2012-09-06 Cary Coutant <ccoutant@google.com>
[deliverable/binutils-gdb.git] / gold / dwarf_reader.cc
1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <vector>
27
28 #include "elfcpp_swap.h"
29 #include "dwarf.h"
30 #include "object.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
35 #include "compressed_output.h"
36
37 namespace gold {
38
39 // Class Sized_elf_reloc_mapper
40
41 // Initialize the relocation tracker for section RELOC_SHNDX.
42
43 template<int size, bool big_endian>
44 bool
45 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
46 unsigned int reloc_shndx, unsigned int reloc_type)
47 {
48 this->reloc_type_ = reloc_type;
49 return this->track_relocs_.initialize(this->object_, reloc_shndx,
50 reloc_type);
51 }
52
53 // Looks in the symtab to see what section a symbol is in.
54
55 template<int size, bool big_endian>
56 unsigned int
57 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
58 unsigned int symndx, Address* value, bool* is_ordinary)
59 {
60 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
61 gold_assert((symndx + 1) * symsize <= this->symtab_size_);
62 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
63 *value = elfsym.get_st_value();
64 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
65 is_ordinary);
66 }
67
68 // Return the section index and offset within the section of
69 // the target of the relocation for RELOC_OFFSET.
70
71 template<int size, bool big_endian>
72 unsigned int
73 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
74 off_t reloc_offset, off_t* target_offset)
75 {
76 this->track_relocs_.advance(reloc_offset);
77 if (reloc_offset != this->track_relocs_.next_offset())
78 return 0;
79 unsigned int symndx = this->track_relocs_.next_symndx();
80 typename elfcpp::Elf_types<size>::Elf_Addr value;
81 bool is_ordinary;
82 unsigned int target_shndx = this->symbol_section(symndx, &value,
83 &is_ordinary);
84 if (!is_ordinary)
85 return 0;
86 if (this->reloc_type_ == elfcpp::SHT_RELA)
87 value += this->track_relocs_.next_addend();
88 *target_offset = value;
89 return target_shndx;
90 }
91
92 static inline Elf_reloc_mapper*
93 make_elf_reloc_mapper(Object* object, const unsigned char* symtab,
94 off_t symtab_size)
95 {
96 switch (parameters->size_and_endianness())
97 {
98 #ifdef HAVE_TARGET_32_LITTLE
99 case Parameters::TARGET_32_LITTLE:
100 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
101 symtab_size);
102 #endif
103 #ifdef HAVE_TARGET_32_BIG
104 case Parameters::TARGET_32_BIG:
105 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
106 symtab_size);
107 #endif
108 #ifdef HAVE_TARGET_64_LITTLE
109 case Parameters::TARGET_64_LITTLE:
110 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
111 symtab_size);
112 #endif
113 #ifdef HAVE_TARGET_64_BIG
114 case Parameters::TARGET_64_BIG:
115 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
116 symtab_size);
117 #endif
118 default:
119 gold_unreachable();
120 }
121 }
122
123 // class Dwarf_abbrev_table
124
125 void
126 Dwarf_abbrev_table::clear_abbrev_codes()
127 {
128 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
129 {
130 if (this->low_abbrev_codes_[code] != NULL)
131 {
132 delete this->low_abbrev_codes_[code];
133 this->low_abbrev_codes_[code] = NULL;
134 }
135 }
136 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
137 it != this->high_abbrev_codes_.end();
138 ++it)
139 {
140 if (it->second != NULL)
141 delete it->second;
142 }
143 this->high_abbrev_codes_.clear();
144 }
145
146 // Read the abbrev table from an object file.
147
148 bool
149 Dwarf_abbrev_table::do_read_abbrevs(
150 Relobj* object,
151 unsigned int abbrev_shndx,
152 off_t abbrev_offset)
153 {
154 this->clear_abbrev_codes();
155
156 // If we don't have relocations, abbrev_shndx will be 0, and
157 // we'll have to hunt for the .debug_abbrev section.
158 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
159 abbrev_shndx = this->abbrev_shndx_;
160 else if (abbrev_shndx == 0)
161 {
162 for (unsigned int i = 1; i < object->shnum(); ++i)
163 {
164 std::string name = object->section_name(i);
165 if (name == ".debug_abbrev")
166 {
167 abbrev_shndx = i;
168 // Correct the offset. For incremental update links, we have a
169 // relocated offset that is relative to the output section, but
170 // here we need an offset relative to the input section.
171 abbrev_offset -= object->output_section_offset(i);
172 break;
173 }
174 }
175 if (abbrev_shndx == 0)
176 return false;
177 }
178
179 // Get the section contents and decompress if necessary.
180 if (abbrev_shndx != this->abbrev_shndx_)
181 {
182 if (this->owns_buffer_ && this->buffer_ != NULL)
183 {
184 delete[] this->buffer_;
185 this->owns_buffer_ = false;
186 }
187
188 section_size_type buffer_size;
189 this->buffer_ =
190 object->decompressed_section_contents(abbrev_shndx,
191 &buffer_size,
192 &this->owns_buffer_);
193 this->buffer_end_ = this->buffer_ + buffer_size;
194 this->abbrev_shndx_ = abbrev_shndx;
195 }
196
197 this->buffer_pos_ = this->buffer_ + abbrev_offset;
198 return true;
199 }
200
201 // Lookup the abbrev code entry for CODE. This function is called
202 // only when the abbrev code is not in the direct lookup table.
203 // It may be in the hash table, it may not have been read yet,
204 // or it may not exist in the abbrev table.
205
206 const Dwarf_abbrev_table::Abbrev_code*
207 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
208 {
209 // See if the abbrev code is already in the hash table.
210 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
211 if (it != this->high_abbrev_codes_.end())
212 return it->second;
213
214 // Read and store abbrev code definitions until we find the
215 // one we're looking for.
216 for (;;)
217 {
218 // Read the abbrev code. A zero here indicates the end of the
219 // abbrev table.
220 size_t len;
221 if (this->buffer_pos_ >= this->buffer_end_)
222 return NULL;
223 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
224 if (nextcode == 0)
225 {
226 this->buffer_pos_ = this->buffer_end_;
227 return NULL;
228 }
229 this->buffer_pos_ += len;
230
231 // Read the tag.
232 if (this->buffer_pos_ >= this->buffer_end_)
233 return NULL;
234 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
235 this->buffer_pos_ += len;
236
237 // Read the has_children flag.
238 if (this->buffer_pos_ >= this->buffer_end_)
239 return NULL;
240 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
241 this->buffer_pos_ += 1;
242
243 // Read the list of (attribute, form) pairs.
244 Abbrev_code* entry = new Abbrev_code(tag, has_children);
245 for (;;)
246 {
247 // Read the attribute.
248 if (this->buffer_pos_ >= this->buffer_end_)
249 return NULL;
250 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
251 this->buffer_pos_ += len;
252
253 // Read the form.
254 if (this->buffer_pos_ >= this->buffer_end_)
255 return NULL;
256 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
257 this->buffer_pos_ += len;
258
259 // A (0,0) pair terminates the list.
260 if (attr == 0 && form == 0)
261 break;
262
263 if (attr == elfcpp::DW_AT_sibling)
264 entry->has_sibling_attribute = true;
265
266 entry->add_attribute(attr, form);
267 }
268
269 this->store_abbrev(nextcode, entry);
270 if (nextcode == code)
271 return entry;
272 }
273
274 return NULL;
275 }
276
277 // class Dwarf_ranges_table
278
279 // Read the ranges table from an object file.
280
281 bool
282 Dwarf_ranges_table::read_ranges_table(
283 Relobj* object,
284 const unsigned char* symtab,
285 off_t symtab_size,
286 unsigned int ranges_shndx)
287 {
288 // If we've already read this abbrev table, return immediately.
289 if (this->ranges_shndx_ > 0
290 && this->ranges_shndx_ == ranges_shndx)
291 return true;
292
293 // If we don't have relocations, ranges_shndx will be 0, and
294 // we'll have to hunt for the .debug_ranges section.
295 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
296 ranges_shndx = this->ranges_shndx_;
297 else if (ranges_shndx == 0)
298 {
299 for (unsigned int i = 1; i < object->shnum(); ++i)
300 {
301 std::string name = object->section_name(i);
302 if (name == ".debug_ranges")
303 {
304 ranges_shndx = i;
305 this->output_section_offset_ = object->output_section_offset(i);
306 break;
307 }
308 }
309 if (ranges_shndx == 0)
310 return false;
311 }
312
313 // Get the section contents and decompress if necessary.
