* object.h (class Object): Remove target_ field, and target,
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr),
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
79 {
80 }
81
82 // Set up the object.
83
84 template<int size, bool big_endian>
85 void
86 Sized_dynobj<size, big_endian>::setup()
87 {
88 const unsigned int shnum = this->elf_file_.shnum();
89 this->set_shnum(shnum);
90 }
91
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
94
95 template<int size, bool big_endian>
96 void
97 Sized_dynobj<size, big_endian>::find_dynsym_sections(
98 const unsigned char* pshdrs,
99 unsigned int* pversym_shndx,
100 unsigned int* pverdef_shndx,
101 unsigned int* pverneed_shndx,
102 unsigned int* pdynamic_shndx)
103 {
104 *pversym_shndx = -1U;
105 *pverdef_shndx = -1U;
106 *pverneed_shndx = -1U;
107 *pdynamic_shndx = -1U;
108
109 unsigned int xindex_shndx = 0;
110 unsigned int xindex_link = 0;
111 const unsigned int shnum = this->shnum();
112 const unsigned char* p = pshdrs;
113 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
114 {
115 typename This::Shdr shdr(p);
116
117 unsigned int* pi;
118 switch (shdr.get_sh_type())
119 {
120 case elfcpp::SHT_DYNSYM:
121 this->dynsym_shndx_ = i;
122 if (xindex_shndx > 0 && xindex_link == i)
123 {
124 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
125 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
126 pshdrs);
127 this->set_xindex(xindex);
128 }
129 pi = NULL;
130 break;
131 case elfcpp::SHT_GNU_versym:
132 pi = pversym_shndx;
133 break;
134 case elfcpp::SHT_GNU_verdef:
135 pi = pverdef_shndx;
136 break;
137 case elfcpp::SHT_GNU_verneed:
138 pi = pverneed_shndx;
139 break;
140 case elfcpp::SHT_DYNAMIC:
141 pi = pdynamic_shndx;
142 break;
143 case elfcpp::SHT_SYMTAB_SHNDX:
144 xindex_shndx = i;
145 xindex_link = this->adjust_shndx(shdr.get_sh_link());
146 if (xindex_link == this->dynsym_shndx_)
147 {
148 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
149 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
150 pshdrs);
151 this->set_xindex(xindex);
152 }
153 pi = NULL;
154 break;
155 default:
156 pi = NULL;
157 break;
158 }
159
160 if (pi == NULL)
161 continue;
162
163 if (*pi != -1U)
164 this->error(_("unexpected duplicate type %u section: %u, %u"),
165 shdr.get_sh_type(), *pi, i);
166
167 *pi = i;
168 }
169 }
170
171 // Read the contents of section SHNDX. PSHDRS points to the section
172 // headers. TYPE is the expected section type. LINK is the expected
173 // section link. Store the data in *VIEW and *VIEW_SIZE. The
174 // section's sh_info field is stored in *VIEW_INFO.
175
176 template<int size, bool big_endian>
177 void
178 Sized_dynobj<size, big_endian>::read_dynsym_section(
179 const unsigned char* pshdrs,
180 unsigned int shndx,
181 elfcpp::SHT type,
182 unsigned int link,
183 File_view** view,
184 section_size_type* view_size,
185 unsigned int* view_info)
186 {
187 if (shndx == -1U)
188 {
189 *view = NULL;
190 *view_size = 0;
191 *view_info = 0;
192 return;
193 }
194
195 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
196
197 gold_assert(shdr.get_sh_type() == type);
198
199 if (this->adjust_shndx(shdr.get_sh_link()) != link)
200 this->error(_("unexpected link in section %u header: %u != %u"),
201 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
202
203 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
204 true, false);
205 *view_size = convert_to_section_size_type(shdr.get_sh_size());
206 *view_info = shdr.get_sh_info();
207 }
208
209 // Read the dynamic tags. Set the soname field if this shared object
210 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
211 // the section headers. DYNAMIC_SHNDX is the section index of the
212 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
213 // section index and contents of a string table which may be the one
214 // associated with the SHT_DYNAMIC section.
215
216 template<int size, bool big_endian>
217 void
218 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
219 unsigned int dynamic_shndx,
220 unsigned int strtab_shndx,
221 const unsigned char* strtabu,
222 off_t strtab_size)
223 {
224 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
225 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
226
227 const off_t dynamic_size = dynamicshdr.get_sh_size();
228 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
229 dynamic_size, true, false);
230
231 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
232 if (link != strtab_shndx)
233 {
234 if (link >= this->shnum())
235 {
236 this->error(_("DYNAMIC section %u link out of range: %u"),
237 dynamic_shndx, link);
238 return;
239 }
240
241 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
242 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
243 {
244 this->error(_("DYNAMIC section %u link %u is not a strtab"),
245 dynamic_shndx, link);
246 return;
247 }
248
249 strtab_size = strtabshdr.get_sh_size();
250 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
251 false);
252 }
253
254 const char* const strtab = reinterpret_cast<const char*>(strtabu);
255
256 for (const unsigned char* p = pdynamic;
257 p < pdynamic + dynamic_size;
258 p += This::dyn_size)
259 {
260 typename This::Dyn dyn(p);
261
262 switch (dyn.get_d_tag())
263 {
264 case elfcpp::DT_NULL:
265 // We should always see DT_NULL at the end of the dynamic
266 // tags.
267 return;
268
269 case elfcpp::DT_SONAME:
270 {
271 off_t val = dyn.get_d_val();
272 if (val >= strtab_size)
273 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
274 static_cast<long long>(val),
275 static_cast<long long>(strtab_size));
276 else
277 this->set_soname_string(strtab + val);
278 }
279 break;
280
281 case elfcpp::DT_NEEDED:
282 {
283 off_t val = dyn.get_d_val();
284 if (val >= strtab_size)
285 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
286 static_cast<long long>(val),
287 static_cast<long long>(strtab_size));
288 else
289 this->add_needed(strtab + val);
290 }
291 break;
292
293 default:
294 break;
295 }
296 }
297
298 this->error(_("missing DT_NULL in dynamic segment"));
299 }
300
301 // Read the symbols and sections from a dynamic object. We read the
302 // dynamic symbols, not the normal symbols.
