs_special_offset_handling,
2319 size_t local_symbol_count,
2320 const unsigned char* plocal_symbols,
2321 Relocatable_relocs*);
2322
2323 // Relocate a section during a relocatable link.
2324 void
2325 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2326 unsigned int sh_type,
2327 const unsigned char* prelocs,
2328 size_t reloc_count,
2329 Output_section* output_section,
2330 off_t offset_in_output_section,
2331 const Relocatable_relocs*,
2332 unsigned char* view,
2333 Arm_address view_address,
2334 section_size_type view_size,
2335 unsigned char* reloc_view,
2336 section_size_type reloc_view_size);
2337
2338 // Perform target-specific processing in a relocatable link. This is
2339 // only used if we use the relocation strategy RELOC_SPECIAL.
2340 void
2341 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2342 unsigned int sh_type,
2343 const unsigned char* preloc_in,
2344 size_t relnum,
2345 Output_section* output_section,
2346 off_t offset_in_output_section,
2347 unsigned char* view,
2348 typename elfcpp::Elf_types<32>::Elf_Addr
2349 view_address,
2350 section_size_type view_size,
2351 unsigned char* preloc_out);
2352
2353 // Return whether SYM is defined by the ABI.
2354 bool
2355 do_is_defined_by_abi(Symbol* sym) const
2356 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2357
2358 // Return whether there is a GOT section.
2359 bool
2360 has_got_section() const
2361 { return this->got_ != NULL; }
2362
2363 // Return the size of the GOT section.
2364 section_size_type
2365 got_size() const
2366 {
2367 gold_assert(this->got_ != NULL);
2368 return this->got_->data_size();
2369 }
2370
2371 // Return the number of entries in the GOT.
2372 unsigned int
2373 got_entry_count() const
2374 {
2375 if (!this->has_got_section())
2376 return 0;
2377 return this->got_size() / 4;
2378 }
2379
2380 // Return the number of entries in the PLT.
2381 unsigned int
2382 plt_entry_count() const;
2383
2384 // Return the offset of the first non-reserved PLT entry.
2385 unsigned int
2386 first_plt_entry_offset() const;
2387
2388 // Return the size of each PLT entry.
2389 unsigned int
2390 plt_entry_size() const;
2391
2392 // Map platform-specific reloc types
2393 static unsigned int
2394 get_real_reloc_type(unsigned int r_type);
2395
2396 //
2397 // Methods to support stub-generations.
2398 //
2399
2400 // Return the stub factory
2401 const Stub_factory&
2402 stub_factory() const
2403 { return this->stub_factory_; }
2404
2405 // Make a new Arm_input_section object.
2406 Arm_input_section<big_endian>*
2407 new_arm_input_section(Relobj*, unsigned int);
2408
2409 // Find the Arm_input_section object corresponding to the SHNDX-th input
2410 // section of RELOBJ.
2411 Arm_input_section<big_endian>*
2412 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2413
2414 // Make a new Stub_table
2415 Stub_table<big_endian>*
2416 new_stub_table(Arm_input_section<big_endian>*);
2417
2418 // Scan a section for stub generation.
2419 void
2420 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2421 const unsigned char*, size_t, Output_section*,
2422 bool, const unsigned char*, Arm_address,
2423 section_size_type);
2424
2425 // Relocate a stub.
2426 void
2427 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2428 Output_section*, unsigned char*, Arm_address,
2429 section_size_type);
2430
2431 // Get the default ARM target.
2432 static Target_arm<big_endian>*
2433 default_target()
2434 {
2435 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2436 && parameters->target().is_big_endian() == big_endian);
2437 return static_cast<Target_arm<big_endian>*>(
2438 parameters->sized_target<32, big_endian>());
2439 }
2440
2441 // Whether NAME belongs to a mapping symbol.
2442 static bool
2443 is_mapping_symbol_name(const char* name)
2444 {
2445 return (name
2446 && name[0] == '$'
2447 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2448 && (name[2] == '\0' || name[2] == '.'));
2449 }
2450
2451 // Whether we work around the Cortex-A8 erratum.
2452 bool
2453 fix_cortex_a8() const
2454 { return this->fix_cortex_a8_; }
2455
2456 // Whether we merge exidx entries in debuginfo.
2457 bool
2458 merge_exidx_entries() const
2459 { return parameters->options().merge_exidx_entries(); }
2460
2461 // Whether we fix R_ARM_V4BX relocation.
2462 // 0 - do not fix
2463 // 1 - replace with MOV instruction (armv4 target)
2464 // 2 - make interworking veneer (>= armv4t targets only)
2465 General_options::Fix_v4bx
2466 fix_v4bx() const
2467 { return parameters->options().fix_v4bx(); }
2468
2469 // Scan a span of THUMB code section for Cortex-A8 erratum.
2470 void
2471 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2472 section_size_type, section_size_type,
2473 const unsigned char*, Arm_address);
2474
2475 // Apply Cortex-A8 workaround to a branch.
2476 void
2477 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2478 unsigned char*, Arm_address);
2479
2480 protected:
2481 // Make an ELF object.
2482 Object*
2483 do_make_elf_object(const std::string&, Input_file*, off_t,
2484 const elfcpp::Ehdr<32, big_endian>& ehdr);
2485
2486 Object*
2487 do_make_elf_object(const std::string&, Input_file*, off_t,
2488 const elfcpp::Ehdr<32, !big_endian>&)
2489 { gold_unreachable(); }
2490
2491 Object*
2492 do_make_elf_object(const std::string&, Input_file*, off_t,
2493 const elfcpp::Ehdr<64, false>&)
2494 { gold_unreachable(); }
2495
2496 Object*
2497 do_make_elf_object(const std::string&, Input_file*, off_t,
2498 const elfcpp::Ehdr<64, true>&)
2499 { gold_unreachable(); }
2500
2501 // Make an output section.
2502 Output_section*
2503 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2504 elfcpp::Elf_Xword flags)
2505 { return new Arm_output_section<big_endian>(name, type, flags); }
2506
2507 void
2508 do_adjust_elf_header(unsigned char* view, int len) const;
2509
2510 // We only need to generate stubs, and hence perform relaxation if we are
2511 // not doing relocatable linking.
2512 bool
2513 do_may_relax() const
2514 { return !parameters->options().relocatable(); }
2515
2516 bool
2517 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2518
2519 // Determine whether an object attribute tag takes an integer, a
2520 // string or both.
2521 int
2522 do_attribute_arg_type(int tag) const;
2523
2524 // Reorder tags during output.
2525 int
2526 do_attributes_order(int num) const;
2527
2528 // This is called when the target is selected as the default.
2529 void
2530 do_select_as_default_target()
2531 {
2532 // No locking is required since there should only be one default target.
2533 // We cannot have both the big-endian and little-endian ARM targets
2534 // as the default.
2535 gold_assert(arm_reloc_property_table == NULL);
2536 arm_reloc_property_table = new Arm_reloc_property_table();
2537 }
2538
2539 // Virtual function which is set to return true by a target if
2540 // it can use relocation types to determine if a function's
2541 // pointer is taken.
2542 virtual bool
2543 do_can_check_for_function_pointers() const
2544 { return true; }
2545
2546 // Whether a section called SECTION_NAME may have function pointers to
2547 // sections not eligible for safe ICF folding.
2548 virtual bool
2549 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2550 {
2551 return (!is_prefix_of(".ARM.exidx", section_name)
2552 && !is_prefix_of(".ARM.extab", section_name)
2553 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2554 }
2555
2556 private:
2557 // The class which scans relocations.
2558 class Scan
2559 {
2560 public:
2561 Scan()
2562 : issued_non_pic_error_(false)
2563 { }
2564
2565 static inline int
2566 get_reference_flags(unsigned int r_type);
2567
2568 inline void
2569 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2570 Sized_relobj_file<32, big_endian>* object,
2571 unsigned int data_shndx,
2572 Output_section* output_section,
2573 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574 const elfcpp::Sym<32, big_endian>& lsym);
2575
2576 inline void
2577 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2578 Sized_relobj_file<32, big_endian>* object,
2579 unsigned int data_shndx,
2580 Output_section* output_section,
2581 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2582 Symbol* gsym);
2583
2584 inline bool
2585 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2586 Sized_relobj_file<32, big_endian>* ,
2587 unsigned int ,
2588 Output_section* ,
2589 const elfcpp::Rel<32, big_endian>& ,
2590 unsigned int ,
2591 const elfcpp::Sym<32, big_endian>&);
2592
2593 inline bool
2594 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2595 Sized_relobj_file<32, big_endian>* ,
2596 unsigned int ,
2597 Output_section* ,
2598 const elfcpp::Rel<32, big_endian>& ,
2599 unsigned int , Symbol*);
2600
2601 private:
2602 static void
2603 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2604 unsigned int r_type);
2605
2606 static void
2607 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2608 unsigned int r_type, Symbol*);
2609
2610 void
2611 check_non_pic(Relobj*, unsigned int r_type);
2612
2613 // Almost identical to Symbol::needs_plt_entry except that it also
2614 // handles STT_ARM_TFUNC.
2615 static bool
2616 symbol_needs_plt_entry(const Symbol* sym)
2617 {
2618 // An undefined symbol from an executable does not need a PLT entry.
2619 if (sym->is_undefined() && !parameters->options().shared())
2620 return false;
2621
2622 return (!parameters->doing_static_link()
2623 && (sym->type() == elfcpp::STT_FUNC
2624 || sym->type() == elfcpp::STT_ARM_TFUNC)
2625 && (sym->is_from_dynobj()
2626 || sym->is_undefined()
2627 || sym->is_preemptible()));
2628 }
2629
2630 inline bool
2631 possible_function_pointer_reloc(unsigned int r_type);
2632
2633 // Whether we have issued an error about a non-PIC compilation.
2634 bool issued_non_pic_error_;
2635 };
2636
2637 // The class which implements relocation.
2638 class Relocate
2639 {
2640 public:
2641 Relocate()
2642 { }
2643
2644 ~Relocate()
2645 { }
2646
2647 // Return whether the static relocation needs to be applied.
2648 inline bool
2649 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2650 unsigned int r_type,
2651 bool is_32bit,
2652 Output_section* output_section);
2653
2654 // Do a relocation. Return false if the caller should not issue
2655 // any warnings about this relocation.
2656 inline bool
2657 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658 Output_section*, size_t relnum,
2659 const elfcpp::Rel<32, big_endian>&,
2660 unsigned int r_type, const Sized_symbol<32>*,
2661 const Symbol_value<32>*,
2662 unsigned char*, Arm_address,
2663 section_size_type);
2664
2665 // Return whether we want to pass flag NON_PIC_REF for this
2666 // reloc. This means the relocation type accesses a symbol not via
2667 // GOT or PLT.
2668 static inline bool
2669 reloc_is_non_pic(unsigned int r_type)
2670 {
2671 switch (r_type)
2672 {
2673 // These relocation types reference GOT or PLT entries explicitly.
2674 case elfcpp::R_ARM_GOT_BREL:
2675 case elfcpp::R_ARM_GOT_ABS:
2676 case elfcpp::R_ARM_GOT_PREL:
2677 case elfcpp::R_ARM_GOT_BREL12:
2678 case elfcpp::R_ARM_PLT32_ABS:
2679 case elfcpp::R_ARM_TLS_GD32:
2680 case elfcpp::R_ARM_TLS_LDM32:
2681 case elfcpp::R_ARM_TLS_IE32:
2682 case elfcpp::R_ARM_TLS_IE12GP:
2683
2684 // These relocate types may use PLT entries.
2685 case elfcpp::R_ARM_CALL:
2686 case elfcpp::R_ARM_THM_CALL:
2687 case elfcpp::R_ARM_JUMP24:
2688 case elfcpp::R_ARM_THM_JUMP24:
2689 case elfcpp::R_ARM_THM_JUMP19:
2690 case elfcpp::R_ARM_PLT32:
2691 case elfcpp::R_ARM_THM_XPC22:
2692 case elfcpp::R_ARM_PREL31:
2693 case elfcpp::R_ARM_SBREL31:
2694 return false;
2695
2696 default:
2697 return true;
2698 }
2699 }
2700
2701 private:
2702 // Do a TLS relocation.
2703 inline typename Arm_relocate_functions<big_endian>::Status
2704 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706 const Sized_symbol<32>*, const Symbol_value<32>*,
2707 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2708 section_size_type);
2709
2710 };
2711
2712 // A class which returns the size required for a relocation type,
2713 // used while scanning relocs during a relocatable link.
2714 class Relocatable_size_for_reloc
2715 {
2716 public:
2717 unsigned int
2718 get_size_for_reloc(unsigned int, Relobj*);
2719 };
2720
2721 // Adjust TLS relocation type based on the options and whether this
2722 // is a local symbol.
2723 static tls::Tls_optimization
2724 optimize_tls_reloc(bool is_final, int r_type);
2725
2726 // Get the GOT section, creating it if necessary.
2727 Arm_output_data_got<big_endian>*
2728 got_section(Symbol_table*, Layout*);
2729
2730 // Get the GOT PLT section.
2731 Output_data_space*
2732 got_plt_section() const
2733 {
2734 gold_assert(this->got_plt_ != NULL);
2735 return this->got_plt_;
2736 }
2737
2738 // Create a PLT entry for a global symbol.
2739 void
2740 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2741
2742 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2743 void
2744 define_tls_base_symbol(Symbol_table*, Layout*);
2745
2746 // Create a GOT entry for the TLS module index.
2747 unsigned int
2748 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2749 Sized_relobj_file<32, big_endian>* object);
2750
2751 // Get the PLT section.
2752 const Output_data_plt_arm<big_endian>*
2753 plt_section() const
2754 {
2755 gold_assert(this->plt_ != NULL);
2756 return this->plt_;
2757 }
2758
2759 // Get the dynamic reloc section, creating it if necessary.
2760 Reloc_section*
2761 rel_dyn_section(Layout*);
2762
2763 // Get the section to use for TLS_DESC relocations.
2764 Reloc_section*
2765 rel_tls_desc_section(Layout*) const;
2766
2767 // Return true if the symbol may need a COPY relocation.
2768 // References from an executable object to non-function symbols
2769 // defined in a dynamic object may need a COPY relocation.
2770 bool
2771 may_need_copy_reloc(Symbol* gsym)
2772 {
2773 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774 && gsym->may_need_copy_reloc());
2775 }
2776
2777 // Add a potential copy relocation.
2778 void
2779 copy_reloc(Symbol_table* symtab, Layout* layout,
2780 Sized_relobj_file<32, big_endian>* object,
2781 unsigned int shndx, Output_section* output_section,
2782 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2783 {
2784 this->copy_relocs_.copy_reloc(symtab, layout,
2785 symtab->get_sized_symbol<32>(sym),
2786 object, shndx, output_section, reloc,
2787 this->rel_dyn_section(layout));
2788 }
2789
2790 // Whether two EABI versions are compatible.
2791 static bool
2792 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2793
2794 // Merge processor-specific flags from input object and those in the ELF
2795 // header of the output.
2796 void
2797 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2798
2799 // Get the secondary compatible architecture.
2800 static int
2801 get_secondary_compatible_arch(const Attributes_section_data*);
2802
2803 // Set the secondary compatible architecture.
2804 static void
2805 set_secondary_compatible_arch(Attributes_section_data*, int);
2806
2807 static int
2808 tag_cpu_arch_combine(const char*, int, int*, int, int);
2809
2810 // Helper to print AEABI enum tag value.
2811 static std::string
2812 aeabi_enum_name(unsigned int);
2813
2814 // Return string value for TAG_CPU_name.
2815 static std::string
2816 tag_cpu_name_value(unsigned int);
2817
2818 // Merge object attributes from input object and those in the output.
2819 void
2820 merge_object_attributes(const char*, const Attributes_section_data*);
2821
2822 // Helper to get an AEABI object attribute
2823 Object_attribute*
2824 get_aeabi_object_attribute(int tag) const
2825 {
2826 Attributes_section_data* pasd = this->attributes_section_data_;
2827 gold_assert(pasd != NULL);
2828 Object_attribute* attr =
2829 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830 gold_assert(attr != NULL);
2831 return attr;
2832 }
2833
2834 //
2835 // Methods to support stub-generations.
2836 //
2837
2838 // Group input sections for stub generation.
2839 void
2840 group_sections(Layout*, section_size_type, bool, const Task*);
2841
2842 // Scan a relocation for stub generation.
2843 void
2844 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845 const Sized_symbol<32>*, unsigned int,
2846 const Symbol_value<32>*,
2847 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2848
2849 // Scan a relocation section for stub.
2850 template<int sh_type>
2851 void
2852 scan_reloc_section_for_stubs(
2853 const Relocate_info<32, big_endian>* relinfo,
2854 const unsigned char* prelocs,
2855 size_t reloc_count,
2856 Output_section* output_section,
2857 bool needs_special_offset_handling,
2858 const unsigned char* view,
2859 elfcpp::Elf_types<32>::Elf_Addr view_address,
2860 section_size_type);
2861
2862 // Fix .ARM.exidx section coverage.
2863 void
2864 fix_exidx_coverage(Layout*, const Input_objects*,
2865 Arm_output_section<big_endian>*, Symbol_table*,
2866 const Task*);
2867
2868 // Functors for STL set.
2869 struct output_section_address_less_than
2870 {
2871 bool
2872 operator()(const Output_section* s1, const Output_section* s2) const
2873 { return s1->address() < s2->address(); }
2874 };
2875
2876 // Information about this specific target which we pass to the
2877 // general Target structure.
2878 static const Target::Target_info arm_info;
2879
2880 // The types of GOT entries needed for this platform.
2881 // These values are exposed to the ABI in an incremental link.
2882 // Do not renumber existing values without changing the version
2883 // number of the .gnu_incremental_inputs section.
2884 enum Got_type
2885 {
2886 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2887 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2888 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2889 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2890 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2891 };
2892
2893 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2894
2895 // Map input section to Arm_input_section.
2896 typedef Unordered_map<Section_id,
2897 Arm_input_section<big_endian>*,
2898 Section_id_hash>
2899 Arm_input_section_map;
2900
2901 // Map output addresses to relocs for Cortex-A8 erratum.
2902 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903 Cortex_a8_relocs_info;
2904
2905 // The GOT section.
2906 Arm_output_data_got<big_endian>* got_;
2907 // The PLT section.
2908 Output_data_plt_arm<big_endian>* plt_;
2909 // The GOT PLT section.
2910 Output_data_space* got_plt_;
2911 // The dynamic reloc section.
2912 Reloc_section* rel_dyn_;
2913 // Relocs saved to avoid a COPY reloc.
2914 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915 // Space for variables copied with a COPY reloc.
2916 Output_data_space* dynbss_;
2917 // Offset of the GOT entry for the TLS module index.
2918 unsigned int got_mod_index_offset_;
2919 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920 bool tls_base_symbol_defined_;
2921 // Vector of Stub_tables created.
2922 Stub_table_list stub_tables_;
2923 // Stub factory.
2924 const Stub_factory &stub_factory_;
2925 // Whether we can use BLX.
2926 bool may_use_blx_;
2927 // Whether we force PIC branch veneers.
2928 bool should_force_pic_veneer_;
2929 // Map for locating Arm_input_sections.
2930 Arm_input_section_map arm_input_section_map_;
2931 // Attributes section data in output.
2932 Attributes_section_data* attributes_section_data_;
2933 // Whether we want to fix code for Cortex-A8 erratum.
2934 bool fix_cortex_a8_;
2935 // Map addresses to relocs for Cortex-A8 erratum.
2936 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2937 };
2938
2939 template<bool big_endian>
2940 const Target::Target_info Target_arm<big_endian>::arm_info =
2941 {
2942 32, // size
2943 big_endian, // is_big_endian
2944 elfcpp::EM_ARM, // machine_code
2945 false, // has_make_symbol
2946 false, // has_resolve
2947 false, // has_code_fill
2948 true, // is_default_stack_executable
2949 false, // can_icf_inline_merge_sections
2950 '\0', // wrap_char
2951 "/usr/lib/libc.so.1", // dynamic_linker
2952 0x8000, // default_text_segment_address
2953 0x1000, // abi_pagesize (overridable by -z max-page-size)
2954 0x1000, // common_pagesize (overridable by -z common-page-size)
2955 elfcpp::SHN_UNDEF, // small_common_shndx
2956 elfcpp::SHN_UNDEF, // large_common_shndx
2957 0, // small_common_section_flags
2958 0, // large_common_section_flags
2959 ".ARM.attributes", // attributes_section
2960 "aeabi" // attributes_vendor
2961 };
2962
2963 // Arm relocate functions class
2964 //
2965
2966 template<bool big_endian>
2967 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2968 {
2969 public:
2970 typedef enum
2971 {
2972 STATUS_OKAY, // No error during relocation.
2973 STATUS_OVERFLOW, // Relocation overflow.
2974 STATUS_BAD_RELOC // Relocation cannot be applied.
2975 } Status;
2976
2977 private:
2978 typedef Relocate_functions<32, big_endian> Base;
2979 typedef Arm_relocate_functions<big_endian> This;
2980
2981 // Encoding of imm16 argument for movt and movw ARM instructions
2982 // from ARM ARM:
2983 //
2984 // imm16 := imm4 | imm12
2985 //
2986 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2987 // +-------+---------------+-------+-------+-----------------------+
2988 // | | |imm4 | |imm12 |
2989 // +-------+---------------+-------+-------+-----------------------+
2990
2991 // Extract the relocation addend from VAL based on the ARM
2992 // instruction encoding described above.
2993 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2994 extract_arm_movw_movt_addend(
2995 typename elfcpp::Swap<32, big_endian>::Valtype val)
2996 {
2997 // According to the Elf ABI for ARM Architecture the immediate
2998 // field is sign-extended to form the addend.
2999 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3000 }
3001
3002 // Insert X into VAL based on the ARM instruction encoding described
3003 // above.
3004 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005 insert_val_arm_movw_movt(
3006 typename elfcpp::Swap<32, big_endian>::Valtype val,
3007 typename elfcpp::Swap<32, big_endian>::Valtype x)
3008 {
3009 val &= 0xfff0f000;
3010 val |= x & 0x0fff;
3011 val |= (x & 0xf000) << 4;
3012 return val;
3013 }
3014
3015 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3016 // from ARM ARM:
3017 //
3018 // imm16 := imm4 | i | imm3 | imm8
3019 //
3020 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3021 // +---------+-+-----------+-------++-+-----+-------+---------------+
3022 // | |i| |imm4 || |imm3 | |imm8 |
3023 // +---------+-+-----------+-------++-+-----+-------+---------------+
3024
3025 // Extract the relocation addend from VAL based on the Thumb2
3026 // instruction encoding described above.
3027 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3028 extract_thumb_movw_movt_addend(
3029 typename elfcpp::Swap<32, big_endian>::Valtype val)
3030 {
3031 // According to the Elf ABI for ARM Architecture the immediate
3032 // field is sign-extended to form the addend.
3033 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3034 | ((val >> 15) & 0x0800)
3035 | ((val >> 4) & 0x0700)
3036 | (val & 0x00ff));
3037 }
3038
3039 // Insert X into VAL based on the Thumb2 instruction encoding
3040 // described above.
3041 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3042 insert_val_thumb_movw_movt(
3043 typename elfcpp::Swap<32, big_endian>::Valtype val,
3044 typename elfcpp::Swap<32, big_endian>::Valtype x)
3045 {
3046 val &= 0xfbf08f00;
3047 val |= (x & 0xf000) << 4;
3048 val |= (x & 0x0800) << 15;
3049 val |= (x & 0x0700) << 4;
3050 val |= (x & 0x00ff);
3051 return val;
3052 }
3053
3054 // Calculate the smallest constant Kn for the specified residual.
3055 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3056 static uint32_t
3057 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3058 {
3059 int32_t msb;
3060
3061 if (residual == 0)
3062 return 0;
3063 // Determine the most significant bit in the residual and
3064 // align the resulting value to a 2-bit boundary.
3065 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3066 ;
3067 // The desired shift is now (msb - 6), or zero, whichever
3068 // is the greater.
3069 return (((msb - 6) < 0) ? 0 : (msb - 6));
3070 }
3071
3072 // Calculate the final residual for the specified group index.
3073 // If the passed group index is less than zero, the method will return
3074 // the value of the specified residual without any change.
3075 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3076 static typename elfcpp::Swap<32, big_endian>::Valtype
3077 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3078 const int group)
3079 {
3080 for (int n = 0; n <= group; n++)
3081 {
3082 // Calculate which part of the value to mask.
3083 uint32_t shift = calc_grp_kn(residual);
3084 // Calculate the residual for the next time around.
3085 residual &= ~(residual & (0xff << shift));
3086 }
3087
3088 return residual;
3089 }
3090
3091 // Calculate the value of Gn for the specified group index.
3092 // We return it in the form of an encoded constant-and-rotation.
3093 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3094 static typename elfcpp::Swap<32, big_endian>::Valtype
3095 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3096 const int group)
3097 {
3098 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3099 uint32_t shift = 0;
3100
3101 for (int n = 0; n <= group; n++)
3102 {
3103 // Calculate which part of the value to mask.
3104 shift = calc_grp_kn(residual);
3105 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3106 gn = residual & (0xff << shift);
3107 // Calculate the residual for the next time around.
3108 residual &= ~gn;
3109 }
3110 // Return Gn in the form of an encoded constant-and-rotation.
3111 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3112 }
3113
3114 public:
3115 // Handle ARM long branches.
3116 static typename This::Status
3117 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3118 unsigned char*, const Sized_symbol<32>*,
3119 const Arm_relobj<big_endian>*, unsigned int,
3120 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3121
3122 // Handle THUMB long branches.
3123 static typename This::Status
3124 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3125 unsigned char*, const Sized_symbol<32>*,
3126 const Arm_relobj<big_endian>*, unsigned int,
3127 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3128
3129
3130 // Return the branch offset of a 32-bit THUMB branch.
3131 static inline int32_t
3132 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3133 {
3134 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3135 // involving the J1 and J2 bits.
3136 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3137 uint32_t upper = upper_insn & 0x3ffU;
3138 uint32_t lower = lower_insn & 0x7ffU;
3139 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3140 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3141 uint32_t i1 = j1 ^ s ? 0 : 1;
3142 uint32_t i2 = j2 ^ s ? 0 : 1;
3143
3144 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3145 | (upper << 12) | (lower << 1));
3146 }
3147
3148 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3149 // UPPER_INSN is the original upper instruction of the branch. Caller is
3150 // responsible for overflow checking and BLX offset adjustment.
3151 static inline uint16_t
3152 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3153 {
3154 uint32_t s = offset < 0 ? 1 : 0;
3155 uint32_t bits = static_cast<uint32_t>(offset);
3156 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3157 }
3158
3159 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3160 // LOWER_INSN is the original lower instruction of the branch. Caller is
3161 // responsible for overflow checking and BLX offset adjustment.
3162 static inline uint16_t
3163 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3164 {
3165 uint32_t s = offset < 0 ? 1 : 0;
3166 uint32_t bits = static_cast<uint32_t>(offset);
3167 return ((lower_insn & ~0x2fffU)
3168 | ((((bits >> 23) & 1) ^ !s) << 13)
3169 | ((((bits >> 22) & 1) ^ !s) << 11)
3170 | ((bits >> 1) & 0x7ffU));
3171 }
3172
3173 // Return the branch offset of a 32-bit THUMB conditional branch.
3174 static inline int32_t
3175 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3176 {
3177 uint32_t s = (upper_insn & 0x0400U) >> 10;
3178 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3179 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3180 uint32_t lower = (lower_insn & 0x07ffU);
3181 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3182
3183 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3184 }
3185
3186 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3187 // instruction. UPPER_INSN is the original upper instruction of the branch.
3188 // Caller is responsible for overflow checking.
3189 static inline uint16_t
3190 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3191 {
3192 uint32_t s = offset < 0 ? 1 : 0;
3193 uint32_t bits = static_cast<uint32_t>(offset);
3194 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3195 }
3196
3197 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3198 // instruction. LOWER_INSN is the original lower instruction of the branch.
3199 // The caller is responsible for overflow checking.
3200 static inline uint16_t
3201 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3202 {
3203 uint32_t bits = static_cast<uint32_t>(offset);
3204 uint32_t j2 = (bits & 0x00080000U) >> 19;
3205 uint32_t j1 = (bits & 0x00040000U) >> 18;
3206 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3207
3208 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3209 }
3210
3211 // R_ARM_ABS8: S + A
3212 static inline typename This::Status
3213 abs8(unsigned char* view,
3214 const Sized_relobj_file<32, big_endian>* object,
3215 const Symbol_value<32>* psymval)
3216 {
3217 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3218 Valtype* wv = reinterpret_cast<Valtype*>(view);
3219 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3220 int32_t addend = utils::sign_extend<8>(val);
3221 Arm_address x = psymval->value(object, addend);
3222 val = utils::bit_select(val, x, 0xffU);
3223 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3224
3225 // R_ARM_ABS8 permits signed or unsigned results.
3226 int signed_x = static_cast<int32_t>(x);
3227 return ((signed_x < -128 || signed_x > 255)
3228 ? This::STATUS_OVERFLOW
3229 : This::STATUS_OKAY);
3230 }
3231
3232 // R_ARM_THM_ABS5: S + A
3233 static inline typename This::Status
3234 thm_abs5(unsigned char* view,
3235 const Sized_relobj_file<32, big_endian>* object,
3236 const Symbol_value<32>* psymval)
3237 {
3238 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240 Valtype* wv = reinterpret_cast<Valtype*>(view);
3241 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242 Reltype addend = (val & 0x7e0U) >> 6;
3243 Reltype x = psymval->value(object, addend);
3244 val = utils::bit_select(val, x << 6, 0x7e0U);
3245 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3246
3247 // R_ARM_ABS16 permits signed or unsigned results.
3248 int signed_x = static_cast<int32_t>(x);
3249 return ((signed_x < -32768 || signed_x > 65535)
3250 ? This::STATUS_OVERFLOW
3251 : This::STATUS_OKAY);
3252 }
3253
3254 // R_ARM_ABS12: S + A
3255 static inline typename This::Status
3256 abs12(unsigned char* view,
3257 const Sized_relobj_file<32, big_endian>* object,
3258 const Symbol_value<32>* psymval)
3259 {
3260 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3261 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3262 Valtype* wv = reinterpret_cast<Valtype*>(view);
3263 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3264 Reltype addend = val & 0x0fffU;
3265 Reltype x = psymval->value(object, addend);
3266 val = utils::bit_select(val, x, 0x0fffU);
3267 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3268 return (utils::has_overflow<12>(x)
3269 ? This::STATUS_OVERFLOW
3270 : This::STATUS_OKAY);
3271 }
3272
3273 // R_ARM_ABS16: S + A
3274 static inline typename This::Status
3275 abs16(unsigned char* view,
3276 const Sized_relobj_file<32, big_endian>* object,
3277 const Symbol_value<32>* psymval)
3278 {
3279 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3280 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3281 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3282 int32_t addend = utils::sign_extend<16>(val);
3283 Arm_address x = psymval->value(object, addend);
3284 val = utils::bit_select(val, x, 0xffffU);
3285 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3286
3287 // R_ARM_ABS16 permits signed or unsigned results.
3288 int signed_x = static_cast<int32_t>(x);
3289 return ((signed_x < -32768 || signed_x > 65536)
3290 ? This::STATUS_OVERFLOW
3291 : This::STATUS_OKAY);
3292 }
3293
3294 // R_ARM_ABS32: (S + A) | T
3295 static inline typename This::Status
3296 abs32(unsigned char* view,
3297 const Sized_relobj_file<32, big_endian>* object,
3298 const Symbol_value<32>* psymval,
3299 Arm_address thumb_bit)
3300 {
3301 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3302 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3303 Valtype x = psymval->value(object, addend) | thumb_bit;
3304 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3305 return This::STATUS_OKAY;
3306 }
3307
3308 // R_ARM_REL32: (S + A) | T - P
3309 static inline typename This::Status
3310 rel32(unsigned char* view,
3311 const Sized_relobj_file<32, big_endian>* object,
3312 const Symbol_value<32>* psymval,
3313 Arm_address address,
3314 Arm_address thumb_bit)
3315 {
3316 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3317 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3318 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3319 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3320 return This::STATUS_OKAY;
3321 }
3322
3323 // R_ARM_THM_JUMP24: (S + A) | T - P
3324 static typename This::Status
3325 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3326 const Symbol_value<32>* psymval, Arm_address address,
3327 Arm_address thumb_bit);
3328
3329 // R_ARM_THM_JUMP6: S + A – P
3330 static inline typename This::Status
3331 thm_jump6(unsigned char* view,
3332 const Sized_relobj_file<32, big_endian>* object,
3333 const Symbol_value<32>* psymval,
3334 Arm_address address)
3335 {
3336 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3338 Valtype* wv = reinterpret_cast<Valtype*>(view);
3339 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3340 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3341 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3342 Reltype x = (psymval->value(object, addend) - address);
3343 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3344 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3345 // CZB does only forward jumps.
3346 return ((x > 0x007e)
3347 ? This::STATUS_OVERFLOW
3348 : This::STATUS_OKAY);
3349 }
3350
3351 // R_ARM_THM_JUMP8: S + A – P
3352 static inline typename This::Status
3353 thm_jump8(unsigned char* view,
3354 const Sized_relobj_file<32, big_endian>* object,
3355 const Symbol_value<32>* psymval,
3356 Arm_address address)
3357 {
3358 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3359 Valtype* wv = reinterpret_cast<Valtype*>(view);
3360 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3361 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3362 int32_t x = (psymval->value(object, addend) - address);
3363 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3364 | ((x & 0x01fe) >> 1)));
3365 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3366 return (utils::has_overflow<9>(x)
3367 ? This::STATUS_OVERFLOW
3368 : This::STATUS_OKAY);
3369 }
3370
3371 // R_ARM_THM_JUMP11: S + A – P
3372 static inline typename This::Status
3373 thm_jump11(unsigned char* view,
3374 const Sized_relobj_file<32, big_endian>* object,
3375 const Symbol_value<32>* psymval,
3376 Arm_address address)
3377 {
3378 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3379 Valtype* wv = reinterpret_cast<Valtype*>(view);
3380 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3381 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3382 int32_t x = (psymval->value(object, addend) - address);
3383 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3384 | ((x & 0x0ffe) >> 1)));
3385 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3386 return (utils::has_overflow<12>(x)
3387 ? This::STATUS_OVERFLOW
3388 : This::STATUS_OKAY);
3389 }
3390
3391 // R_ARM_BASE_PREL: B(S) + A - P
3392 static inline typename This::Status
3393 base_prel(unsigned char* view,
3394 Arm_address origin,
3395 Arm_address address)
3396 {
3397 Base::rel32(view, origin - address);
3398 return STATUS_OKAY;
3399 }
3400
3401 // R_ARM_BASE_ABS: B(S) + A
3402 static inline typename This::Status
3403 base_abs(unsigned char* view,
3404 Arm_address origin)
3405 {
3406 Base::rel32(view, origin);
3407 return STATUS_OKAY;
3408 }
3409
3410 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3411 static inline typename This::Status
3412 got_brel(unsigned char* view,
3413 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3414 {
3415 Base::rel32(view, got_offset);
3416 return This::STATUS_OKAY;
3417 }
3418
3419 // R_ARM_GOT_PREL: GOT(S) + A - P
3420 static inline typename This::Status
3421 got_prel(unsigned char* view,
3422 Arm_address got_entry,
3423 Arm_address address)
3424 {
3425 Base::rel32(view, got_entry - address);
3426 return This::STATUS_OKAY;
3427 }
3428
3429 // R_ARM_PREL: (S + A) | T - P
3430 static inline typename This::Status
3431 prel31(unsigned char* view,
3432 const Sized_relobj_file<32, big_endian>* object,
3433 const Symbol_value<32>* psymval,
3434 Arm_address address,
3435 Arm_address thumb_bit)
3436 {
3437 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3438 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3439 Valtype addend = utils::sign_extend<31>(val);
3440 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3441 val = utils::bit_select(val, x, 0x7fffffffU);
3442 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3443 return (utils::has_overflow<31>(x) ?
3444 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3445 }
3446
3447 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3448 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3449 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3450 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3451 static inline typename This::Status
3452 movw(unsigned char* view,
3453 const Sized_relobj_file<32, big_endian>* object,
3454 const Symbol_value<32>* psymval,
3455 Arm_address relative_address_base,
3456 Arm_address thumb_bit,
3457 bool check_overflow)
3458 {
3459 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3460 Valtype* wv = reinterpret_cast<Valtype*>(view);
3461 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3462 Valtype addend = This::extract_arm_movw_movt_addend(val);
3463 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3464 - relative_address_base);
3465 val = This::insert_val_arm_movw_movt(val, x);
3466 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3467 return ((check_overflow && utils::has_overflow<16>(x))
3468 ? This::STATUS_OVERFLOW
3469 : This::STATUS_OKAY);
3470 }
3471
3472 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3473 // R_ARM_MOVT_PREL: S + A - P
3474 // R_ARM_MOVT_BREL: S + A - B(S)
3475 static inline typename This::Status
3476 movt(unsigned char* view,
3477 const Sized_relobj_file<32, big_endian>* object,
3478 const Symbol_value<32>* psymval,
3479 Arm_address relative_address_base)
3480 {
3481 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3482 Valtype* wv = reinterpret_cast<Valtype*>(view);
3483 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3484 Valtype addend = This::extract_arm_movw_movt_addend(val);
3485 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3486 val = This::insert_val_arm_movw_movt(val, x);
3487 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3488 // FIXME: IHI0044D says that we should check for overflow.
3489 return This::STATUS_OKAY;
3490 }
3491
3492 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3493 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3494 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3495 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3496 static inline typename This::Status
3497 thm_movw(unsigned char* view,
3498 const Sized_relobj_file<32, big_endian>* object,
3499 const Symbol_value<32>* psymval,
3500 Arm_address relative_address_base,
3501 Arm_address thumb_bit,
3502 bool check_overflow)
3503 {
3504 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3505 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3506 Valtype* wv = reinterpret_cast<Valtype*>(view);
3507 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3508 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3509 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3510 Reltype x =
3511 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3512 val = This::insert_val_thumb_movw_movt(val, x);
3513 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3514 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3515 return ((check_overflow && utils::has_overflow<16>(x))
3516 ? This::STATUS_OVERFLOW
3517 : This::STATUS_OKAY);
3518 }
3519
3520 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3521 // R_ARM_THM_MOVT_PREL: S + A - P
3522 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3523 static inline typename This::Status
3524 thm_movt(unsigned char* view,
3525 const Sized_relobj_file<32, big_endian>* object,
3526 const Symbol_value<32>* psymval,
3527 Arm_address relative_address_base)
3528 {
3529 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3530 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3531 Valtype* wv = reinterpret_cast<Valtype*>(view);
3532 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3533 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3534 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3535 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3536 val = This::insert_val_thumb_movw_movt(val, x);
3537 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3538 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3539 return This::STATUS_OKAY;
3540 }
3541
3542 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3543 static inline typename This::Status
3544 thm_alu11(unsigned char* view,
3545 const Sized_relobj_file<32, big_endian>* object,
3546 const Symbol_value<32>* psymval,
3547 Arm_address address,
3548 Arm_address thumb_bit)
3549 {
3550 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3551 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3552 Valtype* wv = reinterpret_cast<Valtype*>(view);
3553 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3554 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3555
3556 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3557 // -----------------------------------------------------------------------
3558 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3559 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3560 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3561 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3562 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3563 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3564
3565 // Determine a sign for the addend.