314 if (ranges_shndx != this->ranges_shndx_)
315 {
316 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
317 {
318 delete[] this->ranges_buffer_;
319 this->owns_ranges_buffer_ = false;
320 }
321
322 section_size_type buffer_size;
323 this->ranges_buffer_ =
324 object->decompressed_section_contents(ranges_shndx,
325 &buffer_size,
326 &this->owns_ranges_buffer_);
327 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
328 this->ranges_shndx_ = ranges_shndx;
329 }
330
331 if (this->ranges_reloc_mapper_ != NULL)
332 {
333 delete this->ranges_reloc_mapper_;
334 this->ranges_reloc_mapper_ = NULL;
335 }
336
337 // For incremental objects, we have no relocations.
338 if (object->is_incremental())
339 return true;
340
341 // Find the relocation section for ".debug_ranges".
342 unsigned int reloc_shndx = 0;
343 unsigned int reloc_type = 0;
344 for (unsigned int i = 0; i < object->shnum(); ++i)
345 {
346 reloc_type = object->section_type(i);
347 if ((reloc_type == elfcpp::SHT_REL
348 || reloc_type == elfcpp::SHT_RELA)
349 && object->section_info(i) == ranges_shndx)
350 {
351 reloc_shndx = i;
352 break;
353 }
354 }
355
356 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
357 symtab_size);
358 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
359
360 return true;
361 }
362
363 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
364
365 Dwarf_range_list*
366 Dwarf_ranges_table::read_range_list(
367 Relobj* object,
368 const unsigned char* symtab,
369 off_t symtab_size,
370 unsigned int addr_size,
371 unsigned int ranges_shndx,
372 off_t offset)
373 {
374 Dwarf_range_list* ranges;
375
376 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
377 return NULL;
378
379 // Correct the offset. For incremental update links, we have a
380 // relocated offset that is relative to the output section, but
381 // here we need an offset relative to the input section.
382 offset -= this->output_section_offset_;
383
384 // Read the range list at OFFSET.
385 ranges = new Dwarf_range_list();
386 off_t base = 0;
387 for (;
388 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
389 offset += 2 * addr_size)
390 {
391 off_t start;
392 off_t end;
393
394 // Read the raw contents of the section.
395 if (addr_size == 4)
396 {
397 start = read_from_pointer<32>(this->ranges_buffer_ + offset);
398 end = read_from_pointer<32>(this->ranges_buffer_ + offset + 4);
399 }
400 else
401 {
402 start = read_from_pointer<64>(this->ranges_buffer_ + offset);
403 end = read_from_pointer<64>(this->ranges_buffer_ + offset + 8);
404 }
405
406 // Check for relocations and adjust the values.
407 unsigned int shndx1 = 0;
408 unsigned int shndx2 = 0;
409 if (this->ranges_reloc_mapper_ != NULL)
410 {
411 shndx1 =
412 this->ranges_reloc_mapper_->get_reloc_target(offset, &start);
413 shndx2 =
414 this->ranges_reloc_mapper_->get_reloc_target(offset + addr_size,
415 &end);
416 }
417
418 // End of list is marked by a pair of zeroes.
419 if (shndx1 == 0 && start == 0 && end == 0)
420 break;
421
422 // A "base address selection entry" is identified by
423 // 0xffffffff for the first value of the pair. The second
424 // value is used as a base for subsequent range list entries.
425 if (shndx1 == 0 && start == -1)
426 base = end;
427 else if (shndx1 == shndx2)
428 {
429 if (shndx1 == 0 || object->is_section_included(shndx1))
430 ranges->add(shndx1, base + start, base + end);
431 }
432 else
433 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
434 "range list entry are in different sections"),
435 object->name().c_str());
436 }
437
438 return ranges;
439 }
440
441 // class Dwarf_pubnames_table
442
443 // Read the pubnames section SHNDX from the object file.
444
445 bool
446 Dwarf_pubnames_table::read_section(Relobj* object, unsigned int shndx)
447 {
448 section_size_type buffer_size;
449
450 // If we don't have relocations, shndx will be 0, and
451 // we'll have to hunt for the .debug_pubnames/pubtypes section.
452 if (shndx == 0)
453 {
454 const char* name = (this->is_pubtypes_
455 ? ".debug_pubtypes"
456 : ".debug_pubnames");
457 for (unsigned int i = 1; i < object->shnum(); ++i)
458 {
459 if (object->section_name(i) == name)
460 {
461 shndx = i;
462 this->output_section_offset_ = object->output_section_offset(i);
463 break;
464 }
465 }
466 if (shndx == 0)
467 return false;
468 }
469
470 this->buffer_ = object->decompressed_section_contents(shndx,
471 &buffer_size,
472 &this->owns_buffer_);
473 if (this->buffer_ == NULL)
474 return false;
475 this->buffer_end_ = this->buffer_ + buffer_size;
476 return true;
477 }
478
479 // Read the header for the set at OFFSET.
480
481 bool
482 Dwarf_pubnames_table::read_header(off_t offset)
483 {
484 // Correct the offset. For incremental update links, we have a
485 // relocated offset that is relative to the output section, but
486 // here we need an offset relative to the input section.
487 offset -= this->output_section_offset_;
488
489 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
490 return false;
491
492 const unsigned char* pinfo = this->buffer_ + offset;
493
494 // Read the unit_length field.
495 uint32_t unit_length = read_from_pointer<32>(pinfo);
496 pinfo += 4;
497 if (unit_length == 0xffffffff)
498 {
499 unit_length = read_from_pointer<64>(pinfo);
500 pinfo += 8;
501 this->offset_size_ = 8;
502 }
503 else
504 this->offset_size_ = 4;
505
506 // Check the version.
507 unsigned int version = read_from_pointer<16>(pinfo);
508 pinfo += 2;
509 if (version != 2)
510 return false;
511
512 // Skip the debug_info_offset and debug_info_size fields.
513 pinfo += 2 * this->offset_size_;
514
515 if (pinfo >= this->buffer_end_)
516 return false;
517
518 this->pinfo_ = pinfo;
519 return true;
520 }
521
522 // Read the next name from the set.
523
524 const char*
525 Dwarf_pubnames_table::next_name()
526 {
527 const unsigned char* pinfo = this->pinfo_;
528
529 // Read the offset within the CU. If this is zero, we have reached
530 // the end of the list.
531 uint32_t offset;
532 if (this->offset_size_ == 4)
533 offset = read_from_pointer<32>(&pinfo);
534 else
535 offset = read_from_pointer<64>(&pinfo);
536 if (offset == 0)
537 return NULL;
538
539 // Return a pointer to the string at the current location,
540 // and advance the pointer to the next entry.
541 const char* ret = reinterpret_cast<const char*>(pinfo);
542 while (pinfo < this->buffer_end_ && *pinfo != '\0')
543 ++pinfo;
544 if (pinfo < this->buffer_end_)
545 ++pinfo;
546
547 this->pinfo_ = pinfo;
548 return ret;
549 }
550
551 // class Dwarf_die
552
553 Dwarf_die::Dwarf_die(
554 Dwarf_info_reader* dwinfo,
555 off_t die_offset,
556 Dwarf_die* parent)
557 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
558 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
559 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
560 linkage_name_off_(-1), string_shndx_(0), specification_(0),
561 abstract_origin_(0)
562 {
563 size_t len;
564 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
565 if (pdie == NULL)
566 return;
567 unsigned int code = read_unsigned_LEB_128(pdie, &len);
568 if (code == 0)
569 {
570 if (parent != NULL)
571 parent->set_sibling_offset(die_offset + len);
572 return;
573 }
574 this->attr_offset_ = len;
575
576 // Lookup the abbrev code in the abbrev table.
577 this->abbrev_code_ = dwinfo->get_abbrev(code);
578 }
579
580 // Read all the attributes of the DIE.