303
304 template<int size, bool big_endian>
305 void
306 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
307 {
308 this->read_section_data(&this->elf_file_, sd);
309
310 const unsigned char* const pshdrs = sd->section_headers->data();
311
312 unsigned int versym_shndx;
313 unsigned int verdef_shndx;
314 unsigned int verneed_shndx;
315 unsigned int dynamic_shndx;
316 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
317 &verneed_shndx, &dynamic_shndx);
318
319 unsigned int strtab_shndx = -1U;
320
321 sd->symbols = NULL;
322 sd->symbols_size = 0;
323 sd->external_symbols_offset = 0;
324 sd->symbol_names = NULL;
325 sd->symbol_names_size = 0;
326
327 if (this->dynsym_shndx_ != -1U)
328 {
329 // Get the dynamic symbols.
330 typename This::Shdr dynsymshdr(pshdrs
331 + this->dynsym_shndx_ * This::shdr_size);
332 gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM);
333
334 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
335 dynsymshdr.get_sh_size(), true,
336 false);
337 sd->symbols_size =
338 convert_to_section_size_type(dynsymshdr.get_sh_size());
339
340 // Get the symbol names.
341 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
342 if (strtab_shndx >= this->shnum())
343 {
344 this->error(_("invalid dynamic symbol table name index: %u"),
345 strtab_shndx);
346 return;
347 }
348 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
349 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
350 {
351 this->error(_("dynamic symbol table name section "
352 "has wrong type: %u"),
353 static_cast<unsigned int>(strtabshdr.get_sh_type()));
354 return;
355 }
356
357 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
358 strtabshdr.get_sh_size(),
359 false, false);
360 sd->symbol_names_size =
361 convert_to_section_size_type(strtabshdr.get_sh_size());
362
363 // Get the version information.
364
365 unsigned int dummy;
366 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
367 this->dynsym_shndx_,
368 &sd->versym, &sd->versym_size, &dummy);
369
370 // We require that the version definition and need section link
371 // to the same string table as the dynamic symbol table. This
372 // is not a technical requirement, but it always happens in
373 // practice. We could change this if necessary.
374
375 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
376 strtab_shndx, &sd->verdef, &sd->verdef_size,
377 &sd->verdef_info);
378
379 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
380 strtab_shndx, &sd->verneed, &sd->verneed_size,
381 &sd->verneed_info);
382 }
383
384 // Read the SHT_DYNAMIC section to find whether this shared object
385 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
386 // doesn't really have anything to do with reading the symbols, but
387 // this is a convenient place to do it.
388 if (dynamic_shndx != -1U)
389 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
390 (sd->symbol_names == NULL
391 ? NULL
392 : sd->symbol_names->data()),
393 sd->symbol_names_size);
394 }
395
396 // Return the Xindex structure to use for object with lots of
397 // sections.
398
399 template<int size, bool big_endian>
400 Xindex*
401 Sized_dynobj<size, big_endian>::do_initialize_xindex()
402 {
403 gold_assert(this->dynsym_shndx_ != -1U);
404 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
405 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
406 return xindex;
407 }
408
409 // Lay out the input sections for a dynamic object. We don't want to
410 // include sections from a dynamic object, so all that we actually do
411 // here is check for .gnu.warning sections.
412
413 template<int size, bool big_endian>
414 void
415 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
416 Layout*,
417 Read_symbols_data* sd)
418 {
419 const unsigned int shnum = this->shnum();
420 if (shnum == 0)
421 return;
422
423 // Get the section headers.
424 const unsigned char* pshdrs = sd->section_headers->data();
425
426 // Get the section names.
427 const unsigned char* pnamesu = sd->section_names->data();
428 const char* pnames = reinterpret_cast<const char*>(pnamesu);
429
430 // Skip the first, dummy, section.
431 pshdrs += This::shdr_size;
432 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
433 {
434 typename This::Shdr shdr(pshdrs);
435
436 if (shdr.get_sh_name() >= sd->section_names_size)
437 {
438 this->error(_("bad section name offset for section %u: %lu"),
439 i, static_cast<unsigned long>(shdr.get_sh_name()));
440 return;
441 }
442
443 const char* name = pnames + shdr.get_sh_name();
444
445 this->handle_gnu_warning_section(name, i, symtab);
446 }
447
448 delete sd->section_headers;
449 sd->section_headers = NULL;
450 delete sd->section_names;
451 sd->section_names = NULL;
452 }
453
454 // Add an entry to the vector mapping version numbers to version
455 // strings.
456
457 template<int size, bool big_endian>
458 void
459 Sized_dynobj<size, big_endian>::set_version_map(
460 Version_map* version_map,
461 unsigned int ndx,
462 const char* name) const
463 {
464 if (ndx >= version_map->size())
465 version_map->resize(ndx + 1);
466 if ((*version_map)[ndx] != NULL)
467 this->error(_("duplicate definition for version %u"), ndx);
468 (*version_map)[ndx] = name;
469 }
470
471 // Add mappings for the version definitions to VERSION_MAP.
472
473 template<int size, bool big_endian>
474 void
475 Sized_dynobj<size, big_endian>::make_verdef_map(
476 Read_symbols_data* sd,
477 Version_map* version_map) const
478 {
479 if (sd->verdef == NULL)
480 return;
481
482 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
483 section_size_type names_size = sd->symbol_names_size;
484
485 const unsigned char* pverdef = sd->verdef->data();
486 section_size_type verdef_size = sd->verdef_size;
487 const unsigned int count = sd->verdef_info;
488
489 const unsigned char* p = pverdef;
490 for (unsigned int i = 0; i < count; ++i)
491 {
492 elfcpp::Verdef<size, big_endian> verdef(p);
493
494 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
495 {
496 this->error(_("unexpected verdef version %u"),
497 verdef.get_vd_version());
498 return;
499 }
500
501 const section_size_type vd_ndx = verdef.get_vd_ndx();
502
503 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
504 // sure why.
505
506 // The first Verdaux holds the name of this version. Subsequent
507 // ones are versions that this one depends upon, which we don't
508 // care about here.
