2012-03-14 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
110 //
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
151 // Factory methods to create instruction templates in different formats.
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
210
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
440
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457 };
458
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
511 {
512 if (symbol != NULL)
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
516 }
517 else
518 {
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 //
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
989
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072 private:
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146 public:
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1151 { }
1152
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1174
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221 {
1222 *poutput = offset;
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251 public:
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
1332
1333 bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342 public:
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1382 const Task* task);
1383
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
1442 // Return address alignment of EXIDX input section.
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1476 bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1495 { }
1496
1497 ~Arm_relobj()
1498 { delete this->attributes_section_data_; }
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1503 {
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511 {
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686 private:
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1693
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1698
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1724 void
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766 public:
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1771 { }
1772
1773 ~Arm_dynobj()
1774 { delete this->attributes_section_data_; }
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2078 // Relocations that write full 32 bits and
2079 // have alignment of 1.
2080 case elfcpp::R_ARM_ABS32:
2081 case elfcpp::R_ARM_REL32:
2082 case elfcpp::R_ARM_SBREL32:
2083 case elfcpp::R_ARM_GOTOFF32:
2084 case elfcpp::R_ARM_BASE_PREL:
2085 case elfcpp::R_ARM_GOT_BREL:
2086 case elfcpp::R_ARM_BASE_ABS:
2087 case elfcpp::R_ARM_ABS32_NOI:
2088 case elfcpp::R_ARM_REL32_NOI:
2089 case elfcpp::R_ARM_PLT32_ABS:
2090 case elfcpp::R_ARM_GOT_ABS:
2091 case elfcpp::R_ARM_GOT_PREL:
2092 case elfcpp::R_ARM_TLS_GD32:
2093 case elfcpp::R_ARM_TLS_LDM32:
2094 case elfcpp::R_ARM_TLS_LDO32:
2095 case elfcpp::R_ARM_TLS_IE32:
2096 case elfcpp::R_ARM_TLS_LE32:
2097 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2098 default:
2099 // For all other static relocations, return RELOC_SPECIAL.
2100 return Relocatable_relocs::RELOC_SPECIAL;
2101 }
2102 }
2103 }
2104 };
2105
2106 template<bool big_endian>
2107 class Target_arm : public Sized_target<32, big_endian>
2108 {
2109 public:
2110 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2111 Reloc_section;
2112
2113 // When were are relocating a stub, we pass this as the relocation number.
2114 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2115
2116 Target_arm()
2117 : Sized_target<32, big_endian>(&arm_info),
2118 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2119 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2120 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2121 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2122 should_force_pic_veneer_(false),
2123 arm_input_section_map_(), attributes_section_data_(NULL),
2124 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2125 { }
2126
2127 // Whether we force PCI branch veneers.
2128 bool
2129 should_force_pic_veneer() const
2130 { return this->should_force_pic_veneer_; }
2131
2132 // Set PIC veneer flag.
2133 void
2134 set_should_force_pic_veneer(bool value)
2135 { this->should_force_pic_veneer_ = value; }
2136
2137 // Whether we use THUMB-2 instructions.
2138 bool
2139 using_thumb2() const
2140 {
2141 Object_attribute* attr =
2142 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2143 int arch = attr->int_value();
2144 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2145 }
2146
2147 // Whether we use THUMB/THUMB-2 instructions only.
2148 bool
2149 using_thumb_only() const
2150 {
2151 Object_attribute* attr =
2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2153
2154 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2155 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2156 return true;
2157 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2158 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2159 return false;
2160 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2161 return attr->int_value() == 'M';
2162 }
2163
2164 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2165 bool
2166 may_use_arm_nop() const
2167 {
2168 Object_attribute* attr =
2169 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2170 int arch = attr->int_value();
2171 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2172 || arch == elfcpp::TAG_CPU_ARCH_V6K
2173 || arch == elfcpp::TAG_CPU_ARCH_V7
2174 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2175 }
2176
2177 // Whether we have THUMB-2 NOP.W instruction.
2178 bool
2179 may_use_thumb2_nop() const
2180 {
2181 Object_attribute* attr =
2182 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2183 int arch = attr->int_value();
2184 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2185 || arch == elfcpp::TAG_CPU_ARCH_V7
2186 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2187 }
2188
2189 // Whether we have v4T interworking instructions available.
2190 bool
2191 may_use_v4t_interworking() const
2192 {
2193 Object_attribute* attr =
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195 int arch = attr->int_value();
2196 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2197 && arch != elfcpp::TAG_CPU_ARCH_V4);
2198 }
2199
2200 // Whether we have v5T interworking instructions available.
2201 bool
2202 may_use_v5t_interworking() const
2203 {
2204 Object_attribute* attr =
2205 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2206 int arch = attr->int_value();
2207 if (parameters->options().fix_arm1176())
2208 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2209 || arch == elfcpp::TAG_CPU_ARCH_V7
2210 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2211 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2212 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2213 else
2214 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2215 && arch != elfcpp::TAG_CPU_ARCH_V4
2216 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2217 }
2218
2219 // Process the relocations to determine unreferenced sections for
2220 // garbage collection.
2221 void
2222 gc_process_relocs(Symbol_table* symtab,
2223 Layout* layout,
2224 Sized_relobj_file<32, big_endian>* object,
2225 unsigned int data_shndx,
2226 unsigned int sh_type,
2227 const unsigned char* prelocs,
2228 size_t reloc_count,
2229 Output_section* output_section,
2230 bool needs_special_offset_handling,
2231 size_t local_symbol_count,
2232 const unsigned char* plocal_symbols);
2233
2234 // Scan the relocations to look for symbol adjustments.
2235 void
2236 scan_relocs(Symbol_table* symtab,
2237 Layout* layout,
2238 Sized_relobj_file<32, big_endian>* object,
2239 unsigned int data_shndx,
2240 unsigned int sh_type,
2241 const unsigned char* prelocs,
2242 size_t reloc_count,
2243 Output_section* output_section,
2244 bool needs_special_offset_handling,
2245 size_t local_symbol_count,
2246 const unsigned char* plocal_symbols);
2247
2248 // Finalize the sections.
2249 void
2250 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2251
2252 // Return the value to use for a dynamic symbol which requires special
2253 // treatment.
2254 uint64_t
2255 do_dynsym_value(const Symbol*) const;
2256
2257 // Relocate a section.
2258 void
2259 relocate_section(const Relocate_info<32, big_endian>*,
2260 unsigned int sh_type,
2261 const unsigned char* prelocs,
2262 size_t reloc_count,
2263 Output_section* output_section,
2264 bool needs_special_offset_handling,
2265 unsigned char* view,
2266 Arm_address view_address,
2267 section_size_type view_size,
2268 const Reloc_symbol_changes*);
2269
2270 // Scan the relocs during a relocatable link.
2271 void
2272 scan_relocatable_relocs(Symbol_table* symtab,
2273 Layout* layout,
2274 Sized_relobj_file<32, big_endian>* object,
2275 unsigned int data_shndx,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 size_t local_symbol_count,
2282 const unsigned char* plocal_symbols,
2283 Relocatable_relocs*);
2284
2285 // Relocate a section during a relocatable link.
2286 void
2287 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2288 unsigned int sh_type,
2289 const unsigned char* prelocs,
2290 size_t reloc_count,
2291 Output_section* output_section,
2292 off_t offset_in_output_section,
2293 const Relocatable_relocs*,
2294 unsigned char* view,
2295 Arm_address view_address,
2296 section_size_type view_size,
2297 unsigned char* reloc_view,
2298 section_size_type reloc_view_size);
2299
2300 // Perform target-specific processing in a relocatable link. This is
2301 // only used if we use the relocation strategy RELOC_SPECIAL.
2302 void
2303 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2304 unsigned int sh_type,
2305 const unsigned char* preloc_in,
2306 size_t relnum,
2307 Output_section* output_section,
2308 off_t offset_in_output_section,
2309 unsigned char* view,
2310 typename elfcpp::Elf_types<32>::Elf_Addr
2311 view_address,
2312 section_size_type view_size,
2313 unsigned char* preloc_out);
2314
2315 // Return whether SYM is defined by the ABI.
2316 bool
2317 do_is_defined_by_abi(Symbol* sym) const
2318 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2319
2320 // Return whether there is a GOT section.
2321 bool
2322 has_got_section() const
2323 { return this->got_ != NULL; }
2324
2325 // Return the size of the GOT section.
2326 section_size_type
2327 got_size() const
2328 {
2329 gold_assert(this->got_ != NULL);
2330 return this->got_->data_size();
2331 }
2332
2333 // Return the number of entries in the GOT.
2334 unsigned int
2335 got_entry_count() const
2336 {
2337 if (!this->has_got_section())
2338 return 0;
2339 return this->got_size() / 4;
2340 }
2341
2342 // Return the number of entries in the PLT.
2343 unsigned int
2344 plt_entry_count() const;
2345
2346 // Return the offset of the first non-reserved PLT entry.
2347 unsigned int
2348 first_plt_entry_offset() const;
2349
2350 // Return the size of each PLT entry.
2351 unsigned int
2352 plt_entry_size() const;
2353
2354 // Map platform-specific reloc types
2355 static unsigned int
2356 get_real_reloc_type(unsigned int r_type);
2357
2358 //
2359 // Methods to support stub-generations.
2360 //
2361
2362 // Return the stub factory
2363 const Stub_factory&
2364 stub_factory() const
2365 { return this->stub_factory_; }
2366
2367 // Make a new Arm_input_section object.
2368 Arm_input_section<big_endian>*
2369 new_arm_input_section(Relobj*, unsigned int);
2370
2371 // Find the Arm_input_section object corresponding to the SHNDX-th input
2372 // section of RELOBJ.
2373 Arm_input_section<big_endian>*
2374 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2375
2376 // Make a new Stub_table
2377 Stub_table<big_endian>*
2378 new_stub_table(Arm_input_section<big_endian>*);
2379
2380 // Scan a section for stub generation.
2381 void
2382 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2383 const unsigned char*, size_t, Output_section*,
2384 bool, const unsigned char*, Arm_address,
2385 section_size_type);
2386
2387 // Relocate a stub.
2388 void
2389 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2390 Output_section*, unsigned char*, Arm_address,
2391 section_size_type);
2392
2393 // Get the default ARM target.
2394 static Target_arm<big_endian>*
2395 default_target()
2396 {
2397 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2398 && parameters->target().is_big_endian() == big_endian);
2399 return static_cast<Target_arm<big_endian>*>(
2400 parameters->sized_target<32, big_endian>());
2401 }
2402
2403 // Whether NAME belongs to a mapping symbol.
2404 static bool
2405 is_mapping_symbol_name(const char* name)
2406 {
2407 return (name
2408 && name[0] == '$'
2409 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2410 && (name[2] == '\0' || name[2] == '.'));
2411 }
2412
2413 // Whether we work around the Cortex-A8 erratum.
2414 bool
2415 fix_cortex_a8() const
2416 { return this->fix_cortex_a8_; }
2417
2418 // Whether we merge exidx entries in debuginfo.
2419 bool
2420 merge_exidx_entries() const
2421 { return parameters->options().merge_exidx_entries(); }
2422
2423 // Whether we fix R_ARM_V4BX relocation.
2424 // 0 - do not fix
2425 // 1 - replace with MOV instruction (armv4 target)
2426 // 2 - make interworking veneer (>= armv4t targets only)
2427 General_options::Fix_v4bx
2428 fix_v4bx() const
2429 { return parameters->options().fix_v4bx(); }
2430
2431 // Scan a span of THUMB code section for Cortex-A8 erratum.
2432 void
2433 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2434 section_size_type, section_size_type,
2435 const unsigned char*, Arm_address);
2436
2437 // Apply Cortex-A8 workaround to a branch.
2438 void
2439 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2440 unsigned char*, Arm_address);
2441
2442 protected:
2443 // Make an ELF object.
2444 Object*
2445 do_make_elf_object(const std::string&, Input_file*, off_t,
2446 const elfcpp::Ehdr<32, big_endian>& ehdr);
2447
2448 Object*
2449 do_make_elf_object(const std::string&, Input_file*, off_t,
2450 const elfcpp::Ehdr<32, !big_endian>&)
2451 { gold_unreachable(); }
2452
2453 Object*
2454 do_make_elf_object(const std::string&, Input_file*, off_t,
2455 const elfcpp::Ehdr<64, false>&)
2456 { gold_unreachable(); }
2457
2458 Object*
2459 do_make_elf_object(const std::string&, Input_file*, off_t,
2460 const elfcpp::Ehdr<64, true>&)
2461 { gold_unreachable(); }
2462
2463 // Make an output section.
2464 Output_section*
2465 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2466 elfcpp::Elf_Xword flags)
2467 { return new Arm_output_section<big_endian>(name, type, flags); }
2468
2469 void
2470 do_adjust_elf_header(unsigned char* view, int len) const;
2471
2472 // We only need to generate stubs, and hence perform relaxation if we are
2473 // not doing relocatable linking.
2474 bool
2475 do_may_relax() const
2476 { return !parameters->options().relocatable(); }
2477
2478 bool
2479 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2480
2481 // Determine whether an object attribute tag takes an integer, a
2482 // string or both.
2483 int
2484 do_attribute_arg_type(int tag) const;
2485
2486 // Reorder tags during output.
2487 int
2488 do_attributes_order(int num) const;
2489
2490 // This is called when the target is selected as the default.
2491 void
2492 do_select_as_default_target()
2493 {
2494 // No locking is required since there should only be one default target.
2495 // We cannot have both the big-endian and little-endian ARM targets
2496 // as the default.
2497 gold_assert(arm_reloc_property_table == NULL);
2498 arm_reloc_property_table = new Arm_reloc_property_table();
2499 }
2500
2501 // Virtual function which is set to return true by a target if
2502 // it can use relocation types to determine if a function's
2503 // pointer is taken.
2504 virtual bool
2505 do_can_check_for_function_pointers() const
2506 { return true; }
2507
2508 // Whether a section called SECTION_NAME may have function pointers to
2509 // sections not eligible for safe ICF folding.
2510 virtual bool
2511 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2512 {
2513 return (!is_prefix_of(".ARM.exidx", section_name)
2514 && !is_prefix_of(".ARM.extab", section_name)
2515 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2516 }
2517
2518 private:
2519 // The class which scans relocations.
2520 class Scan
2521 {
2522 public:
2523 Scan()
2524 : issued_non_pic_error_(false)
2525 { }
2526
2527 static inline int
2528 get_reference_flags(unsigned int r_type);
2529
2530 inline void
2531 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2532 Sized_relobj_file<32, big_endian>* object,
2533 unsigned int data_shndx,
2534 Output_section* output_section,
2535 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2536 const elfcpp::Sym<32, big_endian>& lsym);
2537
2538 inline void
2539 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2540 Sized_relobj_file<32, big_endian>* object,
2541 unsigned int data_shndx,
2542 Output_section* output_section,
2543 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2544 Symbol* gsym);
2545
2546 inline bool
2547 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2548 Sized_relobj_file<32, big_endian>* ,
2549 unsigned int ,
2550 Output_section* ,
2551 const elfcpp::Rel<32, big_endian>& ,
2552 unsigned int ,
2553 const elfcpp::Sym<32, big_endian>&);
2554
2555 inline bool
2556 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2557 Sized_relobj_file<32, big_endian>* ,
2558 unsigned int ,
2559 Output_section* ,
2560 const elfcpp::Rel<32, big_endian>& ,
2561 unsigned int , Symbol*);
2562
2563 private:
2564 static void
2565 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2566 unsigned int r_type);
2567
2568 static void
2569 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2570 unsigned int r_type, Symbol*);
2571
2572 void
2573 check_non_pic(Relobj*, unsigned int r_type);
2574
2575 // Almost identical to Symbol::needs_plt_entry except that it also
2576 // handles STT_ARM_TFUNC.
2577 static bool
2578 symbol_needs_plt_entry(const Symbol* sym)
2579 {
2580 // An undefined symbol from an executable does not need a PLT entry.
2581 if (sym->is_undefined() && !parameters->options().shared())
2582 return false;
2583
2584 return (!parameters->doing_static_link()
2585 && (sym->type() == elfcpp::STT_FUNC
2586 || sym->type() == elfcpp::STT_ARM_TFUNC)
2587 && (sym->is_from_dynobj()
2588 || sym->is_undefined()
2589 || sym->is_preemptible()));
2590 }
2591
2592 inline bool
2593 possible_function_pointer_reloc(unsigned int r_type);
2594
2595 // Whether we have issued an error about a non-PIC compilation.
2596 bool issued_non_pic_error_;
2597 };
2598
2599 // The class which implements relocation.
2600 class Relocate
2601 {
2602 public:
2603 Relocate()
2604 { }
2605
2606 ~Relocate()
2607 { }
2608
2609 // Return whether the static relocation needs to be applied.
2610 inline bool
2611 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2612 unsigned int r_type,
2613 bool is_32bit,
2614 Output_section* output_section);
2615
2616 // Do a relocation. Return false if the caller should not issue
2617 // any warnings about this relocation.
2618 inline bool
2619 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2620 Output_section*, size_t relnum,
2621 const elfcpp::Rel<32, big_endian>&,
2622 unsigned int r_type, const Sized_symbol<32>*,
2623 const Symbol_value<32>*,
2624 unsigned char*, Arm_address,
2625 section_size_type);
2626
2627 // Return whether we want to pass flag NON_PIC_REF for this
2628 // reloc. This means the relocation type accesses a symbol not via
2629 // GOT or PLT.
2630 static inline bool
2631 reloc_is_non_pic(unsigned int r_type)
2632 {
2633 switch (r_type)
2634 {
2635 // These relocation types reference GOT or PLT entries explicitly.
2636 case elfcpp::R_ARM_GOT_BREL:
2637 case elfcpp::R_ARM_GOT_ABS:
2638 case elfcpp::R_ARM_GOT_PREL:
2639 case elfcpp::R_ARM_GOT_BREL12:
2640 case elfcpp::R_ARM_PLT32_ABS:
2641 case elfcpp::R_ARM_TLS_GD32:
2642 case elfcpp::R_ARM_TLS_LDM32:
2643 case elfcpp::R_ARM_TLS_IE32:
2644 case elfcpp::R_ARM_TLS_IE12GP:
2645
2646 // These relocate types may use PLT entries.
2647 case elfcpp::R_ARM_CALL:
2648 case elfcpp::R_ARM_THM_CALL:
2649 case elfcpp::R_ARM_JUMP24:
2650 case elfcpp::R_ARM_THM_JUMP24:
2651 case elfcpp::R_ARM_THM_JUMP19:
2652 case elfcpp::R_ARM_PLT32:
2653 case elfcpp::R_ARM_THM_XPC22:
2654 case elfcpp::R_ARM_PREL31:
2655 case elfcpp::R_ARM_SBREL31:
2656 return false;
2657
2658 default:
2659 return true;
2660 }
2661 }
2662
2663 private:
2664 // Do a TLS relocation.
2665 inline typename Arm_relocate_functions<big_endian>::Status
2666 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2667 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2668 const Sized_symbol<32>*, const Symbol_value<32>*,
2669 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2670 section_size_type);
2671
2672 };
2673
2674 // A class which returns the size required for a relocation type,
2675 // used while scanning relocs during a relocatable link.
2676 class Relocatable_size_for_reloc
2677 {
2678 public:
2679 unsigned int
2680 get_size_for_reloc(unsigned int, Relobj*);
2681 };
2682
2683 // Adjust TLS relocation type based on the options and whether this
2684 // is a local symbol.
2685 static tls::Tls_optimization
2686 optimize_tls_reloc(bool is_final, int r_type);
2687
2688 // Get the GOT section, creating it if necessary.
2689 Arm_output_data_got<big_endian>*
2690 got_section(Symbol_table*, Layout*);
2691
2692 // Get the GOT PLT section.
2693 Output_data_space*
2694 got_plt_section() const
2695 {
2696 gold_assert(this->got_plt_ != NULL);
2697 return this->got_plt_;
2698 }
2699
2700 // Create a PLT entry for a global symbol.
2701 void
2702 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2703
2704 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2705 void
2706 define_tls_base_symbol(Symbol_table*, Layout*);
2707
2708 // Create a GOT entry for the TLS module index.
2709 unsigned int
2710 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2711 Sized_relobj_file<32, big_endian>* object);
2712
2713 // Get the PLT section.
2714 const Output_data_plt_arm<big_endian>*
2715 plt_section() const
2716 {
2717 gold_assert(this->plt_ != NULL);
2718 return this->plt_;
2719 }
2720
2721 // Get the dynamic reloc section, creating it if necessary.
2722 Reloc_section*
2723 rel_dyn_section(Layout*);
2724
2725 // Get the section to use for TLS_DESC relocations.
2726 Reloc_section*
2727 rel_tls_desc_section(Layout*) const;
2728
2729 // Return true if the symbol may need a COPY relocation.
2730 // References from an executable object to non-function symbols
2731 // defined in a dynamic object may need a COPY relocation.
2732 bool
2733 may_need_copy_reloc(Symbol* gsym)
2734 {
2735 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2736 && gsym->may_need_copy_reloc());
2737 }
2738
2739 // Add a potential copy relocation.
2740 void
2741 copy_reloc(Symbol_table* symtab, Layout* layout,
2742 Sized_relobj_file<32, big_endian>* object,
2743 unsigned int shndx, Output_section* output_section,
2744 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2745 {
2746 this->copy_relocs_.copy_reloc(symtab, layout,
2747 symtab->get_sized_symbol<32>(sym),
2748 object, shndx, output_section, reloc,
2749 this->rel_dyn_section(layout));
2750 }
2751
2752 // Whether two EABI versions are compatible.
2753 static bool
2754 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2755
2756 // Merge processor-specific flags from input object and those in the ELF
2757 // header of the output.
2758 void
2759 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2760
2761 // Get the secondary compatible architecture.
2762 static int
2763 get_secondary_compatible_arch(const Attributes_section_data*);
2764
2765 // Set the secondary compatible architecture.
2766 static void
2767 set_secondary_compatible_arch(Attributes_section_data*, int);
2768
2769 static int
2770 tag_cpu_arch_combine(const char*, int, int*, int, int);
2771
2772 // Helper to print AEABI enum tag value.
2773 static std::string
2774 aeabi_enum_name(unsigned int);
2775
2776 // Return string value for TAG_CPU_name.
2777 static std::string
2778 tag_cpu_name_value(unsigned int);
2779
2780 // Merge object attributes from input object and those in the output.
2781 void
2782 merge_object_attributes(const char*, const Attributes_section_data*);
2783
2784 // Helper to get an AEABI object attribute
2785 Object_attribute*
2786 get_aeabi_object_attribute(int tag) const
2787 {
2788 Attributes_section_data* pasd = this->attributes_section_data_;
2789 gold_assert(pasd != NULL);
2790 Object_attribute* attr =
2791 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2792 gold_assert(attr != NULL);
2793 return attr;
2794 }
2795
2796 //
2797 // Methods to support stub-generations.
2798 //
2799
2800 // Group input sections for stub generation.
2801 void
2802 group_sections(Layout*, section_size_type, bool, const Task*);
2803
2804 // Scan a relocation for stub generation.
2805 void
2806 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2807 const Sized_symbol<32>*, unsigned int,
2808 const Symbol_value<32>*,
2809 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2810
2811 // Scan a relocation section for stub.
2812 template<int sh_type>
2813 void
2814 scan_reloc_section_for_stubs(
2815 const Relocate_info<32, big_endian>* relinfo,
2816 const unsigned char* prelocs,
2817 size_t reloc_count,
2818 Output_section* output_section,
2819 bool needs_special_offset_handling,
2820 const unsigned char* view,
2821 elfcpp::Elf_types<32>::Elf_Addr view_address,
2822 section_size_type);
2823
2824 // Fix .ARM.exidx section coverage.
2825 void
2826 fix_exidx_coverage(Layout*, const Input_objects*,
2827 Arm_output_section<big_endian>*, Symbol_table*,
2828 const Task*);
2829
2830 // Functors for STL set.
2831 struct output_section_address_less_than
2832 {
2833 bool
2834 operator()(const Output_section* s1, const Output_section* s2) const
2835 { return s1->address() < s2->address(); }
2836 };
2837
2838 // Information about this specific target which we pass to the
2839 // general Target structure.
2840 static const Target::Target_info arm_info;
2841
2842 // The types of GOT entries needed for this platform.
2843 // These values are exposed to the ABI in an incremental link.
2844 // Do not renumber existing values without changing the version
2845 // number of the .gnu_incremental_inputs section.
2846 enum Got_type
2847 {
2848 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2849 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2850 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2851 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2852 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2853 };
2854
2855 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2856
2857 // Map input section to Arm_input_section.
2858 typedef Unordered_map<Section_id,
2859 Arm_input_section<big_endian>*,
2860 Section_id_hash>
2861 Arm_input_section_map;
2862
2863 // Map output addresses to relocs for Cortex-A8 erratum.
2864 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2865 Cortex_a8_relocs_info;
2866
2867 // The GOT section.
2868 Arm_output_data_got<big_endian>* got_;
2869 // The PLT section.
2870 Output_data_plt_arm<big_endian>* plt_;
2871 // The GOT PLT section.
2872 Output_data_space* got_plt_;
2873 // The dynamic reloc section.
2874 Reloc_section* rel_dyn_;
2875 // Relocs saved to avoid a COPY reloc.
2876 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2877 // Space for variables copied with a COPY reloc.
2878 Output_data_space* dynbss_;
2879 // Offset of the GOT entry for the TLS module index.
2880 unsigned int got_mod_index_offset_;
2881 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2882 bool tls_base_symbol_defined_;
2883 // Vector of Stub_tables created.
2884 Stub_table_list stub_tables_;
2885 // Stub factory.
2886 const Stub_factory &stub_factory_;
2887 // Whether we force PIC branch veneers.
2888 bool should_force_pic_veneer_;
2889 // Map for locating Arm_input_sections.
2890 Arm_input_section_map arm_input_section_map_;
2891 // Attributes section data in output.
2892 Attributes_section_data* attributes_section_data_;
2893 // Whether we want to fix code for Cortex-A8 erratum.
2894 bool fix_cortex_a8_;
2895 // Map addresses to relocs for Cortex-A8 erratum.
2896 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2897 };
2898
2899 template<bool big_endian>
2900 const Target::Target_info Target_arm<big_endian>::arm_info =
2901 {
2902 32, // size
2903 big_endian, // is_big_endian
2904 elfcpp::EM_ARM, // machine_code
2905 false, // has_make_symbol
2906 false, // has_resolve
2907 false, // has_code_fill
2908 true, // is_default_stack_executable
2909 false, // can_icf_inline_merge_sections
2910 '\0', // wrap_char
2911 "/usr/lib/libc.so.1", // dynamic_linker
2912 0x8000, // default_text_segment_address
2913 0x1000, // abi_pagesize (overridable by -z max-page-size)
2914 0x1000, // common_pagesize (overridable by -z common-page-size)
2915 elfcpp::SHN_UNDEF, // small_common_shndx
2916 elfcpp::SHN_UNDEF, // large_common_shndx
2917 0, // small_common_section_flags
2918 0, // large_common_section_flags
2919 ".ARM.attributes", // attributes_section
2920 "aeabi" // attributes_vendor
2921 };
2922
2923 // Arm relocate functions class
2924 //
2925
2926 template<bool big_endian>
2927 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2928 {
2929 public:
2930 typedef enum
2931 {
2932 STATUS_OKAY, // No error during relocation.
2933 STATUS_OVERFLOW, // Relocation overflow.
2934 STATUS_BAD_RELOC // Relocation cannot be applied.
2935 } Status;
2936
2937 private:
2938 typedef Relocate_functions<32, big_endian> Base;
2939 typedef Arm_relocate_functions<big_endian> This;
2940
2941 // Encoding of imm16 argument for movt and movw ARM instructions
2942 // from ARM ARM:
2943 //
2944 // imm16 := imm4 | imm12
2945 //
2946 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2947 // +-------+---------------+-------+-------+-----------------------+
2948 // | | |imm4 | |imm12 |
2949 // +-------+---------------+-------+-------+-----------------------+
2950
2951 // Extract the relocation addend from VAL based on the ARM
2952 // instruction encoding described above.
2953 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2954 extract_arm_movw_movt_addend(
2955 typename elfcpp::Swap<32, big_endian>::Valtype val)
2956 {
2957 // According to the Elf ABI for ARM Architecture the immediate
2958 // field is sign-extended to form the addend.
2959 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2960 }
2961
2962 // Insert X into VAL based on the ARM instruction encoding described
2963 // above.
2964 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2965 insert_val_arm_movw_movt(
2966 typename elfcpp::Swap<32, big_endian>::Valtype val,
2967 typename elfcpp::Swap<32, big_endian>::Valtype x)
2968 {
2969 val &= 0xfff0f000;
2970 val |= x & 0x0fff;
2971 val |= (x & 0xf000) << 4;
2972 return val;
2973 }
2974
2975 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2976 // from ARM ARM:
2977 //
2978 // imm16 := imm4 | i | imm3 | imm8
2979 //
2980 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2981 // +---------+-+-----------+-------++-+-----+-------+---------------+
2982 // | |i| |imm4 || |imm3 | |imm8 |
2983 // +---------+-+-----------+-------++-+-----+-------+---------------+
2984
2985 // Extract the relocation addend from VAL based on the Thumb2
2986 // instruction encoding described above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 extract_thumb_movw_movt_addend(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val)
2990 {
2991 // According to the Elf ABI for ARM Architecture the immediate
2992 // field is sign-extended to form the addend.
2993 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
2994 | ((val >> 15) & 0x0800)
2995 | ((val >> 4) & 0x0700)
2996 | (val & 0x00ff));
2997 }
2998
2999 // Insert X into VAL based on the Thumb2 instruction encoding
3000 // described above.
3001 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3002 insert_val_thumb_movw_movt(
3003 typename elfcpp::Swap<32, big_endian>::Valtype val,
3004 typename elfcpp::Swap<32, big_endian>::Valtype x)
3005 {
3006 val &= 0xfbf08f00;
3007 val |= (x & 0xf000) << 4;
3008 val |= (x & 0x0800) << 15;
3009 val |= (x & 0x0700) << 4;
3010 val |= (x & 0x00ff);
3011 return val;
3012 }
3013
3014 // Calculate the smallest constant Kn for the specified residual.
3015 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3016 static uint32_t
3017 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3018 {
3019 int32_t msb;
3020
3021 if (residual == 0)
3022 return 0;
3023 // Determine the most significant bit in the residual and
3024 // align the resulting value to a 2-bit boundary.
3025 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3026 ;
3027 // The desired shift is now (msb - 6), or zero, whichever
3028 // is the greater.
3029 return (((msb - 6) < 0) ? 0 : (msb - 6));
3030 }
3031
3032 // Calculate the final residual for the specified group index.
3033 // If the passed group index is less than zero, the method will return
3034 // the value of the specified residual without any change.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036 static typename elfcpp::Swap<32, big_endian>::Valtype
3037 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3038 const int group)
3039 {
3040 for (int n = 0; n <= group; n++)
3041 {
3042 // Calculate which part of the value to mask.
3043 uint32_t shift = calc_grp_kn(residual);
3044 // Calculate the residual for the next time around.
3045 residual &= ~(residual & (0xff << shift));
3046 }
3047
3048 return residual;
3049 }
3050
3051 // Calculate the value of Gn for the specified group index.
3052 // We return it in the form of an encoded constant-and-rotation.
3053 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3054 static typename elfcpp::Swap<32, big_endian>::Valtype
3055 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3056 const int group)
3057 {
3058 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3059 uint32_t shift = 0;
3060
3061 for (int n = 0; n <= group; n++)
3062 {
3063 // Calculate which part of the value to mask.
3064 shift = calc_grp_kn(residual);
3065 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3066 gn = residual & (0xff << shift);
3067 // Calculate the residual for the next time around.
3068 residual &= ~gn;
3069 }
3070 // Return Gn in the form of an encoded constant-and-rotation.
3071 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3072 }
3073
3074 public:
3075 // Handle ARM long branches.
3076 static typename This::Status
3077 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3078 unsigned char*, const Sized_symbol<32>*,
3079 const Arm_relobj<big_endian>*, unsigned int,
3080 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3081
3082 // Handle THUMB long branches.
3083 static typename This::Status
3084 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3085 unsigned char*, const Sized_symbol<32>*,
3086 const Arm_relobj<big_endian>*, unsigned int,
3087 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3088
3089
3090 // Return the branch offset of a 32-bit THUMB branch.
3091 static inline int32_t
3092 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3093 {
3094 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3095 // involving the J1 and J2 bits.
3096 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3097 uint32_t upper = upper_insn & 0x3ffU;
3098 uint32_t lower = lower_insn & 0x7ffU;
3099 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3100 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3101 uint32_t i1 = j1 ^ s ? 0 : 1;
3102 uint32_t i2 = j2 ^ s ? 0 : 1;
3103
3104 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3105 | (upper << 12) | (lower << 1));
3106 }
3107
3108 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3109 // UPPER_INSN is the original upper instruction of the branch. Caller is
3110 // responsible for overflow checking and BLX offset adjustment.
3111 static inline uint16_t
3112 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3113 {
3114 uint32_t s = offset < 0 ? 1 : 0;
3115 uint32_t bits = static_cast<uint32_t>(offset);
3116 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3117 }
3118
3119 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3120 // LOWER_INSN is the original lower instruction of the branch. Caller is
3121 // responsible for overflow checking and BLX offset adjustment.
3122 static inline uint16_t
3123 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3124 {
3125 uint32_t s = offset < 0 ? 1 : 0;
3126 uint32_t bits = static_cast<uint32_t>(offset);
3127 return ((lower_insn & ~0x2fffU)
3128 | ((((bits >> 23) & 1) ^ !s) << 13)
3129 | ((((bits >> 22) & 1) ^ !s) << 11)
3130 | ((bits >> 1) & 0x7ffU));
3131 }
3132
3133 // Return the branch offset of a 32-bit THUMB conditional branch.
3134 static inline int32_t
3135 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3136 {
3137 uint32_t s = (upper_insn & 0x0400U) >> 10;
3138 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3139 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3140 uint32_t lower = (lower_insn & 0x07ffU);
3141 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3142
3143 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3144 }
3145
3146 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3147 // instruction. UPPER_INSN is the original upper instruction of the branch.
3148 // Caller is responsible for overflow checking.
3149 static inline uint16_t
3150 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3151 {
3152 uint32_t s = offset < 0 ? 1 : 0;
3153 uint32_t bits = static_cast<uint32_t>(offset);
3154 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3155 }
3156
3157 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3158 // instruction. LOWER_INSN is the original lower instruction of the branch.
3159 // The caller is responsible for overflow checking.
3160 static inline uint16_t
3161 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3162 {
3163 uint32_t bits = static_cast<uint32_t>(offset);
3164 uint32_t j2 = (bits & 0x00080000U) >> 19;
3165 uint32_t j1 = (bits & 0x00040000U) >> 18;
3166 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3167
3168 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3169 }
3170
3171 // R_ARM_ABS8: S + A
3172 static inline typename This::Status
3173 abs8(unsigned char* view,
3174 const Sized_relobj_file<32, big_endian>* object,
3175 const Symbol_value<32>* psymval)
3176 {
3177 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3178 Valtype* wv = reinterpret_cast<Valtype*>(view);
3179 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3180 int32_t addend = Bits<8>::sign_extend32(val);
3181 Arm_address x = psymval->value(object, addend);
3182 val = Bits<32>::bit_select32(val, x, 0xffU);
3183 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3184
3185 // R_ARM_ABS8 permits signed or unsigned results.
3186 return (Bits<8>::has_signed_unsigned_overflow32(x)
3187 ? This::STATUS_OVERFLOW
3188 : This::STATUS_OKAY);
3189 }
3190
3191 // R_ARM_THM_ABS5: S + A
3192 static inline typename This::Status
3193 thm_abs5(unsigned char* view,
3194 const Sized_relobj_file<32, big_endian>* object,
3195 const Symbol_value<32>* psymval)
3196 {
3197 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3198 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3199 Valtype* wv = reinterpret_cast<Valtype*>(view);
3200 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3201 Reltype addend = (val & 0x7e0U) >> 6;
3202 Reltype x = psymval->value(object, addend);
3203 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3204 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3205 return (Bits<5>::has_overflow32(x)
3206 ? This::STATUS_OVERFLOW
3207 : This::STATUS_OKAY);
3208 }
3209
3210 // R_ARM_ABS12: S + A
3211 static inline typename This::Status
3212 abs12(unsigned char* view,
3213 const Sized_relobj_file<32, big_endian>* object,
3214 const Symbol_value<32>* psymval)
3215 {
3216 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3217 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218 Valtype* wv = reinterpret_cast<Valtype*>(view);
3219 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3220 Reltype addend = val & 0x0fffU;
3221 Reltype x = psymval->value(object, addend);
3222 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3223 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3224 return (Bits<12>::has_overflow32(x)
3225 ? This::STATUS_OVERFLOW
3226 : This::STATUS_OKAY);
3227 }
3228
3229 // R_ARM_ABS16: S + A
3230 static inline typename This::Status
3231 abs16(unsigned char* view,
3232 const Sized_relobj_file<32, big_endian>* object,
3233 const Symbol_value<32>* psymval)
3234 {
3235 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3236 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3237 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3238 int32_t addend = Bits<16>::sign_extend32(val);
3239 Arm_address x = psymval->value(object, addend);
3240 val = Bits<32>::bit_select32(val, x, 0xffffU);
3241 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3242
3243 // R_ARM_ABS16 permits signed or unsigned results.
3244 return (Bits<16>::has_signed_unsigned_overflow32(x)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3247 }
3248
3249 // R_ARM_ABS32: (S + A) | T
3250 static inline typename This::Status
3251 abs32(unsigned char* view,
3252 const Sized_relobj_file<32, big_endian>* object,
3253 const Symbol_value<32>* psymval,
3254 Arm_address thumb_bit)
3255 {
3256 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3257 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3258 Valtype x = psymval->value(object, addend) | thumb_bit;
3259 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3260 return This::STATUS_OKAY;
3261 }
3262
3263 // R_ARM_REL32: (S + A) | T - P
3264 static inline typename This::Status
3265 rel32(unsigned char* view,
3266 const Sized_relobj_file<32, big_endian>* object,
3267 const Symbol_value<32>* psymval,
3268 Arm_address address,
3269 Arm_address thumb_bit)
3270 {
3271 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3272 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3273 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3274 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3275 return This::STATUS_OKAY;
3276 }
3277
3278 // R_ARM_THM_JUMP24: (S + A) | T - P
3279 static typename This::Status
3280 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3281 const Symbol_value<32>* psymval, Arm_address address,
3282 Arm_address thumb_bit);
3283
3284 // R_ARM_THM_JUMP6: S + A – P
3285 static inline typename This::Status
3286 thm_jump6(unsigned char* view,
3287 const Sized_relobj_file<32, big_endian>* object,
3288 const Symbol_value<32>* psymval,
3289 Arm_address address)
3290 {
3291 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3292 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3293 Valtype* wv = reinterpret_cast<Valtype*>(view);
3294 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3295 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3296 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3297 Reltype x = (psymval->value(object, addend) - address);
3298 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3299 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3300 // CZB does only forward jumps.