581
582 bool
583 Dwarf_die::read_attributes()
584 {
585 if (this->attributes_read_)
586 return true;
587
588 gold_assert(this->abbrev_code_ != NULL);
589
590 const unsigned char* pdie =
591 this->dwinfo_->buffer_at_offset(this->die_offset_);
592 if (pdie == NULL)
593 return false;
594 const unsigned char* pattr = pdie + this->attr_offset_;
595
596 unsigned int nattr = this->abbrev_code_->attributes.size();
597 this->attributes_.reserve(nattr);
598 for (unsigned int i = 0; i < nattr; ++i)
599 {
600 size_t len;
601 unsigned int attr = this->abbrev_code_->attributes[i].attr;
602 unsigned int form = this->abbrev_code_->attributes[i].form;
603 if (form == elfcpp::DW_FORM_indirect)
604 {
605 form = read_unsigned_LEB_128(pattr, &len);
606 pattr += len;
607 }
608 off_t attr_off = this->die_offset_ + (pattr - pdie);
609 bool ref_form = false;
610 Attribute_value attr_value;
611 attr_value.attr = attr;
612 attr_value.form = form;
613 attr_value.aux.shndx = 0;
614 switch(form)
615 {
616 case elfcpp::DW_FORM_flag_present:
617 attr_value.val.intval = 1;
618 break;
619 case elfcpp::DW_FORM_strp:
620 {
621 off_t str_off;
622 if (this->dwinfo_->offset_size() == 4)
623 str_off = read_from_pointer<32>(&pattr);
624 else
625 str_off = read_from_pointer<64>(&pattr);
626 unsigned int shndx =
627 this->dwinfo_->lookup_reloc(attr_off, &str_off);
628 attr_value.aux.shndx = shndx;
629 attr_value.val.refval = str_off;
630 break;
631 }
632 case elfcpp::DW_FORM_sec_offset:
633 {
634 off_t sec_off;
635 if (this->dwinfo_->offset_size() == 4)
636 sec_off = read_from_pointer<32>(&pattr);
637 else
638 sec_off = read_from_pointer<64>(&pattr);
639 unsigned int shndx =
640 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
641 attr_value.aux.shndx = shndx;
642 attr_value.val.refval = sec_off;
643 ref_form = true;
644 break;
645 }
646 case elfcpp::DW_FORM_addr:
647 case elfcpp::DW_FORM_ref_addr:
648 {
649 off_t sec_off;
650 if (this->dwinfo_->address_size() == 4)
651 sec_off = read_from_pointer<32>(&pattr);
652 else
653 sec_off = read_from_pointer<64>(&pattr);
654 unsigned int shndx =
655 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
656 attr_value.aux.shndx = shndx;
657 attr_value.val.refval = sec_off;
658 ref_form = true;
659 break;
660 }
661 case elfcpp::DW_FORM_block1:
662 attr_value.aux.blocklen = *pattr++;
663 attr_value.val.blockval = pattr;
664 pattr += attr_value.aux.blocklen;
665 break;
666 case elfcpp::DW_FORM_block2:
667 attr_value.aux.blocklen = read_from_pointer<16>(&pattr);
668 attr_value.val.blockval = pattr;
669 pattr += attr_value.aux.blocklen;
670 break;
671 case elfcpp::DW_FORM_block4:
672 attr_value.aux.blocklen = read_from_pointer<32>(&pattr);
673 attr_value.val.blockval = pattr;
674 pattr += attr_value.aux.blocklen;
675 break;
676 case elfcpp::DW_FORM_block:
677 case elfcpp::DW_FORM_exprloc:
678 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
679 attr_value.val.blockval = pattr + len;
680 pattr += len + attr_value.aux.blocklen;
681 break;
682 case elfcpp::DW_FORM_data1:
683 case elfcpp::DW_FORM_flag:
684 attr_value.val.intval = *pattr++;
685 break;
686 case elfcpp::DW_FORM_ref1:
687 attr_value.val.refval = *pattr++;
688 ref_form = true;
689 break;
690 case elfcpp::DW_FORM_data2:
691 attr_value.val.intval = read_from_pointer<16>(&pattr);
692 break;
693 case elfcpp::DW_FORM_ref2:
694 attr_value.val.refval = read_from_pointer<16>(&pattr);
695 ref_form = true;
696 break;
697 case elfcpp::DW_FORM_data4:
698 {
699 off_t sec_off;
700 sec_off = read_from_pointer<32>(&pattr);
701 unsigned int shndx =
702 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
703 attr_value.aux.shndx = shndx;
704 attr_value.val.intval = sec_off;
705 break;
706 }
707 case elfcpp::DW_FORM_ref4:
708 {
709 off_t sec_off;
710 sec_off = read_from_pointer<32>(&pattr);
711 unsigned int shndx =
712 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
713 attr_value.aux.shndx = shndx;
714 attr_value.val.refval = sec_off;
715 ref_form = true;
716 break;
717 }
718 case elfcpp::DW_FORM_data8:
719 {
720 off_t sec_off;
721 sec_off = read_from_pointer<64>(&pattr);
722 unsigned int shndx =
723 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
724 attr_value.aux.shndx = shndx;
725 attr_value.val.intval = sec_off;
726 break;
727 }
728 case elfcpp::DW_FORM_ref_sig8:
729 attr_value.val.uintval = read_from_pointer<64>(&pattr);
730 break;
731 case elfcpp::DW_FORM_ref8:
732 {
733 off_t sec_off;
734 sec_off = read_from_pointer<64>(&pattr);
735 unsigned int shndx =
736 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
737 attr_value.aux.shndx = shndx;
738 attr_value.val.refval = sec_off;
739 ref_form = true;
740 break;
741 }
742 case elfcpp::DW_FORM_ref_udata:
743 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
744 ref_form = true;
745 pattr += len;
746 break;
747 case elfcpp::DW_FORM_udata:
748 case elfcpp::DW_FORM_GNU_addr_index:
749 case elfcpp::DW_FORM_GNU_str_index:
750 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
751 pattr += len;
752 break;
753 case elfcpp::DW_FORM_sdata:
754 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
755 pattr += len;
756 break;
757 case elfcpp::DW_FORM_string:
758 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
759 len = strlen(attr_value.val.stringval);
760 pattr += len + 1;
761 break;
762 default:
763 return false;
764 }
765
766 // Cache the most frequently-requested attributes.
767 switch (attr)
768 {
769 case elfcpp::DW_AT_name:
770 if (form == elfcpp::DW_FORM_string)
771 this->name_ = attr_value.val.stringval;
772 else if (form == elfcpp::DW_FORM_strp)
773 {
774 // All indirect strings should refer to the same
775 // string section, so we just save the last one seen.
776 this->string_shndx_ = attr_value.aux.shndx;
777 this->name_off_ = attr_value.val.refval;
778 }
779 break;
780 case elfcpp::DW_AT_linkage_name:
781 case elfcpp::DW_AT_MIPS_linkage_name:
782 if (form == elfcpp::DW_FORM_string)
783 this->linkage_name_ = attr_value.val.stringval;
784 else if (form == elfcpp::DW_FORM_strp)
785 {
786 // All indirect strings should refer to the same
787 // string section, so we just save the last one seen.
788 this->string_shndx_ = attr_value.aux.shndx;
789 this->linkage_name_off_ = attr_value.val.refval;
790 }
791 break;
792 case elfcpp::DW_AT_specification:
793 if (ref_form)
794 this->specification_ = attr_value.val.refval;
795 break;
796 case elfcpp::DW_AT_abstract_origin:
797 if (ref_form)
798 this->abstract_origin_ = attr_value.val.refval;
799 break;
800 case elfcpp::DW_AT_sibling:
801 if (ref_form && attr_value.aux.shndx == 0)
802 this->sibling_offset_ = attr_value.val.refval;
803 default:
804 break;
805 }
806
807 this->attributes_.push_back(attr_value);
808 }
809
810 // Now that we know where the next DIE begins, record the offset
811 // to avoid later recalculation.
812 if (this->has_children())
813 this->child_offset_ = this->die_offset_ + (pattr - pdie);
814 else
815 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
816
817 this->attributes_read_ = true;
818 return true;
819 }
820
821 // Skip all the attributes of the DIE and return the offset of the next DIE.
