Add "info connections" command, "info inferiors" connection number/string
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 if (input_file == NULL)
53 this->soname_ = name;
54 else
55 {
56 this->soname_ = input_file->found_name();
57 if (this->offset() != 0)
58 {
59 std::string::size_type open_paren = this->name().find('(');
60 std::string::size_type close_paren = this->name().find(')');
61 if (open_paren != std::string::npos
62 && close_paren != std::string::npos)
63 {
64 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
65 open_paren += 1;
66 this->soname_ = this->name().substr(open_paren,
67 close_paren - open_paren);
68 }
69 }
70 }
71 }
72
73 // Class Sized_dynobj.
74
75 template<int size, bool big_endian>
76 Sized_dynobj<size, big_endian>::Sized_dynobj(
77 const std::string& name,
78 Input_file* input_file,
79 off_t offset,
80 const elfcpp::Ehdr<size, big_endian>& ehdr)
81 : Dynobj(name, input_file, offset),
82 elf_file_(this, ehdr),
83 dynsym_shndx_(-1U),
84 symbols_(NULL),
85 defined_count_(0)
86 {
87 }
88
89 // Set up the object.
90
91 template<int size, bool big_endian>
92 void
93 Sized_dynobj<size, big_endian>::setup()
94 {
95 const unsigned int shnum = this->elf_file_.shnum();
96 this->set_shnum(shnum);
97 }
98
99 // Find the SHT_DYNSYM section and the various version sections, and
100 // the dynamic section, given the section headers.
101
102 template<int size, bool big_endian>
103 void
104 Sized_dynobj<size, big_endian>::find_dynsym_sections(
105 const unsigned char* pshdrs,
106 unsigned int* pversym_shndx,
107 unsigned int* pverdef_shndx,
108 unsigned int* pverneed_shndx,
109 unsigned int* pdynamic_shndx)
110 {
111 *pversym_shndx = -1U;
112 *pverdef_shndx = -1U;
113 *pverneed_shndx = -1U;
114 *pdynamic_shndx = -1U;
115
116 unsigned int symtab_shndx = 0;
117 unsigned int xindex_shndx = 0;
118 unsigned int xindex_link = 0;
119 const unsigned int shnum = this->shnum();
120 const unsigned char* p = pshdrs;
121 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
122 {
123 typename This::Shdr shdr(p);
124
125 unsigned int* pi;
126 switch (shdr.get_sh_type())
127 {
128 case elfcpp::SHT_DYNSYM:
129 this->dynsym_shndx_ = i;
130 if (xindex_shndx > 0 && xindex_link == i)
131 {
132 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
133 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
134 pshdrs);
135 this->set_xindex(xindex);
136 }
137 pi = NULL;
138 break;
139 case elfcpp::SHT_SYMTAB:
140 symtab_shndx = i;
141 pi = NULL;
142 break;
143 case elfcpp::SHT_GNU_versym:
144 pi = pversym_shndx;
145 break;
146 case elfcpp::SHT_GNU_verdef:
147 pi = pverdef_shndx;
148 break;
149 case elfcpp::SHT_GNU_verneed:
150 pi = pverneed_shndx;
151 break;
152 case elfcpp::SHT_DYNAMIC:
153 pi = pdynamic_shndx;
154 break;
155 case elfcpp::SHT_SYMTAB_SHNDX:
156 xindex_shndx = i;
157 xindex_link = this->adjust_shndx(shdr.get_sh_link());
158 if (xindex_link == this->dynsym_shndx_)
159 {
160 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
161 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
162 pshdrs);
163 this->set_xindex(xindex);
164 }
165 pi = NULL;
166 break;
167 default:
168 pi = NULL;
169 break;
170 }
171
172 if (pi == NULL)
173 continue;
174
175 if (*pi != -1U)
176 this->error(_("unexpected duplicate type %u section: %u, %u"),
177 shdr.get_sh_type(), *pi, i);
178
179 *pi = i;
180 }
181
182 // If there is no dynamic symbol table, use the normal symbol table.
183 // On some SVR4 systems, a shared library is stored in an archive.
184 // The version stored in the archive only has a normal symbol table.
185 // It has an SONAME entry which points to another copy in the file
186 // system which has a dynamic symbol table as usual. This is way of
187 // addressing the issues which glibc addresses using GROUP with
188 // libc_nonshared.a.
189 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
190 {
191 this->dynsym_shndx_ = symtab_shndx;
192 if (xindex_shndx > 0 && xindex_link == symtab_shndx)
193 {
194 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
195 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
196 pshdrs);
197 this->set_xindex(xindex);
198 }
199 }
200 }
201
202 // Read the contents of section SHNDX. PSHDRS points to the section
203 // headers. TYPE is the expected section type. LINK is the expected
204 // section link. Store the data in *VIEW and *VIEW_SIZE. The
205 // section's sh_info field is stored in *VIEW_INFO.
206
207 template<int size, bool big_endian>
208 void
209 Sized_dynobj<size, big_endian>::read_dynsym_section(
210 const unsigned char* pshdrs,
211 unsigned int shndx,
212 elfcpp::SHT type,
213 unsigned int link,
214 File_view** view,
215 section_size_type* view_size,
216 unsigned int* view_info)
217 {
218 if (shndx == -1U)
219 {
220 *view = NULL;
221 *view_size = 0;
222 *view_info = 0;
223 return;
224 }
225
226 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
227
228 gold_assert(shdr.get_sh_type() == type);
229
230 if (this->adjust_shndx(shdr.get_sh_link()) != link)
231 this->error(_("unexpected link in section %u header: %u != %u"),
232 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
233
234 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
235 true, false);
236 *view_size = convert_to_section_size_type(shdr.get_sh_size());
237 *view_info = shdr.get_sh_info();
238 }
239
240 // Read the dynamic tags. Set the soname field if this shared object
241 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
242 // the section headers. DYNAMIC_SHNDX is the section index of the
243 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
244 // section index and contents of a string table which may be the one
245 // associated with the SHT_DYNAMIC section.
246
247 template<int size, bool big_endian>
248 void
249 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
250 unsigned int dynamic_shndx,
251 unsigned int strtab_shndx,
252 const unsigned char* strtabu,
253 off_t strtab_size)
254 {
255 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
256 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
257
258 const off_t dynamic_size = dynamicshdr.get_sh_size();
259 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
260 dynamic_size, true, false);
261
262 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
263 if (link != strtab_shndx)
264 {
265 if (link >= this->shnum())
266 {
267 this->error(_("DYNAMIC section %u link out of range: %u"),
268 dynamic_shndx, link);
269 return;
270 }
271
272 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
273 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
274 {
275 this->error(_("DYNAMIC section %u link %u is not a strtab"),
276 dynamic_shndx, link);
277 return;
278 }
279
280 strtab_size = strtabshdr.get_sh_size();
281 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
282 false);
283 }
284
285 const char* const strtab = reinterpret_cast<const char*>(strtabu);
286
287 for (const unsigned char* p = pdynamic;
288 p < pdynamic + dynamic_size;
289 p += This::dyn_size)
290 {
291 typename This::Dyn dyn(p);
292
293 switch (dyn.get_d_tag())
294 {
295 case elfcpp::DT_NULL:
296 // We should always see DT_NULL at the end of the dynamic
297 // tags.