509 const section_size_type vd_cnt = verdef.get_vd_cnt();
510 if (vd_cnt < 1)
511 {
512 this->error(_("verdef vd_cnt field too small: %u"),
513 static_cast<unsigned int>(vd_cnt));
514 return;
515 }
516
517 const section_size_type vd_aux = verdef.get_vd_aux();
518 if ((p - pverdef) + vd_aux >= verdef_size)
519 {
520 this->error(_("verdef vd_aux field out of range: %u"),
521 static_cast<unsigned int>(vd_aux));
522 return;
523 }
524
525 const unsigned char* pvda = p + vd_aux;
526 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
527
528 const section_size_type vda_name = verdaux.get_vda_name();
529 if (vda_name >= names_size)
530 {
531 this->error(_("verdaux vda_name field out of range: %u"),
532 static_cast<unsigned int>(vda_name));
533 return;
534 }
535
536 this->set_version_map(version_map, vd_ndx, names + vda_name);
537
538 const section_size_type vd_next = verdef.get_vd_next();
539 if ((p - pverdef) + vd_next >= verdef_size)
540 {
541 this->error(_("verdef vd_next field out of range: %u"),
542 static_cast<unsigned int>(vd_next));
543 return;
544 }
545
546 p += vd_next;
547 }
548 }
549
550 // Add mappings for the required versions to VERSION_MAP.
551
552 template<int size, bool big_endian>
553 void
554 Sized_dynobj<size, big_endian>::make_verneed_map(
555 Read_symbols_data* sd,
556 Version_map* version_map) const
557 {
558 if (sd->verneed == NULL)
559 return;
560
561 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
562 section_size_type names_size = sd->symbol_names_size;
563
564 const unsigned char* pverneed = sd->verneed->data();
565 const section_size_type verneed_size = sd->verneed_size;
566 const unsigned int count = sd->verneed_info;
567
568 const unsigned char* p = pverneed;
569 for (unsigned int i = 0; i < count; ++i)
570 {
571 elfcpp::Verneed<size, big_endian> verneed(p);
572
573 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
574 {
575 this->error(_("unexpected verneed version %u"),
576 verneed.get_vn_version());
577 return;
578 }
579
580 const section_size_type vn_aux = verneed.get_vn_aux();
581
582 if ((p - pverneed) + vn_aux >= verneed_size)
583 {
584 this->error(_("verneed vn_aux field out of range: %u"),
585 static_cast<unsigned int>(vn_aux));
586 return;
587 }
588
589 const unsigned int vn_cnt = verneed.get_vn_cnt();
590 const unsigned char* pvna = p + vn_aux;
591 for (unsigned int j = 0; j < vn_cnt; ++j)
592 {
593 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
594
595 const unsigned int vna_name = vernaux.get_vna_name();
596 if (vna_name >= names_size)
597 {
598 this->error(_("vernaux vna_name field out of range: %u"),
599 static_cast<unsigned int>(vna_name));
600 return;
601 }
602
603 this->set_version_map(version_map, vernaux.get_vna_other(),
604 names + vna_name);
605
606 const section_size_type vna_next = vernaux.get_vna_next();
607 if ((pvna - pverneed) + vna_next >= verneed_size)
608 {
609 this->error(_("verneed vna_next field out of range: %u"),
610 static_cast<unsigned int>(vna_next));
611 return;
612 }
613
614 pvna += vna_next;
615 }
616
617 const section_size_type vn_next = verneed.get_vn_next();
618 if ((p - pverneed) + vn_next >= verneed_size)
619 {
620 this->error(_("verneed vn_next field out of range: %u"),
621 static_cast<unsigned int>(vn_next));
622 return;
623 }
624
625 p += vn_next;
626 }
627 }
628
629 // Create a vector mapping version numbers to version strings.
630
631 template<int size, bool big_endian>
632 void
633 Sized_dynobj<size, big_endian>::make_version_map(
634 Read_symbols_data* sd,
635 Version_map* version_map) const
636 {
637 if (sd->verdef == NULL && sd->verneed == NULL)
638 return;
639
640 // A guess at the maximum version number we will see. If this is
641 // wrong we will be less efficient but still correct.
642 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
643
644 this->make_verdef_map(sd, version_map);
645 this->make_verneed_map(sd, version_map);
646 }
647
648 // Add the dynamic symbols to the symbol table.
649
650 template<int size, bool big_endian>
651 void
652 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
653 Read_symbols_data* sd,
654 Layout*)
655 {
656 if (sd->symbols == NULL)
657 {
658 gold_assert(sd->symbol_names == NULL);
659 gold_assert(sd->versym == NULL && sd->verdef == NULL
660 && sd->verneed == NULL);
661 return;
662 }
663
664 const int sym_size = This::sym_size;
665 const size_t symcount = sd->symbols_size / sym_size;
666 gold_assert(sd->external_symbols_offset == 0);
667 if (symcount * sym_size != sd->symbols_size)
668 {
669 this->error(_("size of dynamic symbols is not multiple of symbol size"));
670 return;
671 }
672
673 Version_map version_map;
674 this->make_version_map(sd, &version_map);
675
676 // If printing symbol counts, we want to track symbols.
677
678 if (parameters->options().user_set_print_symbol_counts())
679 {
680 this->symbols_ = new Symbols();
681 this->symbols_->resize(symcount);
682 }
683
684 const char* sym_names =
685 reinterpret_cast<const char*>(sd->symbol_names->data());
686 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
687 sym_names, sd->symbol_names_size,
688 (sd->versym == NULL
689 ? NULL
690 : sd->versym->data()),
691 sd->versym_size,
692 &version_map,
693 this->symbols_,
694 &this->defined_count_);
695
696 delete sd->symbols;
697 sd->symbols = NULL;
698 delete sd->symbol_names;
699 sd->symbol_names = NULL;
700 if (sd->versym != NULL)
701 {
702 delete sd->versym;
703 sd->versym = NULL;
704 }
705 if (sd->verdef != NULL)
706 {
707 delete sd->verdef;
708 sd->verdef = NULL;
709 }
710 if (sd->verneed != NULL)
711 {
712 delete sd->verneed;
713 sd->verneed = NULL;
714 }
715
716 // This is normally the last time we will read any data from this
717 // file.
718 this->clear_view_cache_marks();
719 }
720
721 // Get symbol counts.
722
723 template<int size, bool big_endian>
724 void
725 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
726 const Symbol_table*,
727 size_t* defined,
728 size_t* used) const
729 {
730 *defined = this->defined_count_;
731 size_t count = 0;
732 for (typename Symbols::const_iterator p = this->symbols_->begin();
733 p != this->symbols_->end();
734 ++p)
735 if (*p != NULL
736 && (*p)->source() == Symbol::FROM_OBJECT
737 && (*p)->object() == this
738 && (*p)->is_defined()
739 && (*p)->dynsym_index() != -1U)
740 ++count;
741 *used = count;
742 }
743
744 // Given a vector of hash codes, compute the number of hash buckets to
745 // use.
