* dwarf_reader.h (class Sized_dwarf_line_info): Add
[deliverable/binutils-gdb.git] / gold / dwarf_reader.cc
1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <vector>
27
28 #include "elfcpp_swap.h"
29 #include "dwarf.h"
30 #include "object.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
35 #include "compressed_output.h"
36
37 namespace gold {
38
39 struct LineStateMachine
40 {
41 int file_num;
42 uint64_t address;
43 int line_num;
44 int column_num;
45 unsigned int shndx; // the section address refers to
46 bool is_stmt; // stmt means statement.
47 bool basic_block;
48 bool end_sequence;
49 };
50
51 static void
52 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
53 {
54 lsm->file_num = 1;
55 lsm->address = 0;
56 lsm->line_num = 1;
57 lsm->column_num = 0;
58 lsm->shndx = -1U;
59 lsm->is_stmt = default_is_stmt;
60 lsm->basic_block = false;
61 lsm->end_sequence = false;
62 }
63
64 template<int size, bool big_endian>
65 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
66 unsigned int read_shndx)
67 : data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
68 directories_(), files_(), current_header_index_(-1)
69 {
70 unsigned int debug_shndx;
71 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
72 {
73 // FIXME: do this more efficiently: section_name() isn't super-fast
74 std::string name = object->section_name(debug_shndx);
75 if (name == ".debug_line" || name == ".zdebug_line")
76 {
77 section_size_type buffer_size;
78 this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
79 false);
80 this->buffer_end_ = this->buffer_ + buffer_size;
81 break;
82 }
83 }
84 if (this->buffer_ == NULL)
85 return;
86
87 section_size_type uncompressed_size = 0;
88 unsigned char* uncompressed_data = NULL;
89 if (object->section_is_compressed(debug_shndx, &uncompressed_size))
90 {
91 uncompressed_data = new unsigned char[uncompressed_size];
92 if (!decompress_input_section(this->buffer_,
93 this->buffer_end_ - this->buffer_,
94 uncompressed_data,
95 uncompressed_size))
96 object->error(_("could not decompress section %s"),
97 object->section_name(debug_shndx).c_str());
98 this->buffer_ = uncompressed_data;
99 this->buffer_end_ = this->buffer_ + uncompressed_size;
100 }
101
102 // Find the relocation section for ".debug_line".
103 // We expect these for relobjs (.o's) but not dynobjs (.so's).
104 bool got_relocs = false;
105 for (unsigned int reloc_shndx = 0;
106 reloc_shndx < object->shnum();
107 ++reloc_shndx)
108 {
109 unsigned int reloc_sh_type = object->section_type(reloc_shndx);
110 if ((reloc_sh_type == elfcpp::SHT_REL
111 || reloc_sh_type == elfcpp::SHT_RELA)
112 && object->section_info(reloc_shndx) == debug_shndx)
113 {
114 got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
115 reloc_sh_type);
116 this->track_relocs_type_ = reloc_sh_type;
117 break;
118 }
119 }
120
121 // Finally, we need the symtab section to interpret the relocs.
122 if (got_relocs)
123 {
124 unsigned int symtab_shndx;
125 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
126 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
127 {
128 this->symtab_buffer_ = object->section_contents(
129 symtab_shndx, &this->symtab_buffer_size_, false);
130 break;
131 }
132 if (this->symtab_buffer_ == NULL)
133 return;
134 }
135
136 // Now that we have successfully read all the data, parse the debug
137 // info.
138 this->data_valid_ = true;
139 this->read_line_mappings(object, read_shndx);
140 }
141
142 // Read the DWARF header.
143
144 template<int size, bool big_endian>
145 const unsigned char*
146 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
147 const unsigned char* lineptr)
148 {
149 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
150 lineptr += 4;
151
152 // In DWARF2/3, if the initial length is all 1 bits, then the offset
153 // size is 8 and we need to read the next 8 bytes for the real length.