298 return;
299
300 case elfcpp::DT_SONAME:
301 {
302 off_t val = dyn.get_d_val();
303 if (val >= strtab_size)
304 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
305 static_cast<long long>(val),
306 static_cast<long long>(strtab_size));
307 else
308 this->set_soname_string(strtab + val);
309 }
310 break;
311
312 case elfcpp::DT_NEEDED:
313 {
314 off_t val = dyn.get_d_val();
315 if (val >= strtab_size)
316 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
317 static_cast<long long>(val),
318 static_cast<long long>(strtab_size));
319 else
320 this->add_needed(strtab + val);
321 }
322 break;
323
324 default:
325 break;
326 }
327 }
328
329 this->error(_("missing DT_NULL in dynamic segment"));
330 }
331
332 // Read the symbols and sections from a dynamic object. We read the
333 // dynamic symbols, not the normal symbols.
334
335 template<int size, bool big_endian>
336 void
337 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
338 {
339 this->base_read_symbols(sd);
340 }
341
342 // Read the symbols and sections from a dynamic object. We read the
343 // dynamic symbols, not the normal symbols. This is common code for
344 // all target-specific overrides of do_read_symbols().
345
346 template<int size, bool big_endian>
347 void
348 Sized_dynobj<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
349 {
350 this->read_section_data(&this->elf_file_, sd);
351
352 const unsigned char* const pshdrs = sd->section_headers->data();
353
354 unsigned int versym_shndx;
355 unsigned int verdef_shndx;
356 unsigned int verneed_shndx;
357 unsigned int dynamic_shndx;
358 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
359 &verneed_shndx, &dynamic_shndx);
360
361 unsigned int strtab_shndx = -1U;
362
363 sd->symbols = NULL;
364 sd->symbols_size = 0;
365 sd->external_symbols_offset = 0;
366 sd->symbol_names = NULL;
367 sd->symbol_names_size = 0;
368 sd->versym = NULL;
369 sd->versym_size = 0;
370 sd->verdef = NULL;
371 sd->verdef_size = 0;
372 sd->verdef_info = 0;
373 sd->verneed = NULL;
374 sd->verneed_size = 0;
375 sd->verneed_info = 0;
376
377 const unsigned char* namesu = sd->section_names->data();
378 const char* names = reinterpret_cast<const char*>(namesu);
379 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
380 {
381 Compressed_section_map* compressed_sections =
382 build_compressed_section_map<size, big_endian>(
383 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
384 if (compressed_sections != NULL)
385 this->set_compressed_sections(compressed_sections);
386 }
387
388 if (this->dynsym_shndx_ != -1U)
389 {
390 // Get the dynamic symbols.
391 typename This::Shdr dynsymshdr(pshdrs
392 + this->dynsym_shndx_ * This::shdr_size);
393
394 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
395 dynsymshdr.get_sh_size(), true,
396 false);
397 sd->symbols_size =
398 convert_to_section_size_type(dynsymshdr.get_sh_size());
399
400 // Get the symbol names.
401 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
402 if (strtab_shndx >= this->shnum())
403 {
404 this->error(_("invalid dynamic symbol table name index: %u"),
405 strtab_shndx);
406 return;
407 }
408 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
409 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
410 {
411 this->error(_("dynamic symbol table name section "
412 "has wrong type: %u"),
413 static_cast<unsigned int>(strtabshdr.get_sh_type()));
414 return;
415 }
416
417 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
418 strtabshdr.get_sh_size(),
419 false, false);
420 sd->symbol_names_size =
421 convert_to_section_size_type(strtabshdr.get_sh_size());
422
423 // Get the version information.
424
425 unsigned int dummy;
426 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
427 this->dynsym_shndx_,
428 &sd->versym, &sd->versym_size, &dummy);
429
430 // We require that the version definition and need section link
431 // to the same string table as the dynamic symbol table. This
432 // is not a technical requirement, but it always happens in
433 // practice. We could change this if necessary.
434
435 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
436 strtab_shndx, &sd->verdef, &sd->verdef_size,
437 &sd->verdef_info);
438
439 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
440 strtab_shndx, &sd->verneed, &sd->verneed_size,
441 &sd->verneed_info);
442 }
443
444 // Read the SHT_DYNAMIC section to find whether this shared object
445 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
446 // doesn't really have anything to do with reading the symbols, but
447 // this is a convenient place to do it.
448 if (dynamic_shndx != -1U)
449 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
450 (sd->symbol_names == NULL
451 ? NULL
452 : sd->symbol_names->data()),
453 sd->symbol_names_size);
454 }
455
456 // Return the Xindex structure to use for object with lots of
457 // sections.
458
459 template<int size, bool big_endian>
460 Xindex*
461 Sized_dynobj<size, big_endian>::do_initialize_xindex()
462 {
463 gold_assert(this->dynsym_shndx_ != -1U);
464 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
465 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
466 return xindex;
467 }
468
469 // Lay out the input sections for a dynamic object. We don't want to
470 // include sections from a dynamic object, so all that we actually do
471 // here is check for .gnu.warning and .note.GNU-split-stack sections.
472
473 template<int size, bool big_endian>
474 void
475 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
476 Layout*,
477 Read_symbols_data* sd)
478 {
479 const unsigned int shnum = this->shnum();
480 if (shnum == 0)
481 return;
482
483 // Get the section headers.
484 const unsigned char* pshdrs = sd->section_headers->data();
485
486 // Get the section names.
487 const unsigned char* pnamesu = sd->section_names->data();
488 const char* pnames = reinterpret_cast<const char*>(pnamesu);
489
490 // Skip the first, dummy, section.
491 pshdrs += This::shdr_size;
492 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
493 {
494 typename This::Shdr shdr(pshdrs);
495
496 if (shdr.get_sh_name() >= sd->section_names_size)
497 {
498 this->error(_("bad section name offset for section %u: %lu"),
499 i, static_cast<unsigned long>(shdr.get_sh_name()));
500 return;
501 }
502
503 const char* name = pnames + shdr.get_sh_name();
504
505 this->handle_gnu_warning_section(name, i, symtab);
506 this->handle_split_stack_section(name);
507 }
508
509 delete sd->section_headers;
510 sd->section_headers = NULL;
511 delete sd->section_names;
512 sd->section_names = NULL;
513 }
514
515 // Add an entry to the vector mapping version numbers to version
516 // strings.
517
518 template<int size, bool big_endian>
519 void
520 Sized_dynobj<size, big_endian>::set_version_map(
521 Version_map* version_map,
522 unsigned int ndx,
523 const char* name) const
524 {
525 if (ndx >= version_map->size())
526 version_map->resize(ndx + 1);
527 if ((*version_map)[ndx] != NULL)
528 this->error(_("duplicate definition for version %u"), ndx);
529 (*version_map)[ndx] = name;
530 }
531
532 // Add mappings for the version definitions to VERSION_MAP.