3566 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3567 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3568 // Thumb2 addend encoding:
3569 // imm12 := i | imm3 | imm8
3570 int32_t addend = (insn & 0xff)
3571 | ((insn & 0x00007000) >> 4)
3572 | ((insn & 0x04000000) >> 15);
3573 // Apply a sign to the added.
3574 addend *= sign;
3575
3576 int32_t x = (psymval->value(object, addend) | thumb_bit)
3577 - (address & 0xfffffffc);
3578 Reltype val = abs(x);
3579 // Mask out the value and a distinct part of the ADD/SUB opcode
3580 // (bits 7:5 of opword).
3581 insn = (insn & 0xfb0f8f00)
3582 | (val & 0xff)
3583 | ((val & 0x700) << 4)
3584 | ((val & 0x800) << 15);
3585 // Set the opcode according to whether the value to go in the
3586 // place is negative.
3587 if (x < 0)
3588 insn |= 0x00a00000;
3589
3590 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3591 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3592 return ((val > 0xfff) ?
3593 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3594 }
3595
3596 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3597 static inline typename This::Status
3598 thm_pc8(unsigned char* view,
3599 const Sized_relobj_file<32, big_endian>* object,
3600 const Symbol_value<32>* psymval,
3601 Arm_address address)
3602 {
3603 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3604 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3605 Valtype* wv = reinterpret_cast<Valtype*>(view);
3606 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3607 Reltype addend = ((insn & 0x00ff) << 2);
3608 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3609 Reltype val = abs(x);
3610 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3611
3612 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3613 return ((val > 0x03fc)
3614 ? This::STATUS_OVERFLOW
3615 : This::STATUS_OKAY);
3616 }
3617
3618 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3619 static inline typename This::Status
3620 thm_pc12(unsigned char* view,
3621 const Sized_relobj_file<32, big_endian>* object,
3622 const Symbol_value<32>* psymval,
3623 Arm_address address)
3624 {
3625 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3626 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3627 Valtype* wv = reinterpret_cast<Valtype*>(view);
3628 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3629 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3630 // Determine a sign for the addend (positive if the U bit is 1).
3631 const int sign = (insn & 0x00800000) ? 1 : -1;
3632 int32_t addend = (insn & 0xfff);
3633 // Apply a sign to the added.
3634 addend *= sign;
3635
3636 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3637 Reltype val = abs(x);
3638 // Mask out and apply the value and the U bit.
3639 insn = (insn & 0xff7ff000) | (val & 0xfff);
3640 // Set the U bit according to whether the value to go in the
3641 // place is positive.
3642 if (x >= 0)
3643 insn |= 0x00800000;
3644
3645 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3646 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3647 return ((val > 0xfff) ?
3648 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3649 }
3650
3651 // R_ARM_V4BX
3652 static inline typename This::Status
3653 v4bx(const Relocate_info<32, big_endian>* relinfo,
3654 unsigned char* view,
3655 const Arm_relobj<big_endian>* object,
3656 const Arm_address address,
3657 const bool is_interworking)
3658 {
3659
3660 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3661 Valtype* wv = reinterpret_cast<Valtype*>(view);
3662 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3663
3664 // Ensure that we have a BX instruction.
3665 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3666 const uint32_t reg = (val & 0xf);
3667 if (is_interworking && reg != 0xf)
3668 {
3669 Stub_table<big_endian>* stub_table =
3670 object->stub_table(relinfo->data_shndx);
3671 gold_assert(stub_table != NULL);
3672
3673 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3674 gold_assert(stub != NULL);
3675
3676 int32_t veneer_address =
3677 stub_table->address() + stub->offset() - 8 - address;
3678 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3679 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3680 // Replace with a branch to veneer (B <addr>)
3681 val = (val & 0xf0000000) | 0x0a000000
3682 | ((veneer_address >> 2) & 0x00ffffff);
3683 }
3684 else
3685 {
3686 // Preserve Rm (lowest four bits) and the condition code
3687 // (highest four bits). Other bits encode MOV PC,Rm.
3688 val = (val & 0xf000000f) | 0x01a0f000;
3689 }
3690 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3691 return This::STATUS_OKAY;
3692 }
3693
3694 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3695 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3696 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3697 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3698 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3699 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3700 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3701 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3702 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3703 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3704 static inline typename This::Status
3705 arm_grp_alu(unsigned char* view,
3706 const Sized_relobj_file<32, big_endian>* object,
3707 const Symbol_value<32>* psymval,
3708 const int group,
3709 Arm_address address,
3710 Arm_address thumb_bit,
3711 bool check_overflow)
3712 {
3713 gold_assert(group >= 0 && group < 3);
3714 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3715 Valtype* wv = reinterpret_cast<Valtype*>(view);
3716 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3717
3718 // ALU group relocations are allowed only for the ADD/SUB instructions.
3719 // (0x00800000 - ADD, 0x00400000 - SUB)
3720 const Valtype opcode = insn & 0x01e00000;
3721 if (opcode != 0x00800000 && opcode != 0x00400000)
3722 return This::STATUS_BAD_RELOC;
3723
3724 // Determine a sign for the addend.
3725 const int sign = (opcode == 0x00800000) ? 1 : -1;
3726 // shifter = rotate_imm * 2
3727 const uint32_t shifter = (insn & 0xf00) >> 7;
3728 // Initial addend value.
3729 int32_t addend = insn & 0xff;
3730 // Rotate addend right by shifter.
3731 addend = (addend >> shifter) | (addend << (32 - shifter));
3732 // Apply a sign to the added.
3733 addend *= sign;
3734
3735 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3736 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3737 // Check for overflow if required
3738 if (check_overflow
3739 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3740 return This::STATUS_OVERFLOW;
3741
3742 // Mask out the value and the ADD/SUB part of the opcode; take care
3743 // not to destroy the S bit.
3744 insn &= 0xff1ff000;
3745 // Set the opcode according to whether the value to go in the
3746 // place is negative.
3747 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3748 // Encode the offset (encoded Gn).
3749 insn |= gn;
3750
3751 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3752 return This::STATUS_OKAY;
3753 }
3754
3755 // R_ARM_LDR_PC_G0: S + A - P
3756 // R_ARM_LDR_PC_G1: S + A - P
3757 // R_ARM_LDR_PC_G2: S + A - P
3758 // R_ARM_LDR_SB_G0: S + A - B(S)
3759 // R_ARM_LDR_SB_G1: S + A - B(S)
3760 // R_ARM_LDR_SB_G2: S + A - B(S)
3761 static inline typename This::Status
3762 arm_grp_ldr(unsigned char* view,
3763 const Sized_relobj_file<32, big_endian>* object,
3764 const Symbol_value<32>* psymval,
3765 const int group,
3766 Arm_address address)
3767 {
3768 gold_assert(group >= 0 && group < 3);
3769 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3770 Valtype* wv = reinterpret_cast<Valtype*>(view);
3771 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3772
3773 const int sign = (insn & 0x00800000) ? 1 : -1;
3774 int32_t addend = (insn & 0xfff) * sign;
3775 int32_t x = (psymval->value(object, addend) - address);
3776 // Calculate the relevant G(n-1) value to obtain this stage residual.
3777 Valtype residual =
3778 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3779 if (residual >= 0x1000)
3780 return This::STATUS_OVERFLOW;
3781
3782 // Mask out the value and U bit.
3783 insn &= 0xff7ff000;
3784 // Set the U bit for non-negative values.
3785 if (x >= 0)
3786 insn |= 0x00800000;
3787 insn |= residual;
3788
3789 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3790 return This::STATUS_OKAY;
3791 }
3792
3793 // R_ARM_LDRS_PC_G0: S + A - P
3794 // R_ARM_LDRS_PC_G1: S + A - P
3795 // R_ARM_LDRS_PC_G2: S + A - P
3796 // R_ARM_LDRS_SB_G0: S + A - B(S)
3797 // R_ARM_LDRS_SB_G1: S + A - B(S)
3798 // R_ARM_LDRS_SB_G2: S + A - B(S)
3799 static inline typename This::Status
3800 arm_grp_ldrs(unsigned char* view,
3801 const Sized_relobj_file<32, big_endian>* object,
3802 const Symbol_value<32>* psymval,
3803 const int group,
3804 Arm_address address)
3805 {
3806 gold_assert(group >= 0 && group < 3);
3807 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3808 Valtype* wv = reinterpret_cast<Valtype*>(view);
3809 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3810
3811 const int sign = (insn & 0x00800000) ? 1 : -1;
3812 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3813 int32_t x = (psymval->value(object, addend) - address);
3814 // Calculate the relevant G(n-1) value to obtain this stage residual.
3815 Valtype residual =
3816 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3817 if (residual >= 0x100)
3818 return This::STATUS_OVERFLOW;
3819
3820 // Mask out the value and U bit.
3821 insn &= 0xff7ff0f0;
3822 // Set the U bit for non-negative values.
3823 if (x >= 0)
3824 insn |= 0x00800000;
3825 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3826
3827 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3828 return This::STATUS_OKAY;
3829 }
3830
3831 // R_ARM_LDC_PC_G0: S + A - P
3832 // R_ARM_LDC_PC_G1: S + A - P
3833 // R_ARM_LDC_PC_G2: S + A - P
3834 // R_ARM_LDC_SB_G0: S + A - B(S)
3835 // R_ARM_LDC_SB_G1: S + A - B(S)
3836 // R_ARM_LDC_SB_G2: S + A - B(S)
3837 static inline typename This::Status
3838 arm_grp_ldc(unsigned char* view,
3839 const Sized_relobj_file<32, big_endian>* object,
3840 const Symbol_value<32>* psymval,
3841 const int group,
3842 Arm_address address)
3843 {
3844 gold_assert(group >= 0 && group < 3);
3845 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3846 Valtype* wv = reinterpret_cast<Valtype*>(view);
3847 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3848
3849 const int sign = (insn & 0x00800000) ? 1 : -1;
3850 int32_t addend = ((insn & 0xff) << 2) * sign;
3851 int32_t x = (psymval->value(object, addend) - address);
3852 // Calculate the relevant G(n-1) value to obtain this stage residual.
3853 Valtype residual =
3854 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3855 if ((residual & 0x3) != 0 || residual >= 0x400)
3856 return This::STATUS_OVERFLOW;
3857
3858 // Mask out the value and U bit.
3859 insn &= 0xff7fff00;
3860 // Set the U bit for non-negative values.
3861 if (x >= 0)
3862 insn |= 0x00800000;
3863 insn |= (residual >> 2);
3864
3865 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3866 return This::STATUS_OKAY;
3867 }
3868 };
3869
3870 // Relocate ARM long branches. This handles relocation types
3871 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3872 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3873 // undefined and we do not use PLT in this relocation. In such a case,
3874 // the branch is converted into an NOP.
3875
3876 template<bool big_endian>
3877 typename Arm_relocate_functions<big_endian>::Status
3878 Arm_relocate_functions<big_endian>::arm_branch_common(
3879 unsigned int r_type,
3880 const Relocate_info<32, big_endian>* relinfo,
3881 unsigned char* view,
3882 const Sized_symbol<32>* gsym,
3883 const Arm_relobj<big_endian>* object,
3884 unsigned int r_sym,
3885 const Symbol_value<32>* psymval,
3886 Arm_address address,
3887 Arm_address thumb_bit,
3888 bool is_weakly_undefined_without_plt)
3889 {
3890 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3891 Valtype* wv = reinterpret_cast<Valtype*>(view);
3892 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3893
3894 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3895 && ((val & 0x0f000000UL) == 0x0a000000UL);
3896 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3897 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3898 && ((val & 0x0f000000UL) == 0x0b000000UL);
3899 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3900 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3901
3902 // Check that the instruction is valid.
3903 if (r_type == elfcpp::R_ARM_CALL)
3904 {
3905 if (!insn_is_uncond_bl && !insn_is_blx)
3906 return This::STATUS_BAD_RELOC;
3907 }
3908 else if (r_type == elfcpp::R_ARM_JUMP24)
3909 {
3910 if (!insn_is_b && !insn_is_cond_bl)
3911 return This::STATUS_BAD_RELOC;
3912 }
3913 else if (r_type == elfcpp::R_ARM_PLT32)
3914 {
3915 if (!insn_is_any_branch)
3916 return This::STATUS_BAD_RELOC;
3917 }
3918 else if (r_type == elfcpp::R_ARM_XPC25)
3919 {
3920 // FIXME: AAELF document IH0044C does not say much about it other
3921 // than it being obsolete.
3922 if (!insn_is_any_branch)
3923 return This::STATUS_BAD_RELOC;
3924 }
3925 else
3926 gold_unreachable();
3927
3928 // A branch to an undefined weak symbol is turned into a jump to
3929 // the next instruction unless a PLT entry will be created.
3930 // Do the same for local undefined symbols.
3931 // The jump to the next instruction is optimized as a NOP depending
3932 // on the architecture.
3933 const Target_arm<big_endian>* arm_target =
3934 Target_arm<big_endian>::default_target();
3935 if (is_weakly_undefined_without_plt)
3936 {
3937 gold_assert(!parameters->options().relocatable());
3938 Valtype cond = val & 0xf0000000U;
3939 if (arm_target->may_use_arm_nop())
3940 val = cond | 0x0320f000;
3941 else
3942 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3943 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3944 return This::STATUS_OKAY;
3945 }
3946
3947 Valtype addend = utils::sign_extend<26>(val << 2);
3948 Valtype branch_target = psymval->value(object, addend);
3949 int32_t branch_offset = branch_target - address;
3950
3951 // We need a stub if the branch offset is too large or if we need
3952 // to switch mode.
3953 bool may_use_blx = arm_target->may_use_blx();
3954 Reloc_stub* stub = NULL;
3955
3956 if (!parameters->options().relocatable()
3957 && (utils::has_overflow<26>(branch_offset)
3958 || ((thumb_bit != 0)
3959 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3960 {
3961 Valtype unadjusted_branch_target = psymval->value(object, 0);
3962
3963 Stub_type stub_type =
3964 Reloc_stub::stub_type_for_reloc(r_type, address,
3965 unadjusted_branch_target,
3966 (thumb_bit != 0));
3967 if (stub_type != arm_stub_none)
3968 {
3969 Stub_table<big_endian>* stub_table =
3970 object->stub_table(relinfo->data_shndx);
3971 gold_assert(stub_table != NULL);
3972
3973 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3974 stub = stub_table->find_reloc_stub(stub_key);
3975 gold_assert(stub != NULL);
3976 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3977 branch_target = stub_table->address() + stub->offset() + addend;
3978 branch_offset = branch_target - address;
3979 gold_assert(!utils::has_overflow<26>(branch_offset));
3980 }
3981 }
3982
3983 // At this point, if we still need to switch mode, the instruction
3984 // must either be a BLX or a BL that can be converted to a BLX.
3985 if (thumb_bit != 0)
3986 {
3987 // Turn BL to BLX.
3988 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3989 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3990 }
3991
3992 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3993 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3994 return (utils::has_overflow<26>(branch_offset)
3995 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3996 }
3997
3998 // Relocate THUMB long branches. This handles relocation types
3999 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4000 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4001 // undefined and we do not use PLT in this relocation. In such a case,
4002 // the branch is converted into an NOP.
4003
4004 template<bool big_endian>
4005 typename Arm_relocate_functions<big_endian>::Status
4006 Arm_relocate_functions<big_endian>::thumb_branch_common(
4007 unsigned int r_type,
4008 const Relocate_info<32, big_endian>* relinfo,
4009 unsigned char* view,
4010 const Sized_symbol<32>* gsym,
4011 const Arm_relobj<big_endian>* object,
4012 unsigned int r_sym,
4013 const Symbol_value<32>* psymval,
4014 Arm_address address,
4015 Arm_address thumb_bit,
4016 bool is_weakly_undefined_without_plt)
4017 {
4018 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4019 Valtype* wv = reinterpret_cast<Valtype*>(view);
4020 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4021 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4022
4023 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4024 // into account.
4025 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4026 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4027
4028 // Check that the instruction is valid.
4029 if (r_type == elfcpp::R_ARM_THM_CALL)
4030 {
4031 if (!is_bl_insn && !is_blx_insn)
4032 return This::STATUS_BAD_RELOC;
4033 }
4034 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4035 {
4036 // This cannot be a BLX.
4037 if (!is_bl_insn)
4038 return This::STATUS_BAD_RELOC;
4039 }
4040 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4041 {
4042 // Check for Thumb to Thumb call.
4043 if (!is_blx_insn)
4044 return This::STATUS_BAD_RELOC;
4045 if (thumb_bit != 0)
4046 {
4047 gold_warning(_("%s: Thumb BLX instruction targets "
4048 "thumb function '%s'."),
4049 object->name().c_str(),
4050 (gsym ? gsym->name() : "(local)"));
4051 // Convert BLX to BL.
4052 lower_insn |= 0x1000U;
4053 }
4054 }
4055 else
4056 gold_unreachable();
4057
4058 // A branch to an undefined weak symbol is turned into a jump to
4059 // the next instruction unless a PLT entry will be created.
4060 // The jump to the next instruction is optimized as a NOP.W for
4061 // Thumb-2 enabled architectures.
4062 const Target_arm<big_endian>* arm_target =
4063 Target_arm<big_endian>::default_target();
4064 if (is_weakly_undefined_without_plt)
4065 {
4066 gold_assert(!parameters->options().relocatable());
4067 if (arm_target->may_use_thumb2_nop())
4068 {
4069 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4070 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4071 }
4072 else
4073 {
4074 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4075 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4076 }
4077 return This::STATUS_OKAY;
4078 }
4079
4080 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4081 Arm_address branch_target = psymval->value(object, addend);
4082
4083 // For BLX, bit 1 of target address comes from bit 1 of base address.
4084 bool may_use_blx = arm_target->may_use_blx();
4085 if (thumb_bit == 0 && may_use_blx)
4086 branch_target = utils::bit_select(branch_target, address, 0x2);
4087
4088 int32_t branch_offset = branch_target - address;
4089
4090 // We need a stub if the branch offset is too large or if we need
4091 // to switch mode.
4092 bool thumb2 = arm_target->using_thumb2();
4093 if (!parameters->options().relocatable()
4094 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4095 || (thumb2 && utils::has_overflow<25>(branch_offset))
4096 || ((thumb_bit == 0)
4097 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4098 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4099 {
4100 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4101
4102 Stub_type stub_type =
4103 Reloc_stub::stub_type_for_reloc(r_type, address,
4104 unadjusted_branch_target,
4105 (thumb_bit != 0));
4106
4107 if (stub_type != arm_stub_none)
4108 {
4109 Stub_table<big_endian>* stub_table =
4110 object->stub_table(relinfo->data_shndx);
4111 gold_assert(stub_table != NULL);
4112
4113 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4114 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4115 gold_assert(stub != NULL);
4116 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4117 branch_target = stub_table->address() + stub->offset() + addend;
4118 if (thumb_bit == 0 && may_use_blx)
4119 branch_target = utils::bit_select(branch_target, address, 0x2);
4120 branch_offset = branch_target - address;
4121 }
4122 }
4123
4124 // At this point, if we still need to switch mode, the instruction
4125 // must either be a BLX or a BL that can be converted to a BLX.
4126 if (thumb_bit == 0)
4127 {
4128 gold_assert(may_use_blx
4129 && (r_type == elfcpp::R_ARM_THM_CALL
4130 || r_type == elfcpp::R_ARM_THM_XPC22));
4131 // Make sure this is a BLX.
4132 lower_insn &= ~0x1000U;
4133 }
4134 else
4135 {
4136 // Make sure this is a BL.
4137 lower_insn |= 0x1000U;
4138 }
4139
4140 // For a BLX instruction, make sure that the relocation is rounded up
4141 // to a word boundary. This follows the semantics of the instruction
4142 // which specifies that bit 1 of the target address will come from bit
4143 // 1 of the base address.
4144 if ((lower_insn & 0x5000U) == 0x4000U)
4145 gold_assert((branch_offset & 3) == 0);
4146
4147 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4148 // We use the Thumb-2 encoding, which is safe even if dealing with
4149 // a Thumb-1 instruction by virtue of our overflow check above. */
4150 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4151 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4152
4153 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4154 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4155
4156 gold_assert(!utils::has_overflow<25>(branch_offset));
4157
4158 return ((thumb2
4159 ? utils::has_overflow<25>(branch_offset)
4160 : utils::has_overflow<23>(branch_offset))
4161 ? This::STATUS_OVERFLOW
4162 : This::STATUS_OKAY);
4163 }
4164
4165 // Relocate THUMB-2 long conditional branches.
4166 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4167 // undefined and we do not use PLT in this relocation. In such a case,
4168 // the branch is converted into an NOP.
4169
4170 template<bool big_endian>
4171 typename Arm_relocate_functions<big_endian>::Status
4172 Arm_relocate_functions<big_endian>::thm_jump19(
4173 unsigned char* view,
4174 const Arm_relobj<big_endian>* object,
4175 const Symbol_value<32>* psymval,
4176 Arm_address address,
4177 Arm_address thumb_bit)
4178 {
4179 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4180 Valtype* wv = reinterpret_cast<Valtype*>(view);
4181 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4182 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4183 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4184
4185 Arm_address branch_target = psymval->value(object, addend);
4186 int32_t branch_offset = branch_target - address;
4187
4188 // ??? Should handle interworking? GCC might someday try to
4189 // use this for tail calls.
4190 // FIXME: We do support thumb entry to PLT yet.
4191 if (thumb_bit == 0)
4192 {
4193 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4194 return This::STATUS_BAD_RELOC;
4195 }
4196
4197 // Put RELOCATION back into the insn.
4198 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4199 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4200
4201 // Put the relocated value back in the object file:
4202 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4203 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4204
4205 return (utils::has_overflow<21>(branch_offset)
4206 ? This::STATUS_OVERFLOW
4207 : This::STATUS_OKAY);
4208 }
4209
4210 // Get the GOT section, creating it if necessary.
4211
4212 template<bool big_endian>
4213 Arm_output_data_got<big_endian>*
4214 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4215 {
4216 if (this->got_ == NULL)
4217 {
4218 gold_assert(symtab != NULL && layout != NULL);
4219
4220 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4221
4222 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4223 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4224 this->got_, ORDER_DATA, false);
4225
4226 // The old GNU linker creates a .got.plt section. We just
4227 // create another set of data in the .got section. Note that we
4228 // always create a PLT if we create a GOT, although the PLT
4229 // might be empty.
4230 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4231 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4232 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4233 this->got_plt_, ORDER_DATA, false);
4234
4235 // The first three entries are reserved.
4236 this->got_plt_->set_current_data_size(3 * 4);
4237
4238 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4239 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4240 Symbol_table::PREDEFINED,
4241 this->got_plt_,
4242 0, 0, elfcpp::STT_OBJECT,
4243 elfcpp::STB_LOCAL,
4244 elfcpp::STV_HIDDEN, 0,
4245 false, false);
4246 }
4247 return this->got_;
4248 }
4249
4250 // Get the dynamic reloc section, creating it if necessary.
4251
4252 template<bool big_endian>
4253 typename Target_arm<big_endian>::Reloc_section*
4254 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4255 {
4256 if (this->rel_dyn_ == NULL)
4257 {
4258 gold_assert(layout != NULL);
4259 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4260 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4261 elfcpp::SHF_ALLOC, this->rel_dyn_,
4262 ORDER_DYNAMIC_RELOCS, false);
4263 }
4264 return this->rel_dyn_;
4265 }
4266
4267 // Insn_template methods.
4268
4269 // Return byte size of an instruction template.
4270
4271 size_t
4272 Insn_template::size() const
4273 {
4274 switch (this->type())
4275 {
4276 case THUMB16_TYPE:
4277 case THUMB16_SPECIAL_TYPE:
4278 return 2;
4279 case ARM_TYPE:
4280 case THUMB32_TYPE:
4281 case DATA_TYPE:
4282 return 4;
4283 default:
4284 gold_unreachable();
4285 }
4286 }
4287
4288 // Return alignment of an instruction template.
4289
4290 unsigned
4291 Insn_template::alignment() const
4292 {
4293 switch (this->type())
4294 {
4295 case THUMB16_TYPE:
4296 case THUMB16_SPECIAL_TYPE:
4297 case THUMB32_TYPE:
4298 return 2;
4299 case ARM_TYPE:
4300 case DATA_TYPE:
4301 return 4;
4302 default:
4303 gold_unreachable();
4304 }
4305 }
4306
4307 // Stub_template methods.
4308
4309 Stub_template::Stub_template(
4310 Stub_type type, const Insn_template* insns,
4311 size_t insn_count)
4312 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4313 entry_in_thumb_mode_(false), relocs_()
4314 {
4315 off_t offset = 0;
4316
4317 // Compute byte size and alignment of stub template.
4318 for (size_t i = 0; i < insn_count; i++)
4319 {
4320 unsigned insn_alignment = insns[i].alignment();
4321 size_t insn_size = insns[i].size();
4322 gold_assert((offset & (insn_alignment - 1)) == 0);
4323 this->alignment_ = std::max(this->alignment_, insn_alignment);
4324 switch (insns[i].type())
4325 {
4326 case Insn_template::THUMB16_TYPE:
4327 case Insn_template::THUMB16_SPECIAL_TYPE:
4328 if (i == 0)
4329 this->entry_in_thumb_mode_ = true;
4330 break;
4331
4332 case Insn_template::THUMB32_TYPE:
4333 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4334 this->relocs_.push_back(Reloc(i, offset));
4335 if (i == 0)
4336 this->entry_in_thumb_mode_ = true;
4337 break;
4338
4339 case Insn_template::ARM_TYPE:
4340 // Handle cases where the target is encoded within the
4341 // instruction.
4342 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4343 this->relocs_.push_back(Reloc(i, offset));
4344 break;
4345
4346 case Insn_template::DATA_TYPE:
4347 // Entry point cannot be data.
4348 gold_assert(i != 0);
4349 this->relocs_.push_back(Reloc(i, offset));
4350 break;
4351
4352 default:
4353 gold_unreachable();
4354 }
4355 offset += insn_size;
4356 }
4357 this->size_ = offset;
4358 }
4359
4360 // Stub methods.
4361
4362 // Template to implement do_write for a specific target endianness.
4363
4364 template<bool big_endian>
4365 void inline
4366 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4367 {
4368 const Stub_template* stub_template = this->stub_template();
4369 const Insn_template* insns = stub_template->insns();
4370
4371 // FIXME: We do not handle BE8 encoding yet.
4372 unsigned char* pov = view;
4373 for (size_t i = 0; i < stub_template->insn_count(); i++)
4374 {
4375 switch (insns[i].type())
4376 {
4377 case Insn_template::THUMB16_TYPE:
4378 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4379 break;
4380 case Insn_template::THUMB16_SPECIAL_TYPE:
4381 elfcpp::Swap<16, big_endian>::writeval(
4382 pov,
4383 this->thumb16_special(i));
4384 break;
4385 case Insn_template::THUMB32_TYPE:
4386 {
4387 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4388 uint32_t lo = insns[i].data() & 0xffff;
4389 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4390 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4391 }
4392 break;
4393 case Insn_template::ARM_TYPE:
4394 case Insn_template::DATA_TYPE:
4395 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4396 break;
4397 default:
4398 gold_unreachable();
4399 }
4400 pov += insns[i].size();
4401 }
4402 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4403 }
4404
4405 // Reloc_stub::Key methods.
4406
4407 // Dump a Key as a string for debugging.
4408
4409 std::string
4410 Reloc_stub::Key::name() const
4411 {
4412 if (this->r_sym_ == invalid_index)
4413 {
4414 // Global symbol key name
4415 // <stub-type>:<symbol name>:<addend>.
4416 const std::string sym_name = this->u_.symbol->name();
4417 // We need to print two hex number and two colons. So just add 100 bytes
4418 // to the symbol name size.
4419 size_t len = sym_name.size() + 100;
4420 char* buffer = new char[len];
4421 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4422 sym_name.c_str(), this->addend_);
4423 gold_assert(c > 0 && c < static_cast<int>(len));
4424 delete[] buffer;
4425 return std::string(buffer);
4426 }
4427 else
4428 {
4429 // local symbol key name
4430 // <stub-type>:<object>:<r_sym>:<addend>.
4431 const size_t len = 200;
4432 char buffer[len];
4433 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4434 this->u_.relobj, this->r_sym_, this->addend_);
4435 gold_assert(c > 0 && c < static_cast<int>(len));
4436 return std::string(buffer);
4437 }
4438 }
4439
4440 // Reloc_stub methods.
4441
4442 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4443 // LOCATION to DESTINATION.
4444 // This code is based on the arm_type_of_stub function in
4445 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4446 // class simple.
4447
4448 Stub_type
4449 Reloc_stub::stub_type_for_reloc(
4450 unsigned int r_type,
4451 Arm_address location,
4452 Arm_address destination,
4453 bool target_is_thumb)
4454 {
4455 Stub_type stub_type = arm_stub_none;
4456
4457 // This is a bit ugly but we want to avoid using a templated class for
4458 // big and little endianities.
4459 bool may_use_blx;
4460 bool should_force_pic_veneer;
4461 bool thumb2;
4462 bool thumb_only;
4463 if (parameters->target().is_big_endian())
4464 {
4465 const Target_arm<true>* big_endian_target =
4466 Target_arm<true>::default_target();
4467 may_use_blx = big_endian_target->may_use_blx();
4468 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4469 thumb2 = big_endian_target->using_thumb2();
4470 thumb_only = big_endian_target->using_thumb_only();
4471 }
4472 else
4473 {
4474 const Target_arm<false>* little_endian_target =
4475 Target_arm<false>::default_target();
4476 may_use_blx = little_endian_target->may_use_blx();
4477 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4478 thumb2 = little_endian_target->using_thumb2();
4479 thumb_only = little_endian_target->using_thumb_only();
4480 }
4481
4482 int64_t branch_offset;
4483 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4484 {
4485 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4486 // base address (instruction address + 4).
4487 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4488 destination = utils::bit_select(destination, location, 0x2);
4489 branch_offset = static_cast<int64_t>(destination) - location;
4490
4491 // Handle cases where:
4492 // - this call goes too far (different Thumb/Thumb2 max
4493 // distance)
4494 // - it's a Thumb->Arm call and blx is not available, or it's a
4495 // Thumb->Arm branch (not bl). A stub is needed in this case.
4496 if ((!thumb2
4497 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4498 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4499 || (thumb2
4500 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4501 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4502 || ((!target_is_thumb)
4503 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4504 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4505 {
4506 if (target_is_thumb)
4507 {
4508 // Thumb to thumb.
4509 if (!thumb_only)
4510 {
4511 stub_type = (parameters->options().shared()
4512 || should_force_pic_veneer)
4513 // PIC stubs.
4514 ? ((may_use_blx
4515 && (r_type == elfcpp::R_ARM_THM_CALL))
4516 // V5T and above. Stub starts with ARM code, so
4517 // we must be able to switch mode before
4518 // reaching it, which is only possible for 'bl'
4519 // (ie R_ARM_THM_CALL relocation).
4520 ? arm_stub_long_branch_any_thumb_pic
4521 // On V4T, use Thumb code only.
4522 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4523
4524 // non-PIC stubs.
4525 : ((may_use_blx
4526 && (r_type == elfcpp::R_ARM_THM_CALL))
4527 ? arm_stub_long_branch_any_any // V5T and above.
4528 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4529 }
4530 else
4531 {
4532 stub_type = (parameters->options().shared()
4533 || should_force_pic_veneer)
4534 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4535 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4536 }
4537 }
4538 else
4539 {
4540 // Thumb to arm.
4541
4542 // FIXME: We should check that the input section is from an
4543 // object that has interwork enabled.
4544
4545 stub_type = (parameters->options().shared()
4546 || should_force_pic_veneer)
4547 // PIC stubs.
4548 ? ((may_use_blx
4549 && (r_type == elfcpp::R_ARM_THM_CALL))
4550 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4551 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4552
4553 // non-PIC stubs.
4554 : ((may_use_blx
4555 && (r_type == elfcpp::R_ARM_THM_CALL))
4556 ? arm_stub_long_branch_any_any // V5T and above.
4557 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4558
4559 // Handle v4t short branches.
4560 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4561 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4562 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4563 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4564 }
4565 }
4566 }
4567 else if (r_type == elfcpp::R_ARM_CALL
4568 || r_type == elfcpp::R_ARM_JUMP24
4569 || r_type == elfcpp::R_ARM_PLT32)
4570 {
4571 branch_offset = static_cast<int64_t>(destination) - location;
4572 if (target_is_thumb)
4573 {
4574 // Arm to thumb.
4575
4576 // FIXME: We should check that the input section is from an
4577 // object that has interwork enabled.
4578
4579 // We have an extra 2-bytes reach because of
4580 // the mode change (bit 24 (H) of BLX encoding).
4581 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4582 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4583 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4584 || (r_type == elfcpp::R_ARM_JUMP24)
4585 || (r_type == elfcpp::R_ARM_PLT32))
4586 {
4587 stub_type = (parameters->options().shared()
4588 || should_force_pic_veneer)
4589 // PIC stubs.
4590 ? (may_use_blx
4591 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4592 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4593
4594 // non-PIC stubs.
4595 : (may_use_blx
4596 ? arm_stub_long_branch_any_any // V5T and above.
4597 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4598 }
4599 }
4600 else
4601 {
4602 // Arm to arm.
4603 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4604 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4605 {
4606 stub_type = (parameters->options().shared()
4607 || should_force_pic_veneer)
4608 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4609 : arm_stub_long_branch_any_any; /// non-PIC.
4610 }
4611 }
4612 }
4613
4614 return stub_type;
4615 }
4616
4617 // Cortex_a8_stub methods.
4618
4619 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4620 // I is the position of the instruction template in the stub template.
4621
4622 uint16_t
4623 Cortex_a8_stub::do_thumb16_special(size_t i)
4624 {
4625 // The only use of this is to copy condition code from a conditional
4626 // branch being worked around to the corresponding conditional branch in
4627 // to the stub.
4628 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4629 && i == 0);
4630 uint16_t data = this->stub_template()->insns()[i].data();
4631 gold_assert((data & 0xff00U) == 0xd000U);
4632 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4633 return data;
4634 }
4635
4636 // Stub_factory methods.
4637
4638 Stub_factory::Stub_factory()
4639 {
4640 // The instruction template sequences are declared as static
4641 // objects and initialized first time the constructor runs.
4642
4643 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4644 // to reach the stub if necessary.
4645 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4646 {
4647 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4648 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4649 // dcd R_ARM_ABS32(X)
4650 };
4651
4652 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4653 // available.
4654 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4655 {
4656 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4657 Insn_template::arm_insn(0xe12fff1c), // bx ip
4658 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4659 // dcd R_ARM_ABS32(X)
4660 };
4661
4662 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4663 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4664 {
4665 Insn_template::thumb16_insn(0xb401), // push {r0}
4666 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4667 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4668 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4669 Insn_template::thumb16_insn(0x4760), // bx ip
4670 Insn_template::thumb16_insn(0xbf00), // nop
4671 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4672 // dcd R_ARM_ABS32(X)
4673 };
4674
4675 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4676 // allowed.
4677 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4678 {
4679 Insn_template::thumb16_insn(0x4778), // bx pc
4680 Insn_template::thumb16_insn(0x46c0), // nop
4681 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4682 Insn_template::arm_insn(0xe12fff1c), // bx ip
4683 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4684 // dcd R_ARM_ABS32(X)
4685 };
4686
4687 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4688 // available.
4689 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4690 {
4691 Insn_template::thumb16_insn(0x4778), // bx pc
4692 Insn_template::thumb16_insn(0x46c0), // nop
4693 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4694 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4695 // dcd R_ARM_ABS32(X)
4696 };
4697
4698 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4699 // one, when the destination is close enough.
4700 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4701 {
4702 Insn_template::thumb16_insn(0x4778), // bx pc
4703 Insn_template::thumb16_insn(0x46c0), // nop
4704 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4705 };
4706
4707 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4708 // blx to reach the stub if necessary.
4709 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4710 {
4711 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4712 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4713 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4714 // dcd R_ARM_REL32(X-4)
4715 };
4716
4717 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4718 // blx to reach the stub if necessary. We can not add into pc;
4719 // it is not guaranteed to mode switch (different in ARMv6 and
4720 // ARMv7).
4721 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4722 {
4723 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4724 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4725 Insn_template::arm_insn(0xe12fff1c), // bx ip
4726 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4727 // dcd R_ARM_REL32(X)
4728 };
4729
4730 // V4T ARM -> ARM long branch stub, PIC.
4731 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4732 {
4733 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4734 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4735 Insn_template::arm_insn(0xe12fff1c), // bx ip
4736 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4737 // dcd R_ARM_REL32(X)
4738 };
4739
4740 // V4T Thumb -> ARM long branch stub, PIC.
4741 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4742 {
4743 Insn_template::thumb16_insn(0x4778), // bx pc
4744 Insn_template::thumb16_insn(0x46c0), // nop
4745 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4746 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4747 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4748 // dcd R_ARM_REL32(X)
4749 };
4750
4751 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4752 // architectures.
4753 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4754 {
4755 Insn_template::thumb16_insn(0xb401), // push {r0}
4756 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4757 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4758 Insn_template::thumb16_insn(0x4484), // add ip, r0
4759 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4760 Insn_template::thumb16_insn(0x4760), // bx ip
4761 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4762 // dcd R_ARM_REL32(X)
4763 };
4764
4765 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4766 // allowed.
4767 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4768 {
4769 Insn_template::thumb16_insn(0x4778), // bx pc
4770 Insn_template::thumb16_insn(0x46c0), // nop
4771 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4772 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4773 Insn_template::arm_insn(0xe12fff1c), // bx ip
4774 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4775 // dcd R_ARM_REL32(X)
4776 };
4777
4778 // Cortex-A8 erratum-workaround stubs.