746
747 unsigned int
748 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
749 bool for_gnu_hash_table)
750 {
751 // FIXME: Implement optional hash table optimization.
752
753 // Array used to determine the number of hash table buckets to use
754 // based on the number of symbols there are. If there are fewer
755 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
756 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
757 // use more than 262147 buckets. This is straight from the old GNU
758 // linker.
759 static const unsigned int buckets[] =
760 {
761 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
762 16411, 32771, 65537, 131101, 262147
763 };
764 const int buckets_count = sizeof buckets / sizeof buckets[0];
765
766 unsigned int symcount = hashcodes.size();
767 unsigned int ret = 1;
768 const double full_fraction
769 = 1.0 - parameters->options().hash_bucket_empty_fraction();
770 for (int i = 0; i < buckets_count; ++i)
771 {
772 if (symcount < buckets[i] * full_fraction)
773 break;
774 ret = buckets[i];
775 }
776
777 if (for_gnu_hash_table && ret < 2)
778 ret = 2;
779
780 return ret;
781 }
782
783 // The standard ELF hash function. This hash function must not
784 // change, as the dynamic linker uses it also.
785
786 uint32_t
787 Dynobj::elf_hash(const char* name)
788 {
789 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
790 uint32_t h = 0;
791 unsigned char c;
792 while ((c = *nameu++) != '\0')
793 {
794 h = (h << 4) + c;
795 uint32_t g = h & 0xf0000000;
796 if (g != 0)
797 {
798 h ^= g >> 24;
799 // The ELF ABI says h &= ~g, but using xor is equivalent in
800 // this case (since g was set from h) and may save one
801 // instruction.
802 h ^= g;
803 }
804 }
805 return h;
806 }
807
808 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
809 // DYNSYMS is a vector with all the global dynamic symbols.
810 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
811 // symbol table.
812
813 void
814 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
815 unsigned int local_dynsym_count,
816 unsigned char** pphash,
817 unsigned int* phashlen)
818 {
819 unsigned int dynsym_count = dynsyms.size();
820
821 // Get the hash values for all the symbols.
822 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
823 for (unsigned int i = 0; i < dynsym_count; ++i)
824 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
825
826 const unsigned int bucketcount =
827 Dynobj::compute_bucket_count(dynsym_hashvals, false);
828
829 std::vector<uint32_t> bucket(bucketcount);
830 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
831
832 for (unsigned int i = 0; i < dynsym_count; ++i)
833 {
834 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
835 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
836 chain[dynsym_index] = bucket[bucketpos];
837 bucket[bucketpos] = dynsym_index;
838 }
839
840 unsigned int hashlen = ((2
841 + bucketcount
842 + local_dynsym_count
843 + dynsym_count)
844 * 4);
845 unsigned char* phash = new unsigned char[hashlen];
846
847 if (parameters->target().is_big_endian())
848 {
849 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
850 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
851 hashlen);
852 #else
853 gold_unreachable();
854 #endif
855 }
856 else
857 {
858 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
859 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
860 hashlen);
861 #else
862 gold_unreachable();
863 #endif
864 }
865
866 *pphash = phash;
867 *phashlen = hashlen;
868 }
869
870 // Fill in an ELF hash table.
871
872 template<bool big_endian>
873 void
874 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
875 const std::vector<uint32_t>& chain,
876 unsigned char* phash,
877 unsigned int hashlen)
878 {
879 unsigned char* p = phash;
880
881 const unsigned int bucketcount = bucket.size();
882 const unsigned int chaincount = chain.size();
883
884 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
885 p += 4;
886 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
887 p += 4;
888
889 for (unsigned int i = 0; i < bucketcount; ++i)
890 {
891 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
892 p += 4;
893 }
894
895 for (unsigned int i = 0; i < chaincount; ++i)
896 {
897 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
898 p += 4;
899 }
900
901 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
902 }
903
904 // The hash function used for the GNU hash table. This hash function
905 // must not change, as the dynamic linker uses it also.
906
907 uint32_t
908 Dynobj::gnu_hash(const char* name)
909 {
910 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
911 uint32_t h = 5381;
912 unsigned char c;
913 while ((c = *nameu++) != '\0')
914 h = (h << 5) + h + c;
915 return h;
916 }
917
918 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
919 // tables are an extension to ELF which are recognized by the GNU
920 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
921 // TARGET is the target. DYNSYMS is a vector with all the global
922 // symbols which will be going into the dynamic symbol table.
923 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
924 // symbol table.
925
926 void
927 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
928 unsigned int local_dynsym_count,
929 unsigned char** pphash,
930 unsigned int* phashlen)
931 {
932 const unsigned int count = dynsyms.size();
933
934 // Sort the dynamic symbols into two vectors. Symbols which we do
935 // not want to put into the hash table we store into
936 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
937 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
938 // and records the hash codes.
939
940 std::vector<Symbol*> unhashed_dynsyms;
941 unhashed_dynsyms.reserve(count);
942
943 std::vector<Symbol*> hashed_dynsyms;
944 hashed_dynsyms.reserve(count);
945
946 std::vector<uint32_t> dynsym_hashvals;
947 dynsym_hashvals.reserve(count);
948
949 for (unsigned int i = 0; i < count; ++i)
950 {
951 Symbol* sym = dynsyms[i];
952
953 // FIXME: Should put on unhashed_dynsyms if the symbol is
954 // hidden.
955 if (sym->is_undefined())
956 unhashed_dynsyms.push_back(sym);
957 else
958 {
959 hashed_dynsyms.push_back(sym);
960 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
961 }
962 }
963
964 // Put the unhashed symbols at the start of the global portion of
965 // the dynamic symbol table.
966 const unsigned int unhashed_count = unhashed_dynsyms.size();
967 unsigned int unhashed_dynsym_index = local_dynsym_count;
968 for (unsigned int i = 0; i < unhashed_count; ++i)
969 {
970 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
971 ++unhashed_dynsym_index;
972 }
973
974 // For the actual data generation we call out to a templatized
975 // function.