533
534 template<int size, bool big_endian>
535 void
536 Sized_dynobj<size, big_endian>::make_verdef_map(
537 Read_symbols_data* sd,
538 Version_map* version_map) const
539 {
540 if (sd->verdef == NULL)
541 return;
542
543 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
544 section_size_type names_size = sd->symbol_names_size;
545
546 const unsigned char* pverdef = sd->verdef->data();
547 section_size_type verdef_size = sd->verdef_size;
548 const unsigned int count = sd->verdef_info;
549
550 const unsigned char* p = pverdef;
551 for (unsigned int i = 0; i < count; ++i)
552 {
553 elfcpp::Verdef<size, big_endian> verdef(p);
554
555 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
556 {
557 this->error(_("unexpected verdef version %u"),
558 verdef.get_vd_version());
559 return;
560 }
561
562 const section_size_type vd_ndx = verdef.get_vd_ndx();
563
564 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
565 // sure why.
566
567 // The first Verdaux holds the name of this version. Subsequent
568 // ones are versions that this one depends upon, which we don't
569 // care about here.
570 const section_size_type vd_cnt = verdef.get_vd_cnt();
571 if (vd_cnt < 1)
572 {
573 this->error(_("verdef vd_cnt field too small: %u"),
574 static_cast<unsigned int>(vd_cnt));
575 return;
576 }
577
578 const section_size_type vd_aux = verdef.get_vd_aux();
579 if ((p - pverdef) + vd_aux >= verdef_size)
580 {
581 this->error(_("verdef vd_aux field out of range: %u"),
582 static_cast<unsigned int>(vd_aux));
583 return;
584 }
585
586 const unsigned char* pvda = p + vd_aux;
587 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
588
589 const section_size_type vda_name = verdaux.get_vda_name();
590 if (vda_name >= names_size)
591 {
592 this->error(_("verdaux vda_name field out of range: %u"),
593 static_cast<unsigned int>(vda_name));
594 return;
595 }
596
597 this->set_version_map(version_map, vd_ndx, names + vda_name);
598
599 const section_size_type vd_next = verdef.get_vd_next();
600 if ((p - pverdef) + vd_next >= verdef_size)
601 {
602 this->error(_("verdef vd_next field out of range: %u"),
603 static_cast<unsigned int>(vd_next));
604 return;
605 }
606
607 p += vd_next;
608 }
609 }
610
611 // Add mappings for the required versions to VERSION_MAP.
612
613 template<int size, bool big_endian>
614 void
615 Sized_dynobj<size, big_endian>::make_verneed_map(
616 Read_symbols_data* sd,
617 Version_map* version_map) const
618 {
619 if (sd->verneed == NULL)
620 return;
621
622 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
623 section_size_type names_size = sd->symbol_names_size;
624
625 const unsigned char* pverneed = sd->verneed->data();
626 const section_size_type verneed_size = sd->verneed_size;
627 const unsigned int count = sd->verneed_info;
628
629 const unsigned char* p = pverneed;
630 for (unsigned int i = 0; i < count; ++i)
631 {
632 elfcpp::Verneed<size, big_endian> verneed(p);
633
634 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
635 {
636 this->error(_("unexpected verneed version %u"),
637 verneed.get_vn_version());
638 return;
639 }
640
641 const section_size_type vn_aux = verneed.get_vn_aux();
642
643 if ((p - pverneed) + vn_aux >= verneed_size)
644 {
645 this->error(_("verneed vn_aux field out of range: %u"),
646 static_cast<unsigned int>(vn_aux));
647 return;
648 }
649
650 const unsigned int vn_cnt = verneed.get_vn_cnt();
651 const unsigned char* pvna = p + vn_aux;
652 for (unsigned int j = 0; j < vn_cnt; ++j)
653 {
654 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
655
656 const unsigned int vna_name = vernaux.get_vna_name();
657 if (vna_name >= names_size)
658 {
659 this->error(_("vernaux vna_name field out of range: %u"),
660 static_cast<unsigned int>(vna_name));
661 return;
662 }
663
664 this->set_version_map(version_map, vernaux.get_vna_other(),
665 names + vna_name);
666
667 const section_size_type vna_next = vernaux.get_vna_next();
668 if ((pvna - pverneed) + vna_next >= verneed_size)
669 {
670 this->error(_("verneed vna_next field out of range: %u"),
671 static_cast<unsigned int>(vna_next));
672 return;
673 }
674
675 pvna += vna_next;
676 }
677
678 const section_size_type vn_next = verneed.get_vn_next();
679 if ((p - pverneed) + vn_next >= verneed_size)
680 {
681 this->error(_("verneed vn_next field out of range: %u"),
682 static_cast<unsigned int>(vn_next));
683 return;
684 }
685
686 p += vn_next;
687 }
688 }
689
690 // Create a vector mapping version numbers to version strings.
691
692 template<int size, bool big_endian>
693 void
694 Sized_dynobj<size, big_endian>::make_version_map(
695 Read_symbols_data* sd,
696 Version_map* version_map) const
697 {
698 if (sd->verdef == NULL && sd->verneed == NULL)
699 return;
700
701 // A guess at the maximum version number we will see. If this is
702 // wrong we will be less efficient but still correct.
703 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
704
705 this->make_verdef_map(sd, version_map);
706 this->make_verneed_map(sd, version_map);
707 }
708
709 // Add the dynamic symbols to the symbol table.
710
711 template<int size, bool big_endian>
712 void
713 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
714 Read_symbols_data* sd,
715 Layout*)
716 {
717 if (sd->symbols == NULL)
718 {
719 gold_assert(sd->symbol_names == NULL);
720 gold_assert(sd->versym == NULL && sd->verdef == NULL
721 && sd->verneed == NULL);
722 return;
723 }
724
725 const int sym_size = This::sym_size;
726 const size_t symcount = sd->symbols_size / sym_size;
727 gold_assert(sd->external_symbols_offset == 0);
728 if (symcount * sym_size != sd->symbols_size)
729 {
730 this->error(_("size of dynamic symbols is not multiple of symbol size"));
731 return;
732 }
733
734 Version_map version_map;
735 this->make_version_map(sd, &version_map);
736
737 // If printing symbol counts or a cross reference table or
738 // preparing for an incremental link, we want to track symbols.
739 if (parameters->options().user_set_print_symbol_counts()
740 || parameters->options().cref()
741 || parameters->incremental())
742 {
743 this->symbols_ = new Symbols();
744 this->symbols_->resize(symcount);
745 }
746
747 const char* sym_names =
748 reinterpret_cast<const char*>(sd->symbol_names->data());
749 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
750 sym_names, sd->symbol_names_size,
751 (sd->versym == NULL
752 ? NULL
753 : sd->versym->data()),
754 sd->versym_size,
755 &version_map,
756 this->symbols_,
757 &this->defined_count_);
758
759 delete sd->symbols;
760 sd->symbols = NULL;
761 delete sd->symbol_names;
762 sd->symbol_names = NULL;
763 if (sd->versym != NULL)
764 {
765 delete sd->versym;
766 sd->versym = NULL;
767 }
768 if (sd->verdef != NULL)
769 {
770 delete sd->verdef;
771 sd->verdef = NULL;
772 }
773 if (sd->verneed != NULL)
774 {
775 delete sd->verneed;
776 sd->verneed = NULL;
777 }
778
779 // This is normally the last time we will read any data from this
780 // file.