822
823 off_t
824 Dwarf_die::skip_attributes()
825 {
826 gold_assert(this->abbrev_code_ != NULL);
827
828 const unsigned char* pdie =
829 this->dwinfo_->buffer_at_offset(this->die_offset_);
830 if (pdie == NULL)
831 return 0;
832 const unsigned char* pattr = pdie + this->attr_offset_;
833
834 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
835 {
836 size_t len;
837 unsigned int form = this->abbrev_code_->attributes[i].form;
838 if (form == elfcpp::DW_FORM_indirect)
839 {
840 form = read_unsigned_LEB_128(pattr, &len);
841 pattr += len;
842 }
843 switch(form)
844 {
845 case elfcpp::DW_FORM_flag_present:
846 break;
847 case elfcpp::DW_FORM_strp:
848 case elfcpp::DW_FORM_sec_offset:
849 pattr += this->dwinfo_->offset_size();
850 break;
851 case elfcpp::DW_FORM_addr:
852 case elfcpp::DW_FORM_ref_addr:
853 pattr += this->dwinfo_->address_size();
854 break;
855 case elfcpp::DW_FORM_block1:
856 pattr += 1 + *pattr;
857 break;
858 case elfcpp::DW_FORM_block2:
859 {
860 uint16_t block_size;
861 block_size = read_from_pointer<16>(&pattr);
862 pattr += block_size;
863 break;
864 }
865 case elfcpp::DW_FORM_block4:
866 {
867 uint32_t block_size;
868 block_size = read_from_pointer<32>(&pattr);
869 pattr += block_size;
870 break;
871 }
872 case elfcpp::DW_FORM_block:
873 case elfcpp::DW_FORM_exprloc:
874 {
875 uint64_t block_size;
876 block_size = read_unsigned_LEB_128(pattr, &len);
877 pattr += len + block_size;
878 break;
879 }
880 case elfcpp::DW_FORM_data1:
881 case elfcpp::DW_FORM_ref1:
882 case elfcpp::DW_FORM_flag:
883 pattr += 1;
884 break;
885 case elfcpp::DW_FORM_data2:
886 case elfcpp::DW_FORM_ref2:
887 pattr += 2;
888 break;
889 case elfcpp::DW_FORM_data4:
890 case elfcpp::DW_FORM_ref4:
891 pattr += 4;
892 break;
893 case elfcpp::DW_FORM_data8:
894 case elfcpp::DW_FORM_ref8:
895 case elfcpp::DW_FORM_ref_sig8:
896 pattr += 8;
897 break;
898 case elfcpp::DW_FORM_ref_udata:
899 case elfcpp::DW_FORM_udata:
900 case elfcpp::DW_FORM_GNU_addr_index:
901 case elfcpp::DW_FORM_GNU_str_index:
902 read_unsigned_LEB_128(pattr, &len);
903 pattr += len;
904 break;
905 case elfcpp::DW_FORM_sdata:
906 read_signed_LEB_128(pattr, &len);
907 pattr += len;
908 break;
909 case elfcpp::DW_FORM_string:
910 len = strlen(reinterpret_cast<const char*>(pattr));
911 pattr += len + 1;
912 break;
913 default:
914 return 0;
915 }
916 }
917
918 return this->die_offset_ + (pattr - pdie);
919 }
920
921 // Get the name of the DIE and cache it.
922
923 void
924 Dwarf_die::set_name()
925 {
926 if (this->name_ != NULL || !this->read_attributes())
927 return;
928 if (this->name_off_ != -1)
929 this->name_ = this->dwinfo_->get_string(this->name_off_,
930 this->string_shndx_);
931 }
932
933 // Get the linkage name of the DIE and cache it.
934
935 void
936 Dwarf_die::set_linkage_name()
937 {
938 if (this->linkage_name_ != NULL || !this->read_attributes())
939 return;
940 if (this->linkage_name_off_ != -1)
941 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
942 this->string_shndx_);
943 }
944
945 // Return the value of attribute ATTR.
946
947 const Dwarf_die::Attribute_value*
948 Dwarf_die::attribute(unsigned int attr)
949 {
950 if (!this->read_attributes())
951 return NULL;
952 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
953 {
954 if (this->attributes_[i].attr == attr)
955 return &this->attributes_[i];
956 }
957 return NULL;
958 }
959
960 const char*
961 Dwarf_die::string_attribute(unsigned int attr)
962 {
963 const Attribute_value* attr_val = this->attribute(attr);
964 if (attr_val == NULL)
965 return NULL;
966 switch (attr_val->form)
967 {
968 case elfcpp::DW_FORM_string:
969 return attr_val->val.stringval;
970 case elfcpp::DW_FORM_strp:
971 return this->dwinfo_->get_string(attr_val->val.refval,
972 attr_val->aux.shndx);
973 default:
974 return NULL;
975 }
976 }
977
978 int64_t
979 Dwarf_die::int_attribute(unsigned int attr)
980 {
981 const Attribute_value* attr_val = this->attribute(attr);
982 if (attr_val == NULL)
983 return 0;
984 switch (attr_val->form)
985 {
986 case elfcpp::DW_FORM_flag_present:
987 case elfcpp::DW_FORM_data1:
988 case elfcpp::DW_FORM_flag:
989 case elfcpp::DW_FORM_data2:
990 case elfcpp::DW_FORM_data4:
991 case elfcpp::DW_FORM_data8:
992 case elfcpp::DW_FORM_sdata:
993 return attr_val->val.intval;
994 default:
995 return 0;
996 }
997 }
998
999 uint64_t
1000 Dwarf_die::uint_attribute(unsigned int attr)
1001 {
1002 const Attribute_value* attr_val = this->attribute(attr);
1003 if (attr_val == NULL)
1004 return 0;
1005 switch (attr_val->form)
1006 {
1007 case elfcpp::DW_FORM_flag_present:
1008 case elfcpp::DW_FORM_data1:
1009 case elfcpp::DW_FORM_flag:
1010 case elfcpp::DW_FORM_data4:
1011 case elfcpp::DW_FORM_data8:
1012 case elfcpp::DW_FORM_ref_sig8:
1013 case elfcpp::DW_FORM_udata:
1014 return attr_val->val.uintval;
1015 default:
1016 return 0;
1017 }
1018 }
1019
1020 off_t
1021 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1022 {
1023 const Attribute_value* attr_val = this->attribute(attr);
1024 if (attr_val == NULL)
1025 return -1;
1026 switch (attr_val->form)
1027 {
1028 case elfcpp::DW_FORM_sec_offset:
1029 case elfcpp::DW_FORM_addr:
1030 case elfcpp::DW_FORM_ref_addr:
1031 case elfcpp::DW_FORM_ref1:
1032 case elfcpp::DW_FORM_ref2:
1033 case elfcpp::DW_FORM_ref4:
1034 case elfcpp::DW_FORM_ref8:
1035 case elfcpp::DW_FORM_ref_udata:
1036 *shndx = attr_val->aux.shndx;
1037 return attr_val->val.refval;
1038 case elfcpp::DW_FORM_ref_sig8:
1039 *shndx = attr_val->aux.shndx;
1040 return attr_val->val.uintval;
1041 case elfcpp::DW_FORM_data4:
1042 case elfcpp::DW_FORM_data8:
1043 *shndx = attr_val->aux.shndx;
1044 return attr_val->val.intval;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 off_t
1051 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1052 {
1053 const Attribute_value* attr_val = this->attribute(attr);
1054 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1055 return -1;
1056
1057 *shndx = attr_val->aux.shndx;
1058 return attr_val->val.refval;
1059 }
1060
1061 // Return the offset of this DIE's first child.
1062
1063 off_t
1064 Dwarf_die::child_offset()
1065 {
1066 gold_assert(this->abbrev_code_ != NULL);
1067 if (!this->has_children())
1068 return 0;
1069 if (this->child_offset_ == 0)
1070 this->child_offset_ = this->skip_attributes();
1071 return this->child_offset_;
1072 }
1073
1074 // Return the offset of this DIE's next sibling.
1075
1076 off_t
1077 Dwarf_die::sibling_offset()
1078 {
1079 gold_assert(this->abbrev_code_ != NULL);
1080
1081 if (this->sibling_offset_ != 0)
1082 return this->sibling_offset_;
1083
1084 if (!this->has_children())
1085 {
1086 this->sibling_offset_ = this->skip_attributes();
1087 return this->sibling_offset_;
1088 }
1089
1090 if (this->has_sibling_attribute())
1091 {
1092 if (!this->read_attributes())
1093 return 0;
1094 if (this->sibling_offset_ != 0)
1095 return this->sibling_offset_;
1096 }
1097
1098 // Skip over the children.
1099 off_t child_offset = this->child_offset();
1100 while (child_offset > 0)
1101 {
1102 Dwarf_die die(this->dwinfo_, child_offset, this);
1103 // The Dwarf_die ctor will set this DIE's sibling offset
1104 // when it reads a zero abbrev code.
1105 if (die.tag() == 0)
1106 break;
1107 child_offset = die.sibling_offset();
1108 }
1109
1110 // This should be set by now. If not, there was a problem reading
1111 // the DWARF info, and we return 0.
1112 return this->sibling_offset_;
1113 }
1114
1115 // class Dwarf_info_reader
1116
1117 // Check that the pointer P is within the current compilation unit.
1118
1119 inline bool
1120 Dwarf_info_reader::check_buffer(const unsigned char* p) const
1121 {
1122 if (p > this->buffer_ + this->cu_offset_ + this->cu_length_)
1123 {
1124 gold_warning(_("%s: corrupt debug info in %s"),
1125 this->object_->name().c_str(),
1126 this->object_->section_name(this->shndx_).c_str());
1127 return false;
1128 }
1129 return true;
1130 }
1131
1132 // Begin parsing the debug info. This calls visit_compilation_unit()
1133 // or visit_type_unit() for each compilation or type unit found in the
1134 // section, and visit_die() for each top-level DIE.