154 if (initial_length == 0xffffffff)
155 {
156 header_.offset_size = 8;
157 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
158 lineptr += 8;
159 }
160 else
161 header_.offset_size = 4;
162
163 header_.total_length = initial_length;
164
165 gold_assert(lineptr + header_.total_length <= buffer_end_);
166
167 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
168 lineptr += 2;
169
170 if (header_.offset_size == 4)
171 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
172 else
173 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
174 lineptr += header_.offset_size;
175
176 header_.min_insn_length = *lineptr;
177 lineptr += 1;
178
179 header_.default_is_stmt = *lineptr;
180 lineptr += 1;
181
182 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
183 lineptr += 1;
184
185 header_.line_range = *lineptr;
186 lineptr += 1;
187
188 header_.opcode_base = *lineptr;
189 lineptr += 1;
190
191 header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
192 header_.std_opcode_lengths[0] = 0;
193 for (int i = 1; i < header_.opcode_base; i++)
194 {
195 header_.std_opcode_lengths[i] = *lineptr;
196 lineptr += 1;
197 }
198
199 return lineptr;
200 }
201
202 // The header for a debug_line section is mildly complicated, because
203 // the line info is very tightly encoded.
204
205 template<int size, bool big_endian>
206 const unsigned char*
207 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
208 const unsigned char* lineptr)
209 {
210 ++this->current_header_index_;
211
212 // Create a new directories_ entry and a new files_ entry for our new
213 // header. We initialize each with a single empty element, because
214 // dwarf indexes directory and filenames starting at 1.
215 gold_assert(static_cast<int>(this->directories_.size())
216 == this->current_header_index_);
217 gold_assert(static_cast<int>(this->files_.size())
218 == this->current_header_index_);
219 this->directories_.push_back(std::vector<std::string>(1));
220 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
221
222 // It is legal for the directory entry table to be empty.
223 if (*lineptr)
224 {
225 int dirindex = 1;
226 while (*lineptr)
227 {
228 const char* dirname = reinterpret_cast<const char*>(lineptr);
229 gold_assert(dirindex
230 == static_cast<int>(this->directories_.back().size()));
231 this->directories_.back().push_back(dirname);
232 lineptr += this->directories_.back().back().size() + 1;
233 dirindex++;
234 }
235 }
236 lineptr++;
237
238 // It is also legal for the file entry table to be empty.
239 if (*lineptr)
240 {
241 int fileindex = 1;
242 size_t len;
243 while (*lineptr)
244 {
245 const char* filename = reinterpret_cast<const char*>(lineptr);
246 lineptr += strlen(filename) + 1;
247
248 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
249 lineptr += len;
250
251 if (dirindex >= this->directories_.back().size())
252 dirindex = 0;
253 int dirindexi = static_cast<int>(dirindex);
254
255 read_unsigned_LEB_128(lineptr, &len); // mod_time
256 lineptr += len;
257
258 read_unsigned_LEB_128(lineptr, &len); // filelength
259 lineptr += len;
260
261 gold_assert(fileindex
262 == static_cast<int>(this->files_.back().size()));
263 this->files_.back().push_back(std::make_pair(dirindexi, filename));
264 fileindex++;
265 }
266 }
267 lineptr++;
268
269 return lineptr;
270 }
271
272 // Process a single opcode in the .debug.line structure.
273
274 // Templating on size and big_endian would yield more efficient (and
275 // simpler) code, but would bloat the binary. Speed isn't important
276 // here.
277
278 template<int size, bool big_endian>
279 bool
280 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
281 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
282 {
283 size_t oplen = 0;
284 size_t templen;
285 unsigned char opcode = *start;
286 oplen++;
287 start++;
288
289 // If the opcode is great than the opcode_base, it is a special
290 // opcode. Most line programs consist mainly of special opcodes.