3301 return ((x > 0x007e)
3302 ? This::STATUS_OVERFLOW
3303 : This::STATUS_OKAY);
3304 }
3305
3306 // R_ARM_THM_JUMP8: S + A – P
3307 static inline typename This::Status
3308 thm_jump8(unsigned char* view,
3309 const Sized_relobj_file<32, big_endian>* object,
3310 const Symbol_value<32>* psymval,
3311 Arm_address address)
3312 {
3313 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3314 Valtype* wv = reinterpret_cast<Valtype*>(view);
3315 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3316 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3317 int32_t x = (psymval->value(object, addend) - address);
3318 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3319 | ((x & 0x01fe) >> 1)));
3320 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3321 return (Bits<9>::has_overflow32(x)
3322 ? This::STATUS_OVERFLOW
3323 : This::STATUS_OKAY);
3324 }
3325
3326 // R_ARM_THM_JUMP11: S + A – P
3327 static inline typename This::Status
3328 thm_jump11(unsigned char* view,
3329 const Sized_relobj_file<32, big_endian>* object,
3330 const Symbol_value<32>* psymval,
3331 Arm_address address)
3332 {
3333 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3334 Valtype* wv = reinterpret_cast<Valtype*>(view);
3335 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3336 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3337 int32_t x = (psymval->value(object, addend) - address);
3338 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3339 | ((x & 0x0ffe) >> 1)));
3340 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3341 return (Bits<12>::has_overflow32(x)
3342 ? This::STATUS_OVERFLOW
3343 : This::STATUS_OKAY);
3344 }
3345
3346 // R_ARM_BASE_PREL: B(S) + A - P
3347 static inline typename This::Status
3348 base_prel(unsigned char* view,
3349 Arm_address origin,
3350 Arm_address address)
3351 {
3352 Base::rel32(view, origin - address);
3353 return STATUS_OKAY;
3354 }
3355
3356 // R_ARM_BASE_ABS: B(S) + A
3357 static inline typename This::Status
3358 base_abs(unsigned char* view,
3359 Arm_address origin)
3360 {
3361 Base::rel32(view, origin);
3362 return STATUS_OKAY;
3363 }
3364
3365 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3366 static inline typename This::Status
3367 got_brel(unsigned char* view,
3368 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3369 {
3370 Base::rel32(view, got_offset);
3371 return This::STATUS_OKAY;
3372 }
3373
3374 // R_ARM_GOT_PREL: GOT(S) + A - P
3375 static inline typename This::Status
3376 got_prel(unsigned char* view,
3377 Arm_address got_entry,
3378 Arm_address address)
3379 {
3380 Base::rel32(view, got_entry - address);
3381 return This::STATUS_OKAY;
3382 }
3383
3384 // R_ARM_PREL: (S + A) | T - P
3385 static inline typename This::Status
3386 prel31(unsigned char* view,
3387 const Sized_relobj_file<32, big_endian>* object,
3388 const Symbol_value<32>* psymval,
3389 Arm_address address,
3390 Arm_address thumb_bit)
3391 {
3392 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3393 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3394 Valtype addend = Bits<31>::sign_extend32(val);
3395 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3396 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3397 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3398 return (Bits<31>::has_overflow32(x)
3399 ? This::STATUS_OVERFLOW
3400 : This::STATUS_OKAY);
3401 }
3402
3403 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3404 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3405 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3406 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3407 static inline typename This::Status
3408 movw(unsigned char* view,
3409 const Sized_relobj_file<32, big_endian>* object,
3410 const Symbol_value<32>* psymval,
3411 Arm_address relative_address_base,
3412 Arm_address thumb_bit,
3413 bool check_overflow)
3414 {
3415 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3416 Valtype* wv = reinterpret_cast<Valtype*>(view);
3417 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3418 Valtype addend = This::extract_arm_movw_movt_addend(val);
3419 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3420 - relative_address_base);
3421 val = This::insert_val_arm_movw_movt(val, x);
3422 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3423 return ((check_overflow && Bits<16>::has_overflow32(x))
3424 ? This::STATUS_OVERFLOW
3425 : This::STATUS_OKAY);
3426 }
3427
3428 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3429 // R_ARM_MOVT_PREL: S + A - P
3430 // R_ARM_MOVT_BREL: S + A - B(S)
3431 static inline typename This::Status
3432 movt(unsigned char* view,
3433 const Sized_relobj_file<32, big_endian>* object,
3434 const Symbol_value<32>* psymval,
3435 Arm_address relative_address_base)
3436 {
3437 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438 Valtype* wv = reinterpret_cast<Valtype*>(view);
3439 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440 Valtype addend = This::extract_arm_movw_movt_addend(val);
3441 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3442 val = This::insert_val_arm_movw_movt(val, x);
3443 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3444 // FIXME: IHI0044D says that we should check for overflow.
3445 return This::STATUS_OKAY;
3446 }
3447
3448 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3449 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3450 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3451 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3452 static inline typename This::Status
3453 thm_movw(unsigned char* view,
3454 const Sized_relobj_file<32, big_endian>* object,
3455 const Symbol_value<32>* psymval,
3456 Arm_address relative_address_base,
3457 Arm_address thumb_bit,
3458 bool check_overflow)
3459 {
3460 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3461 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3462 Valtype* wv = reinterpret_cast<Valtype*>(view);
3463 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3464 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3465 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3466 Reltype x =
3467 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3468 val = This::insert_val_thumb_movw_movt(val, x);
3469 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3470 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3471 return ((check_overflow && Bits<16>::has_overflow32(x))
3472 ? This::STATUS_OVERFLOW
3473 : This::STATUS_OKAY);
3474 }
3475
3476 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3477 // R_ARM_THM_MOVT_PREL: S + A - P
3478 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3479 static inline typename This::Status
3480 thm_movt(unsigned char* view,
3481 const Sized_relobj_file<32, big_endian>* object,
3482 const Symbol_value<32>* psymval,
3483 Arm_address relative_address_base)
3484 {
3485 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3486 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3487 Valtype* wv = reinterpret_cast<Valtype*>(view);
3488 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3489 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3490 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3491 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3492 val = This::insert_val_thumb_movw_movt(val, x);
3493 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3494 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3495 return This::STATUS_OKAY;
3496 }
3497
3498 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3499 static inline typename This::Status
3500 thm_alu11(unsigned char* view,
3501 const Sized_relobj_file<32, big_endian>* object,
3502 const Symbol_value<32>* psymval,
3503 Arm_address address,
3504 Arm_address thumb_bit)
3505 {
3506 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3507 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3508 Valtype* wv = reinterpret_cast<Valtype*>(view);
3509 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3510 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3511
3512 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3513 // -----------------------------------------------------------------------
3514 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3515 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3516 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3517 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3518 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3519 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3520
3521 // Determine a sign for the addend.
3522 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3523 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3524 // Thumb2 addend encoding:
3525 // imm12 := i | imm3 | imm8
3526 int32_t addend = (insn & 0xff)
3527 | ((insn & 0x00007000) >> 4)
3528 | ((insn & 0x04000000) >> 15);
3529 // Apply a sign to the added.
3530 addend *= sign;
3531
3532 int32_t x = (psymval->value(object, addend) | thumb_bit)
3533 - (address & 0xfffffffc);
3534 Reltype val = abs(x);
3535 // Mask out the value and a distinct part of the ADD/SUB opcode
3536 // (bits 7:5 of opword).
3537 insn = (insn & 0xfb0f8f00)
3538 | (val & 0xff)
3539 | ((val & 0x700) << 4)
3540 | ((val & 0x800) << 15);
3541 // Set the opcode according to whether the value to go in the
3542 // place is negative.
3543 if (x < 0)
3544 insn |= 0x00a00000;
3545
3546 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3547 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3548 return ((val > 0xfff) ?
3549 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3550 }
3551
3552 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3553 static inline typename This::Status
3554 thm_pc8(unsigned char* view,
3555 const Sized_relobj_file<32, big_endian>* object,
3556 const Symbol_value<32>* psymval,
3557 Arm_address address)
3558 {
3559 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3560 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3561 Valtype* wv = reinterpret_cast<Valtype*>(view);
3562 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3563 Reltype addend = ((insn & 0x00ff) << 2);
3564 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3565 Reltype val = abs(x);
3566 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3567
3568 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3569 return ((val > 0x03fc)
3570 ? This::STATUS_OVERFLOW
3571 : This::STATUS_OKAY);
3572 }
3573
3574 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3575 static inline typename This::Status
3576 thm_pc12(unsigned char* view,
3577 const Sized_relobj_file<32, big_endian>* object,
3578 const Symbol_value<32>* psymval,
3579 Arm_address address)
3580 {
3581 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3582 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3583 Valtype* wv = reinterpret_cast<Valtype*>(view);
3584 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3585 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3586 // Determine a sign for the addend (positive if the U bit is 1).
3587 const int sign = (insn & 0x00800000) ? 1 : -1;
3588 int32_t addend = (insn & 0xfff);
3589 // Apply a sign to the added.
3590 addend *= sign;
3591
3592 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3593 Reltype val = abs(x);
3594 // Mask out and apply the value and the U bit.
3595 insn = (insn & 0xff7ff000) | (val & 0xfff);
3596 // Set the U bit according to whether the value to go in the
3597 // place is positive.
3598 if (x >= 0)
3599 insn |= 0x00800000;
3600
3601 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3602 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3603 return ((val > 0xfff) ?
3604 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3605 }
3606
3607 // R_ARM_V4BX
3608 static inline typename This::Status
3609 v4bx(const Relocate_info<32, big_endian>* relinfo,
3610 unsigned char* view,
3611 const Arm_relobj<big_endian>* object,
3612 const Arm_address address,
3613 const bool is_interworking)
3614 {
3615
3616 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3617 Valtype* wv = reinterpret_cast<Valtype*>(view);
3618 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3619
3620 // Ensure that we have a BX instruction.
3621 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3622 const uint32_t reg = (val & 0xf);
3623 if (is_interworking && reg != 0xf)
3624 {
3625 Stub_table<big_endian>* stub_table =
3626 object->stub_table(relinfo->data_shndx);
3627 gold_assert(stub_table != NULL);
3628
3629 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3630 gold_assert(stub != NULL);
3631
3632 int32_t veneer_address =
3633 stub_table->address() + stub->offset() - 8 - address;
3634 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3635 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3636 // Replace with a branch to veneer (B <addr>)
3637 val = (val & 0xf0000000) | 0x0a000000
3638 | ((veneer_address >> 2) & 0x00ffffff);
3639 }
3640 else
3641 {
3642 // Preserve Rm (lowest four bits) and the condition code
3643 // (highest four bits). Other bits encode MOV PC,Rm.
3644 val = (val & 0xf000000f) | 0x01a0f000;
3645 }
3646 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3647 return This::STATUS_OKAY;
3648 }
3649
3650 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3651 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3652 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3653 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3654 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3655 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3656 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3657 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3658 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3659 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3660 static inline typename This::Status
3661 arm_grp_alu(unsigned char* view,
3662 const Sized_relobj_file<32, big_endian>* object,
3663 const Symbol_value<32>* psymval,
3664 const int group,
3665 Arm_address address,
3666 Arm_address thumb_bit,
3667 bool check_overflow)
3668 {
3669 gold_assert(group >= 0 && group < 3);
3670 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3671 Valtype* wv = reinterpret_cast<Valtype*>(view);
3672 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3673
3674 // ALU group relocations are allowed only for the ADD/SUB instructions.
3675 // (0x00800000 - ADD, 0x00400000 - SUB)
3676 const Valtype opcode = insn & 0x01e00000;
3677 if (opcode != 0x00800000 && opcode != 0x00400000)
3678 return This::STATUS_BAD_RELOC;
3679
3680 // Determine a sign for the addend.
3681 const int sign = (opcode == 0x00800000) ? 1 : -1;
3682 // shifter = rotate_imm * 2
3683 const uint32_t shifter = (insn & 0xf00) >> 7;
3684 // Initial addend value.
3685 int32_t addend = insn & 0xff;
3686 // Rotate addend right by shifter.
3687 addend = (addend >> shifter) | (addend << (32 - shifter));
3688 // Apply a sign to the added.
3689 addend *= sign;
3690
3691 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3692 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3693 // Check for overflow if required
3694 if (check_overflow
3695 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3696 return This::STATUS_OVERFLOW;
3697
3698 // Mask out the value and the ADD/SUB part of the opcode; take care
3699 // not to destroy the S bit.
3700 insn &= 0xff1ff000;
3701 // Set the opcode according to whether the value to go in the
3702 // place is negative.
3703 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3704 // Encode the offset (encoded Gn).
3705 insn |= gn;
3706
3707 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3708 return This::STATUS_OKAY;
3709 }
3710
3711 // R_ARM_LDR_PC_G0: S + A - P
3712 // R_ARM_LDR_PC_G1: S + A - P
3713 // R_ARM_LDR_PC_G2: S + A - P
3714 // R_ARM_LDR_SB_G0: S + A - B(S)
3715 // R_ARM_LDR_SB_G1: S + A - B(S)
3716 // R_ARM_LDR_SB_G2: S + A - B(S)
3717 static inline typename This::Status
3718 arm_grp_ldr(unsigned char* view,
3719 const Sized_relobj_file<32, big_endian>* object,
3720 const Symbol_value<32>* psymval,
3721 const int group,
3722 Arm_address address)
3723 {
3724 gold_assert(group >= 0 && group < 3);
3725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3726 Valtype* wv = reinterpret_cast<Valtype*>(view);
3727 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3728
3729 const int sign = (insn & 0x00800000) ? 1 : -1;
3730 int32_t addend = (insn & 0xfff) * sign;
3731 int32_t x = (psymval->value(object, addend) - address);
3732 // Calculate the relevant G(n-1) value to obtain this stage residual.
3733 Valtype residual =
3734 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3735 if (residual >= 0x1000)
3736 return This::STATUS_OVERFLOW;
3737
3738 // Mask out the value and U bit.
3739 insn &= 0xff7ff000;
3740 // Set the U bit for non-negative values.
3741 if (x >= 0)
3742 insn |= 0x00800000;
3743 insn |= residual;
3744
3745 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3746 return This::STATUS_OKAY;
3747 }
3748
3749 // R_ARM_LDRS_PC_G0: S + A - P
3750 // R_ARM_LDRS_PC_G1: S + A - P
3751 // R_ARM_LDRS_PC_G2: S + A - P
3752 // R_ARM_LDRS_SB_G0: S + A - B(S)
3753 // R_ARM_LDRS_SB_G1: S + A - B(S)
3754 // R_ARM_LDRS_SB_G2: S + A - B(S)
3755 static inline typename This::Status
3756 arm_grp_ldrs(unsigned char* view,
3757 const Sized_relobj_file<32, big_endian>* object,
3758 const Symbol_value<32>* psymval,
3759 const int group,
3760 Arm_address address)
3761 {
3762 gold_assert(group >= 0 && group < 3);
3763 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3764 Valtype* wv = reinterpret_cast<Valtype*>(view);
3765 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3766
3767 const int sign = (insn & 0x00800000) ? 1 : -1;
3768 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3769 int32_t x = (psymval->value(object, addend) - address);
3770 // Calculate the relevant G(n-1) value to obtain this stage residual.
3771 Valtype residual =
3772 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3773 if (residual >= 0x100)
3774 return This::STATUS_OVERFLOW;
3775
3776 // Mask out the value and U bit.
3777 insn &= 0xff7ff0f0;
3778 // Set the U bit for non-negative values.
3779 if (x >= 0)
3780 insn |= 0x00800000;
3781 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3782
3783 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3784 return This::STATUS_OKAY;
3785 }
3786
3787 // R_ARM_LDC_PC_G0: S + A - P
3788 // R_ARM_LDC_PC_G1: S + A - P
3789 // R_ARM_LDC_PC_G2: S + A - P
3790 // R_ARM_LDC_SB_G0: S + A - B(S)
3791 // R_ARM_LDC_SB_G1: S + A - B(S)
3792 // R_ARM_LDC_SB_G2: S + A - B(S)
3793 static inline typename This::Status
3794 arm_grp_ldc(unsigned char* view,
3795 const Sized_relobj_file<32, big_endian>* object,
3796 const Symbol_value<32>* psymval,
3797 const int group,
3798 Arm_address address)
3799 {
3800 gold_assert(group >= 0 && group < 3);
3801 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3802 Valtype* wv = reinterpret_cast<Valtype*>(view);
3803 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3804
3805 const int sign = (insn & 0x00800000) ? 1 : -1;
3806 int32_t addend = ((insn & 0xff) << 2) * sign;
3807 int32_t x = (psymval->value(object, addend) - address);
3808 // Calculate the relevant G(n-1) value to obtain this stage residual.
3809 Valtype residual =
3810 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3811 if ((residual & 0x3) != 0 || residual >= 0x400)
3812 return This::STATUS_OVERFLOW;
3813
3814 // Mask out the value and U bit.
3815 insn &= 0xff7fff00;
3816 // Set the U bit for non-negative values.
3817 if (x >= 0)
3818 insn |= 0x00800000;
3819 insn |= (residual >> 2);
3820
3821 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3822 return This::STATUS_OKAY;
3823 }
3824 };
3825
3826 // Relocate ARM long branches. This handles relocation types
3827 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3828 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3829 // undefined and we do not use PLT in this relocation. In such a case,
3830 // the branch is converted into an NOP.
3831
3832 template<bool big_endian>
3833 typename Arm_relocate_functions<big_endian>::Status
3834 Arm_relocate_functions<big_endian>::arm_branch_common(
3835 unsigned int r_type,
3836 const Relocate_info<32, big_endian>* relinfo,
3837 unsigned char* view,
3838 const Sized_symbol<32>* gsym,
3839 const Arm_relobj<big_endian>* object,
3840 unsigned int r_sym,
3841 const Symbol_value<32>* psymval,
3842 Arm_address address,
3843 Arm_address thumb_bit,
3844 bool is_weakly_undefined_without_plt)
3845 {
3846 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3847 Valtype* wv = reinterpret_cast<Valtype*>(view);
3848 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3849
3850 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3851 && ((val & 0x0f000000UL) == 0x0a000000UL);
3852 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3853 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3854 && ((val & 0x0f000000UL) == 0x0b000000UL);
3855 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3856 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3857
3858 // Check that the instruction is valid.
3859 if (r_type == elfcpp::R_ARM_CALL)
3860 {
3861 if (!insn_is_uncond_bl && !insn_is_blx)
3862 return This::STATUS_BAD_RELOC;
3863 }
3864 else if (r_type == elfcpp::R_ARM_JUMP24)
3865 {
3866 if (!insn_is_b && !insn_is_cond_bl)
3867 return This::STATUS_BAD_RELOC;
3868 }
3869 else if (r_type == elfcpp::R_ARM_PLT32)
3870 {
3871 if (!insn_is_any_branch)
3872 return This::STATUS_BAD_RELOC;
3873 }
3874 else if (r_type == elfcpp::R_ARM_XPC25)
3875 {
3876 // FIXME: AAELF document IH0044C does not say much about it other
3877 // than it being obsolete.
3878 if (!insn_is_any_branch)
3879 return This::STATUS_BAD_RELOC;
3880 }
3881 else
3882 gold_unreachable();
3883
3884 // A branch to an undefined weak symbol is turned into a jump to
3885 // the next instruction unless a PLT entry will be created.
3886 // Do the same for local undefined symbols.
3887 // The jump to the next instruction is optimized as a NOP depending
3888 // on the architecture.
3889 const Target_arm<big_endian>* arm_target =
3890 Target_arm<big_endian>::default_target();
3891 if (is_weakly_undefined_without_plt)
3892 {
3893 gold_assert(!parameters->options().relocatable());
3894 Valtype cond = val & 0xf0000000U;
3895 if (arm_target->may_use_arm_nop())
3896 val = cond | 0x0320f000;
3897 else
3898 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3899 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3900 return This::STATUS_OKAY;
3901 }
3902
3903 Valtype addend = Bits<26>::sign_extend32(val << 2);
3904 Valtype branch_target = psymval->value(object, addend);
3905 int32_t branch_offset = branch_target - address;
3906
3907 // We need a stub if the branch offset is too large or if we need
3908 // to switch mode.
3909 bool may_use_blx = arm_target->may_use_v5t_interworking();
3910 Reloc_stub* stub = NULL;
3911
3912 if (!parameters->options().relocatable()
3913 && (Bits<26>::has_overflow32(branch_offset)
3914 || ((thumb_bit != 0)
3915 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3916 {
3917 Valtype unadjusted_branch_target = psymval->value(object, 0);
3918
3919 Stub_type stub_type =
3920 Reloc_stub::stub_type_for_reloc(r_type, address,
3921 unadjusted_branch_target,
3922 (thumb_bit != 0));
3923 if (stub_type != arm_stub_none)
3924 {
3925 Stub_table<big_endian>* stub_table =
3926 object->stub_table(relinfo->data_shndx);
3927 gold_assert(stub_table != NULL);
3928
3929 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3930 stub = stub_table->find_reloc_stub(stub_key);
3931 gold_assert(stub != NULL);
3932 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3933 branch_target = stub_table->address() + stub->offset() + addend;
3934 branch_offset = branch_target - address;
3935 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3936 }
3937 }
3938
3939 // At this point, if we still need to switch mode, the instruction
3940 // must either be a BLX or a BL that can be converted to a BLX.
3941 if (thumb_bit != 0)
3942 {
3943 // Turn BL to BLX.
3944 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3945 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3946 }
3947
3948 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3949 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3950 return (Bits<26>::has_overflow32(branch_offset)
3951 ? This::STATUS_OVERFLOW
3952 : This::STATUS_OKAY);
3953 }
3954
3955 // Relocate THUMB long branches. This handles relocation types
3956 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3957 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3958 // undefined and we do not use PLT in this relocation. In such a case,
3959 // the branch is converted into an NOP.
3960
3961 template<bool big_endian>
3962 typename Arm_relocate_functions<big_endian>::Status
3963 Arm_relocate_functions<big_endian>::thumb_branch_common(
3964 unsigned int r_type,
3965 const Relocate_info<32, big_endian>* relinfo,
3966 unsigned char* view,
3967 const Sized_symbol<32>* gsym,
3968 const Arm_relobj<big_endian>* object,
3969 unsigned int r_sym,
3970 const Symbol_value<32>* psymval,
3971 Arm_address address,
3972 Arm_address thumb_bit,
3973 bool is_weakly_undefined_without_plt)
3974 {
3975 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3976 Valtype* wv = reinterpret_cast<Valtype*>(view);
3977 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3978 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3979
3980 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3981 // into account.
3982 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3983 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3984
3985 // Check that the instruction is valid.
3986 if (r_type == elfcpp::R_ARM_THM_CALL)
3987 {
3988 if (!is_bl_insn && !is_blx_insn)
3989 return This::STATUS_BAD_RELOC;
3990 }
3991 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3992 {
3993 // This cannot be a BLX.
3994 if (!is_bl_insn)
3995 return This::STATUS_BAD_RELOC;
3996 }
3997 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3998 {
3999 // Check for Thumb to Thumb call.
4000 if (!is_blx_insn)
4001 return This::STATUS_BAD_RELOC;
4002 if (thumb_bit != 0)
4003 {
4004 gold_warning(_("%s: Thumb BLX instruction targets "
4005 "thumb function '%s'."),
4006 object->name().c_str(),
4007 (gsym ? gsym->name() : "(local)"));
4008 // Convert BLX to BL.
4009 lower_insn |= 0x1000U;
4010 }
4011 }
4012 else
4013 gold_unreachable();
4014
4015 // A branch to an undefined weak symbol is turned into a jump to
4016 // the next instruction unless a PLT entry will be created.
4017 // The jump to the next instruction is optimized as a NOP.W for
4018 // Thumb-2 enabled architectures.
4019 const Target_arm<big_endian>* arm_target =
4020 Target_arm<big_endian>::default_target();
4021 if (is_weakly_undefined_without_plt)
4022 {
4023 gold_assert(!parameters->options().relocatable());
4024 if (arm_target->may_use_thumb2_nop())
4025 {
4026 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4027 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4028 }
4029 else
4030 {
4031 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4032 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4033 }
4034 return This::STATUS_OKAY;
4035 }
4036
4037 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4038 Arm_address branch_target = psymval->value(object, addend);
4039
4040 // For BLX, bit 1 of target address comes from bit 1 of base address.
4041 bool may_use_blx = arm_target->may_use_v5t_interworking();
4042 if (thumb_bit == 0 && may_use_blx)
4043 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4044
4045 int32_t branch_offset = branch_target - address;
4046
4047 // We need a stub if the branch offset is too large or if we need
4048 // to switch mode.
4049 bool thumb2 = arm_target->using_thumb2();
4050 if (!parameters->options().relocatable()
4051 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4052 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4053 || ((thumb_bit == 0)
4054 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4055 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4056 {
4057 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4058
4059 Stub_type stub_type =
4060 Reloc_stub::stub_type_for_reloc(r_type, address,
4061 unadjusted_branch_target,
4062 (thumb_bit != 0));
4063
4064 if (stub_type != arm_stub_none)
4065 {
4066 Stub_table<big_endian>* stub_table =
4067 object->stub_table(relinfo->data_shndx);
4068 gold_assert(stub_table != NULL);
4069
4070 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4071 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4072 gold_assert(stub != NULL);
4073 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4074 branch_target = stub_table->address() + stub->offset() + addend;
4075 if (thumb_bit == 0 && may_use_blx)
4076 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4077 branch_offset = branch_target - address;
4078 }
4079 }
4080
4081 // At this point, if we still need to switch mode, the instruction
4082 // must either be a BLX or a BL that can be converted to a BLX.
4083 if (thumb_bit == 0)
4084 {
4085 gold_assert(may_use_blx
4086 && (r_type == elfcpp::R_ARM_THM_CALL
4087 || r_type == elfcpp::R_ARM_THM_XPC22));
4088 // Make sure this is a BLX.
4089 lower_insn &= ~0x1000U;
4090 }
4091 else
4092 {
4093 // Make sure this is a BL.
4094 lower_insn |= 0x1000U;
4095 }
4096
4097 // For a BLX instruction, make sure that the relocation is rounded up
4098 // to a word boundary. This follows the semantics of the instruction
4099 // which specifies that bit 1 of the target address will come from bit
4100 // 1 of the base address.
4101 if ((lower_insn & 0x5000U) == 0x4000U)
4102 gold_assert((branch_offset & 3) == 0);
4103
4104 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4105 // We use the Thumb-2 encoding, which is safe even if dealing with
4106 // a Thumb-1 instruction by virtue of our overflow check above. */
4107 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4108 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4109
4110 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4111 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4112
4113 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4114
4115 return ((thumb2
4116 ? Bits<25>::has_overflow32(branch_offset)
4117 : Bits<23>::has_overflow32(branch_offset))
4118 ? This::STATUS_OVERFLOW
4119 : This::STATUS_OKAY);
4120 }
4121
4122 // Relocate THUMB-2 long conditional branches.
4123 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4124 // undefined and we do not use PLT in this relocation. In such a case,
4125 // the branch is converted into an NOP.
4126
4127 template<bool big_endian>
4128 typename Arm_relocate_functions<big_endian>::Status
4129 Arm_relocate_functions<big_endian>::thm_jump19(
4130 unsigned char* view,
4131 const Arm_relobj<big_endian>* object,
4132 const Symbol_value<32>* psymval,
4133 Arm_address address,
4134 Arm_address thumb_bit)
4135 {
4136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4137 Valtype* wv = reinterpret_cast<Valtype*>(view);
4138 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4139 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4140 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4141
4142 Arm_address branch_target = psymval->value(object, addend);
4143 int32_t branch_offset = branch_target - address;
4144
4145 // ??? Should handle interworking? GCC might someday try to
4146 // use this for tail calls.
4147 // FIXME: We do support thumb entry to PLT yet.
4148 if (thumb_bit == 0)
4149 {
4150 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4151 return This::STATUS_BAD_RELOC;
4152 }
4153
4154 // Put RELOCATION back into the insn.
4155 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4156 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4157
4158 // Put the relocated value back in the object file:
4159 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4160 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4161
4162 return (Bits<21>::has_overflow32(branch_offset)
4163 ? This::STATUS_OVERFLOW
4164 : This::STATUS_OKAY);
4165 }
4166
4167 // Get the GOT section, creating it if necessary.
4168
4169 template<bool big_endian>
4170 Arm_output_data_got<big_endian>*
4171 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4172 {
4173 if (this->got_ == NULL)
4174 {
4175 gold_assert(symtab != NULL && layout != NULL);
4176
4177 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4178
4179 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4180 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4181 this->got_, ORDER_DATA, false);
4182
4183 // The old GNU linker creates a .got.plt section. We just
4184 // create another set of data in the .got section. Note that we
4185 // always create a PLT if we create a GOT, although the PLT
4186 // might be empty.
4187 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4188 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4189 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4190 this->got_plt_, ORDER_DATA, false);
4191
4192 // The first three entries are reserved.
4193 this->got_plt_->set_current_data_size(3 * 4);
4194
4195 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4196 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4197 Symbol_table::PREDEFINED,
4198 this->got_plt_,
4199 0, 0, elfcpp::STT_OBJECT,
4200 elfcpp::STB_LOCAL,
4201 elfcpp::STV_HIDDEN, 0,
4202 false, false);
4203 }
4204 return this->got_;
4205 }
4206
4207 // Get the dynamic reloc section, creating it if necessary.
4208
4209 template<bool big_endian>
4210 typename Target_arm<big_endian>::Reloc_section*
4211 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4212 {
4213 if (this->rel_dyn_ == NULL)
4214 {
4215 gold_assert(layout != NULL);
4216 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4217 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4218 elfcpp::SHF_ALLOC, this->rel_dyn_,
4219 ORDER_DYNAMIC_RELOCS, false);
4220 }
4221 return this->rel_dyn_;
4222 }
4223
4224 // Insn_template methods.
4225
4226 // Return byte size of an instruction template.
4227
4228 size_t
4229 Insn_template::size() const
4230 {
4231 switch (this->type())
4232 {
4233 case THUMB16_TYPE:
4234 case THUMB16_SPECIAL_TYPE:
4235 return 2;
4236 case ARM_TYPE:
4237 case THUMB32_TYPE:
4238 case DATA_TYPE:
4239 return 4;
4240 default:
4241 gold_unreachable();
4242 }
4243 }
4244
4245 // Return alignment of an instruction template.
4246
4247 unsigned
4248 Insn_template::alignment() const
4249 {
4250 switch (this->type())
4251 {
4252 case THUMB16_TYPE:
4253 case THUMB16_SPECIAL_TYPE:
4254 case THUMB32_TYPE:
4255 return 2;
4256 case ARM_TYPE:
4257 case DATA_TYPE:
4258 return 4;
4259 default:
4260 gold_unreachable();
4261 }
4262 }
4263
4264 // Stub_template methods.
4265
4266 Stub_template::Stub_template(
4267 Stub_type type, const Insn_template* insns,
4268 size_t insn_count)
4269 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4270 entry_in_thumb_mode_(false), relocs_()
4271 {
4272 off_t offset = 0;
4273
4274 // Compute byte size and alignment of stub template.
4275 for (size_t i = 0; i < insn_count; i++)
4276 {
4277 unsigned insn_alignment = insns[i].alignment();
4278 size_t insn_size = insns[i].size();
4279 gold_assert((offset & (insn_alignment - 1)) == 0);
4280 this->alignment_ = std::max(this->alignment_, insn_alignment);
4281 switch (insns[i].type())
4282 {
4283 case Insn_template::THUMB16_TYPE:
4284 case Insn_template::THUMB16_SPECIAL_TYPE:
4285 if (i == 0)
4286 this->entry_in_thumb_mode_ = true;
4287 break;
4288
4289 case Insn_template::THUMB32_TYPE:
4290 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4291 this->relocs_.push_back(Reloc(i, offset));
4292 if (i == 0)
4293 this->entry_in_thumb_mode_ = true;
4294 break;
4295
4296 case Insn_template::ARM_TYPE:
4297 // Handle cases where the target is encoded within the
4298 // instruction.
4299 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4300 this->relocs_.push_back(Reloc(i, offset));
4301 break;
4302
4303 case Insn_template::DATA_TYPE:
4304 // Entry point cannot be data.
4305 gold_assert(i != 0);
4306 this->relocs_.push_back(Reloc(i, offset));
4307 break;
4308
4309 default:
4310 gold_unreachable();
4311 }
4312 offset += insn_size;
4313 }
4314 this->size_ = offset;
4315 }
4316
4317 // Stub methods.
4318
4319 // Template to implement do_write for a specific target endianness.
4320
4321 template<bool big_endian>
4322 void inline
4323 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4324 {
4325 const Stub_template* stub_template = this->stub_template();
4326 const Insn_template* insns = stub_template->insns();
4327
4328 // FIXME: We do not handle BE8 encoding yet.
4329 unsigned char* pov = view;
4330 for (size_t i = 0; i < stub_template->insn_count(); i++)
4331 {
4332 switch (insns[i].type())
4333 {
4334 case Insn_template::THUMB16_TYPE:
4335 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4336 break;
4337 case Insn_template::THUMB16_SPECIAL_TYPE:
4338 elfcpp::Swap<16, big_endian>::writeval(
4339 pov,
4340 this->thumb16_special(i));
4341 break;
4342 case Insn_template::THUMB32_TYPE:
4343 {
4344 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4345 uint32_t lo = insns[i].data() & 0xffff;
4346 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4347 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4348 }
4349 break;
4350 case Insn_template::ARM_TYPE:
4351 case Insn_template::DATA_TYPE:
4352 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4353 break;
4354 default:
4355 gold_unreachable();
4356 }
4357 pov += insns[i].size();
4358 }
4359 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4360 }
4361
4362 // Reloc_stub::Key methods.
4363
4364 // Dump a Key as a string for debugging.
4365
4366 std::string
4367 Reloc_stub::Key::name() const
4368 {
4369 if (this->r_sym_ == invalid_index)
4370 {
4371 // Global symbol key name
4372 // <stub-type>:<symbol name>:<addend>.
4373 const std::string sym_name = this->u_.symbol->name();
4374 // We need to print two hex number and two colons. So just add 100 bytes
4375 // to the symbol name size.
4376 size_t len = sym_name.size() + 100;
4377 char* buffer = new char[len];
4378 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4379 sym_name.c_str(), this->addend_);
4380 gold_assert(c > 0 && c < static_cast<int>(len));
4381 delete[] buffer;
4382 return std::string(buffer);
4383 }
4384 else
4385 {
4386 // local symbol key name
4387 // <stub-type>:<object>:<r_sym>:<addend>.
4388 const size_t len = 200;
4389 char buffer[len];
4390 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4391 this->u_.relobj, this->r_sym_, this->addend_);
4392 gold_assert(c > 0 && c < static_cast<int>(len));
4393 return std::string(buffer);
4394 }
4395 }
4396
4397 // Reloc_stub methods.
4398
4399 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4400 // LOCATION to DESTINATION.
4401 // This code is based on the arm_type_of_stub function in
4402 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4403 // class simple.
4404
4405 Stub_type
4406 Reloc_stub::stub_type_for_reloc(
4407 unsigned int r_type,
4408 Arm_address location,
4409 Arm_address destination,
4410 bool target_is_thumb)
4411 {
4412 Stub_type stub_type = arm_stub_none;
4413
4414 // This is a bit ugly but we want to avoid using a templated class for
4415 // big and little endianities.
4416 bool may_use_blx;
4417 bool should_force_pic_veneer;
4418 bool thumb2;
4419 bool thumb_only;
4420 if (parameters->target().is_big_endian())
4421 {
4422 const Target_arm<true>* big_endian_target =
4423 Target_arm<true>::default_target();
4424 may_use_blx = big_endian_target->may_use_v5t_interworking();
4425 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4426 thumb2 = big_endian_target->using_thumb2();
4427 thumb_only = big_endian_target->using_thumb_only();
4428 }
4429 else
4430 {
4431 const Target_arm<false>* little_endian_target =
4432 Target_arm<false>::default_target();
4433 may_use_blx = little_endian_target->may_use_v5t_interworking();
4434 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4435 thumb2 = little_endian_target->using_thumb2();
4436 thumb_only = little_endian_target->using_thumb_only();
4437 }
4438
4439 int64_t branch_offset;
4440 bool output_is_position_independent =
4441 parameters->options().output_is_position_independent();
4442 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4443 {
4444 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4445 // base address (instruction address + 4).
4446 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4447 destination = Bits<32>::bit_select32(destination, location, 0x2);
4448 branch_offset = static_cast<int64_t>(destination) - location;
4449
4450 // Handle cases where:
4451 // - this call goes too far (different Thumb/Thumb2 max
4452 // distance)
4453 // - it's a Thumb->Arm call and blx is not available, or it's a
4454 // Thumb->Arm branch (not bl). A stub is needed in this case.
4455 if ((!thumb2
4456 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4457 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4458 || (thumb2
4459 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4460 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4461 || ((!target_is_thumb)
4462 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4463 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4464 {
4465 if (target_is_thumb)
4466 {
4467 // Thumb to thumb.
4468 if (!thumb_only)
4469 {
4470 stub_type = (output_is_position_independent
4471 || should_force_pic_veneer)
4472 // PIC stubs.
4473 ? ((may_use_blx
4474 && (r_type == elfcpp::R_ARM_THM_CALL))
4475 // V5T and above. Stub starts with ARM code, so
4476 // we must be able to switch mode before
4477 // reaching it, which is only possible for 'bl'
4478 // (ie R_ARM_THM_CALL relocation).
4479 ? arm_stub_long_branch_any_thumb_pic
4480 // On V4T, use Thumb code only.
4481 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4482
4483 // non-PIC stubs.
4484 : ((may_use_blx
4485 && (r_type == elfcpp::R_ARM_THM_CALL))
4486 ? arm_stub_long_branch_any_any // V5T and above.
4487 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4488 }
4489 else
4490 {
4491 stub_type = (output_is_position_independent
4492 || should_force_pic_veneer)
4493 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4494 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4495 }
4496 }
4497 else
4498 {
4499 // Thumb to arm.
4500
4501 // FIXME: We should check that the input section is from an
4502 // object that has interwork enabled.
4503
4504 stub_type = (output_is_position_independent
4505 || should_force_pic_veneer)
4506 // PIC stubs.
4507 ? ((may_use_blx
4508 && (r_type == elfcpp::R_ARM_THM_CALL))
4509 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4510 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4511
4512 // non-PIC stubs.
4513 : ((may_use_blx
4514 && (r_type == elfcpp::R_ARM_THM_CALL))
4515 ? arm_stub_long_branch_any_any // V5T and above.
4516 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4517
4518 // Handle v4t short branches.
4519 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4520 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4521 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4522 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4523 }
4524 }
4525 }
4526 else if (r_type == elfcpp::R_ARM_CALL
4527 || r_type == elfcpp::R_ARM_JUMP24
4528 || r_type == elfcpp::R_ARM_PLT32)
4529 {
4530 branch_offset = static_cast<int64_t>(destination) - location;
4531 if (target_is_thumb)
4532 {
4533 // Arm to thumb.
4534
4535 // FIXME: We should check that the input section is from an
4536 // object that has interwork enabled.
4537
4538 // We have an extra 2-bytes reach because of
4539 // the mode change (bit 24 (H) of BLX encoding).
4540 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4541 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4542 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4543 || (r_type == elfcpp::R_ARM_JUMP24)
4544 || (r_type == elfcpp::R_ARM_PLT32))
4545 {
4546 stub_type = (output_is_position_independent
4547 || should_force_pic_veneer)
4548 // PIC stubs.