1135
1136 void
1137 Dwarf_info_reader::parse()
1138 {
1139 switch (parameters->size_and_endianness())
1140 {
1141 #ifdef HAVE_TARGET_32_LITTLE
1142 case Parameters::TARGET_32_LITTLE:
1143 this->do_parse<false>();
1144 break;
1145 #endif
1146 #ifdef HAVE_TARGET_32_BIG
1147 case Parameters::TARGET_32_BIG:
1148 this->do_parse<true>();
1149 break;
1150 #endif
1151 #ifdef HAVE_TARGET_64_LITTLE
1152 case Parameters::TARGET_64_LITTLE:
1153 this->do_parse<false>();
1154 break;
1155 #endif
1156 #ifdef HAVE_TARGET_64_BIG
1157 case Parameters::TARGET_64_BIG:
1158 this->do_parse<true>();
1159 break;
1160 #endif
1161 default:
1162 gold_unreachable();
1163 }
1164 }
1165
1166 template<bool big_endian>
1167 void
1168 Dwarf_info_reader::do_parse()
1169 {
1170 // Get the section contents and decompress if necessary.
1171 section_size_type buffer_size;
1172 bool buffer_is_new;
1173 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1174 &buffer_size,
1175 &buffer_is_new);
1176 if (this->buffer_ == NULL || buffer_size == 0)
1177 return;
1178 this->buffer_end_ = this->buffer_ + buffer_size;
1179
1180 // The offset of this input section in the output section.
1181 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1182
1183 // Start tracking relocations for this section.
1184 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1185 this->symtab_size_);
1186 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1187
1188 // Loop over compilation units (or type units).
1189 unsigned int abbrev_shndx = 0;
1190 off_t abbrev_offset = 0;
1191 const unsigned char* pinfo = this->buffer_;
1192 while (pinfo < this->buffer_end_)
1193 {
1194 // Read the compilation (or type) unit header.
1195 const unsigned char* cu_start = pinfo;
1196 this->cu_offset_ = cu_start - this->buffer_;
1197 this->cu_length_ = this->buffer_end_ - cu_start;
1198
1199 // Read unit_length (4 or 12 bytes).
1200 if (!this->check_buffer(pinfo + 4))
1201 break;
1202 uint32_t unit_length =
1203 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1204 pinfo += 4;
1205 if (unit_length == 0xffffffff)
1206 {
1207 if (!this->check_buffer(pinfo + 8))
1208 break;
1209 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1210 pinfo += 8;
1211 this->offset_size_ = 8;
1212 }
1213 else
1214 this->offset_size_ = 4;
1215 if (!this->check_buffer(pinfo + unit_length))
1216 break;
1217 const unsigned char* cu_end = pinfo + unit_length;
1218 this->cu_length_ = cu_end - cu_start;
1219 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1220 break;
1221
1222 // Read version (2 bytes).
1223 this->cu_version_ =
1224 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1225 pinfo += 2;
1226
1227 // Read debug_abbrev_offset (4 or 8 bytes).
1228 if (this->offset_size_ == 4)
1229 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1230 else
1231 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1232 if (this->reloc_shndx_ > 0)
1233 {
1234 off_t reloc_offset = pinfo - this->buffer_;
1235 off_t value;
1236 abbrev_shndx =
1237 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1238 if (abbrev_shndx == 0)
1239 return;
1240 if (this->reloc_type_ == elfcpp::SHT_REL)
1241 abbrev_offset += value;
1242 else
1243 abbrev_offset = value;
1244 }
1245 pinfo += this->offset_size_;
1246
1247 // Read address_size (1 byte).
1248 this->address_size_ = *pinfo++;
1249
1250 // For type units, read the two extra fields.
1251 uint64_t signature = 0;
1252 off_t type_offset = 0;
1253 if (this->is_type_unit_)
1254 {
1255 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1256 break;
1257
1258 // Read type_signature (8 bytes).
1259 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1260 pinfo += 8;
1261
1262 // Read type_offset (4 or 8 bytes).
1263 if (this->offset_size_ == 4)
1264 type_offset =
1265 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1266 else
1267 type_offset =
1268 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1269 pinfo += this->offset_size_;
1270 }
1271
1272 // Read the .debug_abbrev table.
1273 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1274 abbrev_offset);
1275
1276 // Visit the root DIE.
1277 Dwarf_die root_die(this,
1278 pinfo - (this->buffer_ + this->cu_offset_),
1279 NULL);
1280 if (root_die.tag() != 0)
1281 {
1282 // Visit the CU or TU.
1283 if (this->is_type_unit_)
1284 this->visit_type_unit(section_offset + this->cu_offset_,
1285 type_offset, signature, &root_die);
1286 else
1287 this->visit_compilation_unit(section_offset + this->cu_offset_,
1288 cu_end - cu_start, &root_die);
1289 }
1290
1291 // Advance to the next CU.
1292 pinfo = cu_end;
1293 }
1294
1295 if (buffer_is_new)
1296 {
1297 delete[] this->buffer_;
1298 this->buffer_ = NULL;
1299 }
1300 }
1301
1302 // Read the DWARF string table.
1303
1304 bool
1305 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1306 {
1307 Relobj* object = this->object_;
1308
1309 // If we don't have relocations, string_shndx will be 0, and
1310 // we'll have to hunt for the .debug_str section.
1311 if (string_shndx == 0)
1312 {
1313 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1314 {
1315 std::string name = object->section_name(i);
1316 if (name == ".debug_str")
1317 {
1318 string_shndx = i;
1319 this->string_output_section_offset_ =
1320 object->output_section_offset(i);
1321 break;
1322 }
1323 }
1324 if (string_shndx == 0)
1325 return false;
1326 }
1327
1328 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1329 {
1330 delete[] this->string_buffer_;
1331 this->owns_string_buffer_ = false;
1332 }
1333
1334 // Get the secton contents and decompress if necessary.
1335 section_size_type buffer_size;
1336 const unsigned char* buffer =
1337 object->decompressed_section_contents(string_shndx,
1338 &buffer_size,
1339 &this->owns_string_buffer_);
1340 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1341 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1342 this->string_shndx_ = string_shndx;
1343 return true;
1344 }
1345
1346 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1347 // and return the section index and offset of the target.
1348
1349 unsigned int
1350 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1351 {
1352 off_t value;
1353 attr_off += this->cu_offset_;
1354 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1355 if (shndx == 0)
1356 return 0;
1357 if (this->reloc_type_ == elfcpp::SHT_REL)
1358 *target_off += value;
1359 else
1360 *target_off = value;
1361 return shndx;
1362 }
1363
1364 // Return a string from the DWARF string table.
1365
1366 const char*
1367 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1368 {
1369 if (!this->read_string_table(string_shndx))
1370 return NULL;
1371
1372 // Correct the offset. For incremental update links, we have a
1373 // relocated offset that is relative to the output section, but
1374 // here we need an offset relative to the input section.
1375 str_off -= this->string_output_section_offset_;
1376
1377 const char* p = this->string_buffer_ + str_off;
1378
1379 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1380 return NULL;
1381
1382 return p;
1383 }
1384
1385 // The following are default, do-nothing, implementations of the
1386 // hook methods normally provided by a derived class. We provide
1387 // default implementations rather than no implementation so that
1388 // a derived class needs to implement only the hooks that it needs
1389 // to use.
1390
1391 // Process a compilation unit and parse its child DIE.
1392
1393 void
1394 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1395 {
1396 }
1397
1398 // Process a type unit and parse its child DIE.
1399
1400 void
1401 Dwarf_info_reader::visit_type_unit(off_t, off_t, uint64_t, Dwarf_die*)
1402 {
1403 }
1404
1405 // class Sized_dwarf_line_info
1406
1407 struct LineStateMachine
1408 {
1409 int file_num;
1410 uint64_t address;
1411 int line_num;
1412 int column_num;
1413 unsigned int shndx; // the section address refers to
1414 bool is_stmt; // stmt means statement.
1415 bool basic_block;
1416 bool end_sequence;
1417 };
1418
1419 static void
1420 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1421 {
1422 lsm->file_num = 1;
1423 lsm->address = 0;
1424 lsm->line_num = 1;
1425 lsm->column_num = 0;
1426 lsm->shndx = -1U;
1427 lsm->is_stmt = default_is_stmt;
1428 lsm->basic_block = false;
1429 lsm->end_sequence = false;
1430 }
1431
1432 template<int size, bool big_endian>
1433 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1434 Object* object,
1435 unsigned int read_shndx)
1436 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1437 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1438 current_header_index_(-1)
1439 {
1440 unsigned int debug_shndx;
1441
1442 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1443 {
1444 // FIXME: do this more efficiently: section_name() isn't super-fast
1445 std::string name = object->section_name(debug_shndx);
1446 if (name == ".debug_line" || name == ".zdebug_line")
1447 {
1448 section_size_type buffer_size;
1449 bool is_new = false;
1450 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1451 &buffer_size,
1452 &is_new);
1453 if (is_new)
1454 this->buffer_start_ = this->buffer_;
1455 this->buffer_end_ = this->buffer_ + buffer_size;
1456 break;
1457 }
1458 }
1459 if (this->buffer_ == NULL)
1460 return;
1461
1462 // Find the relocation section for ".debug_line".