291 if (opcode >= header_.opcode_base)
292 {
293 opcode -= header_.opcode_base;
294 const int advance_address = ((opcode / header_.line_range)
295 * header_.min_insn_length);
296 lsm->address += advance_address;
297
298 const int advance_line = ((opcode % header_.line_range)
299 + header_.line_base);
300 lsm->line_num += advance_line;
301 lsm->basic_block = true;
302 *len = oplen;
303 return true;
304 }
305
306 // Otherwise, we have the regular opcodes
307 switch (opcode)
308 {
309 case elfcpp::DW_LNS_copy:
310 lsm->basic_block = false;
311 *len = oplen;
312 return true;
313
314 case elfcpp::DW_LNS_advance_pc:
315 {
316 const uint64_t advance_address
317 = read_unsigned_LEB_128(start, &templen);
318 oplen += templen;
319 lsm->address += header_.min_insn_length * advance_address;
320 }
321 break;
322
323 case elfcpp::DW_LNS_advance_line:
324 {
325 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
326 oplen += templen;
327 lsm->line_num += advance_line;
328 }
329 break;
330
331 case elfcpp::DW_LNS_set_file:
332 {
333 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
334 oplen += templen;
335 lsm->file_num = fileno;
336 }
337 break;
338
339 case elfcpp::DW_LNS_set_column:
340 {
341 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
342 oplen += templen;
343 lsm->column_num = colno;
344 }
345 break;
346
347 case elfcpp::DW_LNS_negate_stmt:
348 lsm->is_stmt = !lsm->is_stmt;
349 break;
350
351 case elfcpp::DW_LNS_set_basic_block:
352 lsm->basic_block = true;
353 break;
354
355 case elfcpp::DW_LNS_fixed_advance_pc:
356 {
357 int advance_address;
358 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
359 oplen += 2;
360 lsm->address += advance_address;
361 }
362 break;
363
364 case elfcpp::DW_LNS_const_add_pc:
365 {
366 const int advance_address = (header_.min_insn_length
367 * ((255 - header_.opcode_base)
368 / header_.line_range));
369 lsm->address += advance_address;
370 }
371 break;
372
373 case elfcpp::DW_LNS_extended_op:
374 {
375 const uint64_t extended_op_len
376 = read_unsigned_LEB_128(start, &templen);
377 start += templen;
378 oplen += templen + extended_op_len;
379
380 const unsigned char extended_op = *start;
381 start++;
382
383 switch (extended_op)
384 {
385 case elfcpp::DW_LNE_end_sequence:
386 // This means that the current byte is the one immediately
387 // after a set of instructions. Record the current line
388 // for up to one less than the current address.
389 lsm->line_num = -1;
390 lsm->end_sequence = true;
391 *len = oplen;
392 return true;
393
394 case elfcpp::DW_LNE_set_address:
395 {
396 lsm->address =
397 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
398 typename Reloc_map::const_iterator it
399 = this->reloc_map_.find(start - this->buffer_);
400 if (it != reloc_map_.end())
401 {
402 // If this is a SHT_RELA section, then ignore the
403 // section contents. This assumes that this is a
404 // straight reloc which just uses the reloc addend.
405 // The reloc addend has already been included in the
406 // symbol value.
407 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
408 lsm->address = 0;
409 // Add in the symbol value.
410 lsm->address += it->second.second;
411 lsm->shndx = it->second.first;
412 }
413 else
414 {
415 // If we're a normal .o file, with relocs, every
416 // set_address should have an associated relocation.
417 if (this->input_is_relobj())
418 this->data_valid_ = false;
419 }
420 break;
421 }
422 case elfcpp::DW_LNE_define_file:
423 {
424 const char* filename = reinterpret_cast<const char*>(start);
425 templen = strlen(filename) + 1;
426 start += templen;
427
428 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
429 oplen += templen;
430
431 if (dirindex >= this->directories_.back().size())
432 dirindex = 0;
433 int dirindexi = static_cast<int>(dirindex);
434
435 read_unsigned_LEB_128(start, &templen); // mod_time
436 oplen += templen;
437
438 read_unsigned_LEB_128(start, &templen); // filelength
439 oplen += templen;
440
441 this->files_.back().push_back(std::make_pair(dirindexi,
442 filename));
443 }
444 break;
445 }
446 }
447 break;
448
449 default:
450 {
451 // Ignore unknown opcode silently
452 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
453 {
454 size_t templen;
455 read_unsigned_LEB_128(start, &templen);
456 start += templen;
457 oplen += templen;
458 }
459 }
460 break;
461 }
462 *len = oplen;
463 return false;
464 }
465
466 // Read the debug information at LINEPTR and store it in the line
467 // number map.
468
469 template<int size, bool big_endian>
470 unsigned const char*
471 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
472 unsigned int shndx)
473 {
474 struct LineStateMachine lsm;
475
476 // LENGTHSTART is the place the length field is based on. It is the
477 // point in the header after the initial length field.
478 const unsigned char* lengthstart = buffer_;
479
480 // In 64 bit dwarf, the initial length is 12 bytes, because of the
481 // 0xffffffff at the start.
482 if (header_.offset_size == 8)
483 lengthstart += 12;
484 else
485 lengthstart += 4;
486
487 while (lineptr < lengthstart + header_.total_length)
488 {
489 ResetLineStateMachine(&lsm, header_.default_is_stmt);
490 while (!lsm.end_sequence)
491 {
492 size_t oplength;
493 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
494 if (add_line
495 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
496 {
497 Offset_to_lineno_entry entry
498 = { lsm.address, this->current_header_index_,
499 lsm.file_num, lsm.line_num };
500 line_number_map_[lsm.shndx].push_back(entry);
501 }
502 lineptr += oplength;
503 }
504 }
505
506 return lengthstart + header_.total_length;
507 }
508
509 // Looks in the symtab to see what section a symbol is in.