976 int size = parameters->target().get_size();
977 bool big_endian = parameters->target().is_big_endian();
978 if (size == 32)
979 {
980 if (big_endian)
981 {
982 #ifdef HAVE_TARGET_32_BIG
983 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
984 dynsym_hashvals,
985 unhashed_dynsym_index,
986 pphash,
987 phashlen);
988 #else
989 gold_unreachable();
990 #endif
991 }
992 else
993 {
994 #ifdef HAVE_TARGET_32_LITTLE
995 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
996 dynsym_hashvals,
997 unhashed_dynsym_index,
998 pphash,
999 phashlen);
1000 #else
1001 gold_unreachable();
1002 #endif
1003 }
1004 }
1005 else if (size == 64)
1006 {
1007 if (big_endian)
1008 {
1009 #ifdef HAVE_TARGET_64_BIG
1010 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1011 dynsym_hashvals,
1012 unhashed_dynsym_index,
1013 pphash,
1014 phashlen);
1015 #else
1016 gold_unreachable();
1017 #endif
1018 }
1019 else
1020 {
1021 #ifdef HAVE_TARGET_64_LITTLE
1022 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1023 dynsym_hashvals,
1024 unhashed_dynsym_index,
1025 pphash,
1026 phashlen);
1027 #else
1028 gold_unreachable();
1029 #endif
1030 }
1031 }
1032 else
1033 gold_unreachable();
1034 }
1035
1036 // Create the actual data for a GNU hash table. This is just a copy
1037 // of the code from the old GNU linker.
1038
1039 template<int size, bool big_endian>
1040 void
1041 Dynobj::sized_create_gnu_hash_table(
1042 const std::vector<Symbol*>& hashed_dynsyms,
1043 const std::vector<uint32_t>& dynsym_hashvals,
1044 unsigned int unhashed_dynsym_count,
1045 unsigned char** pphash,
1046 unsigned int* phashlen)
1047 {
1048 if (hashed_dynsyms.empty())
1049 {
1050 // Special case for the empty hash table.
1051 unsigned int hashlen = 5 * 4 + size / 8;
1052 unsigned char* phash = new unsigned char[hashlen];
1053 // One empty bucket.
1054 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1055 // Symbol index above unhashed symbols.
1056 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1057 // One word for bitmask.
1058 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1059 // Only bloom filter.
1060 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1061 // No valid hashes.
1062 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1063 // No hashes in only bucket.
1064 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1065
1066 *phashlen = hashlen;
1067 *pphash = phash;
1068
1069 return;
1070 }
1071
1072 const unsigned int bucketcount =
1073 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1074
1075 const unsigned int nsyms = hashed_dynsyms.size();
1076
1077 uint32_t maskbitslog2 = 1;
1078 uint32_t x = nsyms >> 1;
1079 while (x != 0)
1080 {
1081 ++maskbitslog2;
1082 x >>= 1;
1083 }
1084 if (maskbitslog2 < 3)
1085 maskbitslog2 = 5;
1086 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1087 maskbitslog2 += 3;
1088 else
1089 maskbitslog2 += 2;
1090
1091 uint32_t shift1;
1092 if (size == 32)
1093 shift1 = 5;
1094 else
1095 {
1096 if (maskbitslog2 == 5)
1097 maskbitslog2 = 6;
1098 shift1 = 6;
1099 }
1100 uint32_t mask = (1U << shift1) - 1U;
1101 uint32_t shift2 = maskbitslog2;
1102 uint32_t maskbits = 1U << maskbitslog2;
1103 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1104
1105 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1106 std::vector<Word> bitmask(maskwords);
1107 std::vector<uint32_t> counts(bucketcount);
1108 std::vector<uint32_t> indx(bucketcount);
1109 uint32_t symindx = unhashed_dynsym_count;
1110
1111 // Count the number of times each hash bucket is used.
1112 for (unsigned int i = 0; i < nsyms; ++i)
1113 ++counts[dynsym_hashvals[i] % bucketcount];
1114
1115 unsigned int cnt = symindx;
1116 for (unsigned int i = 0; i < bucketcount; ++i)
1117 {
1118 indx[i] = cnt;
1119 cnt += counts[i];
1120 }
1121
1122 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1123 hashlen += maskbits / 8;
1124 unsigned char* phash = new unsigned char[hashlen];
1125
1126 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1127 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1128 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1129 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1130
1131 unsigned char* p = phash + 16 + maskbits / 8;
1132 for (unsigned int i = 0; i < bucketcount; ++i)
1133 {
1134 if (counts[i] == 0)
1135 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1136 else
1137 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1138 p += 4;
1139 }
1140
1141 for (unsigned int i = 0; i < nsyms; ++i)
1142 {
1143 Symbol* sym = hashed_dynsyms[i];
1144 uint32_t hashval = dynsym_hashvals[i];
1145
1146 unsigned int bucket = hashval % bucketcount;
1147 unsigned int val = ((hashval >> shift1)
1148 & ((maskbits >> shift1) - 1));
1149 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1150 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1151 val = hashval & ~ 1U;
1152 if (counts[bucket] == 1)
1153 {
1154 // Last element terminates the chain.
1155 val |= 1;
1156 }
1157 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1158 val);
1159 --counts[bucket];
1160
1161 sym->set_dynsym_index(indx[bucket]);
1162 ++indx[bucket];
1163 }
1164
1165 p = phash + 16;
1166 for (unsigned int i = 0; i < maskwords; ++i)
1167 {
1168 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1169 p += size / 8;
1170 }
1171
1172 *phashlen = hashlen;
1173 *pphash = phash;
1174 }
1175
1176 // Verdef methods.
1177
1178 // Write this definition to a buffer for the output section.
1179
1180 template<int size, bool big_endian>
1181 unsigned char*
1182 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1183 {
1184 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1185 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1186
1187 elfcpp::Verdef_write<size, big_endian> vd(pb);
1188 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1189 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1190 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1191 vd.set_vd_ndx(this->index());
1192 vd.set_vd_cnt(1 + this->deps_.size());
1193 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1194 vd.set_vd_aux(verdef_size);
1195 vd.set_vd_next(is_last
1196 ? 0
1197 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1198 pb += verdef_size;
1199
1200 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1201 vda.set_vda_name(dynpool->get_offset(this->name()));
1202 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1203 pb += verdaux_size;
1204
1205 Deps::const_iterator p;
1206 unsigned int i;
1207 for (p = this->deps_.begin(), i = 0;
1208 p != this->deps_.end();
1209 ++p, ++i)
1210 {
1211 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1212 vda.set_vda_name(dynpool->get_offset(*p));
1213 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1214 pb += verdaux_size;
1215 }
1216
1217 return pb;
1218 }
1219
1220 // Verneed methods.