1463 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1464 unsigned int reloc_shndx = 0;
1465 for (unsigned int i = 0; i < object->shnum(); ++i)
1466 {
1467 unsigned int reloc_sh_type = object->section_type(i);
1468 if ((reloc_sh_type == elfcpp::SHT_REL
1469 || reloc_sh_type == elfcpp::SHT_RELA)
1470 && object->section_info(i) == debug_shndx)
1471 {
1472 reloc_shndx = i;
1473 this->track_relocs_type_ = reloc_sh_type;
1474 break;
1475 }
1476 }
1477
1478 // Finally, we need the symtab section to interpret the relocs.
1479 if (reloc_shndx != 0)
1480 {
1481 unsigned int symtab_shndx;
1482 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1483 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1484 {
1485 this->symtab_buffer_ = object->section_contents(
1486 symtab_shndx, &this->symtab_buffer_size_, false);
1487 break;
1488 }
1489 if (this->symtab_buffer_ == NULL)
1490 return;
1491 }
1492
1493 this->reloc_mapper_ =
1494 new Sized_elf_reloc_mapper<size, big_endian>(object,
1495 this->symtab_buffer_,
1496 this->symtab_buffer_size_);
1497 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1498 return;
1499
1500 // Now that we have successfully read all the data, parse the debug
1501 // info.
1502 this->data_valid_ = true;
1503 this->read_line_mappings(read_shndx);
1504 }
1505
1506 // Read the DWARF header.
1507
1508 template<int size, bool big_endian>
1509 const unsigned char*
1510 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1511 const unsigned char* lineptr)
1512 {
1513 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1514 lineptr += 4;
1515
1516 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1517 // size is 8 and we need to read the next 8 bytes for the real length.
1518 if (initial_length == 0xffffffff)
1519 {
1520 header_.offset_size = 8;
1521 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1522 lineptr += 8;
1523 }
1524 else
1525 header_.offset_size = 4;
1526
1527 header_.total_length = initial_length;
1528
1529 gold_assert(lineptr + header_.total_length <= buffer_end_);
1530
1531 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1532 lineptr += 2;
1533
1534 if (header_.offset_size == 4)
1535 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1536 else
1537 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1538 lineptr += header_.offset_size;
1539
1540 header_.min_insn_length = *lineptr;
1541 lineptr += 1;
1542
1543 header_.default_is_stmt = *lineptr;
1544 lineptr += 1;
1545
1546 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1547 lineptr += 1;
1548
1549 header_.line_range = *lineptr;
1550 lineptr += 1;
1551
1552 header_.opcode_base = *lineptr;
1553 lineptr += 1;
1554
1555 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1556 header_.std_opcode_lengths[0] = 0;
1557 for (int i = 1; i < header_.opcode_base; i++)
1558 {
1559 header_.std_opcode_lengths[i] = *lineptr;
1560 lineptr += 1;
1561 }
1562
1563 return lineptr;
1564 }
1565
1566 // The header for a debug_line section is mildly complicated, because
1567 // the line info is very tightly encoded.
1568
1569 template<int size, bool big_endian>
1570 const unsigned char*
1571 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1572 const unsigned char* lineptr)
1573 {
1574 ++this->current_header_index_;
1575
1576 // Create a new directories_ entry and a new files_ entry for our new
1577 // header. We initialize each with a single empty element, because
1578 // dwarf indexes directory and filenames starting at 1.
1579 gold_assert(static_cast<int>(this->directories_.size())
1580 == this->current_header_index_);
1581 gold_assert(static_cast<int>(this->files_.size())
1582 == this->current_header_index_);
1583 this->directories_.push_back(std::vector<std::string>(1));
1584 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1585
1586 // It is legal for the directory entry table to be empty.
1587 if (*lineptr)
1588 {
1589 int dirindex = 1;
1590 while (*lineptr)
1591 {
1592 const char* dirname = reinterpret_cast<const char*>(lineptr);
1593 gold_assert(dirindex
1594 == static_cast<int>(this->directories_.back().size()));
1595 this->directories_.back().push_back(dirname);
1596 lineptr += this->directories_.back().back().size() + 1;
1597 dirindex++;
1598 }
1599 }
1600 lineptr++;
1601
1602 // It is also legal for the file entry table to be empty.
1603 if (*lineptr)
1604 {
1605 int fileindex = 1;
1606 size_t len;
1607 while (*lineptr)
1608 {
1609 const char* filename = reinterpret_cast<const char*>(lineptr);
1610 lineptr += strlen(filename) + 1;
1611
1612 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1613 lineptr += len;
1614
1615 if (dirindex >= this->directories_.back().size())
1616 dirindex = 0;
1617 int dirindexi = static_cast<int>(dirindex);
1618
1619 read_unsigned_LEB_128(lineptr, &len); // mod_time
1620 lineptr += len;
1621
1622 read_unsigned_LEB_128(lineptr, &len); // filelength
1623 lineptr += len;
1624
1625 gold_assert(fileindex
1626 == static_cast<int>(this->files_.back().size()));
1627 this->files_.back().push_back(std::make_pair(dirindexi, filename));
1628 fileindex++;
1629 }
1630 }
1631 lineptr++;
1632
1633 return lineptr;
1634 }
1635
1636 // Process a single opcode in the .debug.line structure.
1637
1638 template<int size, bool big_endian>
1639 bool
1640 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1641 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
1642 {
1643 size_t oplen = 0;
1644 size_t templen;
1645 unsigned char opcode = *start;
1646 oplen++;
1647 start++;
1648
1649 // If the opcode is great than the opcode_base, it is a special
1650 // opcode. Most line programs consist mainly of special opcodes.
1651 if (opcode >= header_.opcode_base)
1652 {
1653 opcode -= header_.opcode_base;
1654 const int advance_address = ((opcode / header_.line_range)
1655 * header_.min_insn_length);
1656 lsm->address += advance_address;
1657
1658 const int advance_line = ((opcode % header_.line_range)
1659 + header_.line_base);
1660 lsm->line_num += advance_line;
1661 lsm->basic_block = true;
1662 *len = oplen;
1663 return true;
1664 }
1665
1666 // Otherwise, we have the regular opcodes
1667 switch (opcode)
1668 {
1669 case elfcpp::DW_LNS_copy:
1670 lsm->basic_block = false;
1671 *len = oplen;
1672 return true;
1673
1674 case elfcpp::DW_LNS_advance_pc:
1675 {
1676 const uint64_t advance_address
1677 = read_unsigned_LEB_128(start, &templen);
1678 oplen += templen;
1679 lsm->address += header_.min_insn_length * advance_address;
1680 }
1681 break;
1682
1683 case elfcpp::DW_LNS_advance_line:
1684 {
1685 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1686 oplen += templen;
1687 lsm->line_num += advance_line;
1688 }
1689 break;
1690
1691 case elfcpp::DW_LNS_set_file:
1692 {
1693 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1694 oplen += templen;
1695 lsm->file_num = fileno;
1696 }
1697 break;
1698
1699 case elfcpp::DW_LNS_set_column:
1700 {
1701 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1702 oplen += templen;
1703 lsm->column_num = colno;
1704 }
1705 break;
1706
1707 case elfcpp::DW_LNS_negate_stmt:
1708 lsm->is_stmt = !lsm->is_stmt;
1709 break;
1710
1711 case elfcpp::DW_LNS_set_basic_block:
1712 lsm->basic_block = true;
1713 break;
1714
1715 case elfcpp::DW_LNS_fixed_advance_pc:
1716 {
1717 int advance_address;
1718 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
1719 oplen += 2;
1720 lsm->address += advance_address;
1721 }
1722 break;
1723
1724 case elfcpp::DW_LNS_const_add_pc:
1725 {
1726 const int advance_address = (header_.min_insn_length
1727 * ((255 - header_.opcode_base)
1728 / header_.line_range));
1729 lsm->address += advance_address;
1730 }
1731 break;
1732
1733 case elfcpp::DW_LNS_extended_op:
1734 {
1735 const uint64_t extended_op_len
1736 = read_unsigned_LEB_128(start, &templen);
1737 start += templen;
1738 oplen += templen + extended_op_len;
1739
1740 const unsigned char extended_op = *start;
1741 start++;
1742
1743 switch (extended_op)
1744 {
1745 case elfcpp::DW_LNE_end_sequence:
1746 // This means that the current byte is the one immediately
1747 // after a set of instructions. Record the current line
1748 // for up to one less than the current address.