510
511 template<int size, bool big_endian>
512 unsigned int
513 Sized_dwarf_line_info<size, big_endian>::symbol_section(
514 Object* object,
515 unsigned int sym,
516 typename elfcpp::Elf_types<size>::Elf_Addr* value,
517 bool* is_ordinary)
518 {
519 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
520 gold_assert(sym * symsize < this->symtab_buffer_size_);
521 elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
522 *value = elfsym.get_st_value();
523 return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
524 }
525
526 // Read the relocations into a Reloc_map.
527
528 template<int size, bool big_endian>
529 void
530 Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
531 {
532 if (this->symtab_buffer_ == NULL)
533 return;
534
535 typename elfcpp::Elf_types<size>::Elf_Addr value;
536 off_t reloc_offset;
537 while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
538 {
539 const unsigned int sym = this->track_relocs_.next_symndx();
540
541 bool is_ordinary;
542 const unsigned int shndx = this->symbol_section(object, sym, &value,
543 &is_ordinary);
544
545 // There is no reason to record non-ordinary section indexes, or
546 // SHN_UNDEF, because they will never match the real section.
547 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
548 {
549 value += this->track_relocs_.next_addend();
550 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
551 }
552
553 this->track_relocs_.advance(reloc_offset + 1);
554 }
555 }
556
557 // Read the line number info.
558
559 template<int size, bool big_endian>
560 void
561 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
562 unsigned int shndx)
563 {
564 gold_assert(this->data_valid_ == true);
565
566 this->read_relocs(object);
567 while (this->buffer_ < this->buffer_end_)
568 {
569 const unsigned char* lineptr = this->buffer_;
570 lineptr = this->read_header_prolog(lineptr);
571 lineptr = this->read_header_tables(lineptr);
572 lineptr = this->read_lines(lineptr, shndx);
573 this->buffer_ = lineptr;
574 }
575
576 // Sort the lines numbers, so addr2line can use binary search.
577 for (typename Lineno_map::iterator it = line_number_map_.begin();
578 it != line_number_map_.end();
579 ++it)
580 // Each vector needs to be sorted by offset.
581 std::sort(it->second.begin(), it->second.end());
582 }
583
584 // Some processing depends on whether the input is a .o file or not.
585 // For instance, .o files have relocs, and have .debug_lines
586 // information on a per section basis. .so files, on the other hand,
587 // lack relocs, and offsets are unique, so we can ignore the section
588 // information.
589
590 template<int size, bool big_endian>
591 bool
592 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
593 {
594 // Only .o files have relocs and the symtab buffer that goes with them.
595 return this->symtab_buffer_ != NULL;
596 }
597
598 // Given an Offset_to_lineno_entry vector, and an offset, figure out
599 // if the offset points into a function according to the vector (see
600 // comments below for the algorithm). If it does, return an iterator
601 // into the vector that points to the line-number that contains that
602 // offset. If not, it returns vector::end().
603
604 static std::vector<Offset_to_lineno_entry>::const_iterator
605 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
606 off_t offset)
607 {
608 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
609
610 // lower_bound() returns the smallest offset which is >= lookup_key.
611 // If no offset in offsets is >= lookup_key, returns end().
612 std::vector<Offset_to_lineno_entry>::const_iterator it
613 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
614
615 // This code is easiest to understand with a concrete example.
616 // Here's a possible offsets array:
617 // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
618 // {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
619 // {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
620 // {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
621 // {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
622 // {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
623 // {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
624 // {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
625 // {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
626 // {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
627 // {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
628 // {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
629 // {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
630 // {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
631 // {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
632 // {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
633 // {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
634 // {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
635 // {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
636 // The entries with line_num == -1 mark the end of a function: the
637 // associated offset is one past the last instruction in the
638 // function. This can correspond to the beginning of the next
639 // function (as is true for offset 3232); alternately, there can be
640 // a gap between the end of one function and the start of the next
641 // (as is true for some others, most obviously from 3236->5764).
642 //
643 // Case 1: lookup_key has offset == 10. lower_bound returns
644 // offsets[0]. Since it's not an exact match and we're
645 // at the beginning of offsets, we return end() (invalid).
646 // Case 2: lookup_key has offset 10000. lower_bound returns
647 // offset[19] (end()). We return end() (invalid).