4549 ? (may_use_blx
4550 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4551 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4552
4553 // non-PIC stubs.
4554 : (may_use_blx
4555 ? arm_stub_long_branch_any_any // V5T and above.
4556 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4557 }
4558 }
4559 else
4560 {
4561 // Arm to arm.
4562 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4563 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4564 {
4565 stub_type = (output_is_position_independent
4566 || should_force_pic_veneer)
4567 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4568 : arm_stub_long_branch_any_any; /// non-PIC.
4569 }
4570 }
4571 }
4572
4573 return stub_type;
4574 }
4575
4576 // Cortex_a8_stub methods.
4577
4578 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4579 // I is the position of the instruction template in the stub template.
4580
4581 uint16_t
4582 Cortex_a8_stub::do_thumb16_special(size_t i)
4583 {
4584 // The only use of this is to copy condition code from a conditional
4585 // branch being worked around to the corresponding conditional branch in
4586 // to the stub.
4587 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4588 && i == 0);
4589 uint16_t data = this->stub_template()->insns()[i].data();
4590 gold_assert((data & 0xff00U) == 0xd000U);
4591 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4592 return data;
4593 }
4594
4595 // Stub_factory methods.
4596
4597 Stub_factory::Stub_factory()
4598 {
4599 // The instruction template sequences are declared as static
4600 // objects and initialized first time the constructor runs.
4601
4602 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4603 // to reach the stub if necessary.
4604 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4605 {
4606 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4607 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4608 // dcd R_ARM_ABS32(X)
4609 };
4610
4611 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4612 // available.
4613 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4614 {
4615 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4616 Insn_template::arm_insn(0xe12fff1c), // bx ip
4617 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4618 // dcd R_ARM_ABS32(X)
4619 };
4620
4621 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4622 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4623 {
4624 Insn_template::thumb16_insn(0xb401), // push {r0}
4625 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4626 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4627 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4628 Insn_template::thumb16_insn(0x4760), // bx ip
4629 Insn_template::thumb16_insn(0xbf00), // nop
4630 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4631 // dcd R_ARM_ABS32(X)
4632 };
4633
4634 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4635 // allowed.
4636 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4637 {
4638 Insn_template::thumb16_insn(0x4778), // bx pc
4639 Insn_template::thumb16_insn(0x46c0), // nop
4640 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4641 Insn_template::arm_insn(0xe12fff1c), // bx ip
4642 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4643 // dcd R_ARM_ABS32(X)
4644 };
4645
4646 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4647 // available.
4648 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4649 {
4650 Insn_template::thumb16_insn(0x4778), // bx pc
4651 Insn_template::thumb16_insn(0x46c0), // nop
4652 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4653 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4654 // dcd R_ARM_ABS32(X)
4655 };
4656
4657 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4658 // one, when the destination is close enough.
4659 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4660 {
4661 Insn_template::thumb16_insn(0x4778), // bx pc
4662 Insn_template::thumb16_insn(0x46c0), // nop
4663 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4664 };
4665
4666 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4667 // blx to reach the stub if necessary.
4668 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4669 {
4670 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4671 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4672 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4673 // dcd R_ARM_REL32(X-4)
4674 };
4675
4676 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4677 // blx to reach the stub if necessary. We can not add into pc;
4678 // it is not guaranteed to mode switch (different in ARMv6 and
4679 // ARMv7).
4680 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4681 {
4682 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4683 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4684 Insn_template::arm_insn(0xe12fff1c), // bx ip
4685 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4686 // dcd R_ARM_REL32(X)
4687 };
4688
4689 // V4T ARM -> ARM long branch stub, PIC.
4690 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4691 {
4692 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4693 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4694 Insn_template::arm_insn(0xe12fff1c), // bx ip
4695 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4696 // dcd R_ARM_REL32(X)
4697 };
4698
4699 // V4T Thumb -> ARM long branch stub, PIC.
4700 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4701 {
4702 Insn_template::thumb16_insn(0x4778), // bx pc
4703 Insn_template::thumb16_insn(0x46c0), // nop
4704 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4705 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4706 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4707 // dcd R_ARM_REL32(X)
4708 };
4709
4710 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4711 // architectures.
4712 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4713 {
4714 Insn_template::thumb16_insn(0xb401), // push {r0}
4715 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4716 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4717 Insn_template::thumb16_insn(0x4484), // add ip, r0
4718 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4719 Insn_template::thumb16_insn(0x4760), // bx ip
4720 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4721 // dcd R_ARM_REL32(X)
4722 };
4723
4724 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4725 // allowed.
4726 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4727 {
4728 Insn_template::thumb16_insn(0x4778), // bx pc
4729 Insn_template::thumb16_insn(0x46c0), // nop
4730 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4731 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4732 Insn_template::arm_insn(0xe12fff1c), // bx ip
4733 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4734 // dcd R_ARM_REL32(X)
4735 };
4736
4737 // Cortex-A8 erratum-workaround stubs.
4738
4739 // Stub used for conditional branches (which may be beyond +/-1MB away,
4740 // so we can't use a conditional branch to reach this stub).
4741
4742 // original code:
4743 //
4744 // b<cond> X
4745 // after:
4746 //
4747 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4748 {
4749 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4750 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4751 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4752 // b.w X
4753 };
4754
4755 // Stub used for b.w and bl.w instructions.
4756
4757 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4758 {
4759 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4760 };
4761
4762 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4763 {
4764 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4765 };
4766
4767 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4768 // instruction (which switches to ARM mode) to point to this stub. Jump to
4769 // the real destination using an ARM-mode branch.
4770 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4771 {
4772 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4773 };
4774
4775 // Stub used to provide an interworking for R_ARM_V4BX relocation
4776 // (bx r[n] instruction).
4777 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4778 {
4779 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4780 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4781 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4782 };
4783
4784 // Fill in the stub template look-up table. Stub templates are constructed
4785 // per instance of Stub_factory for fast look-up without locking
4786 // in a thread-enabled environment.
4787
4788 this->stub_templates_[arm_stub_none] =
4789 new Stub_template(arm_stub_none, NULL, 0);
4790
4791 #define DEF_STUB(x) \
4792 do \
4793 { \
4794 size_t array_size \
4795 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4796 Stub_type type = arm_stub_##x; \
4797 this->stub_templates_[type] = \
4798 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4799 } \
4800 while (0);
4801
4802 DEF_STUBS
4803 #undef DEF_STUB
4804 }
4805
4806 // Stub_table methods.
4807
4808 // Remove all Cortex-A8 stub.
4809
4810 template<bool big_endian>
4811 void
4812 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4813 {
4814 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4815 p != this->cortex_a8_stubs_.end();
4816 ++p)
4817 delete p->second;
4818 this->cortex_a8_stubs_.clear();
4819 }
4820
4821 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4822
4823 template<bool big_endian>
4824 void
4825 Stub_table<big_endian>::relocate_stub(
4826 Stub* stub,
4827 const Relocate_info<32, big_endian>* relinfo,
4828 Target_arm<big_endian>* arm_target,
4829 Output_section* output_section,
4830 unsigned char* view,
4831 Arm_address address,
4832 section_size_type view_size)
4833 {
4834 const Stub_template* stub_template = stub->stub_template();
4835 if (stub_template->reloc_count() != 0)
4836 {
4837 // Adjust view to cover the stub only.
4838 section_size_type offset = stub->offset();
4839 section_size_type stub_size = stub_template->size();
4840 gold_assert(offset + stub_size <= view_size);
4841
4842 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4843 address + offset, stub_size);
4844 }
4845 }
4846
4847 // Relocate all stubs in this stub table.
4848
4849 template<bool big_endian>
4850 void
4851 Stub_table<big_endian>::relocate_stubs(
4852 const Relocate_info<32, big_endian>* relinfo,
4853 Target_arm<big_endian>* arm_target,
4854 Output_section* output_section,
4855 unsigned char* view,
4856 Arm_address address,
4857 section_size_type view_size)
4858 {
4859 // If we are passed a view bigger than the stub table's. we need to
4860 // adjust the view.
4861 gold_assert(address == this->address()
4862 && (view_size
4863 == static_cast<section_size_type>(this->data_size())));
4864
4865 // Relocate all relocation stubs.
4866 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4867 p != this->reloc_stubs_.end();
4868 ++p)
4869 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4870 address, view_size);
4871
4872 // Relocate all Cortex-A8 stubs.
4873 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4874 p != this->cortex_a8_stubs_.end();
4875 ++p)
4876 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4877 address, view_size);
4878
4879 // Relocate all ARM V4BX stubs.
4880 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4881 p != this->arm_v4bx_stubs_.end();
4882 ++p)
4883 {
4884 if (*p != NULL)
4885 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4886 address, view_size);
4887 }
4888 }
4889
4890 // Write out the stubs to file.
4891
4892 template<bool big_endian>
4893 void
4894 Stub_table<big_endian>::do_write(Output_file* of)
4895 {
4896 off_t offset = this->offset();
4897 const section_size_type oview_size =
4898 convert_to_section_size_type(this->data_size());
4899 unsigned char* const oview = of->get_output_view(offset, oview_size);
4900
4901 // Write relocation stubs.
4902 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4903 p != this->reloc_stubs_.end();
4904 ++p)
4905 {
4906 Reloc_stub* stub = p->second;
4907 Arm_address address = this->address() + stub->offset();
4908 gold_assert(address
4909 == align_address(address,
4910 stub->stub_template()->alignment()));
4911 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4912 big_endian);
4913 }
4914
4915 // Write Cortex-A8 stubs.
4916 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4917 p != this->cortex_a8_stubs_.end();
4918 ++p)
4919 {
4920 Cortex_a8_stub* stub = p->second;
4921 Arm_address address = this->address() + stub->offset();
4922 gold_assert(address
4923 == align_address(address,
4924 stub->stub_template()->alignment()));
4925 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4926 big_endian);
4927 }
4928
4929 // Write ARM V4BX relocation stubs.
4930 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4931 p != this->arm_v4bx_stubs_.end();
4932 ++p)
4933 {
4934 if (*p == NULL)
4935 continue;
4936
4937 Arm_address address = this->address() + (*p)->offset();
4938 gold_assert(address
4939 == align_address(address,
4940 (*p)->stub_template()->alignment()));
4941 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4942 big_endian);
4943 }
4944
4945 of->write_output_view(this->offset(), oview_size, oview);
4946 }
4947
4948 // Update the data size and address alignment of the stub table at the end
4949 // of a relaxation pass. Return true if either the data size or the
4950 // alignment changed in this relaxation pass.
4951
4952 template<bool big_endian>
4953 bool
4954 Stub_table<big_endian>::update_data_size_and_addralign()
4955 {
4956 // Go over all stubs in table to compute data size and address alignment.
4957 off_t size = this->reloc_stubs_size_;
4958 unsigned addralign = this->reloc_stubs_addralign_;
4959
4960 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4961 p != this->cortex_a8_stubs_.end();
4962 ++p)
4963 {
4964 const Stub_template* stub_template = p->second->stub_template();
4965 addralign = std::max(addralign, stub_template->alignment());
4966 size = (align_address(size, stub_template->alignment())
4967 + stub_template->size());
4968 }
4969
4970 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4971 p != this->arm_v4bx_stubs_.end();
4972 ++p)
4973 {
4974 if (*p == NULL)
4975 continue;
4976
4977 const Stub_template* stub_template = (*p)->stub_template();
4978 addralign = std::max(addralign, stub_template->alignment());
4979 size = (align_address(size, stub_template->alignment())
4980 + stub_template->size());
4981 }
4982
4983 // Check if either data size or alignment changed in this pass.
4984 // Update prev_data_size_ and prev_addralign_. These will be used
4985 // as the current data size and address alignment for the next pass.
4986 bool changed = size != this->prev_data_size_;
4987 this->prev_data_size_ = size;
4988
4989 if (addralign != this->prev_addralign_)
4990 changed = true;
4991 this->prev_addralign_ = addralign;
4992
4993 return changed;
4994 }
4995
4996 // Finalize the stubs. This sets the offsets of the stubs within the stub
4997 // table. It also marks all input sections needing Cortex-A8 workaround.
4998
4999 template<bool big_endian>
5000 void
5001 Stub_table<big_endian>::finalize_stubs()
5002 {
5003 off_t off = this->reloc_stubs_size_;
5004 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5005 p != this->cortex_a8_stubs_.end();
5006 ++p)
5007 {
5008 Cortex_a8_stub* stub = p->second;
5009 const Stub_template* stub_template = stub->stub_template();
5010 uint64_t stub_addralign = stub_template->alignment();
5011 off = align_address(off, stub_addralign);
5012 stub->set_offset(off);
5013 off += stub_template->size();
5014
5015 // Mark input section so that we can determine later if a code section
5016 // needs the Cortex-A8 workaround quickly.
5017 Arm_relobj<big_endian>* arm_relobj =
5018 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5019 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5020 }
5021
5022 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5023 p != this->arm_v4bx_stubs_.end();
5024 ++p)
5025 {
5026 if (*p == NULL)
5027 continue;
5028
5029 const Stub_template* stub_template = (*p)->stub_template();
5030 uint64_t stub_addralign = stub_template->alignment();
5031 off = align_address(off, stub_addralign);
5032 (*p)->set_offset(off);
5033 off += stub_template->size();
5034 }
5035
5036 gold_assert(off <= this->prev_data_size_);
5037 }
5038
5039 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5040 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5041 // of the address range seen by the linker.
5042
5043 template<bool big_endian>
5044 void
5045 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5046 Target_arm<big_endian>* arm_target,
5047 unsigned char* view,
5048 Arm_address view_address,
5049 section_size_type view_size)
5050 {
5051 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5052 for (Cortex_a8_stub_list::const_iterator p =
5053 this->cortex_a8_stubs_.lower_bound(view_address);
5054 ((p != this->cortex_a8_stubs_.end())
5055 && (p->first < (view_address + view_size)));
5056 ++p)
5057 {
5058 // We do not store the THUMB bit in the LSB of either the branch address
5059 // or the stub offset. There is no need to strip the LSB.
5060 Arm_address branch_address = p->first;
5061 const Cortex_a8_stub* stub = p->second;
5062 Arm_address stub_address = this->address() + stub->offset();
5063
5064 // Offset of the branch instruction relative to this view.
5065 section_size_type offset =
5066 convert_to_section_size_type(branch_address - view_address);
5067 gold_assert((offset + 4) <= view_size);
5068
5069 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5070 view + offset, branch_address);
5071 }
5072 }
5073
5074 // Arm_input_section methods.
5075
5076 // Initialize an Arm_input_section.
5077
5078 template<bool big_endian>
5079 void
5080 Arm_input_section<big_endian>::init()
5081 {
5082 Relobj* relobj = this->relobj();
5083 unsigned int shndx = this->shndx();
5084
5085 // We have to cache original size, alignment and contents to avoid locking
5086 // the original file.
5087 this->original_addralign_ =
5088 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5089
5090 // This is not efficient but we expect only a small number of relaxed
5091 // input sections for stubs.
5092 section_size_type section_size;
5093 const unsigned char* section_contents =
5094 relobj->section_contents(shndx, &section_size, false);
5095 this->original_size_ =
5096 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5097
5098 gold_assert(this->original_contents_ == NULL);
5099 this->original_contents_ = new unsigned char[section_size];
5100 memcpy(this->original_contents_, section_contents, section_size);
5101
5102 // We want to make this look like the original input section after
5103 // output sections are finalized.
5104 Output_section* os = relobj->output_section(shndx);
5105 off_t offset = relobj->output_section_offset(shndx);
5106 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5107 this->set_address(os->address() + offset);
5108 this->set_file_offset(os->offset() + offset);
5109
5110 this->set_current_data_size(this->original_size_);
5111 this->finalize_data_size();
5112 }
5113
5114 template<bool big_endian>
5115 void
5116 Arm_input_section<big_endian>::do_write(Output_file* of)
5117 {
5118 // We have to write out the original section content.
5119 gold_assert(this->original_contents_ != NULL);
5120 of->write(this->offset(), this->original_contents_,
5121 this->original_size_);
5122
5123 // If this owns a stub table and it is not empty, write it.
5124 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5125 this->stub_table_->write(of);
5126 }
5127
5128 // Finalize data size.
5129
5130 template<bool big_endian>
5131 void
5132 Arm_input_section<big_endian>::set_final_data_size()
5133 {
5134 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5135
5136 if (this->is_stub_table_owner())
5137 {
5138 this->stub_table_->finalize_data_size();
5139 off = align_address(off, this->stub_table_->addralign());
5140 off += this->stub_table_->data_size();
5141 }
5142 this->set_data_size(off);
5143 }
5144
5145 // Reset address and file offset.
5146
5147 template<bool big_endian>
5148 void
5149 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5150 {
5151 // Size of the original input section contents.
5152 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5153
5154 // If this is a stub table owner, account for the stub table size.
5155 if (this->is_stub_table_owner())
5156 {
5157 Stub_table<big_endian>* stub_table = this->stub_table_;
5158
5159 // Reset the stub table's address and file offset. The
5160 // current data size for child will be updated after that.
5161 stub_table_->reset_address_and_file_offset();
5162 off = align_address(off, stub_table_->addralign());
5163 off += stub_table->current_data_size();
5164 }
5165
5166 this->set_current_data_size(off);
5167 }
5168
5169 // Arm_exidx_cantunwind methods.
5170
5171 // Write this to Output file OF for a fixed endianness.
5172
5173 template<bool big_endian>
5174 void
5175 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5176 {
5177 off_t offset = this->offset();
5178 const section_size_type oview_size = 8;
5179 unsigned char* const oview = of->get_output_view(offset, oview_size);
5180
5181 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5182
5183 Output_section* os = this->relobj_->output_section(this->shndx_);
5184 gold_assert(os != NULL);
5185
5186 Arm_relobj<big_endian>* arm_relobj =
5187 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5188 Arm_address output_offset =
5189 arm_relobj->get_output_section_offset(this->shndx_);
5190 Arm_address section_start;
5191 section_size_type section_size;
5192
5193 // Find out the end of the text section referred by this.
5194 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5195 {
5196 section_start = os->address() + output_offset;
5197 const Arm_exidx_input_section* exidx_input_section =
5198 arm_relobj->exidx_input_section_by_link(this->shndx_);
5199 gold_assert(exidx_input_section != NULL);
5200 section_size =
5201 convert_to_section_size_type(exidx_input_section->text_size());
5202 }
5203 else
5204 {
5205 // Currently this only happens for a relaxed section.
5206 const Output_relaxed_input_section* poris =
5207 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5208 gold_assert(poris != NULL);
5209 section_start = poris->address();
5210 section_size = convert_to_section_size_type(poris->data_size());
5211 }
5212
5213 // We always append this to the end of an EXIDX section.
5214 Arm_address output_address = section_start + section_size;
5215
5216 // Write out the entry. The first word either points to the beginning
5217 // or after the end of a text section. The second word is the special
5218 // EXIDX_CANTUNWIND value.
5219 uint32_t prel31_offset = output_address - this->address();
5220 if (Bits<31>::has_overflow32(offset))
5221 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5222 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5223 prel31_offset & 0x7fffffffU);
5224 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5225 elfcpp::EXIDX_CANTUNWIND);
5226
5227 of->write_output_view(this->offset(), oview_size, oview);
5228 }
5229
5230 // Arm_exidx_merged_section methods.
5231
5232 // Constructor for Arm_exidx_merged_section.
5233 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5234 // SECTION_OFFSET_MAP points to a section offset map describing how
5235 // parts of the input section are mapped to output. DELETED_BYTES is
5236 // the number of bytes deleted from the EXIDX input section.
5237
5238 Arm_exidx_merged_section::Arm_exidx_merged_section(
5239 const Arm_exidx_input_section& exidx_input_section,
5240 const Arm_exidx_section_offset_map& section_offset_map,
5241 uint32_t deleted_bytes)
5242 : Output_relaxed_input_section(exidx_input_section.relobj(),
5243 exidx_input_section.shndx(),
5244 exidx_input_section.addralign()),
5245 exidx_input_section_(exidx_input_section),
5246 section_offset_map_(section_offset_map)
5247 {
5248 // If we retain or discard the whole EXIDX input section, we would
5249 // not be here.
5250 gold_assert(deleted_bytes != 0
5251 && deleted_bytes != this->exidx_input_section_.size());
5252
5253 // Fix size here so that we do not need to implement set_final_data_size.
5254 uint32_t size = exidx_input_section.size() - deleted_bytes;
5255 this->set_data_size(size);
5256 this->fix_data_size();
5257
5258 // Allocate buffer for section contents and build contents.
5259 this->section_contents_ = new unsigned char[size];
5260 }
5261
5262 // Build the contents of a merged EXIDX output section.
5263
5264 void
5265 Arm_exidx_merged_section::build_contents(
5266 const unsigned char* original_contents,
5267 section_size_type original_size)
5268 {
5269 // Go over spans of input offsets and write only those that are not
5270 // discarded.
5271 section_offset_type in_start = 0;
5272 section_offset_type out_start = 0;
5273 section_offset_type in_max =
5274 convert_types<section_offset_type>(original_size);
5275 section_offset_type out_max =
5276 convert_types<section_offset_type>(this->data_size());
5277 for (Arm_exidx_section_offset_map::const_iterator p =
5278 this->section_offset_map_.begin();
5279 p != this->section_offset_map_.end();
5280 ++p)
5281 {
5282 section_offset_type in_end = p->first;
5283 gold_assert(in_end >= in_start);
5284 section_offset_type out_end = p->second;
5285 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5286 if (out_end != -1)
5287 {
5288 size_t out_chunk_size =
5289 convert_types<size_t>(out_end - out_start + 1);
5290
5291 gold_assert(out_chunk_size == in_chunk_size
5292 && in_end < in_max && out_end < out_max);
5293
5294 memcpy(this->section_contents_ + out_start,
5295 original_contents + in_start,
5296 out_chunk_size);
5297 out_start += out_chunk_size;
5298 }
5299 in_start += in_chunk_size;
5300 }
5301 }
5302
5303 // Given an input OBJECT, an input section index SHNDX within that
5304 // object, and an OFFSET relative to the start of that input
5305 // section, return whether or not the corresponding offset within
5306 // the output section is known. If this function returns true, it
5307 // sets *POUTPUT to the output offset. The value -1 indicates that
5308 // this input offset is being discarded.
5309
5310 bool
5311 Arm_exidx_merged_section::do_output_offset(
5312 const Relobj* relobj,
5313 unsigned int shndx,
5314 section_offset_type offset,
5315 section_offset_type* poutput) const
5316 {
5317 // We only handle offsets for the original EXIDX input section.
5318 if (relobj != this->exidx_input_section_.relobj()
5319 || shndx != this->exidx_input_section_.shndx())
5320 return false;
5321
5322 section_offset_type section_size =
5323 convert_types<section_offset_type>(this->exidx_input_section_.size());
5324 if (offset < 0 || offset >= section_size)
5325 // Input offset is out of valid range.
5326 *poutput = -1;
5327 else
5328 {
5329 // We need to look up the section offset map to determine the output
5330 // offset. Find the reference point in map that is first offset
5331 // bigger than or equal to this offset.
5332 Arm_exidx_section_offset_map::const_iterator p =
5333 this->section_offset_map_.lower_bound(offset);
5334
5335 // The section offset maps are build such that this should not happen if
5336 // input offset is in the valid range.
5337 gold_assert(p != this->section_offset_map_.end());
5338
5339 // We need to check if this is dropped.
5340 section_offset_type ref = p->first;
5341 section_offset_type mapped_ref = p->second;
5342
5343 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5344 // Offset is present in output.
5345 *poutput = mapped_ref + (offset - ref);
5346 else
5347 // Offset is discarded owing to EXIDX entry merging.
5348 *poutput = -1;
5349 }
5350
5351 return true;
5352 }
5353
5354 // Write this to output file OF.
5355
5356 void
5357 Arm_exidx_merged_section::do_write(Output_file* of)
5358 {
5359 off_t offset = this->offset();
5360 const section_size_type oview_size = this->data_size();
5361 unsigned char* const oview = of->get_output_view(offset, oview_size);
5362
5363 Output_section* os = this->relobj()->output_section(this->shndx());
5364 gold_assert(os != NULL);
5365
5366 memcpy(oview, this->section_contents_, oview_size);
5367 of->write_output_view(this->offset(), oview_size, oview);
5368 }
5369
5370 // Arm_exidx_fixup methods.
5371
5372 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5373 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5374 // points to the end of the last seen EXIDX section.
5375
5376 void
5377 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5378 {
5379 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5380 && this->last_input_section_ != NULL)
5381 {
5382 Relobj* relobj = this->last_input_section_->relobj();
5383 unsigned int text_shndx = this->last_input_section_->link();
5384 Arm_exidx_cantunwind* cantunwind =
5385 new Arm_exidx_cantunwind(relobj, text_shndx);
5386 this->exidx_output_section_->add_output_section_data(cantunwind);
5387 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5388 }
5389 }
5390
5391 // Process an EXIDX section entry in input. Return whether this entry
5392 // can be deleted in the output. SECOND_WORD in the second word of the
5393 // EXIDX entry.
5394
5395 bool
5396 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5397 {
5398 bool delete_entry;
5399 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5400 {
5401 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5402 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5403 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5404 }
5405 else if ((second_word & 0x80000000) != 0)
5406 {
5407 // Inlined unwinding data. Merge if equal to previous.
5408 delete_entry = (merge_exidx_entries_
5409 && this->last_unwind_type_ == UT_INLINED_ENTRY
5410 && this->last_inlined_entry_ == second_word);
5411 this->last_unwind_type_ = UT_INLINED_ENTRY;
5412 this->last_inlined_entry_ = second_word;
5413 }
5414 else
5415 {
5416 // Normal table entry. In theory we could merge these too,
5417 // but duplicate entries are likely to be much less common.
5418 delete_entry = false;
5419 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5420 }
5421 return delete_entry;
5422 }
5423
5424 // Update the current section offset map during EXIDX section fix-up.
5425 // If there is no map, create one. INPUT_OFFSET is the offset of a
5426 // reference point, DELETED_BYTES is the number of deleted by in the
5427 // section so far. If DELETE_ENTRY is true, the reference point and
5428 // all offsets after the previous reference point are discarded.
5429
5430 void
5431 Arm_exidx_fixup::update_offset_map(
5432 section_offset_type input_offset,
5433 section_size_type deleted_bytes,
5434 bool delete_entry)
5435 {
5436 if (this->section_offset_map_ == NULL)
5437 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5438 section_offset_type output_offset;
5439 if (delete_entry)
5440 output_offset = Arm_exidx_input_section::invalid_offset;
5441 else
5442 output_offset = input_offset - deleted_bytes;
5443 (*this->section_offset_map_)[input_offset] = output_offset;
5444 }
5445
5446 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5447 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5448 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5449 // If some entries are merged, also store a pointer to a newly created
5450 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5451 // owns the map and is responsible for releasing it after use.
5452
5453 template<bool big_endian>
5454 uint32_t
5455 Arm_exidx_fixup::process_exidx_section(
5456 const Arm_exidx_input_section* exidx_input_section,
5457 const unsigned char* section_contents,
5458 section_size_type section_size,
5459 Arm_exidx_section_offset_map** psection_offset_map)
5460 {
5461 Relobj* relobj = exidx_input_section->relobj();
5462 unsigned shndx = exidx_input_section->shndx();
5463
5464 if ((section_size % 8) != 0)
5465 {
5466 // Something is wrong with this section. Better not touch it.
5467 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5468 relobj->name().c_str(), shndx);
5469 this->last_input_section_ = exidx_input_section;
5470 this->last_unwind_type_ = UT_NONE;
5471 return 0;
5472 }
5473
5474 uint32_t deleted_bytes = 0;
5475 bool prev_delete_entry = false;
5476 gold_assert(this->section_offset_map_ == NULL);
5477
5478 for (section_size_type i = 0; i < section_size; i += 8)
5479 {
5480 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5481 const Valtype* wv =
5482 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5483 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5484
5485 bool delete_entry = this->process_exidx_entry(second_word);
5486
5487 // Entry deletion causes changes in output offsets. We use a std::map
5488 // to record these. And entry (x, y) means input offset x
5489 // is mapped to output offset y. If y is invalid_offset, then x is
5490 // dropped in the output. Because of the way std::map::lower_bound
5491 // works, we record the last offset in a region w.r.t to keeping or
5492 // dropping. If there is no entry (x0, y0) for an input offset x0,
5493 // the output offset y0 of it is determined by the output offset y1 of
5494 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5495 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5496 // y0 is also -1.
5497 if (delete_entry != prev_delete_entry && i != 0)
5498 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5499
5500 // Update total deleted bytes for this entry.
5501 if (delete_entry)
5502 deleted_bytes += 8;
5503
5504 prev_delete_entry = delete_entry;
5505 }
5506
5507 // If section offset map is not NULL, make an entry for the end of
5508 // section.
5509 if (this->section_offset_map_ != NULL)
5510 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5511
5512 *psection_offset_map = this->section_offset_map_;
5513 this->section_offset_map_ = NULL;
5514 this->last_input_section_ = exidx_input_section;
5515
5516 // Set the first output text section so that we can link the EXIDX output
5517 // section to it. Ignore any EXIDX input section that is completely merged.
5518 if (this->first_output_text_section_ == NULL
5519 && deleted_bytes != section_size)
5520 {
5521 unsigned int link = exidx_input_section->link();
5522 Output_section* os = relobj->output_section(link);
5523 gold_assert(os != NULL);
5524 this->first_output_text_section_ = os;
5525 }
5526
5527 return deleted_bytes;
5528 }
5529
5530 // Arm_output_section methods.
5531
5532 // Create a stub group for input sections from BEGIN to END. OWNER
5533 // points to the input section to be the owner a new stub table.
5534
5535 template<bool big_endian>
5536 void
5537 Arm_output_section<big_endian>::create_stub_group(
5538 Input_section_list::const_iterator begin,
5539 Input_section_list::const_iterator end,
5540 Input_section_list::const_iterator owner,
5541 Target_arm<big_endian>* target,
5542 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5543 const Task* task)
5544 {
5545 // We use a different kind of relaxed section in an EXIDX section.
5546 // The static casting from Output_relaxed_input_section to
5547 // Arm_input_section is invalid in an EXIDX section. We are okay
5548 // because we should not be calling this for an EXIDX section.
5549 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5550
5551 // Currently we convert ordinary input sections into relaxed sections only
5552 // at this point but we may want to support creating relaxed input section
5553 // very early. So we check here to see if owner is already a relaxed
5554 // section.
5555
5556 Arm_input_section<big_endian>* arm_input_section;
5557 if (owner->is_relaxed_input_section())
5558 {
5559 arm_input_section =
5560 Arm_input_section<big_endian>::as_arm_input_section(
5561 owner->relaxed_input_section());
5562 }
5563 else
5564 {
5565 gold_assert(owner->is_input_section());
5566 // Create a new relaxed input section. We need to lock the original
5567 // file.
5568 Task_lock_obj<Object> tl(task, owner->relobj());
5569 arm_input_section =
5570 target->new_arm_input_section(owner->relobj(), owner->shndx());
5571 new_relaxed_sections->push_back(arm_input_section);
5572 }
5573
5574 // Create a stub table.
5575 Stub_table<big_endian>* stub_table =
5576 target->new_stub_table(arm_input_section);
5577
5578 arm_input_section->set_stub_table(stub_table);
5579
5580 Input_section_list::const_iterator p = begin;
5581 Input_section_list::const_iterator prev_p;
5582
5583 // Look for input sections or relaxed input sections in [begin ... end].
5584 do
5585 {
5586 if (p->is_input_section() || p->is_relaxed_input_section())
5587 {
5588 // The stub table information for input sections live
5589 // in their objects.
5590 Arm_relobj<big_endian>* arm_relobj =
5591 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5592 arm_relobj->set_stub_table(p->shndx(), stub_table);
5593 }
5594 prev_p = p++;
5595 }
5596 while (prev_p != end);
5597 }
5598
5599 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5600 // of stub groups. We grow a stub group by adding input section until the
5601 // size is just below GROUP_SIZE. The last input section will be converted
5602 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5603 // input section after the stub table, effectively double the group size.
5604 //
5605 // This is similar to the group_sections() function in elf32-arm.c but is
5606 // implemented differently.
5607
5608 template<bool big_endian>
5609 void
5610 Arm_output_section<big_endian>::group_sections(
5611 section_size_type group_size,
5612 bool stubs_always_after_branch,
5613 Target_arm<big_endian>* target,
5614 const Task* task)
5615 {
5616 // We only care about sections containing code.
5617 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5618 return;
5619
5620 // States for grouping.
5621 typedef enum
5622 {
5623 // No group is being built.
5624 NO_GROUP,
5625 // A group is being built but the stub table is not found yet.
5626 // We keep group a stub group until the size is just under GROUP_SIZE.
5627 // The last input section in the group will be used as the stub table.
5628 FINDING_STUB_SECTION,
5629 // A group is being built and we have already found a stub table.
5630 // We enter this state to grow a stub group by adding input section
5631 // after the stub table. This effectively doubles the group size.
5632 HAS_STUB_SECTION
5633 } State;
5634
5635 // Any newly created relaxed sections are stored here.
5636 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5637
5638 State state = NO_GROUP;
5639 section_size_type off = 0;
5640 section_size_type group_begin_offset = 0;
5641 section_size_type group_end_offset = 0;
5642 section_size_type stub_table_end_offset = 0;
5643 Input_section_list::const_iterator group_begin =
5644 this->input_sections().end();
5645 Input_section_list::const_iterator stub_table =
5646 this->input_sections().end();
5647 Input_section_list::const_iterator group_end = this->input_sections().end();
5648 for (Input_section_list::const_iterator p = this->input_sections().begin();
5649 p != this->input_sections().end();
5650 ++p)
5651 {
5652 section_size_type section_begin_offset =
5653 align_address(off, p->addralign());
5654 section_size_type section_end_offset =
5655 section_begin_offset + p->data_size();
5656
5657 // Check to see if we should group the previously seen sections.
5658 switch (state)
5659 {
5660 case NO_GROUP:
5661 break;
5662
5663 case FINDING_STUB_SECTION:
5664 // Adding this section makes the group larger than GROUP_SIZE.
5665 if (section_end_offset - group_begin_offset >= group_size)
5666 {
5667 if (stubs_always_after_branch)
5668 {
5669 gold_assert(group_end != this->input_sections().end());
5670 this->create_stub_group(group_begin, group_end, group_end,
5671 target, &new_relaxed_sections,
5672 task);
5673 state = NO_GROUP;
5674 }
5675 else
5676 {
5677 // But wait, there's more! Input sections up to
5678 // stub_group_size bytes after the stub table can be
5679 // handled by it too.
5680 state = HAS_STUB_SECTION;
5681 stub_table = group_end;
5682 stub_table_end_offset = group_end_offset;
5683 }
5684 }
5685 break;
5686
5687 case HAS_STUB_SECTION:
5688 // Adding this section makes the post stub-section group larger
5689 // than GROUP_SIZE.
5690 if (section_end_offset - stub_table_end_offset >= group_size)
5691 {
5692 gold_assert(group_end != this->input_sections().end());
5693 this->create_stub_group(group_begin, group_end, stub_table,
5694 target, &new_relaxed_sections, task);
5695 state = NO_GROUP;
5696 }
5697 break;
5698
5699 default:
5700 gold_unreachable();
5701 }
5702
5703 // If we see an input section and currently there is no group, start
5704 // a new one. Skip any empty sections. We look at the data size
5705 // instead of calling p->relobj()->section_size() to avoid locking.
5706 if ((p->is_input_section() || p->is_relaxed_input_section())
5707 && (p->data_size() != 0))
5708 {
5709 if (state == NO_GROUP)
5710 {
5711 state = FINDING_STUB_SECTION;
5712 group_begin = p;
5713 group_begin_offset = section_begin_offset;
5714 }
5715
5716 // Keep track of the last input section seen.
5717 group_end = p;
5718 group_end_offset = section_end_offset;
5719 }
5720
5721 off = section_end_offset;
5722 }
5723
5724 // Create a stub group for any ungrouped sections.
5725 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5726 {
5727 gold_assert(group_end != this->input_sections().end());
5728 this->create_stub_group(group_begin, group_end,
5729 (state == FINDING_STUB_SECTION
5730 ? group_end
5731 : stub_table),
5732 target, &new_relaxed_sections, task);
5733 }
5734
5735 // Convert input section into relaxed input section in a batch.
5736 if (!new_relaxed_sections.empty())
5737 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5738
5739 // Update the section offsets
5740 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5741 {
5742 Arm_relobj<big_endian>* arm_relobj =
5743 Arm_relobj<big_endian>::as_arm_relobj(
5744 new_relaxed_sections[i]->relobj());
5745 unsigned int shndx = new_relaxed_sections[i]->shndx();
5746 // Tell Arm_relobj that this input section is converted.
5747 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5748 }
5749 }
5750
5751 // Append non empty text sections in this to LIST in ascending
5752 // order of their position in this.
5753
5754 template<bool big_endian>
5755 void
5756 Arm_output_section<big_endian>::append_text_sections_to_list(
5757 Text_section_list* list)
5758 {
5759 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5760
5761 for (Input_section_list::const_iterator p = this->input_sections().begin();
5762 p != this->input_sections().end();
5763 ++p)
5764 {
5765 // We only care about plain or relaxed input sections. We also
5766 // ignore any merged sections.
5767 if (p->is_input_section() || p->is_relaxed_input_section())
5768 list->push_back(Text_section_list::value_type(p->relobj(),
5769 p->shndx()));
5770 }
5771 }
5772
5773 template<bool big_endian>
5774 void
5775 Arm_output_section<big_endian>::fix_exidx_coverage(
5776 Layout* layout,
5777 const Text_section_list& sorted_text_sections,
5778 Symbol_table* symtab,
5779 bool merge_exidx_entries,
5780 const Task* task)
5781 {
5782 // We should only do this for the EXIDX output section.
5783 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5784
5785 // We don't want the relaxation loop to undo these changes, so we discard
5786 // the current saved states and take another one after the fix-up.
5787 this->discard_states();
5788
5789 // Remove all input sections.
5790 uint64_t address = this->address();
5791 typedef std::list<Output_section::Input_section> Input_section_list;
5792 Input_section_list input_sections;
5793 this->reset_address_and_file_offset();
5794 this->get_input_sections(address, std::string(""), &input_sections);
5795
5796 if (!this->input_sections().empty())
5797 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5798
5799 // Go through all the known input sections and record them.
5800 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5801 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5802 Section_id_hash> Text_to_exidx_map;
5803 Text_to_exidx_map text_to_exidx_map;
5804 for (Input_section_list::const_iterator p = input_sections.begin();
5805 p != input_sections.end();
5806 ++p)
5807 {
5808 // This should never happen. At this point, we should only see
5809 // plain EXIDX input sections.
5810 gold_assert(!p->is_relaxed_input_section());
5811 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5812 }
5813
5814 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5815
5816 // Go over the sorted text sections.
5817 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5818 Section_id_set processed_input_sections;
5819 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5820 p != sorted_text_sections.end();
5821 ++p)
5822 {
5823 Relobj* relobj = p->first;
5824 unsigned int shndx = p->second;
5825
5826 Arm_relobj<big_endian>* arm_relobj =
5827 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5828 const Arm_exidx_input_section* exidx_input_section =
5829 arm_relobj->exidx_input_section_by_link(shndx);
5830
5831 // If this text section has no EXIDX section or if the EXIDX section
5832 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5833 // of the last seen EXIDX section.