1749 lsm->line_num = -1;
1750 lsm->end_sequence = true;
1751 *len = oplen;
1752 return true;
1753
1754 case elfcpp::DW_LNE_set_address:
1755 {
1756 lsm->address =
1757 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
1758 typename Reloc_map::const_iterator it
1759 = this->reloc_map_.find(start - this->buffer_);
1760 if (it != reloc_map_.end())
1761 {
1762 // If this is a SHT_RELA section, then ignore the
1763 // section contents. This assumes that this is a
1764 // straight reloc which just uses the reloc addend.
1765 // The reloc addend has already been included in the
1766 // symbol value.
1767 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1768 lsm->address = 0;
1769 // Add in the symbol value.
1770 lsm->address += it->second.second;
1771 lsm->shndx = it->second.first;
1772 }
1773 else
1774 {
1775 // If we're a normal .o file, with relocs, every
1776 // set_address should have an associated relocation.
1777 if (this->input_is_relobj())
1778 this->data_valid_ = false;
1779 }
1780 break;
1781 }
1782 case elfcpp::DW_LNE_define_file:
1783 {
1784 const char* filename = reinterpret_cast<const char*>(start);
1785 templen = strlen(filename) + 1;
1786 start += templen;
1787
1788 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
1789
1790 if (dirindex >= this->directories_.back().size())
1791 dirindex = 0;
1792 int dirindexi = static_cast<int>(dirindex);
1793
1794 // This opcode takes two additional ULEB128 parameters
1795 // (mod_time and filelength), but we don't use those
1796 // values. Because OPLEN already tells us how far to
1797 // skip to the next opcode, we don't need to read
1798 // them at all.
1799
1800 this->files_.back().push_back(std::make_pair(dirindexi,
1801 filename));
1802 }
1803 break;
1804 }
1805 }
1806 break;
1807
1808 default:
1809 {
1810 // Ignore unknown opcode silently
1811 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1812 {
1813 size_t templen;
1814 read_unsigned_LEB_128(start, &templen);
1815 start += templen;
1816 oplen += templen;
1817 }
1818 }
1819 break;
1820 }
1821 *len = oplen;
1822 return false;
1823 }
1824
1825 // Read the debug information at LINEPTR and store it in the line
1826 // number map.
1827
1828 template<int size, bool big_endian>
1829 unsigned const char*
1830 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
1831 unsigned int shndx)
1832 {
1833 struct LineStateMachine lsm;
1834
1835 // LENGTHSTART is the place the length field is based on. It is the
1836 // point in the header after the initial length field.
1837 const unsigned char* lengthstart = buffer_;
1838
1839 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1840 // 0xffffffff at the start.
1841 if (header_.offset_size == 8)
1842 lengthstart += 12;
1843 else
1844 lengthstart += 4;
1845
1846 while (lineptr < lengthstart + header_.total_length)
1847 {
1848 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1849 while (!lsm.end_sequence)
1850 {
1851 size_t oplength;
1852 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
1853 if (add_line
1854 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
1855 {
1856 Offset_to_lineno_entry entry
1857 = { static_cast<off_t>(lsm.address),
1858 this->current_header_index_,
1859 static_cast<unsigned int>(lsm.file_num),
1860 true, lsm.line_num };
1861 std::vector<Offset_to_lineno_entry>&
1862 map(this->line_number_map_[lsm.shndx]);
1863 // If we see two consecutive entries with the same
1864 // offset and a real line number, then mark the first
1865 // one as non-canonical.
1866 if (!map.empty()
1867 && (map.back().offset == static_cast<off_t>(lsm.address))
1868 && lsm.line_num != -1
1869 && map.back().line_num != -1)
1870 map.back().last_line_for_offset = false;
1871 map.push_back(entry);
1872 }
1873 lineptr += oplength;
1874 }
1875 }
1876
1877 return lengthstart + header_.total_length;
1878 }
1879
1880 // Read the relocations into a Reloc_map.
1881
1882 template<int size, bool big_endian>
1883 void
1884 Sized_dwarf_line_info<size, big_endian>::read_relocs()
1885 {
1886 if (this->symtab_buffer_ == NULL)
1887 return;
1888
1889 off_t value;
1890 off_t reloc_offset;
1891 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
1892 {
1893 const unsigned int shndx =
1894 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1895
1896 // There is no reason to record non-ordinary section indexes, or
1897 // SHN_UNDEF, because they will never match the real section.
1898 if (shndx != 0)
1899 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
1900
1901 this->reloc_mapper_->advance(reloc_offset + 1);
1902 }
1903 }
1904
1905 // Read the line number info.
1906
1907 template<int size, bool big_endian>
1908 void
1909 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
1910 {
1911 gold_assert(this->data_valid_ == true);
1912
1913 this->read_relocs();
1914 while (this->buffer_ < this->buffer_end_)
1915 {
1916 const unsigned char* lineptr = this->buffer_;
1917 lineptr = this->read_header_prolog(lineptr);
1918 lineptr = this->read_header_tables(lineptr);
1919 lineptr = this->read_lines(lineptr, shndx);
1920 this->buffer_ = lineptr;
1921 }
1922
1923 // Sort the lines numbers, so addr2line can use binary search.
1924 for (typename Lineno_map::iterator it = line_number_map_.begin();
1925 it != line_number_map_.end();
1926 ++it)
1927 // Each vector needs to be sorted by offset.
1928 std::sort(it->second.begin(), it->second.end());
1929 }
1930
1931 // Some processing depends on whether the input is a .o file or not.
1932 // For instance, .o files have relocs, and have .debug_lines
1933 // information on a per section basis. .so files, on the other hand,
1934 // lack relocs, and offsets are unique, so we can ignore the section
1935 // information.
1936
1937 template<int size, bool big_endian>
1938 bool
1939 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
1940 {
1941 // Only .o files have relocs and the symtab buffer that goes with them.
1942 return this->symtab_buffer_ != NULL;
1943 }
1944
1945 // Given an Offset_to_lineno_entry vector, and an offset, figure out
1946 // if the offset points into a function according to the vector (see
1947 // comments below for the algorithm). If it does, return an iterator
1948 // into the vector that points to the line-number that contains that
1949 // offset. If not, it returns vector::end().
1950
1951 static std::vector<Offset_to_lineno_entry>::const_iterator
1952 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
1953 off_t offset)
1954 {
1955 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
1956
1957 // lower_bound() returns the smallest offset which is >= lookup_key.
1958 // If no offset in offsets is >= lookup_key, returns end().
1959 std::vector<Offset_to_lineno_entry>::const_iterator it
1960 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
1961
1962 // This code is easiest to understand with a concrete example.
1963 // Here's a possible offsets array:
1964 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
1965 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
1966 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
1967 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
1968 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
1969 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
1970 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
1971 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
1972 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
1973 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
1974 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
1975 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
1976 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
1977 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
1978 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
1979 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
1980 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
1981 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
1982 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
1983 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
1984 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
1985 // The entries with line_num == -1 mark the end of a function: the
1986 // associated offset is one past the last instruction in the
1987 // function. This can correspond to the beginning of the next
1988 // function (as is true for offset 3232); alternately, there can be
1989 // a gap between the end of one function and the start of the next
1990 // (as is true for some others, most obviously from 3236->5764).
1991 //
1992 // Case 1: lookup_key has offset == 10. lower_bound returns
1993 // offsets[0]. Since it's not an exact match and we're
1994 // at the beginning of offsets, we return end() (invalid).
1995 // Case 2: lookup_key has offset 10000. lower_bound returns
1996 // offset[21] (end()). We return end() (invalid).
1997 // Case 3: lookup_key has offset == 3211. lower_bound matches
1998 // offsets[0] exactly, and that's the entry we return.
1999 // Case 4: lookup_key has offset == 3232. lower_bound returns
2000 // offsets[4]. That's an exact match, but indicates
2001 // end-of-function. We check if offsets[5] is also an
2002 // exact match but not end-of-function. It is, so we
2003 // return offsets[5].
2004 // Case 5: lookup_key has offset == 3214. lower_bound returns
2005 // offsets[1]. Since it's not an exact match, we back
2006 // up to the offset that's < lookup_key, offsets[0].
2007 // We note offsets[0] is a valid entry (not end-of-function),
2008 // so that's the entry we return.
2009 // Case 6: lookup_key has offset == 4000. lower_bound returns
2010 // offsets[8]. Since it's not an exact match, we back
2011 // up to offsets[7]. Since offsets[7] indicates
2012 // end-of-function, we know lookup_key is between
2013 // functions, so we return end() (not a valid offset).
2014 // Case 7: lookup_key has offset == 5794. lower_bound returns
2015 // offsets[19]. Since it's not an exact match, we back
2016 // up to offsets[16]. Note we back up to the *first*
2017 // entry with offset 5793, not just offsets[19-1].