781 this->clear_view_cache_marks();
782 }
783
784 template<int size, bool big_endian>
785 Archive::Should_include
786 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
787 Layout*,
788 Read_symbols_data*,
789 std::string*)
790 {
791 return Archive::SHOULD_INCLUDE_YES;
792 }
793
794 // Iterate over global symbols, calling a visitor class V for each.
795
796 template<int size, bool big_endian>
797 void
798 Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
799 Read_symbols_data* sd,
800 Library_base::Symbol_visitor_base* v)
801 {
802 const char* sym_names =
803 reinterpret_cast<const char*>(sd->symbol_names->data());
804 const unsigned char* syms =
805 sd->symbols->data() + sd->external_symbols_offset;
806 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
807 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
808 / sym_size);
809 const unsigned char* p = syms;
810
811 for (size_t i = 0; i < symcount; ++i, p += sym_size)
812 {
813 elfcpp::Sym<size, big_endian> sym(p);
814 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
815 && sym.get_st_bind() != elfcpp::STB_LOCAL)
816 v->visit(sym_names + sym.get_st_name());
817 }
818 }
819
820 // Iterate over local symbols, calling a visitor class V for each GOT offset
821 // associated with a local symbol.
822
823 template<int size, bool big_endian>
824 void
825 Sized_dynobj<size, big_endian>::do_for_all_local_got_entries(
826 Got_offset_list::Visitor*) const
827 {
828 }
829
830 // Get symbol counts.
831
832 template<int size, bool big_endian>
833 void
834 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
835 const Symbol_table*,
836 size_t* defined,
837 size_t* used) const
838 {
839 *defined = this->defined_count_;
840 size_t count = 0;
841 for (typename Symbols::const_iterator p = this->symbols_->begin();
842 p != this->symbols_->end();
843 ++p)
844 if (*p != NULL
845 && (*p)->source() == Symbol::FROM_OBJECT
846 && (*p)->object() == this
847 && (*p)->is_defined()
848 && (*p)->has_dynsym_index())
849 ++count;
850 *used = count;
851 }
852
853 // Given a vector of hash codes, compute the number of hash buckets to
854 // use.
855
856 unsigned int
857 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
858 bool for_gnu_hash_table)
859 {
860 // FIXME: Implement optional hash table optimization.
861
862 // Array used to determine the number of hash table buckets to use
863 // based on the number of symbols there are. If there are fewer
864 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
865 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
866 // use more than 262147 buckets. This is straight from the old GNU
867 // linker.
868 static const unsigned int buckets[] =
869 {
870 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
871 16411, 32771, 65537, 131101, 262147
872 };
873 const int buckets_count = sizeof buckets / sizeof buckets[0];
874
875 unsigned int symcount = hashcodes.size();
876 unsigned int ret = 1;
877 const double full_fraction
878 = 1.0 - parameters->options().hash_bucket_empty_fraction();
879 for (int i = 0; i < buckets_count; ++i)
880 {
881 if (symcount < buckets[i] * full_fraction)
882 break;
883 ret = buckets[i];
884 }
885
886 if (for_gnu_hash_table && ret < 2)
887 ret = 2;
888
889 return ret;
890 }
891
892 // The standard ELF hash function. This hash function must not
893 // change, as the dynamic linker uses it also.
894
895 uint32_t
896 Dynobj::elf_hash(const char* name)
897 {
898 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
899 uint32_t h = 0;
900 unsigned char c;
901 while ((c = *nameu++) != '\0')
902 {
903 h = (h << 4) + c;
904 uint32_t g = h & 0xf0000000;
905 if (g != 0)
906 {
907 h ^= g >> 24;
908 // The ELF ABI says h &= ~g, but using xor is equivalent in
909 // this case (since g was set from h) and may save one
910 // instruction.
911 h ^= g;
912 }
913 }
914 return h;
915 }
916
917 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
918 // DYNSYMS is a vector with all the global dynamic symbols.
919 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
920 // symbol table.
921
922 void
923 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
924 unsigned int local_dynsym_count,
925 unsigned char** pphash,
926 unsigned int* phashlen)
927 {
928 unsigned int dynsym_count = dynsyms.size();
929
930 // Get the hash values for all the symbols.
931 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
932 for (unsigned int i = 0; i < dynsym_count; ++i)
933 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
934
935 const unsigned int bucketcount =
936 Dynobj::compute_bucket_count(dynsym_hashvals, false);
937
938 std::vector<uint32_t> bucket(bucketcount);
939 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
940
941 for (unsigned int i = 0; i < dynsym_count; ++i)
942 {
943 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
944 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
945 chain[dynsym_index] = bucket[bucketpos];
946 bucket[bucketpos] = dynsym_index;
947 }
948
949 int size = parameters->target().hash_entry_size();
950 unsigned int hashlen = ((2
951 + bucketcount
952 + local_dynsym_count
953 + dynsym_count)
954 * size / 8);
955 unsigned char* phash = new unsigned char[hashlen];
956
957 bool big_endian = parameters->target().is_big_endian();
958 if (size == 32)
959 {
960 if (big_endian)
961 {
962 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
963 Dynobj::sized_create_elf_hash_table<32, true>(bucket, chain, phash,
964 hashlen);
965 #else
966 gold_unreachable();
967 #endif
968 }
969 else
970 {
971 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
972 Dynobj::sized_create_elf_hash_table<32, false>(bucket, chain, phash,
973 hashlen);
974 #else
975 gold_unreachable();
976 #endif
977 }
978 }
979 else if (size == 64)
980 {
981 if (big_endian)
982 {
983 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
984 Dynobj::sized_create_elf_hash_table<64, true>(bucket, chain, phash,
985 hashlen);
986 #else
987 gold_unreachable();
988 #endif
989 }
990 else
991 {
992 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
993 Dynobj::sized_create_elf_hash_table<64, false>(bucket, chain, phash,
994 hashlen);
995 #else
996 gold_unreachable();
997 #endif
998 }
999 }
1000 else
1001 gold_unreachable();
1002
1003 *pphash = phash;
1004 *phashlen = hashlen;
1005 }
1006
1007 // Fill in an ELF hash table.
1008
1009 template<int size, bool big_endian>
1010 void
1011 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
1012 const std::vector<uint32_t>& chain,
1013 unsigned char* phash,
1014 unsigned int hashlen)
1015 {
1016 unsigned char* p = phash;
1017
1018 const unsigned int bucketcount = bucket.size();
1019 const unsigned int chaincount = chain.size();
1020
1021 elfcpp::Swap<size, big_endian>::writeval(p, bucketcount);
1022 p += size / 8;
1023 elfcpp::Swap<size, big_endian>::writeval(p, chaincount);
1024 p += size / 8;
1025
1026 for (unsigned int i = 0; i < bucketcount; ++i)
1027 {
1028 elfcpp::Swap<size, big_endian>::writeval(p, bucket[i]);
1029 p += size / 8;
1030 }
1031
1032 for (unsigned int i = 0; i < chaincount; ++i)
1033 {
1034 elfcpp::Swap<size, big_endian>::writeval(p, chain[i]);
1035 p += size / 8;
1036 }
1037
1038 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
1039 }
1040
1041 // The hash function used for the GNU hash table. This hash function
1042 // must not change, as the dynamic linker uses it also.