4779
4780 // Stub used for conditional branches (which may be beyond +/-1MB away,
4781 // so we can't use a conditional branch to reach this stub).
4782
4783 // original code:
4784 //
4785 // b<cond> X
4786 // after:
4787 //
4788 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4789 {
4790 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4791 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4792 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4793 // b.w X
4794 };
4795
4796 // Stub used for b.w and bl.w instructions.
4797
4798 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4799 {
4800 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4801 };
4802
4803 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4804 {
4805 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4806 };
4807
4808 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4809 // instruction (which switches to ARM mode) to point to this stub. Jump to
4810 // the real destination using an ARM-mode branch.
4811 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4812 {
4813 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4814 };
4815
4816 // Stub used to provide an interworking for R_ARM_V4BX relocation
4817 // (bx r[n] instruction).
4818 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4819 {
4820 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4821 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4822 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4823 };
4824
4825 // Fill in the stub template look-up table. Stub templates are constructed
4826 // per instance of Stub_factory for fast look-up without locking
4827 // in a thread-enabled environment.
4828
4829 this->stub_templates_[arm_stub_none] =
4830 new Stub_template(arm_stub_none, NULL, 0);
4831
4832 #define DEF_STUB(x) \
4833 do \
4834 { \
4835 size_t array_size \
4836 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4837 Stub_type type = arm_stub_##x; \
4838 this->stub_templates_[type] = \
4839 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4840 } \
4841 while (0);
4842
4843 DEF_STUBS
4844 #undef DEF_STUB
4845 }
4846
4847 // Stub_table methods.
4848
4849 // Remove all Cortex-A8 stub.
4850
4851 template<bool big_endian>
4852 void
4853 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4854 {
4855 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4856 p != this->cortex_a8_stubs_.end();
4857 ++p)
4858 delete p->second;
4859 this->cortex_a8_stubs_.clear();
4860 }
4861
4862 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4863
4864 template<bool big_endian>
4865 void
4866 Stub_table<big_endian>::relocate_stub(
4867 Stub* stub,
4868 const Relocate_info<32, big_endian>* relinfo,
4869 Target_arm<big_endian>* arm_target,
4870 Output_section* output_section,
4871 unsigned char* view,
4872 Arm_address address,
4873 section_size_type view_size)
4874 {
4875 const Stub_template* stub_template = stub->stub_template();
4876 if (stub_template->reloc_count() != 0)
4877 {
4878 // Adjust view to cover the stub only.
4879 section_size_type offset = stub->offset();
4880 section_size_type stub_size = stub_template->size();
4881 gold_assert(offset + stub_size <= view_size);
4882
4883 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4884 address + offset, stub_size);
4885 }
4886 }
4887
4888 // Relocate all stubs in this stub table.
4889
4890 template<bool big_endian>
4891 void
4892 Stub_table<big_endian>::relocate_stubs(
4893 const Relocate_info<32, big_endian>* relinfo,
4894 Target_arm<big_endian>* arm_target,
4895 Output_section* output_section,
4896 unsigned char* view,
4897 Arm_address address,
4898 section_size_type view_size)
4899 {
4900 // If we are passed a view bigger than the stub table's. we need to
4901 // adjust the view.
4902 gold_assert(address == this->address()
4903 && (view_size
4904 == static_cast<section_size_type>(this->data_size())));
4905
4906 // Relocate all relocation stubs.
4907 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4908 p != this->reloc_stubs_.end();
4909 ++p)
4910 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4911 address, view_size);
4912
4913 // Relocate all Cortex-A8 stubs.
4914 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4915 p != this->cortex_a8_stubs_.end();
4916 ++p)
4917 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4918 address, view_size);
4919
4920 // Relocate all ARM V4BX stubs.
4921 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4922 p != this->arm_v4bx_stubs_.end();
4923 ++p)
4924 {
4925 if (*p != NULL)
4926 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4927 address, view_size);
4928 }
4929 }
4930
4931 // Write out the stubs to file.
4932
4933 template<bool big_endian>
4934 void
4935 Stub_table<big_endian>::do_write(Output_file* of)
4936 {
4937 off_t offset = this->offset();
4938 const section_size_type oview_size =
4939 convert_to_section_size_type(this->data_size());
4940 unsigned char* const oview = of->get_output_view(offset, oview_size);
4941
4942 // Write relocation stubs.
4943 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4944 p != this->reloc_stubs_.end();
4945 ++p)
4946 {
4947 Reloc_stub* stub = p->second;
4948 Arm_address address = this->address() + stub->offset();
4949 gold_assert(address
4950 == align_address(address,
4951 stub->stub_template()->alignment()));
4952 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4953 big_endian);
4954 }
4955
4956 // Write Cortex-A8 stubs.
4957 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4958 p != this->cortex_a8_stubs_.end();
4959 ++p)
4960 {
4961 Cortex_a8_stub* stub = p->second;
4962 Arm_address address = this->address() + stub->offset();
4963 gold_assert(address
4964 == align_address(address,
4965 stub->stub_template()->alignment()));
4966 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4967 big_endian);
4968 }
4969
4970 // Write ARM V4BX relocation stubs.
4971 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4972 p != this->arm_v4bx_stubs_.end();
4973 ++p)
4974 {
4975 if (*p == NULL)
4976 continue;
4977
4978 Arm_address address = this->address() + (*p)->offset();
4979 gold_assert(address
4980 == align_address(address,
4981 (*p)->stub_template()->alignment()));
4982 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4983 big_endian);
4984 }
4985
4986 of->write_output_view(this->offset(), oview_size, oview);
4987 }
4988
4989 // Update the data size and address alignment of the stub table at the end
4990 // of a relaxation pass. Return true if either the data size or the
4991 // alignment changed in this relaxation pass.
4992
4993 template<bool big_endian>
4994 bool
4995 Stub_table<big_endian>::update_data_size_and_addralign()
4996 {
4997 // Go over all stubs in table to compute data size and address alignment.
4998 off_t size = this->reloc_stubs_size_;
4999 unsigned addralign = this->reloc_stubs_addralign_;
5000
5001 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5002 p != this->cortex_a8_stubs_.end();
5003 ++p)
5004 {
5005 const Stub_template* stub_template = p->second->stub_template();
5006 addralign = std::max(addralign, stub_template->alignment());
5007 size = (align_address(size, stub_template->alignment())
5008 + stub_template->size());
5009 }
5010
5011 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5012 p != this->arm_v4bx_stubs_.end();
5013 ++p)
5014 {
5015 if (*p == NULL)
5016 continue;
5017
5018 const Stub_template* stub_template = (*p)->stub_template();
5019 addralign = std::max(addralign, stub_template->alignment());
5020 size = (align_address(size, stub_template->alignment())
5021 + stub_template->size());
5022 }
5023
5024 // Check if either data size or alignment changed in this pass.
5025 // Update prev_data_size_ and prev_addralign_. These will be used
5026 // as the current data size and address alignment for the next pass.
5027 bool changed = size != this->prev_data_size_;
5028 this->prev_data_size_ = size;
5029
5030 if (addralign != this->prev_addralign_)
5031 changed = true;
5032 this->prev_addralign_ = addralign;
5033
5034 return changed;
5035 }
5036
5037 // Finalize the stubs. This sets the offsets of the stubs within the stub
5038 // table. It also marks all input sections needing Cortex-A8 workaround.
5039
5040 template<bool big_endian>
5041 void
5042 Stub_table<big_endian>::finalize_stubs()
5043 {
5044 off_t off = this->reloc_stubs_size_;
5045 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5046 p != this->cortex_a8_stubs_.end();
5047 ++p)
5048 {
5049 Cortex_a8_stub* stub = p->second;
5050 const Stub_template* stub_template = stub->stub_template();
5051 uint64_t stub_addralign = stub_template->alignment();
5052 off = align_address(off, stub_addralign);
5053 stub->set_offset(off);
5054 off += stub_template->size();
5055
5056 // Mark input section so that we can determine later if a code section
5057 // needs the Cortex-A8 workaround quickly.
5058 Arm_relobj<big_endian>* arm_relobj =
5059 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5060 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5061 }
5062
5063 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5064 p != this->arm_v4bx_stubs_.end();
5065 ++p)
5066 {
5067 if (*p == NULL)
5068 continue;
5069
5070 const Stub_template* stub_template = (*p)->stub_template();
5071 uint64_t stub_addralign = stub_template->alignment();
5072 off = align_address(off, stub_addralign);
5073 (*p)->set_offset(off);
5074 off += stub_template->size();
5075 }
5076
5077 gold_assert(off <= this->prev_data_size_);
5078 }
5079
5080 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5081 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5082 // of the address range seen by the linker.
5083
5084 template<bool big_endian>
5085 void
5086 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5087 Target_arm<big_endian>* arm_target,
5088 unsigned char* view,
5089 Arm_address view_address,
5090 section_size_type view_size)
5091 {
5092 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5093 for (Cortex_a8_stub_list::const_iterator p =
5094 this->cortex_a8_stubs_.lower_bound(view_address);
5095 ((p != this->cortex_a8_stubs_.end())
5096 && (p->first < (view_address + view_size)));
5097 ++p)
5098 {
5099 // We do not store the THUMB bit in the LSB of either the branch address
5100 // or the stub offset. There is no need to strip the LSB.
5101 Arm_address branch_address = p->first;
5102 const Cortex_a8_stub* stub = p->second;
5103 Arm_address stub_address = this->address() + stub->offset();
5104
5105 // Offset of the branch instruction relative to this view.
5106 section_size_type offset =
5107 convert_to_section_size_type(branch_address - view_address);
5108 gold_assert((offset + 4) <= view_size);
5109
5110 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5111 view + offset, branch_address);
5112 }
5113 }
5114
5115 // Arm_input_section methods.
5116
5117 // Initialize an Arm_input_section.
5118
5119 template<bool big_endian>
5120 void
5121 Arm_input_section<big_endian>::init()
5122 {
5123 Relobj* relobj = this->relobj();
5124 unsigned int shndx = this->shndx();
5125
5126 // We have to cache original size, alignment and contents to avoid locking
5127 // the original file.
5128 this->original_addralign_ =
5129 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5130
5131 // This is not efficient but we expect only a small number of relaxed
5132 // input sections for stubs.
5133 section_size_type section_size;
5134 const unsigned char* section_contents =
5135 relobj->section_contents(shndx, &section_size, false);
5136 this->original_size_ =
5137 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5138
5139 gold_assert(this->original_contents_ == NULL);
5140 this->original_contents_ = new unsigned char[section_size];
5141 memcpy(this->original_contents_, section_contents, section_size);
5142
5143 // We want to make this look like the original input section after
5144 // output sections are finalized.
5145 Output_section* os = relobj->output_section(shndx);
5146 off_t offset = relobj->output_section_offset(shndx);
5147 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5148 this->set_address(os->address() + offset);
5149 this->set_file_offset(os->offset() + offset);
5150
5151 this->set_current_data_size(this->original_size_);
5152 this->finalize_data_size();
5153 }
5154
5155 template<bool big_endian>
5156 void
5157 Arm_input_section<big_endian>::do_write(Output_file* of)
5158 {
5159 // We have to write out the original section content.
5160 gold_assert(this->original_contents_ != NULL);
5161 of->write(this->offset(), this->original_contents_,
5162 this->original_size_);
5163
5164 // If this owns a stub table and it is not empty, write it.
5165 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5166 this->stub_table_->write(of);
5167 }
5168
5169 // Finalize data size.
5170
5171 template<bool big_endian>
5172 void
5173 Arm_input_section<big_endian>::set_final_data_size()
5174 {
5175 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5176
5177 if (this->is_stub_table_owner())
5178 {
5179 this->stub_table_->finalize_data_size();
5180 off = align_address(off, this->stub_table_->addralign());
5181 off += this->stub_table_->data_size();
5182 }
5183 this->set_data_size(off);
5184 }
5185
5186 // Reset address and file offset.
5187
5188 template<bool big_endian>
5189 void
5190 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5191 {
5192 // Size of the original input section contents.
5193 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5194
5195 // If this is a stub table owner, account for the stub table size.
5196 if (this->is_stub_table_owner())
5197 {
5198 Stub_table<big_endian>* stub_table = this->stub_table_;
5199
5200 // Reset the stub table's address and file offset. The
5201 // current data size for child will be updated after that.
5202 stub_table_->reset_address_and_file_offset();
5203 off = align_address(off, stub_table_->addralign());
5204 off += stub_table->current_data_size();
5205 }
5206
5207 this->set_current_data_size(off);
5208 }
5209
5210 // Arm_exidx_cantunwind methods.
5211
5212 // Write this to Output file OF for a fixed endianness.
5213
5214 template<bool big_endian>
5215 void
5216 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5217 {
5218 off_t offset = this->offset();
5219 const section_size_type oview_size = 8;
5220 unsigned char* const oview = of->get_output_view(offset, oview_size);
5221
5222 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5223
5224 Output_section* os = this->relobj_->output_section(this->shndx_);
5225 gold_assert(os != NULL);
5226
5227 Arm_relobj<big_endian>* arm_relobj =
5228 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5229 Arm_address output_offset =
5230 arm_relobj->get_output_section_offset(this->shndx_);
5231 Arm_address section_start;
5232 section_size_type section_size;
5233
5234 // Find out the end of the text section referred by this.
5235 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5236 {
5237 section_start = os->address() + output_offset;
5238 const Arm_exidx_input_section* exidx_input_section =
5239 arm_relobj->exidx_input_section_by_link(this->shndx_);
5240 gold_assert(exidx_input_section != NULL);
5241 section_size =
5242 convert_to_section_size_type(exidx_input_section->text_size());
5243 }
5244 else
5245 {
5246 // Currently this only happens for a relaxed section.
5247 const Output_relaxed_input_section* poris =
5248 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5249 gold_assert(poris != NULL);
5250 section_start = poris->address();
5251 section_size = convert_to_section_size_type(poris->data_size());
5252 }
5253
5254 // We always append this to the end of an EXIDX section.
5255 Arm_address output_address = section_start + section_size;
5256
5257 // Write out the entry. The first word either points to the beginning
5258 // or after the end of a text section. The second word is the special
5259 // EXIDX_CANTUNWIND value.
5260 uint32_t prel31_offset = output_address - this->address();
5261 if (utils::has_overflow<31>(offset))
5262 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5263 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5264 prel31_offset & 0x7fffffffU);
5265 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5266 elfcpp::EXIDX_CANTUNWIND);
5267
5268 of->write_output_view(this->offset(), oview_size, oview);
5269 }
5270
5271 // Arm_exidx_merged_section methods.
5272
5273 // Constructor for Arm_exidx_merged_section.
5274 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5275 // SECTION_OFFSET_MAP points to a section offset map describing how
5276 // parts of the input section are mapped to output. DELETED_BYTES is
5277 // the number of bytes deleted from the EXIDX input section.
5278
5279 Arm_exidx_merged_section::Arm_exidx_merged_section(
5280 const Arm_exidx_input_section& exidx_input_section,
5281 const Arm_exidx_section_offset_map& section_offset_map,
5282 uint32_t deleted_bytes)
5283 : Output_relaxed_input_section(exidx_input_section.relobj(),
5284 exidx_input_section.shndx(),
5285 exidx_input_section.addralign()),
5286 exidx_input_section_(exidx_input_section),
5287 section_offset_map_(section_offset_map)
5288 {
5289 // If we retain or discard the whole EXIDX input section, we would
5290 // not be here.
5291 gold_assert(deleted_bytes != 0
5292 && deleted_bytes != this->exidx_input_section_.size());
5293
5294 // Fix size here so that we do not need to implement set_final_data_size.
5295 uint32_t size = exidx_input_section.size() - deleted_bytes;
5296 this->set_data_size(size);
5297 this->fix_data_size();
5298
5299 // Allocate buffer for section contents and build contents.
5300 this->section_contents_ = new unsigned char[size];
5301 }
5302
5303 // Build the contents of a merged EXIDX output section.
5304
5305 void
5306 Arm_exidx_merged_section::build_contents(
5307 const unsigned char* original_contents,
5308 section_size_type original_size)
5309 {
5310 // Go over spans of input offsets and write only those that are not
5311 // discarded.
5312 section_offset_type in_start = 0;
5313 section_offset_type out_start = 0;
5314 section_offset_type in_max =
5315 convert_types<section_offset_type>(original_size);
5316 section_offset_type out_max =
5317 convert_types<section_offset_type>(this->data_size());
5318 for (Arm_exidx_section_offset_map::const_iterator p =
5319 this->section_offset_map_.begin();
5320 p != this->section_offset_map_.end();
5321 ++p)
5322 {
5323 section_offset_type in_end = p->first;
5324 gold_assert(in_end >= in_start);
5325 section_offset_type out_end = p->second;
5326 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5327 if (out_end != -1)
5328 {
5329 size_t out_chunk_size =
5330 convert_types<size_t>(out_end - out_start + 1);
5331
5332 gold_assert(out_chunk_size == in_chunk_size
5333 && in_end < in_max && out_end < out_max);
5334
5335 memcpy(this->section_contents_ + out_start,
5336 original_contents + in_start,
5337 out_chunk_size);
5338 out_start += out_chunk_size;
5339 }
5340 in_start += in_chunk_size;
5341 }
5342 }
5343
5344 // Given an input OBJECT, an input section index SHNDX within that
5345 // object, and an OFFSET relative to the start of that input
5346 // section, return whether or not the corresponding offset within
5347 // the output section is known. If this function returns true, it
5348 // sets *POUTPUT to the output offset. The value -1 indicates that
5349 // this input offset is being discarded.
5350
5351 bool
5352 Arm_exidx_merged_section::do_output_offset(
5353 const Relobj* relobj,
5354 unsigned int shndx,
5355 section_offset_type offset,
5356 section_offset_type* poutput) const
5357 {
5358 // We only handle offsets for the original EXIDX input section.
5359 if (relobj != this->exidx_input_section_.relobj()
5360 || shndx != this->exidx_input_section_.shndx())
5361 return false;
5362
5363 section_offset_type section_size =
5364 convert_types<section_offset_type>(this->exidx_input_section_.size());
5365 if (offset < 0 || offset >= section_size)
5366 // Input offset is out of valid range.
5367 *poutput = -1;
5368 else
5369 {
5370 // We need to look up the section offset map to determine the output
5371 // offset. Find the reference point in map that is first offset
5372 // bigger than or equal to this offset.
5373 Arm_exidx_section_offset_map::const_iterator p =
5374 this->section_offset_map_.lower_bound(offset);
5375
5376 // The section offset maps are build such that this should not happen if
5377 // input offset is in the valid range.
5378 gold_assert(p != this->section_offset_map_.end());
5379
5380 // We need to check if this is dropped.
5381 section_offset_type ref = p->first;
5382 section_offset_type mapped_ref = p->second;
5383
5384 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5385 // Offset is present in output.
5386 *poutput = mapped_ref + (offset - ref);
5387 else
5388 // Offset is discarded owing to EXIDX entry merging.
5389 *poutput = -1;
5390 }
5391
5392 return true;
5393 }
5394
5395 // Write this to output file OF.
5396
5397 void
5398 Arm_exidx_merged_section::do_write(Output_file* of)
5399 {
5400 off_t offset = this->offset();
5401 const section_size_type oview_size = this->data_size();
5402 unsigned char* const oview = of->get_output_view(offset, oview_size);
5403
5404 Output_section* os = this->relobj()->output_section(this->shndx());
5405 gold_assert(os != NULL);
5406
5407 memcpy(oview, this->section_contents_, oview_size);
5408 of->write_output_view(this->offset(), oview_size, oview);
5409 }
5410
5411 // Arm_exidx_fixup methods.
5412
5413 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5414 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5415 // points to the end of the last seen EXIDX section.
5416
5417 void
5418 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5419 {
5420 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5421 && this->last_input_section_ != NULL)
5422 {
5423 Relobj* relobj = this->last_input_section_->relobj();
5424 unsigned int text_shndx = this->last_input_section_->link();
5425 Arm_exidx_cantunwind* cantunwind =
5426 new Arm_exidx_cantunwind(relobj, text_shndx);
5427 this->exidx_output_section_->add_output_section_data(cantunwind);
5428 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5429 }
5430 }
5431
5432 // Process an EXIDX section entry in input. Return whether this entry
5433 // can be deleted in the output. SECOND_WORD in the second word of the
5434 // EXIDX entry.
5435
5436 bool
5437 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5438 {
5439 bool delete_entry;
5440 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5441 {
5442 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5443 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5444 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5445 }
5446 else if ((second_word & 0x80000000) != 0)
5447 {
5448 // Inlined unwinding data. Merge if equal to previous.
5449 delete_entry = (merge_exidx_entries_
5450 && this->last_unwind_type_ == UT_INLINED_ENTRY
5451 && this->last_inlined_entry_ == second_word);
5452 this->last_unwind_type_ = UT_INLINED_ENTRY;
5453 this->last_inlined_entry_ = second_word;
5454 }
5455 else
5456 {
5457 // Normal table entry. In theory we could merge these too,
5458 // but duplicate entries are likely to be much less common.
5459 delete_entry = false;
5460 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5461 }
5462 return delete_entry;
5463 }
5464
5465 // Update the current section offset map during EXIDX section fix-up.
5466 // If there is no map, create one. INPUT_OFFSET is the offset of a
5467 // reference point, DELETED_BYTES is the number of deleted by in the
5468 // section so far. If DELETE_ENTRY is true, the reference point and
5469 // all offsets after the previous reference point are discarded.
5470
5471 void
5472 Arm_exidx_fixup::update_offset_map(
5473 section_offset_type input_offset,
5474 section_size_type deleted_bytes,
5475 bool delete_entry)
5476 {
5477 if (this->section_offset_map_ == NULL)
5478 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5479 section_offset_type output_offset;
5480 if (delete_entry)
5481 output_offset = Arm_exidx_input_section::invalid_offset;
5482 else
5483 output_offset = input_offset - deleted_bytes;
5484 (*this->section_offset_map_)[input_offset] = output_offset;
5485 }
5486
5487 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5488 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5489 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5490 // If some entries are merged, also store a pointer to a newly created
5491 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5492 // owns the map and is responsible for releasing it after use.
5493
5494 template<bool big_endian>
5495 uint32_t
5496 Arm_exidx_fixup::process_exidx_section(
5497 const Arm_exidx_input_section* exidx_input_section,
5498 const unsigned char* section_contents,
5499 section_size_type section_size,
5500 Arm_exidx_section_offset_map** psection_offset_map)
5501 {
5502 Relobj* relobj = exidx_input_section->relobj();
5503 unsigned shndx = exidx_input_section->shndx();
5504
5505 if ((section_size % 8) != 0)
5506 {
5507 // Something is wrong with this section. Better not touch it.
5508 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5509 relobj->name().c_str(), shndx);
5510 this->last_input_section_ = exidx_input_section;
5511 this->last_unwind_type_ = UT_NONE;
5512 return 0;
5513 }
5514
5515 uint32_t deleted_bytes = 0;
5516 bool prev_delete_entry = false;
5517 gold_assert(this->section_offset_map_ == NULL);
5518
5519 for (section_size_type i = 0; i < section_size; i += 8)
5520 {
5521 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5522 const Valtype* wv =
5523 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5524 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5525
5526 bool delete_entry = this->process_exidx_entry(second_word);
5527
5528 // Entry deletion causes changes in output offsets. We use a std::map
5529 // to record these. And entry (x, y) means input offset x
5530 // is mapped to output offset y. If y is invalid_offset, then x is
5531 // dropped in the output. Because of the way std::map::lower_bound
5532 // works, we record the last offset in a region w.r.t to keeping or
5533 // dropping. If there is no entry (x0, y0) for an input offset x0,
5534 // the output offset y0 of it is determined by the output offset y1 of
5535 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5536 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5537 // y0 is also -1.
5538 if (delete_entry != prev_delete_entry && i != 0)
5539 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5540
5541 // Update total deleted bytes for this entry.
5542 if (delete_entry)
5543 deleted_bytes += 8;
5544
5545 prev_delete_entry = delete_entry;
5546 }
5547
5548 // If section offset map is not NULL, make an entry for the end of
5549 // section.
5550 if (this->section_offset_map_ != NULL)
5551 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5552
5553 *psection_offset_map = this->section_offset_map_;
5554 this->section_offset_map_ = NULL;
5555 this->last_input_section_ = exidx_input_section;
5556
5557 // Set the first output text section so that we can link the EXIDX output
5558 // section to it. Ignore any EXIDX input section that is completely merged.
5559 if (this->first_output_text_section_ == NULL
5560 && deleted_bytes != section_size)
5561 {
5562 unsigned int link = exidx_input_section->link();
5563 Output_section* os = relobj->output_section(link);
5564 gold_assert(os != NULL);
5565 this->first_output_text_section_ = os;
5566 }
5567
5568 return deleted_bytes;
5569 }
5570
5571 // Arm_output_section methods.
5572
5573 // Create a stub group for input sections from BEGIN to END. OWNER
5574 // points to the input section to be the owner a new stub table.
5575
5576 template<bool big_endian>
5577 void
5578 Arm_output_section<big_endian>::create_stub_group(
5579 Input_section_list::const_iterator begin,
5580 Input_section_list::const_iterator end,
5581 Input_section_list::const_iterator owner,
5582 Target_arm<big_endian>* target,
5583 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5584 const Task* task)
5585 {
5586 // We use a different kind of relaxed section in an EXIDX section.
5587 // The static casting from Output_relaxed_input_section to
5588 // Arm_input_section is invalid in an EXIDX section. We are okay
5589 // because we should not be calling this for an EXIDX section.
5590 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5591
5592 // Currently we convert ordinary input sections into relaxed sections only
5593 // at this point but we may want to support creating relaxed input section
5594 // very early. So we check here to see if owner is already a relaxed
5595 // section.
5596
5597 Arm_input_section<big_endian>* arm_input_section;
5598 if (owner->is_relaxed_input_section())
5599 {
5600 arm_input_section =
5601 Arm_input_section<big_endian>::as_arm_input_section(
5602 owner->relaxed_input_section());
5603 }
5604 else
5605 {
5606 gold_assert(owner->is_input_section());
5607 // Create a new relaxed input section. We need to lock the original
5608 // file.
5609 Task_lock_obj<Object> tl(task, owner->relobj());
5610 arm_input_section =
5611 target->new_arm_input_section(owner->relobj(), owner->shndx());
5612 new_relaxed_sections->push_back(arm_input_section);
5613 }
5614
5615 // Create a stub table.
5616 Stub_table<big_endian>* stub_table =
5617 target->new_stub_table(arm_input_section);
5618
5619 arm_input_section->set_stub_table(stub_table);
5620
5621 Input_section_list::const_iterator p = begin;
5622 Input_section_list::const_iterator prev_p;
5623
5624 // Look for input sections or relaxed input sections in [begin ... end].
5625 do
5626 {
5627 if (p->is_input_section() || p->is_relaxed_input_section())
5628 {
5629 // The stub table information for input sections live
5630 // in their objects.
5631 Arm_relobj<big_endian>* arm_relobj =
5632 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5633 arm_relobj->set_stub_table(p->shndx(), stub_table);
5634 }
5635 prev_p = p++;
5636 }
5637 while (prev_p != end);
5638 }
5639
5640 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5641 // of stub groups. We grow a stub group by adding input section until the
5642 // size is just below GROUP_SIZE. The last input section will be converted
5643 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5644 // input section after the stub table, effectively double the group size.
5645 //
5646 // This is similar to the group_sections() function in elf32-arm.c but is
5647 // implemented differently.
5648
5649 template<bool big_endian>
5650 void
5651 Arm_output_section<big_endian>::group_sections(
5652 section_size_type group_size,
5653 bool stubs_always_after_branch,
5654 Target_arm<big_endian>* target,
5655 const Task* task)
5656 {
5657 // We only care about sections containing code.
5658 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5659 return;
5660
5661 // States for grouping.
5662 typedef enum
5663 {
5664 // No group is being built.
5665 NO_GROUP,
5666 // A group is being built but the stub table is not found yet.
5667 // We keep group a stub group until the size is just under GROUP_SIZE.
5668 // The last input section in the group will be used as the stub table.
5669 FINDING_STUB_SECTION,
5670 // A group is being built and we have already found a stub table.
5671 // We enter this state to grow a stub group by adding input section
5672 // after the stub table. This effectively doubles the group size.
5673 HAS_STUB_SECTION
5674 } State;
5675
5676 // Any newly created relaxed sections are stored here.
5677 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5678
5679 State state = NO_GROUP;
5680 section_size_type off = 0;
5681 section_size_type group_begin_offset = 0;
5682 section_size_type group_end_offset = 0;
5683 section_size_type stub_table_end_offset = 0;
5684 Input_section_list::const_iterator group_begin =
5685 this->input_sections().end();
5686 Input_section_list::const_iterator stub_table =
5687 this->input_sections().end();
5688 Input_section_list::const_iterator group_end = this->input_sections().end();
5689 for (Input_section_list::const_iterator p = this->input_sections().begin();
5690 p != this->input_sections().end();
5691 ++p)
5692 {
5693 section_size_type section_begin_offset =
5694 align_address(off, p->addralign());
5695 section_size_type section_end_offset =
5696 section_begin_offset + p->data_size();
5697
5698 // Check to see if we should group the previously seen sections.
5699 switch (state)
5700 {
5701 case NO_GROUP:
5702 break;
5703
5704 case FINDING_STUB_SECTION:
5705 // Adding this section makes the group larger than GROUP_SIZE.
5706 if (section_end_offset - group_begin_offset >= group_size)
5707 {
5708 if (stubs_always_after_branch)
5709 {
5710 gold_assert(group_end != this->input_sections().end());
5711 this->create_stub_group(group_begin, group_end, group_end,
5712 target, &new_relaxed_sections,
5713 task);
5714 state = NO_GROUP;
5715 }
5716 else
5717 {
5718 // But wait, there's more! Input sections up to
5719 // stub_group_size bytes after the stub table can be
5720 // handled by it too.
5721 state = HAS_STUB_SECTION;
5722 stub_table = group_end;
5723 stub_table_end_offset = group_end_offset;
5724 }
5725 }
5726 break;
5727
5728 case HAS_STUB_SECTION:
5729 // Adding this section makes the post stub-section group larger
5730 // than GROUP_SIZE.
5731 if (section_end_offset - stub_table_end_offset >= group_size)
5732 {
5733 gold_assert(group_end != this->input_sections().end());
5734 this->create_stub_group(group_begin, group_end, stub_table,
5735 target, &new_relaxed_sections, task);
5736 state = NO_GROUP;
5737 }
5738 break;
5739
5740 default:
5741 gold_unreachable();
5742 }
5743
5744 // If we see an input section and currently there is no group, start
5745 // a new one. Skip any empty sections. We look at the data size
5746 // instead of calling p->relobj()->section_size() to avoid locking.
5747 if ((p->is_input_section() || p->is_relaxed_input_section())
5748 && (p->data_size() != 0))
5749 {
5750 if (state == NO_GROUP)
5751 {
5752 state = FINDING_STUB_SECTION;
5753 group_begin = p;
5754 group_begin_offset = section_begin_offset;
5755 }
5756
5757 // Keep track of the last input section seen.
5758 group_end = p;
5759 group_end_offset = section_end_offset;
5760 }
5761
5762 off = section_end_offset;
5763 }
5764
5765 // Create a stub group for any ungrouped sections.
5766 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5767 {
5768 gold_assert(group_end != this->input_sections().end());
5769 this->create_stub_group(group_begin, group_end,
5770 (state == FINDING_STUB_SECTION
5771 ? group_end
5772 : stub_table),
5773 target, &new_relaxed_sections, task);
5774 }
5775
5776 // Convert input section into relaxed input section in a batch.
5777 if (!new_relaxed_sections.empty())
5778 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5779
5780 // Update the section offsets
5781 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5782 {
5783 Arm_relobj<big_endian>* arm_relobj =
5784 Arm_relobj<big_endian>::as_arm_relobj(
5785 new_relaxed_sections[i]->relobj());
5786 unsigned int shndx = new_relaxed_sections[i]->shndx();
5787 // Tell Arm_relobj that this input section is converted.
5788 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5789 }
5790 }
5791
5792 // Append non empty text sections in this to LIST in ascending
5793 // order of their position in this.
5794
5795 template<bool big_endian>
5796 void
5797 Arm_output_section<big_endian>::append_text_sections_to_list(
5798 Text_section_list* list)
5799 {
5800 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5801
5802 for (Input_section_list::const_iterator p = this->input_sections().begin();
5803 p != this->input_sections().end();
5804 ++p)
5805 {
5806 // We only care about plain or relaxed input sections. We also
5807 // ignore any merged sections.
5808 if (p->is_input_section() || p->is_relaxed_input_section())
5809 list->push_back(Text_section_list::value_type(p->relobj(),
5810 p->shndx()));
5811 }
5812 }
5813
5814 template<bool big_endian>
5815 void
5816 Arm_output_section<big_endian>::fix_exidx_coverage(
5817 Layout* layout,
5818 const Text_section_list& sorted_text_sections,
5819 Symbol_table* symtab,
5820 bool merge_exidx_entries,
5821 const Task* task)
5822 {
5823 // We should only do this for the EXIDX output section.
5824 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5825
5826 // We don't want the relaxation loop to undo these changes, so we discard
5827 // the current saved states and take another one after the fix-up.
5828 this->discard_states();
5829
5830 // Remove all input sections.
5831 uint64_t address = this->address();
5832 typedef std::list<Output_section::Input_section> Input_section_list;
5833 Input_section_list input_sections;
5834 this->reset_address_and_file_offset();
5835 this->get_input_sections(address, std::string(""), &input_sections);
5836
5837 if (!this->input_sections().empty())
5838 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5839
5840 // Go through all the known input sections and record them.
5841 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5842 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5843 Section_id_hash> Text_to_exidx_map;
5844 Text_to_exidx_map text_to_exidx_map;
5845 for (Input_section_list::const_iterator p = input_sections.begin();
5846 p != input_sections.end();
5847 ++p)
5848 {
5849 // This should never happen. At this point, we should only see
5850 // plain EXIDX input sections.
5851 gold_assert(!p->is_relaxed_input_section());
5852 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5853 }
5854
5855 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5856
5857 // Go over the sorted text sections.
5858 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5859 Section_id_set processed_input_sections;
5860 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5861 p != sorted_text_sections.end();
5862 ++p)
5863 {
5864 Relobj* relobj = p->first;
5865 unsigned int shndx = p->second;
5866
5867 Arm_relobj<big_endian>* arm_relobj =
5868 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5869 const Arm_exidx_input_section* exidx_input_section =
5870 arm_relobj->exidx_input_section_by_link(shndx);
5871
5872 // If this text section has no EXIDX section or if the EXIDX section
5873 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5874 // of the last seen EXIDX section.
5875 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5876 {
5877 exidx_fixup.add_exidx_cantunwind_as_needed();
5878 continue;
5879 }
5880
5881 Relobj* exidx_relobj = exidx_input_section->relobj();
5882 unsigned int exidx_shndx = exidx_input_section->shndx();
5883 Section_id sid(exidx_relobj, exidx_shndx);
5884 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5885 if (iter == text_to_exidx_map.end())
5886 {
5887 // This is odd. We have not seen this EXIDX input section before.
5888 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5889 // issue a warning instead. We assume the user knows what he
5890 // or she is doing. Otherwise, this is an error.
5891 if (layout->script_options()->saw_sections_clause())
5892 gold_warning(_("unwinding may not work because EXIDX input section"
5893 " %u of %s is not in EXIDX output section"),
5894 exidx_shndx, exidx_relobj->name().c_str());
5895 else
5896 gold_error(_("unwinding may not work because EXIDX input section"
5897 " %u of %s is not in EXIDX output section"),
5898 exidx_shndx, exidx_relobj->name().c_str());
5899
5900 exidx_fixup.add_exidx_cantunwind_as_needed();
5901 continue;
5902 }
5903
5904 // We need to access the contents of the EXIDX section, lock the
5905 // object here.
5906 Task_lock_obj<Object> tl(task, exidx_relobj);
5907 section_size_type exidx_size;
5908 const unsigned char* exidx_contents =
5909 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5910
5911 // Fix up coverage and append input section to output data list.
5912 Arm_exidx_section_offset_map* section_offset_map = NULL;
5913 uint32_t deleted_bytes =
5914 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5915 exidx_contents,
5916 exidx_size,
5917 &section_offset_map);
5918
5919 if (deleted_bytes == exidx_input_section->size())
5920 {
5921 // The whole EXIDX section got merged. Remove it from output.
5922 gold_assert(section_offset_map == NULL);
5923 exidx_relobj->set_output_section(exidx_shndx, NULL);
5924
5925 // All local symbols defined in this input section will be dropped.
5926 // We need to adjust output local symbol count.
5927 arm_relobj->set_output_local_symbol_count_needs_update();
5928 }
5929 else if (deleted_bytes > 0)
5930 {
5931 // Some entries are merged. We need to convert this EXIDX input
5932 // section into a relaxed section.
5933 gold_assert(section_offset_map != NULL);
5934
5935 Arm_exidx_merged_section* merged_section =
5936 new Arm_exidx_merged_section(*exidx_input_section,
5937 *section_offset_map, deleted_bytes);
5938 merged_section->build_contents(exidx_contents, exidx_size);
5939
5940 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5941 this->add_relaxed_input_section(layout, merged_section, secname);
5942 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5943
5944 // All local symbols defined in discarded portions of this input
5945 // section will be dropped. We need to adjust output local symbol
5946 // count.
5947 arm_relobj->set_output_local_symbol_count_needs_update();
5948 }
5949 else
5950 {
5951 // Just add back the EXIDX input section.
5952 gold_assert(section_offset_map == NULL);
5953 const Output_section::Input_section* pis = iter->second;
5954 gold_assert(pis->is_input_section());
5955 this->add_script_input_section(*pis);
5956 }
5957
5958 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5959 }
5960
5961 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5962 exidx_fixup.add_exidx_cantunwind_as_needed();
5963
5964 // Remove any known EXIDX input sections that are not processed.
5965 for (Input_section_list::const_iterator p = input_sections.begin();
5966 p != input_sections.end();
5967 ++p)
5968 {
5969 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5970 == processed_input_sections.end())
5971 {
5972 // We discard a known EXIDX section because its linked
5973 // text section has been folded by ICF. We also discard an
5974 // EXIDX section with error, the output does not matter in this
5975 // case. We do this to avoid triggering asserts.