5834 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5835 {
5836 exidx_fixup.add_exidx_cantunwind_as_needed();
5837 continue;
5838 }
5839
5840 Relobj* exidx_relobj = exidx_input_section->relobj();
5841 unsigned int exidx_shndx = exidx_input_section->shndx();
5842 Section_id sid(exidx_relobj, exidx_shndx);
5843 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5844 if (iter == text_to_exidx_map.end())
5845 {
5846 // This is odd. We have not seen this EXIDX input section before.
5847 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5848 // issue a warning instead. We assume the user knows what he
5849 // or she is doing. Otherwise, this is an error.
5850 if (layout->script_options()->saw_sections_clause())
5851 gold_warning(_("unwinding may not work because EXIDX input section"
5852 " %u of %s is not in EXIDX output section"),
5853 exidx_shndx, exidx_relobj->name().c_str());
5854 else
5855 gold_error(_("unwinding may not work because EXIDX input section"
5856 " %u of %s is not in EXIDX output section"),
5857 exidx_shndx, exidx_relobj->name().c_str());
5858
5859 exidx_fixup.add_exidx_cantunwind_as_needed();
5860 continue;
5861 }
5862
5863 // We need to access the contents of the EXIDX section, lock the
5864 // object here.
5865 Task_lock_obj<Object> tl(task, exidx_relobj);
5866 section_size_type exidx_size;
5867 const unsigned char* exidx_contents =
5868 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5869
5870 // Fix up coverage and append input section to output data list.
5871 Arm_exidx_section_offset_map* section_offset_map = NULL;
5872 uint32_t deleted_bytes =
5873 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5874 exidx_contents,
5875 exidx_size,
5876 &section_offset_map);
5877
5878 if (deleted_bytes == exidx_input_section->size())
5879 {
5880 // The whole EXIDX section got merged. Remove it from output.
5881 gold_assert(section_offset_map == NULL);
5882 exidx_relobj->set_output_section(exidx_shndx, NULL);
5883
5884 // All local symbols defined in this input section will be dropped.
5885 // We need to adjust output local symbol count.
5886 arm_relobj->set_output_local_symbol_count_needs_update();
5887 }
5888 else if (deleted_bytes > 0)
5889 {
5890 // Some entries are merged. We need to convert this EXIDX input
5891 // section into a relaxed section.
5892 gold_assert(section_offset_map != NULL);
5893
5894 Arm_exidx_merged_section* merged_section =
5895 new Arm_exidx_merged_section(*exidx_input_section,
5896 *section_offset_map, deleted_bytes);
5897 merged_section->build_contents(exidx_contents, exidx_size);
5898
5899 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5900 this->add_relaxed_input_section(layout, merged_section, secname);
5901 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5902
5903 // All local symbols defined in discarded portions of this input
5904 // section will be dropped. We need to adjust output local symbol
5905 // count.
5906 arm_relobj->set_output_local_symbol_count_needs_update();
5907 }
5908 else
5909 {
5910 // Just add back the EXIDX input section.
5911 gold_assert(section_offset_map == NULL);
5912 const Output_section::Input_section* pis = iter->second;
5913 gold_assert(pis->is_input_section());
5914 this->add_script_input_section(*pis);
5915 }
5916
5917 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5918 }
5919
5920 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5921 exidx_fixup.add_exidx_cantunwind_as_needed();
5922
5923 // Remove any known EXIDX input sections that are not processed.
5924 for (Input_section_list::const_iterator p = input_sections.begin();
5925 p != input_sections.end();
5926 ++p)
5927 {
5928 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5929 == processed_input_sections.end())
5930 {
5931 // We discard a known EXIDX section because its linked
5932 // text section has been folded by ICF. We also discard an
5933 // EXIDX section with error, the output does not matter in this
5934 // case. We do this to avoid triggering asserts.
5935 Arm_relobj<big_endian>* arm_relobj =
5936 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5937 const Arm_exidx_input_section* exidx_input_section =
5938 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5939 gold_assert(exidx_input_section != NULL);
5940 if (!exidx_input_section->has_errors())
5941 {
5942 unsigned int text_shndx = exidx_input_section->link();
5943 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5944 }
5945
5946 // Remove this from link. We also need to recount the
5947 // local symbols.
5948 p->relobj()->set_output_section(p->shndx(), NULL);
5949 arm_relobj->set_output_local_symbol_count_needs_update();
5950 }
5951 }
5952
5953 // Link exidx output section to the first seen output section and
5954 // set correct entry size.
5955 this->set_link_section(exidx_fixup.first_output_text_section());
5956 this->set_entsize(8);
5957
5958 // Make changes permanent.
5959 this->save_states();
5960 this->set_section_offsets_need_adjustment();
5961 }
5962
5963 // Link EXIDX output sections to text output sections.
5964
5965 template<bool big_endian>
5966 void
5967 Arm_output_section<big_endian>::set_exidx_section_link()
5968 {
5969 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5970 if (!this->input_sections().empty())
5971 {
5972 Input_section_list::const_iterator p = this->input_sections().begin();
5973 Arm_relobj<big_endian>* arm_relobj =
5974 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5975 unsigned exidx_shndx = p->shndx();
5976 const Arm_exidx_input_section* exidx_input_section =
5977 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5978 gold_assert(exidx_input_section != NULL);
5979 unsigned int text_shndx = exidx_input_section->link();
5980 Output_section* os = arm_relobj->output_section(text_shndx);
5981 this->set_link_section(os);
5982 }
5983 }
5984
5985 // Arm_relobj methods.
5986
5987 // Determine if an input section is scannable for stub processing. SHDR is
5988 // the header of the section and SHNDX is the section index. OS is the output
5989 // section for the input section and SYMTAB is the global symbol table used to
5990 // look up ICF information.
5991
5992 template<bool big_endian>
5993 bool
5994 Arm_relobj<big_endian>::section_is_scannable(
5995 const elfcpp::Shdr<32, big_endian>& shdr,
5996 unsigned int shndx,
5997 const Output_section* os,
5998 const Symbol_table* symtab)
5999 {
6000 // Skip any empty sections, unallocated sections or sections whose
6001 // type are not SHT_PROGBITS.
6002 if (shdr.get_sh_size() == 0
6003 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6004 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6005 return false;
6006
6007 // Skip any discarded or ICF'ed sections.
6008 if (os == NULL || symtab->is_section_folded(this, shndx))
6009 return false;
6010
6011 // If this requires special offset handling, check to see if it is
6012 // a relaxed section. If this is not, then it is a merged section that
6013 // we cannot handle.
6014 if (this->is_output_section_offset_invalid(shndx))
6015 {
6016 const Output_relaxed_input_section* poris =
6017 os->find_relaxed_input_section(this, shndx);
6018 if (poris == NULL)
6019 return false;
6020 }
6021
6022 return true;
6023 }
6024
6025 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6026 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6027
6028 template<bool big_endian>
6029 bool
6030 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6031 const elfcpp::Shdr<32, big_endian>& shdr,
6032 const Relobj::Output_sections& out_sections,
6033 const Symbol_table* symtab,
6034 const unsigned char* pshdrs)
6035 {
6036 unsigned int sh_type = shdr.get_sh_type();
6037 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6038 return false;
6039
6040 // Ignore empty section.
6041 off_t sh_size = shdr.get_sh_size();
6042 if (sh_size == 0)
6043 return false;
6044
6045 // Ignore reloc section with unexpected symbol table. The
6046 // error will be reported in the final link.
6047 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6048 return false;
6049
6050 unsigned int reloc_size;
6051 if (sh_type == elfcpp::SHT_REL)
6052 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6053 else
6054 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6055
6056 // Ignore reloc section with unexpected entsize or uneven size.
6057 // The error will be reported in the final link.
6058 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6059 return false;
6060
6061 // Ignore reloc section with bad info. This error will be
6062 // reported in the final link.
6063 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6064 if (index >= this->shnum())
6065 return false;
6066
6067 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6068 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6069 return this->section_is_scannable(text_shdr, index,
6070 out_sections[index], symtab);
6071 }
6072
6073 // Return the output address of either a plain input section or a relaxed
6074 // input section. SHNDX is the section index. We define and use this
6075 // instead of calling Output_section::output_address because that is slow
6076 // for large output.
6077
6078 template<bool big_endian>
6079 Arm_address
6080 Arm_relobj<big_endian>::simple_input_section_output_address(
6081 unsigned int shndx,
6082 Output_section* os)
6083 {
6084 if (this->is_output_section_offset_invalid(shndx))
6085 {
6086 const Output_relaxed_input_section* poris =
6087 os->find_relaxed_input_section(this, shndx);
6088 // We do not handle merged sections here.
6089 gold_assert(poris != NULL);
6090 return poris->address();
6091 }
6092 else
6093 return os->address() + this->get_output_section_offset(shndx);
6094 }
6095
6096 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6097 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6098
6099 template<bool big_endian>
6100 bool
6101 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6102 const elfcpp::Shdr<32, big_endian>& shdr,
6103 unsigned int shndx,
6104 Output_section* os,
6105 const Symbol_table* symtab)
6106 {
6107 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6108 return false;
6109
6110 // If the section does not cross any 4K-boundaries, it does not need to
6111 // be scanned.
6112 Arm_address address = this->simple_input_section_output_address(shndx, os);
6113 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6114 return false;
6115
6116 return true;
6117 }
6118
6119 // Scan a section for Cortex-A8 workaround.
6120
6121 template<bool big_endian>
6122 void
6123 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6124 const elfcpp::Shdr<32, big_endian>& shdr,
6125 unsigned int shndx,
6126 Output_section* os,
6127 Target_arm<big_endian>* arm_target)
6128 {
6129 // Look for the first mapping symbol in this section. It should be
6130 // at (shndx, 0).
6131 Mapping_symbol_position section_start(shndx, 0);
6132 typename Mapping_symbols_info::const_iterator p =
6133 this->mapping_symbols_info_.lower_bound(section_start);
6134
6135 // There are no mapping symbols for this section. Treat it as a data-only
6136 // section. Issue a warning if section is marked as containing
6137 // instructions.
6138 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6139 {
6140 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6141 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6142 "erratum because it has no mapping symbols."),
6143 shndx, this->name().c_str());
6144 return;
6145 }
6146
6147 Arm_address output_address =
6148 this->simple_input_section_output_address(shndx, os);
6149
6150 // Get the section contents.
6151 section_size_type input_view_size = 0;
6152 const unsigned char* input_view =
6153 this->section_contents(shndx, &input_view_size, false);
6154
6155 // We need to go through the mapping symbols to determine what to
6156 // scan. There are two reasons. First, we should look at THUMB code and
6157 // THUMB code only. Second, we only want to look at the 4K-page boundary
6158 // to speed up the scanning.
6159
6160 while (p != this->mapping_symbols_info_.end()
6161 && p->first.first == shndx)
6162 {
6163 typename Mapping_symbols_info::const_iterator next =
6164 this->mapping_symbols_info_.upper_bound(p->first);
6165
6166 // Only scan part of a section with THUMB code.
6167 if (p->second == 't')
6168 {
6169 // Determine the end of this range.
6170 section_size_type span_start =
6171 convert_to_section_size_type(p->first.second);
6172 section_size_type span_end;
6173 if (next != this->mapping_symbols_info_.end()
6174 && next->first.first == shndx)
6175 span_end = convert_to_section_size_type(next->first.second);
6176 else
6177 span_end = convert_to_section_size_type(shdr.get_sh_size());
6178
6179 if (((span_start + output_address) & ~0xfffUL)
6180 != ((span_end + output_address - 1) & ~0xfffUL))
6181 {
6182 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6183 span_start, span_end,
6184 input_view,
6185 output_address);
6186 }
6187 }
6188
6189 p = next;
6190 }
6191 }
6192
6193 // Scan relocations for stub generation.
6194
6195 template<bool big_endian>
6196 void
6197 Arm_relobj<big_endian>::scan_sections_for_stubs(
6198 Target_arm<big_endian>* arm_target,
6199 const Symbol_table* symtab,
6200 const Layout* layout)
6201 {
6202 unsigned int shnum = this->shnum();
6203 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6204
6205 // Read the section headers.
6206 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6207 shnum * shdr_size,
6208 true, true);
6209
6210 // To speed up processing, we set up hash tables for fast lookup of
6211 // input offsets to output addresses.
6212 this->initialize_input_to_output_maps();
6213
6214 const Relobj::Output_sections& out_sections(this->output_sections());
6215
6216 Relocate_info<32, big_endian> relinfo;
6217 relinfo.symtab = symtab;
6218 relinfo.layout = layout;
6219 relinfo.object = this;
6220
6221 // Do relocation stubs scanning.
6222 const unsigned char* p = pshdrs + shdr_size;
6223 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6224 {
6225 const elfcpp::Shdr<32, big_endian> shdr(p);
6226 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6227 pshdrs))
6228 {
6229 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6230 Arm_address output_offset = this->get_output_section_offset(index);
6231 Arm_address output_address;
6232 if (output_offset != invalid_address)
6233 output_address = out_sections[index]->address() + output_offset;
6234 else
6235 {
6236 // Currently this only happens for a relaxed section.
6237 const Output_relaxed_input_section* poris =
6238 out_sections[index]->find_relaxed_input_section(this, index);
6239 gold_assert(poris != NULL);
6240 output_address = poris->address();
6241 }
6242
6243 // Get the relocations.
6244 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6245 shdr.get_sh_size(),
6246 true, false);
6247
6248 // Get the section contents. This does work for the case in which
6249 // we modify the contents of an input section. We need to pass the
6250 // output view under such circumstances.
6251 section_size_type input_view_size = 0;
6252 const unsigned char* input_view =
6253 this->section_contents(index, &input_view_size, false);
6254
6255 relinfo.reloc_shndx = i;
6256 relinfo.data_shndx = index;
6257 unsigned int sh_type = shdr.get_sh_type();
6258 unsigned int reloc_size;
6259 if (sh_type == elfcpp::SHT_REL)
6260 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6261 else
6262 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6263
6264 Output_section* os = out_sections[index];
6265 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6266 shdr.get_sh_size() / reloc_size,
6267 os,
6268 output_offset == invalid_address,
6269 input_view, output_address,
6270 input_view_size);
6271 }
6272 }
6273
6274 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6275 // after its relocation section, if there is one, is processed for
6276 // relocation stubs. Merging this loop with the one above would have been
6277 // complicated since we would have had to make sure that relocation stub
6278 // scanning is done first.
6279 if (arm_target->fix_cortex_a8())
6280 {
6281 const unsigned char* p = pshdrs + shdr_size;
6282 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6283 {
6284 const elfcpp::Shdr<32, big_endian> shdr(p);
6285 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6286 out_sections[i],
6287 symtab))
6288 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6289 arm_target);
6290 }
6291 }
6292
6293 // After we've done the relocations, we release the hash tables,
6294 // since we no longer need them.
6295 this->free_input_to_output_maps();
6296 }
6297
6298 // Count the local symbols. The ARM backend needs to know if a symbol
6299 // is a THUMB function or not. For global symbols, it is easy because
6300 // the Symbol object keeps the ELF symbol type. For local symbol it is
6301 // harder because we cannot access this information. So we override the
6302 // do_count_local_symbol in parent and scan local symbols to mark
6303 // THUMB functions. This is not the most efficient way but I do not want to
6304 // slow down other ports by calling a per symbol target hook inside
6305 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6306
6307 template<bool big_endian>
6308 void
6309 Arm_relobj<big_endian>::do_count_local_symbols(
6310 Stringpool_template<char>* pool,
6311 Stringpool_template<char>* dynpool)
6312 {
6313 // We need to fix-up the values of any local symbols whose type are
6314 // STT_ARM_TFUNC.
6315
6316 // Ask parent to count the local symbols.
6317 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6318 const unsigned int loccount = this->local_symbol_count();
6319 if (loccount == 0)
6320 return;
6321
6322 // Initialize the thumb function bit-vector.
6323 std::vector<bool> empty_vector(loccount, false);
6324 this->local_symbol_is_thumb_function_.swap(empty_vector);
6325
6326 // Read the symbol table section header.
6327 const unsigned int symtab_shndx = this->symtab_shndx();
6328 elfcpp::Shdr<32, big_endian>
6329 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6330 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6331
6332 // Read the local symbols.
6333 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6334 gold_assert(loccount == symtabshdr.get_sh_info());
6335 off_t locsize = loccount * sym_size;
6336 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6337 locsize, true, true);
6338
6339 // For mapping symbol processing, we need to read the symbol names.
6340 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6341 if (strtab_shndx >= this->shnum())
6342 {
6343 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6344 return;
6345 }
6346
6347 elfcpp::Shdr<32, big_endian>
6348 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6349 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6350 {
6351 this->error(_("symbol table name section has wrong type: %u"),
6352 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6353 return;
6354 }
6355 const char* pnames =
6356 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6357 strtabshdr.get_sh_size(),
6358 false, false));
6359
6360 // Loop over the local symbols and mark any local symbols pointing
6361 // to THUMB functions.
6362
6363 // Skip the first dummy symbol.
6364 psyms += sym_size;
6365 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6366 this->local_values();
6367 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6368 {
6369 elfcpp::Sym<32, big_endian> sym(psyms);
6370 elfcpp::STT st_type = sym.get_st_type();
6371 Symbol_value<32>& lv((*plocal_values)[i]);
6372 Arm_address input_value = lv.input_value();
6373
6374 // Check to see if this is a mapping symbol.
6375 const char* sym_name = pnames + sym.get_st_name();
6376 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6377 {
6378 bool is_ordinary;
6379 unsigned int input_shndx =
6380 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6381 gold_assert(is_ordinary);
6382
6383 // Strip of LSB in case this is a THUMB symbol.
6384 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6385 this->mapping_symbols_info_[msp] = sym_name[1];
6386 }
6387
6388 if (st_type == elfcpp::STT_ARM_TFUNC
6389 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6390 {
6391 // This is a THUMB function. Mark this and canonicalize the
6392 // symbol value by setting LSB.
6393 this->local_symbol_is_thumb_function_[i] = true;
6394 if ((input_value & 1) == 0)
6395 lv.set_input_value(input_value | 1);
6396 }
6397 }
6398 }
6399
6400 // Relocate sections.
6401 template<bool big_endian>
6402 void
6403 Arm_relobj<big_endian>::do_relocate_sections(
6404 const Symbol_table* symtab,
6405 const Layout* layout,
6406 const unsigned char* pshdrs,
6407 Output_file* of,
6408 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6409 {
6410 // Call parent to relocate sections.
6411 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6412 pshdrs, of, pviews);
6413
6414 // We do not generate stubs if doing a relocatable link.
6415 if (parameters->options().relocatable())
6416 return;
6417
6418 // Relocate stub tables.
6419 unsigned int shnum = this->shnum();
6420
6421 Target_arm<big_endian>* arm_target =
6422 Target_arm<big_endian>::default_target();
6423
6424 Relocate_info<32, big_endian> relinfo;
6425 relinfo.symtab = symtab;
6426 relinfo.layout = layout;
6427 relinfo.object = this;
6428
6429 for (unsigned int i = 1; i < shnum; ++i)
6430 {
6431 Arm_input_section<big_endian>* arm_input_section =
6432 arm_target->find_arm_input_section(this, i);
6433
6434 if (arm_input_section != NULL
6435 && arm_input_section->is_stub_table_owner()
6436 && !arm_input_section->stub_table()->empty())
6437 {
6438 // We cannot discard a section if it owns a stub table.
6439 Output_section* os = this->output_section(i);
6440 gold_assert(os != NULL);
6441
6442 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6443 relinfo.reloc_shdr = NULL;
6444 relinfo.data_shndx = i;
6445 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6446
6447 gold_assert((*pviews)[i].view != NULL);
6448
6449 // We are passed the output section view. Adjust it to cover the
6450 // stub table only.
6451 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6452 gold_assert((stub_table->address() >= (*pviews)[i].address)
6453 && ((stub_table->address() + stub_table->data_size())
6454 <= (*pviews)[i].address + (*pviews)[i].view_size));
6455
6456 off_t offset = stub_table->address() - (*pviews)[i].address;
6457 unsigned char* view = (*pviews)[i].view + offset;
6458 Arm_address address = stub_table->address();
6459 section_size_type view_size = stub_table->data_size();
6460
6461 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6462 view_size);
6463 }
6464
6465 // Apply Cortex A8 workaround if applicable.
6466 if (this->section_has_cortex_a8_workaround(i))
6467 {
6468 unsigned char* view = (*pviews)[i].view;
6469 Arm_address view_address = (*pviews)[i].address;
6470 section_size_type view_size = (*pviews)[i].view_size;
6471 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6472
6473 // Adjust view to cover section.
6474 Output_section* os = this->output_section(i);
6475 gold_assert(os != NULL);
6476 Arm_address section_address =
6477 this->simple_input_section_output_address(i, os);
6478 uint64_t section_size = this->section_size(i);
6479
6480 gold_assert(section_address >= view_address
6481 && ((section_address + section_size)
6482 <= (view_address + view_size)));
6483
6484 unsigned char* section_view = view + (section_address - view_address);
6485
6486 // Apply the Cortex-A8 workaround to the output address range
6487 // corresponding to this input section.
6488 stub_table->apply_cortex_a8_workaround_to_address_range(
6489 arm_target,
6490 section_view,
6491 section_address,
6492 section_size);
6493 }
6494 }
6495 }
6496
6497 // Find the linked text section of an EXIDX section by looking at the first
6498 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6499 // must be linked to its associated code section via the sh_link field of
6500 // its section header. However, some tools are broken and the link is not
6501 // always set. LD just drops such an EXIDX section silently, causing the
6502 // associated code not unwindabled. Here we try a little bit harder to
6503 // discover the linked code section.
6504 //
6505 // PSHDR points to the section header of a relocation section of an EXIDX
6506 // section. If we can find a linked text section, return true and
6507 // store the text section index in the location PSHNDX. Otherwise
6508 // return false.
6509
6510 template<bool big_endian>
6511 bool
6512 Arm_relobj<big_endian>::find_linked_text_section(
6513 const unsigned char* pshdr,
6514 const unsigned char* psyms,
6515 unsigned int* pshndx)
6516 {
6517 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6518
6519 // If there is no relocation, we cannot find the linked text section.
6520 size_t reloc_size;
6521 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6522 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6523 else
6524 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6525 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6526
6527 // Get the relocations.
6528 const unsigned char* prelocs =
6529 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6530
6531 // Find the REL31 relocation for the first word of the first EXIDX entry.
6532 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6533 {
6534 Arm_address r_offset;
6535 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6536 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6537 {
6538 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6539 r_info = reloc.get_r_info();
6540 r_offset = reloc.get_r_offset();
6541 }
6542 else
6543 {
6544 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6545 r_info = reloc.get_r_info();
6546 r_offset = reloc.get_r_offset();
6547 }
6548
6549 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6550 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6551 continue;
6552
6553 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6554 if (r_sym == 0
6555 || r_sym >= this->local_symbol_count()
6556 || r_offset != 0)
6557 continue;
6558
6559 // This is the relocation for the first word of the first EXIDX entry.
6560 // We expect to see a local section symbol.
6561 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6562 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6563 if (sym.get_st_type() == elfcpp::STT_SECTION)
6564 {
6565 bool is_ordinary;
6566 *pshndx =
6567 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6568 gold_assert(is_ordinary);
6569 return true;
6570 }
6571 else
6572 return false;
6573 }
6574
6575 return false;
6576 }
6577
6578 // Make an EXIDX input section object for an EXIDX section whose index is
6579 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6580 // is the section index of the linked text section.
6581
6582 template<bool big_endian>
6583 void
6584 Arm_relobj<big_endian>::make_exidx_input_section(
6585 unsigned int shndx,
6586 const elfcpp::Shdr<32, big_endian>& shdr,
6587 unsigned int text_shndx,
6588 const elfcpp::Shdr<32, big_endian>& text_shdr)
6589 {
6590 // Create an Arm_exidx_input_section object for this EXIDX section.
6591 Arm_exidx_input_section* exidx_input_section =
6592 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6593 shdr.get_sh_addralign(),
6594 text_shdr.get_sh_size());
6595
6596 gold_assert(this->exidx_section_map_[shndx] == NULL);
6597 this->exidx_section_map_[shndx] = exidx_input_section;
6598
6599 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6600 {
6601 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6602 this->section_name(shndx).c_str(), shndx, text_shndx,
6603 this->name().c_str());
6604 exidx_input_section->set_has_errors();
6605 }
6606 else if (this->exidx_section_map_[text_shndx] != NULL)
6607 {
6608 unsigned other_exidx_shndx =
6609 this->exidx_section_map_[text_shndx]->shndx();
6610 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6611 "%s(%u) in %s"),
6612 this->section_name(shndx).c_str(), shndx,
6613 this->section_name(other_exidx_shndx).c_str(),
6614 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6615 text_shndx, this->name().c_str());
6616 exidx_input_section->set_has_errors();
6617 }
6618 else
6619 this->exidx_section_map_[text_shndx] = exidx_input_section;
6620
6621 // Check section flags of text section.
6622 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6623 {
6624 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6625 " in %s"),
6626 this->section_name(shndx).c_str(), shndx,
6627 this->section_name(text_shndx).c_str(), text_shndx,
6628 this->name().c_str());
6629 exidx_input_section->set_has_errors();
6630 }
6631 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6632 // I would like to make this an error but currently ld just ignores
6633 // this.
6634 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6635 "%s(%u) in %s"),
6636 this->section_name(shndx).c_str(), shndx,
6637 this->section_name(text_shndx).c_str(), text_shndx,
6638 this->name().c_str());
6639 }
6640
6641 // Read the symbol information.
6642
6643 template<bool big_endian>
6644 void
6645 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6646 {
6647 // Call parent class to read symbol information.
6648 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6649
6650 // If this input file is a binary file, it has no processor
6651 // specific flags and attributes section.
6652 Input_file::Format format = this->input_file()->format();
6653 if (format != Input_file::FORMAT_ELF)
6654 {
6655 gold_assert(format == Input_file::FORMAT_BINARY);
6656 this->merge_flags_and_attributes_ = false;
6657 return;
6658 }
6659
6660 // Read processor-specific flags in ELF file header.
6661 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6662 elfcpp::Elf_sizes<32>::ehdr_size,
6663 true, false);
6664 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6665 this->processor_specific_flags_ = ehdr.get_e_flags();
6666
6667 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6668 // sections.
6669 std::vector<unsigned int> deferred_exidx_sections;
6670 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6671 const unsigned char* pshdrs = sd->section_headers->data();
6672 const unsigned char* ps = pshdrs + shdr_size;
6673 bool must_merge_flags_and_attributes = false;
6674 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6675 {
6676 elfcpp::Shdr<32, big_endian> shdr(ps);
6677
6678 // Sometimes an object has no contents except the section name string
6679 // table and an empty symbol table with the undefined symbol. We
6680 // don't want to merge processor-specific flags from such an object.
6681 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6682 {
6683 // Symbol table is not empty.
6684 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6685 elfcpp::Elf_sizes<32>::sym_size;
6686 if (shdr.get_sh_size() > sym_size)
6687 must_merge_flags_and_attributes = true;
6688 }
6689 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6690 // If this is neither an empty symbol table nor a string table,
6691 // be conservative.
6692 must_merge_flags_and_attributes = true;
6693
6694 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6695 {
6696 gold_assert(this->attributes_section_data_ == NULL);
6697 section_offset_type section_offset = shdr.get_sh_offset();
6698 section_size_type section_size =
6699 convert_to_section_size_type(shdr.get_sh_size());
6700 const unsigned char* view =
6701 this->get_view(section_offset, section_size, true, false);
6702 this->attributes_section_data_ =
6703 new Attributes_section_data(view, section_size);
6704 }
6705 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6706 {
6707 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6708 if (text_shndx == elfcpp::SHN_UNDEF)
6709 deferred_exidx_sections.push_back(i);
6710 else
6711 {
6712 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6713 + text_shndx * shdr_size);
6714 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6715 }
6716 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6717 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6718 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6719 this->section_name(i).c_str(), this->name().c_str());
6720 }
6721 }
6722
6723 // This is rare.
6724 if (!must_merge_flags_and_attributes)
6725 {
6726 gold_assert(deferred_exidx_sections.empty());
6727 this->merge_flags_and_attributes_ = false;
6728 return;
6729 }
6730
6731 // Some tools are broken and they do not set the link of EXIDX sections.
6732 // We look at the first relocation to figure out the linked sections.
6733 if (!deferred_exidx_sections.empty())
6734 {
6735 // We need to go over the section headers again to find the mapping
6736 // from sections being relocated to their relocation sections. This is
6737 // a bit inefficient as we could do that in the loop above. However,
6738 // we do not expect any deferred EXIDX sections normally. So we do not
6739 // want to slow down the most common path.
6740 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6741 Reloc_map reloc_map;
6742 ps = pshdrs + shdr_size;
6743 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6744 {
6745 elfcpp::Shdr<32, big_endian> shdr(ps);
6746 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6747 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6748 {
6749 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6750 if (info_shndx >= this->shnum())
6751 gold_error(_("relocation section %u has invalid info %u"),
6752 i, info_shndx);
6753 Reloc_map::value_type value(info_shndx, i);
6754 std::pair<Reloc_map::iterator, bool> result =
6755 reloc_map.insert(value);
6756 if (!result.second)
6757 gold_error(_("section %u has multiple relocation sections "
6758 "%u and %u"),
6759 info_shndx, i, reloc_map[info_shndx]);
6760 }
6761 }
6762
6763 // Read the symbol table section header.
6764 const unsigned int symtab_shndx = this->symtab_shndx();
6765 elfcpp::Shdr<32, big_endian>
6766 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6767 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6768
6769 // Read the local symbols.
6770 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6771 const unsigned int loccount = this->local_symbol_count();
6772 gold_assert(loccount == symtabshdr.get_sh_info());
6773 off_t locsize = loccount * sym_size;
6774 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6775 locsize, true, true);
6776
6777 // Process the deferred EXIDX sections.
6778 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6779 {
6780 unsigned int shndx = deferred_exidx_sections[i];
6781 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6782 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6783 Reloc_map::const_iterator it = reloc_map.find(shndx);
6784 if (it != reloc_map.end())
6785 find_linked_text_section(pshdrs + it->second * shdr_size,
6786 psyms, &text_shndx);
6787 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6788 + text_shndx * shdr_size);
6789 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6790 }
6791 }
6792 }
6793
6794 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6795 // sections for unwinding. These sections are referenced implicitly by
6796 // text sections linked in the section headers. If we ignore these implicit
6797 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6798 // will be garbage-collected incorrectly. Hence we override the same function
6799 // in the base class to handle these implicit references.
6800
6801 template<bool big_endian>
6802 void
6803 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6804 Layout* layout,
6805 Read_relocs_data* rd)
6806 {
6807 // First, call base class method to process relocations in this object.
6808 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6809
6810 // If --gc-sections is not specified, there is nothing more to do.
6811 // This happens when --icf is used but --gc-sections is not.
6812 if (!parameters->options().gc_sections())
6813 return;
6814
6815 unsigned int shnum = this->shnum();
6816 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6817 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6818 shnum * shdr_size,
6819 true, true);
6820
6821 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6822 // to these from the linked text sections.
6823 const unsigned char* ps = pshdrs + shdr_size;
6824 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6825 {
6826 elfcpp::Shdr<32, big_endian> shdr(ps);
6827 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6828 {
6829 // Found an .ARM.exidx section, add it to the set of reachable
6830 // sections from its linked text section.
6831 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6832 symtab->gc()->add_reference(this, text_shndx, this, i);
6833 }
6834 }
6835 }
6836
6837 // Update output local symbol count. Owing to EXIDX entry merging, some local
6838 // symbols will be removed in output. Adjust output local symbol count
6839 // accordingly. We can only changed the static output local symbol count. It
6840 // is too late to change the dynamic symbols.
6841
6842 template<bool big_endian>
6843 void
6844 Arm_relobj<big_endian>::update_output_local_symbol_count()
6845 {
6846 // Caller should check that this needs updating. We want caller checking
6847 // because output_local_symbol_count_needs_update() is most likely inlined.
6848 gold_assert(this->output_local_symbol_count_needs_update_);
6849
6850 gold_assert(this->symtab_shndx() != -1U);
6851 if (this->symtab_shndx() == 0)
6852 {
6853 // This object has no symbols. Weird but legal.
6854 return;
6855 }
6856
6857 // Read the symbol table section header.
6858 const unsigned int symtab_shndx = this->symtab_shndx();
6859 elfcpp::Shdr<32, big_endian>
6860 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6861 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6862
6863 // Read the local symbols.
6864 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6865 const unsigned int loccount = this->local_symbol_count();
6866 gold_assert(loccount == symtabshdr.get_sh_info());
6867 off_t locsize = loccount * sym_size;
6868 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6869 locsize, true, true);
6870
6871 // Loop over the local symbols.
6872
6873 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6874 Output_sections;
6875 const Output_sections& out_sections(this->output_sections());
6876 unsigned int shnum = this->shnum();
6877 unsigned int count = 0;
6878 // Skip the first, dummy, symbol.
6879 psyms += sym_size;
6880 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6881 {
6882 elfcpp::Sym<32, big_endian> sym(psyms);
6883
6884 Symbol_value<32>& lv((*this->local_values())[i]);
6885
6886 // This local symbol was already discarded by do_count_local_symbols.
6887 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6888 continue;
6889
6890 bool is_ordinary;
6891 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6892 &is_ordinary);
6893
6894 if (shndx < shnum)
6895 {
6896 Output_section* os = out_sections[shndx];
6897
6898 // This local symbol no longer has an output section. Discard it.
6899 if (os == NULL)
6900 {
6901 lv.set_no_output_symtab_entry();
6902 continue;
6903 }
6904
6905 // Currently we only discard parts of EXIDX input sections.
6906 // We explicitly check for a merged EXIDX input section to avoid
6907 // calling Output_section_data::output_offset unless necessary.
6908 if ((this->get_output_section_offset(shndx) == invalid_address)
6909 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6910 {
6911 section_offset_type output_offset =
6912 os->output_offset(this, shndx, lv.input_value());
6913 if (output_offset == -1)
6914 {
6915 // This symbol is defined in a part of an EXIDX input section
6916 // that is discarded due to entry merging.
6917 lv.set_no_output_symtab_entry();
6918 continue;
6919 }
6920 }
6921 }
6922
6923 ++count;
6924 }
6925
6926 this->set_output_local_symbol_count(count);
6927 this->output_local_symbol_count_needs_update_ = false;
6928 }
6929
6930 // Arm_dynobj methods.
6931
6932 // Read the symbol information.
6933
6934 template<bool big_endian>
6935 void
6936 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6937 {
6938 // Call parent class to read symbol information.
6939 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6940
6941 // Read processor-specific flags in ELF file header.
6942 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6943 elfcpp::Elf_sizes<32>::ehdr_size,
6944 true, false);
6945 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6946 this->processor_specific_flags_ = ehdr.get_e_flags();
6947
6948 // Read the attributes section if there is one.
6949 // We read from the end because gas seems to put it near the end of
6950 // the section headers.
6951 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6952 const unsigned char* ps =
6953 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6954 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6955 {
6956 elfcpp::Shdr<32, big_endian> shdr(ps);
6957 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6958 {
6959 section_offset_type section_offset = shdr.get_sh_offset();
6960 section_size_type section_size =
6961 convert_to_section_size_type(shdr.get_sh_size());
6962 const unsigned char* view =
6963 this->get_view(section_offset, section_size, true, false);
6964 this->attributes_section_data_ =
6965 new Attributes_section_data(view, section_size);
6966 break;
6967 }
6968 }
6969 }
6970
6971 // Stub_addend_reader methods.
6972
6973 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6974
6975 template<bool big_endian>
6976 elfcpp::Elf_types<32>::Elf_Swxword
6977 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6978 unsigned int r_type,
6979 const unsigned char* view,
6980 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6981 {
6982 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6983
6984 switch (r_type)
6985 {
6986 case elfcpp::R_ARM_CALL:
6987 case elfcpp::R_ARM_JUMP24:
6988 case elfcpp::R_ARM_PLT32:
6989 {
6990 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6991 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6992 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6993 return Bits<26>::sign_extend32(val << 2);
6994 }
6995
6996 case elfcpp::R_ARM_THM_CALL:
6997 case elfcpp::R_ARM_THM_JUMP24:
6998 case elfcpp::R_ARM_THM_XPC22:
6999 {
7000 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7001 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7002 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7003 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7004 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7005 }
7006
7007 case elfcpp::R_ARM_THM_JUMP19:
7008 {
7009 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7010 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7011 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7012 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7013 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7014 }
7015
7016 default:
7017 gold_unreachable();
7018 }
7019 }
7020
7021 // Arm_output_data_got methods.
7022
7023 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7024 // The first one is initialized to be 1, which is the module index for
7025 // the main executable and the second one 0. A reloc of the type
7026 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7027 // be applied by gold. GSYM is a global symbol.
7028 //
7029 template<bool big_endian>
7030 void
7031 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7032 unsigned int got_type,
7033 Symbol* gsym)
7034 {
7035 if (gsym->has_got_offset(got_type))
7036 return;
7037
7038 // We are doing a static link. Just mark it as belong to module 1,
7039 // the executable.
7040 unsigned int got_offset = this->add_constant(1);
7041 gsym->set_got_offset(got_type, got_offset);
7042 got_offset = this->add_constant(0);
7043 this->static_relocs_.push_back(Static_reloc(got_offset,
7044 elfcpp::R_ARM_TLS_DTPOFF32,
7045 gsym));
7046 }
7047
7048 // Same as the above but for a local symbol.
7049
7050 template<bool big_endian>
7051 void
7052 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7053 unsigned int got_type,
7054 Sized_relobj_file<32, big_endian>* object,
7055 unsigned int index)
7056 {
7057 if (object->local_has_got_offset(index, got_type))
7058 return;
7059
7060 // We are doing a static link. Just mark it as belong to module 1,
7061 // the executable.
7062 unsigned int got_offset = this->add_constant(1);
7063 object->set_local_got_offset(index, got_type, got_offset);
7064 got_offset = this->add_constant(0);
7065 this->static_relocs_.push_back(Static_reloc(got_offset,
7066 elfcpp::R_ARM_TLS_DTPOFF32,
7067 object, index));
7068 }
7069
7070 template<bool big_endian>
7071 void
7072 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7073 {
7074 // Call parent to write out GOT.
7075 Output_data_got<32, big_endian>::do_write(of);
7076
7077 // We are done if there is no fix up.
7078 if (this->static_relocs_.empty())
7079 return;
7080
7081 gold_assert(parameters->doing_static_link());
7082
7083 const off_t offset = this->offset();
7084 const section_size_type oview_size =
7085 convert_to_section_size_type(this->data_size());
7086 unsigned char* const oview = of->get_output_view(offset, oview_size);
7087
7088 Output_segment* tls_segment = this->layout_->tls_segment();
7089 gold_assert(tls_segment != NULL);
7090
7091 // The thread pointer $tp points to the TCB, which is followed by the
7092 // TLS. So we need to adjust $tp relative addressing by this amount.
7093 Arm_address aligned_tcb_size =
7094 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7095
7096 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7097 {
7098 Static_reloc& reloc(this->static_relocs_[i]);
7099
7100 Arm_address value;
7101 if (!reloc.symbol_is_global())
7102 {
7103 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7104 const Symbol_value<32>* psymval =
7105 reloc.relobj()->local_symbol(reloc.index());
7106
7107 // We are doing static linking. Issue an error and skip this
7108 // relocation if the symbol is undefined or in a discarded_section.