648 // Case 3: lookup_key has offset == 3211. lower_bound matches
649 // offsets[0] exactly, and that's the entry we return.
650 // Case 4: lookup_key has offset == 3232. lower_bound returns
651 // offsets[4]. That's an exact match, but indicates
652 // end-of-function. We check if offsets[5] is also an
653 // exact match but not end-of-function. It is, so we
654 // return offsets[5].
655 // Case 5: lookup_key has offset == 3214. lower_bound returns
656 // offsets[1]. Since it's not an exact match, we back
657 // up to the offset that's < lookup_key, offsets[0].
658 // We note offsets[0] is a valid entry (not end-of-function),
659 // so that's the entry we return.
660 // Case 6: lookup_key has offset == 4000. lower_bound returns
661 // offsets[8]. Since it's not an exact match, we back
662 // up to offsets[7]. Since offsets[7] indicates
663 // end-of-function, we know lookup_key is between
664 // functions, so we return end() (not a valid offset).
665 // Case 7: lookup_key has offset == 5794. lower_bound returns
666 // offsets[17]. Since it's not an exact match, we back
667 // up to offsets[15]. Note we back up to the *first*
668 // entry with offset 5793, not just offsets[17-1].
669 // We note offsets[15] is a valid entry, so we return it.
670 // If offsets[15] had had line_num == -1, we would have
671 // checked offsets[16]. The reason for this is that
672 // 15 and 16 can be in an arbitrary order, since we sort
673 // only by offset. (Note it doesn't help to use line_number
674 // as a secondary sort key, since sometimes we want the -1
675 // to be first and sometimes we want it to be last.)
676
677 // This deals with cases (1) and (2).
678 if ((it == offsets->begin() && offset < it->offset)
679 || it == offsets->end())
680 return offsets->end();
681
682 // This deals with cases (3) and (4).
683 if (offset == it->offset)
684 {
685 while (it != offsets->end()
686 && it->offset == offset
687 && it->line_num == -1)
688 ++it;
689 if (it == offsets->end() || it->offset != offset)
690 return offsets->end();
691 else
692 return it;
693 }
694
695 // This handles the first part of case (7) -- we back up to the
696 // *first* entry that has the offset that's behind us.
697 gold_assert(it != offsets->begin());
698 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
699 --it;
700 const off_t range_value = it->offset;
701 while (it != offsets->begin() && (it-1)->offset == range_value)
702 --it;
703
704 // This handles cases (5), (6), and (7): if any entry in the
705 // equal_range [it, range_end) has a line_num != -1, it's a valid
706 // match. If not, we're not in a function.
707 for (; it != range_end; ++it)
708 if (it->line_num != -1)
709 return it;
710 return offsets->end();
711 }
712
713 // Return a string for a file name and line number.
714
715 template<int size, bool big_endian>
716 std::string
717 Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
718 off_t offset)
719 {
720 if (this->data_valid_ == false)
721 return "";
722
723 const std::vector<Offset_to_lineno_entry>* offsets;
724 // If we do not have reloc information, then our input is a .so or
725 // some similar data structure where all the information is held in
726 // the offset. In that case, we ignore the input shndx.
727 if (this->input_is_relobj())
728 offsets = &this->line_number_map_[shndx];
729 else
730 offsets = &this->line_number_map_[-1U];
731 if (offsets->empty())
732 return "";
733
734 typename std::vector<Offset_to_lineno_entry>::const_iterator it
735 = offset_to_iterator(offsets, offset);
736 if (it == offsets->end())
737 return "";
738
739 // Convert the file_num + line_num into a string.
740 std::string ret;
741
742 gold_assert(it->header_num < static_cast<int>(this->files_.size()));
743 gold_assert(it->file_num
744 < static_cast<int>(this->files_[it->header_num].size()));
745 const std::pair<int, std::string>& filename_pair
746 = this->files_[it->header_num][it->file_num];
747 const std::string& filename = filename_pair.second;
748
749 gold_assert(it->header_num < static_cast<int>(this->directories_.size()));
750 gold_assert(filename_pair.first
751 < static_cast<int>(this->directories_[it->header_num].size()));
752 const std::string& dirname
753 = this->directories_[it->header_num][filename_pair.first];
754
755 if (!dirname.empty())
756 {
757 ret += dirname;
758 ret += "/";
759 }
760 ret += filename;
761 if (ret.empty())
762 ret = "(unknown)";
763
764 char buffer[64]; // enough to hold a line number
765 snprintf(buffer, sizeof(buffer), "%d", it->line_num);
766 ret += ":";
767 ret += buffer;
768
769 return ret;
770 }
771
772 // Dwarf_line_info routines.