5976 Arm_relobj<big_endian>* arm_relobj =
5977 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5978 const Arm_exidx_input_section* exidx_input_section =
5979 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5980 gold_assert(exidx_input_section != NULL);
5981 if (!exidx_input_section->has_errors())
5982 {
5983 unsigned int text_shndx = exidx_input_section->link();
5984 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5985 }
5986
5987 // Remove this from link. We also need to recount the
5988 // local symbols.
5989 p->relobj()->set_output_section(p->shndx(), NULL);
5990 arm_relobj->set_output_local_symbol_count_needs_update();
5991 }
5992 }
5993
5994 // Link exidx output section to the first seen output section and
5995 // set correct entry size.
5996 this->set_link_section(exidx_fixup.first_output_text_section());
5997 this->set_entsize(8);
5998
5999 // Make changes permanent.
6000 this->save_states();
6001 this->set_section_offsets_need_adjustment();
6002 }
6003
6004 // Link EXIDX output sections to text output sections.
6005
6006 template<bool big_endian>
6007 void
6008 Arm_output_section<big_endian>::set_exidx_section_link()
6009 {
6010 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6011 if (!this->input_sections().empty())
6012 {
6013 Input_section_list::const_iterator p = this->input_sections().begin();
6014 Arm_relobj<big_endian>* arm_relobj =
6015 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6016 unsigned exidx_shndx = p->shndx();
6017 const Arm_exidx_input_section* exidx_input_section =
6018 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6019 gold_assert(exidx_input_section != NULL);
6020 unsigned int text_shndx = exidx_input_section->link();
6021 Output_section* os = arm_relobj->output_section(text_shndx);
6022 this->set_link_section(os);
6023 }
6024 }
6025
6026 // Arm_relobj methods.
6027
6028 // Determine if an input section is scannable for stub processing. SHDR is
6029 // the header of the section and SHNDX is the section index. OS is the output
6030 // section for the input section and SYMTAB is the global symbol table used to
6031 // look up ICF information.
6032
6033 template<bool big_endian>
6034 bool
6035 Arm_relobj<big_endian>::section_is_scannable(
6036 const elfcpp::Shdr<32, big_endian>& shdr,
6037 unsigned int shndx,
6038 const Output_section* os,
6039 const Symbol_table* symtab)
6040 {
6041 // Skip any empty sections, unallocated sections or sections whose
6042 // type are not SHT_PROGBITS.
6043 if (shdr.get_sh_size() == 0
6044 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6045 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6046 return false;
6047
6048 // Skip any discarded or ICF'ed sections.
6049 if (os == NULL || symtab->is_section_folded(this, shndx))
6050 return false;
6051
6052 // If this requires special offset handling, check to see if it is
6053 // a relaxed section. If this is not, then it is a merged section that
6054 // we cannot handle.
6055 if (this->is_output_section_offset_invalid(shndx))
6056 {
6057 const Output_relaxed_input_section* poris =
6058 os->find_relaxed_input_section(this, shndx);
6059 if (poris == NULL)
6060 return false;
6061 }
6062
6063 return true;
6064 }
6065
6066 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6067 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6068
6069 template<bool big_endian>
6070 bool
6071 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6072 const elfcpp::Shdr<32, big_endian>& shdr,
6073 const Relobj::Output_sections& out_sections,
6074 const Symbol_table* symtab,
6075 const unsigned char* pshdrs)
6076 {
6077 unsigned int sh_type = shdr.get_sh_type();
6078 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6079 return false;
6080
6081 // Ignore empty section.
6082 off_t sh_size = shdr.get_sh_size();
6083 if (sh_size == 0)
6084 return false;
6085
6086 // Ignore reloc section with unexpected symbol table. The
6087 // error will be reported in the final link.
6088 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6089 return false;
6090
6091 unsigned int reloc_size;
6092 if (sh_type == elfcpp::SHT_REL)
6093 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6094 else
6095 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6096
6097 // Ignore reloc section with unexpected entsize or uneven size.
6098 // The error will be reported in the final link.
6099 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6100 return false;
6101
6102 // Ignore reloc section with bad info. This error will be
6103 // reported in the final link.
6104 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6105 if (index >= this->shnum())
6106 return false;
6107
6108 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6109 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6110 return this->section_is_scannable(text_shdr, index,
6111 out_sections[index], symtab);
6112 }
6113
6114 // Return the output address of either a plain input section or a relaxed
6115 // input section. SHNDX is the section index. We define and use this
6116 // instead of calling Output_section::output_address because that is slow
6117 // for large output.
6118
6119 template<bool big_endian>
6120 Arm_address
6121 Arm_relobj<big_endian>::simple_input_section_output_address(
6122 unsigned int shndx,
6123 Output_section* os)
6124 {
6125 if (this->is_output_section_offset_invalid(shndx))
6126 {
6127 const Output_relaxed_input_section* poris =
6128 os->find_relaxed_input_section(this, shndx);
6129 // We do not handle merged sections here.
6130 gold_assert(poris != NULL);
6131 return poris->address();
6132 }
6133 else
6134 return os->address() + this->get_output_section_offset(shndx);
6135 }
6136
6137 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6138 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6139
6140 template<bool big_endian>
6141 bool
6142 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6143 const elfcpp::Shdr<32, big_endian>& shdr,
6144 unsigned int shndx,
6145 Output_section* os,
6146 const Symbol_table* symtab)
6147 {
6148 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6149 return false;
6150
6151 // If the section does not cross any 4K-boundaries, it does not need to
6152 // be scanned.
6153 Arm_address address = this->simple_input_section_output_address(shndx, os);
6154 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6155 return false;
6156
6157 return true;
6158 }
6159
6160 // Scan a section for Cortex-A8 workaround.
6161
6162 template<bool big_endian>
6163 void
6164 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6165 const elfcpp::Shdr<32, big_endian>& shdr,
6166 unsigned int shndx,
6167 Output_section* os,
6168 Target_arm<big_endian>* arm_target)
6169 {
6170 // Look for the first mapping symbol in this section. It should be
6171 // at (shndx, 0).
6172 Mapping_symbol_position section_start(shndx, 0);
6173 typename Mapping_symbols_info::const_iterator p =
6174 this->mapping_symbols_info_.lower_bound(section_start);
6175
6176 // There are no mapping symbols for this section. Treat it as a data-only
6177 // section. Issue a warning if section is marked as containing
6178 // instructions.
6179 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6180 {
6181 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6182 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6183 "erratum because it has no mapping symbols."),
6184 shndx, this->name().c_str());
6185 return;
6186 }
6187
6188 Arm_address output_address =
6189 this->simple_input_section_output_address(shndx, os);
6190
6191 // Get the section contents.
6192 section_size_type input_view_size = 0;
6193 const unsigned char* input_view =
6194 this->section_contents(shndx, &input_view_size, false);
6195
6196 // We need to go through the mapping symbols to determine what to
6197 // scan. There are two reasons. First, we should look at THUMB code and
6198 // THUMB code only. Second, we only want to look at the 4K-page boundary
6199 // to speed up the scanning.
6200
6201 while (p != this->mapping_symbols_info_.end()
6202 && p->first.first == shndx)
6203 {
6204 typename Mapping_symbols_info::const_iterator next =
6205 this->mapping_symbols_info_.upper_bound(p->first);
6206
6207 // Only scan part of a section with THUMB code.
6208 if (p->second == 't')
6209 {
6210 // Determine the end of this range.
6211 section_size_type span_start =
6212 convert_to_section_size_type(p->first.second);
6213 section_size_type span_end;
6214 if (next != this->mapping_symbols_info_.end()
6215 && next->first.first == shndx)
6216 span_end = convert_to_section_size_type(next->first.second);
6217 else
6218 span_end = convert_to_section_size_type(shdr.get_sh_size());
6219
6220 if (((span_start + output_address) & ~0xfffUL)
6221 != ((span_end + output_address - 1) & ~0xfffUL))
6222 {
6223 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6224 span_start, span_end,
6225 input_view,
6226 output_address);
6227 }
6228 }
6229
6230 p = next;
6231 }
6232 }
6233
6234 // Scan relocations for stub generation.
6235
6236 template<bool big_endian>
6237 void
6238 Arm_relobj<big_endian>::scan_sections_for_stubs(
6239 Target_arm<big_endian>* arm_target,
6240 const Symbol_table* symtab,
6241 const Layout* layout)
6242 {
6243 unsigned int shnum = this->shnum();
6244 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6245
6246 // Read the section headers.
6247 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6248 shnum * shdr_size,
6249 true, true);
6250
6251 // To speed up processing, we set up hash tables for fast lookup of
6252 // input offsets to output addresses.
6253 this->initialize_input_to_output_maps();
6254
6255 const Relobj::Output_sections& out_sections(this->output_sections());
6256
6257 Relocate_info<32, big_endian> relinfo;
6258 relinfo.symtab = symtab;
6259 relinfo.layout = layout;
6260 relinfo.object = this;
6261
6262 // Do relocation stubs scanning.
6263 const unsigned char* p = pshdrs + shdr_size;
6264 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6265 {
6266 const elfcpp::Shdr<32, big_endian> shdr(p);
6267 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6268 pshdrs))
6269 {
6270 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6271 Arm_address output_offset = this->get_output_section_offset(index);
6272 Arm_address output_address;
6273 if (output_offset != invalid_address)
6274 output_address = out_sections[index]->address() + output_offset;
6275 else
6276 {
6277 // Currently this only happens for a relaxed section.
6278 const Output_relaxed_input_section* poris =
6279 out_sections[index]->find_relaxed_input_section(this, index);
6280 gold_assert(poris != NULL);
6281 output_address = poris->address();
6282 }
6283
6284 // Get the relocations.
6285 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6286 shdr.get_sh_size(),
6287 true, false);
6288
6289 // Get the section contents. This does work for the case in which
6290 // we modify the contents of an input section. We need to pass the
6291 // output view under such circumstances.
6292 section_size_type input_view_size = 0;
6293 const unsigned char* input_view =
6294 this->section_contents(index, &input_view_size, false);
6295
6296 relinfo.reloc_shndx = i;
6297 relinfo.data_shndx = index;
6298 unsigned int sh_type = shdr.get_sh_type();
6299 unsigned int reloc_size;
6300 if (sh_type == elfcpp::SHT_REL)
6301 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6302 else
6303 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6304
6305 Output_section* os = out_sections[index];
6306 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6307 shdr.get_sh_size() / reloc_size,
6308 os,
6309 output_offset == invalid_address,
6310 input_view, output_address,
6311 input_view_size);
6312 }
6313 }
6314
6315 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6316 // after its relocation section, if there is one, is processed for
6317 // relocation stubs. Merging this loop with the one above would have been
6318 // complicated since we would have had to make sure that relocation stub
6319 // scanning is done first.
6320 if (arm_target->fix_cortex_a8())
6321 {
6322 const unsigned char* p = pshdrs + shdr_size;
6323 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6324 {
6325 const elfcpp::Shdr<32, big_endian> shdr(p);
6326 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6327 out_sections[i],
6328 symtab))
6329 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6330 arm_target);
6331 }
6332 }
6333
6334 // After we've done the relocations, we release the hash tables,
6335 // since we no longer need them.
6336 this->free_input_to_output_maps();
6337 }
6338
6339 // Count the local symbols. The ARM backend needs to know if a symbol
6340 // is a THUMB function or not. For global symbols, it is easy because
6341 // the Symbol object keeps the ELF symbol type. For local symbol it is
6342 // harder because we cannot access this information. So we override the
6343 // do_count_local_symbol in parent and scan local symbols to mark
6344 // THUMB functions. This is not the most efficient way but I do not want to
6345 // slow down other ports by calling a per symbol target hook inside
6346 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6347
6348 template<bool big_endian>
6349 void
6350 Arm_relobj<big_endian>::do_count_local_symbols(
6351 Stringpool_template<char>* pool,
6352 Stringpool_template<char>* dynpool)
6353 {
6354 // We need to fix-up the values of any local symbols whose type are
6355 // STT_ARM_TFUNC.
6356
6357 // Ask parent to count the local symbols.
6358 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6359 const unsigned int loccount = this->local_symbol_count();
6360 if (loccount == 0)
6361 return;
6362
6363 // Initialize the thumb function bit-vector.
6364 std::vector<bool> empty_vector(loccount, false);
6365 this->local_symbol_is_thumb_function_.swap(empty_vector);
6366
6367 // Read the symbol table section header.
6368 const unsigned int symtab_shndx = this->symtab_shndx();
6369 elfcpp::Shdr<32, big_endian>
6370 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6371 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6372
6373 // Read the local symbols.
6374 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6375 gold_assert(loccount == symtabshdr.get_sh_info());
6376 off_t locsize = loccount * sym_size;
6377 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6378 locsize, true, true);
6379
6380 // For mapping symbol processing, we need to read the symbol names.
6381 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6382 if (strtab_shndx >= this->shnum())
6383 {
6384 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6385 return;
6386 }
6387
6388 elfcpp::Shdr<32, big_endian>
6389 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6390 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6391 {
6392 this->error(_("symbol table name section has wrong type: %u"),
6393 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6394 return;
6395 }
6396 const char* pnames =
6397 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6398 strtabshdr.get_sh_size(),
6399 false, false));
6400
6401 // Loop over the local symbols and mark any local symbols pointing
6402 // to THUMB functions.
6403
6404 // Skip the first dummy symbol.
6405 psyms += sym_size;
6406 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6407 this->local_values();
6408 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6409 {
6410 elfcpp::Sym<32, big_endian> sym(psyms);
6411 elfcpp::STT st_type = sym.get_st_type();
6412 Symbol_value<32>& lv((*plocal_values)[i]);
6413 Arm_address input_value = lv.input_value();
6414
6415 // Check to see if this is a mapping symbol.
6416 const char* sym_name = pnames + sym.get_st_name();
6417 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6418 {
6419 bool is_ordinary;
6420 unsigned int input_shndx =
6421 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6422 gold_assert(is_ordinary);
6423
6424 // Strip of LSB in case this is a THUMB symbol.
6425 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6426 this->mapping_symbols_info_[msp] = sym_name[1];
6427 }
6428
6429 if (st_type == elfcpp::STT_ARM_TFUNC
6430 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6431 {
6432 // This is a THUMB function. Mark this and canonicalize the
6433 // symbol value by setting LSB.
6434 this->local_symbol_is_thumb_function_[i] = true;
6435 if ((input_value & 1) == 0)
6436 lv.set_input_value(input_value | 1);
6437 }
6438 }
6439 }
6440
6441 // Relocate sections.
6442 template<bool big_endian>
6443 void
6444 Arm_relobj<big_endian>::do_relocate_sections(
6445 const Symbol_table* symtab,
6446 const Layout* layout,
6447 const unsigned char* pshdrs,
6448 Output_file* of,
6449 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6450 {
6451 // Call parent to relocate sections.
6452 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6453 pshdrs, of, pviews);
6454
6455 // We do not generate stubs if doing a relocatable link.
6456 if (parameters->options().relocatable())
6457 return;
6458
6459 // Relocate stub tables.
6460 unsigned int shnum = this->shnum();
6461
6462 Target_arm<big_endian>* arm_target =
6463 Target_arm<big_endian>::default_target();
6464
6465 Relocate_info<32, big_endian> relinfo;
6466 relinfo.symtab = symtab;
6467 relinfo.layout = layout;
6468 relinfo.object = this;
6469
6470 for (unsigned int i = 1; i < shnum; ++i)
6471 {
6472 Arm_input_section<big_endian>* arm_input_section =
6473 arm_target->find_arm_input_section(this, i);
6474
6475 if (arm_input_section != NULL
6476 && arm_input_section->is_stub_table_owner()
6477 && !arm_input_section->stub_table()->empty())
6478 {
6479 // We cannot discard a section if it owns a stub table.
6480 Output_section* os = this->output_section(i);
6481 gold_assert(os != NULL);
6482
6483 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6484 relinfo.reloc_shdr = NULL;
6485 relinfo.data_shndx = i;
6486 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6487
6488 gold_assert((*pviews)[i].view != NULL);
6489
6490 // We are passed the output section view. Adjust it to cover the
6491 // stub table only.
6492 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6493 gold_assert((stub_table->address() >= (*pviews)[i].address)
6494 && ((stub_table->address() + stub_table->data_size())
6495 <= (*pviews)[i].address + (*pviews)[i].view_size));
6496
6497 off_t offset = stub_table->address() - (*pviews)[i].address;
6498 unsigned char* view = (*pviews)[i].view + offset;
6499 Arm_address address = stub_table->address();
6500 section_size_type view_size = stub_table->data_size();
6501
6502 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6503 view_size);
6504 }
6505
6506 // Apply Cortex A8 workaround if applicable.
6507 if (this->section_has_cortex_a8_workaround(i))
6508 {
6509 unsigned char* view = (*pviews)[i].view;
6510 Arm_address view_address = (*pviews)[i].address;
6511 section_size_type view_size = (*pviews)[i].view_size;
6512 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6513
6514 // Adjust view to cover section.
6515 Output_section* os = this->output_section(i);
6516 gold_assert(os != NULL);
6517 Arm_address section_address =
6518 this->simple_input_section_output_address(i, os);
6519 uint64_t section_size = this->section_size(i);
6520
6521 gold_assert(section_address >= view_address
6522 && ((section_address + section_size)
6523 <= (view_address + view_size)));
6524
6525 unsigned char* section_view = view + (section_address - view_address);
6526
6527 // Apply the Cortex-A8 workaround to the output address range
6528 // corresponding to this input section.
6529 stub_table->apply_cortex_a8_workaround_to_address_range(
6530 arm_target,
6531 section_view,
6532 section_address,
6533 section_size);
6534 }
6535 }
6536 }
6537
6538 // Find the linked text section of an EXIDX section by looking at the first
6539 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6540 // must be linked to its associated code section via the sh_link field of
6541 // its section header. However, some tools are broken and the link is not
6542 // always set. LD just drops such an EXIDX section silently, causing the
6543 // associated code not unwindabled. Here we try a little bit harder to
6544 // discover the linked code section.
6545 //
6546 // PSHDR points to the section header of a relocation section of an EXIDX
6547 // section. If we can find a linked text section, return true and
6548 // store the text section index in the location PSHNDX. Otherwise
6549 // return false.
6550
6551 template<bool big_endian>
6552 bool
6553 Arm_relobj<big_endian>::find_linked_text_section(
6554 const unsigned char* pshdr,
6555 const unsigned char* psyms,
6556 unsigned int* pshndx)
6557 {
6558 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6559
6560 // If there is no relocation, we cannot find the linked text section.
6561 size_t reloc_size;
6562 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6563 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6564 else
6565 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6566 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6567
6568 // Get the relocations.
6569 const unsigned char* prelocs =
6570 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6571
6572 // Find the REL31 relocation for the first word of the first EXIDX entry.
6573 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6574 {
6575 Arm_address r_offset;
6576 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6577 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6578 {
6579 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6580 r_info = reloc.get_r_info();
6581 r_offset = reloc.get_r_offset();
6582 }
6583 else
6584 {
6585 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6586 r_info = reloc.get_r_info();
6587 r_offset = reloc.get_r_offset();
6588 }
6589
6590 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6591 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6592 continue;
6593
6594 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6595 if (r_sym == 0
6596 || r_sym >= this->local_symbol_count()
6597 || r_offset != 0)
6598 continue;
6599
6600 // This is the relocation for the first word of the first EXIDX entry.
6601 // We expect to see a local section symbol.
6602 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6603 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6604 if (sym.get_st_type() == elfcpp::STT_SECTION)
6605 {
6606 bool is_ordinary;
6607 *pshndx =
6608 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6609 gold_assert(is_ordinary);
6610 return true;
6611 }
6612 else
6613 return false;
6614 }
6615
6616 return false;
6617 }
6618
6619 // Make an EXIDX input section object for an EXIDX section whose index is
6620 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6621 // is the section index of the linked text section.
6622
6623 template<bool big_endian>
6624 void
6625 Arm_relobj<big_endian>::make_exidx_input_section(
6626 unsigned int shndx,
6627 const elfcpp::Shdr<32, big_endian>& shdr,
6628 unsigned int text_shndx,
6629 const elfcpp::Shdr<32, big_endian>& text_shdr)
6630 {
6631 // Create an Arm_exidx_input_section object for this EXIDX section.
6632 Arm_exidx_input_section* exidx_input_section =
6633 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6634 shdr.get_sh_addralign(),
6635 text_shdr.get_sh_size());
6636
6637 gold_assert(this->exidx_section_map_[shndx] == NULL);
6638 this->exidx_section_map_[shndx] = exidx_input_section;
6639
6640 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6641 {
6642 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6643 this->section_name(shndx).c_str(), shndx, text_shndx,
6644 this->name().c_str());
6645 exidx_input_section->set_has_errors();
6646 }
6647 else if (this->exidx_section_map_[text_shndx] != NULL)
6648 {
6649 unsigned other_exidx_shndx =
6650 this->exidx_section_map_[text_shndx]->shndx();
6651 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6652 "%s(%u) in %s"),
6653 this->section_name(shndx).c_str(), shndx,
6654 this->section_name(other_exidx_shndx).c_str(),
6655 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6656 text_shndx, this->name().c_str());
6657 exidx_input_section->set_has_errors();
6658 }
6659 else
6660 this->exidx_section_map_[text_shndx] = exidx_input_section;
6661
6662 // Check section flags of text section.
6663 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6664 {
6665 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6666 " in %s"),
6667 this->section_name(shndx).c_str(), shndx,
6668 this->section_name(text_shndx).c_str(), text_shndx,
6669 this->name().c_str());
6670 exidx_input_section->set_has_errors();
6671 }
6672 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6673 // I would like to make this an error but currently ld just ignores
6674 // this.
6675 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6676 "%s(%u) in %s"),
6677 this->section_name(shndx).c_str(), shndx,
6678 this->section_name(text_shndx).c_str(), text_shndx,
6679 this->name().c_str());
6680 }
6681
6682 // Read the symbol information.
6683
6684 template<bool big_endian>
6685 void
6686 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6687 {
6688 // Call parent class to read symbol information.
6689 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6690
6691 // If this input file is a binary file, it has no processor
6692 // specific flags and attributes section.
6693 Input_file::Format format = this->input_file()->format();
6694 if (format != Input_file::FORMAT_ELF)
6695 {
6696 gold_assert(format == Input_file::FORMAT_BINARY);
6697 this->merge_flags_and_attributes_ = false;
6698 return;
6699 }
6700
6701 // Read processor-specific flags in ELF file header.
6702 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6703 elfcpp::Elf_sizes<32>::ehdr_size,
6704 true, false);
6705 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6706 this->processor_specific_flags_ = ehdr.get_e_flags();
6707
6708 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6709 // sections.
6710 std::vector<unsigned int> deferred_exidx_sections;
6711 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6712 const unsigned char* pshdrs = sd->section_headers->data();
6713 const unsigned char* ps = pshdrs + shdr_size;
6714 bool must_merge_flags_and_attributes = false;
6715 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6716 {
6717 elfcpp::Shdr<32, big_endian> shdr(ps);
6718
6719 // Sometimes an object has no contents except the section name string
6720 // table and an empty symbol table with the undefined symbol. We
6721 // don't want to merge processor-specific flags from such an object.
6722 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6723 {
6724 // Symbol table is not empty.
6725 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6726 elfcpp::Elf_sizes<32>::sym_size;
6727 if (shdr.get_sh_size() > sym_size)
6728 must_merge_flags_and_attributes = true;
6729 }
6730 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6731 // If this is neither an empty symbol table nor a string table,
6732 // be conservative.
6733 must_merge_flags_and_attributes = true;
6734
6735 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6736 {
6737 gold_assert(this->attributes_section_data_ == NULL);
6738 section_offset_type section_offset = shdr.get_sh_offset();
6739 section_size_type section_size =
6740 convert_to_section_size_type(shdr.get_sh_size());
6741 const unsigned char* view =
6742 this->get_view(section_offset, section_size, true, false);
6743 this->attributes_section_data_ =
6744 new Attributes_section_data(view, section_size);
6745 }
6746 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6747 {
6748 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6749 if (text_shndx == elfcpp::SHN_UNDEF)
6750 deferred_exidx_sections.push_back(i);
6751 else
6752 {
6753 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6754 + text_shndx * shdr_size);
6755 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6756 }
6757 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6758 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6759 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6760 this->section_name(i).c_str(), this->name().c_str());
6761 }
6762 }
6763
6764 // This is rare.
6765 if (!must_merge_flags_and_attributes)
6766 {
6767 gold_assert(deferred_exidx_sections.empty());
6768 this->merge_flags_and_attributes_ = false;
6769 return;
6770 }
6771
6772 // Some tools are broken and they do not set the link of EXIDX sections.
6773 // We look at the first relocation to figure out the linked sections.
6774 if (!deferred_exidx_sections.empty())
6775 {
6776 // We need to go over the section headers again to find the mapping
6777 // from sections being relocated to their relocation sections. This is
6778 // a bit inefficient as we could do that in the loop above. However,
6779 // we do not expect any deferred EXIDX sections normally. So we do not
6780 // want to slow down the most common path.
6781 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6782 Reloc_map reloc_map;
6783 ps = pshdrs + shdr_size;
6784 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6785 {
6786 elfcpp::Shdr<32, big_endian> shdr(ps);
6787 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6788 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6789 {
6790 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6791 if (info_shndx >= this->shnum())
6792 gold_error(_("relocation section %u has invalid info %u"),
6793 i, info_shndx);
6794 Reloc_map::value_type value(info_shndx, i);
6795 std::pair<Reloc_map::iterator, bool> result =
6796 reloc_map.insert(value);
6797 if (!result.second)
6798 gold_error(_("section %u has multiple relocation sections "
6799 "%u and %u"),
6800 info_shndx, i, reloc_map[info_shndx]);
6801 }
6802 }
6803
6804 // Read the symbol table section header.
6805 const unsigned int symtab_shndx = this->symtab_shndx();
6806 elfcpp::Shdr<32, big_endian>
6807 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6808 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6809
6810 // Read the local symbols.
6811 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6812 const unsigned int loccount = this->local_symbol_count();
6813 gold_assert(loccount == symtabshdr.get_sh_info());
6814 off_t locsize = loccount * sym_size;
6815 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6816 locsize, true, true);
6817
6818 // Process the deferred EXIDX sections.
6819 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6820 {
6821 unsigned int shndx = deferred_exidx_sections[i];
6822 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6823 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6824 Reloc_map::const_iterator it = reloc_map.find(shndx);
6825 if (it != reloc_map.end())
6826 find_linked_text_section(pshdrs + it->second * shdr_size,
6827 psyms, &text_shndx);
6828 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6829 + text_shndx * shdr_size);
6830 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6831 }
6832 }
6833 }
6834
6835 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6836 // sections for unwinding. These sections are referenced implicitly by
6837 // text sections linked in the section headers. If we ignore these implicit
6838 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6839 // will be garbage-collected incorrectly. Hence we override the same function
6840 // in the base class to handle these implicit references.
6841
6842 template<bool big_endian>
6843 void
6844 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6845 Layout* layout,
6846 Read_relocs_data* rd)
6847 {
6848 // First, call base class method to process relocations in this object.
6849 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6850
6851 // If --gc-sections is not specified, there is nothing more to do.
6852 // This happens when --icf is used but --gc-sections is not.
6853 if (!parameters->options().gc_sections())
6854 return;
6855
6856 unsigned int shnum = this->shnum();
6857 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6858 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6859 shnum * shdr_size,
6860 true, true);
6861
6862 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6863 // to these from the linked text sections.
6864 const unsigned char* ps = pshdrs + shdr_size;
6865 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6866 {
6867 elfcpp::Shdr<32, big_endian> shdr(ps);
6868 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6869 {
6870 // Found an .ARM.exidx section, add it to the set of reachable
6871 // sections from its linked text section.
6872 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6873 symtab->gc()->add_reference(this, text_shndx, this, i);
6874 }
6875 }
6876 }
6877
6878 // Update output local symbol count. Owing to EXIDX entry merging, some local
6879 // symbols will be removed in output. Adjust output local symbol count
6880 // accordingly. We can only changed the static output local symbol count. It
6881 // is too late to change the dynamic symbols.
6882
6883 template<bool big_endian>
6884 void
6885 Arm_relobj<big_endian>::update_output_local_symbol_count()
6886 {
6887 // Caller should check that this needs updating. We want caller checking
6888 // because output_local_symbol_count_needs_update() is most likely inlined.
6889 gold_assert(this->output_local_symbol_count_needs_update_);
6890
6891 gold_assert(this->symtab_shndx() != -1U);
6892 if (this->symtab_shndx() == 0)
6893 {
6894 // This object has no symbols. Weird but legal.
6895 return;
6896 }
6897
6898 // Read the symbol table section header.
6899 const unsigned int symtab_shndx = this->symtab_shndx();
6900 elfcpp::Shdr<32, big_endian>
6901 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6902 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6903
6904 // Read the local symbols.
6905 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6906 const unsigned int loccount = this->local_symbol_count();
6907 gold_assert(loccount == symtabshdr.get_sh_info());
6908 off_t locsize = loccount * sym_size;
6909 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6910 locsize, true, true);
6911
6912 // Loop over the local symbols.
6913
6914 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6915 Output_sections;
6916 const Output_sections& out_sections(this->output_sections());
6917 unsigned int shnum = this->shnum();
6918 unsigned int count = 0;
6919 // Skip the first, dummy, symbol.
6920 psyms += sym_size;
6921 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6922 {
6923 elfcpp::Sym<32, big_endian> sym(psyms);
6924
6925 Symbol_value<32>& lv((*this->local_values())[i]);
6926
6927 // This local symbol was already discarded by do_count_local_symbols.
6928 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6929 continue;
6930
6931 bool is_ordinary;
6932 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6933 &is_ordinary);
6934
6935 if (shndx < shnum)
6936 {
6937 Output_section* os = out_sections[shndx];
6938
6939 // This local symbol no longer has an output section. Discard it.
6940 if (os == NULL)
6941 {
6942 lv.set_no_output_symtab_entry();
6943 continue;
6944 }
6945
6946 // Currently we only discard parts of EXIDX input sections.
6947 // We explicitly check for a merged EXIDX input section to avoid
6948 // calling Output_section_data::output_offset unless necessary.
6949 if ((this->get_output_section_offset(shndx) == invalid_address)
6950 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6951 {
6952 section_offset_type output_offset =
6953 os->output_offset(this, shndx, lv.input_value());
6954 if (output_offset == -1)
6955 {
6956 // This symbol is defined in a part of an EXIDX input section
6957 // that is discarded due to entry merging.
6958 lv.set_no_output_symtab_entry();
6959 continue;
6960 }
6961 }
6962 }
6963
6964 ++count;
6965 }
6966
6967 this->set_output_local_symbol_count(count);
6968 this->output_local_symbol_count_needs_update_ = false;
6969 }
6970
6971 // Arm_dynobj methods.
6972
6973 // Read the symbol information.
6974
6975 template<bool big_endian>
6976 void
6977 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6978 {
6979 // Call parent class to read symbol information.
6980 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6981
6982 // Read processor-specific flags in ELF file header.
6983 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6984 elfcpp::Elf_sizes<32>::ehdr_size,
6985 true, false);
6986 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6987 this->processor_specific_flags_ = ehdr.get_e_flags();
6988
6989 // Read the attributes section if there is one.
6990 // We read from the end because gas seems to put it near the end of
6991 // the section headers.
6992 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6993 const unsigned char* ps =
6994 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6995 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6996 {
6997 elfcpp::Shdr<32, big_endian> shdr(ps);
6998 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6999 {
7000 section_offset_type section_offset = shdr.get_sh_offset();
7001 section_size_type section_size =
7002 convert_to_section_size_type(shdr.get_sh_size());
7003 const unsigned char* view =
7004 this->get_view(section_offset, section_size, true, false);
7005 this->attributes_section_data_ =
7006 new Attributes_section_data(view, section_size);
7007 break;
7008 }
7009 }
7010 }
7011
7012 // Stub_addend_reader methods.
7013
7014 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7015
7016 template<bool big_endian>
7017 elfcpp::Elf_types<32>::Elf_Swxword
7018 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7019 unsigned int r_type,
7020 const unsigned char* view,
7021 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7022 {
7023 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7024
7025 switch (r_type)
7026 {
7027 case elfcpp::R_ARM_CALL:
7028 case elfcpp::R_ARM_JUMP24:
7029 case elfcpp::R_ARM_PLT32:
7030 {
7031 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7032 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7033 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7034 return utils::sign_extend<26>(val << 2);
7035 }
7036
7037 case elfcpp::R_ARM_THM_CALL:
7038 case elfcpp::R_ARM_THM_JUMP24:
7039 case elfcpp::R_ARM_THM_XPC22:
7040 {
7041 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7042 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7043 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7044 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7045 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7046 }
7047
7048 case elfcpp::R_ARM_THM_JUMP19:
7049 {
7050 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7051 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7052 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7053 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7054 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7055 }
7056
7057 default:
7058 gold_unreachable();
7059 }
7060 }
7061
7062 // Arm_output_data_got methods.
7063
7064 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7065 // The first one is initialized to be 1, which is the module index for
7066 // the main executable and the second one 0. A reloc of the type
7067 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7068 // be applied by gold. GSYM is a global symbol.
7069 //
7070 template<bool big_endian>
7071 void
7072 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7073 unsigned int got_type,
7074 Symbol* gsym)
7075 {
7076 if (gsym->has_got_offset(got_type))
7077 return;
7078
7079 // We are doing a static link. Just mark it as belong to module 1,
7080 // the executable.
7081 unsigned int got_offset = this->add_constant(1);
7082 gsym->set_got_offset(got_type, got_offset);
7083 got_offset = this->add_constant(0);
7084 this->static_relocs_.push_back(Static_reloc(got_offset,
7085 elfcpp::R_ARM_TLS_DTPOFF32,
7086 gsym));
7087 }
7088
7089 // Same as the above but for a local symbol.
7090
7091 template<bool big_endian>
7092 void
7093 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7094 unsigned int got_type,
7095 Sized_relobj_file<32, big_endian>* object,
7096 unsigned int index)
7097 {
7098 if (object->local_has_got_offset(index, got_type))
7099 return;
7100
7101 // We are doing a static link. Just mark it as belong to module 1,
7102 // the executable.
7103 unsigned int got_offset = this->add_constant(1);
7104 object->set_local_got_offset(index, got_type, got_offset);
7105 got_offset = this->add_constant(0);
7106 this->static_relocs_.push_back(Static_reloc(got_offset,
7107 elfcpp::R_ARM_TLS_DTPOFF32,
7108 object, index));
7109 }
7110
7111 template<bool big_endian>
7112 void
7113 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7114 {
7115 // Call parent to write out GOT.
7116 Output_data_got<32, big_endian>::do_write(of);
7117
7118 // We are done if there is no fix up.
7119 if (this->static_relocs_.empty())
7120 return;
7121
7122 gold_assert(parameters->doing_static_link());
7123
7124 const off_t offset = this->offset();
7125 const section_size_type oview_size =
7126 convert_to_section_size_type(this->data_size());
7127 unsigned char* const oview = of->get_output_view(offset, oview_size);
7128
7129 Output_segment* tls_segment = this->layout_->tls_segment();
7130 gold_assert(tls_segment != NULL);
7131
7132 // The thread pointer $tp points to the TCB, which is followed by the
7133 // TLS. So we need to adjust $tp relative addressing by this amount.
7134 Arm_address aligned_tcb_size =
7135 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7136
7137 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7138 {
7139 Static_reloc& reloc(this->static_relocs_[i]);
7140
7141 Arm_address value;
7142 if (!reloc.symbol_is_global())
7143 {
7144 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7145 const Symbol_value<32>* psymval =
7146 reloc.relobj()->local_symbol(reloc.index());
7147
7148 // We are doing static linking. Issue an error and skip this
7149 // relocation if the symbol is undefined or in a discarded_section.
7150 bool is_ordinary;
7151 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7152 if ((shndx == elfcpp::SHN_UNDEF)
7153 || (is_ordinary
7154 && shndx != elfcpp::SHN_UNDEF
7155 && !object->is_section_included(shndx)
7156 && !this->symbol_table_->is_section_folded(object, shndx)))
7157 {
7158 gold_error(_("undefined or discarded local symbol %u from "
7159 " object %s in GOT"),
7160 reloc.index(), reloc.relobj()->name().c_str());
7161 continue;
7162 }
7163
7164 value = psymval->value(object, 0);
7165 }
7166 else
7167 {
7168 const Symbol* gsym = reloc.symbol();
7169 gold_assert(gsym != NULL);
7170 if (gsym->is_forwarder())
7171 gsym = this->symbol_table_->resolve_forwards(gsym);
7172
7173 // We are doing static linking. Issue an error and skip this
7174 // relocation if the symbol is undefined or in a discarded_section
7175 // unless it is a weakly_undefined symbol.
7176 if ((gsym->is_defined_in_discarded_section()
7177 || gsym->is_undefined())
7178 && !gsym->is_weak_undefined())
7179 {
7180 gold_error(_("undefined or discarded symbol %s in GOT"),
7181 gsym->name());
7182 continue;
7183 }
7184
7185 if (!gsym->is_weak_undefined())
7186 {
7187 const Sized_symbol<32>* sym =
7188 static_cast<const Sized_symbol<32>*>(gsym);
7189 value = sym->value();
7190 }
7191 else
7192 value = 0;
7193 }
7194
7195 unsigned got_offset = reloc.got_offset();
7196 gold_assert(got_offset < oview_size);
7197
7198 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7199 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7200 Valtype x;
7201 switch (reloc.r_type())
7202 {
7203 case elfcpp::R_ARM_TLS_DTPOFF32:
7204 x = value;
7205 break;
7206 case elfcpp::R_ARM_TLS_TPOFF32:
7207 x = value + aligned_tcb_size;
7208 break;
7209 default:
7210 gold_unreachable();
7211 }
7212 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7213 }
7214
7215 of->write_output_view(offset, oview_size, oview);
7216 }
7217
7218 // A class to handle the PLT data.
7219
7220 template<bool big_endian>
7221 class Output_data_plt_arm : public Output_section_data
7222 {
7223 public:
7224 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7225 Reloc_section;
7226
7227 Output_data_plt_arm(Layout*, Output_data_space*);
7228
7229 // Add an entry to the PLT.
7230 void
7231 add_entry(Symbol* gsym);
7232
7233 // Return the .rel.plt section data.
7234 const Reloc_section*
7235 rel_plt() const
7236 { return this->rel_; }
7237
7238 // Return the number of PLT entries.
7239 unsigned int
7240 entry_count() const
7241 { return this->count_; }
7242
7243 // Return the offset of the first non-reserved PLT entry.
7244 static unsigned int
7245 first_plt_entry_offset()
7246 { return sizeof(first_plt_entry); }
7247
7248 // Return the size of a PLT entry.