2018 // We note offsets[16] is a valid entry, so we return it.
2019 // If offsets[16] had had line_num == -1, we would have
2020 // checked offsets[17]. The reason for this is that
2021 // 16 and 17 can be in an arbitrary order, since we sort
2022 // only by offset and last_line_for_offset. (Note it
2023 // doesn't help to use line_number as a tertiary sort key,
2024 // since sometimes we want the -1 to be first and sometimes
2025 // we want it to be last.)
2026
2027 // This deals with cases (1) and (2).
2028 if ((it == offsets->begin() && offset < it->offset)
2029 || it == offsets->end())
2030 return offsets->end();
2031
2032 // This deals with cases (3) and (4).
2033 if (offset == it->offset)
2034 {
2035 while (it != offsets->end()
2036 && it->offset == offset
2037 && it->line_num == -1)
2038 ++it;
2039 if (it == offsets->end() || it->offset != offset)
2040 return offsets->end();
2041 else
2042 return it;
2043 }
2044
2045 // This handles the first part of case (7) -- we back up to the
2046 // *first* entry that has the offset that's behind us.
2047 gold_assert(it != offsets->begin());
2048 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2049 --it;
2050 const off_t range_value = it->offset;
2051 while (it != offsets->begin() && (it-1)->offset == range_value)
2052 --it;
2053
2054 // This handles cases (5), (6), and (7): if any entry in the
2055 // equal_range [it, range_end) has a line_num != -1, it's a valid
2056 // match. If not, we're not in a function. The line number we saw
2057 // last for an offset will be sorted first, so it'll get returned if
2058 // it's present.
2059 for (; it != range_end; ++it)
2060 if (it->line_num != -1)
2061 return it;
2062 return offsets->end();
2063 }
2064
2065 // Returns the canonical filename:lineno for the address passed in.
2066 // If other_lines is not NULL, appends the non-canonical lines
2067 // assigned to the same address.
2068
2069 template<int size, bool big_endian>
2070 std::string
2071 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2072 unsigned int shndx,
2073 off_t offset,
2074 std::vector<std::string>* other_lines)
2075 {
2076 if (this->data_valid_ == false)
2077 return "";
2078
2079 const std::vector<Offset_to_lineno_entry>* offsets;
2080 // If we do not have reloc information, then our input is a .so or
2081 // some similar data structure where all the information is held in
2082 // the offset. In that case, we ignore the input shndx.
2083 if (this->input_is_relobj())
2084 offsets = &this->line_number_map_[shndx];
2085 else
2086 offsets = &this->line_number_map_[-1U];
2087 if (offsets->empty())
2088 return "";
2089
2090 typename std::vector<Offset_to_lineno_entry>::const_iterator it
2091 = offset_to_iterator(offsets, offset);
2092 if (it == offsets->end())
2093 return "";
2094
2095 std::string result = this->format_file_lineno(*it);
2096 if (other_lines != NULL)
2097 for (++it; it != offsets->end() && it->offset == offset; ++it)
2098 {
2099 if (it->line_num == -1)
2100 continue; // The end of a previous function.
2101 other_lines->push_back(this->format_file_lineno(*it));
2102 }
2103 return result;
2104 }
2105
2106 // Convert the file_num + line_num into a string.
2107
2108 template<int size, bool big_endian>
2109 std::string
2110 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2111 const Offset_to_lineno_entry& loc) const
2112 {
2113 std::string ret;
2114
2115 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2116 gold_assert(loc.file_num
2117 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2118 const std::pair<int, std::string>& filename_pair
2119 = this->files_[loc.header_num][loc.file_num];
2120 const std::string& filename = filename_pair.second;
2121
2122 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2123 gold_assert(filename_pair.first
2124 < static_cast<int>(this->directories_[loc.header_num].size()));
2125 const std::string& dirname
2126 = this->directories_[loc.header_num][filename_pair.first];
2127
2128 if (!dirname.empty())
2129 {
2130 ret += dirname;
2131 ret += "/";
2132 }
2133 ret += filename;
2134 if (ret.empty())
2135 ret = "(unknown)";
2136
2137 char buffer[64]; // enough to hold a line number
2138 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2139 ret += ":";
2140 ret += buffer;
2141
2142 return ret;
2143 }
2144
2145 // Dwarf_line_info routines.
2146
2147 static unsigned int next_generation_count = 0;
2148
2149 struct Addr2line_cache_entry
2150 {
2151 Object* object;
2152 unsigned int shndx;
2153 Dwarf_line_info* dwarf_line_info;
2154 unsigned int generation_count;
2155 unsigned int access_count;
2156
2157 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2158 : object(o), shndx(s), dwarf_line_info(d),
2159 generation_count(next_generation_count), access_count(0)
2160 {
2161 if (next_generation_count < (1U << 31))
2162 ++next_generation_count;
2163 }
2164 };
2165 // We expect this cache to be small, so don't bother with a hashtable
2166 // or priority queue or anything: just use a simple vector.
2167 static std::vector<Addr2line_cache_entry> addr2line_cache;
2168
2169 std::string
2170 Dwarf_line_info::one_addr2line(Object* object,
2171 unsigned int shndx, off_t offset,
2172 size_t cache_size,
2173 std::vector<std::string>* other_lines)
2174 {
2175 Dwarf_line_info* lineinfo = NULL;
2176 std::vector<Addr2line_cache_entry>::iterator it;
2177
2178 // First, check the cache. If we hit, update the counts.
2179 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2180 {
2181 if (it->object == object && it->shndx == shndx)
2182 {
2183 lineinfo = it->dwarf_line_info;
2184 it->generation_count = next_generation_count;
2185 // We cap generation_count at 2^31 -1 to avoid overflow.
2186 if (next_generation_count < (1U << 31))
2187 ++next_generation_count;
2188 // We cap access_count at 31 so 2^access_count doesn't overflow
2189 if (it->access_count < 31)
2190 ++it->access_count;
2191 break;
2192 }
2193 }
2194
2195 // If we don't hit the cache, create a new object and insert into the
2196 // cache.
2197 if (lineinfo == NULL)
2198 {
2199 switch (parameters->size_and_endianness())
2200 {
2201 #ifdef HAVE_TARGET_32_LITTLE
2202 case Parameters::TARGET_32_LITTLE:
2203 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2204 #endif
2205 #ifdef HAVE_TARGET_32_BIG
2206 case Parameters::TARGET_32_BIG:
2207 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2208 #endif
2209 #ifdef HAVE_TARGET_64_LITTLE
2210 case Parameters::TARGET_64_LITTLE:
2211 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2212 #endif
2213 #ifdef HAVE_TARGET_64_BIG
2214 case Parameters::TARGET_64_BIG:
2215 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2216 #endif
2217 default:
2218 gold_unreachable();
2219 }
2220 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2221 }
2222
2223 // Now that we have our object, figure out the answer
2224 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2225
2226 // Finally, if our cache has grown too big, delete old objects. We
2227 // assume the common (probably only) case is deleting only one object.
2228 // We use a pretty simple scheme to evict: function of LRU and MFU.
2229 while (addr2line_cache.size() > cache_size)
2230 {
2231 unsigned int lowest_score = ~0U;
2232 std::vector<Addr2line_cache_entry>::iterator lowest
2233 = addr2line_cache.end();
2234 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2235 {
2236 const unsigned int score = (it->generation_count
2237 + (1U << it->access_count));
2238 if (score < lowest_score)
2239 {
2240 lowest_score = score;
2241 lowest = it;
2242 }
2243 }
2244 if (lowest != addr2line_cache.end())
2245 {
2246 delete lowest->dwarf_line_info;
2247 addr2line_cache.erase(lowest);
2248 }
2249 }
2250
2251 return retval;
2252 }
2253
2254 void
2255 Dwarf_line_info::clear_addr2line_cache()
2256 {
2257 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2258 it != addr2line_cache.end();
2259 ++it)
2260 delete it->dwarf_line_info;
2261 addr2line_cache.clear();
2262 }
2263
2264 #ifdef HAVE_TARGET_32_LITTLE
2265 template
2266 class Sized_dwarf_line_info<32, false>;
2267 #endif
2268
2269 #ifdef HAVE_TARGET_32_BIG
2270 template
2271 class Sized_dwarf_line_info<32, true>;
2272 #endif
2273
2274 #ifdef HAVE_TARGET_64_LITTLE
2275 template
2276 class Sized_dwarf_line_info<64, false>;
2277 #endif
2278
2279 #ifdef HAVE_TARGET_64_BIG
2280 template
2281 class Sized_dwarf_line_info<64, true>;
2282 #endif
2283
2284 } // End namespace gold.
This page took 0.081992 seconds and 5 git commands to generate.