7109 bool is_ordinary;
7110 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7111 if ((shndx == elfcpp::SHN_UNDEF)
7112 || (is_ordinary
7113 && shndx != elfcpp::SHN_UNDEF
7114 && !object->is_section_included(shndx)
7115 && !this->symbol_table_->is_section_folded(object, shndx)))
7116 {
7117 gold_error(_("undefined or discarded local symbol %u from "
7118 " object %s in GOT"),
7119 reloc.index(), reloc.relobj()->name().c_str());
7120 continue;
7121 }
7122
7123 value = psymval->value(object, 0);
7124 }
7125 else
7126 {
7127 const Symbol* gsym = reloc.symbol();
7128 gold_assert(gsym != NULL);
7129 if (gsym->is_forwarder())
7130 gsym = this->symbol_table_->resolve_forwards(gsym);
7131
7132 // We are doing static linking. Issue an error and skip this
7133 // relocation if the symbol is undefined or in a discarded_section
7134 // unless it is a weakly_undefined symbol.
7135 if ((gsym->is_defined_in_discarded_section()
7136 || gsym->is_undefined())
7137 && !gsym->is_weak_undefined())
7138 {
7139 gold_error(_("undefined or discarded symbol %s in GOT"),
7140 gsym->name());
7141 continue;
7142 }
7143
7144 if (!gsym->is_weak_undefined())
7145 {
7146 const Sized_symbol<32>* sym =
7147 static_cast<const Sized_symbol<32>*>(gsym);
7148 value = sym->value();
7149 }
7150 else
7151 value = 0;
7152 }
7153
7154 unsigned got_offset = reloc.got_offset();
7155 gold_assert(got_offset < oview_size);
7156
7157 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7158 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7159 Valtype x;
7160 switch (reloc.r_type())
7161 {
7162 case elfcpp::R_ARM_TLS_DTPOFF32:
7163 x = value;
7164 break;
7165 case elfcpp::R_ARM_TLS_TPOFF32:
7166 x = value + aligned_tcb_size;
7167 break;
7168 default:
7169 gold_unreachable();
7170 }
7171 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7172 }
7173
7174 of->write_output_view(offset, oview_size, oview);
7175 }
7176
7177 // A class to handle the PLT data.
7178
7179 template<bool big_endian>
7180 class Output_data_plt_arm : public Output_section_data
7181 {
7182 public:
7183 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7184 Reloc_section;
7185
7186 Output_data_plt_arm(Layout*, Output_data_space*);
7187
7188 // Add an entry to the PLT.
7189 void
7190 add_entry(Symbol* gsym);
7191
7192 // Return the .rel.plt section data.
7193 const Reloc_section*
7194 rel_plt() const
7195 { return this->rel_; }
7196
7197 // Return the number of PLT entries.
7198 unsigned int
7199 entry_count() const
7200 { return this->count_; }
7201
7202 // Return the offset of the first non-reserved PLT entry.
7203 static unsigned int
7204 first_plt_entry_offset()
7205 { return sizeof(first_plt_entry); }
7206
7207 // Return the size of a PLT entry.
7208 static unsigned int
7209 get_plt_entry_size()
7210 { return sizeof(plt_entry); }
7211
7212 protected:
7213 void
7214 do_adjust_output_section(Output_section* os);
7215
7216 // Write to a map file.
7217 void
7218 do_print_to_mapfile(Mapfile* mapfile) const
7219 { mapfile->print_output_data(this, _("** PLT")); }
7220
7221 private:
7222 // Template for the first PLT entry.
7223 static const uint32_t first_plt_entry[5];
7224
7225 // Template for subsequent PLT entries.
7226 static const uint32_t plt_entry[3];
7227
7228 // Set the final size.
7229 void
7230 set_final_data_size()
7231 {
7232 this->set_data_size(sizeof(first_plt_entry)
7233 + this->count_ * sizeof(plt_entry));
7234 }
7235
7236 // Write out the PLT data.
7237 void
7238 do_write(Output_file*);
7239
7240 // The reloc section.
7241 Reloc_section* rel_;
7242 // The .got.plt section.
7243 Output_data_space* got_plt_;
7244 // The number of PLT entries.
7245 unsigned int count_;
7246 };
7247
7248 // Create the PLT section. The ordinary .got section is an argument,
7249 // since we need to refer to the start. We also create our own .got
7250 // section just for PLT entries.
7251
7252 template<bool big_endian>
7253 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7254 Output_data_space* got_plt)
7255 : Output_section_data(4), got_plt_(got_plt), count_(0)
7256 {
7257 this->rel_ = new Reloc_section(false);
7258 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7259 elfcpp::SHF_ALLOC, this->rel_,
7260 ORDER_DYNAMIC_PLT_RELOCS, false);
7261 }
7262
7263 template<bool big_endian>
7264 void
7265 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7266 {
7267 os->set_entsize(0);
7268 }
7269
7270 // Add an entry to the PLT.
7271
7272 template<bool big_endian>
7273 void
7274 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7275 {
7276 gold_assert(!gsym->has_plt_offset());
7277
7278 // Note that when setting the PLT offset we skip the initial
7279 // reserved PLT entry.
7280 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7281 + sizeof(first_plt_entry));
7282
7283 ++this->count_;
7284
7285 section_offset_type got_offset = this->got_plt_->current_data_size();
7286
7287 // Every PLT entry needs a GOT entry which points back to the PLT
7288 // entry (this will be changed by the dynamic linker, normally
7289 // lazily when the function is called).
7290 this->got_plt_->set_current_data_size(got_offset + 4);
7291
7292 // Every PLT entry needs a reloc.
7293 gsym->set_needs_dynsym_entry();
7294 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7295 got_offset);
7296
7297 // Note that we don't need to save the symbol. The contents of the
7298 // PLT are independent of which symbols are used. The symbols only
7299 // appear in the relocations.
7300 }
7301
7302 // ARM PLTs.
7303 // FIXME: This is not very flexible. Right now this has only been tested
7304 // on armv5te. If we are to support additional architecture features like
7305 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7306
7307 // The first entry in the PLT.
7308 template<bool big_endian>
7309 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7310 {
7311 0xe52de004, // str lr, [sp, #-4]!
7312 0xe59fe004, // ldr lr, [pc, #4]
7313 0xe08fe00e, // add lr, pc, lr
7314 0xe5bef008, // ldr pc, [lr, #8]!
7315 0x00000000, // &GOT[0] - .
7316 };
7317
7318 // Subsequent entries in the PLT.
7319
7320 template<bool big_endian>
7321 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7322 {
7323 0xe28fc600, // add ip, pc, #0xNN00000
7324 0xe28cca00, // add ip, ip, #0xNN000
7325 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7326 };
7327
7328 // Write out the PLT. This uses the hand-coded instructions above,
7329 // and adjusts them as needed. This is all specified by the arm ELF
7330 // Processor Supplement.
7331
7332 template<bool big_endian>
7333 void
7334 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7335 {
7336 const off_t offset = this->offset();
7337 const section_size_type oview_size =
7338 convert_to_section_size_type(this->data_size());
7339 unsigned char* const oview = of->get_output_view(offset, oview_size);
7340
7341 const off_t got_file_offset = this->got_plt_->offset();
7342 const section_size_type got_size =
7343 convert_to_section_size_type(this->got_plt_->data_size());
7344 unsigned char* const got_view = of->get_output_view(got_file_offset,
7345 got_size);
7346 unsigned char* pov = oview;
7347
7348 Arm_address plt_address = this->address();
7349 Arm_address got_address = this->got_plt_->address();
7350
7351 // Write first PLT entry. All but the last word are constants.
7352 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7353 / sizeof(plt_entry[0]));
7354 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7355 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7356 // Last word in first PLT entry is &GOT[0] - .
7357 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7358 got_address - (plt_address + 16));
7359 pov += sizeof(first_plt_entry);
7360
7361 unsigned char* got_pov = got_view;
7362
7363 memset(got_pov, 0, 12);
7364 got_pov += 12;
7365
7366 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7367 unsigned int plt_offset = sizeof(first_plt_entry);
7368 unsigned int plt_rel_offset = 0;
7369 unsigned int got_offset = 12;
7370 const unsigned int count = this->count_;
7371 for (unsigned int i = 0;
7372 i < count;
7373 ++i,
7374 pov += sizeof(plt_entry),
7375 got_pov += 4,
7376 plt_offset += sizeof(plt_entry),
7377 plt_rel_offset += rel_size,
7378 got_offset += 4)
7379 {
7380 // Set and adjust the PLT entry itself.
7381 int32_t offset = ((got_address + got_offset)
7382 - (plt_address + plt_offset + 8));
7383
7384 gold_assert(offset >= 0 && offset < 0x0fffffff);
7385 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7386 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7387 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7388 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7389 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7390 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7391
7392 // Set the entry in the GOT.
7393 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7394 }
7395
7396 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7397 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7398
7399 of->write_output_view(offset, oview_size, oview);
7400 of->write_output_view(got_file_offset, got_size, got_view);
7401 }
7402
7403 // Create a PLT entry for a global symbol.
7404
7405 template<bool big_endian>
7406 void
7407 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7408 Symbol* gsym)
7409 {
7410 if (gsym->has_plt_offset())
7411 return;
7412
7413 if (this->plt_ == NULL)
7414 {
7415 // Create the GOT sections first.
7416 this->got_section(symtab, layout);
7417
7418 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7419 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7420 (elfcpp::SHF_ALLOC
7421 | elfcpp::SHF_EXECINSTR),
7422 this->plt_, ORDER_PLT, false);
7423 }
7424 this->plt_->add_entry(gsym);
7425 }
7426
7427 // Return the number of entries in the PLT.
7428
7429 template<bool big_endian>
7430 unsigned int
7431 Target_arm<big_endian>::plt_entry_count() const
7432 {
7433 if (this->plt_ == NULL)
7434 return 0;
7435 return this->plt_->entry_count();
7436 }
7437
7438 // Return the offset of the first non-reserved PLT entry.
7439
7440 template<bool big_endian>
7441 unsigned int
7442 Target_arm<big_endian>::first_plt_entry_offset() const
7443 {
7444 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7445 }
7446
7447 // Return the size of each PLT entry.
7448
7449 template<bool big_endian>
7450 unsigned int
7451 Target_arm<big_endian>::plt_entry_size() const
7452 {
7453 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7454 }
7455
7456 // Get the section to use for TLS_DESC relocations.
7457
7458 template<bool big_endian>
7459 typename Target_arm<big_endian>::Reloc_section*
7460 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7461 {
7462 return this->plt_section()->rel_tls_desc(layout);
7463 }
7464
7465 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7466
7467 template<bool big_endian>
7468 void
7469 Target_arm<big_endian>::define_tls_base_symbol(
7470 Symbol_table* symtab,
7471 Layout* layout)
7472 {
7473 if (this->tls_base_symbol_defined_)
7474 return;
7475
7476 Output_segment* tls_segment = layout->tls_segment();
7477 if (tls_segment != NULL)
7478 {
7479 bool is_exec = parameters->options().output_is_executable();
7480 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7481 Symbol_table::PREDEFINED,
7482 tls_segment, 0, 0,
7483 elfcpp::STT_TLS,
7484 elfcpp::STB_LOCAL,
7485 elfcpp::STV_HIDDEN, 0,
7486 (is_exec
7487 ? Symbol::SEGMENT_END
7488 : Symbol::SEGMENT_START),
7489 true);
7490 }
7491 this->tls_base_symbol_defined_ = true;
7492 }
7493
7494 // Create a GOT entry for the TLS module index.
7495
7496 template<bool big_endian>
7497 unsigned int
7498 Target_arm<big_endian>::got_mod_index_entry(
7499 Symbol_table* symtab,
7500 Layout* layout,
7501 Sized_relobj_file<32, big_endian>* object)
7502 {
7503 if (this->got_mod_index_offset_ == -1U)
7504 {
7505 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7506 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7507 unsigned int got_offset;
7508 if (!parameters->doing_static_link())
7509 {
7510 got_offset = got->add_constant(0);
7511 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7512 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7513 got_offset);
7514 }
7515 else
7516 {
7517 // We are doing a static link. Just mark it as belong to module 1,
7518 // the executable.
7519 got_offset = got->add_constant(1);
7520 }
7521
7522 got->add_constant(0);
7523 this->got_mod_index_offset_ = got_offset;
7524 }
7525 return this->got_mod_index_offset_;
7526 }
7527
7528 // Optimize the TLS relocation type based on what we know about the
7529 // symbol. IS_FINAL is true if the final address of this symbol is
7530 // known at link time.
7531
7532 template<bool big_endian>
7533 tls::Tls_optimization
7534 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7535 {
7536 // FIXME: Currently we do not do any TLS optimization.
7537 return tls::TLSOPT_NONE;
7538 }
7539
7540 // Get the Reference_flags for a particular relocation.
7541
7542 template<bool big_endian>
7543 int
7544 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7545 {
7546 switch (r_type)
7547 {
7548 case elfcpp::R_ARM_NONE:
7549 case elfcpp::R_ARM_V4BX:
7550 case elfcpp::R_ARM_GNU_VTENTRY:
7551 case elfcpp::R_ARM_GNU_VTINHERIT:
7552 // No symbol reference.
7553 return 0;
7554
7555 case elfcpp::R_ARM_ABS32:
7556 case elfcpp::R_ARM_ABS16:
7557 case elfcpp::R_ARM_ABS12:
7558 case elfcpp::R_ARM_THM_ABS5:
7559 case elfcpp::R_ARM_ABS8:
7560 case elfcpp::R_ARM_BASE_ABS:
7561 case elfcpp::R_ARM_MOVW_ABS_NC:
7562 case elfcpp::R_ARM_MOVT_ABS:
7563 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7564 case elfcpp::R_ARM_THM_MOVT_ABS:
7565 case elfcpp::R_ARM_ABS32_NOI:
7566 return Symbol::ABSOLUTE_REF;
7567
7568 case elfcpp::R_ARM_REL32:
7569 case elfcpp::R_ARM_LDR_PC_G0:
7570 case elfcpp::R_ARM_SBREL32:
7571 case elfcpp::R_ARM_THM_PC8:
7572 case elfcpp::R_ARM_BASE_PREL:
7573 case elfcpp::R_ARM_MOVW_PREL_NC:
7574 case elfcpp::R_ARM_MOVT_PREL:
7575 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7576 case elfcpp::R_ARM_THM_MOVT_PREL:
7577 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7578 case elfcpp::R_ARM_THM_PC12:
7579 case elfcpp::R_ARM_REL32_NOI:
7580 case elfcpp::R_ARM_ALU_PC_G0_NC:
7581 case elfcpp::R_ARM_ALU_PC_G0:
7582 case elfcpp::R_ARM_ALU_PC_G1_NC:
7583 case elfcpp::R_ARM_ALU_PC_G1:
7584 case elfcpp::R_ARM_ALU_PC_G2:
7585 case elfcpp::R_ARM_LDR_PC_G1:
7586 case elfcpp::R_ARM_LDR_PC_G2:
7587 case elfcpp::R_ARM_LDRS_PC_G0:
7588 case elfcpp::R_ARM_LDRS_PC_G1:
7589 case elfcpp::R_ARM_LDRS_PC_G2:
7590 case elfcpp::R_ARM_LDC_PC_G0:
7591 case elfcpp::R_ARM_LDC_PC_G1:
7592 case elfcpp::R_ARM_LDC_PC_G2:
7593 case elfcpp::R_ARM_ALU_SB_G0_NC:
7594 case elfcpp::R_ARM_ALU_SB_G0:
7595 case elfcpp::R_ARM_ALU_SB_G1_NC:
7596 case elfcpp::R_ARM_ALU_SB_G1:
7597 case elfcpp::R_ARM_ALU_SB_G2:
7598 case elfcpp::R_ARM_LDR_SB_G0:
7599 case elfcpp::R_ARM_LDR_SB_G1:
7600 case elfcpp::R_ARM_LDR_SB_G2:
7601 case elfcpp::R_ARM_LDRS_SB_G0:
7602 case elfcpp::R_ARM_LDRS_SB_G1:
7603 case elfcpp::R_ARM_LDRS_SB_G2:
7604 case elfcpp::R_ARM_LDC_SB_G0:
7605 case elfcpp::R_ARM_LDC_SB_G1:
7606 case elfcpp::R_ARM_LDC_SB_G2:
7607 case elfcpp::R_ARM_MOVW_BREL_NC:
7608 case elfcpp::R_ARM_MOVT_BREL:
7609 case elfcpp::R_ARM_MOVW_BREL:
7610 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7611 case elfcpp::R_ARM_THM_MOVT_BREL:
7612 case elfcpp::R_ARM_THM_MOVW_BREL:
7613 case elfcpp::R_ARM_GOTOFF32:
7614 case elfcpp::R_ARM_GOTOFF12:
7615 case elfcpp::R_ARM_SBREL31:
7616 return Symbol::RELATIVE_REF;
7617
7618 case elfcpp::R_ARM_PLT32:
7619 case elfcpp::R_ARM_CALL:
7620 case elfcpp::R_ARM_JUMP24:
7621 case elfcpp::R_ARM_THM_CALL:
7622 case elfcpp::R_ARM_THM_JUMP24:
7623 case elfcpp::R_ARM_THM_JUMP19:
7624 case elfcpp::R_ARM_THM_JUMP6:
7625 case elfcpp::R_ARM_THM_JUMP11:
7626 case elfcpp::R_ARM_THM_JUMP8:
7627 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7628 // in unwind tables. It may point to functions via PLTs.
7629 // So we treat it like call/jump relocations above.
7630 case elfcpp::R_ARM_PREL31:
7631 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7632
7633 case elfcpp::R_ARM_GOT_BREL:
7634 case elfcpp::R_ARM_GOT_ABS:
7635 case elfcpp::R_ARM_GOT_PREL:
7636 // Absolute in GOT.
7637 return Symbol::ABSOLUTE_REF;
7638
7639 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7640 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7641 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7642 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7643 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7644 return Symbol::TLS_REF;
7645
7646 case elfcpp::R_ARM_TARGET1:
7647 case elfcpp::R_ARM_TARGET2:
7648 case elfcpp::R_ARM_COPY:
7649 case elfcpp::R_ARM_GLOB_DAT:
7650 case elfcpp::R_ARM_JUMP_SLOT:
7651 case elfcpp::R_ARM_RELATIVE:
7652 case elfcpp::R_ARM_PC24:
7653 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7654 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7655 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7656 default:
7657 // Not expected. We will give an error later.
7658 return 0;
7659 }
7660 }
7661
7662 // Report an unsupported relocation against a local symbol.
7663
7664 template<bool big_endian>
7665 void
7666 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7667 Sized_relobj_file<32, big_endian>* object,
7668 unsigned int r_type)
7669 {
7670 gold_error(_("%s: unsupported reloc %u against local symbol"),
7671 object->name().c_str(), r_type);
7672 }
7673
7674 // We are about to emit a dynamic relocation of type R_TYPE. If the
7675 // dynamic linker does not support it, issue an error. The GNU linker
7676 // only issues a non-PIC error for an allocated read-only section.
7677 // Here we know the section is allocated, but we don't know that it is
7678 // read-only. But we check for all the relocation types which the
7679 // glibc dynamic linker supports, so it seems appropriate to issue an
7680 // error even if the section is not read-only.
7681
7682 template<bool big_endian>
7683 void
7684 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7685 unsigned int r_type)
7686 {
7687 switch (r_type)
7688 {
7689 // These are the relocation types supported by glibc for ARM.
7690 case elfcpp::R_ARM_RELATIVE:
7691 case elfcpp::R_ARM_COPY:
7692 case elfcpp::R_ARM_GLOB_DAT:
7693 case elfcpp::R_ARM_JUMP_SLOT:
7694 case elfcpp::R_ARM_ABS32:
7695 case elfcpp::R_ARM_ABS32_NOI:
7696 case elfcpp::R_ARM_PC24:
7697 // FIXME: The following 3 types are not supported by Android's dynamic
7698 // linker.
7699 case elfcpp::R_ARM_TLS_DTPMOD32:
7700 case elfcpp::R_ARM_TLS_DTPOFF32:
7701 case elfcpp::R_ARM_TLS_TPOFF32:
7702 return;
7703
7704 default:
7705 {
7706 // This prevents us from issuing more than one error per reloc
7707 // section. But we can still wind up issuing more than one
7708 // error per object file.
7709 if (this->issued_non_pic_error_)
7710 return;
7711 const Arm_reloc_property* reloc_property =
7712 arm_reloc_property_table->get_reloc_property(r_type);
7713 gold_assert(reloc_property != NULL);
7714 object->error(_("requires unsupported dynamic reloc %s; "
7715 "recompile with -fPIC"),
7716 reloc_property->name().c_str());
7717 this->issued_non_pic_error_ = true;
7718 return;
7719 }
7720
7721 case elfcpp::R_ARM_NONE:
7722 gold_unreachable();
7723 }
7724 }
7725
7726 // Scan a relocation for a local symbol.
7727 // FIXME: This only handles a subset of relocation types used by Android
7728 // on ARM v5te devices.
7729
7730 template<bool big_endian>
7731 inline void
7732 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7733 Layout* layout,
7734 Target_arm* target,
7735 Sized_relobj_file<32, big_endian>* object,
7736 unsigned int data_shndx,
7737 Output_section* output_section,
7738 const elfcpp::Rel<32, big_endian>& reloc,
7739 unsigned int r_type,
7740 const elfcpp::Sym<32, big_endian>& lsym)
7741 {
7742 r_type = get_real_reloc_type(r_type);
7743 switch (r_type)
7744 {
7745 case elfcpp::R_ARM_NONE:
7746 case elfcpp::R_ARM_V4BX:
7747 case elfcpp::R_ARM_GNU_VTENTRY:
7748 case elfcpp::R_ARM_GNU_VTINHERIT:
7749 break;
7750
7751 case elfcpp::R_ARM_ABS32:
7752 case elfcpp::R_ARM_ABS32_NOI:
7753 // If building a shared library (or a position-independent
7754 // executable), we need to create a dynamic relocation for
7755 // this location. The relocation applied at link time will
7756 // apply the link-time value, so we flag the location with
7757 // an R_ARM_RELATIVE relocation so the dynamic loader can
7758 // relocate it easily.
7759 if (parameters->options().output_is_position_independent())
7760 {
7761 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7762 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7763 // If we are to add more other reloc types than R_ARM_ABS32,
7764 // we need to add check_non_pic(object, r_type) here.
7765 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7766 output_section, data_shndx,
7767 reloc.get_r_offset());
7768 }
7769 break;
7770
7771 case elfcpp::R_ARM_ABS16:
7772 case elfcpp::R_ARM_ABS12:
7773 case elfcpp::R_ARM_THM_ABS5:
7774 case elfcpp::R_ARM_ABS8:
7775 case elfcpp::R_ARM_BASE_ABS:
7776 case elfcpp::R_ARM_MOVW_ABS_NC:
7777 case elfcpp::R_ARM_MOVT_ABS:
7778 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7779 case elfcpp::R_ARM_THM_MOVT_ABS:
7780 // If building a shared library (or a position-independent
7781 // executable), we need to create a dynamic relocation for
7782 // this location. Because the addend needs to remain in the
7783 // data section, we need to be careful not to apply this
7784 // relocation statically.
7785 if (parameters->options().output_is_position_independent())
7786 {
7787 check_non_pic(object, r_type);
7788 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7789 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7790 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7791 rel_dyn->add_local(object, r_sym, r_type, output_section,
7792 data_shndx, reloc.get_r_offset());
7793 else
7794 {
7795 gold_assert(lsym.get_st_value() == 0);
7796 unsigned int shndx = lsym.get_st_shndx();
7797 bool is_ordinary;
7798 shndx = object->adjust_sym_shndx(r_sym, shndx,
7799 &is_ordinary);
7800 if (!is_ordinary)
7801 object->error(_("section symbol %u has bad shndx %u"),
7802 r_sym, shndx);
7803 else
7804 rel_dyn->add_local_section(object, shndx,
7805 r_type, output_section,
7806 data_shndx, reloc.get_r_offset());
7807 }
7808 }
7809 break;
7810
7811 case elfcpp::R_ARM_REL32:
7812 case elfcpp::R_ARM_LDR_PC_G0:
7813 case elfcpp::R_ARM_SBREL32:
7814 case elfcpp::R_ARM_THM_CALL:
7815 case elfcpp::R_ARM_THM_PC8:
7816 case elfcpp::R_ARM_BASE_PREL:
7817 case elfcpp::R_ARM_PLT32:
7818 case elfcpp::R_ARM_CALL:
7819 case elfcpp::R_ARM_JUMP24:
7820 case elfcpp::R_ARM_THM_JUMP24:
7821 case elfcpp::R_ARM_SBREL31:
7822 case elfcpp::R_ARM_PREL31:
7823 case elfcpp::R_ARM_MOVW_PREL_NC:
7824 case elfcpp::R_ARM_MOVT_PREL:
7825 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7826 case elfcpp::R_ARM_THM_MOVT_PREL:
7827 case elfcpp::R_ARM_THM_JUMP19:
7828 case elfcpp::R_ARM_THM_JUMP6:
7829 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7830 case elfcpp::R_ARM_THM_PC12:
7831 case elfcpp::R_ARM_REL32_NOI:
7832 case elfcpp::R_ARM_ALU_PC_G0_NC:
7833 case elfcpp::R_ARM_ALU_PC_G0:
7834 case elfcpp::R_ARM_ALU_PC_G1_NC:
7835 case elfcpp::R_ARM_ALU_PC_G1:
7836 case elfcpp::R_ARM_ALU_PC_G2:
7837 case elfcpp::R_ARM_LDR_PC_G1:
7838 case elfcpp::R_ARM_LDR_PC_G2:
7839 case elfcpp::R_ARM_LDRS_PC_G0:
7840 case elfcpp::R_ARM_LDRS_PC_G1:
7841 case elfcpp::R_ARM_LDRS_PC_G2:
7842 case elfcpp::R_ARM_LDC_PC_G0:
7843 case elfcpp::R_ARM_LDC_PC_G1:
7844 case elfcpp::R_ARM_LDC_PC_G2:
7845 case elfcpp::R_ARM_ALU_SB_G0_NC:
7846 case elfcpp::R_ARM_ALU_SB_G0:
7847 case elfcpp::R_ARM_ALU_SB_G1_NC:
7848 case elfcpp::R_ARM_ALU_SB_G1:
7849 case elfcpp::R_ARM_ALU_SB_G2:
7850 case elfcpp::R_ARM_LDR_SB_G0:
7851 case elfcpp::R_ARM_LDR_SB_G1:
7852 case elfcpp::R_ARM_LDR_SB_G2:
7853 case elfcpp::R_ARM_LDRS_SB_G0:
7854 case elfcpp::R_ARM_LDRS_SB_G1:
7855 case elfcpp::R_ARM_LDRS_SB_G2:
7856 case elfcpp::R_ARM_LDC_SB_G0:
7857 case elfcpp::R_ARM_LDC_SB_G1:
7858 case elfcpp::R_ARM_LDC_SB_G2:
7859 case elfcpp::R_ARM_MOVW_BREL_NC:
7860 case elfcpp::R_ARM_MOVT_BREL:
7861 case elfcpp::R_ARM_MOVW_BREL:
7862 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7863 case elfcpp::R_ARM_THM_MOVT_BREL:
7864 case elfcpp::R_ARM_THM_MOVW_BREL:
7865 case elfcpp::R_ARM_THM_JUMP11:
7866 case elfcpp::R_ARM_THM_JUMP8:
7867 // We don't need to do anything for a relative addressing relocation
7868 // against a local symbol if it does not reference the GOT.
7869 break;
7870
7871 case elfcpp::R_ARM_GOTOFF32:
7872 case elfcpp::R_ARM_GOTOFF12:
7873 // We need a GOT section:
7874 target->got_section(symtab, layout);
7875 break;
7876
7877 case elfcpp::R_ARM_GOT_BREL:
7878 case elfcpp::R_ARM_GOT_PREL:
7879 {
7880 // The symbol requires a GOT entry.
7881 Arm_output_data_got<big_endian>* got =
7882 target->got_section(symtab, layout);
7883 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7884 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7885 {
7886 // If we are generating a shared object, we need to add a
7887 // dynamic RELATIVE relocation for this symbol's GOT entry.
7888 if (parameters->options().output_is_position_independent())
7889 {
7890 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7891 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7892 rel_dyn->add_local_relative(
7893 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7894 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7895 }
7896 }
7897 }
7898 break;
7899
7900 case elfcpp::R_ARM_TARGET1:
7901 case elfcpp::R_ARM_TARGET2:
7902 // This should have been mapped to another type already.
7903 // Fall through.
7904 case elfcpp::R_ARM_COPY:
7905 case elfcpp::R_ARM_GLOB_DAT:
7906 case elfcpp::R_ARM_JUMP_SLOT:
7907 case elfcpp::R_ARM_RELATIVE:
7908 // These are relocations which should only be seen by the
7909 // dynamic linker, and should never be seen here.
7910 gold_error(_("%s: unexpected reloc %u in object file"),
7911 object->name().c_str(), r_type);
7912 break;
7913
7914
7915 // These are initial TLS relocs, which are expected when
7916 // linking.
7917 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7918 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7919 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7920 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7921 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7922 {
7923 bool output_is_shared = parameters->options().shared();
7924 const tls::Tls_optimization optimized_type
7925 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7926 r_type);
7927 switch (r_type)
7928 {
7929 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7930 if (optimized_type == tls::TLSOPT_NONE)
7931 {
7932 // Create a pair of GOT entries for the module index and
7933 // dtv-relative offset.
7934 Arm_output_data_got<big_endian>* got
7935 = target->got_section(symtab, layout);
7936 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7937 unsigned int shndx = lsym.get_st_shndx();
7938 bool is_ordinary;
7939 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7940 if (!is_ordinary)
7941 {
7942 object->error(_("local symbol %u has bad shndx %u"),
7943 r_sym, shndx);
7944 break;
7945 }
7946
7947 if (!parameters->doing_static_link())
7948 got->add_local_pair_with_rel(object, r_sym, shndx,
7949 GOT_TYPE_TLS_PAIR,
7950 target->rel_dyn_section(layout),
7951 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7952 else
7953 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7954 object, r_sym);
7955 }
7956 else
7957 // FIXME: TLS optimization not supported yet.
7958 gold_unreachable();
7959 break;
7960
7961 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7962 if (optimized_type == tls::TLSOPT_NONE)
7963 {
7964 // Create a GOT entry for the module index.
7965 target->got_mod_index_entry(symtab, layout, object);
7966 }
7967 else
7968 // FIXME: TLS optimization not supported yet.
7969 gold_unreachable();
7970 break;
7971
7972 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7973 break;
7974
7975 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7976 layout->set_has_static_tls();
7977 if (optimized_type == tls::TLSOPT_NONE)
7978 {
7979 // Create a GOT entry for the tp-relative offset.
7980 Arm_output_data_got<big_endian>* got
7981 = target->got_section(symtab, layout);
7982 unsigned int r_sym =
7983 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7984 if (!parameters->doing_static_link())
7985 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7986 target->rel_dyn_section(layout),
7987 elfcpp::R_ARM_TLS_TPOFF32);
7988 else if (!object->local_has_got_offset(r_sym,
7989 GOT_TYPE_TLS_OFFSET))
7990 {
7991 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7992 unsigned int got_offset =
7993 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7994 got->add_static_reloc(got_offset,
7995 elfcpp::R_ARM_TLS_TPOFF32, object,
7996 r_sym);
7997 }
7998 }
7999 else
8000 // FIXME: TLS optimization not supported yet.
8001 gold_unreachable();
8002 break;
8003
8004 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8005 layout->set_has_static_tls();
8006 if (output_is_shared)
8007 {
8008 // We need to create a dynamic relocation.
8009 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8010 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8011 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8012 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8013 output_section, data_shndx,
8014 reloc.get_r_offset());
8015 }
8016 break;
8017
8018 default:
8019 gold_unreachable();
8020 }
8021 }
8022 break;
8023
8024 case elfcpp::R_ARM_PC24:
8025 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8026 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8027 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8028 default:
8029 unsupported_reloc_local(object, r_type);
8030 break;
8031 }
8032 }
8033
8034 // Report an unsupported relocation against a global symbol.
8035
8036 template<bool big_endian>
8037 void
8038 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8039 Sized_relobj_file<32, big_endian>* object,
8040 unsigned int r_type,
8041 Symbol* gsym)
8042 {
8043 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8044 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8045 }
8046
8047 template<bool big_endian>
8048 inline bool
8049 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8050 unsigned int r_type)
8051 {
8052 switch (r_type)
8053 {
8054 case elfcpp::R_ARM_PC24:
8055 case elfcpp::R_ARM_THM_CALL:
8056 case elfcpp::R_ARM_PLT32:
8057 case elfcpp::R_ARM_CALL:
8058 case elfcpp::R_ARM_JUMP24:
8059 case elfcpp::R_ARM_THM_JUMP24:
8060 case elfcpp::R_ARM_SBREL31:
8061 case elfcpp::R_ARM_PREL31:
8062 case elfcpp::R_ARM_THM_JUMP19:
8063 case elfcpp::R_ARM_THM_JUMP6:
8064 case elfcpp::R_ARM_THM_JUMP11:
8065 case elfcpp::R_ARM_THM_JUMP8:
8066 // All the relocations above are branches except SBREL31 and PREL31.
8067 return false;
8068
8069 default:
8070 // Be conservative and assume this is a function pointer.
8071 return true;
8072 }
8073 }
8074
8075 template<bool big_endian>
8076 inline bool
8077 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8078 Symbol_table*,
8079 Layout*,
8080 Target_arm<big_endian>* target,
8081 Sized_relobj_file<32, big_endian>*,
8082 unsigned int,
8083 Output_section*,
8084 const elfcpp::Rel<32, big_endian>&,
8085 unsigned int r_type,
8086 const elfcpp::Sym<32, big_endian>&)
8087 {
8088 r_type = target->get_real_reloc_type(r_type);
8089 return possible_function_pointer_reloc(r_type);
8090 }
8091
8092 template<bool big_endian>
8093 inline bool
8094 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8095 Symbol_table*,
8096 Layout*,
8097 Target_arm<big_endian>* target,
8098 Sized_relobj_file<32, big_endian>*,
8099 unsigned int,
8100 Output_section*,
8101 const elfcpp::Rel<32, big_endian>&,
8102 unsigned int r_type,
8103 Symbol* gsym)
8104 {
8105 // GOT is not a function.
8106 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8107 return false;
8108
8109 r_type = target->get_real_reloc_type(r_type);
8110 return possible_function_pointer_reloc(r_type);
8111 }
8112
8113 // Scan a relocation for a global symbol.
8114
8115 template<bool big_endian>
8116 inline void
8117 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8118 Layout* layout,
8119 Target_arm* target,
8120 Sized_relobj_file<32, big_endian>* object,
8121 unsigned int data_shndx,
8122 Output_section* output_section,
8123 const elfcpp::Rel<32, big_endian>& reloc,
8124 unsigned int r_type,
8125 Symbol* gsym)
8126 {
8127 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8128 // section. We check here to avoid creating a dynamic reloc against
8129 // _GLOBAL_OFFSET_TABLE_.
8130 if (!target->has_got_section()
8131 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8132 target->got_section(symtab, layout);
8133
8134 r_type = get_real_reloc_type(r_type);
8135 switch (r_type)
8136 {
8137 case elfcpp::R_ARM_NONE:
8138 case elfcpp::R_ARM_V4BX:
8139 case elfcpp::R_ARM_GNU_VTENTRY:
8140 case elfcpp::R_ARM_GNU_VTINHERIT:
8141 break;
8142
8143 case elfcpp::R_ARM_ABS32:
8144 case elfcpp::R_ARM_ABS16:
8145 case elfcpp::R_ARM_ABS12:
8146 case elfcpp::R_ARM_THM_ABS5:
8147 case elfcpp::R_ARM_ABS8:
8148 case elfcpp::R_ARM_BASE_ABS:
8149 case elfcpp::R_ARM_MOVW_ABS_NC:
8150 case elfcpp::R_ARM_MOVT_ABS:
8151 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8152 case elfcpp::R_ARM_THM_MOVT_ABS:
8153 case elfcpp::R_ARM_ABS32_NOI:
8154 // Absolute addressing relocations.
8155 {
8156 // Make a PLT entry if necessary.
8157 if (this->symbol_needs_plt_entry(gsym))
8158 {
8159 target->make_plt_entry(symtab, layout, gsym);
8160 // Since this is not a PC-relative relocation, we may be
8161 // taking the address of a function. In that case we need to
8162 // set the entry in the dynamic symbol table to the address of
8163 // the PLT entry.
8164 if (gsym->is_from_dynobj() && !parameters->options().shared())
8165 gsym->set_needs_dynsym_value();
8166 }
8167 // Make a dynamic relocation if necessary.
8168 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8169 {
8170 if (gsym->may_need_copy_reloc())
8171 {
8172 target->copy_reloc(symtab, layout, object,
8173 data_shndx, output_section, gsym, reloc);
8174 }
8175 else if ((r_type == elfcpp::R_ARM_ABS32
8176 || r_type == elfcpp::R_ARM_ABS32_NOI)
8177 && gsym->can_use_relative_reloc(false))
8178 {
8179 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8180 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8181 output_section, object,
8182 data_shndx, reloc.get_r_offset());
8183 }
8184 else
8185 {
8186 check_non_pic(object, r_type);
8187 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8188 rel_dyn->add_global(gsym, r_type, output_section, object,
8189 data_shndx, reloc.get_r_offset());
8190 }
8191 }
8192 }
8193 break;
8194
8195 case elfcpp::R_ARM_GOTOFF32:
8196 case elfcpp::R_ARM_GOTOFF12:
8197 // We need a GOT section.
8198 target->got_section(symtab, layout);
8199 break;
8200
8201 case elfcpp::R_ARM_REL32:
8202 case elfcpp::R_ARM_LDR_PC_G0:
8203 case elfcpp::R_ARM_SBREL32:
8204 case elfcpp::R_ARM_THM_PC8:
8205 case elfcpp::R_ARM_BASE_PREL:
8206 case elfcpp::R_ARM_MOVW_PREL_NC:
8207 case elfcpp::R_ARM_MOVT_PREL:
8208 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8209 case elfcpp::R_ARM_THM_MOVT_PREL:
8210 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8211 case elfcpp::R_ARM_THM_PC12:
8212 case elfcpp::R_ARM_REL32_NOI:
8213 case elfcpp::R_ARM_ALU_PC_G0_NC:
8214 case elfcpp::R_ARM_ALU_PC_G0:
8215 case elfcpp::R_ARM_ALU_PC_G1_NC:
8216 case elfcpp::R_ARM_ALU_PC_G1:
8217 case elfcpp::R_ARM_ALU_PC_G2:
8218 case elfcpp::R_ARM_LDR_PC_G1:
8219 case elfcpp::R_ARM_LDR_PC_G2:
8220 case elfcpp::R_ARM_LDRS_PC_G0:
8221 case elfcpp::R_ARM_LDRS_PC_G1:
8222 case elfcpp::R_ARM_LDRS_PC_G2:
8223 case elfcpp::R_ARM_LDC_PC_G0:
8224 case elfcpp::R_ARM_LDC_PC_G1:
8225 case elfcpp::R_ARM_LDC_PC_G2:
8226 case elfcpp::R_ARM_ALU_SB_G0_NC:
8227 case elfcpp::R_ARM_ALU_SB_G0:
8228 case elfcpp::R_ARM_ALU_SB_G1_NC:
8229 case elfcpp::R_ARM_ALU_SB_G1:
8230 case elfcpp::R_ARM_ALU_SB_G2:
8231 case elfcpp::R_ARM_LDR_SB_G0:
8232 case elfcpp::R_ARM_LDR_SB_G1:
8233 case elfcpp::R_ARM_LDR_SB_G2:
8234 case elfcpp::R_ARM_LDRS_SB_G0:
8235 case elfcpp::R_ARM_LDRS_SB_G1:
8236 case elfcpp::R_ARM_LDRS_SB_G2:
8237 case elfcpp::R_ARM_LDC_SB_G0:
8238 case elfcpp::R_ARM_LDC_SB_G1:
8239 case elfcpp::R_ARM_LDC_SB_G2:
8240 case elfcpp::R_ARM_MOVW_BREL_NC:
8241 case elfcpp::R_ARM_MOVT_BREL:
8242 case elfcpp::R_ARM_MOVW_BREL:
8243 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8244 case elfcpp::R_ARM_THM_MOVT_BREL:
8245 case elfcpp::R_ARM_THM_MOVW_BREL:
8246 // Relative addressing relocations.