7249 static unsigned int
7250 get_plt_entry_size()
7251 { return sizeof(plt_entry); }
7252
7253 protected:
7254 void
7255 do_adjust_output_section(Output_section* os);
7256
7257 // Write to a map file.
7258 void
7259 do_print_to_mapfile(Mapfile* mapfile) const
7260 { mapfile->print_output_data(this, _("** PLT")); }
7261
7262 private:
7263 // Template for the first PLT entry.
7264 static const uint32_t first_plt_entry[5];
7265
7266 // Template for subsequent PLT entries.
7267 static const uint32_t plt_entry[3];
7268
7269 // Set the final size.
7270 void
7271 set_final_data_size()
7272 {
7273 this->set_data_size(sizeof(first_plt_entry)
7274 + this->count_ * sizeof(plt_entry));
7275 }
7276
7277 // Write out the PLT data.
7278 void
7279 do_write(Output_file*);
7280
7281 // The reloc section.
7282 Reloc_section* rel_;
7283 // The .got.plt section.
7284 Output_data_space* got_plt_;
7285 // The number of PLT entries.
7286 unsigned int count_;
7287 };
7288
7289 // Create the PLT section. The ordinary .got section is an argument,
7290 // since we need to refer to the start. We also create our own .got
7291 // section just for PLT entries.
7292
7293 template<bool big_endian>
7294 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7295 Output_data_space* got_plt)
7296 : Output_section_data(4), got_plt_(got_plt), count_(0)
7297 {
7298 this->rel_ = new Reloc_section(false);
7299 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7300 elfcpp::SHF_ALLOC, this->rel_,
7301 ORDER_DYNAMIC_PLT_RELOCS, false);
7302 }
7303
7304 template<bool big_endian>
7305 void
7306 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7307 {
7308 os->set_entsize(0);
7309 }
7310
7311 // Add an entry to the PLT.
7312
7313 template<bool big_endian>
7314 void
7315 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7316 {
7317 gold_assert(!gsym->has_plt_offset());
7318
7319 // Note that when setting the PLT offset we skip the initial
7320 // reserved PLT entry.
7321 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7322 + sizeof(first_plt_entry));
7323
7324 ++this->count_;
7325
7326 section_offset_type got_offset = this->got_plt_->current_data_size();
7327
7328 // Every PLT entry needs a GOT entry which points back to the PLT
7329 // entry (this will be changed by the dynamic linker, normally
7330 // lazily when the function is called).
7331 this->got_plt_->set_current_data_size(got_offset + 4);
7332
7333 // Every PLT entry needs a reloc.
7334 gsym->set_needs_dynsym_entry();
7335 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7336 got_offset);
7337
7338 // Note that we don't need to save the symbol. The contents of the
7339 // PLT are independent of which symbols are used. The symbols only
7340 // appear in the relocations.
7341 }
7342
7343 // ARM PLTs.
7344 // FIXME: This is not very flexible. Right now this has only been tested
7345 // on armv5te. If we are to support additional architecture features like
7346 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7347
7348 // The first entry in the PLT.
7349 template<bool big_endian>
7350 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7351 {
7352 0xe52de004, // str lr, [sp, #-4]!
7353 0xe59fe004, // ldr lr, [pc, #4]
7354 0xe08fe00e, // add lr, pc, lr
7355 0xe5bef008, // ldr pc, [lr, #8]!
7356 0x00000000, // &GOT[0] - .
7357 };
7358
7359 // Subsequent entries in the PLT.
7360
7361 template<bool big_endian>
7362 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7363 {
7364 0xe28fc600, // add ip, pc, #0xNN00000
7365 0xe28cca00, // add ip, ip, #0xNN000
7366 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7367 };
7368
7369 // Write out the PLT. This uses the hand-coded instructions above,
7370 // and adjusts them as needed. This is all specified by the arm ELF
7371 // Processor Supplement.
7372
7373 template<bool big_endian>
7374 void
7375 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7376 {
7377 const off_t offset = this->offset();
7378 const section_size_type oview_size =
7379 convert_to_section_size_type(this->data_size());
7380 unsigned char* const oview = of->get_output_view(offset, oview_size);
7381
7382 const off_t got_file_offset = this->got_plt_->offset();
7383 const section_size_type got_size =
7384 convert_to_section_size_type(this->got_plt_->data_size());
7385 unsigned char* const got_view = of->get_output_view(got_file_offset,
7386 got_size);
7387 unsigned char* pov = oview;
7388
7389 Arm_address plt_address = this->address();
7390 Arm_address got_address = this->got_plt_->address();
7391
7392 // Write first PLT entry. All but the last word are constants.
7393 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7394 / sizeof(plt_entry[0]));
7395 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7396 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7397 // Last word in first PLT entry is &GOT[0] - .
7398 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7399 got_address - (plt_address + 16));
7400 pov += sizeof(first_plt_entry);
7401
7402 unsigned char* got_pov = got_view;
7403
7404 memset(got_pov, 0, 12);
7405 got_pov += 12;
7406
7407 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7408 unsigned int plt_offset = sizeof(first_plt_entry);
7409 unsigned int plt_rel_offset = 0;
7410 unsigned int got_offset = 12;
7411 const unsigned int count = this->count_;
7412 for (unsigned int i = 0;
7413 i < count;
7414 ++i,
7415 pov += sizeof(plt_entry),
7416 got_pov += 4,
7417 plt_offset += sizeof(plt_entry),
7418 plt_rel_offset += rel_size,
7419 got_offset += 4)
7420 {
7421 // Set and adjust the PLT entry itself.
7422 int32_t offset = ((got_address + got_offset)
7423 - (plt_address + plt_offset + 8));
7424
7425 gold_assert(offset >= 0 && offset < 0x0fffffff);
7426 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7427 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7428 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7429 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7430 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7431 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7432
7433 // Set the entry in the GOT.
7434 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7435 }
7436
7437 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7438 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7439
7440 of->write_output_view(offset, oview_size, oview);
7441 of->write_output_view(got_file_offset, got_size, got_view);
7442 }
7443
7444 // Create a PLT entry for a global symbol.
7445
7446 template<bool big_endian>
7447 void
7448 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7449 Symbol* gsym)
7450 {
7451 if (gsym->has_plt_offset())
7452 return;
7453
7454 if (this->plt_ == NULL)
7455 {
7456 // Create the GOT sections first.
7457 this->got_section(symtab, layout);
7458
7459 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7460 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7461 (elfcpp::SHF_ALLOC
7462 | elfcpp::SHF_EXECINSTR),
7463 this->plt_, ORDER_PLT, false);
7464 }
7465 this->plt_->add_entry(gsym);
7466 }
7467
7468 // Return the number of entries in the PLT.
7469
7470 template<bool big_endian>
7471 unsigned int
7472 Target_arm<big_endian>::plt_entry_count() const
7473 {
7474 if (this->plt_ == NULL)
7475 return 0;
7476 return this->plt_->entry_count();
7477 }
7478
7479 // Return the offset of the first non-reserved PLT entry.
7480
7481 template<bool big_endian>
7482 unsigned int
7483 Target_arm<big_endian>::first_plt_entry_offset() const
7484 {
7485 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7486 }
7487
7488 // Return the size of each PLT entry.
7489
7490 template<bool big_endian>
7491 unsigned int
7492 Target_arm<big_endian>::plt_entry_size() const
7493 {
7494 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7495 }
7496
7497 // Get the section to use for TLS_DESC relocations.
7498
7499 template<bool big_endian>
7500 typename Target_arm<big_endian>::Reloc_section*
7501 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7502 {
7503 return this->plt_section()->rel_tls_desc(layout);
7504 }
7505
7506 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7507
7508 template<bool big_endian>
7509 void
7510 Target_arm<big_endian>::define_tls_base_symbol(
7511 Symbol_table* symtab,
7512 Layout* layout)
7513 {
7514 if (this->tls_base_symbol_defined_)
7515 return;
7516
7517 Output_segment* tls_segment = layout->tls_segment();
7518 if (tls_segment != NULL)
7519 {
7520 bool is_exec = parameters->options().output_is_executable();
7521 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7522 Symbol_table::PREDEFINED,
7523 tls_segment, 0, 0,
7524 elfcpp::STT_TLS,
7525 elfcpp::STB_LOCAL,
7526 elfcpp::STV_HIDDEN, 0,
7527 (is_exec
7528 ? Symbol::SEGMENT_END
7529 : Symbol::SEGMENT_START),
7530 true);
7531 }
7532 this->tls_base_symbol_defined_ = true;
7533 }
7534
7535 // Create a GOT entry for the TLS module index.
7536
7537 template<bool big_endian>
7538 unsigned int
7539 Target_arm<big_endian>::got_mod_index_entry(
7540 Symbol_table* symtab,
7541 Layout* layout,
7542 Sized_relobj_file<32, big_endian>* object)
7543 {
7544 if (this->got_mod_index_offset_ == -1U)
7545 {
7546 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7547 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7548 unsigned int got_offset;
7549 if (!parameters->doing_static_link())
7550 {
7551 got_offset = got->add_constant(0);
7552 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7553 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7554 got_offset);
7555 }
7556 else
7557 {
7558 // We are doing a static link. Just mark it as belong to module 1,
7559 // the executable.
7560 got_offset = got->add_constant(1);
7561 }
7562
7563 got->add_constant(0);
7564 this->got_mod_index_offset_ = got_offset;
7565 }
7566 return this->got_mod_index_offset_;
7567 }
7568
7569 // Optimize the TLS relocation type based on what we know about the
7570 // symbol. IS_FINAL is true if the final address of this symbol is
7571 // known at link time.
7572
7573 template<bool big_endian>
7574 tls::Tls_optimization
7575 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7576 {
7577 // FIXME: Currently we do not do any TLS optimization.
7578 return tls::TLSOPT_NONE;
7579 }
7580
7581 // Get the Reference_flags for a particular relocation.
7582
7583 template<bool big_endian>
7584 int
7585 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7586 {
7587 switch (r_type)
7588 {
7589 case elfcpp::R_ARM_NONE:
7590 case elfcpp::R_ARM_V4BX:
7591 case elfcpp::R_ARM_GNU_VTENTRY:
7592 case elfcpp::R_ARM_GNU_VTINHERIT:
7593 // No symbol reference.
7594 return 0;
7595
7596 case elfcpp::R_ARM_ABS32:
7597 case elfcpp::R_ARM_ABS16:
7598 case elfcpp::R_ARM_ABS12:
7599 case elfcpp::R_ARM_THM_ABS5:
7600 case elfcpp::R_ARM_ABS8:
7601 case elfcpp::R_ARM_BASE_ABS:
7602 case elfcpp::R_ARM_MOVW_ABS_NC:
7603 case elfcpp::R_ARM_MOVT_ABS:
7604 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7605 case elfcpp::R_ARM_THM_MOVT_ABS:
7606 case elfcpp::R_ARM_ABS32_NOI:
7607 return Symbol::ABSOLUTE_REF;
7608
7609 case elfcpp::R_ARM_REL32:
7610 case elfcpp::R_ARM_LDR_PC_G0:
7611 case elfcpp::R_ARM_SBREL32:
7612 case elfcpp::R_ARM_THM_PC8:
7613 case elfcpp::R_ARM_BASE_PREL:
7614 case elfcpp::R_ARM_MOVW_PREL_NC:
7615 case elfcpp::R_ARM_MOVT_PREL:
7616 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7617 case elfcpp::R_ARM_THM_MOVT_PREL:
7618 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7619 case elfcpp::R_ARM_THM_PC12:
7620 case elfcpp::R_ARM_REL32_NOI:
7621 case elfcpp::R_ARM_ALU_PC_G0_NC:
7622 case elfcpp::R_ARM_ALU_PC_G0:
7623 case elfcpp::R_ARM_ALU_PC_G1_NC:
7624 case elfcpp::R_ARM_ALU_PC_G1:
7625 case elfcpp::R_ARM_ALU_PC_G2:
7626 case elfcpp::R_ARM_LDR_PC_G1:
7627 case elfcpp::R_ARM_LDR_PC_G2:
7628 case elfcpp::R_ARM_LDRS_PC_G0:
7629 case elfcpp::R_ARM_LDRS_PC_G1:
7630 case elfcpp::R_ARM_LDRS_PC_G2:
7631 case elfcpp::R_ARM_LDC_PC_G0:
7632 case elfcpp::R_ARM_LDC_PC_G1:
7633 case elfcpp::R_ARM_LDC_PC_G2:
7634 case elfcpp::R_ARM_ALU_SB_G0_NC:
7635 case elfcpp::R_ARM_ALU_SB_G0:
7636 case elfcpp::R_ARM_ALU_SB_G1_NC:
7637 case elfcpp::R_ARM_ALU_SB_G1:
7638 case elfcpp::R_ARM_ALU_SB_G2:
7639 case elfcpp::R_ARM_LDR_SB_G0:
7640 case elfcpp::R_ARM_LDR_SB_G1:
7641 case elfcpp::R_ARM_LDR_SB_G2:
7642 case elfcpp::R_ARM_LDRS_SB_G0:
7643 case elfcpp::R_ARM_LDRS_SB_G1:
7644 case elfcpp::R_ARM_LDRS_SB_G2:
7645 case elfcpp::R_ARM_LDC_SB_G0:
7646 case elfcpp::R_ARM_LDC_SB_G1:
7647 case elfcpp::R_ARM_LDC_SB_G2:
7648 case elfcpp::R_ARM_MOVW_BREL_NC:
7649 case elfcpp::R_ARM_MOVT_BREL:
7650 case elfcpp::R_ARM_MOVW_BREL:
7651 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7652 case elfcpp::R_ARM_THM_MOVT_BREL:
7653 case elfcpp::R_ARM_THM_MOVW_BREL:
7654 case elfcpp::R_ARM_GOTOFF32:
7655 case elfcpp::R_ARM_GOTOFF12:
7656 case elfcpp::R_ARM_SBREL31:
7657 return Symbol::RELATIVE_REF;
7658
7659 case elfcpp::R_ARM_PLT32:
7660 case elfcpp::R_ARM_CALL:
7661 case elfcpp::R_ARM_JUMP24:
7662 case elfcpp::R_ARM_THM_CALL:
7663 case elfcpp::R_ARM_THM_JUMP24:
7664 case elfcpp::R_ARM_THM_JUMP19:
7665 case elfcpp::R_ARM_THM_JUMP6:
7666 case elfcpp::R_ARM_THM_JUMP11:
7667 case elfcpp::R_ARM_THM_JUMP8:
7668 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7669 // in unwind tables. It may point to functions via PLTs.
7670 // So we treat it like call/jump relocations above.
7671 case elfcpp::R_ARM_PREL31:
7672 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7673
7674 case elfcpp::R_ARM_GOT_BREL:
7675 case elfcpp::R_ARM_GOT_ABS:
7676 case elfcpp::R_ARM_GOT_PREL:
7677 // Absolute in GOT.
7678 return Symbol::ABSOLUTE_REF;
7679
7680 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7681 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7682 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7683 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7684 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7685 return Symbol::TLS_REF;
7686
7687 case elfcpp::R_ARM_TARGET1:
7688 case elfcpp::R_ARM_TARGET2:
7689 case elfcpp::R_ARM_COPY:
7690 case elfcpp::R_ARM_GLOB_DAT:
7691 case elfcpp::R_ARM_JUMP_SLOT:
7692 case elfcpp::R_ARM_RELATIVE:
7693 case elfcpp::R_ARM_PC24:
7694 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7695 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7696 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7697 default:
7698 // Not expected. We will give an error later.
7699 return 0;
7700 }
7701 }
7702
7703 // Report an unsupported relocation against a local symbol.
7704
7705 template<bool big_endian>
7706 void
7707 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7708 Sized_relobj_file<32, big_endian>* object,
7709 unsigned int r_type)
7710 {
7711 gold_error(_("%s: unsupported reloc %u against local symbol"),
7712 object->name().c_str(), r_type);
7713 }
7714
7715 // We are about to emit a dynamic relocation of type R_TYPE. If the
7716 // dynamic linker does not support it, issue an error. The GNU linker
7717 // only issues a non-PIC error for an allocated read-only section.
7718 // Here we know the section is allocated, but we don't know that it is
7719 // read-only. But we check for all the relocation types which the
7720 // glibc dynamic linker supports, so it seems appropriate to issue an
7721 // error even if the section is not read-only.
7722
7723 template<bool big_endian>
7724 void
7725 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7726 unsigned int r_type)
7727 {
7728 switch (r_type)
7729 {
7730 // These are the relocation types supported by glibc for ARM.
7731 case elfcpp::R_ARM_RELATIVE:
7732 case elfcpp::R_ARM_COPY:
7733 case elfcpp::R_ARM_GLOB_DAT:
7734 case elfcpp::R_ARM_JUMP_SLOT:
7735 case elfcpp::R_ARM_ABS32:
7736 case elfcpp::R_ARM_ABS32_NOI:
7737 case elfcpp::R_ARM_PC24:
7738 // FIXME: The following 3 types are not supported by Android's dynamic
7739 // linker.
7740 case elfcpp::R_ARM_TLS_DTPMOD32:
7741 case elfcpp::R_ARM_TLS_DTPOFF32:
7742 case elfcpp::R_ARM_TLS_TPOFF32:
7743 return;
7744
7745 default:
7746 {
7747 // This prevents us from issuing more than one error per reloc
7748 // section. But we can still wind up issuing more than one
7749 // error per object file.
7750 if (this->issued_non_pic_error_)
7751 return;
7752 const Arm_reloc_property* reloc_property =
7753 arm_reloc_property_table->get_reloc_property(r_type);
7754 gold_assert(reloc_property != NULL);
7755 object->error(_("requires unsupported dynamic reloc %s; "
7756 "recompile with -fPIC"),
7757 reloc_property->name().c_str());
7758 this->issued_non_pic_error_ = true;
7759 return;
7760 }
7761
7762 case elfcpp::R_ARM_NONE:
7763 gold_unreachable();
7764 }
7765 }
7766
7767 // Scan a relocation for a local symbol.
7768 // FIXME: This only handles a subset of relocation types used by Android
7769 // on ARM v5te devices.
7770
7771 template<bool big_endian>
7772 inline void
7773 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7774 Layout* layout,
7775 Target_arm* target,
7776 Sized_relobj_file<32, big_endian>* object,
7777 unsigned int data_shndx,
7778 Output_section* output_section,
7779 const elfcpp::Rel<32, big_endian>& reloc,
7780 unsigned int r_type,
7781 const elfcpp::Sym<32, big_endian>& lsym)
7782 {
7783 r_type = get_real_reloc_type(r_type);
7784 switch (r_type)
7785 {
7786 case elfcpp::R_ARM_NONE:
7787 case elfcpp::R_ARM_V4BX:
7788 case elfcpp::R_ARM_GNU_VTENTRY:
7789 case elfcpp::R_ARM_GNU_VTINHERIT:
7790 break;
7791
7792 case elfcpp::R_ARM_ABS32:
7793 case elfcpp::R_ARM_ABS32_NOI:
7794 // If building a shared library (or a position-independent
7795 // executable), we need to create a dynamic relocation for
7796 // this location. The relocation applied at link time will
7797 // apply the link-time value, so we flag the location with
7798 // an R_ARM_RELATIVE relocation so the dynamic loader can
7799 // relocate it easily.
7800 if (parameters->options().output_is_position_independent())
7801 {
7802 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7803 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7804 // If we are to add more other reloc types than R_ARM_ABS32,
7805 // we need to add check_non_pic(object, r_type) here.
7806 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7807 output_section, data_shndx,
7808 reloc.get_r_offset());
7809 }
7810 break;
7811
7812 case elfcpp::R_ARM_ABS16:
7813 case elfcpp::R_ARM_ABS12:
7814 case elfcpp::R_ARM_THM_ABS5:
7815 case elfcpp::R_ARM_ABS8:
7816 case elfcpp::R_ARM_BASE_ABS:
7817 case elfcpp::R_ARM_MOVW_ABS_NC:
7818 case elfcpp::R_ARM_MOVT_ABS:
7819 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7820 case elfcpp::R_ARM_THM_MOVT_ABS:
7821 // If building a shared library (or a position-independent
7822 // executable), we need to create a dynamic relocation for
7823 // this location. Because the addend needs to remain in the
7824 // data section, we need to be careful not to apply this
7825 // relocation statically.
7826 if (parameters->options().output_is_position_independent())
7827 {
7828 check_non_pic(object, r_type);
7829 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7830 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7831 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7832 rel_dyn->add_local(object, r_sym, r_type, output_section,
7833 data_shndx, reloc.get_r_offset());
7834 else
7835 {
7836 gold_assert(lsym.get_st_value() == 0);
7837 unsigned int shndx = lsym.get_st_shndx();
7838 bool is_ordinary;
7839 shndx = object->adjust_sym_shndx(r_sym, shndx,
7840 &is_ordinary);
7841 if (!is_ordinary)
7842 object->error(_("section symbol %u has bad shndx %u"),
7843 r_sym, shndx);
7844 else
7845 rel_dyn->add_local_section(object, shndx,
7846 r_type, output_section,
7847 data_shndx, reloc.get_r_offset());
7848 }
7849 }
7850 break;
7851
7852 case elfcpp::R_ARM_REL32:
7853 case elfcpp::R_ARM_LDR_PC_G0:
7854 case elfcpp::R_ARM_SBREL32:
7855 case elfcpp::R_ARM_THM_CALL:
7856 case elfcpp::R_ARM_THM_PC8:
7857 case elfcpp::R_ARM_BASE_PREL:
7858 case elfcpp::R_ARM_PLT32:
7859 case elfcpp::R_ARM_CALL:
7860 case elfcpp::R_ARM_JUMP24:
7861 case elfcpp::R_ARM_THM_JUMP24:
7862 case elfcpp::R_ARM_SBREL31:
7863 case elfcpp::R_ARM_PREL31:
7864 case elfcpp::R_ARM_MOVW_PREL_NC:
7865 case elfcpp::R_ARM_MOVT_PREL:
7866 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7867 case elfcpp::R_ARM_THM_MOVT_PREL:
7868 case elfcpp::R_ARM_THM_JUMP19:
7869 case elfcpp::R_ARM_THM_JUMP6:
7870 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7871 case elfcpp::R_ARM_THM_PC12:
7872 case elfcpp::R_ARM_REL32_NOI:
7873 case elfcpp::R_ARM_ALU_PC_G0_NC:
7874 case elfcpp::R_ARM_ALU_PC_G0:
7875 case elfcpp::R_ARM_ALU_PC_G1_NC:
7876 case elfcpp::R_ARM_ALU_PC_G1:
7877 case elfcpp::R_ARM_ALU_PC_G2:
7878 case elfcpp::R_ARM_LDR_PC_G1:
7879 case elfcpp::R_ARM_LDR_PC_G2:
7880 case elfcpp::R_ARM_LDRS_PC_G0:
7881 case elfcpp::R_ARM_LDRS_PC_G1:
7882 case elfcpp::R_ARM_LDRS_PC_G2:
7883 case elfcpp::R_ARM_LDC_PC_G0:
7884 case elfcpp::R_ARM_LDC_PC_G1:
7885 case elfcpp::R_ARM_LDC_PC_G2:
7886 case elfcpp::R_ARM_ALU_SB_G0_NC:
7887 case elfcpp::R_ARM_ALU_SB_G0:
7888 case elfcpp::R_ARM_ALU_SB_G1_NC:
7889 case elfcpp::R_ARM_ALU_SB_G1:
7890 case elfcpp::R_ARM_ALU_SB_G2:
7891 case elfcpp::R_ARM_LDR_SB_G0:
7892 case elfcpp::R_ARM_LDR_SB_G1:
7893 case elfcpp::R_ARM_LDR_SB_G2:
7894 case elfcpp::R_ARM_LDRS_SB_G0:
7895 case elfcpp::R_ARM_LDRS_SB_G1:
7896 case elfcpp::R_ARM_LDRS_SB_G2:
7897 case elfcpp::R_ARM_LDC_SB_G0:
7898 case elfcpp::R_ARM_LDC_SB_G1:
7899 case elfcpp::R_ARM_LDC_SB_G2:
7900 case elfcpp::R_ARM_MOVW_BREL_NC:
7901 case elfcpp::R_ARM_MOVT_BREL:
7902 case elfcpp::R_ARM_MOVW_BREL:
7903 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7904 case elfcpp::R_ARM_THM_MOVT_BREL:
7905 case elfcpp::R_ARM_THM_MOVW_BREL:
7906 case elfcpp::R_ARM_THM_JUMP11:
7907 case elfcpp::R_ARM_THM_JUMP8:
7908 // We don't need to do anything for a relative addressing relocation
7909 // against a local symbol if it does not reference the GOT.
7910 break;
7911
7912 case elfcpp::R_ARM_GOTOFF32:
7913 case elfcpp::R_ARM_GOTOFF12:
7914 // We need a GOT section:
7915 target->got_section(symtab, layout);
7916 break;
7917
7918 case elfcpp::R_ARM_GOT_BREL:
7919 case elfcpp::R_ARM_GOT_PREL:
7920 {
7921 // The symbol requires a GOT entry.
7922 Arm_output_data_got<big_endian>* got =
7923 target->got_section(symtab, layout);
7924 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7925 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7926 {
7927 // If we are generating a shared object, we need to add a
7928 // dynamic RELATIVE relocation for this symbol's GOT entry.
7929 if (parameters->options().output_is_position_independent())
7930 {
7931 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7932 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7933 rel_dyn->add_local_relative(
7934 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7935 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7936 }
7937 }
7938 }
7939 break;
7940
7941 case elfcpp::R_ARM_TARGET1:
7942 case elfcpp::R_ARM_TARGET2:
7943 // This should have been mapped to another type already.
7944 // Fall through.
7945 case elfcpp::R_ARM_COPY:
7946 case elfcpp::R_ARM_GLOB_DAT:
7947 case elfcpp::R_ARM_JUMP_SLOT:
7948 case elfcpp::R_ARM_RELATIVE:
7949 // These are relocations which should only be seen by the
7950 // dynamic linker, and should never be seen here.
7951 gold_error(_("%s: unexpected reloc %u in object file"),
7952 object->name().c_str(), r_type);
7953 break;
7954
7955
7956 // These are initial TLS relocs, which are expected when
7957 // linking.
7958 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7959 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7960 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7961 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7962 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7963 {
7964 bool output_is_shared = parameters->options().shared();
7965 const tls::Tls_optimization optimized_type
7966 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7967 r_type);
7968 switch (r_type)
7969 {
7970 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7971 if (optimized_type == tls::TLSOPT_NONE)
7972 {
7973 // Create a pair of GOT entries for the module index and
7974 // dtv-relative offset.
7975 Arm_output_data_got<big_endian>* got
7976 = target->got_section(symtab, layout);
7977 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7978 unsigned int shndx = lsym.get_st_shndx();
7979 bool is_ordinary;
7980 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7981 if (!is_ordinary)
7982 {
7983 object->error(_("local symbol %u has bad shndx %u"),
7984 r_sym, shndx);
7985 break;
7986 }
7987
7988 if (!parameters->doing_static_link())
7989 got->add_local_pair_with_rel(object, r_sym, shndx,
7990 GOT_TYPE_TLS_PAIR,
7991 target->rel_dyn_section(layout),
7992 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7993 else
7994 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7995 object, r_sym);
7996 }
7997 else
7998 // FIXME: TLS optimization not supported yet.
7999 gold_unreachable();
8000 break;
8001
8002 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8003 if (optimized_type == tls::TLSOPT_NONE)
8004 {
8005 // Create a GOT entry for the module index.
8006 target->got_mod_index_entry(symtab, layout, object);
8007 }
8008 else
8009 // FIXME: TLS optimization not supported yet.
8010 gold_unreachable();
8011 break;
8012
8013 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8014 break;
8015
8016 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8017 layout->set_has_static_tls();
8018 if (optimized_type == tls::TLSOPT_NONE)
8019 {
8020 // Create a GOT entry for the tp-relative offset.
8021 Arm_output_data_got<big_endian>* got
8022 = target->got_section(symtab, layout);
8023 unsigned int r_sym =
8024 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8025 if (!parameters->doing_static_link())
8026 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8027 target->rel_dyn_section(layout),
8028 elfcpp::R_ARM_TLS_TPOFF32);
8029 else if (!object->local_has_got_offset(r_sym,
8030 GOT_TYPE_TLS_OFFSET))
8031 {
8032 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8033 unsigned int got_offset =
8034 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8035 got->add_static_reloc(got_offset,
8036 elfcpp::R_ARM_TLS_TPOFF32, object,
8037 r_sym);
8038 }
8039 }
8040 else
8041 // FIXME: TLS optimization not supported yet.
8042 gold_unreachable();
8043 break;
8044
8045 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8046 layout->set_has_static_tls();
8047 if (output_is_shared)
8048 {
8049 // We need to create a dynamic relocation.
8050 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8051 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8052 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8053 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8054 output_section, data_shndx,
8055 reloc.get_r_offset());
8056 }
8057 break;
8058
8059 default:
8060 gold_unreachable();
8061 }
8062 }
8063 break;
8064
8065 case elfcpp::R_ARM_PC24:
8066 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8067 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8068 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8069 default:
8070 unsupported_reloc_local(object, r_type);
8071 break;
8072 }
8073 }
8074
8075 // Report an unsupported relocation against a global symbol.
8076
8077 template<bool big_endian>
8078 void
8079 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8080 Sized_relobj_file<32, big_endian>* object,
8081 unsigned int r_type,
8082 Symbol* gsym)
8083 {
8084 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8085 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8086 }
8087
8088 template<bool big_endian>
8089 inline bool
8090 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8091 unsigned int r_type)
8092 {
8093 switch (r_type)
8094 {
8095 case elfcpp::R_ARM_PC24:
8096 case elfcpp::R_ARM_THM_CALL:
8097 case elfcpp::R_ARM_PLT32:
8098 case elfcpp::R_ARM_CALL:
8099 case elfcpp::R_ARM_JUMP24:
8100 case elfcpp::R_ARM_THM_JUMP24:
8101 case elfcpp::R_ARM_SBREL31:
8102 case elfcpp::R_ARM_PREL31:
8103 case elfcpp::R_ARM_THM_JUMP19:
8104 case elfcpp::R_ARM_THM_JUMP6:
8105 case elfcpp::R_ARM_THM_JUMP11:
8106 case elfcpp::R_ARM_THM_JUMP8:
8107 // All the relocations above are branches except SBREL31 and PREL31.
8108 return false;
8109
8110 default:
8111 // Be conservative and assume this is a function pointer.
8112 return true;
8113 }
8114 }
8115
8116 template<bool big_endian>
8117 inline bool
8118 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8119 Symbol_table*,
8120 Layout*,
8121 Target_arm<big_endian>* target,
8122 Sized_relobj_file<32, big_endian>*,
8123 unsigned int,
8124 Output_section*,
8125 const elfcpp::Rel<32, big_endian>&,
8126 unsigned int r_type,
8127 const elfcpp::Sym<32, big_endian>&)
8128 {
8129 r_type = target->get_real_reloc_type(r_type);
8130 return possible_function_pointer_reloc(r_type);
8131 }
8132
8133 template<bool big_endian>
8134 inline bool
8135 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8136 Symbol_table*,
8137 Layout*,
8138 Target_arm<big_endian>* target,
8139 Sized_relobj_file<32, big_endian>*,
8140 unsigned int,
8141 Output_section*,
8142 const elfcpp::Rel<32, big_endian>&,
8143 unsigned int r_type,
8144 Symbol* gsym)
8145 {
8146 // GOT is not a function.
8147 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8148 return false;
8149
8150 r_type = target->get_real_reloc_type(r_type);
8151 return possible_function_pointer_reloc(r_type);
8152 }
8153
8154 // Scan a relocation for a global symbol.
8155
8156 template<bool big_endian>
8157 inline void
8158 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8159 Layout* layout,
8160 Target_arm* target,
8161 Sized_relobj_file<32, big_endian>* object,
8162 unsigned int data_shndx,
8163 Output_section* output_section,
8164 const elfcpp::Rel<32, big_endian>& reloc,
8165 unsigned int r_type,
8166 Symbol* gsym)
8167 {
8168 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8169 // section. We check here to avoid creating a dynamic reloc against
8170 // _GLOBAL_OFFSET_TABLE_.
8171 if (!target->has_got_section()
8172 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8173 target->got_section(symtab, layout);
8174
8175 r_type = get_real_reloc_type(r_type);
8176 switch (r_type)
8177 {
8178 case elfcpp::R_ARM_NONE:
8179 case elfcpp::R_ARM_V4BX:
8180 case elfcpp::R_ARM_GNU_VTENTRY:
8181 case elfcpp::R_ARM_GNU_VTINHERIT:
8182 break;
8183
8184 case elfcpp::R_ARM_ABS32:
8185 case elfcpp::R_ARM_ABS16:
8186 case elfcpp::R_ARM_ABS12:
8187 case elfcpp::R_ARM_THM_ABS5:
8188 case elfcpp::R_ARM_ABS8:
8189 case elfcpp::R_ARM_BASE_ABS:
8190 case elfcpp::R_ARM_MOVW_ABS_NC:
8191 case elfcpp::R_ARM_MOVT_ABS:
8192 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8193 case elfcpp::R_ARM_THM_MOVT_ABS:
8194 case elfcpp::R_ARM_ABS32_NOI:
8195 // Absolute addressing relocations.
8196 {
8197 // Make a PLT entry if necessary.
8198 if (this->symbol_needs_plt_entry(gsym))
8199 {
8200 target->make_plt_entry(symtab, layout, gsym);
8201 // Since this is not a PC-relative relocation, we may be
8202 // taking the address of a function. In that case we need to
8203 // set the entry in the dynamic symbol table to the address of
8204 // the PLT entry.
8205 if (gsym->is_from_dynobj() && !parameters->options().shared())
8206 gsym->set_needs_dynsym_value();
8207 }
8208 // Make a dynamic relocation if necessary.
8209 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8210 {
8211 if (gsym->may_need_copy_reloc())
8212 {
8213 target->copy_reloc(symtab, layout, object,
8214 data_shndx, output_section, gsym, reloc);
8215 }
8216 else if ((r_type == elfcpp::R_ARM_ABS32
8217 || r_type == elfcpp::R_ARM_ABS32_NOI)
8218 && gsym->can_use_relative_reloc(false))
8219 {
8220 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8221 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8222 output_section, object,
8223 data_shndx, reloc.get_r_offset());
8224 }
8225 else
8226 {
8227 check_non_pic(object, r_type);
8228 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8229 rel_dyn->add_global(gsym, r_type, output_section, object,
8230 data_shndx, reloc.get_r_offset());
8231 }
8232 }
8233 }
8234 break;
8235
8236 case elfcpp::R_ARM_GOTOFF32:
8237 case elfcpp::R_ARM_GOTOFF12:
8238 // We need a GOT section.
8239 target->got_section(symtab, layout);
8240 break;
8241
8242 case elfcpp::R_ARM_REL32:
8243 case elfcpp::R_ARM_LDR_PC_G0:
8244 case elfcpp::R_ARM_SBREL32:
8245 case elfcpp::R_ARM_THM_PC8:
8246 case elfcpp::R_ARM_BASE_PREL:
8247 case elfcpp::R_ARM_MOVW_PREL_NC:
8248 case elfcpp::R_ARM_MOVT_PREL:
8249 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8250 case elfcpp::R_ARM_THM_MOVT_PREL:
8251 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8252 case elfcpp::R_ARM_THM_PC12:
8253 case elfcpp::R_ARM_REL32_NOI:
8254 case elfcpp::R_ARM_ALU_PC_G0_NC:
8255 case elfcpp::R_ARM_ALU_PC_G0:
8256 case elfcpp::R_ARM_ALU_PC_G1_NC:
8257 case elfcpp::R_ARM_ALU_PC_G1:
8258 case elfcpp::R_ARM_ALU_PC_G2:
8259 case elfcpp::R_ARM_LDR_PC_G1:
8260 case elfcpp::R_ARM_LDR_PC_G2:
8261 case elfcpp::R_ARM_LDRS_PC_G0:
8262 case elfcpp::R_ARM_LDRS_PC_G1:
8263 case elfcpp::R_ARM_LDRS_PC_G2:
8264 case elfcpp::R_ARM_LDC_PC_G0:
8265 case elfcpp::R_ARM_LDC_PC_G1:
8266 case elfcpp::R_ARM_LDC_PC_G2:
8267 case elfcpp::R_ARM_ALU_SB_G0_NC:
8268 case elfcpp::R_ARM_ALU_SB_G0:
8269 case elfcpp::R_ARM_ALU_SB_G1_NC:
8270 case elfcpp::R_ARM_ALU_SB_G1:
8271 case elfcpp::R_ARM_ALU_SB_G2:
8272 case elfcpp::R_ARM_LDR_SB_G0:
8273 case elfcpp::R_ARM_LDR_SB_G1:
8274 case elfcpp::R_ARM_LDR_SB_G2:
8275 case elfcpp::R_ARM_LDRS_SB_G0:
8276 case elfcpp::R_ARM_LDRS_SB_G1:
8277 case elfcpp::R_ARM_LDRS_SB_G2:
8278 case elfcpp::R_ARM_LDC_SB_G0:
8279 case elfcpp::R_ARM_LDC_SB_G1:
8280 case elfcpp::R_ARM_LDC_SB_G2:
8281 case elfcpp::R_ARM_MOVW_BREL_NC:
8282 case elfcpp::R_ARM_MOVT_BREL:
8283 case elfcpp::R_ARM_MOVW_BREL:
8284 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8285 case elfcpp::R_ARM_THM_MOVT_BREL:
8286 case elfcpp::R_ARM_THM_MOVW_BREL:
8287 // Relative addressing relocations.
8288 {
8289 // Make a dynamic relocation if necessary.
8290 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8291 {
8292 if (target->may_need_copy_reloc(gsym))
8293 {
8294 target->copy_reloc(symtab, layout, object,
8295 data_shndx, output_section, gsym, reloc);
8296 }
8297 else
8298 {
8299 check_non_pic(object, r_type);
8300 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8301 rel_dyn->add_global(gsym, r_type, output_section, object,
8302 data_shndx, reloc.get_r_offset());
8303 }
8304 }
8305 }
8306 break;
8307
8308 case elfcpp::R_ARM_THM_CALL:
8309 case elfcpp::R_ARM_PLT32:
8310 case elfcpp::R_ARM_CALL:
8311 case elfcpp::R_ARM_JUMP24:
8312 case elfcpp::R_ARM_THM_JUMP24:
8313 case elfcpp::R_ARM_SBREL31:
8314 case elfcpp::R_ARM_PREL31:
8315 case elfcpp::R_ARM_THM_JUMP19:
8316 case elfcpp::R_ARM_THM_JUMP6:
8317 case elfcpp::R_ARM_THM_JUMP11:
8318 case elfcpp::R_ARM_THM_JUMP8:
8319 // All the relocation above are branches except for the PREL31 ones.