1221
1222 Verneed::~Verneed()
1223 {
1224 for (Need_versions::iterator p = this->need_versions_.begin();
1225 p != this->need_versions_.end();
1226 ++p)
1227 delete *p;
1228 }
1229
1230 // Add a new version to this file reference.
1231
1232 Verneed_version*
1233 Verneed::add_name(const char* name)
1234 {
1235 Verneed_version* vv = new Verneed_version(name);
1236 this->need_versions_.push_back(vv);
1237 return vv;
1238 }
1239
1240 // Set the version indexes starting at INDEX.
1241
1242 unsigned int
1243 Verneed::finalize(unsigned int index)
1244 {
1245 for (Need_versions::iterator p = this->need_versions_.begin();
1246 p != this->need_versions_.end();
1247 ++p)
1248 {
1249 (*p)->set_index(index);
1250 ++index;
1251 }
1252 return index;
1253 }
1254
1255 // Write this list of referenced versions to a buffer for the output
1256 // section.
1257
1258 template<int size, bool big_endian>
1259 unsigned char*
1260 Verneed::write(const Stringpool* dynpool, bool is_last,
1261 unsigned char* pb) const
1262 {
1263 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1264 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1265
1266 elfcpp::Verneed_write<size, big_endian> vn(pb);
1267 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1268 vn.set_vn_cnt(this->need_versions_.size());
1269 vn.set_vn_file(dynpool->get_offset(this->filename()));
1270 vn.set_vn_aux(verneed_size);
1271 vn.set_vn_next(is_last
1272 ? 0
1273 : verneed_size + this->need_versions_.size() * vernaux_size);
1274 pb += verneed_size;
1275
1276 Need_versions::const_iterator p;
1277 unsigned int i;
1278 for (p = this->need_versions_.begin(), i = 0;
1279 p != this->need_versions_.end();
1280 ++p, ++i)
1281 {
1282 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1283 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1284 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1285 vna.set_vna_flags(0);
1286 vna.set_vna_other((*p)->index());
1287 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1288 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1289 ? 0
1290 : vernaux_size);
1291 pb += vernaux_size;
1292 }
1293
1294 return pb;
1295 }
1296
1297 // Versions methods.
1298
1299 Versions::Versions(const Version_script_info& version_script,
1300 Stringpool* dynpool)
1301 : defs_(), needs_(), version_table_(),
1302 is_finalized_(false), version_script_(version_script)
1303 {
1304 // We always need a base version, so define that first. Nothing
1305 // explicitly declares itself as part of base, so it doesn't need to
1306 // be in version_table_.
1307 if (parameters->options().shared())
1308 {
1309 const char* name = parameters->options().soname();
1310 if (name == NULL)
1311 name = parameters->options().output_file_name();
1312 name = dynpool->add(name, false, NULL);
1313 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1314 true, false, true);
1315 this->defs_.push_back(vdbase);
1316 }
1317
1318 if (!this->version_script_.empty())
1319 {
1320 // Parse the version script, and insert each declared version into
1321 // defs_ and version_table_.
1322 std::vector<std::string> versions = this->version_script_.get_versions();
1323 for (size_t k = 0; k < versions.size(); ++k)
1324 {
1325 Stringpool::Key version_key;
1326 const char* version = dynpool->add(versions[k].c_str(),
1327 true, &version_key);
1328 Verdef* const vd = new Verdef(
1329 version,
1330 this->version_script_.get_dependencies(version),
1331 false, false, false);
1332 this->defs_.push_back(vd);
1333 Key key(version_key, 0);
1334 this->version_table_.insert(std::make_pair(key, vd));
1335 }
1336 }
1337 }
1338
1339 Versions::~Versions()
1340 {
1341 for (Defs::iterator p = this->defs_.begin();
1342 p != this->defs_.end();
1343 ++p)
1344 delete *p;
1345
1346 for (Needs::iterator p = this->needs_.begin();
1347 p != this->needs_.end();
1348 ++p)
1349 delete *p;
1350 }
1351
1352 // Return the dynamic object which a symbol refers to.
1353
1354 Dynobj*
1355 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1356 const Symbol* sym) const
1357 {
1358 if (sym->is_copied_from_dynobj())
1359 return symtab->get_copy_source(sym);
1360 else
1361 {
1362 Object* object = sym->object();
1363 gold_assert(object->is_dynamic());
1364 return static_cast<Dynobj*>(object);
1365 }
1366 }
1367
1368 // Record version information for a symbol going into the dynamic
1369 // symbol table.
1370
1371 void
1372 Versions::record_version(const Symbol_table* symtab,
1373 Stringpool* dynpool, const Symbol* sym)
1374 {
1375 gold_assert(!this->is_finalized_);
1376 gold_assert(sym->version() != NULL);
1377
1378 Stringpool::Key version_key;
1379 const char* version = dynpool->add(sym->version(), false, &version_key);
1380
1381 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1382 {
1383 if (parameters->options().shared())
1384 this->add_def(sym, version, version_key);
1385 }
1386 else
1387 {
1388 // This is a version reference.
1389 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1390 this->add_need(dynpool, dynobj->soname(), version, version_key);
1391 }
1392 }
1393
1394 // We've found a symbol SYM defined in version VERSION.
1395
1396 void
1397 Versions::add_def(const Symbol* sym, const char* version,
1398 Stringpool::Key version_key)
1399 {
1400 Key k(version_key, 0);
1401 Version_base* const vbnull = NULL;
1402 std::pair<Version_table::iterator, bool> ins =
1403 this->version_table_.insert(std::make_pair(k, vbnull));
1404
1405 if (!ins.second)
1406 {
1407 // We already have an entry for this version.
1408 Version_base* vb = ins.first->second;
1409
1410 // We have now seen a symbol in this version, so it is not
1411 // weak.
1412 gold_assert(vb != NULL);
1413 vb->clear_weak();
1414 }
1415 else
1416 {
1417 // If we are creating a shared object, it is an error to
1418 // find a definition of a symbol with a version which is not
1419 // in the version script.
1420 if (parameters->options().shared())
1421 gold_error(_("symbol %s has undefined version %s"),
1422 sym->demangled_name().c_str(), version);
1423
1424 // When creating a regular executable, automatically define
1425 // a new version.