8247 {
8248 // Make a dynamic relocation if necessary.
8249 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8250 {
8251 if (target->may_need_copy_reloc(gsym))
8252 {
8253 target->copy_reloc(symtab, layout, object,
8254 data_shndx, output_section, gsym, reloc);
8255 }
8256 else
8257 {
8258 check_non_pic(object, r_type);
8259 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8260 rel_dyn->add_global(gsym, r_type, output_section, object,
8261 data_shndx, reloc.get_r_offset());
8262 }
8263 }
8264 }
8265 break;
8266
8267 case elfcpp::R_ARM_THM_CALL:
8268 case elfcpp::R_ARM_PLT32:
8269 case elfcpp::R_ARM_CALL:
8270 case elfcpp::R_ARM_JUMP24:
8271 case elfcpp::R_ARM_THM_JUMP24:
8272 case elfcpp::R_ARM_SBREL31:
8273 case elfcpp::R_ARM_PREL31:
8274 case elfcpp::R_ARM_THM_JUMP19:
8275 case elfcpp::R_ARM_THM_JUMP6:
8276 case elfcpp::R_ARM_THM_JUMP11:
8277 case elfcpp::R_ARM_THM_JUMP8:
8278 // All the relocation above are branches except for the PREL31 ones.
8279 // A PREL31 relocation can point to a personality function in a shared
8280 // library. In that case we want to use a PLT because we want to
8281 // call the personality routine and the dynamic linkers we care about
8282 // do not support dynamic PREL31 relocations. An REL31 relocation may
8283 // point to a function whose unwinding behaviour is being described but
8284 // we will not mistakenly generate a PLT for that because we should use
8285 // a local section symbol.
8286
8287 // If the symbol is fully resolved, this is just a relative
8288 // local reloc. Otherwise we need a PLT entry.
8289 if (gsym->final_value_is_known())
8290 break;
8291 // If building a shared library, we can also skip the PLT entry
8292 // if the symbol is defined in the output file and is protected
8293 // or hidden.
8294 if (gsym->is_defined()
8295 && !gsym->is_from_dynobj()
8296 && !gsym->is_preemptible())
8297 break;
8298 target->make_plt_entry(symtab, layout, gsym);
8299 break;
8300
8301 case elfcpp::R_ARM_GOT_BREL:
8302 case elfcpp::R_ARM_GOT_ABS:
8303 case elfcpp::R_ARM_GOT_PREL:
8304 {
8305 // The symbol requires a GOT entry.
8306 Arm_output_data_got<big_endian>* got =
8307 target->got_section(symtab, layout);
8308 if (gsym->final_value_is_known())
8309 got->add_global(gsym, GOT_TYPE_STANDARD);
8310 else
8311 {
8312 // If this symbol is not fully resolved, we need to add a
8313 // GOT entry with a dynamic relocation.
8314 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8315 if (gsym->is_from_dynobj()
8316 || gsym->is_undefined()
8317 || gsym->is_preemptible()
8318 || (gsym->visibility() == elfcpp::STV_PROTECTED
8319 && parameters->options().shared()))
8320 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8321 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8322 else
8323 {
8324 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8325 rel_dyn->add_global_relative(
8326 gsym, elfcpp::R_ARM_RELATIVE, got,
8327 gsym->got_offset(GOT_TYPE_STANDARD));
8328 }
8329 }
8330 }
8331 break;
8332
8333 case elfcpp::R_ARM_TARGET1:
8334 case elfcpp::R_ARM_TARGET2:
8335 // These should have been mapped to other types already.
8336 // Fall through.
8337 case elfcpp::R_ARM_COPY:
8338 case elfcpp::R_ARM_GLOB_DAT:
8339 case elfcpp::R_ARM_JUMP_SLOT:
8340 case elfcpp::R_ARM_RELATIVE:
8341 // These are relocations which should only be seen by the
8342 // dynamic linker, and should never be seen here.
8343 gold_error(_("%s: unexpected reloc %u in object file"),
8344 object->name().c_str(), r_type);
8345 break;
8346
8347 // These are initial tls relocs, which are expected when
8348 // linking.
8349 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8350 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8351 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8352 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8353 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8354 {
8355 const bool is_final = gsym->final_value_is_known();
8356 const tls::Tls_optimization optimized_type
8357 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8358 switch (r_type)
8359 {
8360 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8361 if (optimized_type == tls::TLSOPT_NONE)
8362 {
8363 // Create a pair of GOT entries for the module index and
8364 // dtv-relative offset.
8365 Arm_output_data_got<big_endian>* got
8366 = target->got_section(symtab, layout);
8367 if (!parameters->doing_static_link())
8368 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8369 target->rel_dyn_section(layout),
8370 elfcpp::R_ARM_TLS_DTPMOD32,
8371 elfcpp::R_ARM_TLS_DTPOFF32);
8372 else
8373 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8374 }
8375 else
8376 // FIXME: TLS optimization not supported yet.
8377 gold_unreachable();
8378 break;
8379
8380 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8381 if (optimized_type == tls::TLSOPT_NONE)
8382 {
8383 // Create a GOT entry for the module index.
8384 target->got_mod_index_entry(symtab, layout, object);
8385 }
8386 else
8387 // FIXME: TLS optimization not supported yet.
8388 gold_unreachable();
8389 break;
8390
8391 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8392 break;
8393
8394 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8395 layout->set_has_static_tls();
8396 if (optimized_type == tls::TLSOPT_NONE)
8397 {
8398 // Create a GOT entry for the tp-relative offset.
8399 Arm_output_data_got<big_endian>* got
8400 = target->got_section(symtab, layout);
8401 if (!parameters->doing_static_link())
8402 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8403 target->rel_dyn_section(layout),
8404 elfcpp::R_ARM_TLS_TPOFF32);
8405 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8406 {
8407 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8408 unsigned int got_offset =
8409 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8410 got->add_static_reloc(got_offset,
8411 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8412 }
8413 }
8414 else
8415 // FIXME: TLS optimization not supported yet.
8416 gold_unreachable();
8417 break;
8418
8419 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8420 layout->set_has_static_tls();
8421 if (parameters->options().shared())
8422 {
8423 // We need to create a dynamic relocation.
8424 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8425 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8426 output_section, object,
8427 data_shndx, reloc.get_r_offset());
8428 }
8429 break;
8430
8431 default:
8432 gold_unreachable();
8433 }
8434 }
8435 break;
8436
8437 case elfcpp::R_ARM_PC24:
8438 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8439 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8440 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8441 default:
8442 unsupported_reloc_global(object, r_type, gsym);
8443 break;
8444 }
8445 }
8446
8447 // Process relocations for gc.
8448
8449 template<bool big_endian>
8450 void
8451 Target_arm<big_endian>::gc_process_relocs(
8452 Symbol_table* symtab,
8453 Layout* layout,
8454 Sized_relobj_file<32, big_endian>* object,
8455 unsigned int data_shndx,
8456 unsigned int,
8457 const unsigned char* prelocs,
8458 size_t reloc_count,
8459 Output_section* output_section,
8460 bool needs_special_offset_handling,
8461 size_t local_symbol_count,
8462 const unsigned char* plocal_symbols)
8463 {
8464 typedef Target_arm<big_endian> Arm;
8465 typedef typename Target_arm<big_endian>::Scan Scan;
8466
8467 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8468 typename Target_arm::Relocatable_size_for_reloc>(
8469 symtab,
8470 layout,
8471 this,
8472 object,
8473 data_shndx,
8474 prelocs,
8475 reloc_count,
8476 output_section,
8477 needs_special_offset_handling,
8478 local_symbol_count,
8479 plocal_symbols);
8480 }
8481
8482 // Scan relocations for a section.
8483
8484 template<bool big_endian>
8485 void
8486 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8487 Layout* layout,
8488 Sized_relobj_file<32, big_endian>* object,
8489 unsigned int data_shndx,
8490 unsigned int sh_type,
8491 const unsigned char* prelocs,
8492 size_t reloc_count,
8493 Output_section* output_section,
8494 bool needs_special_offset_handling,
8495 size_t local_symbol_count,
8496 const unsigned char* plocal_symbols)
8497 {
8498 typedef typename Target_arm<big_endian>::Scan Scan;
8499 if (sh_type == elfcpp::SHT_RELA)
8500 {
8501 gold_error(_("%s: unsupported RELA reloc section"),
8502 object->name().c_str());
8503 return;
8504 }
8505
8506 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8507 symtab,
8508 layout,
8509 this,
8510 object,
8511 data_shndx,
8512 prelocs,
8513 reloc_count,
8514 output_section,
8515 needs_special_offset_handling,
8516 local_symbol_count,
8517 plocal_symbols);
8518 }
8519
8520 // Finalize the sections.
8521
8522 template<bool big_endian>
8523 void
8524 Target_arm<big_endian>::do_finalize_sections(
8525 Layout* layout,
8526 const Input_objects* input_objects,
8527 Symbol_table* symtab)
8528 {
8529 bool merged_any_attributes = false;
8530 // Merge processor-specific flags.
8531 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8532 p != input_objects->relobj_end();
8533 ++p)
8534 {
8535 Arm_relobj<big_endian>* arm_relobj =
8536 Arm_relobj<big_endian>::as_arm_relobj(*p);
8537 if (arm_relobj->merge_flags_and_attributes())
8538 {
8539 this->merge_processor_specific_flags(
8540 arm_relobj->name(),
8541 arm_relobj->processor_specific_flags());
8542 this->merge_object_attributes(arm_relobj->name().c_str(),
8543 arm_relobj->attributes_section_data());
8544 merged_any_attributes = true;
8545 }
8546 }
8547
8548 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8549 p != input_objects->dynobj_end();
8550 ++p)
8551 {
8552 Arm_dynobj<big_endian>* arm_dynobj =
8553 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8554 this->merge_processor_specific_flags(
8555 arm_dynobj->name(),
8556 arm_dynobj->processor_specific_flags());
8557 this->merge_object_attributes(arm_dynobj->name().c_str(),
8558 arm_dynobj->attributes_section_data());
8559 merged_any_attributes = true;
8560 }
8561
8562 // Create an empty uninitialized attribute section if we still don't have it
8563 // at this moment. This happens if there is no attributes sections in all
8564 // inputs.
8565 if (this->attributes_section_data_ == NULL)
8566 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8567
8568 const Object_attribute* cpu_arch_attr =
8569 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8570 // Check if we need to use Cortex-A8 workaround.
8571 if (parameters->options().user_set_fix_cortex_a8())
8572 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8573 else
8574 {
8575 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8576 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8577 // profile.
8578 const Object_attribute* cpu_arch_profile_attr =
8579 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8580 this->fix_cortex_a8_ =
8581 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8582 && (cpu_arch_profile_attr->int_value() == 'A'
8583 || cpu_arch_profile_attr->int_value() == 0));
8584 }
8585
8586 // Check if we can use V4BX interworking.
8587 // The V4BX interworking stub contains BX instruction,
8588 // which is not specified for some profiles.
8589 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8590 && !this->may_use_v4t_interworking())
8591 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8592 "the target profile does not support BX instruction"));
8593
8594 // Fill in some more dynamic tags.
8595 const Reloc_section* rel_plt = (this->plt_ == NULL
8596 ? NULL
8597 : this->plt_->rel_plt());
8598 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8599 this->rel_dyn_, true, false);
8600
8601 // Emit any relocs we saved in an attempt to avoid generating COPY
8602 // relocs.
8603 if (this->copy_relocs_.any_saved_relocs())
8604 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8605
8606 // Handle the .ARM.exidx section.
8607 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8608
8609 if (!parameters->options().relocatable())
8610 {
8611 if (exidx_section != NULL
8612 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8613 {
8614 // Create __exidx_start and __exidx_end symbols.
8615 symtab->define_in_output_data("__exidx_start", NULL,
8616 Symbol_table::PREDEFINED,
8617 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8618 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8619 0, false, true);
8620 symtab->define_in_output_data("__exidx_end", NULL,
8621 Symbol_table::PREDEFINED,
8622 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8623 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8624 0, true, true);
8625
8626 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8627 // the .ARM.exidx section.
8628 if (!layout->script_options()->saw_phdrs_clause())
8629 {
8630 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8631 0)
8632 == NULL);
8633 Output_segment* exidx_segment =
8634 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8635 exidx_segment->add_output_section_to_nonload(exidx_section,
8636 elfcpp::PF_R);
8637 }
8638 }
8639 else
8640 {
8641 symtab->define_as_constant("__exidx_start", NULL,
8642 Symbol_table::PREDEFINED,
8643 0, 0, elfcpp::STT_OBJECT,
8644 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8645 true, false);
8646 symtab->define_as_constant("__exidx_end", NULL,
8647 Symbol_table::PREDEFINED,
8648 0, 0, elfcpp::STT_OBJECT,
8649 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8650 true, false);
8651 }
8652 }
8653
8654 // Create an .ARM.attributes section if we have merged any attributes
8655 // from inputs.
8656 if (merged_any_attributes)
8657 {
8658 Output_attributes_section_data* attributes_section =
8659 new Output_attributes_section_data(*this->attributes_section_data_);
8660 layout->add_output_section_data(".ARM.attributes",
8661 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8662 attributes_section, ORDER_INVALID,
8663 false);
8664 }
8665
8666 // Fix up links in section EXIDX headers.
8667 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8668 p != layout->section_list().end();
8669 ++p)
8670 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8671 {
8672 Arm_output_section<big_endian>* os =
8673 Arm_output_section<big_endian>::as_arm_output_section(*p);
8674 os->set_exidx_section_link();
8675 }
8676 }
8677
8678 // Return whether a direct absolute static relocation needs to be applied.
8679 // In cases where Scan::local() or Scan::global() has created
8680 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8681 // of the relocation is carried in the data, and we must not
8682 // apply the static relocation.
8683
8684 template<bool big_endian>
8685 inline bool
8686 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8687 const Sized_symbol<32>* gsym,
8688 unsigned int r_type,
8689 bool is_32bit,
8690 Output_section* output_section)
8691 {
8692 // If the output section is not allocated, then we didn't call
8693 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8694 // the reloc here.
8695 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8696 return true;
8697
8698 int ref_flags = Scan::get_reference_flags(r_type);
8699
8700 // For local symbols, we will have created a non-RELATIVE dynamic
8701 // relocation only if (a) the output is position independent,
8702 // (b) the relocation is absolute (not pc- or segment-relative), and
8703 // (c) the relocation is not 32 bits wide.
8704 if (gsym == NULL)
8705 return !(parameters->options().output_is_position_independent()
8706 && (ref_flags & Symbol::ABSOLUTE_REF)
8707 && !is_32bit);
8708
8709 // For global symbols, we use the same helper routines used in the
8710 // scan pass. If we did not create a dynamic relocation, or if we
8711 // created a RELATIVE dynamic relocation, we should apply the static
8712 // relocation.
8713 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8714 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8715 && gsym->can_use_relative_reloc(ref_flags
8716 & Symbol::FUNCTION_CALL);
8717 return !has_dyn || is_rel;
8718 }
8719
8720 // Perform a relocation.
8721
8722 template<bool big_endian>
8723 inline bool
8724 Target_arm<big_endian>::Relocate::relocate(
8725 const Relocate_info<32, big_endian>* relinfo,
8726 Target_arm* target,
8727 Output_section* output_section,
8728 size_t relnum,
8729 const elfcpp::Rel<32, big_endian>& rel,
8730 unsigned int r_type,
8731 const Sized_symbol<32>* gsym,
8732 const Symbol_value<32>* psymval,
8733 unsigned char* view,
8734 Arm_address address,
8735 section_size_type view_size)
8736 {
8737 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8738
8739 r_type = get_real_reloc_type(r_type);
8740 const Arm_reloc_property* reloc_property =
8741 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8742 if (reloc_property == NULL)
8743 {
8744 std::string reloc_name =
8745 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8746 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8747 _("cannot relocate %s in object file"),
8748 reloc_name.c_str());
8749 return true;
8750 }
8751
8752 const Arm_relobj<big_endian>* object =
8753 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8754
8755 // If the final branch target of a relocation is THUMB instruction, this
8756 // is 1. Otherwise it is 0.
8757 Arm_address thumb_bit = 0;
8758 Symbol_value<32> symval;
8759 bool is_weakly_undefined_without_plt = false;
8760 bool have_got_offset = false;
8761 unsigned int got_offset = 0;
8762
8763 // If the relocation uses the GOT entry of a symbol instead of the symbol
8764 // itself, we don't care about whether the symbol is defined or what kind
8765 // of symbol it is.
8766 if (reloc_property->uses_got_entry())
8767 {
8768 // Get the GOT offset.
8769 // The GOT pointer points to the end of the GOT section.
8770 // We need to subtract the size of the GOT section to get
8771 // the actual offset to use in the relocation.
8772 // TODO: We should move GOT offset computing code in TLS relocations
8773 // to here.
8774 switch (r_type)
8775 {
8776 case elfcpp::R_ARM_GOT_BREL:
8777 case elfcpp::R_ARM_GOT_PREL:
8778 if (gsym != NULL)
8779 {
8780 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8781 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8782 - target->got_size());
8783 }
8784 else
8785 {
8786 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8787 gold_assert(object->local_has_got_offset(r_sym,
8788 GOT_TYPE_STANDARD));
8789 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8790 - target->got_size());
8791 }
8792 have_got_offset = true;
8793 break;
8794
8795 default:
8796 break;
8797 }
8798 }
8799 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8800 {
8801 if (gsym != NULL)
8802 {
8803 // This is a global symbol. Determine if we use PLT and if the
8804 // final target is THUMB.
8805 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8806 {
8807 // This uses a PLT, change the symbol value.
8808 symval.set_output_value(target->plt_section()->address()
8809 + gsym->plt_offset());
8810 psymval = &symval;
8811 }
8812 else if (gsym->is_weak_undefined())
8813 {
8814 // This is a weakly undefined symbol and we do not use PLT
8815 // for this relocation. A branch targeting this symbol will
8816 // be converted into an NOP.
8817 is_weakly_undefined_without_plt = true;
8818 }
8819 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8820 {
8821 // This relocation uses the symbol value but the symbol is
8822 // undefined. Exit early and have the caller reporting an
8823 // error.
8824 return true;
8825 }
8826 else
8827 {
8828 // Set thumb bit if symbol:
8829 // -Has type STT_ARM_TFUNC or
8830 // -Has type STT_FUNC, is defined and with LSB in value set.
8831 thumb_bit =
8832 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8833 || (gsym->type() == elfcpp::STT_FUNC
8834 && !gsym->is_undefined()
8835 && ((psymval->value(object, 0) & 1) != 0)))
8836 ? 1
8837 : 0);
8838 }
8839 }
8840 else
8841 {
8842 // This is a local symbol. Determine if the final target is THUMB.
8843 // We saved this information when all the local symbols were read.
8844 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8845 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8846 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8847 }
8848 }
8849 else
8850 {
8851 // This is a fake relocation synthesized for a stub. It does not have
8852 // a real symbol. We just look at the LSB of the symbol value to
8853 // determine if the target is THUMB or not.
8854 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8855 }
8856
8857 // Strip LSB if this points to a THUMB target.
8858 if (thumb_bit != 0
8859 && reloc_property->uses_thumb_bit()
8860 && ((psymval->value(object, 0) & 1) != 0))
8861 {
8862 Arm_address stripped_value =
8863 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8864 symval.set_output_value(stripped_value);
8865 psymval = &symval;
8866 }
8867
8868 // To look up relocation stubs, we need to pass the symbol table index of
8869 // a local symbol.
8870 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8871
8872 // Get the addressing origin of the output segment defining the
8873 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8874 Arm_address sym_origin = 0;
8875 if (reloc_property->uses_symbol_base())
8876 {
8877 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8878 // R_ARM_BASE_ABS with the NULL symbol will give the
8879 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8880 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8881 sym_origin = target->got_plt_section()->address();
8882 else if (gsym == NULL)
8883 sym_origin = 0;
8884 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8885 sym_origin = gsym->output_segment()->vaddr();
8886 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8887 sym_origin = gsym->output_data()->address();
8888
8889 // TODO: Assumes the segment base to be zero for the global symbols
8890 // till the proper support for the segment-base-relative addressing
8891 // will be implemented. This is consistent with GNU ld.
8892 }
8893
8894 // For relative addressing relocation, find out the relative address base.
8895 Arm_address relative_address_base = 0;
8896 switch(reloc_property->relative_address_base())
8897 {
8898 case Arm_reloc_property::RAB_NONE:
8899 // Relocations with relative address bases RAB_TLS and RAB_tp are
8900 // handled by relocate_tls. So we do not need to do anything here.
8901 case Arm_reloc_property::RAB_TLS:
8902 case Arm_reloc_property::RAB_tp:
8903 break;
8904 case Arm_reloc_property::RAB_B_S:
8905 relative_address_base = sym_origin;
8906 break;
8907 case Arm_reloc_property::RAB_GOT_ORG:
8908 relative_address_base = target->got_plt_section()->address();
8909 break;
8910 case Arm_reloc_property::RAB_P:
8911 relative_address_base = address;
8912 break;
8913 case Arm_reloc_property::RAB_Pa:
8914 relative_address_base = address & 0xfffffffcU;
8915 break;
8916 default:
8917 gold_unreachable();
8918 }
8919
8920 typename Arm_relocate_functions::Status reloc_status =
8921 Arm_relocate_functions::STATUS_OKAY;
8922 bool check_overflow = reloc_property->checks_overflow();
8923 switch (r_type)
8924 {
8925 case elfcpp::R_ARM_NONE:
8926 break;
8927
8928 case elfcpp::R_ARM_ABS8:
8929 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8930 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8931 break;
8932
8933 case elfcpp::R_ARM_ABS12:
8934 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8935 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8936 break;
8937
8938 case elfcpp::R_ARM_ABS16:
8939 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8940 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8941 break;
8942
8943 case elfcpp::R_ARM_ABS32:
8944 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8945 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8946 thumb_bit);
8947 break;
8948
8949 case elfcpp::R_ARM_ABS32_NOI:
8950 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8951 // No thumb bit for this relocation: (S + A)
8952 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8953 0);
8954 break;
8955
8956 case elfcpp::R_ARM_MOVW_ABS_NC:
8957 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8958 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8959 0, thumb_bit,
8960 check_overflow);
8961 break;
8962
8963 case elfcpp::R_ARM_MOVT_ABS:
8964 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8965 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8966 break;
8967
8968 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8969 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8970 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8971 0, thumb_bit, false);
8972 break;
8973
8974 case elfcpp::R_ARM_THM_MOVT_ABS:
8975 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8976 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8977 psymval, 0);
8978 break;
8979
8980 case elfcpp::R_ARM_MOVW_PREL_NC:
8981 case elfcpp::R_ARM_MOVW_BREL_NC:
8982 case elfcpp::R_ARM_MOVW_BREL:
8983 reloc_status =
8984 Arm_relocate_functions::movw(view, object, psymval,
8985 relative_address_base, thumb_bit,
8986 check_overflow);
8987 break;
8988
8989 case elfcpp::R_ARM_MOVT_PREL:
8990 case elfcpp::R_ARM_MOVT_BREL:
8991 reloc_status =
8992 Arm_relocate_functions::movt(view, object, psymval,
8993 relative_address_base);
8994 break;
8995
8996 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8997 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8998 case elfcpp::R_ARM_THM_MOVW_BREL:
8999 reloc_status =
9000 Arm_relocate_functions::thm_movw(view, object, psymval,
9001 relative_address_base,
9002 thumb_bit, check_overflow);
9003 break;
9004
9005 case elfcpp::R_ARM_THM_MOVT_PREL:
9006 case elfcpp::R_ARM_THM_MOVT_BREL:
9007 reloc_status =
9008 Arm_relocate_functions::thm_movt(view, object, psymval,
9009 relative_address_base);
9010 break;
9011
9012 case elfcpp::R_ARM_REL32:
9013 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9014 address, thumb_bit);
9015 break;
9016
9017 case elfcpp::R_ARM_THM_ABS5:
9018 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9019 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9020 break;
9021
9022 // Thumb long branches.
9023 case elfcpp::R_ARM_THM_CALL:
9024 case elfcpp::R_ARM_THM_XPC22:
9025 case elfcpp::R_ARM_THM_JUMP24:
9026 reloc_status =
9027 Arm_relocate_functions::thumb_branch_common(
9028 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9029 thumb_bit, is_weakly_undefined_without_plt);
9030 break;
9031
9032 case elfcpp::R_ARM_GOTOFF32:
9033 {
9034 Arm_address got_origin;
9035 got_origin = target->got_plt_section()->address();
9036 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9037 got_origin, thumb_bit);
9038 }
9039 break;
9040
9041 case elfcpp::R_ARM_BASE_PREL:
9042 gold_assert(gsym != NULL);
9043 reloc_status =
9044 Arm_relocate_functions::base_prel(view, sym_origin, address);
9045 break;
9046
9047 case elfcpp::R_ARM_BASE_ABS:
9048 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9049 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9050 break;
9051
9052 case elfcpp::R_ARM_GOT_BREL:
9053 gold_assert(have_got_offset);
9054 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9055 break;
9056
9057 case elfcpp::R_ARM_GOT_PREL:
9058 gold_assert(have_got_offset);
9059 // Get the address origin for GOT PLT, which is allocated right
9060 // after the GOT section, to calculate an absolute address of
9061 // the symbol GOT entry (got_origin + got_offset).
9062 Arm_address got_origin;
9063 got_origin = target->got_plt_section()->address();
9064 reloc_status = Arm_relocate_functions::got_prel(view,
9065 got_origin + got_offset,
9066 address);
9067 break;
9068
9069 case elfcpp::R_ARM_PLT32:
9070 case elfcpp::R_ARM_CALL:
9071 case elfcpp::R_ARM_JUMP24:
9072 case elfcpp::R_ARM_XPC25:
9073 gold_assert(gsym == NULL
9074 || gsym->has_plt_offset()
9075 || gsym->final_value_is_known()
9076 || (gsym->is_defined()
9077 && !gsym->is_from_dynobj()
9078 && !gsym->is_preemptible()));
9079 reloc_status =
9080 Arm_relocate_functions::arm_branch_common(
9081 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9082 thumb_bit, is_weakly_undefined_without_plt);
9083 break;
9084
9085 case elfcpp::R_ARM_THM_JUMP19:
9086 reloc_status =
9087 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9088 thumb_bit);
9089 break;
9090
9091 case elfcpp::R_ARM_THM_JUMP6:
9092 reloc_status =
9093 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9094 break;
9095
9096 case elfcpp::R_ARM_THM_JUMP8:
9097 reloc_status =
9098 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9099 break;
9100
9101 case elfcpp::R_ARM_THM_JUMP11:
9102 reloc_status =
9103 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9104 break;
9105
9106 case elfcpp::R_ARM_PREL31:
9107 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9108 address, thumb_bit);
9109 break;
9110
9111 case elfcpp::R_ARM_V4BX:
9112 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9113 {
9114 const bool is_v4bx_interworking =
9115 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9116 reloc_status =
9117 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9118 is_v4bx_interworking);
9119 }
9120 break;
9121
9122 case elfcpp::R_ARM_THM_PC8:
9123 reloc_status =
9124 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9125 break;
9126
9127 case elfcpp::R_ARM_THM_PC12:
9128 reloc_status =
9129 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9130 break;
9131
9132 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9133 reloc_status =
9134 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9135 thumb_bit);
9136 break;
9137
9138 case elfcpp::R_ARM_ALU_PC_G0_NC:
9139 case elfcpp::R_ARM_ALU_PC_G0:
9140 case elfcpp::R_ARM_ALU_PC_G1_NC:
9141 case elfcpp::R_ARM_ALU_PC_G1:
9142 case elfcpp::R_ARM_ALU_PC_G2:
9143 case elfcpp::R_ARM_ALU_SB_G0_NC:
9144 case elfcpp::R_ARM_ALU_SB_G0:
9145 case elfcpp::R_ARM_ALU_SB_G1_NC:
9146 case elfcpp::R_ARM_ALU_SB_G1:
9147 case elfcpp::R_ARM_ALU_SB_G2:
9148 reloc_status =
9149 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9150 reloc_property->group_index(),
9151 relative_address_base,
9152 thumb_bit, check_overflow);
9153 break;
9154
9155 case elfcpp::R_ARM_LDR_PC_G0:
9156 case elfcpp::R_ARM_LDR_PC_G1:
9157 case elfcpp::R_ARM_LDR_PC_G2:
9158 case elfcpp::R_ARM_LDR_SB_G0:
9159 case elfcpp::R_ARM_LDR_SB_G1:
9160 case elfcpp::R_ARM_LDR_SB_G2:
9161 reloc_status =
9162 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9163 reloc_property->group_index(),
9164 relative_address_base);
9165 break;
9166
9167 case elfcpp::R_ARM_LDRS_PC_G0:
9168 case elfcpp::R_ARM_LDRS_PC_G1:
9169 case elfcpp::R_ARM_LDRS_PC_G2:
9170 case elfcpp::R_ARM_LDRS_SB_G0:
9171 case elfcpp::R_ARM_LDRS_SB_G1:
9172 case elfcpp::R_ARM_LDRS_SB_G2:
9173 reloc_status =
9174 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9175 reloc_property->group_index(),
9176 relative_address_base);
9177 break;
9178
9179 case elfcpp::R_ARM_LDC_PC_G0:
9180 case elfcpp::R_ARM_LDC_PC_G1:
9181 case elfcpp::R_ARM_LDC_PC_G2:
9182 case elfcpp::R_ARM_LDC_SB_G0:
9183 case elfcpp::R_ARM_LDC_SB_G1:
9184 case elfcpp::R_ARM_LDC_SB_G2:
9185 reloc_status =
9186 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9187 reloc_property->group_index(),
9188 relative_address_base);
9189 break;
9190
9191 // These are initial tls relocs, which are expected when
9192 // linking.
9193 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9194 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9195 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9196 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9197 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9198 reloc_status =
9199 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9200 view, address, view_size);
9201 break;
9202
9203 // The known and unknown unsupported and/or deprecated relocations.
9204 case elfcpp::R_ARM_PC24:
9205 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9206 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9207 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9208 default:
9209 // Just silently leave the method. We should get an appropriate error
9210 // message in the scan methods.
9211 break;
9212 }
9213
9214 // Report any errors.
9215 switch (reloc_status)
9216 {
9217 case Arm_relocate_functions::STATUS_OKAY:
9218 break;
9219 case Arm_relocate_functions::STATUS_OVERFLOW:
9220 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9221 _("relocation overflow in %s"),
9222 reloc_property->name().c_str());
9223 break;
9224 case Arm_relocate_functions::STATUS_BAD_RELOC:
9225 gold_error_at_location(
9226 relinfo,
9227 relnum,
9228 rel.get_r_offset(),
9229 _("unexpected opcode while processing relocation %s"),
9230 reloc_property->name().c_str());
9231 break;
9232 default:
9233 gold_unreachable();
9234 }
9235
9236 return true;
9237 }
9238
9239 // Perform a TLS relocation.
9240
9241 template<bool big_endian>
9242 inline typename Arm_relocate_functions<big_endian>::Status
9243 Target_arm<big_endian>::Relocate::relocate_tls(
9244 const Relocate_info<32, big_endian>* relinfo,
9245 Target_arm<big_endian>* target,
9246 size_t relnum,
9247 const elfcpp::Rel<32, big_endian>& rel,
9248 unsigned int r_type,
9249 const Sized_symbol<32>* gsym,
9250 const Symbol_value<32>* psymval,
9251 unsigned char* view,
9252 elfcpp::Elf_types<32>::Elf_Addr address,
9253 section_size_type /*view_size*/ )
9254 {
9255 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9256 typedef Relocate_functions<32, big_endian> RelocFuncs;
9257 Output_segment* tls_segment = relinfo->layout->tls_segment();
9258
9259 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9260
9261 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9262
9263 const bool is_final = (gsym == NULL
9264 ? !parameters->options().shared()
9265 : gsym->final_value_is_known());
9266 const tls::Tls_optimization optimized_type
9267 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9268 switch (r_type)
9269 {
9270 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9271 {
9272 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9273 unsigned int got_offset;
9274 if (gsym != NULL)
9275 {
9276 gold_assert(gsym->has_got_offset(got_type));
9277 got_offset = gsym->got_offset(got_type) - target->got_size();
9278 }
9279 else
9280 {
9281 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9282 gold_assert(object->local_has_got_offset(r_sym, got_type));
9283 got_offset = (object->local_got_offset(r_sym, got_type)
9284 - target->got_size());
9285 }
9286 if (optimized_type == tls::TLSOPT_NONE)
9287 {
9288 Arm_address got_entry =
9289 target->got_plt_section()->address() + got_offset;
9290
9291 // Relocate the field with the PC relative offset of the pair of
9292 // GOT entries.
9293 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9294 return ArmRelocFuncs::STATUS_OKAY;
9295 }
9296 }
9297 break;
9298
9299 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9300 if (optimized_type == tls::TLSOPT_NONE)
9301 {
9302 // Relocate the field with the offset of the GOT entry for
9303 // the module index.
9304 unsigned int got_offset;
9305 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9306 - target->got_size());
9307 Arm_address got_entry =
9308 target->got_plt_section()->address() + got_offset;
9309
9310 // Relocate the field with the PC relative offset of the pair of
9311 // GOT entries.
9312 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9313 return ArmRelocFuncs::STATUS_OKAY;
9314 }
9315 break;
9316
9317 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9318 RelocFuncs::rel32_unaligned(view, value);
9319 return ArmRelocFuncs::STATUS_OKAY;
9320
9321 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9322 if (optimized_type == tls::TLSOPT_NONE)
9323 {
9324 // Relocate the field with the offset of the GOT entry for
9325 // the tp-relative offset of the symbol.
9326 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9327 unsigned int got_offset;
9328 if (gsym != NULL)
9329 {
9330 gold_assert(gsym->has_got_offset(got_type));
9331 got_offset = gsym->got_offset(got_type);
9332 }
9333 else
9334 {
9335 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9336 gold_assert(object->local_has_got_offset(r_sym, got_type));
9337 got_offset = object->local_got_offset(r_sym, got_type);
9338 }
9339
9340 // All GOT offsets are relative to the end of the GOT.
9341 got_offset -= target->got_size();
9342
9343 Arm_address got_entry =
9344 target->got_plt_section()->address() + got_offset;
9345
9346 // Relocate the field with the PC relative offset of the GOT entry.
9347 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9348 return ArmRelocFuncs::STATUS_OKAY;
9349 }
9350 break;
9351
9352 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9353 // If we're creating a shared library, a dynamic relocation will
9354 // have been created for this location, so do not apply it now.
9355 if (!parameters->options().shared())
9356 {
9357 gold_assert(tls_segment != NULL);
9358
9359 // $tp points to the TCB, which is followed by the TLS, so we
9360 // need to add TCB size to the offset.
9361 Arm_address aligned_tcb_size =
9362 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9363 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9364
9365 }
9366 return ArmRelocFuncs::STATUS_OKAY;
9367
9368 default:
9369 gold_unreachable();
9370 }
9371
9372 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9373 _("unsupported reloc %u"),
9374 r_type);
9375 return ArmRelocFuncs::STATUS_BAD_RELOC;
9376 }
9377
9378 // Relocate section data.
9379
9380 template<bool big_endian>
9381 void
9382 Target_arm<big_endian>::relocate_section(
9383 const Relocate_info<32, big_endian>* relinfo,
9384 unsigned int sh_type,
9385 const unsigned char* prelocs,
9386 size_t reloc_count,
9387 Output_section* output_section,
9388 bool needs_special_offset_handling,
9389 unsigned char* view,
9390 Arm_address address,
9391 section_size_type view_size,
9392 const Reloc_symbol_changes* reloc_symbol_changes)
9393 {
9394 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9395 gold_assert(sh_type == elfcpp::SHT_REL);
9396
9397 // See if we are relocating a relaxed input section. If so, the view
9398 // covers the whole output section and we need to adjust accordingly.
9399 if (needs_special_offset_handling)
9400 {
9401 const Output_relaxed_input_section* poris =
9402 output_section->find_relaxed_input_section(relinfo->object,
9403 relinfo->data_shndx);
9404 if (poris != NULL)
9405 {
9406 Arm_address section_address = poris->address();
9407 section_size_type section_size = poris->data_size();
9408
9409 gold_assert((section_address >= address)
9410 && ((section_address + section_size)
9411 <= (address + view_size)));
9412
9413 off_t offset = section_address - address;
9414 view += offset;
9415 address += offset;
9416 view_size = section_size;
9417 }
9418 }
9419
9420 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9421 Arm_relocate>(
9422 relinfo,
9423 this,
9424 prelocs,
9425 reloc_count,
9426 output_section,
9427 needs_special_offset_handling,
9428 view,
9429 address,
9430 view_size,
9431 reloc_symbol_changes);
9432 }
9433
9434 // Return the size of a relocation while scanning during a relocatable
9435 // link.
9436
9437 template<bool big_endian>
9438 unsigned int
9439 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9440 unsigned int r_type,
9441 Relobj* object)
9442 {
9443 r_type = get_real_reloc_type(r_type);
9444 const Arm_reloc_property* arp =
9445 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9446 if (arp != NULL)
9447 return arp->size();
9448 else
9449 {
9450 std::string reloc_name =
9451 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9452 gold_error(_("%s: unexpected %s in object file"),
9453 object->name().c_str(), reloc_name.c_str());
9454 return 0;
9455 }
9456 }
9457
9458 // Scan the relocs during a relocatable link.
9459
9460 template<bool big_endian>
9461 void
9462 Target_arm<big_endian>::scan_relocatable_relocs(
9463 Symbol_table* symtab,
9464 Layout* layout,
9465 Sized_relobj_file<32, big_endian>* object,
9466 unsigned int data_shndx,
9467 unsigned int sh_type,
9468 const unsigned char* prelocs,
9469 size_t reloc_count,
9470 Output_section* output_section,
9471 bool needs_special_offset_handling,
9472 size_t local_symbol_count,
9473 const unsigned char* plocal_symbols,
9474 Relocatable_relocs* rr)
9475 {
9476 gold_assert(sh_type == elfcpp::SHT_REL);
9477
9478 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9479 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9480
9481 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9482 Scan_relocatable_relocs>(
9483 symtab,
9484 layout,
9485 object,
9486 data_shndx,
9487 prelocs,
9488 reloc_count,
9489 output_section,
9490 needs_special_offset_handling,
9491 local_symbol_count,
9492 plocal_symbols,
9493 rr);
9494 }
9495
9496 // Relocate a section during a relocatable link.