8320 // A PREL31 relocation can point to a personality function in a shared
8321 // library. In that case we want to use a PLT because we want to
8322 // call the personality routine and the dynamic linkers we care about
8323 // do not support dynamic PREL31 relocations. An REL31 relocation may
8324 // point to a function whose unwinding behaviour is being described but
8325 // we will not mistakenly generate a PLT for that because we should use
8326 // a local section symbol.
8327
8328 // If the symbol is fully resolved, this is just a relative
8329 // local reloc. Otherwise we need a PLT entry.
8330 if (gsym->final_value_is_known())
8331 break;
8332 // If building a shared library, we can also skip the PLT entry
8333 // if the symbol is defined in the output file and is protected
8334 // or hidden.
8335 if (gsym->is_defined()
8336 && !gsym->is_from_dynobj()
8337 && !gsym->is_preemptible())
8338 break;
8339 target->make_plt_entry(symtab, layout, gsym);
8340 break;
8341
8342 case elfcpp::R_ARM_GOT_BREL:
8343 case elfcpp::R_ARM_GOT_ABS:
8344 case elfcpp::R_ARM_GOT_PREL:
8345 {
8346 // The symbol requires a GOT entry.
8347 Arm_output_data_got<big_endian>* got =
8348 target->got_section(symtab, layout);
8349 if (gsym->final_value_is_known())
8350 got->add_global(gsym, GOT_TYPE_STANDARD);
8351 else
8352 {
8353 // If this symbol is not fully resolved, we need to add a
8354 // GOT entry with a dynamic relocation.
8355 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8356 if (gsym->is_from_dynobj()
8357 || gsym->is_undefined()
8358 || gsym->is_preemptible())
8359 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8360 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8361 else
8362 {
8363 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8364 rel_dyn->add_global_relative(
8365 gsym, elfcpp::R_ARM_RELATIVE, got,
8366 gsym->got_offset(GOT_TYPE_STANDARD));
8367 }
8368 }
8369 }
8370 break;
8371
8372 case elfcpp::R_ARM_TARGET1:
8373 case elfcpp::R_ARM_TARGET2:
8374 // These should have been mapped to other types already.
8375 // Fall through.
8376 case elfcpp::R_ARM_COPY:
8377 case elfcpp::R_ARM_GLOB_DAT:
8378 case elfcpp::R_ARM_JUMP_SLOT:
8379 case elfcpp::R_ARM_RELATIVE:
8380 // These are relocations which should only be seen by the
8381 // dynamic linker, and should never be seen here.
8382 gold_error(_("%s: unexpected reloc %u in object file"),
8383 object->name().c_str(), r_type);
8384 break;
8385
8386 // These are initial tls relocs, which are expected when
8387 // linking.
8388 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8389 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8390 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8391 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8392 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8393 {
8394 const bool is_final = gsym->final_value_is_known();
8395 const tls::Tls_optimization optimized_type
8396 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8397 switch (r_type)
8398 {
8399 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8400 if (optimized_type == tls::TLSOPT_NONE)
8401 {
8402 // Create a pair of GOT entries for the module index and
8403 // dtv-relative offset.
8404 Arm_output_data_got<big_endian>* got
8405 = target->got_section(symtab, layout);
8406 if (!parameters->doing_static_link())
8407 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8408 target->rel_dyn_section(layout),
8409 elfcpp::R_ARM_TLS_DTPMOD32,
8410 elfcpp::R_ARM_TLS_DTPOFF32);
8411 else
8412 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8413 }
8414 else
8415 // FIXME: TLS optimization not supported yet.
8416 gold_unreachable();
8417 break;
8418
8419 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8420 if (optimized_type == tls::TLSOPT_NONE)
8421 {
8422 // Create a GOT entry for the module index.
8423 target->got_mod_index_entry(symtab, layout, object);
8424 }
8425 else
8426 // FIXME: TLS optimization not supported yet.
8427 gold_unreachable();
8428 break;
8429
8430 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8431 break;
8432
8433 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8434 layout->set_has_static_tls();
8435 if (optimized_type == tls::TLSOPT_NONE)
8436 {
8437 // Create a GOT entry for the tp-relative offset.
8438 Arm_output_data_got<big_endian>* got
8439 = target->got_section(symtab, layout);
8440 if (!parameters->doing_static_link())
8441 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8442 target->rel_dyn_section(layout),
8443 elfcpp::R_ARM_TLS_TPOFF32);
8444 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8445 {
8446 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8447 unsigned int got_offset =
8448 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8449 got->add_static_reloc(got_offset,
8450 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8451 }
8452 }
8453 else
8454 // FIXME: TLS optimization not supported yet.
8455 gold_unreachable();
8456 break;
8457
8458 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8459 layout->set_has_static_tls();
8460 if (parameters->options().shared())
8461 {
8462 // We need to create a dynamic relocation.
8463 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8464 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8465 output_section, object,
8466 data_shndx, reloc.get_r_offset());
8467 }
8468 break;
8469
8470 default:
8471 gold_unreachable();
8472 }
8473 }
8474 break;
8475
8476 case elfcpp::R_ARM_PC24:
8477 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8478 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8479 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8480 default:
8481 unsupported_reloc_global(object, r_type, gsym);
8482 break;
8483 }
8484 }
8485
8486 // Process relocations for gc.
8487
8488 template<bool big_endian>
8489 void
8490 Target_arm<big_endian>::gc_process_relocs(
8491 Symbol_table* symtab,
8492 Layout* layout,
8493 Sized_relobj_file<32, big_endian>* object,
8494 unsigned int data_shndx,
8495 unsigned int,
8496 const unsigned char* prelocs,
8497 size_t reloc_count,
8498 Output_section* output_section,
8499 bool needs_special_offset_handling,
8500 size_t local_symbol_count,
8501 const unsigned char* plocal_symbols)
8502 {
8503 typedef Target_arm<big_endian> Arm;
8504 typedef typename Target_arm<big_endian>::Scan Scan;
8505
8506 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8507 typename Target_arm::Relocatable_size_for_reloc>(
8508 symtab,
8509 layout,
8510 this,
8511 object,
8512 data_shndx,
8513 prelocs,
8514 reloc_count,
8515 output_section,
8516 needs_special_offset_handling,
8517 local_symbol_count,
8518 plocal_symbols);
8519 }
8520
8521 // Scan relocations for a section.
8522
8523 template<bool big_endian>
8524 void
8525 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8526 Layout* layout,
8527 Sized_relobj_file<32, big_endian>* object,
8528 unsigned int data_shndx,
8529 unsigned int sh_type,
8530 const unsigned char* prelocs,
8531 size_t reloc_count,
8532 Output_section* output_section,
8533 bool needs_special_offset_handling,
8534 size_t local_symbol_count,
8535 const unsigned char* plocal_symbols)
8536 {
8537 typedef typename Target_arm<big_endian>::Scan Scan;
8538 if (sh_type == elfcpp::SHT_RELA)
8539 {
8540 gold_error(_("%s: unsupported RELA reloc section"),
8541 object->name().c_str());
8542 return;
8543 }
8544
8545 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8546 symtab,
8547 layout,
8548 this,
8549 object,
8550 data_shndx,
8551 prelocs,
8552 reloc_count,
8553 output_section,
8554 needs_special_offset_handling,
8555 local_symbol_count,
8556 plocal_symbols);
8557 }
8558
8559 // Finalize the sections.
8560
8561 template<bool big_endian>
8562 void
8563 Target_arm<big_endian>::do_finalize_sections(
8564 Layout* layout,
8565 const Input_objects* input_objects,
8566 Symbol_table* symtab)
8567 {
8568 bool merged_any_attributes = false;
8569 // Merge processor-specific flags.
8570 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8571 p != input_objects->relobj_end();
8572 ++p)
8573 {
8574 Arm_relobj<big_endian>* arm_relobj =
8575 Arm_relobj<big_endian>::as_arm_relobj(*p);
8576 if (arm_relobj->merge_flags_and_attributes())
8577 {
8578 this->merge_processor_specific_flags(
8579 arm_relobj->name(),
8580 arm_relobj->processor_specific_flags());
8581 this->merge_object_attributes(arm_relobj->name().c_str(),
8582 arm_relobj->attributes_section_data());
8583 merged_any_attributes = true;
8584 }
8585 }
8586
8587 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8588 p != input_objects->dynobj_end();
8589 ++p)
8590 {
8591 Arm_dynobj<big_endian>* arm_dynobj =
8592 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8593 this->merge_processor_specific_flags(
8594 arm_dynobj->name(),
8595 arm_dynobj->processor_specific_flags());
8596 this->merge_object_attributes(arm_dynobj->name().c_str(),
8597 arm_dynobj->attributes_section_data());
8598 merged_any_attributes = true;
8599 }
8600
8601 // Create an empty uninitialized attribute section if we still don't have it
8602 // at this moment. This happens if there is no attributes sections in all
8603 // inputs.
8604 if (this->attributes_section_data_ == NULL)
8605 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8606
8607 // Check BLX use.
8608 const Object_attribute* cpu_arch_attr =
8609 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8610 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8611 this->set_may_use_blx(true);
8612
8613 // Check if we need to use Cortex-A8 workaround.
8614 if (parameters->options().user_set_fix_cortex_a8())
8615 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8616 else
8617 {
8618 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8619 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8620 // profile.
8621 const Object_attribute* cpu_arch_profile_attr =
8622 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8623 this->fix_cortex_a8_ =
8624 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8625 && (cpu_arch_profile_attr->int_value() == 'A'
8626 || cpu_arch_profile_attr->int_value() == 0));
8627 }
8628
8629 // Check if we can use V4BX interworking.
8630 // The V4BX interworking stub contains BX instruction,
8631 // which is not specified for some profiles.
8632 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8633 && !this->may_use_blx())
8634 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8635 "the target profile does not support BX instruction"));
8636
8637 // Fill in some more dynamic tags.
8638 const Reloc_section* rel_plt = (this->plt_ == NULL
8639 ? NULL
8640 : this->plt_->rel_plt());
8641 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8642 this->rel_dyn_, true, false);
8643
8644 // Emit any relocs we saved in an attempt to avoid generating COPY
8645 // relocs.
8646 if (this->copy_relocs_.any_saved_relocs())
8647 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8648
8649 // Handle the .ARM.exidx section.
8650 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8651
8652 if (!parameters->options().relocatable())
8653 {
8654 if (exidx_section != NULL
8655 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8656 {
8657 // Create __exidx_start and __exidx_end symbols.
8658 symtab->define_in_output_data("__exidx_start", NULL,
8659 Symbol_table::PREDEFINED,
8660 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8661 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8662 0, false, true);
8663 symtab->define_in_output_data("__exidx_end", NULL,
8664 Symbol_table::PREDEFINED,
8665 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8666 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8667 0, true, true);
8668
8669 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8670 // the .ARM.exidx section.
8671 if (!layout->script_options()->saw_phdrs_clause())
8672 {
8673 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8674 0)
8675 == NULL);
8676 Output_segment* exidx_segment =
8677 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8678 exidx_segment->add_output_section_to_nonload(exidx_section,
8679 elfcpp::PF_R);
8680 }
8681 }
8682 else
8683 {
8684 symtab->define_as_constant("__exidx_start", NULL,
8685 Symbol_table::PREDEFINED,
8686 0, 0, elfcpp::STT_OBJECT,
8687 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8688 true, false);
8689 symtab->define_as_constant("__exidx_end", NULL,
8690 Symbol_table::PREDEFINED,
8691 0, 0, elfcpp::STT_OBJECT,
8692 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8693 true, false);
8694 }
8695 }
8696
8697 // Create an .ARM.attributes section if we have merged any attributes
8698 // from inputs.
8699 if (merged_any_attributes)
8700 {
8701 Output_attributes_section_data* attributes_section =
8702 new Output_attributes_section_data(*this->attributes_section_data_);
8703 layout->add_output_section_data(".ARM.attributes",
8704 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8705 attributes_section, ORDER_INVALID,
8706 false);
8707 }
8708
8709 // Fix up links in section EXIDX headers.
8710 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8711 p != layout->section_list().end();
8712 ++p)
8713 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8714 {
8715 Arm_output_section<big_endian>* os =
8716 Arm_output_section<big_endian>::as_arm_output_section(*p);
8717 os->set_exidx_section_link();
8718 }
8719 }
8720
8721 // Return whether a direct absolute static relocation needs to be applied.
8722 // In cases where Scan::local() or Scan::global() has created
8723 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8724 // of the relocation is carried in the data, and we must not
8725 // apply the static relocation.
8726
8727 template<bool big_endian>
8728 inline bool
8729 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8730 const Sized_symbol<32>* gsym,
8731 unsigned int r_type,
8732 bool is_32bit,
8733 Output_section* output_section)
8734 {
8735 // If the output section is not allocated, then we didn't call
8736 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8737 // the reloc here.
8738 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8739 return true;
8740
8741 int ref_flags = Scan::get_reference_flags(r_type);
8742
8743 // For local symbols, we will have created a non-RELATIVE dynamic
8744 // relocation only if (a) the output is position independent,
8745 // (b) the relocation is absolute (not pc- or segment-relative), and
8746 // (c) the relocation is not 32 bits wide.
8747 if (gsym == NULL)
8748 return !(parameters->options().output_is_position_independent()
8749 && (ref_flags & Symbol::ABSOLUTE_REF)
8750 && !is_32bit);
8751
8752 // For global symbols, we use the same helper routines used in the
8753 // scan pass. If we did not create a dynamic relocation, or if we
8754 // created a RELATIVE dynamic relocation, we should apply the static
8755 // relocation.
8756 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8757 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8758 && gsym->can_use_relative_reloc(ref_flags
8759 & Symbol::FUNCTION_CALL);
8760 return !has_dyn || is_rel;
8761 }
8762
8763 // Perform a relocation.
8764
8765 template<bool big_endian>
8766 inline bool
8767 Target_arm<big_endian>::Relocate::relocate(
8768 const Relocate_info<32, big_endian>* relinfo,
8769 Target_arm* target,
8770 Output_section* output_section,
8771 size_t relnum,
8772 const elfcpp::Rel<32, big_endian>& rel,
8773 unsigned int r_type,
8774 const Sized_symbol<32>* gsym,
8775 const Symbol_value<32>* psymval,
8776 unsigned char* view,
8777 Arm_address address,
8778 section_size_type view_size)
8779 {
8780 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8781
8782 r_type = get_real_reloc_type(r_type);
8783 const Arm_reloc_property* reloc_property =
8784 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8785 if (reloc_property == NULL)
8786 {
8787 std::string reloc_name =
8788 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8789 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8790 _("cannot relocate %s in object file"),
8791 reloc_name.c_str());
8792 return true;
8793 }
8794
8795 const Arm_relobj<big_endian>* object =
8796 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8797
8798 // If the final branch target of a relocation is THUMB instruction, this
8799 // is 1. Otherwise it is 0.
8800 Arm_address thumb_bit = 0;
8801 Symbol_value<32> symval;
8802 bool is_weakly_undefined_without_plt = false;
8803 bool have_got_offset = false;
8804 unsigned int got_offset = 0;
8805
8806 // If the relocation uses the GOT entry of a symbol instead of the symbol
8807 // itself, we don't care about whether the symbol is defined or what kind
8808 // of symbol it is.
8809 if (reloc_property->uses_got_entry())
8810 {
8811 // Get the GOT offset.
8812 // The GOT pointer points to the end of the GOT section.
8813 // We need to subtract the size of the GOT section to get
8814 // the actual offset to use in the relocation.
8815 // TODO: We should move GOT offset computing code in TLS relocations
8816 // to here.
8817 switch (r_type)
8818 {
8819 case elfcpp::R_ARM_GOT_BREL:
8820 case elfcpp::R_ARM_GOT_PREL:
8821 if (gsym != NULL)
8822 {
8823 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8824 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8825 - target->got_size());
8826 }
8827 else
8828 {
8829 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8830 gold_assert(object->local_has_got_offset(r_sym,
8831 GOT_TYPE_STANDARD));
8832 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8833 - target->got_size());
8834 }
8835 have_got_offset = true;
8836 break;
8837
8838 default:
8839 break;
8840 }
8841 }
8842 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8843 {
8844 if (gsym != NULL)
8845 {
8846 // This is a global symbol. Determine if we use PLT and if the
8847 // final target is THUMB.
8848 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8849 {
8850 // This uses a PLT, change the symbol value.
8851 symval.set_output_value(target->plt_section()->address()
8852 + gsym->plt_offset());
8853 psymval = &symval;
8854 }
8855 else if (gsym->is_weak_undefined())
8856 {
8857 // This is a weakly undefined symbol and we do not use PLT
8858 // for this relocation. A branch targeting this symbol will
8859 // be converted into an NOP.
8860 is_weakly_undefined_without_plt = true;
8861 }
8862 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8863 {
8864 // This relocation uses the symbol value but the symbol is
8865 // undefined. Exit early and have the caller reporting an
8866 // error.
8867 return true;
8868 }
8869 else
8870 {
8871 // Set thumb bit if symbol:
8872 // -Has type STT_ARM_TFUNC or
8873 // -Has type STT_FUNC, is defined and with LSB in value set.
8874 thumb_bit =
8875 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8876 || (gsym->type() == elfcpp::STT_FUNC
8877 && !gsym->is_undefined()
8878 && ((psymval->value(object, 0) & 1) != 0)))
8879 ? 1
8880 : 0);
8881 }
8882 }
8883 else
8884 {
8885 // This is a local symbol. Determine if the final target is THUMB.
8886 // We saved this information when all the local symbols were read.
8887 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8888 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8889 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8890 }
8891 }
8892 else
8893 {
8894 // This is a fake relocation synthesized for a stub. It does not have
8895 // a real symbol. We just look at the LSB of the symbol value to
8896 // determine if the target is THUMB or not.
8897 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8898 }
8899
8900 // Strip LSB if this points to a THUMB target.
8901 if (thumb_bit != 0
8902 && reloc_property->uses_thumb_bit()
8903 && ((psymval->value(object, 0) & 1) != 0))
8904 {
8905 Arm_address stripped_value =
8906 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8907 symval.set_output_value(stripped_value);
8908 psymval = &symval;
8909 }
8910
8911 // To look up relocation stubs, we need to pass the symbol table index of
8912 // a local symbol.
8913 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8914
8915 // Get the addressing origin of the output segment defining the
8916 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8917 Arm_address sym_origin = 0;
8918 if (reloc_property->uses_symbol_base())
8919 {
8920 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8921 // R_ARM_BASE_ABS with the NULL symbol will give the
8922 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8923 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8924 sym_origin = target->got_plt_section()->address();
8925 else if (gsym == NULL)
8926 sym_origin = 0;
8927 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8928 sym_origin = gsym->output_segment()->vaddr();
8929 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8930 sym_origin = gsym->output_data()->address();
8931
8932 // TODO: Assumes the segment base to be zero for the global symbols
8933 // till the proper support for the segment-base-relative addressing
8934 // will be implemented. This is consistent with GNU ld.
8935 }
8936
8937 // For relative addressing relocation, find out the relative address base.
8938 Arm_address relative_address_base = 0;
8939 switch(reloc_property->relative_address_base())
8940 {
8941 case Arm_reloc_property::RAB_NONE:
8942 // Relocations with relative address bases RAB_TLS and RAB_tp are
8943 // handled by relocate_tls. So we do not need to do anything here.
8944 case Arm_reloc_property::RAB_TLS:
8945 case Arm_reloc_property::RAB_tp:
8946 break;
8947 case Arm_reloc_property::RAB_B_S:
8948 relative_address_base = sym_origin;
8949 break;
8950 case Arm_reloc_property::RAB_GOT_ORG:
8951 relative_address_base = target->got_plt_section()->address();
8952 break;
8953 case Arm_reloc_property::RAB_P:
8954 relative_address_base = address;
8955 break;
8956 case Arm_reloc_property::RAB_Pa:
8957 relative_address_base = address & 0xfffffffcU;
8958 break;
8959 default:
8960 gold_unreachable();
8961 }
8962
8963 typename Arm_relocate_functions::Status reloc_status =
8964 Arm_relocate_functions::STATUS_OKAY;
8965 bool check_overflow = reloc_property->checks_overflow();
8966 switch (r_type)
8967 {
8968 case elfcpp::R_ARM_NONE:
8969 break;
8970
8971 case elfcpp::R_ARM_ABS8:
8972 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8973 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8974 break;
8975
8976 case elfcpp::R_ARM_ABS12:
8977 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8978 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8979 break;
8980
8981 case elfcpp::R_ARM_ABS16:
8982 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8983 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8984 break;
8985
8986 case elfcpp::R_ARM_ABS32:
8987 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8988 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8989 thumb_bit);
8990 break;
8991
8992 case elfcpp::R_ARM_ABS32_NOI:
8993 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8994 // No thumb bit for this relocation: (S + A)
8995 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8996 0);
8997 break;
8998
8999 case elfcpp::R_ARM_MOVW_ABS_NC:
9000 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9001 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9002 0, thumb_bit,
9003 check_overflow);
9004 break;
9005
9006 case elfcpp::R_ARM_MOVT_ABS:
9007 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9008 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9009 break;
9010
9011 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9012 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9013 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9014 0, thumb_bit, false);
9015 break;
9016
9017 case elfcpp::R_ARM_THM_MOVT_ABS:
9018 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9019 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9020 psymval, 0);
9021 break;
9022
9023 case elfcpp::R_ARM_MOVW_PREL_NC:
9024 case elfcpp::R_ARM_MOVW_BREL_NC:
9025 case elfcpp::R_ARM_MOVW_BREL:
9026 reloc_status =
9027 Arm_relocate_functions::movw(view, object, psymval,
9028 relative_address_base, thumb_bit,
9029 check_overflow);
9030 break;
9031
9032 case elfcpp::R_ARM_MOVT_PREL:
9033 case elfcpp::R_ARM_MOVT_BREL:
9034 reloc_status =
9035 Arm_relocate_functions::movt(view, object, psymval,
9036 relative_address_base);
9037 break;
9038
9039 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9040 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9041 case elfcpp::R_ARM_THM_MOVW_BREL:
9042 reloc_status =
9043 Arm_relocate_functions::thm_movw(view, object, psymval,
9044 relative_address_base,
9045 thumb_bit, check_overflow);
9046 break;
9047
9048 case elfcpp::R_ARM_THM_MOVT_PREL:
9049 case elfcpp::R_ARM_THM_MOVT_BREL:
9050 reloc_status =
9051 Arm_relocate_functions::thm_movt(view, object, psymval,
9052 relative_address_base);
9053 break;
9054
9055 case elfcpp::R_ARM_REL32:
9056 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9057 address, thumb_bit);
9058 break;
9059
9060 case elfcpp::R_ARM_THM_ABS5:
9061 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9062 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9063 break;
9064
9065 // Thumb long branches.
9066 case elfcpp::R_ARM_THM_CALL:
9067 case elfcpp::R_ARM_THM_XPC22:
9068 case elfcpp::R_ARM_THM_JUMP24:
9069 reloc_status =
9070 Arm_relocate_functions::thumb_branch_common(
9071 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9072 thumb_bit, is_weakly_undefined_without_plt);
9073 break;
9074
9075 case elfcpp::R_ARM_GOTOFF32:
9076 {
9077 Arm_address got_origin;
9078 got_origin = target->got_plt_section()->address();
9079 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9080 got_origin, thumb_bit);
9081 }
9082 break;
9083
9084 case elfcpp::R_ARM_BASE_PREL:
9085 gold_assert(gsym != NULL);
9086 reloc_status =
9087 Arm_relocate_functions::base_prel(view, sym_origin, address);
9088 break;
9089
9090 case elfcpp::R_ARM_BASE_ABS:
9091 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9092 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9093 break;
9094
9095 case elfcpp::R_ARM_GOT_BREL:
9096 gold_assert(have_got_offset);
9097 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9098 break;
9099
9100 case elfcpp::R_ARM_GOT_PREL:
9101 gold_assert(have_got_offset);
9102 // Get the address origin for GOT PLT, which is allocated right
9103 // after the GOT section, to calculate an absolute address of
9104 // the symbol GOT entry (got_origin + got_offset).
9105 Arm_address got_origin;
9106 got_origin = target->got_plt_section()->address();
9107 reloc_status = Arm_relocate_functions::got_prel(view,
9108 got_origin + got_offset,
9109 address);
9110 break;
9111
9112 case elfcpp::R_ARM_PLT32:
9113 case elfcpp::R_ARM_CALL:
9114 case elfcpp::R_ARM_JUMP24:
9115 case elfcpp::R_ARM_XPC25:
9116 gold_assert(gsym == NULL
9117 || gsym->has_plt_offset()
9118 || gsym->final_value_is_known()
9119 || (gsym->is_defined()
9120 && !gsym->is_from_dynobj()
9121 && !gsym->is_preemptible()));
9122 reloc_status =
9123 Arm_relocate_functions::arm_branch_common(
9124 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9125 thumb_bit, is_weakly_undefined_without_plt);
9126 break;
9127
9128 case elfcpp::R_ARM_THM_JUMP19:
9129 reloc_status =
9130 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9131 thumb_bit);
9132 break;
9133
9134 case elfcpp::R_ARM_THM_JUMP6:
9135 reloc_status =
9136 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9137 break;
9138
9139 case elfcpp::R_ARM_THM_JUMP8:
9140 reloc_status =
9141 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9142 break;
9143
9144 case elfcpp::R_ARM_THM_JUMP11:
9145 reloc_status =
9146 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9147 break;
9148
9149 case elfcpp::R_ARM_PREL31:
9150 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9151 address, thumb_bit);
9152 break;
9153
9154 case elfcpp::R_ARM_V4BX:
9155 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9156 {
9157 const bool is_v4bx_interworking =
9158 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9159 reloc_status =
9160 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9161 is_v4bx_interworking);
9162 }
9163 break;
9164
9165 case elfcpp::R_ARM_THM_PC8:
9166 reloc_status =
9167 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9168 break;
9169
9170 case elfcpp::R_ARM_THM_PC12:
9171 reloc_status =
9172 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9173 break;
9174
9175 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9176 reloc_status =
9177 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9178 thumb_bit);
9179 break;
9180
9181 case elfcpp::R_ARM_ALU_PC_G0_NC:
9182 case elfcpp::R_ARM_ALU_PC_G0:
9183 case elfcpp::R_ARM_ALU_PC_G1_NC:
9184 case elfcpp::R_ARM_ALU_PC_G1:
9185 case elfcpp::R_ARM_ALU_PC_G2:
9186 case elfcpp::R_ARM_ALU_SB_G0_NC:
9187 case elfcpp::R_ARM_ALU_SB_G0:
9188 case elfcpp::R_ARM_ALU_SB_G1_NC:
9189 case elfcpp::R_ARM_ALU_SB_G1:
9190 case elfcpp::R_ARM_ALU_SB_G2:
9191 reloc_status =
9192 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9193 reloc_property->group_index(),
9194 relative_address_base,
9195 thumb_bit, check_overflow);
9196 break;
9197
9198 case elfcpp::R_ARM_LDR_PC_G0:
9199 case elfcpp::R_ARM_LDR_PC_G1:
9200 case elfcpp::R_ARM_LDR_PC_G2:
9201 case elfcpp::R_ARM_LDR_SB_G0:
9202 case elfcpp::R_ARM_LDR_SB_G1:
9203 case elfcpp::R_ARM_LDR_SB_G2:
9204 reloc_status =
9205 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9206 reloc_property->group_index(),
9207 relative_address_base);
9208 break;
9209
9210 case elfcpp::R_ARM_LDRS_PC_G0:
9211 case elfcpp::R_ARM_LDRS_PC_G1:
9212 case elfcpp::R_ARM_LDRS_PC_G2:
9213 case elfcpp::R_ARM_LDRS_SB_G0:
9214 case elfcpp::R_ARM_LDRS_SB_G1:
9215 case elfcpp::R_ARM_LDRS_SB_G2:
9216 reloc_status =
9217 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9218 reloc_property->group_index(),
9219 relative_address_base);
9220 break;
9221
9222 case elfcpp::R_ARM_LDC_PC_G0:
9223 case elfcpp::R_ARM_LDC_PC_G1:
9224 case elfcpp::R_ARM_LDC_PC_G2:
9225 case elfcpp::R_ARM_LDC_SB_G0:
9226 case elfcpp::R_ARM_LDC_SB_G1:
9227 case elfcpp::R_ARM_LDC_SB_G2:
9228 reloc_status =
9229 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9230 reloc_property->group_index(),
9231 relative_address_base);
9232 break;
9233
9234 // These are initial tls relocs, which are expected when
9235 // linking.
9236 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9237 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9238 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9239 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9240 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9241 reloc_status =
9242 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9243 view, address, view_size);
9244 break;
9245
9246 // The known and unknown unsupported and/or deprecated relocations.
9247 case elfcpp::R_ARM_PC24:
9248 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9249 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9250 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9251 default:
9252 // Just silently leave the method. We should get an appropriate error
9253 // message in the scan methods.
9254 break;
9255 }
9256
9257 // Report any errors.
9258 switch (reloc_status)
9259 {
9260 case Arm_relocate_functions::STATUS_OKAY:
9261 break;
9262 case Arm_relocate_functions::STATUS_OVERFLOW:
9263 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9264 _("relocation overflow in %s"),
9265 reloc_property->name().c_str());
9266 break;
9267 case Arm_relocate_functions::STATUS_BAD_RELOC:
9268 gold_error_at_location(
9269 relinfo,
9270 relnum,
9271 rel.get_r_offset(),
9272 _("unexpected opcode while processing relocation %s"),
9273 reloc_property->name().c_str());
9274 break;
9275 default:
9276 gold_unreachable();
9277 }
9278
9279 return true;
9280 }
9281
9282 // Perform a TLS relocation.
9283
9284 template<bool big_endian>
9285 inline typename Arm_relocate_functions<big_endian>::Status
9286 Target_arm<big_endian>::Relocate::relocate_tls(
9287 const Relocate_info<32, big_endian>* relinfo,
9288 Target_arm<big_endian>* target,
9289 size_t relnum,
9290 const elfcpp::Rel<32, big_endian>& rel,
9291 unsigned int r_type,
9292 const Sized_symbol<32>* gsym,
9293 const Symbol_value<32>* psymval,
9294 unsigned char* view,
9295 elfcpp::Elf_types<32>::Elf_Addr address,
9296 section_size_type /*view_size*/ )
9297 {
9298 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9299 typedef Relocate_functions<32, big_endian> RelocFuncs;
9300 Output_segment* tls_segment = relinfo->layout->tls_segment();
9301
9302 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9303
9304 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9305
9306 const bool is_final = (gsym == NULL
9307 ? !parameters->options().shared()
9308 : gsym->final_value_is_known());
9309 const tls::Tls_optimization optimized_type
9310 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9311 switch (r_type)
9312 {
9313 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9314 {
9315 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9316 unsigned int got_offset;
9317 if (gsym != NULL)
9318 {
9319 gold_assert(gsym->has_got_offset(got_type));
9320 got_offset = gsym->got_offset(got_type) - target->got_size();
9321 }
9322 else
9323 {
9324 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9325 gold_assert(object->local_has_got_offset(r_sym, got_type));
9326 got_offset = (object->local_got_offset(r_sym, got_type)
9327 - target->got_size());
9328 }
9329 if (optimized_type == tls::TLSOPT_NONE)
9330 {
9331 Arm_address got_entry =
9332 target->got_plt_section()->address() + got_offset;
9333
9334 // Relocate the field with the PC relative offset of the pair of
9335 // GOT entries.
9336 RelocFuncs::pcrel32(view, got_entry, address);
9337 return ArmRelocFuncs::STATUS_OKAY;
9338 }
9339 }
9340 break;
9341
9342 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9343 if (optimized_type == tls::TLSOPT_NONE)
9344 {
9345 // Relocate the field with the offset of the GOT entry for
9346 // the module index.
9347 unsigned int got_offset;
9348 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9349 - target->got_size());
9350 Arm_address got_entry =
9351 target->got_plt_section()->address() + got_offset;
9352
9353 // Relocate the field with the PC relative offset of the pair of
9354 // GOT entries.
9355 RelocFuncs::pcrel32(view, got_entry, address);
9356 return ArmRelocFuncs::STATUS_OKAY;
9357 }
9358 break;
9359
9360 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9361 RelocFuncs::rel32(view, value);
9362 return ArmRelocFuncs::STATUS_OKAY;
9363
9364 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9365 if (optimized_type == tls::TLSOPT_NONE)
9366 {
9367 // Relocate the field with the offset of the GOT entry for
9368 // the tp-relative offset of the symbol.
9369 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9370 unsigned int got_offset;
9371 if (gsym != NULL)
9372 {
9373 gold_assert(gsym->has_got_offset(got_type));
9374 got_offset = gsym->got_offset(got_type);
9375 }
9376 else
9377 {
9378 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9379 gold_assert(object->local_has_got_offset(r_sym, got_type));
9380 got_offset = object->local_got_offset(r_sym, got_type);
9381 }
9382
9383 // All GOT offsets are relative to the end of the GOT.
9384 got_offset -= target->got_size();
9385
9386 Arm_address got_entry =
9387 target->got_plt_section()->address() + got_offset;
9388
9389 // Relocate the field with the PC relative offset of the GOT entry.
9390 RelocFuncs::pcrel32(view, got_entry, address);
9391 return ArmRelocFuncs::STATUS_OKAY;
9392 }
9393 break;
9394
9395 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9396 // If we're creating a shared library, a dynamic relocation will
9397 // have been created for this location, so do not apply it now.
9398 if (!parameters->options().shared())
9399 {
9400 gold_assert(tls_segment != NULL);
9401
9402 // $tp points to the TCB, which is followed by the TLS, so we
9403 // need to add TCB size to the offset.
9404 Arm_address aligned_tcb_size =
9405 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9406 RelocFuncs::rel32(view, value + aligned_tcb_size);
9407
9408 }
9409 return ArmRelocFuncs::STATUS_OKAY;
9410
9411 default:
9412 gold_unreachable();
9413 }
9414
9415 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9416 _("unsupported reloc %u"),
9417 r_type);
9418 return ArmRelocFuncs::STATUS_BAD_RELOC;
9419 }
9420
9421 // Relocate section data.
9422
9423 template<bool big_endian>
9424 void
9425 Target_arm<big_endian>::relocate_section(
9426 const Relocate_info<32, big_endian>* relinfo,
9427 unsigned int sh_type,
9428 const unsigned char* prelocs,
9429 size_t reloc_count,
9430 Output_section* output_section,
9431 bool needs_special_offset_handling,
9432 unsigned char* view,
9433 Arm_address address,
9434 section_size_type view_size,
9435 const Reloc_symbol_changes* reloc_symbol_changes)
9436 {
9437 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9438 gold_assert(sh_type == elfcpp::SHT_REL);
9439
9440 // See if we are relocating a relaxed input section. If so, the view
9441 // covers the whole output section and we need to adjust accordingly.
9442 if (needs_special_offset_handling)
9443 {
9444 const Output_relaxed_input_section* poris =
9445 output_section->find_relaxed_input_section(relinfo->object,
9446 relinfo->data_shndx);
9447 if (poris != NULL)
9448 {
9449 Arm_address section_address = poris->address();
9450 section_size_type section_size = poris->data_size();
9451
9452 gold_assert((section_address >= address)
9453 && ((section_address + section_size)
9454 <= (address + view_size)));
9455
9456 off_t offset = section_address - address;
9457 view += offset;
9458 address += offset;
9459 view_size = section_size;
9460 }
9461 }
9462
9463 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9464 Arm_relocate>(
9465 relinfo,
9466 this,
9467 prelocs,
9468 reloc_count,
9469 output_section,
9470 needs_special_offset_handling,
9471 view,
9472 address,
9473 view_size,
9474 reloc_symbol_changes);
9475 }
9476
9477 // Return the size of a relocation while scanning during a relocatable
9478 // link.
9479
9480 template<bool big_endian>
9481 unsigned int
9482 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9483 unsigned int r_type,
9484 Relobj* object)
9485 {
9486 r_type = get_real_reloc_type(r_type);
9487 const Arm_reloc_property* arp =
9488 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9489 if (arp != NULL)
9490 return arp->size();
9491 else
9492 {
9493 std::string reloc_name =
9494 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9495 gold_error(_("%s: unexpected %s in object file"),
9496 object->name().c_str(), reloc_name.c_str());
9497 return 0;
9498 }
9499 }
9500
9501 // Scan the relocs during a relocatable link.
9502
9503 template<bool big_endian>
9504 void
9505 Target_arm<big_endian>::scan_relocatable_relocs(
9506 Symbol_table* symtab,
9507 Layout* layout,
9508 Sized_relobj_file<32, big_endian>* object,
9509 unsigned int data_shndx,
9510 unsigned int sh_type,
9511 const unsigned char* prelocs,
9512 size_t reloc_count,
9513 Output_section* output_section,
9514 bool needs_special_offset_handling,
9515 size_t local_symbol_count,
9516 const unsigned char* plocal_symbols,
9517 Relocatable_relocs* rr)
9518 {
9519 gold_assert(sh_type == elfcpp::SHT_REL);
9520
9521 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9522 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9523
9524 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9525 Scan_relocatable_relocs>(
9526 symtab,
9527 layout,
9528 object,
9529 data_shndx,
9530 prelocs,
9531 reloc_count,
9532 output_section,
9533 needs_special_offset_handling,
9534 local_symbol_count,
9535 plocal_symbols,
9536 rr);
9537 }
9538
9539 // Relocate a section during a relocatable link.
9540
9541 template<bool big_endian>
9542 void
9543 Target_arm<big_endian>::relocate_for_relocatable(
9544 const Relocate_info<32, big_endian>* relinfo,
9545 unsigned int sh_type,
9546 const unsigned char* prelocs,
9547 size_t reloc_count,
9548 Output_section* output_section,
9549 off_t offset_in_output_section,
9550 const Relocatable_relocs* rr,
9551 unsigned char* view,
9552 Arm_address view_address,
9553 section_size_type view_size,
9554 unsigned char* reloc_view,
9555 section_size_type reloc_view_size)
9556 {
9557 gold_assert(sh_type == elfcpp::SHT_REL);
9558
9559 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9560 relinfo,
9561 prelocs,
9562 reloc_count,
9563 output_section,
9564 offset_in_output_section,
9565 rr,
9566 view,
9567 view_address,
9568 view_size,
9569 reloc_view,
9570 reloc_view_size);
9571 }
9572
9573 // Perform target-specific processing in a relocatable link. This is
9574 // only used if we use the relocation strategy RELOC_SPECIAL.