1043
1044 uint32_t
1045 Dynobj::gnu_hash(const char* name)
1046 {
1047 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
1048 uint32_t h = 5381;
1049 unsigned char c;
1050 while ((c = *nameu++) != '\0')
1051 h = (h << 5) + h + c;
1052 return h;
1053 }
1054
1055 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
1056 // tables are an extension to ELF which are recognized by the GNU
1057 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
1058 // TARGET is the target. DYNSYMS is a vector with all the global
1059 // symbols which will be going into the dynamic symbol table.
1060 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
1061 // symbol table.
1062
1063 void
1064 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
1065 unsigned int local_dynsym_count,
1066 unsigned char** pphash,
1067 unsigned int* phashlen)
1068 {
1069 const unsigned int count = dynsyms.size();
1070
1071 // Sort the dynamic symbols into two vectors. Symbols which we do
1072 // not want to put into the hash table we store into
1073 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
1074 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
1075 // and records the hash codes.
1076
1077 std::vector<Symbol*> unhashed_dynsyms;
1078 unhashed_dynsyms.reserve(count);
1079
1080 std::vector<Symbol*> hashed_dynsyms;
1081 hashed_dynsyms.reserve(count);
1082
1083 std::vector<uint32_t> dynsym_hashvals;
1084 dynsym_hashvals.reserve(count);
1085
1086 for (unsigned int i = 0; i < count; ++i)
1087 {
1088 Symbol* sym = dynsyms[i];
1089
1090 if (!sym->needs_dynsym_value()
1091 && (sym->is_undefined()
1092 || sym->is_from_dynobj()
1093 || sym->is_forced_local()))
1094 unhashed_dynsyms.push_back(sym);
1095 else
1096 {
1097 hashed_dynsyms.push_back(sym);
1098 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1099 }
1100 }
1101
1102 // Put the unhashed symbols at the start of the global portion of
1103 // the dynamic symbol table.
1104 const unsigned int unhashed_count = unhashed_dynsyms.size();
1105 unsigned int unhashed_dynsym_index = local_dynsym_count;
1106 for (unsigned int i = 0; i < unhashed_count; ++i)
1107 {
1108 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1109 ++unhashed_dynsym_index;
1110 }
1111
1112 // For the actual data generation we call out to a templatized
1113 // function.
1114 int size = parameters->target().get_size();
1115 bool big_endian = parameters->target().is_big_endian();
1116 if (size == 32)
1117 {
1118 if (big_endian)
1119 {
1120 #ifdef HAVE_TARGET_32_BIG
1121 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1122 dynsym_hashvals,
1123 unhashed_dynsym_index,
1124 pphash,
1125 phashlen);
1126 #else
1127 gold_unreachable();
1128 #endif
1129 }
1130 else
1131 {
1132 #ifdef HAVE_TARGET_32_LITTLE
1133 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1134 dynsym_hashvals,
1135 unhashed_dynsym_index,
1136 pphash,
1137 phashlen);
1138 #else
1139 gold_unreachable();
1140 #endif
1141 }
1142 }
1143 else if (size == 64)
1144 {
1145 if (big_endian)
1146 {
1147 #ifdef HAVE_TARGET_64_BIG
1148 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1149 dynsym_hashvals,
1150 unhashed_dynsym_index,
1151 pphash,
1152 phashlen);
1153 #else
1154 gold_unreachable();
1155 #endif
1156 }
1157 else
1158 {
1159 #ifdef HAVE_TARGET_64_LITTLE
1160 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1161 dynsym_hashvals,
1162 unhashed_dynsym_index,
1163 pphash,
1164 phashlen);
1165 #else
1166 gold_unreachable();
1167 #endif
1168 }
1169 }
1170 else
1171 gold_unreachable();
1172 }
1173
1174 // Create the actual data for a GNU hash table. This is just a copy
1175 // of the code from the old GNU linker.
1176
1177 template<int size, bool big_endian>
1178 void
1179 Dynobj::sized_create_gnu_hash_table(
1180 const std::vector<Symbol*>& hashed_dynsyms,
1181 const std::vector<uint32_t>& dynsym_hashvals,
1182 unsigned int unhashed_dynsym_count,
1183 unsigned char** pphash,
1184 unsigned int* phashlen)
1185 {
1186 if (hashed_dynsyms.empty())
1187 {
1188 // Special case for the empty hash table.
1189 unsigned int hashlen = 5 * 4 + size / 8;
1190 unsigned char* phash = new unsigned char[hashlen];
1191 // One empty bucket.
1192 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1193 // Symbol index above unhashed symbols.
1194 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1195 // One word for bitmask.
1196 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1197 // Only bloom filter.
1198 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1199 // No valid hashes.
1200 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1201 // No hashes in only bucket.
1202 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1203
1204 *phashlen = hashlen;
1205 *pphash = phash;
1206
1207 return;
1208 }
1209
1210 const unsigned int bucketcount =
1211 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1212
1213 const unsigned int nsyms = hashed_dynsyms.size();
1214
1215 uint32_t maskbitslog2 = 1;
1216 uint32_t x = nsyms >> 1;
1217 while (x != 0)
1218 {
1219 ++maskbitslog2;
1220 x >>= 1;
1221 }
1222 if (maskbitslog2 < 3)
1223 maskbitslog2 = 5;
1224 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1225 maskbitslog2 += 3;
1226 else
1227 maskbitslog2 += 2;
1228
1229 uint32_t shift1;
1230 if (size == 32)
1231 shift1 = 5;
1232 else
1233 {
1234 if (maskbitslog2 == 5)
1235 maskbitslog2 = 6;
1236 shift1 = 6;
1237 }
1238 uint32_t mask = (1U << shift1) - 1U;
1239 uint32_t shift2 = maskbitslog2;
1240 uint32_t maskbits = 1U << maskbitslog2;
1241 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1242
1243 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1244 std::vector<Word> bitmask(maskwords);
1245 std::vector<uint32_t> counts(bucketcount);
1246 std::vector<uint32_t> indx(bucketcount);
1247 uint32_t symindx = unhashed_dynsym_count;
1248
1249 // Count the number of times each hash bucket is used.
1250 for (unsigned int i = 0; i < nsyms; ++i)
1251 ++counts[dynsym_hashvals[i] % bucketcount];
1252
1253 unsigned int cnt = symindx;
1254 for (unsigned int i = 0; i < bucketcount; ++i)
1255 {
1256 indx[i] = cnt;
1257 cnt += counts[i];
1258 }
1259
1260 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1261 hashlen += maskbits / 8;
1262 unsigned char* phash = new unsigned char[hashlen];
1263
1264 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1265 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1266 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1267 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1268
1269 unsigned char* p = phash + 16 + maskbits / 8;
1270 for (unsigned int i = 0; i < bucketcount; ++i)
1271 {
1272 if (counts[i] == 0)
1273 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1274 else
1275 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1276 p += 4;
1277 }
1278
1279 for (unsigned int i = 0; i < nsyms; ++i)
1280 {
1281 Symbol* sym = hashed_dynsyms[i];
1282 uint32_t hashval = dynsym_hashvals[i];
1283
1284 unsigned int bucket = hashval % bucketcount;
1285 unsigned int val = ((hashval >> shift1)
1286 & ((maskbits >> shift1) - 1));
1287 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1288 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1289 val = hashval & ~ 1U;
1290 if (counts[bucket] == 1)
1291 {
1292 // Last element terminates the chain.