9497
9498 template<bool big_endian>
9499 void
9500 Target_arm<big_endian>::relocate_for_relocatable(
9501 const Relocate_info<32, big_endian>* relinfo,
9502 unsigned int sh_type,
9503 const unsigned char* prelocs,
9504 size_t reloc_count,
9505 Output_section* output_section,
9506 off_t offset_in_output_section,
9507 const Relocatable_relocs* rr,
9508 unsigned char* view,
9509 Arm_address view_address,
9510 section_size_type view_size,
9511 unsigned char* reloc_view,
9512 section_size_type reloc_view_size)
9513 {
9514 gold_assert(sh_type == elfcpp::SHT_REL);
9515
9516 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9517 relinfo,
9518 prelocs,
9519 reloc_count,
9520 output_section,
9521 offset_in_output_section,
9522 rr,
9523 view,
9524 view_address,
9525 view_size,
9526 reloc_view,
9527 reloc_view_size);
9528 }
9529
9530 // Perform target-specific processing in a relocatable link. This is
9531 // only used if we use the relocation strategy RELOC_SPECIAL.
9532
9533 template<bool big_endian>
9534 void
9535 Target_arm<big_endian>::relocate_special_relocatable(
9536 const Relocate_info<32, big_endian>* relinfo,
9537 unsigned int sh_type,
9538 const unsigned char* preloc_in,
9539 size_t relnum,
9540 Output_section* output_section,
9541 off_t offset_in_output_section,
9542 unsigned char* view,
9543 elfcpp::Elf_types<32>::Elf_Addr view_address,
9544 section_size_type,
9545 unsigned char* preloc_out)
9546 {
9547 // We can only handle REL type relocation sections.
9548 gold_assert(sh_type == elfcpp::SHT_REL);
9549
9550 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9551 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9552 Reltype_write;
9553 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9554
9555 const Arm_relobj<big_endian>* object =
9556 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9557 const unsigned int local_count = object->local_symbol_count();
9558
9559 Reltype reloc(preloc_in);
9560 Reltype_write reloc_write(preloc_out);
9561
9562 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9563 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9564 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9565
9566 const Arm_reloc_property* arp =
9567 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9568 gold_assert(arp != NULL);
9569
9570 // Get the new symbol index.
9571 // We only use RELOC_SPECIAL strategy in local relocations.
9572 gold_assert(r_sym < local_count);
9573
9574 // We are adjusting a section symbol. We need to find
9575 // the symbol table index of the section symbol for
9576 // the output section corresponding to input section
9577 // in which this symbol is defined.
9578 bool is_ordinary;
9579 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9580 gold_assert(is_ordinary);
9581 Output_section* os = object->output_section(shndx);
9582 gold_assert(os != NULL);
9583 gold_assert(os->needs_symtab_index());
9584 unsigned int new_symndx = os->symtab_index();
9585
9586 // Get the new offset--the location in the output section where
9587 // this relocation should be applied.
9588
9589 Arm_address offset = reloc.get_r_offset();
9590 Arm_address new_offset;
9591 if (offset_in_output_section != invalid_address)
9592 new_offset = offset + offset_in_output_section;
9593 else
9594 {
9595 section_offset_type sot_offset =
9596 convert_types<section_offset_type, Arm_address>(offset);
9597 section_offset_type new_sot_offset =
9598 output_section->output_offset(object, relinfo->data_shndx,
9599 sot_offset);
9600 gold_assert(new_sot_offset != -1);
9601 new_offset = new_sot_offset;
9602 }
9603
9604 // In an object file, r_offset is an offset within the section.
9605 // In an executable or dynamic object, generated by
9606 // --emit-relocs, r_offset is an absolute address.
9607 if (!parameters->options().relocatable())
9608 {
9609 new_offset += view_address;
9610 if (offset_in_output_section != invalid_address)
9611 new_offset -= offset_in_output_section;
9612 }
9613
9614 reloc_write.put_r_offset(new_offset);
9615 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9616
9617 // Handle the reloc addend.
9618 // The relocation uses a section symbol in the input file.
9619 // We are adjusting it to use a section symbol in the output
9620 // file. The input section symbol refers to some address in
9621 // the input section. We need the relocation in the output
9622 // file to refer to that same address. This adjustment to
9623 // the addend is the same calculation we use for a simple
9624 // absolute relocation for the input section symbol.
9625
9626 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9627
9628 // Handle THUMB bit.
9629 Symbol_value<32> symval;
9630 Arm_address thumb_bit =
9631 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9632 if (thumb_bit != 0
9633 && arp->uses_thumb_bit()
9634 && ((psymval->value(object, 0) & 1) != 0))
9635 {
9636 Arm_address stripped_value =
9637 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9638 symval.set_output_value(stripped_value);
9639 psymval = &symval;
9640 }
9641
9642 unsigned char* paddend = view + offset;
9643 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9644 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9645 switch (r_type)
9646 {
9647 case elfcpp::R_ARM_ABS8:
9648 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9649 psymval);
9650 break;
9651
9652 case elfcpp::R_ARM_ABS12:
9653 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9654 psymval);
9655 break;
9656
9657 case elfcpp::R_ARM_ABS16:
9658 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9659 psymval);
9660 break;
9661
9662 case elfcpp::R_ARM_THM_ABS5:
9663 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9664 object,
9665 psymval);
9666 break;
9667
9668 case elfcpp::R_ARM_MOVW_ABS_NC:
9669 case elfcpp::R_ARM_MOVW_PREL_NC:
9670 case elfcpp::R_ARM_MOVW_BREL_NC:
9671 case elfcpp::R_ARM_MOVW_BREL:
9672 reloc_status = Arm_relocate_functions<big_endian>::movw(
9673 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9674 break;
9675
9676 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9677 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9678 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9679 case elfcpp::R_ARM_THM_MOVW_BREL:
9680 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9681 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9682 break;
9683
9684 case elfcpp::R_ARM_THM_CALL:
9685 case elfcpp::R_ARM_THM_XPC22:
9686 case elfcpp::R_ARM_THM_JUMP24:
9687 reloc_status =
9688 Arm_relocate_functions<big_endian>::thumb_branch_common(
9689 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9690 false);
9691 break;
9692
9693 case elfcpp::R_ARM_PLT32:
9694 case elfcpp::R_ARM_CALL:
9695 case elfcpp::R_ARM_JUMP24:
9696 case elfcpp::R_ARM_XPC25:
9697 reloc_status =
9698 Arm_relocate_functions<big_endian>::arm_branch_common(
9699 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9700 false);
9701 break;
9702
9703 case elfcpp::R_ARM_THM_JUMP19:
9704 reloc_status =
9705 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9706 psymval, 0, thumb_bit);
9707 break;
9708
9709 case elfcpp::R_ARM_THM_JUMP6:
9710 reloc_status =
9711 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9712 0);
9713 break;
9714
9715 case elfcpp::R_ARM_THM_JUMP8:
9716 reloc_status =
9717 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9718 0);
9719 break;
9720
9721 case elfcpp::R_ARM_THM_JUMP11:
9722 reloc_status =
9723 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9724 0);
9725 break;
9726
9727 case elfcpp::R_ARM_PREL31:
9728 reloc_status =
9729 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9730 thumb_bit);
9731 break;
9732
9733 case elfcpp::R_ARM_THM_PC8:
9734 reloc_status =
9735 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9736 0);
9737 break;
9738
9739 case elfcpp::R_ARM_THM_PC12:
9740 reloc_status =
9741 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9742 0);
9743 break;
9744
9745 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9746 reloc_status =
9747 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9748 0, thumb_bit);
9749 break;
9750
9751 // These relocation truncate relocation results so we cannot handle them
9752 // in a relocatable link.
9753 case elfcpp::R_ARM_MOVT_ABS:
9754 case elfcpp::R_ARM_THM_MOVT_ABS:
9755 case elfcpp::R_ARM_MOVT_PREL:
9756 case elfcpp::R_ARM_MOVT_BREL:
9757 case elfcpp::R_ARM_THM_MOVT_PREL:
9758 case elfcpp::R_ARM_THM_MOVT_BREL:
9759 case elfcpp::R_ARM_ALU_PC_G0_NC:
9760 case elfcpp::R_ARM_ALU_PC_G0:
9761 case elfcpp::R_ARM_ALU_PC_G1_NC:
9762 case elfcpp::R_ARM_ALU_PC_G1:
9763 case elfcpp::R_ARM_ALU_PC_G2:
9764 case elfcpp::R_ARM_ALU_SB_G0_NC:
9765 case elfcpp::R_ARM_ALU_SB_G0:
9766 case elfcpp::R_ARM_ALU_SB_G1_NC:
9767 case elfcpp::R_ARM_ALU_SB_G1:
9768 case elfcpp::R_ARM_ALU_SB_G2:
9769 case elfcpp::R_ARM_LDR_PC_G0:
9770 case elfcpp::R_ARM_LDR_PC_G1:
9771 case elfcpp::R_ARM_LDR_PC_G2:
9772 case elfcpp::R_ARM_LDR_SB_G0:
9773 case elfcpp::R_ARM_LDR_SB_G1:
9774 case elfcpp::R_ARM_LDR_SB_G2:
9775 case elfcpp::R_ARM_LDRS_PC_G0:
9776 case elfcpp::R_ARM_LDRS_PC_G1:
9777 case elfcpp::R_ARM_LDRS_PC_G2:
9778 case elfcpp::R_ARM_LDRS_SB_G0:
9779 case elfcpp::R_ARM_LDRS_SB_G1:
9780 case elfcpp::R_ARM_LDRS_SB_G2:
9781 case elfcpp::R_ARM_LDC_PC_G0:
9782 case elfcpp::R_ARM_LDC_PC_G1:
9783 case elfcpp::R_ARM_LDC_PC_G2:
9784 case elfcpp::R_ARM_LDC_SB_G0:
9785 case elfcpp::R_ARM_LDC_SB_G1:
9786 case elfcpp::R_ARM_LDC_SB_G2:
9787 gold_error(_("cannot handle %s in a relocatable link"),
9788 arp->name().c_str());
9789 break;
9790
9791 default:
9792 gold_unreachable();
9793 }
9794
9795 // Report any errors.
9796 switch (reloc_status)
9797 {
9798 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9799 break;
9800 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9801 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9802 _("relocation overflow in %s"),
9803 arp->name().c_str());
9804 break;
9805 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9806 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9807 _("unexpected opcode while processing relocation %s"),
9808 arp->name().c_str());
9809 break;
9810 default:
9811 gold_unreachable();
9812 }
9813 }
9814
9815 // Return the value to use for a dynamic symbol which requires special
9816 // treatment. This is how we support equality comparisons of function
9817 // pointers across shared library boundaries, as described in the
9818 // processor specific ABI supplement.
9819
9820 template<bool big_endian>
9821 uint64_t
9822 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9823 {
9824 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9825 return this->plt_section()->address() + gsym->plt_offset();
9826 }
9827
9828 // Map platform-specific relocs to real relocs
9829 //
9830 template<bool big_endian>
9831 unsigned int
9832 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9833 {
9834 switch (r_type)
9835 {
9836 case elfcpp::R_ARM_TARGET1:
9837 // This is either R_ARM_ABS32 or R_ARM_REL32;
9838 return elfcpp::R_ARM_ABS32;
9839
9840 case elfcpp::R_ARM_TARGET2:
9841 // This can be any reloc type but usually is R_ARM_GOT_PREL
9842 return elfcpp::R_ARM_GOT_PREL;
9843
9844 default:
9845 return r_type;
9846 }
9847 }
9848
9849 // Whether if two EABI versions V1 and V2 are compatible.
9850
9851 template<bool big_endian>
9852 bool
9853 Target_arm<big_endian>::are_eabi_versions_compatible(
9854 elfcpp::Elf_Word v1,
9855 elfcpp::Elf_Word v2)
9856 {
9857 // v4 and v5 are the same spec before and after it was released,
9858 // so allow mixing them.
9859 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9860 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9861 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9862 return true;
9863
9864 return v1 == v2;
9865 }
9866
9867 // Combine FLAGS from an input object called NAME and the processor-specific
9868 // flags in the ELF header of the output. Much of this is adapted from the
9869 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9870 // in bfd/elf32-arm.c.
9871
9872 template<bool big_endian>
9873 void
9874 Target_arm<big_endian>::merge_processor_specific_flags(
9875 const std::string& name,
9876 elfcpp::Elf_Word flags)
9877 {
9878 if (this->are_processor_specific_flags_set())
9879 {
9880 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9881
9882 // Nothing to merge if flags equal to those in output.
9883 if (flags == out_flags)
9884 return;
9885
9886 // Complain about various flag mismatches.
9887 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9888 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9889 if (!this->are_eabi_versions_compatible(version1, version2)
9890 && parameters->options().warn_mismatch())
9891 gold_error(_("Source object %s has EABI version %d but output has "
9892 "EABI version %d."),
9893 name.c_str(),
9894 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9895 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9896 }
9897 else
9898 {
9899 // If the input is the default architecture and had the default
9900 // flags then do not bother setting the flags for the output
9901 // architecture, instead allow future merges to do this. If no
9902 // future merges ever set these flags then they will retain their
9903 // uninitialised values, which surprise surprise, correspond
9904 // to the default values.
9905 if (flags == 0)
9906 return;
9907
9908 // This is the first time, just copy the flags.
9909 // We only copy the EABI version for now.
9910 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9911 }
9912 }
9913
9914 // Adjust ELF file header.
9915 template<bool big_endian>
9916 void
9917 Target_arm<big_endian>::do_adjust_elf_header(
9918 unsigned char* view,
9919 int len) const
9920 {
9921 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9922
9923 elfcpp::Ehdr<32, big_endian> ehdr(view);
9924 unsigned char e_ident[elfcpp::EI_NIDENT];
9925 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9926
9927 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9928 == elfcpp::EF_ARM_EABI_UNKNOWN)
9929 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9930 else
9931 e_ident[elfcpp::EI_OSABI] = 0;
9932 e_ident[elfcpp::EI_ABIVERSION] = 0;
9933
9934 // FIXME: Do EF_ARM_BE8 adjustment.
9935
9936 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9937 oehdr.put_e_ident(e_ident);
9938 }
9939
9940 // do_make_elf_object to override the same function in the base class.
9941 // We need to use a target-specific sub-class of
9942 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9943 // Hence we need to have our own ELF object creation.
9944
9945 template<bool big_endian>
9946 Object*
9947 Target_arm<big_endian>::do_make_elf_object(
9948 const std::string& name,
9949 Input_file* input_file,
9950 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9951 {
9952 int et = ehdr.get_e_type();
9953 // ET_EXEC files are valid input for --just-symbols/-R,
9954 // and we treat them as relocatable objects.
9955 if (et == elfcpp::ET_REL
9956 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9957 {
9958 Arm_relobj<big_endian>* obj =
9959 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9960 obj->setup();
9961 return obj;
9962 }
9963 else if (et == elfcpp::ET_DYN)
9964 {
9965 Sized_dynobj<32, big_endian>* obj =
9966 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9967 obj->setup();
9968 return obj;
9969 }
9970 else
9971 {
9972 gold_error(_("%s: unsupported ELF file type %d"),
9973 name.c_str(), et);
9974 return NULL;
9975 }
9976 }
9977
9978 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9979 // Returns -1 if no architecture could be read.
9980 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9981
9982 template<bool big_endian>
9983 int
9984 Target_arm<big_endian>::get_secondary_compatible_arch(
9985 const Attributes_section_data* pasd)
9986 {
9987 const Object_attribute* known_attributes =
9988 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9989
9990 // Note: the tag and its argument below are uleb128 values, though
9991 // currently-defined values fit in one byte for each.
9992 const std::string& sv =
9993 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9994 if (sv.size() == 2
9995 && sv.data()[0] == elfcpp::Tag_CPU_arch
9996 && (sv.data()[1] & 128) != 128)
9997 return sv.data()[1];
9998
9999 // This tag is "safely ignorable", so don't complain if it looks funny.
10000 return -1;
10001 }
10002
10003 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10004 // The tag is removed if ARCH is -1.
10005 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10006
10007 template<bool big_endian>
10008 void
10009 Target_arm<big_endian>::set_secondary_compatible_arch(
10010 Attributes_section_data* pasd,
10011 int arch)
10012 {
10013 Object_attribute* known_attributes =
10014 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10015
10016 if (arch == -1)
10017 {
10018 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10019 return;
10020 }
10021
10022 // Note: the tag and its argument below are uleb128 values, though
10023 // currently-defined values fit in one byte for each.
10024 char sv[3];
10025 sv[0] = elfcpp::Tag_CPU_arch;
10026 gold_assert(arch != 0);
10027 sv[1] = arch;
10028 sv[2] = '\0';
10029
10030 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10031 }
10032
10033 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10034 // into account.
10035 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10036
10037 template<bool big_endian>
10038 int
10039 Target_arm<big_endian>::tag_cpu_arch_combine(
10040 const char* name,
10041 int oldtag,
10042 int* secondary_compat_out,
10043 int newtag,
10044 int secondary_compat)
10045 {
10046 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10047 static const int v6t2[] =
10048 {
10049 T(V6T2), // PRE_V4.
10050 T(V6T2), // V4.
10051 T(V6T2), // V4T.
10052 T(V6T2), // V5T.
10053 T(V6T2), // V5TE.
10054 T(V6T2), // V5TEJ.
10055 T(V6T2), // V6.
10056 T(V7), // V6KZ.
10057 T(V6T2) // V6T2.
10058 };
10059 static const int v6k[] =
10060 {
10061 T(V6K), // PRE_V4.
10062 T(V6K), // V4.
10063 T(V6K), // V4T.
10064 T(V6K), // V5T.
10065 T(V6K), // V5TE.
10066 T(V6K), // V5TEJ.
10067 T(V6K), // V6.
10068 T(V6KZ), // V6KZ.
10069 T(V7), // V6T2.
10070 T(V6K) // V6K.
10071 };
10072 static const int v7[] =
10073 {
10074 T(V7), // PRE_V4.
10075 T(V7), // V4.
10076 T(V7), // V4T.
10077 T(V7), // V5T.
10078 T(V7), // V5TE.
10079 T(V7), // V5TEJ.
10080 T(V7), // V6.
10081 T(V7), // V6KZ.
10082 T(V7), // V6T2.
10083 T(V7), // V6K.
10084 T(V7) // V7.
10085 };
10086 static const int v6_m[] =
10087 {
10088 -1, // PRE_V4.
10089 -1, // V4.
10090 T(V6K), // V4T.
10091 T(V6K), // V5T.
10092 T(V6K), // V5TE.
10093 T(V6K), // V5TEJ.
10094 T(V6K), // V6.
10095 T(V6KZ), // V6KZ.
10096 T(V7), // V6T2.
10097 T(V6K), // V6K.
10098 T(V7), // V7.
10099 T(V6_M) // V6_M.
10100 };
10101 static const int v6s_m[] =
10102 {
10103 -1, // PRE_V4.
10104 -1, // V4.
10105 T(V6K), // V4T.
10106 T(V6K), // V5T.
10107 T(V6K), // V5TE.
10108 T(V6K), // V5TEJ.
10109 T(V6K), // V6.
10110 T(V6KZ), // V6KZ.
10111 T(V7), // V6T2.
10112 T(V6K), // V6K.
10113 T(V7), // V7.
10114 T(V6S_M), // V6_M.
10115 T(V6S_M) // V6S_M.
10116 };
10117 static const int v7e_m[] =
10118 {
10119 -1, // PRE_V4.
10120 -1, // V4.
10121 T(V7E_M), // V4T.
10122 T(V7E_M), // V5T.
10123 T(V7E_M), // V5TE.
10124 T(V7E_M), // V5TEJ.
10125 T(V7E_M), // V6.
10126 T(V7E_M), // V6KZ.
10127 T(V7E_M), // V6T2.
10128 T(V7E_M), // V6K.
10129 T(V7E_M), // V7.
10130 T(V7E_M), // V6_M.
10131 T(V7E_M), // V6S_M.
10132 T(V7E_M) // V7E_M.
10133 };
10134 static const int v4t_plus_v6_m[] =
10135 {
10136 -1, // PRE_V4.
10137 -1, // V4.
10138 T(V4T), // V4T.
10139 T(V5T), // V5T.
10140 T(V5TE), // V5TE.
10141 T(V5TEJ), // V5TEJ.
10142 T(V6), // V6.
10143 T(V6KZ), // V6KZ.
10144 T(V6T2), // V6T2.
10145 T(V6K), // V6K.
10146 T(V7), // V7.
10147 T(V6_M), // V6_M.
10148 T(V6S_M), // V6S_M.
10149 T(V7E_M), // V7E_M.
10150 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10151 };
10152 static const int* comb[] =
10153 {
10154 v6t2,
10155 v6k,
10156 v7,
10157 v6_m,
10158 v6s_m,
10159 v7e_m,
10160 // Pseudo-architecture.
10161 v4t_plus_v6_m
10162 };
10163
10164 // Check we've not got a higher architecture than we know about.
10165
10166 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10167 {
10168 gold_error(_("%s: unknown CPU architecture"), name);
10169 return -1;
10170 }
10171
10172 // Override old tag if we have a Tag_also_compatible_with on the output.
10173
10174 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10175 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10176 oldtag = T(V4T_PLUS_V6_M);
10177
10178 // And override the new tag if we have a Tag_also_compatible_with on the
10179 // input.
10180
10181 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10182 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10183 newtag = T(V4T_PLUS_V6_M);
10184
10185 // Architectures before V6KZ add features monotonically.
10186 int tagh = std::max(oldtag, newtag);
10187 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10188 return tagh;
10189
10190 int tagl = std::min(oldtag, newtag);
10191 int result = comb[tagh - T(V6T2)][tagl];
10192
10193 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10194 // as the canonical version.
10195 if (result == T(V4T_PLUS_V6_M))
10196 {
10197 result = T(V4T);
10198 *secondary_compat_out = T(V6_M);
10199 }
10200 else
10201 *secondary_compat_out = -1;
10202
10203 if (result == -1)
10204 {
10205 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10206 name, oldtag, newtag);
10207 return -1;
10208 }
10209
10210 return result;
10211 #undef T
10212 }
10213
10214 // Helper to print AEABI enum tag value.
10215
10216 template<bool big_endian>
10217 std::string
10218 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10219 {
10220 static const char* aeabi_enum_names[] =
10221 { "", "variable-size", "32-bit", "" };
10222 const size_t aeabi_enum_names_size =
10223 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10224
10225 if (value < aeabi_enum_names_size)
10226 return std::string(aeabi_enum_names[value]);
10227 else
10228 {
10229 char buffer[100];
10230 sprintf(buffer, "<unknown value %u>", value);
10231 return std::string(buffer);
10232 }
10233 }
10234
10235 // Return the string value to store in TAG_CPU_name.
10236
10237 template<bool big_endian>
10238 std::string
10239 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10240 {
10241 static const char* name_table[] = {
10242 // These aren't real CPU names, but we can't guess
10243 // that from the architecture version alone.
10244 "Pre v4",
10245 "ARM v4",
10246 "ARM v4T",
10247 "ARM v5T",
10248 "ARM v5TE",
10249 "ARM v5TEJ",
10250 "ARM v6",
10251 "ARM v6KZ",
10252 "ARM v6T2",
10253 "ARM v6K",
10254 "ARM v7",
10255 "ARM v6-M",
10256 "ARM v6S-M",
10257 "ARM v7E-M"
10258 };
10259 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10260
10261 if (value < name_table_size)
10262 return std::string(name_table[value]);
10263 else
10264 {
10265 char buffer[100];
10266 sprintf(buffer, "<unknown CPU value %u>", value);
10267 return std::string(buffer);
10268 }
10269 }
10270
10271 // Merge object attributes from input file called NAME with those of the
10272 // output. The input object attributes are in the object pointed by PASD.
10273
10274 template<bool big_endian>
10275 void
10276 Target_arm<big_endian>::merge_object_attributes(
10277 const char* name,
10278 const Attributes_section_data* pasd)
10279 {
10280 // Return if there is no attributes section data.
10281 if (pasd == NULL)
10282 return;
10283
10284 // If output has no object attributes, just copy.
10285 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10286 if (this->attributes_section_data_ == NULL)
10287 {
10288 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10289 Object_attribute* out_attr =
10290 this->attributes_section_data_->known_attributes(vendor);
10291
10292 // We do not output objects with Tag_MPextension_use_legacy - we move
10293 // the attribute's value to Tag_MPextension_use. */
10294 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10295 {
10296 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10297 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10298 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10299 {
10300 gold_error(_("%s has both the current and legacy "
10301 "Tag_MPextension_use attributes"),
10302 name);
10303 }
10304
10305 out_attr[elfcpp::Tag_MPextension_use] =
10306 out_attr[elfcpp::Tag_MPextension_use_legacy];
10307 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10308 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10309 }
10310
10311 return;
10312 }
10313
10314 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10315 Object_attribute* out_attr =
10316 this->attributes_section_data_->known_attributes(vendor);
10317
10318 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10319 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10320 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10321 {
10322 // Ignore mismatches if the object doesn't use floating point. */
10323 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10324 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10325 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10326 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10327 && parameters->options().warn_mismatch())
10328 gold_error(_("%s uses VFP register arguments, output does not"),
10329 name);
10330 }
10331
10332 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10333 {
10334 // Merge this attribute with existing attributes.
10335 switch (i)
10336 {
10337 case elfcpp::Tag_CPU_raw_name:
10338 case elfcpp::Tag_CPU_name:
10339 // These are merged after Tag_CPU_arch.
10340 break;
10341
10342 case elfcpp::Tag_ABI_optimization_goals:
10343 case elfcpp::Tag_ABI_FP_optimization_goals:
10344 // Use the first value seen.
10345 break;
10346
10347 case elfcpp::Tag_CPU_arch:
10348 {
10349 unsigned int saved_out_attr = out_attr->int_value();
10350 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10351 int secondary_compat =
10352 this->get_secondary_compatible_arch(pasd);
10353 int secondary_compat_out =
10354 this->get_secondary_compatible_arch(
10355 this->attributes_section_data_);
10356 out_attr[i].set_int_value(
10357 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10358 &secondary_compat_out,
10359 in_attr[i].int_value(),
10360 secondary_compat));
10361 this->set_secondary_compatible_arch(this->attributes_section_data_,
10362 secondary_compat_out);
10363
10364 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10365 if (out_attr[i].int_value() == saved_out_attr)
10366 ; // Leave the names alone.
10367 else if (out_attr[i].int_value() == in_attr[i].int_value())
10368 {
10369 // The output architecture has been changed to match the
10370 // input architecture. Use the input names.
10371 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10372 in_attr[elfcpp::Tag_CPU_name].string_value());
10373 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10374 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10375 }
10376 else
10377 {
10378 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10379 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10380 }
10381
10382 // If we still don't have a value for Tag_CPU_name,
10383 // make one up now. Tag_CPU_raw_name remains blank.
10384 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10385 {
10386 const std::string cpu_name =
10387 this->tag_cpu_name_value(out_attr[i].int_value());
10388 // FIXME: If we see an unknown CPU, this will be set
10389 // to "<unknown CPU n>", where n is the attribute value.
10390 // This is different from BFD, which leaves the name alone.
10391 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10392 }
10393 }
10394 break;
10395
10396 case elfcpp::Tag_ARM_ISA_use:
10397 case elfcpp::Tag_THUMB_ISA_use:
10398 case elfcpp::Tag_WMMX_arch:
10399 case elfcpp::Tag_Advanced_SIMD_arch:
10400 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10401 case elfcpp::Tag_ABI_FP_rounding:
10402 case elfcpp::Tag_ABI_FP_exceptions:
10403 case elfcpp::Tag_ABI_FP_user_exceptions:
10404 case elfcpp::Tag_ABI_FP_number_model:
10405 case elfcpp::Tag_VFP_HP_extension:
10406 case elfcpp::Tag_CPU_unaligned_access:
10407 case elfcpp::Tag_T2EE_use:
10408 case elfcpp::Tag_Virtualization_use:
10409 case elfcpp::Tag_MPextension_use:
10410 // Use the largest value specified.
10411 if (in_attr[i].int_value() > out_attr[i].int_value())
10412 out_attr[i].set_int_value(in_attr[i].int_value());
10413 break;
10414
10415 case elfcpp::Tag_ABI_align8_preserved:
10416 case elfcpp::Tag_ABI_PCS_RO_data:
10417 // Use the smallest value specified.
10418 if (in_attr[i].int_value() < out_attr[i].int_value())
10419 out_attr[i].set_int_value(in_attr[i].int_value());
10420 break;
10421
10422 case elfcpp::Tag_ABI_align8_needed:
10423 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10424 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10425 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10426 == 0)))
10427 {
10428 // This error message should be enabled once all non-conforming
10429 // binaries in the toolchain have had the attributes set
10430 // properly.
10431 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10432 // name);
10433 }
10434 // Fall through.
10435 case elfcpp::Tag_ABI_FP_denormal:
10436 case elfcpp::Tag_ABI_PCS_GOT_use:
10437 {
10438 // These tags have 0 = don't care, 1 = strong requirement,
10439 // 2 = weak requirement.
10440 static const int order_021[3] = {0, 2, 1};
10441
10442 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10443 // value if greater than 2 (for future-proofing).
10444 if ((in_attr[i].int_value() > 2
10445 && in_attr[i].int_value() > out_attr[i].int_value())
10446 || (in_attr[i].int_value() <= 2
10447 && out_attr[i].int_value() <= 2
10448 && (order_021[in_attr[i].int_value()]
10449 > order_021[out_attr[i].int_value()])))
10450 out_attr[i].set_int_value(in_attr[i].int_value());
10451 }
10452 break;
10453
10454 case elfcpp::Tag_CPU_arch_profile:
10455 if (out_attr[i].int_value() != in_attr[i].int_value())
10456 {
10457 // 0 will merge with anything.
10458 // 'A' and 'S' merge to 'A'.
10459 // 'R' and 'S' merge to 'R'.
10460 // 'M' and 'A|R|S' is an error.
10461 if (out_attr[i].int_value() == 0
10462 || (out_attr[i].int_value() == 'S'
10463 && (in_attr[i].int_value() == 'A'
10464 || in_attr[i].int_value() == 'R')))
10465 out_attr[i].set_int_value(in_attr[i].int_value());
10466 else if (in_attr[i].int_value() == 0
10467 || (in_attr[i].int_value() == 'S'
10468 && (out_attr[i].int_value() == 'A'
10469 || out_attr[i].int_value() == 'R')))
10470 ; // Do nothing.
10471 else if (parameters->options().warn_mismatch())
10472 {
10473 gold_error
10474 (_("conflicting architecture profiles %c/%c"),
10475 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10476 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10477 }
10478 }
10479 break;
10480 case elfcpp::Tag_VFP_arch:
10481 {
10482 static const struct
10483 {
10484 int ver;
10485 int regs;
10486 } vfp_versions[7] =
10487 {
10488 {0, 0},
10489 {1, 16},
10490 {2, 16},
10491 {3, 32},
10492 {3, 16},
10493 {4, 32},
10494 {4, 16}
10495 };
10496
10497 // Values greater than 6 aren't defined, so just pick the
10498 // biggest.
10499 if (in_attr[i].int_value() > 6
10500 && in_attr[i].int_value() > out_attr[i].int_value())
10501 {
10502 *out_attr = *in_attr;
10503 break;
10504 }
10505 // The output uses the superset of input features
10506 // (ISA version) and registers.
10507 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10508 vfp_versions[out_attr[i].int_value()].ver);
10509 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10510 vfp_versions[out_attr[i].int_value()].regs);
10511 // This assumes all possible supersets are also a valid
10512 // options.
10513 int newval;
10514 for (newval = 6; newval > 0; newval--)
10515 {
10516 if (regs == vfp_versions[newval].regs
10517 && ver == vfp_versions[newval].ver)
10518 break;
10519 }
10520 out_attr[i].set_int_value(newval);
10521 }
10522 break;
10523 case elfcpp::Tag_PCS_config:
10524 if (out_attr[i].int_value() == 0)
10525 out_attr[i].set_int_value(in_attr[i].int_value());
10526 else if (in_attr[i].int_value() != 0
10527 && out_attr[i].int_value() != 0
10528 && parameters->options().warn_mismatch())
10529 {
10530 // It's sometimes ok to mix different configs, so this is only
10531 // a warning.
10532 gold_warning(_("%s: conflicting platform configuration"), name);
10533 }
10534 break;
10535 case elfcpp::Tag_ABI_PCS_R9_use:
10536 if (in_attr[i].int_value() != out_attr[i].int_value()
10537 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10538 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10539 && parameters->options().warn_mismatch())
10540 {
10541 gold_error(_("%s: conflicting use of R9"), name);
10542 }
10543 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10544 out_attr[i].set_int_value(in_attr[i].int_value());
10545 break;
10546 case elfcpp::Tag_ABI_PCS_RW_data:
10547 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10548 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10549 != elfcpp::AEABI_R9_SB)
10550 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10551 != elfcpp::AEABI_R9_unused)
10552 && parameters->options().warn_mismatch())
10553 {
10554 gold_error(_("%s: SB relative addressing conflicts with use "
10555 "of R9"),
10556 name);
10557 }
10558 // Use the smallest value specified.
10559 if (in_attr[i].int_value() < out_attr[i].int_value())
10560 out_attr[i].set_int_value(in_attr[i].int_value());
10561 break;
10562 case elfcpp::Tag_ABI_PCS_wchar_t:
10563 if (out_attr[i].int_value()
10564 && in_attr[i].int_value()
10565 && out_attr[i].int_value() != in_attr[i].int_value()
10566 && parameters->options().warn_mismatch()
10567 && parameters->options().wchar_size_warning())
10568 {
10569 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10570 "use %u-byte wchar_t; use of wchar_t values "
10571 "across objects may fail"),
10572 name, in_attr[i].int_value(),
10573 out_attr[i].int_value());
10574 }
10575 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10576 out_attr[i].set_int_value(in_attr[i].int_value());
10577 break;
10578 case elfcpp::Tag_ABI_enum_size:
10579 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10580 {
10581 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10582 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10583 {
10584 // The existing object is compatible with anything.
10585 // Use whatever requirements the new object has.
10586 out_attr[i].set_int_value(in_attr[i].int_value());
10587 }
10588 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10589 && out_attr[i].int_value() != in_attr[i].int_value()
10590 && parameters->options().warn_mismatch()
10591 && parameters->options().enum_size_warning())
10592 {
10593 unsigned int in_value = in_attr[i].int_value();
10594 unsigned int out_value = out_attr[i].int_value();
10595 gold_warning(_("%s uses %s enums yet the output is to use "
10596 "%s enums; use of enum values across objects "
10597 "may fail"),
10598 name,
10599 this->aeabi_enum_name(in_value).c_str(),
10600 this->aeabi_enum_name(out_value).c_str());
10601 }
10602 }
10603 break;
10604 case elfcpp::Tag_ABI_VFP_args:
10605 // Already done.
10606 break;
10607 case elfcpp::Tag_ABI_WMMX_args:
10608 if (in_attr[i].int_value() != out_attr[i].int_value()
10609 && parameters->options().warn_mismatch())
10610 {
10611 gold_error(_("%s uses iWMMXt register arguments, output does "
10612 "not"),
10613 name);
10614 }
10615 break;
10616 case Object_attribute::Tag_compatibility:
10617 // Merged in target-independent code.
10618 break;
10619 case elfcpp::Tag_ABI_HardFP_use:
10620 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10621 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10622 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10623 out_attr[i].set_int_value(3);
10624 else if (in_attr[i].int_value() > out_attr[i].int_value())
10625 out_attr[i].set_int_value(in_attr[i].int_value());
10626 break;
10627 case elfcpp::Tag_ABI_FP_16bit_format:
10628 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10629 {
10630 if (in_attr[i].int_value() != out_attr[i].int_value()
10631 && parameters->options().warn_mismatch())
10632 gold_error(_("fp16 format mismatch between %s and output"),
10633 name);
10634 }
10635 if (in_attr[i].int_value() != 0)
10636 out_attr[i].set_int_value(in_attr[i].int_value());
10637 break;
10638
10639 case elfcpp::Tag_DIV_use:
10640 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10641 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10642 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10643 // CPU. We will merge as follows: If the input attribute's value
10644 // is one then the output attribute's value remains unchanged. If
10645 // the input attribute's value is zero or two then if the output
10646 // attribute's value is one the output value is set to the input
10647 // value, otherwise the output value must be the same as the
10648 // inputs. */
10649 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10650 {
10651 if (in_attr[i].int_value() != out_attr[i].int_value())
10652 {
10653 gold_error(_("DIV usage mismatch between %s and output"),
10654 name);
10655 }
10656 }
10657
10658 if (in_attr[i].int_value() != 1)
10659 out_attr[i].set_int_value(in_attr[i].int_value());
10660
10661 break;
10662
10663 case elfcpp::Tag_MPextension_use_legacy:
10664 // We don't output objects with Tag_MPextension_use_legacy - we
10665 // move the value to Tag_MPextension_use.
10666 if (in_attr[i].int_value() != 0
10667 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10668 {
10669 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10670 != in_attr[i].int_value())
10671 {
10672 gold_error(_("%s has has both the current and legacy "
10673 "Tag_MPextension_use attributes"),
10674 name);
10675 }
10676 }
10677
10678 if (in_attr[i].int_value()
10679 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10680 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10681
10682 break;
10683
10684 case elfcpp::Tag_nodefaults:
10685 // This tag is set if it exists, but the value is unused (and is
10686 // typically zero). We don't actually need to do anything here -
10687 // the merge happens automatically when the type flags are merged
10688 // below.
10689 break;
10690 case elfcpp::Tag_also_compatible_with:
10691 // Already done in Tag_CPU_arch.
10692 break;
10693 case elfcpp::Tag_conformance:
10694 // Keep the attribute if it matches. Throw it away otherwise.
10695 // No attribute means no claim to conform.
10696 if (in_attr[i].string_value() != out_attr[i].string_value())
10697 out_attr[i].set_string_value("");
10698 break;
10699
10700 default:
10701 {
10702 const char* err_object = NULL;
10703
10704 // The "known_obj_attributes" table does contain some undefined
10705 // attributes. Ensure that there are unused.
10706 if (out_attr[i].int_value() != 0
10707 || out_attr[i].string_value() != "")
10708 err_object = "output";
10709 else if (in_attr[i].int_value() != 0
10710 || in_attr[i].string_value() != "")
10711 err_object = name;
10712
10713 if (err_object != NULL
10714 && parameters->options().warn_mismatch())
10715 {
10716 // Attribute numbers >=64 (mod 128) can be safely ignored.
10717 if ((i & 127) < 64)
10718 gold_error(_("%s: unknown mandatory EABI object attribute "
10719 "%d"),
10720 err_object, i);
10721 else
10722 gold_warning(_("%s: unknown EABI object attribute %d"),
10723 err_object, i);
10724 }
10725
10726 // Only pass on attributes that match in both inputs.