9575
9576 template<bool big_endian>
9577 void
9578 Target_arm<big_endian>::relocate_special_relocatable(
9579 const Relocate_info<32, big_endian>* relinfo,
9580 unsigned int sh_type,
9581 const unsigned char* preloc_in,
9582 size_t relnum,
9583 Output_section* output_section,
9584 off_t offset_in_output_section,
9585 unsigned char* view,
9586 elfcpp::Elf_types<32>::Elf_Addr view_address,
9587 section_size_type,
9588 unsigned char* preloc_out)
9589 {
9590 // We can only handle REL type relocation sections.
9591 gold_assert(sh_type == elfcpp::SHT_REL);
9592
9593 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9594 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9595 Reltype_write;
9596 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9597
9598 const Arm_relobj<big_endian>* object =
9599 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9600 const unsigned int local_count = object->local_symbol_count();
9601
9602 Reltype reloc(preloc_in);
9603 Reltype_write reloc_write(preloc_out);
9604
9605 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9606 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9607 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9608
9609 const Arm_reloc_property* arp =
9610 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9611 gold_assert(arp != NULL);
9612
9613 // Get the new symbol index.
9614 // We only use RELOC_SPECIAL strategy in local relocations.
9615 gold_assert(r_sym < local_count);
9616
9617 // We are adjusting a section symbol. We need to find
9618 // the symbol table index of the section symbol for
9619 // the output section corresponding to input section
9620 // in which this symbol is defined.
9621 bool is_ordinary;
9622 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9623 gold_assert(is_ordinary);
9624 Output_section* os = object->output_section(shndx);
9625 gold_assert(os != NULL);
9626 gold_assert(os->needs_symtab_index());
9627 unsigned int new_symndx = os->symtab_index();
9628
9629 // Get the new offset--the location in the output section where
9630 // this relocation should be applied.
9631
9632 Arm_address offset = reloc.get_r_offset();
9633 Arm_address new_offset;
9634 if (offset_in_output_section != invalid_address)
9635 new_offset = offset + offset_in_output_section;
9636 else
9637 {
9638 section_offset_type sot_offset =
9639 convert_types<section_offset_type, Arm_address>(offset);
9640 section_offset_type new_sot_offset =
9641 output_section->output_offset(object, relinfo->data_shndx,
9642 sot_offset);
9643 gold_assert(new_sot_offset != -1);
9644 new_offset = new_sot_offset;
9645 }
9646
9647 // In an object file, r_offset is an offset within the section.
9648 // In an executable or dynamic object, generated by
9649 // --emit-relocs, r_offset is an absolute address.
9650 if (!parameters->options().relocatable())
9651 {
9652 new_offset += view_address;
9653 if (offset_in_output_section != invalid_address)
9654 new_offset -= offset_in_output_section;
9655 }
9656
9657 reloc_write.put_r_offset(new_offset);
9658 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9659
9660 // Handle the reloc addend.
9661 // The relocation uses a section symbol in the input file.
9662 // We are adjusting it to use a section symbol in the output
9663 // file. The input section symbol refers to some address in
9664 // the input section. We need the relocation in the output
9665 // file to refer to that same address. This adjustment to
9666 // the addend is the same calculation we use for a simple
9667 // absolute relocation for the input section symbol.
9668
9669 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9670
9671 // Handle THUMB bit.
9672 Symbol_value<32> symval;
9673 Arm_address thumb_bit =
9674 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9675 if (thumb_bit != 0
9676 && arp->uses_thumb_bit()
9677 && ((psymval->value(object, 0) & 1) != 0))
9678 {
9679 Arm_address stripped_value =
9680 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9681 symval.set_output_value(stripped_value);
9682 psymval = &symval;
9683 }
9684
9685 unsigned char* paddend = view + offset;
9686 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9687 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9688 switch (r_type)
9689 {
9690 case elfcpp::R_ARM_ABS8:
9691 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9692 psymval);
9693 break;
9694
9695 case elfcpp::R_ARM_ABS12:
9696 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9697 psymval);
9698 break;
9699
9700 case elfcpp::R_ARM_ABS16:
9701 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9702 psymval);
9703 break;
9704
9705 case elfcpp::R_ARM_THM_ABS5:
9706 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9707 object,
9708 psymval);
9709 break;
9710
9711 case elfcpp::R_ARM_MOVW_ABS_NC:
9712 case elfcpp::R_ARM_MOVW_PREL_NC:
9713 case elfcpp::R_ARM_MOVW_BREL_NC:
9714 case elfcpp::R_ARM_MOVW_BREL:
9715 reloc_status = Arm_relocate_functions<big_endian>::movw(
9716 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9717 break;
9718
9719 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9720 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9721 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9722 case elfcpp::R_ARM_THM_MOVW_BREL:
9723 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9724 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9725 break;
9726
9727 case elfcpp::R_ARM_THM_CALL:
9728 case elfcpp::R_ARM_THM_XPC22:
9729 case elfcpp::R_ARM_THM_JUMP24:
9730 reloc_status =
9731 Arm_relocate_functions<big_endian>::thumb_branch_common(
9732 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9733 false);
9734 break;
9735
9736 case elfcpp::R_ARM_PLT32:
9737 case elfcpp::R_ARM_CALL:
9738 case elfcpp::R_ARM_JUMP24:
9739 case elfcpp::R_ARM_XPC25:
9740 reloc_status =
9741 Arm_relocate_functions<big_endian>::arm_branch_common(
9742 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9743 false);
9744 break;
9745
9746 case elfcpp::R_ARM_THM_JUMP19:
9747 reloc_status =
9748 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9749 psymval, 0, thumb_bit);
9750 break;
9751
9752 case elfcpp::R_ARM_THM_JUMP6:
9753 reloc_status =
9754 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9755 0);
9756 break;
9757
9758 case elfcpp::R_ARM_THM_JUMP8:
9759 reloc_status =
9760 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9761 0);
9762 break;
9763
9764 case elfcpp::R_ARM_THM_JUMP11:
9765 reloc_status =
9766 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9767 0);
9768 break;
9769
9770 case elfcpp::R_ARM_PREL31:
9771 reloc_status =
9772 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9773 thumb_bit);
9774 break;
9775
9776 case elfcpp::R_ARM_THM_PC8:
9777 reloc_status =
9778 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9779 0);
9780 break;
9781
9782 case elfcpp::R_ARM_THM_PC12:
9783 reloc_status =
9784 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9785 0);
9786 break;
9787
9788 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9789 reloc_status =
9790 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9791 0, thumb_bit);
9792 break;
9793
9794 // These relocation truncate relocation results so we cannot handle them
9795 // in a relocatable link.
9796 case elfcpp::R_ARM_MOVT_ABS:
9797 case elfcpp::R_ARM_THM_MOVT_ABS:
9798 case elfcpp::R_ARM_MOVT_PREL:
9799 case elfcpp::R_ARM_MOVT_BREL:
9800 case elfcpp::R_ARM_THM_MOVT_PREL:
9801 case elfcpp::R_ARM_THM_MOVT_BREL:
9802 case elfcpp::R_ARM_ALU_PC_G0_NC:
9803 case elfcpp::R_ARM_ALU_PC_G0:
9804 case elfcpp::R_ARM_ALU_PC_G1_NC:
9805 case elfcpp::R_ARM_ALU_PC_G1:
9806 case elfcpp::R_ARM_ALU_PC_G2:
9807 case elfcpp::R_ARM_ALU_SB_G0_NC:
9808 case elfcpp::R_ARM_ALU_SB_G0:
9809 case elfcpp::R_ARM_ALU_SB_G1_NC:
9810 case elfcpp::R_ARM_ALU_SB_G1:
9811 case elfcpp::R_ARM_ALU_SB_G2:
9812 case elfcpp::R_ARM_LDR_PC_G0:
9813 case elfcpp::R_ARM_LDR_PC_G1:
9814 case elfcpp::R_ARM_LDR_PC_G2:
9815 case elfcpp::R_ARM_LDR_SB_G0:
9816 case elfcpp::R_ARM_LDR_SB_G1:
9817 case elfcpp::R_ARM_LDR_SB_G2:
9818 case elfcpp::R_ARM_LDRS_PC_G0:
9819 case elfcpp::R_ARM_LDRS_PC_G1:
9820 case elfcpp::R_ARM_LDRS_PC_G2:
9821 case elfcpp::R_ARM_LDRS_SB_G0:
9822 case elfcpp::R_ARM_LDRS_SB_G1:
9823 case elfcpp::R_ARM_LDRS_SB_G2:
9824 case elfcpp::R_ARM_LDC_PC_G0:
9825 case elfcpp::R_ARM_LDC_PC_G1:
9826 case elfcpp::R_ARM_LDC_PC_G2:
9827 case elfcpp::R_ARM_LDC_SB_G0:
9828 case elfcpp::R_ARM_LDC_SB_G1:
9829 case elfcpp::R_ARM_LDC_SB_G2:
9830 gold_error(_("cannot handle %s in a relocatable link"),
9831 arp->name().c_str());
9832 break;
9833
9834 default:
9835 gold_unreachable();
9836 }
9837
9838 // Report any errors.
9839 switch (reloc_status)
9840 {
9841 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9842 break;
9843 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9844 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9845 _("relocation overflow in %s"),
9846 arp->name().c_str());
9847 break;
9848 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9849 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9850 _("unexpected opcode while processing relocation %s"),
9851 arp->name().c_str());
9852 break;
9853 default:
9854 gold_unreachable();
9855 }
9856 }
9857
9858 // Return the value to use for a dynamic symbol which requires special
9859 // treatment. This is how we support equality comparisons of function
9860 // pointers across shared library boundaries, as described in the
9861 // processor specific ABI supplement.
9862
9863 template<bool big_endian>
9864 uint64_t
9865 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9866 {
9867 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9868 return this->plt_section()->address() + gsym->plt_offset();
9869 }
9870
9871 // Map platform-specific relocs to real relocs
9872 //
9873 template<bool big_endian>
9874 unsigned int
9875 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9876 {
9877 switch (r_type)
9878 {
9879 case elfcpp::R_ARM_TARGET1:
9880 // This is either R_ARM_ABS32 or R_ARM_REL32;
9881 return elfcpp::R_ARM_ABS32;
9882
9883 case elfcpp::R_ARM_TARGET2:
9884 // This can be any reloc type but usually is R_ARM_GOT_PREL
9885 return elfcpp::R_ARM_GOT_PREL;
9886
9887 default:
9888 return r_type;
9889 }
9890 }
9891
9892 // Whether if two EABI versions V1 and V2 are compatible.
9893
9894 template<bool big_endian>
9895 bool
9896 Target_arm<big_endian>::are_eabi_versions_compatible(
9897 elfcpp::Elf_Word v1,
9898 elfcpp::Elf_Word v2)
9899 {
9900 // v4 and v5 are the same spec before and after it was released,
9901 // so allow mixing them.
9902 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9903 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9904 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9905 return true;
9906
9907 return v1 == v2;
9908 }
9909
9910 // Combine FLAGS from an input object called NAME and the processor-specific
9911 // flags in the ELF header of the output. Much of this is adapted from the
9912 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9913 // in bfd/elf32-arm.c.
9914
9915 template<bool big_endian>
9916 void
9917 Target_arm<big_endian>::merge_processor_specific_flags(
9918 const std::string& name,
9919 elfcpp::Elf_Word flags)
9920 {
9921 if (this->are_processor_specific_flags_set())
9922 {
9923 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9924
9925 // Nothing to merge if flags equal to those in output.
9926 if (flags == out_flags)
9927 return;
9928
9929 // Complain about various flag mismatches.
9930 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9931 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9932 if (!this->are_eabi_versions_compatible(version1, version2)
9933 && parameters->options().warn_mismatch())
9934 gold_error(_("Source object %s has EABI version %d but output has "
9935 "EABI version %d."),
9936 name.c_str(),
9937 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9938 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9939 }
9940 else
9941 {
9942 // If the input is the default architecture and had the default
9943 // flags then do not bother setting the flags for the output
9944 // architecture, instead allow future merges to do this. If no
9945 // future merges ever set these flags then they will retain their
9946 // uninitialised values, which surprise surprise, correspond
9947 // to the default values.
9948 if (flags == 0)
9949 return;
9950
9951 // This is the first time, just copy the flags.
9952 // We only copy the EABI version for now.
9953 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9954 }
9955 }
9956
9957 // Adjust ELF file header.
9958 template<bool big_endian>
9959 void
9960 Target_arm<big_endian>::do_adjust_elf_header(
9961 unsigned char* view,
9962 int len) const
9963 {
9964 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9965
9966 elfcpp::Ehdr<32, big_endian> ehdr(view);
9967 unsigned char e_ident[elfcpp::EI_NIDENT];
9968 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9969
9970 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9971 == elfcpp::EF_ARM_EABI_UNKNOWN)
9972 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9973 else
9974 e_ident[elfcpp::EI_OSABI] = 0;
9975 e_ident[elfcpp::EI_ABIVERSION] = 0;
9976
9977 // FIXME: Do EF_ARM_BE8 adjustment.
9978
9979 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9980 oehdr.put_e_ident(e_ident);
9981 }
9982
9983 // do_make_elf_object to override the same function in the base class.
9984 // We need to use a target-specific sub-class of
9985 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9986 // Hence we need to have our own ELF object creation.
9987
9988 template<bool big_endian>
9989 Object*
9990 Target_arm<big_endian>::do_make_elf_object(
9991 const std::string& name,
9992 Input_file* input_file,
9993 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9994 {
9995 int et = ehdr.get_e_type();
9996 if (et == elfcpp::ET_REL)
9997 {
9998 Arm_relobj<big_endian>* obj =
9999 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10000 obj->setup();
10001 return obj;
10002 }
10003 else if (et == elfcpp::ET_DYN)
10004 {
10005 Sized_dynobj<32, big_endian>* obj =
10006 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10007 obj->setup();
10008 return obj;
10009 }
10010 else
10011 {
10012 gold_error(_("%s: unsupported ELF file type %d"),
10013 name.c_str(), et);
10014 return NULL;
10015 }
10016 }
10017
10018 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10019 // Returns -1 if no architecture could be read.
10020 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10021
10022 template<bool big_endian>
10023 int
10024 Target_arm<big_endian>::get_secondary_compatible_arch(
10025 const Attributes_section_data* pasd)
10026 {
10027 const Object_attribute* known_attributes =
10028 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10029
10030 // Note: the tag and its argument below are uleb128 values, though
10031 // currently-defined values fit in one byte for each.
10032 const std::string& sv =
10033 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10034 if (sv.size() == 2
10035 && sv.data()[0] == elfcpp::Tag_CPU_arch
10036 && (sv.data()[1] & 128) != 128)
10037 return sv.data()[1];
10038
10039 // This tag is "safely ignorable", so don't complain if it looks funny.
10040 return -1;
10041 }
10042
10043 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10044 // The tag is removed if ARCH is -1.
10045 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10046
10047 template<bool big_endian>
10048 void
10049 Target_arm<big_endian>::set_secondary_compatible_arch(
10050 Attributes_section_data* pasd,
10051 int arch)
10052 {
10053 Object_attribute* known_attributes =
10054 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10055
10056 if (arch == -1)
10057 {
10058 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10059 return;
10060 }
10061
10062 // Note: the tag and its argument below are uleb128 values, though
10063 // currently-defined values fit in one byte for each.
10064 char sv[3];
10065 sv[0] = elfcpp::Tag_CPU_arch;
10066 gold_assert(arch != 0);
10067 sv[1] = arch;
10068 sv[2] = '\0';
10069
10070 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10071 }
10072
10073 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10074 // into account.
10075 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10076
10077 template<bool big_endian>
10078 int
10079 Target_arm<big_endian>::tag_cpu_arch_combine(
10080 const char* name,
10081 int oldtag,
10082 int* secondary_compat_out,
10083 int newtag,
10084 int secondary_compat)
10085 {
10086 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10087 static const int v6t2[] =
10088 {
10089 T(V6T2), // PRE_V4.
10090 T(V6T2), // V4.
10091 T(V6T2), // V4T.
10092 T(V6T2), // V5T.
10093 T(V6T2), // V5TE.
10094 T(V6T2), // V5TEJ.
10095 T(V6T2), // V6.
10096 T(V7), // V6KZ.
10097 T(V6T2) // V6T2.
10098 };
10099 static const int v6k[] =
10100 {
10101 T(V6K), // PRE_V4.
10102 T(V6K), // V4.
10103 T(V6K), // V4T.
10104 T(V6K), // V5T.
10105 T(V6K), // V5TE.
10106 T(V6K), // V5TEJ.
10107 T(V6K), // V6.
10108 T(V6KZ), // V6KZ.
10109 T(V7), // V6T2.
10110 T(V6K) // V6K.
10111 };
10112 static const int v7[] =
10113 {
10114 T(V7), // PRE_V4.
10115 T(V7), // V4.
10116 T(V7), // V4T.
10117 T(V7), // V5T.
10118 T(V7), // V5TE.
10119 T(V7), // V5TEJ.
10120 T(V7), // V6.
10121 T(V7), // V6KZ.
10122 T(V7), // V6T2.
10123 T(V7), // V6K.
10124 T(V7) // V7.
10125 };
10126 static const int v6_m[] =
10127 {
10128 -1, // PRE_V4.
10129 -1, // V4.
10130 T(V6K), // V4T.
10131 T(V6K), // V5T.
10132 T(V6K), // V5TE.
10133 T(V6K), // V5TEJ.
10134 T(V6K), // V6.
10135 T(V6KZ), // V6KZ.
10136 T(V7), // V6T2.
10137 T(V6K), // V6K.
10138 T(V7), // V7.
10139 T(V6_M) // V6_M.
10140 };
10141 static const int v6s_m[] =
10142 {
10143 -1, // PRE_V4.
10144 -1, // V4.
10145 T(V6K), // V4T.
10146 T(V6K), // V5T.
10147 T(V6K), // V5TE.
10148 T(V6K), // V5TEJ.
10149 T(V6K), // V6.
10150 T(V6KZ), // V6KZ.
10151 T(V7), // V6T2.
10152 T(V6K), // V6K.
10153 T(V7), // V7.
10154 T(V6S_M), // V6_M.
10155 T(V6S_M) // V6S_M.
10156 };
10157 static const int v7e_m[] =
10158 {
10159 -1, // PRE_V4.
10160 -1, // V4.
10161 T(V7E_M), // V4T.
10162 T(V7E_M), // V5T.
10163 T(V7E_M), // V5TE.
10164 T(V7E_M), // V5TEJ.
10165 T(V7E_M), // V6.
10166 T(V7E_M), // V6KZ.
10167 T(V7E_M), // V6T2.
10168 T(V7E_M), // V6K.
10169 T(V7E_M), // V7.
10170 T(V7E_M), // V6_M.
10171 T(V7E_M), // V6S_M.
10172 T(V7E_M) // V7E_M.
10173 };
10174 static const int v4t_plus_v6_m[] =
10175 {
10176 -1, // PRE_V4.
10177 -1, // V4.
10178 T(V4T), // V4T.
10179 T(V5T), // V5T.
10180 T(V5TE), // V5TE.
10181 T(V5TEJ), // V5TEJ.
10182 T(V6), // V6.
10183 T(V6KZ), // V6KZ.
10184 T(V6T2), // V6T2.
10185 T(V6K), // V6K.
10186 T(V7), // V7.
10187 T(V6_M), // V6_M.
10188 T(V6S_M), // V6S_M.
10189 T(V7E_M), // V7E_M.
10190 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10191 };
10192 static const int* comb[] =
10193 {
10194 v6t2,
10195 v6k,
10196 v7,
10197 v6_m,
10198 v6s_m,
10199 v7e_m,
10200 // Pseudo-architecture.
10201 v4t_plus_v6_m
10202 };
10203
10204 // Check we've not got a higher architecture than we know about.
10205
10206 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10207 {
10208 gold_error(_("%s: unknown CPU architecture"), name);
10209 return -1;
10210 }
10211
10212 // Override old tag if we have a Tag_also_compatible_with on the output.
10213
10214 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10215 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10216 oldtag = T(V4T_PLUS_V6_M);
10217
10218 // And override the new tag if we have a Tag_also_compatible_with on the
10219 // input.
10220
10221 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10222 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10223 newtag = T(V4T_PLUS_V6_M);
10224
10225 // Architectures before V6KZ add features monotonically.
10226 int tagh = std::max(oldtag, newtag);
10227 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10228 return tagh;
10229
10230 int tagl = std::min(oldtag, newtag);
10231 int result = comb[tagh - T(V6T2)][tagl];
10232
10233 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10234 // as the canonical version.
10235 if (result == T(V4T_PLUS_V6_M))
10236 {
10237 result = T(V4T);
10238 *secondary_compat_out = T(V6_M);
10239 }
10240 else
10241 *secondary_compat_out = -1;
10242
10243 if (result == -1)
10244 {
10245 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10246 name, oldtag, newtag);
10247 return -1;
10248 }
10249
10250 return result;
10251 #undef T
10252 }
10253
10254 // Helper to print AEABI enum tag value.
10255
10256 template<bool big_endian>
10257 std::string
10258 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10259 {
10260 static const char* aeabi_enum_names[] =
10261 { "", "variable-size", "32-bit", "" };
10262 const size_t aeabi_enum_names_size =
10263 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10264
10265 if (value < aeabi_enum_names_size)
10266 return std::string(aeabi_enum_names[value]);
10267 else
10268 {
10269 char buffer[100];
10270 sprintf(buffer, "<unknown value %u>", value);
10271 return std::string(buffer);
10272 }
10273 }
10274
10275 // Return the string value to store in TAG_CPU_name.
10276
10277 template<bool big_endian>
10278 std::string
10279 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10280 {
10281 static const char* name_table[] = {
10282 // These aren't real CPU names, but we can't guess
10283 // that from the architecture version alone.
10284 "Pre v4",
10285 "ARM v4",
10286 "ARM v4T",
10287 "ARM v5T",
10288 "ARM v5TE",
10289 "ARM v5TEJ",
10290 "ARM v6",
10291 "ARM v6KZ",
10292 "ARM v6T2",
10293 "ARM v6K",
10294 "ARM v7",
10295 "ARM v6-M",
10296 "ARM v6S-M",
10297 "ARM v7E-M"
10298 };
10299 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10300
10301 if (value < name_table_size)
10302 return std::string(name_table[value]);
10303 else
10304 {
10305 char buffer[100];
10306 sprintf(buffer, "<unknown CPU value %u>", value);
10307 return std::string(buffer);
10308 }
10309 }
10310
10311 // Merge object attributes from input file called NAME with those of the
10312 // output. The input object attributes are in the object pointed by PASD.
10313
10314 template<bool big_endian>
10315 void
10316 Target_arm<big_endian>::merge_object_attributes(
10317 const char* name,
10318 const Attributes_section_data* pasd)
10319 {
10320 // Return if there is no attributes section data.
10321 if (pasd == NULL)
10322 return;
10323
10324 // If output has no object attributes, just copy.
10325 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10326 if (this->attributes_section_data_ == NULL)
10327 {
10328 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10329 Object_attribute* out_attr =
10330 this->attributes_section_data_->known_attributes(vendor);
10331
10332 // We do not output objects with Tag_MPextension_use_legacy - we move
10333 // the attribute's value to Tag_MPextension_use. */
10334 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10335 {
10336 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10337 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10338 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10339 {
10340 gold_error(_("%s has both the current and legacy "
10341 "Tag_MPextension_use attributes"),
10342 name);
10343 }
10344
10345 out_attr[elfcpp::Tag_MPextension_use] =
10346 out_attr[elfcpp::Tag_MPextension_use_legacy];
10347 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10348 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10349 }
10350
10351 return;
10352 }
10353
10354 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10355 Object_attribute* out_attr =
10356 this->attributes_section_data_->known_attributes(vendor);
10357
10358 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10359 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10360 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10361 {
10362 // Ignore mismatches if the object doesn't use floating point. */
10363 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10364 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10365 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10366 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10367 && parameters->options().warn_mismatch())
10368 gold_error(_("%s uses VFP register arguments, output does not"),
10369 name);
10370 }
10371
10372 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10373 {
10374 // Merge this attribute with existing attributes.
10375 switch (i)
10376 {
10377 case elfcpp::Tag_CPU_raw_name:
10378 case elfcpp::Tag_CPU_name:
10379 // These are merged after Tag_CPU_arch.
10380 break;
10381
10382 case elfcpp::Tag_ABI_optimization_goals:
10383 case elfcpp::Tag_ABI_FP_optimization_goals:
10384 // Use the first value seen.
10385 break;
10386
10387 case elfcpp::Tag_CPU_arch:
10388 {
10389 unsigned int saved_out_attr = out_attr->int_value();
10390 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10391 int secondary_compat =
10392 this->get_secondary_compatible_arch(pasd);
10393 int secondary_compat_out =
10394 this->get_secondary_compatible_arch(
10395 this->attributes_section_data_);
10396 out_attr[i].set_int_value(
10397 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10398 &secondary_compat_out,
10399 in_attr[i].int_value(),
10400 secondary_compat));
10401 this->set_secondary_compatible_arch(this->attributes_section_data_,
10402 secondary_compat_out);
10403
10404 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10405 if (out_attr[i].int_value() == saved_out_attr)
10406 ; // Leave the names alone.
10407 else if (out_attr[i].int_value() == in_attr[i].int_value())
10408 {
10409 // The output architecture has been changed to match the
10410 // input architecture. Use the input names.
10411 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10412 in_attr[elfcpp::Tag_CPU_name].string_value());
10413 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10414 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10415 }
10416 else
10417 {
10418 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10419 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10420 }
10421
10422 // If we still don't have a value for Tag_CPU_name,
10423 // make one up now. Tag_CPU_raw_name remains blank.
10424 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10425 {
10426 const std::string cpu_name =
10427 this->tag_cpu_name_value(out_attr[i].int_value());
10428 // FIXME: If we see an unknown CPU, this will be set
10429 // to "<unknown CPU n>", where n is the attribute value.
10430 // This is different from BFD, which leaves the name alone.
10431 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10432 }
10433 }
10434 break;
10435
10436 case elfcpp::Tag_ARM_ISA_use:
10437 case elfcpp::Tag_THUMB_ISA_use:
10438 case elfcpp::Tag_WMMX_arch:
10439 case elfcpp::Tag_Advanced_SIMD_arch:
10440 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10441 case elfcpp::Tag_ABI_FP_rounding:
10442 case elfcpp::Tag_ABI_FP_exceptions:
10443 case elfcpp::Tag_ABI_FP_user_exceptions:
10444 case elfcpp::Tag_ABI_FP_number_model:
10445 case elfcpp::Tag_VFP_HP_extension:
10446 case elfcpp::Tag_CPU_unaligned_access:
10447 case elfcpp::Tag_T2EE_use:
10448 case elfcpp::Tag_Virtualization_use:
10449 case elfcpp::Tag_MPextension_use:
10450 // Use the largest value specified.
10451 if (in_attr[i].int_value() > out_attr[i].int_value())
10452 out_attr[i].set_int_value(in_attr[i].int_value());
10453 break;
10454
10455 case elfcpp::Tag_ABI_align8_preserved:
10456 case elfcpp::Tag_ABI_PCS_RO_data:
10457 // Use the smallest value specified.
10458 if (in_attr[i].int_value() < out_attr[i].int_value())
10459 out_attr[i].set_int_value(in_attr[i].int_value());
10460 break;
10461
10462 case elfcpp::Tag_ABI_align8_needed:
10463 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10464 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10465 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10466 == 0)))
10467 {
10468 // This error message should be enabled once all non-conforming
10469 // binaries in the toolchain have had the attributes set
10470 // properly.
10471 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10472 // name);
10473 }
10474 // Fall through.
10475 case elfcpp::Tag_ABI_FP_denormal:
10476 case elfcpp::Tag_ABI_PCS_GOT_use:
10477 {
10478 // These tags have 0 = don't care, 1 = strong requirement,
10479 // 2 = weak requirement.
10480 static const int order_021[3] = {0, 2, 1};
10481
10482 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10483 // value if greater than 2 (for future-proofing).
10484 if ((in_attr[i].int_value() > 2
10485 && in_attr[i].int_value() > out_attr[i].int_value())
10486 || (in_attr[i].int_value() <= 2
10487 && out_attr[i].int_value() <= 2
10488 && (order_021[in_attr[i].int_value()]
10489 > order_021[out_attr[i].int_value()])))
10490 out_attr[i].set_int_value(in_attr[i].int_value());
10491 }
10492 break;
10493
10494 case elfcpp::Tag_CPU_arch_profile:
10495 if (out_attr[i].int_value() != in_attr[i].int_value())
10496 {
10497 // 0 will merge with anything.
10498 // 'A' and 'S' merge to 'A'.
10499 // 'R' and 'S' merge to 'R'.
10500 // 'M' and 'A|R|S' is an error.
10501 if (out_attr[i].int_value() == 0
10502 || (out_attr[i].int_value() == 'S'
10503 && (in_attr[i].int_value() == 'A'
10504 || in_attr[i].int_value() == 'R')))
10505 out_attr[i].set_int_value(in_attr[i].int_value());
10506 else if (in_attr[i].int_value() == 0
10507 || (in_attr[i].int_value() == 'S'
10508 && (out_attr[i].int_value() == 'A'
10509 || out_attr[i].int_value() == 'R')))
10510 ; // Do nothing.
10511 else if (parameters->options().warn_mismatch())
10512 {
10513 gold_error
10514 (_("conflicting architecture profiles %c/%c"),
10515 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10516 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10517 }
10518 }
10519 break;
10520 case elfcpp::Tag_VFP_arch:
10521 {
10522 static const struct
10523 {
10524 int ver;
10525 int regs;
10526 } vfp_versions[7] =
10527 {
10528 {0, 0},
10529 {1, 16},
10530 {2, 16},
10531 {3, 32},
10532 {3, 16},
10533 {4, 32},
10534 {4, 16}
10535 };
10536
10537 // Values greater than 6 aren't defined, so just pick the
10538 // biggest.
10539 if (in_attr[i].int_value() > 6
10540 && in_attr[i].int_value() > out_attr[i].int_value())
10541 {
10542 *out_attr = *in_attr;
10543 break;
10544 }
10545 // The output uses the superset of input features
10546 // (ISA version) and registers.
10547 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10548 vfp_versions[out_attr[i].int_value()].ver);
10549 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10550 vfp_versions[out_attr[i].int_value()].regs);
10551 // This assumes all possible supersets are also a valid
10552 // options.
10553 int newval;
10554 for (newval = 6; newval > 0; newval--)
10555 {
10556 if (regs == vfp_versions[newval].regs
10557 && ver == vfp_versions[newval].ver)
10558 break;
10559 }
10560 out_attr[i].set_int_value(newval);
10561 }
10562 break;
10563 case elfcpp::Tag_PCS_config:
10564 if (out_attr[i].int_value() == 0)
10565 out_attr[i].set_int_value(in_attr[i].int_value());
10566 else if (in_attr[i].int_value() != 0
10567 && out_attr[i].int_value() != 0
10568 && parameters->options().warn_mismatch())
10569 {
10570 // It's sometimes ok to mix different configs, so this is only
10571 // a warning.
10572 gold_warning(_("%s: conflicting platform configuration"), name);
10573 }
10574 break;
10575 case elfcpp::Tag_ABI_PCS_R9_use:
10576 if (in_attr[i].int_value() != out_attr[i].int_value()
10577 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10578 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10579 && parameters->options().warn_mismatch())
10580 {
10581 gold_error(_("%s: conflicting use of R9"), name);
10582 }
10583 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10584 out_attr[i].set_int_value(in_attr[i].int_value());
10585 break;
10586 case elfcpp::Tag_ABI_PCS_RW_data:
10587 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10588 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10589 != elfcpp::AEABI_R9_SB)
10590 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10591 != elfcpp::AEABI_R9_unused)
10592 && parameters->options().warn_mismatch())
10593 {
10594 gold_error(_("%s: SB relative addressing conflicts with use "
10595 "of R9"),
10596 name);
10597 }
10598 // Use the smallest value specified.
10599 if (in_attr[i].int_value() < out_attr[i].int_value())
10600 out_attr[i].set_int_value(in_attr[i].int_value());
10601 break;
10602 case elfcpp::Tag_ABI_PCS_wchar_t:
10603 if (out_attr[i].int_value()
10604 && in_attr[i].int_value()
10605 && out_attr[i].int_value() != in_attr[i].int_value()
10606 && parameters->options().warn_mismatch()
10607 && parameters->options().wchar_size_warning())
10608 {
10609 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10610 "use %u-byte wchar_t; use of wchar_t values "
10611 "across objects may fail"),
10612 name, in_attr[i].int_value(),
10613 out_attr[i].int_value());
10614 }
10615 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10616 out_attr[i].set_int_value(in_attr[i].int_value());
10617 break;
10618 case elfcpp::Tag_ABI_enum_size:
10619 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10620 {
10621 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10622 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10623 {
10624 // The existing object is compatible with anything.
10625 // Use whatever requirements the new object has.
10626 out_attr[i].set_int_value(in_attr[i].int_value());
10627 }
10628 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10629 && out_attr[i].int_value() != in_attr[i].int_value()
10630 && parameters->options().warn_mismatch()
10631 && parameters->options().enum_size_warning())
10632 {
10633 unsigned int in_value = in_attr[i].int_value();
10634 unsigned int out_value = out_attr[i].int_value();
10635 gold_warning(_("%s uses %s enums yet the output is to use "
10636 "%s enums; use of enum values across objects "
10637 "may fail"),
10638 name,
10639 this->aeabi_enum_name(in_value).c_str(),
10640 this->aeabi_enum_name(out_value).c_str());
10641 }
10642 }
10643 break;
10644 case elfcpp::Tag_ABI_VFP_args:
10645 // Already done.
10646 break;
10647 case elfcpp::Tag_ABI_WMMX_args:
10648 if (in_attr[i].int_value() != out_attr[i].int_value()
10649 && parameters->options().warn_mismatch())
10650 {
10651 gold_error(_("%s uses iWMMXt register arguments, output does "
10652 "not"),
10653 name);
10654 }
10655 break;
10656 case Object_attribute::Tag_compatibility:
10657 // Merged in target-independent code.
10658 break;
10659 case elfcpp::Tag_ABI_HardFP_use:
10660 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10661 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10662 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10663 out_attr[i].set_int_value(3);
10664 else if (in_attr[i].int_value() > out_attr[i].int_value())
10665 out_attr[i].set_int_value(in_attr[i].int_value());
10666 break;
10667 case elfcpp::Tag_ABI_FP_16bit_format:
10668 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10669 {
10670 if (in_attr[i].int_value() != out_attr[i].int_value()
10671 && parameters->options().warn_mismatch())
10672 gold_error(_("fp16 format mismatch between %s and output"),
10673 name);
10674 }
10675 if (in_attr[i].int_value() != 0)
10676 out_attr[i].set_int_value(in_attr[i].int_value());
10677 break;
10678
10679 case elfcpp::Tag_DIV_use:
10680 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10681 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10682 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10683 // CPU. We will merge as follows: If the input attribute's value
10684 // is one then the output attribute's value remains unchanged. If
10685 // the input attribute's value is zero or two then if the output
10686 // attribute's value is one the output value is set to the input
10687 // value, otherwise the output value must be the same as the
10688 // inputs. */
10689 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10690 {
10691 if (in_attr[i].int_value() != out_attr[i].int_value())
10692 {
10693 gold_error(_("DIV usage mismatch between %s and output"),
10694 name);
10695 }
10696 }
10697
10698 if (in_attr[i].int_value() != 1)
10699 out_attr[i].set_int_value(in_attr[i].int_value());
10700
10701 break;
10702
10703 case elfcpp::Tag_MPextension_use_legacy:
10704 // We don't output objects with Tag_MPextension_use_legacy - we
10705 // move the value to Tag_MPextension_use.
10706 if (in_attr[i].int_value() != 0
10707 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10708 {
10709 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10710 != in_attr[i].int_value())
10711 {
10712 gold_error(_("%s has has both the current and legacy "
10713 "Tag_MPextension_use attributes"),
10714 name);
10715 }
10716 }
10717
10718 if (in_attr[i].int_value()
10719 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10720 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10721
10722 break;
10723
10724 case elfcpp::Tag_nodefaults:
10725 // This tag is set if it exists, but the value is unused (and is
10726 // typically zero). We don't actually need to do anything here -
10727 // the merge happens automatically when the type flags are merged
10728 // below.
10729 break;
10730 case elfcpp::Tag_also_compatible_with:
10731 // Already done in Tag_CPU_arch.
10732 break;
10733 case elfcpp::Tag_conformance:
10734 // Keep the attribute if it matches. Throw it away otherwise.
10735 // No attribute means no claim to conform.
10736 if (in_attr[i].string_value() != out_attr[i].string_value())
10737 out_attr[i].set_string_value("");
10738 break;
10739
10740 default:
10741 {
10742 const char* err_object = NULL;
10743
10744 // The "known_obj_attributes" table does contain some undefined
10745 // attributes. Ensure that there are unused.
10746 if (out_attr[i].int_value() != 0
10747 || out_attr[i].string_value() != "")
10748 err_object = "output";
10749 else if (in_attr[i].int_value() != 0
10750 || in_attr[i].string_value() != "")
10751 err_object = name;
10752
10753 if (err_object != NULL
10754 && parameters->options().warn_mismatch())
10755 {
10756 // Attribute numbers >=64 (mod 128) can be safely ignored.
10757 if ((i & 127) < 64)
10758 gold_error(_("%s: unknown mandatory EABI object attribute "
10759 "%d"),
10760 err_object, i);
10761 else
10762 gold_warning(_("%s: unknown EABI object attribute %d"),
10763 err_object, i);
10764 }
10765
10766 // Only pass on attributes that match in both inputs.
10767 if (!in_attr[i].matches(out_attr[i]))
10768 {
10769 out_attr[i].set_int_value(0);
10770 out_attr[i].set_string_value("");
10771 }
10772 }
10773 }
10774
10775 // If out_attr was copied from in_attr then it won't have a type yet.
10776 if (in_attr[i].type() && !out_attr[i].type())
10777 out_attr[i].set_type(in_attr[i].type());
10778 }
10779
10780 // Merge Tag_compatibility attributes and any common GNU ones.
10781 this->attributes_section_data_->merge(name, pasd);
10782
10783 // Check for any attributes not known on ARM.