773
774 static unsigned int next_generation_count = 0;
775
776 struct Addr2line_cache_entry
777 {
778 Object* object;
779 unsigned int shndx;
780 Dwarf_line_info* dwarf_line_info;
781 unsigned int generation_count;
782 unsigned int access_count;
783
784 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
785 : object(o), shndx(s), dwarf_line_info(d),
786 generation_count(next_generation_count), access_count(0)
787 {
788 if (next_generation_count < (1U << 31))
789 ++next_generation_count;
790 }
791 };
792 // We expect this cache to be small, so don't bother with a hashtable
793 // or priority queue or anything: just use a simple vector.
794 static std::vector<Addr2line_cache_entry> addr2line_cache;
795
796 std::string
797 Dwarf_line_info::one_addr2line(Object* object,
798 unsigned int shndx, off_t offset,
799 size_t cache_size)
800 {
801 Dwarf_line_info* lineinfo = NULL;
802 std::vector<Addr2line_cache_entry>::iterator it;
803
804 // First, check the cache. If we hit, update the counts.
805 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
806 {
807 if (it->object == object && it->shndx == shndx)
808 {
809 lineinfo = it->dwarf_line_info;
810 it->generation_count = next_generation_count;
811 // We cap generation_count at 2^31 -1 to avoid overflow.
812 if (next_generation_count < (1U << 31))
813 ++next_generation_count;
814 // We cap access_count at 31 so 2^access_count doesn't overflow
815 if (it->access_count < 31)
816 ++it->access_count;
817 break;
818 }
819 }
820
821 // If we don't hit the cache, create a new object and insert into the
822 // cache.
823 if (lineinfo == NULL)
824 {
825 switch (parameters->size_and_endianness())
826 {
827 #ifdef HAVE_TARGET_32_LITTLE
828 case Parameters::TARGET_32_LITTLE:
829 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
830 #endif
831 #ifdef HAVE_TARGET_32_BIG
832 case Parameters::TARGET_32_BIG:
833 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
834 #endif
835 #ifdef HAVE_TARGET_64_LITTLE
836 case Parameters::TARGET_64_LITTLE:
837 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
838 #endif
839 #ifdef HAVE_TARGET_64_BIG
840 case Parameters::TARGET_64_BIG:
841 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
842 #endif
843 default:
844 gold_unreachable();
845 }
846 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
847 }
848
849 // Now that we have our object, figure out the answer
850 std::string retval = lineinfo->addr2line(shndx, offset);
851
852 // Finally, if our cache has grown too big, delete old objects. We
853 // assume the common (probably only) case is deleting only one object.
854 // We use a pretty simple scheme to evict: function of LRU and MFU.
855 while (addr2line_cache.size() > cache_size)
856 {
857 unsigned int lowest_score = ~0U;
858 std::vector<Addr2line_cache_entry>::iterator lowest
859 = addr2line_cache.end();
860 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
861 {
862 const unsigned int score = (it->generation_count
863 + (1U << it->access_count));
864 if (score < lowest_score)
865 {
866 lowest_score = score;
867 lowest = it;
868 }
869 }
870 if (lowest != addr2line_cache.end())
871 {
872 delete lowest->dwarf_line_info;
873 addr2line_cache.erase(lowest);
874 }
875 }
876
877 return retval;
878 }
879
880 void
881 Dwarf_line_info::clear_addr2line_cache()
882 {
883 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
884 it != addr2line_cache.end();
885 ++it)
886 delete it->dwarf_line_info;
887 addr2line_cache.clear();
888 }
889
890 #ifdef HAVE_TARGET_32_LITTLE
891 template
892 class Sized_dwarf_line_info<32, false>;
893 #endif
894
895 #ifdef HAVE_TARGET_32_BIG
896 template
897 class Sized_dwarf_line_info<32, true>;
898 #endif
899
900 #ifdef HAVE_TARGET_64_LITTLE
901 template
902 class Sized_dwarf_line_info<64, false>;
903 #endif
904
905 #ifdef HAVE_TARGET_64_BIG
906 template
907 class Sized_dwarf_line_info<64, true>;
908 #endif
909
910 } // End namespace gold.
This page took 0.077314 seconds and 5 git commands to generate.