10727 if (!in_attr[i].matches(out_attr[i]))
10728 {
10729 out_attr[i].set_int_value(0);
10730 out_attr[i].set_string_value("");
10731 }
10732 }
10733 }
10734
10735 // If out_attr was copied from in_attr then it won't have a type yet.
10736 if (in_attr[i].type() && !out_attr[i].type())
10737 out_attr[i].set_type(in_attr[i].type());
10738 }
10739
10740 // Merge Tag_compatibility attributes and any common GNU ones.
10741 this->attributes_section_data_->merge(name, pasd);
10742
10743 // Check for any attributes not known on ARM.
10744 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10745 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10746 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10747 Other_attributes* out_other_attributes =
10748 this->attributes_section_data_->other_attributes(vendor);
10749 Other_attributes::iterator out_iter = out_other_attributes->begin();
10750
10751 while (in_iter != in_other_attributes->end()
10752 || out_iter != out_other_attributes->end())
10753 {
10754 const char* err_object = NULL;
10755 int err_tag = 0;
10756
10757 // The tags for each list are in numerical order.
10758 // If the tags are equal, then merge.
10759 if (out_iter != out_other_attributes->end()
10760 && (in_iter == in_other_attributes->end()
10761 || in_iter->first > out_iter->first))
10762 {
10763 // This attribute only exists in output. We can't merge, and we
10764 // don't know what the tag means, so delete it.
10765 err_object = "output";
10766 err_tag = out_iter->first;
10767 int saved_tag = out_iter->first;
10768 delete out_iter->second;
10769 out_other_attributes->erase(out_iter);
10770 out_iter = out_other_attributes->upper_bound(saved_tag);
10771 }
10772 else if (in_iter != in_other_attributes->end()
10773 && (out_iter != out_other_attributes->end()
10774 || in_iter->first < out_iter->first))
10775 {
10776 // This attribute only exists in input. We can't merge, and we
10777 // don't know what the tag means, so ignore it.
10778 err_object = name;
10779 err_tag = in_iter->first;
10780 ++in_iter;
10781 }
10782 else // The tags are equal.
10783 {
10784 // As present, all attributes in the list are unknown, and
10785 // therefore can't be merged meaningfully.
10786 err_object = "output";
10787 err_tag = out_iter->first;
10788
10789 // Only pass on attributes that match in both inputs.
10790 if (!in_iter->second->matches(*(out_iter->second)))
10791 {
10792 // No match. Delete the attribute.
10793 int saved_tag = out_iter->first;
10794 delete out_iter->second;
10795 out_other_attributes->erase(out_iter);
10796 out_iter = out_other_attributes->upper_bound(saved_tag);
10797 }
10798 else
10799 {
10800 // Matched. Keep the attribute and move to the next.
10801 ++out_iter;
10802 ++in_iter;
10803 }
10804 }
10805
10806 if (err_object && parameters->options().warn_mismatch())
10807 {
10808 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10809 if ((err_tag & 127) < 64)
10810 {
10811 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10812 err_object, err_tag);
10813 }
10814 else
10815 {
10816 gold_warning(_("%s: unknown EABI object attribute %d"),
10817 err_object, err_tag);
10818 }
10819 }
10820 }
10821 }
10822
10823 // Stub-generation methods for Target_arm.
10824
10825 // Make a new Arm_input_section object.
10826
10827 template<bool big_endian>
10828 Arm_input_section<big_endian>*
10829 Target_arm<big_endian>::new_arm_input_section(
10830 Relobj* relobj,
10831 unsigned int shndx)
10832 {
10833 Section_id sid(relobj, shndx);
10834
10835 Arm_input_section<big_endian>* arm_input_section =
10836 new Arm_input_section<big_endian>(relobj, shndx);
10837 arm_input_section->init();
10838
10839 // Register new Arm_input_section in map for look-up.
10840 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10841 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10842
10843 // Make sure that it we have not created another Arm_input_section
10844 // for this input section already.
10845 gold_assert(ins.second);
10846
10847 return arm_input_section;
10848 }
10849
10850 // Find the Arm_input_section object corresponding to the SHNDX-th input
10851 // section of RELOBJ.
10852
10853 template<bool big_endian>
10854 Arm_input_section<big_endian>*
10855 Target_arm<big_endian>::find_arm_input_section(
10856 Relobj* relobj,
10857 unsigned int shndx) const
10858 {
10859 Section_id sid(relobj, shndx);
10860 typename Arm_input_section_map::const_iterator p =
10861 this->arm_input_section_map_.find(sid);
10862 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10863 }
10864
10865 // Make a new stub table.
10866
10867 template<bool big_endian>
10868 Stub_table<big_endian>*
10869 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10870 {
10871 Stub_table<big_endian>* stub_table =
10872 new Stub_table<big_endian>(owner);
10873 this->stub_tables_.push_back(stub_table);
10874
10875 stub_table->set_address(owner->address() + owner->data_size());
10876 stub_table->set_file_offset(owner->offset() + owner->data_size());
10877 stub_table->finalize_data_size();
10878
10879 return stub_table;
10880 }
10881
10882 // Scan a relocation for stub generation.
10883
10884 template<bool big_endian>
10885 void
10886 Target_arm<big_endian>::scan_reloc_for_stub(
10887 const Relocate_info<32, big_endian>* relinfo,
10888 unsigned int r_type,
10889 const Sized_symbol<32>* gsym,
10890 unsigned int r_sym,
10891 const Symbol_value<32>* psymval,
10892 elfcpp::Elf_types<32>::Elf_Swxword addend,
10893 Arm_address address)
10894 {
10895 typedef typename Target_arm<big_endian>::Relocate Relocate;
10896
10897 const Arm_relobj<big_endian>* arm_relobj =
10898 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10899
10900 bool target_is_thumb;
10901 Symbol_value<32> symval;
10902 if (gsym != NULL)
10903 {
10904 // This is a global symbol. Determine if we use PLT and if the
10905 // final target is THUMB.
10906 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10907 {
10908 // This uses a PLT, change the symbol value.
10909 symval.set_output_value(this->plt_section()->address()
10910 + gsym->plt_offset());
10911 psymval = &symval;
10912 target_is_thumb = false;
10913 }
10914 else if (gsym->is_undefined())
10915 // There is no need to generate a stub symbol is undefined.
10916 return;
10917 else
10918 {
10919 target_is_thumb =
10920 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10921 || (gsym->type() == elfcpp::STT_FUNC
10922 && !gsym->is_undefined()
10923 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10924 }
10925 }
10926 else
10927 {
10928 // This is a local symbol. Determine if the final target is THUMB.
10929 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10930 }
10931
10932 // Strip LSB if this points to a THUMB target.
10933 const Arm_reloc_property* reloc_property =
10934 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10935 gold_assert(reloc_property != NULL);
10936 if (target_is_thumb
10937 && reloc_property->uses_thumb_bit()
10938 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10939 {
10940 Arm_address stripped_value =
10941 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10942 symval.set_output_value(stripped_value);
10943 psymval = &symval;
10944 }
10945
10946 // Get the symbol value.
10947 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10948
10949 // Owing to pipelining, the PC relative branches below actually skip
10950 // two instructions when the branch offset is 0.
10951 Arm_address destination;
10952 switch (r_type)
10953 {
10954 case elfcpp::R_ARM_CALL:
10955 case elfcpp::R_ARM_JUMP24:
10956 case elfcpp::R_ARM_PLT32:
10957 // ARM branches.
10958 destination = value + addend + 8;
10959 break;
10960 case elfcpp::R_ARM_THM_CALL:
10961 case elfcpp::R_ARM_THM_XPC22:
10962 case elfcpp::R_ARM_THM_JUMP24:
10963 case elfcpp::R_ARM_THM_JUMP19:
10964 // THUMB branches.
10965 destination = value + addend + 4;
10966 break;
10967 default:
10968 gold_unreachable();
10969 }
10970
10971 Reloc_stub* stub = NULL;
10972 Stub_type stub_type =
10973 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10974 target_is_thumb);
10975 if (stub_type != arm_stub_none)
10976 {
10977 // Try looking up an existing stub from a stub table.
10978 Stub_table<big_endian>* stub_table =
10979 arm_relobj->stub_table(relinfo->data_shndx);
10980 gold_assert(stub_table != NULL);
10981
10982 // Locate stub by destination.
10983 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10984
10985 // Create a stub if there is not one already
10986 stub = stub_table->find_reloc_stub(stub_key);
10987 if (stub == NULL)
10988 {
10989 // create a new stub and add it to stub table.
10990 stub = this->stub_factory().make_reloc_stub(stub_type);
10991 stub_table->add_reloc_stub(stub, stub_key);
10992 }
10993
10994 // Record the destination address.
10995 stub->set_destination_address(destination
10996 | (target_is_thumb ? 1 : 0));
10997 }
10998
10999 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11000 if (this->fix_cortex_a8_
11001 && (r_type == elfcpp::R_ARM_THM_JUMP24
11002 || r_type == elfcpp::R_ARM_THM_JUMP19
11003 || r_type == elfcpp::R_ARM_THM_CALL
11004 || r_type == elfcpp::R_ARM_THM_XPC22)
11005 && (address & 0xfffU) == 0xffeU)
11006 {
11007 // Found a candidate. Note we haven't checked the destination is
11008 // within 4K here: if we do so (and don't create a record) we can't
11009 // tell that a branch should have been relocated when scanning later.
11010 this->cortex_a8_relocs_info_[address] =
11011 new Cortex_a8_reloc(stub, r_type,
11012 destination | (target_is_thumb ? 1 : 0));
11013 }
11014 }
11015
11016 // This function scans a relocation sections for stub generation.
11017 // The template parameter Relocate must be a class type which provides
11018 // a single function, relocate(), which implements the machine
11019 // specific part of a relocation.
11020
11021 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11022 // SHT_REL or SHT_RELA.
11023
11024 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11025 // of relocs. OUTPUT_SECTION is the output section.
11026 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11027 // mapped to output offsets.
11028
11029 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11030 // VIEW_SIZE is the size. These refer to the input section, unless
11031 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11032 // the output section.
11033
11034 template<bool big_endian>
11035 template<int sh_type>
11036 void inline
11037 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11038 const Relocate_info<32, big_endian>* relinfo,
11039 const unsigned char* prelocs,
11040 size_t reloc_count,
11041 Output_section* output_section,
11042 bool needs_special_offset_handling,
11043 const unsigned char* view,
11044 elfcpp::Elf_types<32>::Elf_Addr view_address,
11045 section_size_type)
11046 {
11047 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11048 const int reloc_size =
11049 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11050
11051 Arm_relobj<big_endian>* arm_object =
11052 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11053 unsigned int local_count = arm_object->local_symbol_count();
11054
11055 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11056
11057 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11058 {
11059 Reltype reloc(prelocs);
11060
11061 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11062 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11063 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11064
11065 r_type = this->get_real_reloc_type(r_type);
11066
11067 // Only a few relocation types need stubs.
11068 if ((r_type != elfcpp::R_ARM_CALL)
11069 && (r_type != elfcpp::R_ARM_JUMP24)
11070 && (r_type != elfcpp::R_ARM_PLT32)
11071 && (r_type != elfcpp::R_ARM_THM_CALL)
11072 && (r_type != elfcpp::R_ARM_THM_XPC22)
11073 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11074 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11075 && (r_type != elfcpp::R_ARM_V4BX))
11076 continue;
11077
11078 section_offset_type offset =
11079 convert_to_section_size_type(reloc.get_r_offset());
11080
11081 if (needs_special_offset_handling)
11082 {
11083 offset = output_section->output_offset(relinfo->object,
11084 relinfo->data_shndx,
11085 offset);
11086 if (offset == -1)
11087 continue;
11088 }
11089
11090 // Create a v4bx stub if --fix-v4bx-interworking is used.
11091 if (r_type == elfcpp::R_ARM_V4BX)
11092 {
11093 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11094 {
11095 // Get the BX instruction.
11096 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11097 const Valtype* wv =
11098 reinterpret_cast<const Valtype*>(view + offset);
11099 elfcpp::Elf_types<32>::Elf_Swxword insn =
11100 elfcpp::Swap<32, big_endian>::readval(wv);
11101 const uint32_t reg = (insn & 0xf);
11102
11103 if (reg < 0xf)
11104 {
11105 // Try looking up an existing stub from a stub table.
11106 Stub_table<big_endian>* stub_table =
11107 arm_object->stub_table(relinfo->data_shndx);
11108 gold_assert(stub_table != NULL);
11109
11110 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11111 {
11112 // create a new stub and add it to stub table.
11113 Arm_v4bx_stub* stub =
11114 this->stub_factory().make_arm_v4bx_stub(reg);
11115 gold_assert(stub != NULL);
11116 stub_table->add_arm_v4bx_stub(stub);
11117 }
11118 }
11119 }
11120 continue;
11121 }
11122
11123 // Get the addend.
11124 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11125 elfcpp::Elf_types<32>::Elf_Swxword addend =
11126 stub_addend_reader(r_type, view + offset, reloc);
11127
11128 const Sized_symbol<32>* sym;
11129
11130 Symbol_value<32> symval;
11131 const Symbol_value<32> *psymval;
11132 bool is_defined_in_discarded_section;
11133 unsigned int shndx;
11134 if (r_sym < local_count)
11135 {
11136 sym = NULL;
11137 psymval = arm_object->local_symbol(r_sym);
11138
11139 // If the local symbol belongs to a section we are discarding,
11140 // and that section is a debug section, try to find the
11141 // corresponding kept section and map this symbol to its
11142 // counterpart in the kept section. The symbol must not
11143 // correspond to a section we are folding.
11144 bool is_ordinary;
11145 shndx = psymval->input_shndx(&is_ordinary);
11146 is_defined_in_discarded_section =
11147 (is_ordinary
11148 && shndx != elfcpp::SHN_UNDEF
11149 && !arm_object->is_section_included(shndx)
11150 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11151
11152 // We need to compute the would-be final value of this local
11153 // symbol.
11154 if (!is_defined_in_discarded_section)
11155 {
11156 typedef Sized_relobj_file<32, big_endian> ObjType;
11157 typename ObjType::Compute_final_local_value_status status =
11158 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11159 relinfo->symtab);
11160 if (status == ObjType::CFLV_OK)
11161 {
11162 // Currently we cannot handle a branch to a target in
11163 // a merged section. If this is the case, issue an error
11164 // and also free the merge symbol value.
11165 if (!symval.has_output_value())
11166 {
11167 const std::string& section_name =
11168 arm_object->section_name(shndx);
11169 arm_object->error(_("cannot handle branch to local %u "
11170 "in a merged section %s"),
11171 r_sym, section_name.c_str());
11172 }
11173 psymval = &symval;
11174 }
11175 else
11176 {
11177 // We cannot determine the final value.
11178 continue;
11179 }
11180 }
11181 }
11182 else
11183 {
11184 const Symbol* gsym;
11185 gsym = arm_object->global_symbol(r_sym);
11186 gold_assert(gsym != NULL);
11187 if (gsym->is_forwarder())
11188 gsym = relinfo->symtab->resolve_forwards(gsym);
11189
11190 sym = static_cast<const Sized_symbol<32>*>(gsym);
11191 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11192 symval.set_output_symtab_index(sym->symtab_index());
11193 else
11194 symval.set_no_output_symtab_entry();
11195
11196 // We need to compute the would-be final value of this global
11197 // symbol.
11198 const Symbol_table* symtab = relinfo->symtab;
11199 const Sized_symbol<32>* sized_symbol =
11200 symtab->get_sized_symbol<32>(gsym);
11201 Symbol_table::Compute_final_value_status status;
11202 Arm_address value =
11203 symtab->compute_final_value<32>(sized_symbol, &status);
11204
11205 // Skip this if the symbol has not output section.
11206 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11207 continue;
11208 symval.set_output_value(value);
11209
11210 if (gsym->type() == elfcpp::STT_TLS)
11211 symval.set_is_tls_symbol();
11212 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11213 symval.set_is_ifunc_symbol();
11214 psymval = &symval;
11215
11216 is_defined_in_discarded_section =
11217 (gsym->is_defined_in_discarded_section()
11218 && gsym->is_undefined());
11219 shndx = 0;
11220 }
11221
11222 Symbol_value<32> symval2;
11223 if (is_defined_in_discarded_section)
11224 {
11225 if (comdat_behavior == CB_UNDETERMINED)
11226 {
11227 std::string name = arm_object->section_name(relinfo->data_shndx);
11228 comdat_behavior = get_comdat_behavior(name.c_str());
11229 }
11230 if (comdat_behavior == CB_PRETEND)
11231 {
11232 // FIXME: This case does not work for global symbols.
11233 // We have no place to store the original section index.
11234 // Fortunately this does not matter for comdat sections,
11235 // only for sections explicitly discarded by a linker
11236 // script.
11237 bool found;
11238 typename elfcpp::Elf_types<32>::Elf_Addr value =
11239 arm_object->map_to_kept_section(shndx, &found);
11240 if (found)
11241 symval2.set_output_value(value + psymval->input_value());
11242 else
11243 symval2.set_output_value(0);
11244 }
11245 else
11246 {
11247 if (comdat_behavior == CB_WARNING)
11248 gold_warning_at_location(relinfo, i, offset,
11249 _("relocation refers to discarded "
11250 "section"));
11251 symval2.set_output_value(0);
11252 }
11253 symval2.set_no_output_symtab_entry();
11254 psymval = &symval2;
11255 }
11256
11257 // If symbol is a section symbol, we don't know the actual type of
11258 // destination. Give up.
11259 if (psymval->is_section_symbol())
11260 continue;
11261
11262 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11263 addend, view_address + offset);
11264 }
11265 }
11266
11267 // Scan an input section for stub generation.
11268
11269 template<bool big_endian>
11270 void
11271 Target_arm<big_endian>::scan_section_for_stubs(
11272 const Relocate_info<32, big_endian>* relinfo,
11273 unsigned int sh_type,
11274 const unsigned char* prelocs,
11275 size_t reloc_count,
11276 Output_section* output_section,
11277 bool needs_special_offset_handling,
11278 const unsigned char* view,
11279 Arm_address view_address,
11280 section_size_type view_size)
11281 {
11282 if (sh_type == elfcpp::SHT_REL)
11283 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11284 relinfo,
11285 prelocs,
11286 reloc_count,
11287 output_section,
11288 needs_special_offset_handling,
11289 view,
11290 view_address,
11291 view_size);
11292 else if (sh_type == elfcpp::SHT_RELA)
11293 // We do not support RELA type relocations yet. This is provided for
11294 // completeness.
11295 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11296 relinfo,
11297 prelocs,
11298 reloc_count,
11299 output_section,
11300 needs_special_offset_handling,
11301 view,
11302 view_address,
11303 view_size);
11304 else
11305 gold_unreachable();
11306 }
11307
11308 // Group input sections for stub generation.
11309 //
11310 // We group input sections in an output section so that the total size,
11311 // including any padding space due to alignment is smaller than GROUP_SIZE
11312 // unless the only input section in group is bigger than GROUP_SIZE already.
11313 // Then an ARM stub table is created to follow the last input section
11314 // in group. For each group an ARM stub table is created an is placed
11315 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11316 // extend the group after the stub table.
11317
11318 template<bool big_endian>
11319 void
11320 Target_arm<big_endian>::group_sections(
11321 Layout* layout,
11322 section_size_type group_size,
11323 bool stubs_always_after_branch,
11324 const Task* task)
11325 {
11326 // Group input sections and insert stub table
11327 Layout::Section_list section_list;
11328 layout->get_allocated_sections(&section_list);
11329 for (Layout::Section_list::const_iterator p = section_list.begin();
11330 p != section_list.end();
11331 ++p)
11332 {
11333 Arm_output_section<big_endian>* output_section =
11334 Arm_output_section<big_endian>::as_arm_output_section(*p);
11335 output_section->group_sections(group_size, stubs_always_after_branch,
11336 this, task);
11337 }
11338 }
11339
11340 // Relaxation hook. This is where we do stub generation.
11341
11342 template<bool big_endian>
11343 bool
11344 Target_arm<big_endian>::do_relax(
11345 int pass,
11346 const Input_objects* input_objects,
11347 Symbol_table* symtab,
11348 Layout* layout,
11349 const Task* task)
11350 {
11351 // No need to generate stubs if this is a relocatable link.
11352 gold_assert(!parameters->options().relocatable());
11353
11354 // If this is the first pass, we need to group input sections into
11355 // stub groups.
11356 bool done_exidx_fixup = false;
11357 typedef typename Stub_table_list::iterator Stub_table_iterator;
11358 if (pass == 1)
11359 {
11360 // Determine the stub group size. The group size is the absolute
11361 // value of the parameter --stub-group-size. If --stub-group-size
11362 // is passed a negative value, we restrict stubs to be always after
11363 // the stubbed branches.
11364 int32_t stub_group_size_param =
11365 parameters->options().stub_group_size();
11366 bool stubs_always_after_branch = stub_group_size_param < 0;
11367 section_size_type stub_group_size = abs(stub_group_size_param);
11368
11369 if (stub_group_size == 1)
11370 {
11371 // Default value.
11372 // Thumb branch range is +-4MB has to be used as the default
11373 // maximum size (a given section can contain both ARM and Thumb
11374 // code, so the worst case has to be taken into account). If we are
11375 // fixing cortex-a8 errata, the branch range has to be even smaller,
11376 // since wide conditional branch has a range of +-1MB only.
11377 //
11378 // This value is 48K less than that, which allows for 4096
11379 // 12-byte stubs. If we exceed that, then we will fail to link.
11380 // The user will have to relink with an explicit group size
11381 // option.
11382 stub_group_size = 4145152;
11383 }
11384
11385 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11386 // page as the first half of a 32-bit branch straddling two 4K pages.
11387 // This is a crude way of enforcing that. In addition, long conditional
11388 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11389 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11390 // cortex-A8 stubs from long conditional branches.
11391 if (this->fix_cortex_a8_)
11392 {
11393 stubs_always_after_branch = true;
11394 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11395 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11396 }
11397
11398 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11399
11400 // Also fix .ARM.exidx section coverage.
11401 Arm_output_section<big_endian>* exidx_output_section = NULL;
11402 for (Layout::Section_list::const_iterator p =
11403 layout->section_list().begin();
11404 p != layout->section_list().end();
11405 ++p)
11406 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11407 {
11408 if (exidx_output_section == NULL)
11409 exidx_output_section =
11410 Arm_output_section<big_endian>::as_arm_output_section(*p);
11411 else
11412 // We cannot handle this now.
11413 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11414 "non-relocatable link"),
11415 exidx_output_section->name(),
11416 (*p)->name());
11417 }
11418
11419 if (exidx_output_section != NULL)
11420 {
11421 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11422 symtab, task);
11423 done_exidx_fixup = true;
11424 }
11425 }
11426 else
11427 {
11428 // If this is not the first pass, addresses and file offsets have
11429 // been reset at this point, set them here.
11430 for (Stub_table_iterator sp = this->stub_tables_.begin();
11431 sp != this->stub_tables_.end();
11432 ++sp)
11433 {
11434 Arm_input_section<big_endian>* owner = (*sp)->owner();
11435 off_t off = align_address(owner->original_size(),
11436 (*sp)->addralign());
11437 (*sp)->set_address_and_file_offset(owner->address() + off,
11438 owner->offset() + off);
11439 }
11440 }
11441
11442 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11443 // beginning of each relaxation pass, just blow away all the stubs.
11444 // Alternatively, we could selectively remove only the stubs and reloc
11445 // information for code sections that have moved since the last pass.
11446 // That would require more book-keeping.
11447 if (this->fix_cortex_a8_)
11448 {
11449 // Clear all Cortex-A8 reloc information.
11450 for (typename Cortex_a8_relocs_info::const_iterator p =
11451 this->cortex_a8_relocs_info_.begin();
11452 p != this->cortex_a8_relocs_info_.end();
11453 ++p)
11454 delete p->second;
11455 this->cortex_a8_relocs_info_.clear();
11456
11457 // Remove all Cortex-A8 stubs.
11458 for (Stub_table_iterator sp = this->stub_tables_.begin();
11459 sp != this->stub_tables_.end();
11460 ++sp)
11461 (*sp)->remove_all_cortex_a8_stubs();
11462 }
11463
11464 // Scan relocs for relocation stubs
11465 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11466 op != input_objects->relobj_end();
11467 ++op)
11468 {
11469 Arm_relobj<big_endian>* arm_relobj =
11470 Arm_relobj<big_endian>::as_arm_relobj(*op);
11471 // Lock the object so we can read from it. This is only called
11472 // single-threaded from Layout::finalize, so it is OK to lock.
11473 Task_lock_obj<Object> tl(task, arm_relobj);
11474 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11475 }
11476
11477 // Check all stub tables to see if any of them have their data sizes
11478 // or addresses alignments changed. These are the only things that
11479 // matter.
11480 bool any_stub_table_changed = false;
11481 Unordered_set<const Output_section*> sections_needing_adjustment;
11482 for (Stub_table_iterator sp = this->stub_tables_.begin();
11483 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11484 ++sp)
11485 {
11486 if ((*sp)->update_data_size_and_addralign())
11487 {
11488 // Update data size of stub table owner.
11489 Arm_input_section<big_endian>* owner = (*sp)->owner();
11490 uint64_t address = owner->address();
11491 off_t offset = owner->offset();
11492 owner->reset_address_and_file_offset();
11493 owner->set_address_and_file_offset(address, offset);
11494
11495 sections_needing_adjustment.insert(owner->output_section());
11496 any_stub_table_changed = true;
11497 }
11498 }
11499
11500 // Output_section_data::output_section() returns a const pointer but we
11501 // need to update output sections, so we record all output sections needing
11502 // update above and scan the sections here to find out what sections need
11503 // to be updated.
11504 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11505 p != layout->section_list().end();
11506 ++p)
11507 {
11508 if (sections_needing_adjustment.find(*p)
11509 != sections_needing_adjustment.end())
11510 (*p)->set_section_offsets_need_adjustment();
11511 }
11512
11513 // Stop relaxation if no EXIDX fix-up and no stub table change.
11514 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11515
11516 // Finalize the stubs in the last relaxation pass.
11517 if (!continue_relaxation)
11518 {
11519 for (Stub_table_iterator sp = this->stub_tables_.begin();
11520 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11521 ++sp)
11522 (*sp)->finalize_stubs();
11523
11524 // Update output local symbol counts of objects if necessary.
11525 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11526 op != input_objects->relobj_end();
11527 ++op)
11528 {
11529 Arm_relobj<big_endian>* arm_relobj =
11530 Arm_relobj<big_endian>::as_arm_relobj(*op);
11531
11532 // Update output local symbol counts. We need to discard local
11533 // symbols defined in parts of input sections that are discarded by
11534 // relaxation.
11535 if (arm_relobj->output_local_symbol_count_needs_update())
11536 {
11537 // We need to lock the object's file to update it.
11538 Task_lock_obj<Object> tl(task, arm_relobj);
11539 arm_relobj->update_output_local_symbol_count();
11540 }
11541 }
11542 }
11543
11544 return continue_relaxation;
11545 }
11546
11547 // Relocate a stub.
11548
11549 template<bool big_endian>
11550 void
11551 Target_arm<big_endian>::relocate_stub(
11552 Stub* stub,
11553 const Relocate_info<32, big_endian>* relinfo,
11554 Output_section* output_section,
11555 unsigned char* view,
11556 Arm_address address,
11557 section_size_type view_size)
11558 {
11559 Relocate relocate;
11560 const Stub_template* stub_template = stub->stub_template();
11561 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11562 {
11563 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11564 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11565
11566 unsigned int r_type = insn->r_type();
11567 section_size_type reloc_offset = stub_template->reloc_offset(i);
11568 section_size_type reloc_size = insn->size();
11569 gold_assert(reloc_offset + reloc_size <= view_size);
11570
11571 // This is the address of the stub destination.
11572 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11573 Symbol_value<32> symval;
11574 symval.set_output_value(target);
11575
11576 // Synthesize a fake reloc just in case. We don't have a symbol so
11577 // we use 0.
11578 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11579 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11580 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11581 reloc_write.put_r_offset(reloc_offset);
11582 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11583 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11584
11585 relocate.relocate(relinfo, this, output_section,
11586 this->fake_relnum_for_stubs, rel, r_type,
11587 NULL, &symval, view + reloc_offset,
11588 address + reloc_offset, reloc_size);
11589 }
11590 }
11591
11592 // Determine whether an object attribute tag takes an integer, a
11593 // string or both.
11594
11595 template<bool big_endian>
11596 int
11597 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11598 {
11599 if (tag == Object_attribute::Tag_compatibility)
11600 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11601 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11602 else if (tag == elfcpp::Tag_nodefaults)
11603 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11604 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11605 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11606 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11607 else if (tag < 32)
11608 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11609 else
11610 return ((tag & 1) != 0
11611 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11612 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11613 }
11614
11615 // Reorder attributes.
11616 //
11617 // The ABI defines that Tag_conformance should be emitted first, and that
11618 // Tag_nodefaults should be second (if either is defined). This sets those
11619 // two positions, and bumps up the position of all the remaining tags to
11620 // compensate.
11621
11622 template<bool big_endian>
11623 int
11624 Target_arm<big_endian>::do_attributes_order(int num) const
11625 {
11626 // Reorder the known object attributes in output. We want to move
11627 // Tag_conformance to position 4 and Tag_conformance to position 5
11628 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11629 if (num == 4)
11630 return elfcpp::Tag_conformance;
11631 if (num == 5)
11632 return elfcpp::Tag_nodefaults;
11633 if ((num - 2) < elfcpp::Tag_nodefaults)
11634 return num - 2;
11635 if ((num - 1) < elfcpp::Tag_conformance)
11636 return num - 1;
11637 return num;
11638 }
11639
11640 // Scan a span of THUMB code for Cortex-A8 erratum.
11641
11642 template<bool big_endian>
11643 void
11644 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11645 Arm_relobj<big_endian>* arm_relobj,
11646 unsigned int shndx,
11647 section_size_type span_start,
11648 section_size_type span_end,
11649 const unsigned char* view,
11650 Arm_address address)
11651 {
11652 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11653 //
11654 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11655 // The branch target is in the same 4KB region as the
11656 // first half of the branch.
11657 // The instruction before the branch is a 32-bit
11658 // length non-branch instruction.
11659 section_size_type i = span_start;
11660 bool last_was_32bit = false;
11661 bool last_was_branch = false;
11662 while (i < span_end)
11663 {
11664 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11665 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11666 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11667 bool is_blx = false, is_b = false;
11668 bool is_bl = false, is_bcc = false;
11669
11670 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11671 if (insn_32bit)
11672 {
11673 // Load the rest of the insn (in manual-friendly order).
11674 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11675
11676 // Encoding T4: B<c>.W.
11677 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11678 // Encoding T1: BL<c>.W.
11679 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11680 // Encoding T2: BLX<c>.W.
11681 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11682 // Encoding T3: B<c>.W (not permitted in IT block).
11683 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11684 && (insn & 0x07f00000U) != 0x03800000U);
11685 }
11686
11687 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11688
11689 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11690 // page boundary and it follows 32-bit non-branch instruction,
11691 // we need to work around.
11692 if (is_32bit_branch
11693 && ((address + i) & 0xfffU) == 0xffeU
11694 && last_was_32bit
11695 && !last_was_branch)
11696 {
11697 // Check to see if there is a relocation stub for this branch.
11698 bool force_target_arm = false;
11699 bool force_target_thumb = false;
11700 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11701 Cortex_a8_relocs_info::const_iterator p =
11702 this->cortex_a8_relocs_info_.find(address + i);
11703
11704 if (p != this->cortex_a8_relocs_info_.end())
11705 {
11706 cortex_a8_reloc = p->second;
11707 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11708
11709 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11710 && !target_is_thumb)
11711 force_target_arm = true;
11712 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11713 && target_is_thumb)
11714 force_target_thumb = true;
11715 }
11716
11717 off_t offset;
11718 Stub_type stub_type = arm_stub_none;
11719
11720 // Check if we have an offending branch instruction.
11721 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11722 uint16_t lower_insn = insn & 0xffffU;
11723 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11724
11725 if (cortex_a8_reloc != NULL
11726 && cortex_a8_reloc->reloc_stub() != NULL)
11727 // We've already made a stub for this instruction, e.g.
11728 // it's a long branch or a Thumb->ARM stub. Assume that
11729 // stub will suffice to work around the A8 erratum (see
11730 // setting of always_after_branch above).
11731 ;
11732 else if (is_bcc)
11733 {
11734 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11735 lower_insn);
11736 stub_type = arm_stub_a8_veneer_b_cond;
11737 }
11738 else if (is_b || is_bl || is_blx)
11739 {
11740 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11741 lower_insn);
11742 if (is_blx)
11743 offset &= ~3;
11744
11745 stub_type = (is_blx
11746 ? arm_stub_a8_veneer_blx
11747 : (is_bl
11748 ? arm_stub_a8_veneer_bl
11749 : arm_stub_a8_veneer_b));
11750 }
11751
11752 if (stub_type != arm_stub_none)
11753 {
11754 Arm_address pc_for_insn = address + i + 4;
11755
11756 // The original instruction is a BL, but the target is
11757 // an ARM instruction. If we were not making a stub,
11758 // the BL would have been converted to a BLX. Use the
11759 // BLX stub instead in that case.
11760 if (this->may_use_v5t_interworking() && force_target_arm
11761 && stub_type == arm_stub_a8_veneer_bl)
11762 {
11763 stub_type = arm_stub_a8_veneer_blx;
11764 is_blx = true;
11765 is_bl = false;
11766 }
11767 // Conversely, if the original instruction was
11768 // BLX but the target is Thumb mode, use the BL stub.
11769 else if (force_target_thumb
11770 && stub_type == arm_stub_a8_veneer_blx)
11771 {
11772 stub_type = arm_stub_a8_veneer_bl;
11773 is_blx = false;
11774 is_bl = true;
11775 }
11776
11777 if (is_blx)
11778 pc_for_insn &= ~3;
11779
11780 // If we found a relocation, use the proper destination,
11781 // not the offset in the (unrelocated) instruction.
11782 // Note this is always done if we switched the stub type above.
11783 if (cortex_a8_reloc != NULL)
11784 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11785
11786 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11787
11788 // Add a new stub if destination address in in the same page.
11789 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11790 {
11791 Cortex_a8_stub* stub =
11792 this->stub_factory_.make_cortex_a8_stub(stub_type,
11793 arm_relobj, shndx,
11794 address + i,
11795 target, insn);
11796 Stub_table<big_endian>* stub_table =
11797 arm_relobj->stub_table(shndx);
11798 gold_assert(stub_table != NULL);
11799 stub_table->add_cortex_a8_stub(address + i, stub);
11800 }
11801 }
11802 }
11803
11804 i += insn_32bit ? 4 : 2;
11805 last_was_32bit = insn_32bit;
11806 last_was_branch = is_32bit_branch;
11807 }
11808 }
11809
11810 // Apply the Cortex-A8 workaround.
11811
11812 template<bool big_endian>
11813 void
11814 Target_arm<big_endian>::apply_cortex_a8_workaround(
11815 const Cortex_a8_stub* stub,
11816 Arm_address stub_address,
11817 unsigned char* insn_view,
11818 Arm_address insn_address)
11819 {
11820 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11821 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11822 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11823 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11824 off_t branch_offset = stub_address - (insn_address + 4);
11825
11826 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11827 switch (stub->stub_template()->type())
11828 {
11829 case arm_stub_a8_veneer_b_cond:
11830 // For a conditional branch, we re-write it to be an unconditional
11831 // branch to the stub. We use the THUMB-2 encoding here.
11832 upper_insn = 0xf000U;
11833 lower_insn = 0xb800U;
11834 // Fall through
11835 case arm_stub_a8_veneer_b:
11836 case arm_stub_a8_veneer_bl:
11837 case arm_stub_a8_veneer_blx:
11838 if ((lower_insn & 0x5000U) == 0x4000U)
11839 // For a BLX instruction, make sure that the relocation is
11840 // rounded up to a word boundary. This follows the semantics of
11841 // the instruction which specifies that bit 1 of the target
11842 // address will come from bit 1 of the base address.
11843 branch_offset = (branch_offset + 2) & ~3;
11844
11845 // Put BRANCH_OFFSET back into the insn.
11846 gold_assert(!Bits<25>::has_overflow32(branch_offset));
11847 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11848 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11849 break;
11850
11851 default:
11852 gold_unreachable();
11853 }
11854
11855 // Put the relocated value back in the object file:
11856 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11857 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11858 }
11859
11860 template<bool big_endian>
11861 class Target_selector_arm : public Target_selector
11862 {
11863 public:
11864 Target_selector_arm()
11865 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11866 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11867 (big_endian ? "armelfb" : "armelf"))
11868 { }
11869
11870 Target*
11871 do_instantiate_target()
11872 { return new Target_arm<big_endian>(); }
11873 };
11874
11875 // Fix .ARM.exidx section coverage.
11876
11877 template<bool big_endian>
11878 void
11879 Target_arm<big_endian>::fix_exidx_coverage(
11880 Layout* layout,
11881 const Input_objects* input_objects,
11882 Arm_output_section<big_endian>* exidx_section,
11883 Symbol_table* symtab,
11884 const Task* task)
11885 {
11886 // We need to look at all the input sections in output in ascending
11887 // order of of output address. We do that by building a sorted list
11888 // of output sections by addresses. Then we looks at the output sections
11889 // in order. The input sections in an output section are already sorted
11890 // by addresses within the output section.
11891
11892 typedef std::set<Output_section*, output_section_address_less_than>
11893 Sorted_output_section_list;
11894 Sorted_output_section_list sorted_output_sections;
11895
11896 // Find out all the output sections of input sections pointed by
11897 // EXIDX input sections.
11898 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11899 p != input_objects->relobj_end();
11900 ++p)
11901 {
11902 Arm_relobj<big_endian>* arm_relobj =
11903 Arm_relobj<big_endian>::as_arm_relobj(*p);
11904 std::vector<unsigned int> shndx_list;
11905 arm_relobj->get_exidx_shndx_list(&shndx_list);
11906 for (size_t i = 0; i < shndx_list.size(); ++i)
11907 {
11908 const Arm_exidx_input_section* exidx_input_section =
11909 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11910 gold_assert(exidx_input_section != NULL);
11911 if (!exidx_input_section->has_errors())
11912 {
11913 unsigned int text_shndx = exidx_input_section->link();
11914 Output_section* os = arm_relobj->output_section(text_shndx);
11915 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11916 sorted_output_sections.insert(os);
11917 }
11918 }
11919 }
11920
11921 // Go over the output sections in ascending order of output addresses.
11922 typedef typename Arm_output_section<big_endian>::Text_section_list
11923 Text_section_list;
11924 Text_section_list sorted_text_sections;
11925 for (typename Sorted_output_section_list::iterator p =
11926 sorted_output_sections.begin();
11927 p != sorted_output_sections.end();
11928 ++p)
11929 {
11930 Arm_output_section<big_endian>* arm_output_section =
11931 Arm_output_section<big_endian>::as_arm_output_section(*p);
11932 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11933 }
11934
11935 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11936 merge_exidx_entries(), task);
11937 }
11938
11939 Target_selector_arm<false> target_selector_arm;
11940 Target_selector_arm<true> target_selector_armbe;
11941
11942 } // End anonymous namespace.
This page took 0.29109 seconds and 5 git commands to generate.