10784 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10785 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10786 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10787 Other_attributes* out_other_attributes =
10788 this->attributes_section_data_->other_attributes(vendor);
10789 Other_attributes::iterator out_iter = out_other_attributes->begin();
10790
10791 while (in_iter != in_other_attributes->end()
10792 || out_iter != out_other_attributes->end())
10793 {
10794 const char* err_object = NULL;
10795 int err_tag = 0;
10796
10797 // The tags for each list are in numerical order.
10798 // If the tags are equal, then merge.
10799 if (out_iter != out_other_attributes->end()
10800 && (in_iter == in_other_attributes->end()
10801 || in_iter->first > out_iter->first))
10802 {
10803 // This attribute only exists in output. We can't merge, and we
10804 // don't know what the tag means, so delete it.
10805 err_object = "output";
10806 err_tag = out_iter->first;
10807 int saved_tag = out_iter->first;
10808 delete out_iter->second;
10809 out_other_attributes->erase(out_iter);
10810 out_iter = out_other_attributes->upper_bound(saved_tag);
10811 }
10812 else if (in_iter != in_other_attributes->end()
10813 && (out_iter != out_other_attributes->end()
10814 || in_iter->first < out_iter->first))
10815 {
10816 // This attribute only exists in input. We can't merge, and we
10817 // don't know what the tag means, so ignore it.
10818 err_object = name;
10819 err_tag = in_iter->first;
10820 ++in_iter;
10821 }
10822 else // The tags are equal.
10823 {
10824 // As present, all attributes in the list are unknown, and
10825 // therefore can't be merged meaningfully.
10826 err_object = "output";
10827 err_tag = out_iter->first;
10828
10829 // Only pass on attributes that match in both inputs.
10830 if (!in_iter->second->matches(*(out_iter->second)))
10831 {
10832 // No match. Delete the attribute.
10833 int saved_tag = out_iter->first;
10834 delete out_iter->second;
10835 out_other_attributes->erase(out_iter);
10836 out_iter = out_other_attributes->upper_bound(saved_tag);
10837 }
10838 else
10839 {
10840 // Matched. Keep the attribute and move to the next.
10841 ++out_iter;
10842 ++in_iter;
10843 }
10844 }
10845
10846 if (err_object && parameters->options().warn_mismatch())
10847 {
10848 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10849 if ((err_tag & 127) < 64)
10850 {
10851 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10852 err_object, err_tag);
10853 }
10854 else
10855 {
10856 gold_warning(_("%s: unknown EABI object attribute %d"),
10857 err_object, err_tag);
10858 }
10859 }
10860 }
10861 }
10862
10863 // Stub-generation methods for Target_arm.
10864
10865 // Make a new Arm_input_section object.
10866
10867 template<bool big_endian>
10868 Arm_input_section<big_endian>*
10869 Target_arm<big_endian>::new_arm_input_section(
10870 Relobj* relobj,
10871 unsigned int shndx)
10872 {
10873 Section_id sid(relobj, shndx);
10874
10875 Arm_input_section<big_endian>* arm_input_section =
10876 new Arm_input_section<big_endian>(relobj, shndx);
10877 arm_input_section->init();
10878
10879 // Register new Arm_input_section in map for look-up.
10880 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10881 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10882
10883 // Make sure that it we have not created another Arm_input_section
10884 // for this input section already.
10885 gold_assert(ins.second);
10886
10887 return arm_input_section;
10888 }
10889
10890 // Find the Arm_input_section object corresponding to the SHNDX-th input
10891 // section of RELOBJ.
10892
10893 template<bool big_endian>
10894 Arm_input_section<big_endian>*
10895 Target_arm<big_endian>::find_arm_input_section(
10896 Relobj* relobj,
10897 unsigned int shndx) const
10898 {
10899 Section_id sid(relobj, shndx);
10900 typename Arm_input_section_map::const_iterator p =
10901 this->arm_input_section_map_.find(sid);
10902 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10903 }
10904
10905 // Make a new stub table.
10906
10907 template<bool big_endian>
10908 Stub_table<big_endian>*
10909 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10910 {
10911 Stub_table<big_endian>* stub_table =
10912 new Stub_table<big_endian>(owner);
10913 this->stub_tables_.push_back(stub_table);
10914
10915 stub_table->set_address(owner->address() + owner->data_size());
10916 stub_table->set_file_offset(owner->offset() + owner->data_size());
10917 stub_table->finalize_data_size();
10918
10919 return stub_table;
10920 }
10921
10922 // Scan a relocation for stub generation.
10923
10924 template<bool big_endian>
10925 void
10926 Target_arm<big_endian>::scan_reloc_for_stub(
10927 const Relocate_info<32, big_endian>* relinfo,
10928 unsigned int r_type,
10929 const Sized_symbol<32>* gsym,
10930 unsigned int r_sym,
10931 const Symbol_value<32>* psymval,
10932 elfcpp::Elf_types<32>::Elf_Swxword addend,
10933 Arm_address address)
10934 {
10935 typedef typename Target_arm<big_endian>::Relocate Relocate;
10936
10937 const Arm_relobj<big_endian>* arm_relobj =
10938 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10939
10940 bool target_is_thumb;
10941 Symbol_value<32> symval;
10942 if (gsym != NULL)
10943 {
10944 // This is a global symbol. Determine if we use PLT and if the
10945 // final target is THUMB.
10946 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10947 {
10948 // This uses a PLT, change the symbol value.
10949 symval.set_output_value(this->plt_section()->address()
10950 + gsym->plt_offset());
10951 psymval = &symval;
10952 target_is_thumb = false;
10953 }
10954 else if (gsym->is_undefined())
10955 // There is no need to generate a stub symbol is undefined.
10956 return;
10957 else
10958 {
10959 target_is_thumb =
10960 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10961 || (gsym->type() == elfcpp::STT_FUNC
10962 && !gsym->is_undefined()
10963 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10964 }
10965 }
10966 else
10967 {
10968 // This is a local symbol. Determine if the final target is THUMB.
10969 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10970 }
10971
10972 // Strip LSB if this points to a THUMB target.
10973 const Arm_reloc_property* reloc_property =
10974 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10975 gold_assert(reloc_property != NULL);
10976 if (target_is_thumb
10977 && reloc_property->uses_thumb_bit()
10978 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10979 {
10980 Arm_address stripped_value =
10981 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10982 symval.set_output_value(stripped_value);
10983 psymval = &symval;
10984 }
10985
10986 // Get the symbol value.
10987 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10988
10989 // Owing to pipelining, the PC relative branches below actually skip
10990 // two instructions when the branch offset is 0.
10991 Arm_address destination;
10992 switch (r_type)
10993 {
10994 case elfcpp::R_ARM_CALL:
10995 case elfcpp::R_ARM_JUMP24:
10996 case elfcpp::R_ARM_PLT32:
10997 // ARM branches.
10998 destination = value + addend + 8;
10999 break;
11000 case elfcpp::R_ARM_THM_CALL:
11001 case elfcpp::R_ARM_THM_XPC22:
11002 case elfcpp::R_ARM_THM_JUMP24:
11003 case elfcpp::R_ARM_THM_JUMP19:
11004 // THUMB branches.
11005 destination = value + addend + 4;
11006 break;
11007 default:
11008 gold_unreachable();
11009 }
11010
11011 Reloc_stub* stub = NULL;
11012 Stub_type stub_type =
11013 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11014 target_is_thumb);
11015 if (stub_type != arm_stub_none)
11016 {
11017 // Try looking up an existing stub from a stub table.
11018 Stub_table<big_endian>* stub_table =
11019 arm_relobj->stub_table(relinfo->data_shndx);
11020 gold_assert(stub_table != NULL);
11021
11022 // Locate stub by destination.
11023 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11024
11025 // Create a stub if there is not one already
11026 stub = stub_table->find_reloc_stub(stub_key);
11027 if (stub == NULL)
11028 {
11029 // create a new stub and add it to stub table.
11030 stub = this->stub_factory().make_reloc_stub(stub_type);
11031 stub_table->add_reloc_stub(stub, stub_key);
11032 }
11033
11034 // Record the destination address.
11035 stub->set_destination_address(destination
11036 | (target_is_thumb ? 1 : 0));
11037 }
11038
11039 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11040 if (this->fix_cortex_a8_
11041 && (r_type == elfcpp::R_ARM_THM_JUMP24
11042 || r_type == elfcpp::R_ARM_THM_JUMP19
11043 || r_type == elfcpp::R_ARM_THM_CALL
11044 || r_type == elfcpp::R_ARM_THM_XPC22)
11045 && (address & 0xfffU) == 0xffeU)
11046 {
11047 // Found a candidate. Note we haven't checked the destination is
11048 // within 4K here: if we do so (and don't create a record) we can't
11049 // tell that a branch should have been relocated when scanning later.
11050 this->cortex_a8_relocs_info_[address] =
11051 new Cortex_a8_reloc(stub, r_type,
11052 destination | (target_is_thumb ? 1 : 0));
11053 }
11054 }
11055
11056 // This function scans a relocation sections for stub generation.
11057 // The template parameter Relocate must be a class type which provides
11058 // a single function, relocate(), which implements the machine
11059 // specific part of a relocation.
11060
11061 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11062 // SHT_REL or SHT_RELA.
11063
11064 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11065 // of relocs. OUTPUT_SECTION is the output section.
11066 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11067 // mapped to output offsets.
11068
11069 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11070 // VIEW_SIZE is the size. These refer to the input section, unless
11071 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11072 // the output section.
11073
11074 template<bool big_endian>
11075 template<int sh_type>
11076 void inline
11077 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11078 const Relocate_info<32, big_endian>* relinfo,
11079 const unsigned char* prelocs,
11080 size_t reloc_count,
11081 Output_section* output_section,
11082 bool needs_special_offset_handling,
11083 const unsigned char* view,
11084 elfcpp::Elf_types<32>::Elf_Addr view_address,
11085 section_size_type)
11086 {
11087 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11088 const int reloc_size =
11089 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11090
11091 Arm_relobj<big_endian>* arm_object =
11092 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11093 unsigned int local_count = arm_object->local_symbol_count();
11094
11095 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11096
11097 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11098 {
11099 Reltype reloc(prelocs);
11100
11101 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11102 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11103 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11104
11105 r_type = this->get_real_reloc_type(r_type);
11106
11107 // Only a few relocation types need stubs.
11108 if ((r_type != elfcpp::R_ARM_CALL)
11109 && (r_type != elfcpp::R_ARM_JUMP24)
11110 && (r_type != elfcpp::R_ARM_PLT32)
11111 && (r_type != elfcpp::R_ARM_THM_CALL)
11112 && (r_type != elfcpp::R_ARM_THM_XPC22)
11113 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11114 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11115 && (r_type != elfcpp::R_ARM_V4BX))
11116 continue;
11117
11118 section_offset_type offset =
11119 convert_to_section_size_type(reloc.get_r_offset());
11120
11121 if (needs_special_offset_handling)
11122 {
11123 offset = output_section->output_offset(relinfo->object,
11124 relinfo->data_shndx,
11125 offset);
11126 if (offset == -1)
11127 continue;
11128 }
11129
11130 // Create a v4bx stub if --fix-v4bx-interworking is used.
11131 if (r_type == elfcpp::R_ARM_V4BX)
11132 {
11133 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11134 {
11135 // Get the BX instruction.
11136 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11137 const Valtype* wv =
11138 reinterpret_cast<const Valtype*>(view + offset);
11139 elfcpp::Elf_types<32>::Elf_Swxword insn =
11140 elfcpp::Swap<32, big_endian>::readval(wv);
11141 const uint32_t reg = (insn & 0xf);
11142
11143 if (reg < 0xf)
11144 {
11145 // Try looking up an existing stub from a stub table.
11146 Stub_table<big_endian>* stub_table =
11147 arm_object->stub_table(relinfo->data_shndx);
11148 gold_assert(stub_table != NULL);
11149
11150 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11151 {
11152 // create a new stub and add it to stub table.
11153 Arm_v4bx_stub* stub =
11154 this->stub_factory().make_arm_v4bx_stub(reg);
11155 gold_assert(stub != NULL);
11156 stub_table->add_arm_v4bx_stub(stub);
11157 }
11158 }
11159 }
11160 continue;
11161 }
11162
11163 // Get the addend.
11164 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11165 elfcpp::Elf_types<32>::Elf_Swxword addend =
11166 stub_addend_reader(r_type, view + offset, reloc);
11167
11168 const Sized_symbol<32>* sym;
11169
11170 Symbol_value<32> symval;
11171 const Symbol_value<32> *psymval;
11172 bool is_defined_in_discarded_section;
11173 unsigned int shndx;
11174 if (r_sym < local_count)
11175 {
11176 sym = NULL;
11177 psymval = arm_object->local_symbol(r_sym);
11178
11179 // If the local symbol belongs to a section we are discarding,
11180 // and that section is a debug section, try to find the
11181 // corresponding kept section and map this symbol to its
11182 // counterpart in the kept section. The symbol must not
11183 // correspond to a section we are folding.
11184 bool is_ordinary;
11185 shndx = psymval->input_shndx(&is_ordinary);
11186 is_defined_in_discarded_section =
11187 (is_ordinary
11188 && shndx != elfcpp::SHN_UNDEF
11189 && !arm_object->is_section_included(shndx)
11190 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11191
11192 // We need to compute the would-be final value of this local
11193 // symbol.
11194 if (!is_defined_in_discarded_section)
11195 {
11196 typedef Sized_relobj_file<32, big_endian> ObjType;
11197 typename ObjType::Compute_final_local_value_status status =
11198 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11199 relinfo->symtab);
11200 if (status == ObjType::CFLV_OK)
11201 {
11202 // Currently we cannot handle a branch to a target in
11203 // a merged section. If this is the case, issue an error
11204 // and also free the merge symbol value.
11205 if (!symval.has_output_value())
11206 {
11207 const std::string& section_name =
11208 arm_object->section_name(shndx);
11209 arm_object->error(_("cannot handle branch to local %u "
11210 "in a merged section %s"),
11211 r_sym, section_name.c_str());
11212 }
11213 psymval = &symval;
11214 }
11215 else
11216 {
11217 // We cannot determine the final value.
11218 continue;
11219 }
11220 }
11221 }
11222 else
11223 {
11224 const Symbol* gsym;
11225 gsym = arm_object->global_symbol(r_sym);
11226 gold_assert(gsym != NULL);
11227 if (gsym->is_forwarder())
11228 gsym = relinfo->symtab->resolve_forwards(gsym);
11229
11230 sym = static_cast<const Sized_symbol<32>*>(gsym);
11231 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11232 symval.set_output_symtab_index(sym->symtab_index());
11233 else
11234 symval.set_no_output_symtab_entry();
11235
11236 // We need to compute the would-be final value of this global
11237 // symbol.
11238 const Symbol_table* symtab = relinfo->symtab;
11239 const Sized_symbol<32>* sized_symbol =
11240 symtab->get_sized_symbol<32>(gsym);
11241 Symbol_table::Compute_final_value_status status;
11242 Arm_address value =
11243 symtab->compute_final_value<32>(sized_symbol, &status);
11244
11245 // Skip this if the symbol has not output section.
11246 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11247 continue;
11248 symval.set_output_value(value);
11249
11250 if (gsym->type() == elfcpp::STT_TLS)
11251 symval.set_is_tls_symbol();
11252 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11253 symval.set_is_ifunc_symbol();
11254 psymval = &symval;
11255
11256 is_defined_in_discarded_section =
11257 (gsym->is_defined_in_discarded_section()
11258 && gsym->is_undefined());
11259 shndx = 0;
11260 }
11261
11262 Symbol_value<32> symval2;
11263 if (is_defined_in_discarded_section)
11264 {
11265 if (comdat_behavior == CB_UNDETERMINED)
11266 {
11267 std::string name = arm_object->section_name(relinfo->data_shndx);
11268 comdat_behavior = get_comdat_behavior(name.c_str());
11269 }
11270 if (comdat_behavior == CB_PRETEND)
11271 {
11272 // FIXME: This case does not work for global symbols.
11273 // We have no place to store the original section index.
11274 // Fortunately this does not matter for comdat sections,
11275 // only for sections explicitly discarded by a linker
11276 // script.
11277 bool found;
11278 typename elfcpp::Elf_types<32>::Elf_Addr value =
11279 arm_object->map_to_kept_section(shndx, &found);
11280 if (found)
11281 symval2.set_output_value(value + psymval->input_value());
11282 else
11283 symval2.set_output_value(0);
11284 }
11285 else
11286 {
11287 if (comdat_behavior == CB_WARNING)
11288 gold_warning_at_location(relinfo, i, offset,
11289 _("relocation refers to discarded "
11290 "section"));
11291 symval2.set_output_value(0);
11292 }
11293 symval2.set_no_output_symtab_entry();
11294 psymval = &symval2;
11295 }
11296
11297 // If symbol is a section symbol, we don't know the actual type of
11298 // destination. Give up.
11299 if (psymval->is_section_symbol())
11300 continue;
11301
11302 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11303 addend, view_address + offset);
11304 }
11305 }
11306
11307 // Scan an input section for stub generation.
11308
11309 template<bool big_endian>
11310 void
11311 Target_arm<big_endian>::scan_section_for_stubs(
11312 const Relocate_info<32, big_endian>* relinfo,
11313 unsigned int sh_type,
11314 const unsigned char* prelocs,
11315 size_t reloc_count,
11316 Output_section* output_section,
11317 bool needs_special_offset_handling,
11318 const unsigned char* view,
11319 Arm_address view_address,
11320 section_size_type view_size)
11321 {
11322 if (sh_type == elfcpp::SHT_REL)
11323 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11324 relinfo,
11325 prelocs,
11326 reloc_count,
11327 output_section,
11328 needs_special_offset_handling,
11329 view,
11330 view_address,
11331 view_size);
11332 else if (sh_type == elfcpp::SHT_RELA)
11333 // We do not support RELA type relocations yet. This is provided for
11334 // completeness.
11335 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11336 relinfo,
11337 prelocs,
11338 reloc_count,
11339 output_section,
11340 needs_special_offset_handling,
11341 view,
11342 view_address,
11343 view_size);
11344 else
11345 gold_unreachable();
11346 }
11347
11348 // Group input sections for stub generation.
11349 //
11350 // We group input sections in an output section so that the total size,
11351 // including any padding space due to alignment is smaller than GROUP_SIZE
11352 // unless the only input section in group is bigger than GROUP_SIZE already.
11353 // Then an ARM stub table is created to follow the last input section
11354 // in group. For each group an ARM stub table is created an is placed
11355 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11356 // extend the group after the stub table.
11357
11358 template<bool big_endian>
11359 void
11360 Target_arm<big_endian>::group_sections(
11361 Layout* layout,
11362 section_size_type group_size,
11363 bool stubs_always_after_branch,
11364 const Task* task)
11365 {
11366 // Group input sections and insert stub table
11367 Layout::Section_list section_list;
11368 layout->get_allocated_sections(&section_list);
11369 for (Layout::Section_list::const_iterator p = section_list.begin();
11370 p != section_list.end();
11371 ++p)
11372 {
11373 Arm_output_section<big_endian>* output_section =
11374 Arm_output_section<big_endian>::as_arm_output_section(*p);
11375 output_section->group_sections(group_size, stubs_always_after_branch,
11376 this, task);
11377 }
11378 }
11379
11380 // Relaxation hook. This is where we do stub generation.
11381
11382 template<bool big_endian>
11383 bool
11384 Target_arm<big_endian>::do_relax(
11385 int pass,
11386 const Input_objects* input_objects,
11387 Symbol_table* symtab,
11388 Layout* layout,
11389 const Task* task)
11390 {
11391 // No need to generate stubs if this is a relocatable link.
11392 gold_assert(!parameters->options().relocatable());
11393
11394 // If this is the first pass, we need to group input sections into
11395 // stub groups.
11396 bool done_exidx_fixup = false;
11397 typedef typename Stub_table_list::iterator Stub_table_iterator;
11398 if (pass == 1)
11399 {
11400 // Determine the stub group size. The group size is the absolute
11401 // value of the parameter --stub-group-size. If --stub-group-size
11402 // is passed a negative value, we restrict stubs to be always after
11403 // the stubbed branches.
11404 int32_t stub_group_size_param =
11405 parameters->options().stub_group_size();
11406 bool stubs_always_after_branch = stub_group_size_param < 0;
11407 section_size_type stub_group_size = abs(stub_group_size_param);
11408
11409 if (stub_group_size == 1)
11410 {
11411 // Default value.
11412 // Thumb branch range is +-4MB has to be used as the default
11413 // maximum size (a given section can contain both ARM and Thumb
11414 // code, so the worst case has to be taken into account). If we are
11415 // fixing cortex-a8 errata, the branch range has to be even smaller,
11416 // since wide conditional branch has a range of +-1MB only.
11417 //
11418 // This value is 48K less than that, which allows for 4096
11419 // 12-byte stubs. If we exceed that, then we will fail to link.
11420 // The user will have to relink with an explicit group size
11421 // option.
11422 stub_group_size = 4145152;
11423 }
11424
11425 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11426 // page as the first half of a 32-bit branch straddling two 4K pages.
11427 // This is a crude way of enforcing that. In addition, long conditional
11428 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11429 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11430 // cortex-A8 stubs from long conditional branches.
11431 if (this->fix_cortex_a8_)
11432 {
11433 stubs_always_after_branch = true;
11434 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11435 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11436 }
11437
11438 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11439
11440 // Also fix .ARM.exidx section coverage.
11441 Arm_output_section<big_endian>* exidx_output_section = NULL;
11442 for (Layout::Section_list::const_iterator p =
11443 layout->section_list().begin();
11444 p != layout->section_list().end();
11445 ++p)
11446 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11447 {
11448 if (exidx_output_section == NULL)
11449 exidx_output_section =
11450 Arm_output_section<big_endian>::as_arm_output_section(*p);
11451 else
11452 // We cannot handle this now.
11453 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11454 "non-relocatable link"),
11455 exidx_output_section->name(),
11456 (*p)->name());
11457 }
11458
11459 if (exidx_output_section != NULL)
11460 {
11461 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11462 symtab, task);
11463 done_exidx_fixup = true;
11464 }
11465 }
11466 else
11467 {
11468 // If this is not the first pass, addresses and file offsets have
11469 // been reset at this point, set them here.
11470 for (Stub_table_iterator sp = this->stub_tables_.begin();
11471 sp != this->stub_tables_.end();
11472 ++sp)
11473 {
11474 Arm_input_section<big_endian>* owner = (*sp)->owner();
11475 off_t off = align_address(owner->original_size(),
11476 (*sp)->addralign());
11477 (*sp)->set_address_and_file_offset(owner->address() + off,
11478 owner->offset() + off);
11479 }
11480 }
11481
11482 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11483 // beginning of each relaxation pass, just blow away all the stubs.
11484 // Alternatively, we could selectively remove only the stubs and reloc
11485 // information for code sections that have moved since the last pass.
11486 // That would require more book-keeping.
11487 if (this->fix_cortex_a8_)
11488 {
11489 // Clear all Cortex-A8 reloc information.
11490 for (typename Cortex_a8_relocs_info::const_iterator p =
11491 this->cortex_a8_relocs_info_.begin();
11492 p != this->cortex_a8_relocs_info_.end();
11493 ++p)
11494 delete p->second;
11495 this->cortex_a8_relocs_info_.clear();
11496
11497 // Remove all Cortex-A8 stubs.
11498 for (Stub_table_iterator sp = this->stub_tables_.begin();
11499 sp != this->stub_tables_.end();
11500 ++sp)
11501 (*sp)->remove_all_cortex_a8_stubs();
11502 }
11503
11504 // Scan relocs for relocation stubs
11505 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11506 op != input_objects->relobj_end();
11507 ++op)
11508 {
11509 Arm_relobj<big_endian>* arm_relobj =
11510 Arm_relobj<big_endian>::as_arm_relobj(*op);
11511 // Lock the object so we can read from it. This is only called
11512 // single-threaded from Layout::finalize, so it is OK to lock.
11513 Task_lock_obj<Object> tl(task, arm_relobj);
11514 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11515 }
11516
11517 // Check all stub tables to see if any of them have their data sizes
11518 // or addresses alignments changed. These are the only things that
11519 // matter.
11520 bool any_stub_table_changed = false;
11521 Unordered_set<const Output_section*> sections_needing_adjustment;
11522 for (Stub_table_iterator sp = this->stub_tables_.begin();
11523 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11524 ++sp)
11525 {
11526 if ((*sp)->update_data_size_and_addralign())
11527 {
11528 // Update data size of stub table owner.
11529 Arm_input_section<big_endian>* owner = (*sp)->owner();
11530 uint64_t address = owner->address();
11531 off_t offset = owner->offset();
11532 owner->reset_address_and_file_offset();
11533 owner->set_address_and_file_offset(address, offset);
11534
11535 sections_needing_adjustment.insert(owner->output_section());
11536 any_stub_table_changed = true;
11537 }
11538 }
11539
11540 // Output_section_data::output_section() returns a const pointer but we
11541 // need to update output sections, so we record all output sections needing
11542 // update above and scan the sections here to find out what sections need
11543 // to be updated.
11544 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11545 p != layout->section_list().end();
11546 ++p)
11547 {
11548 if (sections_needing_adjustment.find(*p)
11549 != sections_needing_adjustment.end())
11550 (*p)->set_section_offsets_need_adjustment();
11551 }
11552
11553 // Stop relaxation if no EXIDX fix-up and no stub table change.
11554 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11555
11556 // Finalize the stubs in the last relaxation pass.
11557 if (!continue_relaxation)
11558 {
11559 for (Stub_table_iterator sp = this->stub_tables_.begin();
11560 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11561 ++sp)
11562 (*sp)->finalize_stubs();
11563
11564 // Update output local symbol counts of objects if necessary.
11565 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11566 op != input_objects->relobj_end();
11567 ++op)
11568 {
11569 Arm_relobj<big_endian>* arm_relobj =
11570 Arm_relobj<big_endian>::as_arm_relobj(*op);
11571
11572 // Update output local symbol counts. We need to discard local
11573 // symbols defined in parts of input sections that are discarded by
11574 // relaxation.
11575 if (arm_relobj->output_local_symbol_count_needs_update())
11576 {
11577 // We need to lock the object's file to update it.
11578 Task_lock_obj<Object> tl(task, arm_relobj);
11579 arm_relobj->update_output_local_symbol_count();
11580 }
11581 }
11582 }
11583
11584 return continue_relaxation;
11585 }
11586
11587 // Relocate a stub.
11588
11589 template<bool big_endian>
11590 void
11591 Target_arm<big_endian>::relocate_stub(
11592 Stub* stub,
11593 const Relocate_info<32, big_endian>* relinfo,
11594 Output_section* output_section,
11595 unsigned char* view,
11596 Arm_address address,
11597 section_size_type view_size)
11598 {
11599 Relocate relocate;
11600 const Stub_template* stub_template = stub->stub_template();
11601 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11602 {
11603 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11604 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11605
11606 unsigned int r_type = insn->r_type();
11607 section_size_type reloc_offset = stub_template->reloc_offset(i);
11608 section_size_type reloc_size = insn->size();
11609 gold_assert(reloc_offset + reloc_size <= view_size);
11610
11611 // This is the address of the stub destination.
11612 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11613 Symbol_value<32> symval;
11614 symval.set_output_value(target);
11615
11616 // Synthesize a fake reloc just in case. We don't have a symbol so
11617 // we use 0.
11618 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11619 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11620 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11621 reloc_write.put_r_offset(reloc_offset);
11622 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11623 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11624
11625 relocate.relocate(relinfo, this, output_section,
11626 this->fake_relnum_for_stubs, rel, r_type,
11627 NULL, &symval, view + reloc_offset,
11628 address + reloc_offset, reloc_size);
11629 }
11630 }
11631
11632 // Determine whether an object attribute tag takes an integer, a
11633 // string or both.
11634
11635 template<bool big_endian>
11636 int
11637 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11638 {
11639 if (tag == Object_attribute::Tag_compatibility)
11640 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11641 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11642 else if (tag == elfcpp::Tag_nodefaults)
11643 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11644 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11645 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11646 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11647 else if (tag < 32)
11648 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11649 else
11650 return ((tag & 1) != 0
11651 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11652 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11653 }
11654
11655 // Reorder attributes.
11656 //
11657 // The ABI defines that Tag_conformance should be emitted first, and that
11658 // Tag_nodefaults should be second (if either is defined). This sets those
11659 // two positions, and bumps up the position of all the remaining tags to
11660 // compensate.
11661
11662 template<bool big_endian>
11663 int
11664 Target_arm<big_endian>::do_attributes_order(int num) const
11665 {
11666 // Reorder the known object attributes in output. We want to move
11667 // Tag_conformance to position 4 and Tag_conformance to position 5
11668 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11669 if (num == 4)
11670 return elfcpp::Tag_conformance;
11671 if (num == 5)
11672 return elfcpp::Tag_nodefaults;
11673 if ((num - 2) < elfcpp::Tag_nodefaults)
11674 return num - 2;
11675 if ((num - 1) < elfcpp::Tag_conformance)
11676 return num - 1;
11677 return num;
11678 }
11679
11680 // Scan a span of THUMB code for Cortex-A8 erratum.
11681
11682 template<bool big_endian>
11683 void
11684 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11685 Arm_relobj<big_endian>* arm_relobj,
11686 unsigned int shndx,
11687 section_size_type span_start,
11688 section_size_type span_end,
11689 const unsigned char* view,
11690 Arm_address address)
11691 {
11692 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11693 //
11694 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11695 // The branch target is in the same 4KB region as the
11696 // first half of the branch.
11697 // The instruction before the branch is a 32-bit
11698 // length non-branch instruction.
11699 section_size_type i = span_start;
11700 bool last_was_32bit = false;
11701 bool last_was_branch = false;
11702 while (i < span_end)
11703 {
11704 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11705 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11706 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11707 bool is_blx = false, is_b = false;
11708 bool is_bl = false, is_bcc = false;
11709
11710 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11711 if (insn_32bit)
11712 {
11713 // Load the rest of the insn (in manual-friendly order).
11714 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11715
11716 // Encoding T4: B<c>.W.
11717 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11718 // Encoding T1: BL<c>.W.
11719 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11720 // Encoding T2: BLX<c>.W.
11721 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11722 // Encoding T3: B<c>.W (not permitted in IT block).
11723 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11724 && (insn & 0x07f00000U) != 0x03800000U);
11725 }
11726
11727 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11728
11729 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11730 // page boundary and it follows 32-bit non-branch instruction,
11731 // we need to work around.
11732 if (is_32bit_branch
11733 && ((address + i) & 0xfffU) == 0xffeU
11734 && last_was_32bit
11735 && !last_was_branch)
11736 {
11737 // Check to see if there is a relocation stub for this branch.
11738 bool force_target_arm = false;
11739 bool force_target_thumb = false;
11740 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11741 Cortex_a8_relocs_info::const_iterator p =
11742 this->cortex_a8_relocs_info_.find(address + i);
11743
11744 if (p != this->cortex_a8_relocs_info_.end())
11745 {
11746 cortex_a8_reloc = p->second;
11747 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11748
11749 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11750 && !target_is_thumb)
11751 force_target_arm = true;
11752 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11753 && target_is_thumb)
11754 force_target_thumb = true;
11755 }
11756
11757 off_t offset;
11758 Stub_type stub_type = arm_stub_none;
11759
11760 // Check if we have an offending branch instruction.
11761 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11762 uint16_t lower_insn = insn & 0xffffU;
11763 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11764
11765 if (cortex_a8_reloc != NULL
11766 && cortex_a8_reloc->reloc_stub() != NULL)
11767 // We've already made a stub for this instruction, e.g.
11768 // it's a long branch or a Thumb->ARM stub. Assume that
11769 // stub will suffice to work around the A8 erratum (see
11770 // setting of always_after_branch above).
11771 ;
11772 else if (is_bcc)
11773 {
11774 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11775 lower_insn);
11776 stub_type = arm_stub_a8_veneer_b_cond;
11777 }
11778 else if (is_b || is_bl || is_blx)
11779 {
11780 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11781 lower_insn);
11782 if (is_blx)
11783 offset &= ~3;
11784
11785 stub_type = (is_blx
11786 ? arm_stub_a8_veneer_blx
11787 : (is_bl
11788 ? arm_stub_a8_veneer_bl
11789 : arm_stub_a8_veneer_b));
11790 }
11791
11792 if (stub_type != arm_stub_none)
11793 {
11794 Arm_address pc_for_insn = address + i + 4;
11795
11796 // The original instruction is a BL, but the target is
11797 // an ARM instruction. If we were not making a stub,
11798 // the BL would have been converted to a BLX. Use the
11799 // BLX stub instead in that case.
11800 if (this->may_use_blx() && force_target_arm
11801 && stub_type == arm_stub_a8_veneer_bl)
11802 {
11803 stub_type = arm_stub_a8_veneer_blx;
11804 is_blx = true;
11805 is_bl = false;
11806 }
11807 // Conversely, if the original instruction was
11808 // BLX but the target is Thumb mode, use the BL stub.
11809 else if (force_target_thumb
11810 && stub_type == arm_stub_a8_veneer_blx)
11811 {
11812 stub_type = arm_stub_a8_veneer_bl;
11813 is_blx = false;
11814 is_bl = true;
11815 }
11816
11817 if (is_blx)
11818 pc_for_insn &= ~3;
11819
11820 // If we found a relocation, use the proper destination,
11821 // not the offset in the (unrelocated) instruction.
11822 // Note this is always done if we switched the stub type above.
11823 if (cortex_a8_reloc != NULL)
11824 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11825
11826 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11827
11828 // Add a new stub if destination address in in the same page.
11829 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11830 {
11831 Cortex_a8_stub* stub =
11832 this->stub_factory_.make_cortex_a8_stub(stub_type,
11833 arm_relobj, shndx,
11834 address + i,
11835 target, insn);
11836 Stub_table<big_endian>* stub_table =
11837 arm_relobj->stub_table(shndx);
11838 gold_assert(stub_table != NULL);
11839 stub_table->add_cortex_a8_stub(address + i, stub);
11840 }
11841 }
11842 }
11843
11844 i += insn_32bit ? 4 : 2;
11845 last_was_32bit = insn_32bit;
11846 last_was_branch = is_32bit_branch;
11847 }
11848 }
11849
11850 // Apply the Cortex-A8 workaround.
11851
11852 template<bool big_endian>
11853 void
11854 Target_arm<big_endian>::apply_cortex_a8_workaround(
11855 const Cortex_a8_stub* stub,
11856 Arm_address stub_address,
11857 unsigned char* insn_view,
11858 Arm_address insn_address)
11859 {
11860 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11861 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11862 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11863 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11864 off_t branch_offset = stub_address - (insn_address + 4);
11865
11866 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11867 switch (stub->stub_template()->type())
11868 {
11869 case arm_stub_a8_veneer_b_cond:
11870 // For a conditional branch, we re-write it to be an unconditional
11871 // branch to the stub. We use the THUMB-2 encoding here.
11872 upper_insn = 0xf000U;
11873 lower_insn = 0xb800U;
11874 // Fall through
11875 case arm_stub_a8_veneer_b:
11876 case arm_stub_a8_veneer_bl:
11877 case arm_stub_a8_veneer_blx:
11878 if ((lower_insn & 0x5000U) == 0x4000U)
11879 // For a BLX instruction, make sure that the relocation is
11880 // rounded up to a word boundary. This follows the semantics of
11881 // the instruction which specifies that bit 1 of the target
11882 // address will come from bit 1 of the base address.
11883 branch_offset = (branch_offset + 2) & ~3;
11884
11885 // Put BRANCH_OFFSET back into the insn.
11886 gold_assert(!utils::has_overflow<25>(branch_offset));
11887 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11888 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11889 break;
11890
11891 default:
11892 gold_unreachable();
11893 }
11894
11895 // Put the relocated value back in the object file:
11896 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11897 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11898 }
11899
11900 template<bool big_endian>
11901 class Target_selector_arm : public Target_selector
11902 {
11903 public:
11904 Target_selector_arm()
11905 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11906 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11907 (big_endian ? "armelfb" : "armelf"))
11908 { }
11909
11910 Target*
11911 do_instantiate_target()
11912 { return new Target_arm<big_endian>(); }
11913 };
11914
11915 // Fix .ARM.exidx section coverage.
11916
11917 template<bool big_endian>
11918 void
11919 Target_arm<big_endian>::fix_exidx_coverage(
11920 Layout* layout,
11921 const Input_objects* input_objects,
11922 Arm_output_section<big_endian>* exidx_section,
11923 Symbol_table* symtab,
11924 const Task* task)
11925 {
11926 // We need to look at all the input sections in output in ascending
11927 // order of of output address. We do that by building a sorted list
11928 // of output sections by addresses. Then we looks at the output sections
11929 // in order. The input sections in an output section are already sorted
11930 // by addresses within the output section.
11931
11932 typedef std::set<Output_section*, output_section_address_less_than>
11933 Sorted_output_section_list;
11934 Sorted_output_section_list sorted_output_sections;
11935
11936 // Find out all the output sections of input sections pointed by
11937 // EXIDX input sections.
11938 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11939 p != input_objects->relobj_end();
11940 ++p)
11941 {
11942 Arm_relobj<big_endian>* arm_relobj =
11943 Arm_relobj<big_endian>::as_arm_relobj(*p);
11944 std::vector<unsigned int> shndx_list;
11945 arm_relobj->get_exidx_shndx_list(&shndx_list);
11946 for (size_t i = 0; i < shndx_list.size(); ++i)
11947 {
11948 const Arm_exidx_input_section* exidx_input_section =
11949 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11950 gold_assert(exidx_input_section != NULL);
11951 if (!exidx_input_section->has_errors())
11952 {
11953 unsigned int text_shndx = exidx_input_section->link();
11954 Output_section* os = arm_relobj->output_section(text_shndx);
11955 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11956 sorted_output_sections.insert(os);
11957 }
11958 }
11959 }
11960
11961 // Go over the output sections in ascending order of output addresses.
11962 typedef typename Arm_output_section<big_endian>::Text_section_list
11963 Text_section_list;
11964 Text_section_list sorted_text_sections;
11965 for (typename Sorted_output_section_list::iterator p =
11966 sorted_output_sections.begin();
11967 p != sorted_output_sections.end();
11968 ++p)
11969 {
11970 Arm_output_section<big_endian>* arm_output_section =
11971 Arm_output_section<big_endian>::as_arm_output_section(*p);
11972 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11973 }
11974
11975 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11976 merge_exidx_entries(), task);
11977 }
11978
11979 Target_selector_arm<false> target_selector_arm;
11980 Target_selector_arm<true> target_selector_armbe;
11981
11982 } // End anonymous namespace.
This page took 0.293544 seconds and 5 git commands to generate.