1293 val |= 1;
1294 }
1295 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1296 val);
1297 --counts[bucket];
1298
1299 sym->set_dynsym_index(indx[bucket]);
1300 ++indx[bucket];
1301 }
1302
1303 p = phash + 16;
1304 for (unsigned int i = 0; i < maskwords; ++i)
1305 {
1306 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1307 p += size / 8;
1308 }
1309
1310 *phashlen = hashlen;
1311 *pphash = phash;
1312 }
1313
1314 // Verdef methods.
1315
1316 // Write this definition to a buffer for the output section.
1317
1318 template<int size, bool big_endian>
1319 unsigned char*
1320 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1321 {
1322 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1323 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1324
1325 elfcpp::Verdef_write<size, big_endian> vd(pb);
1326 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1327 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1328 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1329 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
1330 vd.set_vd_ndx(this->index());
1331 vd.set_vd_cnt(1 + this->deps_.size());
1332 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1333 vd.set_vd_aux(verdef_size);
1334 vd.set_vd_next(is_last
1335 ? 0
1336 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1337 pb += verdef_size;
1338
1339 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1340 vda.set_vda_name(dynpool->get_offset(this->name()));
1341 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1342 pb += verdaux_size;
1343
1344 Deps::const_iterator p;
1345 unsigned int i;
1346 for (p = this->deps_.begin(), i = 0;
1347 p != this->deps_.end();
1348 ++p, ++i)
1349 {
1350 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1351 vda.set_vda_name(dynpool->get_offset(*p));
1352 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1353 pb += verdaux_size;
1354 }
1355
1356 return pb;
1357 }
1358
1359 // Verneed methods.
1360
1361 Verneed::~Verneed()
1362 {
1363 for (Need_versions::iterator p = this->need_versions_.begin();
1364 p != this->need_versions_.end();
1365 ++p)
1366 delete *p;
1367 }
1368
1369 // Add a new version to this file reference.
1370
1371 Verneed_version*
1372 Verneed::add_name(const char* name)
1373 {
1374 Verneed_version* vv = new Verneed_version(name);
1375 this->need_versions_.push_back(vv);
1376 return vv;
1377 }
1378
1379 // Set the version indexes starting at INDEX.
1380
1381 unsigned int
1382 Verneed::finalize(unsigned int index)
1383 {
1384 for (Need_versions::iterator p = this->need_versions_.begin();
1385 p != this->need_versions_.end();
1386 ++p)
1387 {
1388 (*p)->set_index(index);
1389 ++index;
1390 }
1391 return index;
1392 }
1393
1394 // Write this list of referenced versions to a buffer for the output
1395 // section.
1396
1397 template<int size, bool big_endian>
1398 unsigned char*
1399 Verneed::write(const Stringpool* dynpool, bool is_last,
1400 unsigned char* pb) const
1401 {
1402 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1403 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1404
1405 elfcpp::Verneed_write<size, big_endian> vn(pb);
1406 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1407 vn.set_vn_cnt(this->need_versions_.size());
1408 vn.set_vn_file(dynpool->get_offset(this->filename()));
1409 vn.set_vn_aux(verneed_size);
1410 vn.set_vn_next(is_last
1411 ? 0
1412 : verneed_size + this->need_versions_.size() * vernaux_size);
1413 pb += verneed_size;
1414
1415 Need_versions::const_iterator p;
1416 unsigned int i;
1417 for (p = this->need_versions_.begin(), i = 0;
1418 p != this->need_versions_.end();
1419 ++p, ++i)
1420 {
1421 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1422 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1423 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1424 vna.set_vna_flags(0);
1425 vna.set_vna_other((*p)->index());
1426 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1427 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1428 ? 0
1429 : vernaux_size);
1430 pb += vernaux_size;
1431 }
1432
1433 return pb;
1434 }
1435
1436 // Versions methods.
1437
1438 Versions::Versions(const Version_script_info& version_script,
1439 Stringpool* dynpool)
1440 : defs_(), needs_(), version_table_(),
1441 is_finalized_(false), version_script_(version_script),
1442 needs_base_version_(true)
1443 {
1444 if (!this->version_script_.empty())
1445 {
1446 // Parse the version script, and insert each declared version into
1447 // defs_ and version_table_.
1448 std::vector<std::string> versions = this->version_script_.get_versions();
1449
1450 if (this->needs_base_version_ && !versions.empty())
1451 this->define_base_version(dynpool);
1452
1453 for (size_t k = 0; k < versions.size(); ++k)
1454 {
1455 Stringpool::Key version_key;
1456 const char* version = dynpool->add(versions[k].c_str(),
1457 true, &version_key);
1458 Verdef* const vd = new Verdef(
1459 version,
1460 this->version_script_.get_dependencies(version),
1461 false, false, false, false);
1462 this->defs_.push_back(vd);
1463 Key key(version_key, 0);
1464 this->version_table_.insert(std::make_pair(key, vd));
1465 }
1466 }
1467 }
1468
1469 Versions::~Versions()
1470 {
1471 for (Defs::iterator p = this->defs_.begin();
1472 p != this->defs_.end();
1473 ++p)
1474 delete *p;
1475
1476 for (Needs::iterator p = this->needs_.begin();
1477 p != this->needs_.end();
1478 ++p)
1479 delete *p;
1480 }
1481
1482 // Define the base version of a shared library. The base version definition
1483 // must be the first entry in defs_. We insert it lazily so that defs_ is
1484 // empty if no symbol versioning is used. Then layout can just drop the
1485 // version sections.
1486
1487 void
1488 Versions::define_base_version(Stringpool* dynpool)
1489 {
1490 // If we do any versioning at all, we always need a base version, so
1491 // define that first. Nothing explicitly declares itself as part of base,
1492 // so it doesn't need to be in version_table_.
1493 gold_assert(this->defs_.empty());
1494 const char* name = parameters->options().soname();
1495 if (name == NULL)
1496 name = parameters->options().output_file_name();
1497 name = dynpool->add(name, false, NULL);
1498 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1499 true, false, false, true);
1500 this->defs_.push_back(vdbase);
1501 this->needs_base_version_ = false;
1502 }
1503
1504 // Return the dynamic object which a symbol refers to.
1505
1506 Dynobj*
1507 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1508 const Symbol* sym) const
1509 {
1510 if (sym->is_copied_from_dynobj())
1511 return symtab->get_copy_source(sym);
1512 else
1513 {
1514 Object* object = sym->object();
1515 gold_assert(object->is_dynamic());
1516 return static_cast<Dynobj*>(object);
1517 }
1518 }
1519
1520 // Record version information for a symbol going into the dynamic
1521 // symbol table.
1522
1523 void
1524 Versions::record_version(const Symbol_table* symtab,
1525 Stringpool* dynpool, const Symbol* sym)
1526 {
1527 gold_assert(!this->is_finalized_);
1528 gold_assert(sym->version() != NULL);
1529
1530 // A symbol defined as "sym@" is bound to an unspecified base version.
1531 if (sym->version()[0] == '\0')
1532 return;
1533
1534 Stringpool::Key version_key;
1535 const char* version = dynpool->add(sym->version(), false, &version_key);
1536
1537 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1538 {
1539 this->add_def(dynpool, sym, version, version_key);
1540 }
1541 else
1542 {
1543 // This is a version reference.