1426 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1427 false, false, false);
1428 this->defs_.push_back(vd);
1429 ins.first->second = vd;
1430 }
1431 }
1432
1433 // Add a reference to version NAME in file FILENAME.
1434
1435 void
1436 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1437 Stringpool::Key name_key)
1438 {
1439 Stringpool::Key filename_key;
1440 filename = dynpool->add(filename, true, &filename_key);
1441
1442 Key k(name_key, filename_key);
1443 Version_base* const vbnull = NULL;
1444 std::pair<Version_table::iterator, bool> ins =
1445 this->version_table_.insert(std::make_pair(k, vbnull));
1446
1447 if (!ins.second)
1448 {
1449 // We already have an entry for this filename/version.
1450 return;
1451 }
1452
1453 // See whether we already have this filename. We don't expect many
1454 // version references, so we just do a linear search. This could be
1455 // replaced by a hash table.
1456 Verneed* vn = NULL;
1457 for (Needs::iterator p = this->needs_.begin();
1458 p != this->needs_.end();
1459 ++p)
1460 {
1461 if ((*p)->filename() == filename)
1462 {
1463 vn = *p;
1464 break;
1465 }
1466 }
1467
1468 if (vn == NULL)
1469 {
1470 // We have a new filename.
1471 vn = new Verneed(filename);
1472 this->needs_.push_back(vn);
1473 }
1474
1475 ins.first->second = vn->add_name(name);
1476 }
1477
1478 // Set the version indexes. Create a new dynamic version symbol for
1479 // each new version definition.
1480
1481 unsigned int
1482 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1483 std::vector<Symbol*>* syms)
1484 {
1485 gold_assert(!this->is_finalized_);
1486
1487 unsigned int vi = 1;
1488
1489 for (Defs::iterator p = this->defs_.begin();
1490 p != this->defs_.end();
1491 ++p)
1492 {
1493 (*p)->set_index(vi);
1494 ++vi;
1495
1496 // Create a version symbol if necessary.
1497 if (!(*p)->is_symbol_created())
1498 {
1499 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1500 (*p)->name(), 0, 0,
1501 elfcpp::STT_OBJECT,
1502 elfcpp::STB_GLOBAL,
1503 elfcpp::STV_DEFAULT, 0,
1504 false, false);
1505 vsym->set_needs_dynsym_entry();
1506 vsym->set_dynsym_index(dynsym_index);
1507 ++dynsym_index;
1508 syms->push_back(vsym);
1509 // The name is already in the dynamic pool.
1510 }
1511 }
1512
1513 // Index 1 is used for global symbols.
1514 if (vi == 1)
1515 {
1516 gold_assert(this->defs_.empty());
1517 vi = 2;
1518 }
1519
1520 for (Needs::iterator p = this->needs_.begin();
1521 p != this->needs_.end();
1522 ++p)
1523 vi = (*p)->finalize(vi);
1524
1525 this->is_finalized_ = true;
1526
1527 return dynsym_index;
1528 }
1529
1530 // Return the version index to use for a symbol. This does two hash
1531 // table lookups: one in DYNPOOL and one in this->version_table_.
1532 // Another approach alternative would be store a pointer in SYM, which
1533 // would increase the size of the symbol table. Or perhaps we could
1534 // use a hash table from dynamic symbol pointer values to Version_base
1535 // pointers.
1536
1537 unsigned int
1538 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1539 const Symbol* sym) const
1540 {
1541 Stringpool::Key version_key;
1542 const char* version = dynpool->find(sym->version(), &version_key);
1543 gold_assert(version != NULL);
1544
1545 Key k;
1546 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1547 {
1548 if (!parameters->options().shared())
1549 return elfcpp::VER_NDX_GLOBAL;
1550 k = Key(version_key, 0);
1551 }
1552 else
1553 {
1554 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1555
1556 Stringpool::Key filename_key;
1557 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1558 gold_assert(filename != NULL);
1559
1560 k = Key(version_key, filename_key);
1561 }
1562
1563 Version_table::const_iterator p = this->version_table_.find(k);
1564 gold_assert(p != this->version_table_.end());
1565
1566 return p->second->index();
1567 }
1568
1569 // Return an allocated buffer holding the contents of the symbol
1570 // version section.
1571
1572 template<int size, bool big_endian>
1573 void
1574 Versions::symbol_section_contents(const Symbol_table* symtab,
1575 const Stringpool* dynpool,
1576 unsigned int local_symcount,
1577 const std::vector<Symbol*>& syms,
1578 unsigned char** pp,
1579 unsigned int* psize) const
1580 {
1581 gold_assert(this->is_finalized_);
1582
1583 unsigned int sz = (local_symcount + syms.size()) * 2;
1584 unsigned char* pbuf = new unsigned char[sz];
1585
1586 for (unsigned int i = 0; i < local_symcount; ++i)
1587 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1588 elfcpp::VER_NDX_LOCAL);
1589
1590 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1591 p != syms.end();
1592 ++p)
1593 {
1594 unsigned int version_index;
1595 const char* version = (*p)->version();
1596 if (version == NULL)
1597 version_index = elfcpp::VER_NDX_GLOBAL;
1598 else
1599 version_index = this->version_index(symtab, dynpool, *p);
1600 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1601 // the hidden bit.
1602 if ((*p)->version() != NULL && !(*p)->is_default())
1603 version_index |= elfcpp::VERSYM_HIDDEN;
1604 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1605 version_index);
1606 }
1607
1608 *pp = pbuf;
1609 *psize = sz;
1610 }
1611
1612 // Return an allocated buffer holding the contents of the version
1613 // definition section.
1614
1615 template<int size, bool big_endian>
1616 void
1617 Versions::def_section_contents(const Stringpool* dynpool,
1618 unsigned char** pp, unsigned int* psize,
1619 unsigned int* pentries) const
1620 {
1621 gold_assert(this->is_finalized_);
1622 gold_assert(!this->defs_.empty());
1623
1624 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1625 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1626
1627 unsigned int sz = 0;
1628 for (Defs::const_iterator p = this->defs_.begin();
1629 p != this->defs_.end();
1630 ++p)
1631 {
1632 sz += verdef_size + verdaux_size;
1633 sz += (*p)->count_dependencies() * verdaux_size;
1634 }
1635
1636 unsigned char* pbuf = new unsigned char[sz];
1637
1638 unsigned char* pb = pbuf;
1639 Defs::const_iterator p;
1640 unsigned int i;
1641 for (p = this->defs_.begin(), i = 0;
1642 p != this->defs_.end();
1643 ++p, ++i)
1644 pb = (*p)->write<size, big_endian>(dynpool,
1645 i + 1 >= this->defs_.size(),
1646 pb);
1647
1648 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1649
1650 *pp = pbuf;
1651 *psize = sz;
1652 *pentries = this->defs_.size();
1653 }
1654
1655 // Return an allocated buffer holding the contents of the version
1656 // reference section.