1544 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1545 this->add_need(dynpool, dynobj->soname(), version, version_key);
1546 }
1547 }
1548
1549 // We've found a symbol SYM defined in version VERSION.
1550
1551 void
1552 Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version,
1553 Stringpool::Key version_key)
1554 {
1555 Key k(version_key, 0);
1556 Version_base* const vbnull = NULL;
1557 std::pair<Version_table::iterator, bool> ins =
1558 this->version_table_.insert(std::make_pair(k, vbnull));
1559
1560 if (!ins.second)
1561 {
1562 // We already have an entry for this version.
1563 Version_base* vb = ins.first->second;
1564
1565 // We have now seen a symbol in this version, so it is not
1566 // weak.
1567 gold_assert(vb != NULL);
1568 vb->clear_weak();
1569 }
1570 else
1571 {
1572 // If we are creating a shared object, it is an error to
1573 // find a definition of a symbol with a version which is not
1574 // in the version script.
1575 if (parameters->options().shared())
1576 gold_error(_("symbol %s has undefined version %s"),
1577 sym->demangled_name().c_str(), version);
1578
1579 // When creating a regular executable, automatically define
1580 // a new version.
1581 if (this->needs_base_version_)
1582 this->define_base_version(dynpool);
1583 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1584 false, false, false, false);
1585 this->defs_.push_back(vd);
1586 ins.first->second = vd;
1587 }
1588 }
1589
1590 // Add a reference to version NAME in file FILENAME.
1591
1592 void
1593 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1594 Stringpool::Key name_key)
1595 {
1596 Stringpool::Key filename_key;
1597 filename = dynpool->add(filename, true, &filename_key);
1598
1599 Key k(name_key, filename_key);
1600 Version_base* const vbnull = NULL;
1601 std::pair<Version_table::iterator, bool> ins =
1602 this->version_table_.insert(std::make_pair(k, vbnull));
1603
1604 if (!ins.second)
1605 {
1606 // We already have an entry for this filename/version.
1607 return;
1608 }
1609
1610 // See whether we already have this filename. We don't expect many
1611 // version references, so we just do a linear search. This could be
1612 // replaced by a hash table.
1613 Verneed* vn = NULL;
1614 for (Needs::iterator p = this->needs_.begin();
1615 p != this->needs_.end();
1616 ++p)
1617 {
1618 if ((*p)->filename() == filename)
1619 {
1620 vn = *p;
1621 break;
1622 }
1623 }
1624
1625 if (vn == NULL)
1626 {
1627 // Create base version definition lazily for shared library.
1628 if (parameters->options().shared() && this->needs_base_version_)
1629 this->define_base_version(dynpool);
1630
1631 // We have a new filename.
1632 vn = new Verneed(filename);
1633 this->needs_.push_back(vn);
1634 }
1635
1636 ins.first->second = vn->add_name(name);
1637 }
1638
1639 // Set the version indexes. Create a new dynamic version symbol for
1640 // each new version definition.
1641
1642 unsigned int
1643 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1644 std::vector<Symbol*>* syms)
1645 {
1646 gold_assert(!this->is_finalized_);
1647
1648 unsigned int vi = 1;
1649
1650 for (Defs::iterator p = this->defs_.begin();
1651 p != this->defs_.end();
1652 ++p)
1653 {
1654 (*p)->set_index(vi);
1655 ++vi;
1656
1657 // Create a version symbol if necessary.
1658 if (!(*p)->is_symbol_created())
1659 {
1660 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1661 (*p)->name(),
1662 Symbol_table::PREDEFINED,
1663 0, 0,
1664 elfcpp::STT_OBJECT,
1665 elfcpp::STB_GLOBAL,
1666 elfcpp::STV_DEFAULT, 0,
1667 false, false);
1668 vsym->set_needs_dynsym_entry();
1669 vsym->set_dynsym_index(dynsym_index);
1670 vsym->set_is_default();
1671 ++dynsym_index;
1672 syms->push_back(vsym);
1673 // The name is already in the dynamic pool.
1674 }
1675 }
1676
1677 // Index 1 is used for global symbols.
1678 if (vi == 1)
1679 {
1680 gold_assert(this->defs_.empty());
1681 vi = 2;
1682 }
1683
1684 for (Needs::iterator p = this->needs_.begin();
1685 p != this->needs_.end();
1686 ++p)
1687 vi = (*p)->finalize(vi);
1688
1689 this->is_finalized_ = true;
1690
1691 return dynsym_index;
1692 }
1693
1694 // Return the version index to use for a symbol. This does two hash
1695 // table lookups: one in DYNPOOL and one in this->version_table_.
1696 // Another approach alternative would be store a pointer in SYM, which
1697 // would increase the size of the symbol table. Or perhaps we could
1698 // use a hash table from dynamic symbol pointer values to Version_base
1699 // pointers.
1700
1701 unsigned int
1702 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1703 const Symbol* sym) const
1704 {
1705 Stringpool::Key version_key;
1706 const char* version = dynpool->find(sym->version(), &version_key);
1707 gold_assert(version != NULL);
1708
1709 Key k;
1710 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1711 {
1712 k = Key(version_key, 0);
1713 }
1714 else
1715 {
1716 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1717
1718 Stringpool::Key filename_key;
1719 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1720 gold_assert(filename != NULL);
1721
1722 k = Key(version_key, filename_key);
1723 }
1724
1725 Version_table::const_iterator p = this->version_table_.find(k);
1726 gold_assert(p != this->version_table_.end());
1727
1728 return p->second->index();
1729 }
1730
1731 // Return an allocated buffer holding the contents of the symbol
1732 // version section.
1733
1734 template<int size, bool big_endian>
1735 void
1736 Versions::symbol_section_contents(const Symbol_table* symtab,
1737 const Stringpool* dynpool,
1738 unsigned int local_symcount,
1739 const std::vector<Symbol*>& syms,
1740 unsigned char** pp,
1741 unsigned int* psize) const
1742 {
1743 gold_assert(this->is_finalized_);
1744
1745 unsigned int sz = (local_symcount + syms.size()) * 2;
1746 unsigned char* pbuf = new unsigned char[sz];
1747
1748 for (unsigned int i = 0; i < local_symcount; ++i)
1749 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1750 elfcpp::VER_NDX_LOCAL);
1751
1752 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1753 p != syms.end();
1754 ++p)
1755 {
1756 unsigned int version_index;
1757 const char* version = (*p)->version();
1758 if (version == NULL)
1759 {
1760 if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1761 version_index = elfcpp::VER_NDX_GLOBAL;
1762 else
1763 version_index = elfcpp::VER_NDX_LOCAL;
1764 }
1765 else if (version[0] == '\0')
1766 version_index = elfcpp::VER_NDX_GLOBAL;
1767 else
1768 version_index = this->version_index(symtab, dynpool, *p);
1769 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1770 // the hidden bit.
1771 if ((*p)->version() != NULL
1772 && (*p)->is_defined()
1773 && !(*p)->is_default()
1774 && !(*p)->from_dyn())
1775 version_index |= elfcpp::VERSYM_HIDDEN;
1776 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1777 version_index);
1778 }
1779
1780 *pp = pbuf;
1781 *psize = sz;
1782 }
1783
1784 // Return an allocated buffer holding the contents of the version
1785 // definition section.