1657
1658 template<int size, bool big_endian>
1659 void
1660 Versions::need_section_contents(const Stringpool* dynpool,
1661 unsigned char** pp, unsigned int *psize,
1662 unsigned int *pentries) const
1663 {
1664 gold_assert(this->is_finalized_);
1665 gold_assert(!this->needs_.empty());
1666
1667 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1668 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1669
1670 unsigned int sz = 0;
1671 for (Needs::const_iterator p = this->needs_.begin();
1672 p != this->needs_.end();
1673 ++p)
1674 {
1675 sz += verneed_size;
1676 sz += (*p)->count_versions() * vernaux_size;
1677 }
1678
1679 unsigned char* pbuf = new unsigned char[sz];
1680
1681 unsigned char* pb = pbuf;
1682 Needs::const_iterator p;
1683 unsigned int i;
1684 for (p = this->needs_.begin(), i = 0;
1685 p != this->needs_.end();
1686 ++p, ++i)
1687 pb = (*p)->write<size, big_endian>(dynpool,
1688 i + 1 >= this->needs_.size(),
1689 pb);
1690
1691 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1692
1693 *pp = pbuf;
1694 *psize = sz;
1695 *pentries = this->needs_.size();
1696 }
1697
1698 // Instantiate the templates we need. We could use the configure
1699 // script to restrict this to only the ones for implemented targets.
1700
1701 #ifdef HAVE_TARGET_32_LITTLE
1702 template
1703 class Sized_dynobj<32, false>;
1704 #endif
1705
1706 #ifdef HAVE_TARGET_32_BIG
1707 template
1708 class Sized_dynobj<32, true>;
1709 #endif
1710
1711 #ifdef HAVE_TARGET_64_LITTLE
1712 template
1713 class Sized_dynobj<64, false>;
1714 #endif
1715
1716 #ifdef HAVE_TARGET_64_BIG
1717 template
1718 class Sized_dynobj<64, true>;
1719 #endif
1720
1721 #ifdef HAVE_TARGET_32_LITTLE
1722 template
1723 void
1724 Versions::symbol_section_contents<32, false>(
1725 const Symbol_table*,
1726 const Stringpool*,
1727 unsigned int,
1728 const std::vector<Symbol*>&,
1729 unsigned char**,
1730 unsigned int*) const;
1731 #endif
1732
1733 #ifdef HAVE_TARGET_32_BIG
1734 template
1735 void
1736 Versions::symbol_section_contents<32, true>(
1737 const Symbol_table*,
1738 const Stringpool*,
1739 unsigned int,
1740 const std::vector<Symbol*>&,
1741 unsigned char**,
1742 unsigned int*) const;
1743 #endif
1744
1745 #ifdef HAVE_TARGET_64_LITTLE
1746 template
1747 void
1748 Versions::symbol_section_contents<64, false>(
1749 const Symbol_table*,
1750 const Stringpool*,
1751 unsigned int,
1752 const std::vector<Symbol*>&,
1753 unsigned char**,
1754 unsigned int*) const;
1755 #endif
1756
1757 #ifdef HAVE_TARGET_64_BIG
1758 template
1759 void
1760 Versions::symbol_section_contents<64, true>(
1761 const Symbol_table*,
1762 const Stringpool*,
1763 unsigned int,
1764 const std::vector<Symbol*>&,
1765 unsigned char**,
1766 unsigned int*) const;
1767 #endif
1768
1769 #ifdef HAVE_TARGET_32_LITTLE
1770 template
1771 void
1772 Versions::def_section_contents<32, false>(
1773 const Stringpool*,
1774 unsigned char**,
1775 unsigned int*,
1776 unsigned int*) const;
1777 #endif
1778
1779 #ifdef HAVE_TARGET_32_BIG
1780 template
1781 void
1782 Versions::def_section_contents<32, true>(
1783 const Stringpool*,
1784 unsigned char**,
1785 unsigned int*,
1786 unsigned int*) const;
1787 #endif
1788
1789 #ifdef HAVE_TARGET_64_LITTLE
1790 template
1791 void
1792 Versions::def_section_contents<64, false>(
1793 const Stringpool*,
1794 unsigned char**,
1795 unsigned int*,
1796 unsigned int*) const;
1797 #endif
1798
1799 #ifdef HAVE_TARGET_64_BIG
1800 template
1801 void
1802 Versions::def_section_contents<64, true>(
1803 const Stringpool*,
1804 unsigned char**,
1805 unsigned int*,
1806 unsigned int*) const;
1807 #endif
1808
1809 #ifdef HAVE_TARGET_32_LITTLE
1810 template
1811 void
1812 Versions::need_section_contents<32, false>(
1813 const Stringpool*,
1814 unsigned char**,
1815 unsigned int*,
1816 unsigned int*) const;
1817 #endif
1818
1819 #ifdef HAVE_TARGET_32_BIG
1820 template
1821 void
1822 Versions::need_section_contents<32, true>(
1823 const Stringpool*,
1824 unsigned char**,
1825 unsigned int*,
1826 unsigned int*) const;
1827 #endif
1828
1829 #ifdef HAVE_TARGET_64_LITTLE
1830 template
1831 void
1832 Versions::need_section_contents<64, false>(
1833 const Stringpool*,
1834 unsigned char**,
1835 unsigned int*,
1836 unsigned int*) const;
1837 #endif
1838
1839 #ifdef HAVE_TARGET_64_BIG
1840 template
1841 void
1842 Versions::need_section_contents<64, true>(
1843 const Stringpool*,
1844 unsigned char**,
1845 unsigned int*,
1846 unsigned int*) const;
1847 #endif
1848
1849 } // End namespace gold.
This page took 0.065104 seconds and 5 git commands to generate.