1786
1787 template<int size, bool big_endian>
1788 void
1789 Versions::def_section_contents(const Stringpool* dynpool,
1790 unsigned char** pp, unsigned int* psize,
1791 unsigned int* pentries) const
1792 {
1793 gold_assert(this->is_finalized_);
1794 gold_assert(!this->defs_.empty());
1795
1796 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1797 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1798
1799 unsigned int sz = 0;
1800 for (Defs::const_iterator p = this->defs_.begin();
1801 p != this->defs_.end();
1802 ++p)
1803 {
1804 sz += verdef_size + verdaux_size;
1805 sz += (*p)->count_dependencies() * verdaux_size;
1806 }
1807
1808 unsigned char* pbuf = new unsigned char[sz];
1809
1810 unsigned char* pb = pbuf;
1811 Defs::const_iterator p;
1812 unsigned int i;
1813 for (p = this->defs_.begin(), i = 0;
1814 p != this->defs_.end();
1815 ++p, ++i)
1816 pb = (*p)->write<size, big_endian>(dynpool,
1817 i + 1 >= this->defs_.size(),
1818 pb);
1819
1820 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1821
1822 *pp = pbuf;
1823 *psize = sz;
1824 *pentries = this->defs_.size();
1825 }
1826
1827 // Return an allocated buffer holding the contents of the version
1828 // reference section.
1829
1830 template<int size, bool big_endian>
1831 void
1832 Versions::need_section_contents(const Stringpool* dynpool,
1833 unsigned char** pp, unsigned int* psize,
1834 unsigned int* pentries) const
1835 {
1836 gold_assert(this->is_finalized_);
1837 gold_assert(!this->needs_.empty());
1838
1839 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1840 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1841
1842 unsigned int sz = 0;
1843 for (Needs::const_iterator p = this->needs_.begin();
1844 p != this->needs_.end();
1845 ++p)
1846 {
1847 sz += verneed_size;
1848 sz += (*p)->count_versions() * vernaux_size;
1849 }
1850
1851 unsigned char* pbuf = new unsigned char[sz];
1852
1853 unsigned char* pb = pbuf;
1854 Needs::const_iterator p;
1855 unsigned int i;
1856 for (p = this->needs_.begin(), i = 0;
1857 p != this->needs_.end();
1858 ++p, ++i)
1859 pb = (*p)->write<size, big_endian>(dynpool,
1860 i + 1 >= this->needs_.size(),
1861 pb);
1862
1863 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1864
1865 *pp = pbuf;
1866 *psize = sz;
1867 *pentries = this->needs_.size();
1868 }
1869
1870 // Instantiate the templates we need. We could use the configure
1871 // script to restrict this to only the ones for implemented targets.
1872
1873 #ifdef HAVE_TARGET_32_LITTLE
1874 template
1875 class Sized_dynobj<32, false>;
1876 #endif
1877
1878 #ifdef HAVE_TARGET_32_BIG
1879 template
1880 class Sized_dynobj<32, true>;
1881 #endif
1882
1883 #ifdef HAVE_TARGET_64_LITTLE
1884 template
1885 class Sized_dynobj<64, false>;
1886 #endif
1887
1888 #ifdef HAVE_TARGET_64_BIG
1889 template
1890 class Sized_dynobj<64, true>;
1891 #endif
1892
1893 #ifdef HAVE_TARGET_32_LITTLE
1894 template
1895 void
1896 Versions::symbol_section_contents<32, false>(
1897 const Symbol_table*,
1898 const Stringpool*,
1899 unsigned int,
1900 const std::vector<Symbol*>&,
1901 unsigned char**,
1902 unsigned int*) const;
1903 #endif
1904
1905 #ifdef HAVE_TARGET_32_BIG
1906 template
1907 void
1908 Versions::symbol_section_contents<32, true>(
1909 const Symbol_table*,
1910 const Stringpool*,
1911 unsigned int,
1912 const std::vector<Symbol*>&,
1913 unsigned char**,
1914 unsigned int*) const;
1915 #endif
1916
1917 #ifdef HAVE_TARGET_64_LITTLE
1918 template
1919 void
1920 Versions::symbol_section_contents<64, false>(
1921 const Symbol_table*,
1922 const Stringpool*,
1923 unsigned int,
1924 const std::vector<Symbol*>&,
1925 unsigned char**,
1926 unsigned int*) const;
1927 #endif
1928
1929 #ifdef HAVE_TARGET_64_BIG
1930 template
1931 void
1932 Versions::symbol_section_contents<64, true>(
1933 const Symbol_table*,
1934 const Stringpool*,
1935 unsigned int,
1936 const std::vector<Symbol*>&,
1937 unsigned char**,
1938 unsigned int*) const;
1939 #endif
1940
1941 #ifdef HAVE_TARGET_32_LITTLE
1942 template
1943 void
1944 Versions::def_section_contents<32, false>(
1945 const Stringpool*,
1946 unsigned char**,
1947 unsigned int*,
1948 unsigned int*) const;
1949 #endif
1950
1951 #ifdef HAVE_TARGET_32_BIG
1952 template
1953 void
1954 Versions::def_section_contents<32, true>(
1955 const Stringpool*,
1956 unsigned char**,
1957 unsigned int*,
1958 unsigned int*) const;
1959 #endif
1960
1961 #ifdef HAVE_TARGET_64_LITTLE
1962 template
1963 void
1964 Versions::def_section_contents<64, false>(
1965 const Stringpool*,
1966 unsigned char**,
1967 unsigned int*,
1968 unsigned int*) const;
1969 #endif
1970
1971 #ifdef HAVE_TARGET_64_BIG
1972 template
1973 void
1974 Versions::def_section_contents<64, true>(
1975 const Stringpool*,
1976 unsigned char**,
1977 unsigned int*,
1978 unsigned int*) const;
1979 #endif
1980
1981 #ifdef HAVE_TARGET_32_LITTLE
1982 template
1983 void
1984 Versions::need_section_contents<32, false>(
1985 const Stringpool*,
1986 unsigned char**,
1987 unsigned int*,
1988 unsigned int*) const;
1989 #endif
1990
1991 #ifdef HAVE_TARGET_32_BIG
1992 template
1993 void
1994 Versions::need_section_contents<32, true>(
1995 const Stringpool*,
1996 unsigned char**,
1997 unsigned int*,
1998 unsigned int*) const;
1999 #endif
2000
2001 #ifdef HAVE_TARGET_64_LITTLE
2002 template
2003 void
2004 Versions::need_section_contents<64, false>(
2005 const Stringpool*,
2006 unsigned char**,
2007 unsigned int*,
2008 unsigned int*) const;
2009 #endif
2010
2011 #ifdef HAVE_TARGET_64_BIG
2012 template
2013 void
2014 Versions::need_section_contents<64, true>(
2015 const Stringpool*,
2016 unsigned char**,
2017 unsigned int*,
2018 unsigned int*) const;
2019 #endif
2020
2021 } // End namespace gold.
This page took 0.090404 seconds and 4 git commands to generate.