Support compressed debug sections in dynamic object files.
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 if (input_file == NULL)
53 this->soname_ = name;
54 else
55 {
56 this->soname_ = input_file->found_name();
57 if (this->offset() != 0)
58 {
59 std::string::size_type open_paren = this->name().find('(');
60 std::string::size_type close_paren = this->name().find(')');
61 if (open_paren != std::string::npos
62 && close_paren != std::string::npos)
63 {
64 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
65 open_paren += 1;
66 this->soname_ = this->name().substr(open_paren,
67 close_paren - open_paren);
68 }
69 }
70 }
71 }
72
73 // Class Sized_dynobj.
74
75 template<int size, bool big_endian>
76 Sized_dynobj<size, big_endian>::Sized_dynobj(
77 const std::string& name,
78 Input_file* input_file,
79 off_t offset,
80 const elfcpp::Ehdr<size, big_endian>& ehdr)
81 : Dynobj(name, input_file, offset),
82 elf_file_(this, ehdr),
83 dynsym_shndx_(-1U),
84 symbols_(NULL),
85 defined_count_(0)
86 {
87 }
88
89 // Set up the object.
90
91 template<int size, bool big_endian>
92 void
93 Sized_dynobj<size, big_endian>::setup()
94 {
95 const unsigned int shnum = this->elf_file_.shnum();
96 this->set_shnum(shnum);
97 }
98
99 // Find the SHT_DYNSYM section and the various version sections, and
100 // the dynamic section, given the section headers.
101
102 template<int size, bool big_endian>
103 void
104 Sized_dynobj<size, big_endian>::find_dynsym_sections(
105 const unsigned char* pshdrs,
106 unsigned int* pversym_shndx,
107 unsigned int* pverdef_shndx,
108 unsigned int* pverneed_shndx,
109 unsigned int* pdynamic_shndx)
110 {
111 *pversym_shndx = -1U;
112 *pverdef_shndx = -1U;
113 *pverneed_shndx = -1U;
114 *pdynamic_shndx = -1U;
115
116 unsigned int symtab_shndx = 0;
117 unsigned int xindex_shndx = 0;
118 unsigned int xindex_link = 0;
119 const unsigned int shnum = this->shnum();
120 const unsigned char* p = pshdrs;
121 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
122 {
123 typename This::Shdr shdr(p);
124
125 unsigned int* pi;
126 switch (shdr.get_sh_type())
127 {
128 case elfcpp::SHT_DYNSYM:
129 this->dynsym_shndx_ = i;
130 if (xindex_shndx > 0 && xindex_link == i)
131 {
132 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
133 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
134 pshdrs);
135 this->set_xindex(xindex);
136 }
137 pi = NULL;
138 break;
139 case elfcpp::SHT_SYMTAB:
140 symtab_shndx = i;
141 pi = NULL;
142 break;
143 case elfcpp::SHT_GNU_versym:
144 pi = pversym_shndx;
145 break;
146 case elfcpp::SHT_GNU_verdef:
147 pi = pverdef_shndx;
148 break;
149 case elfcpp::SHT_GNU_verneed:
150 pi = pverneed_shndx;
151 break;
152 case elfcpp::SHT_DYNAMIC:
153 pi = pdynamic_shndx;
154 break;
155 case elfcpp::SHT_SYMTAB_SHNDX:
156 xindex_shndx = i;
157 xindex_link = this->adjust_shndx(shdr.get_sh_link());
158 if (xindex_link == this->dynsym_shndx_)
159 {
160 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
161 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
162 pshdrs);
163 this->set_xindex(xindex);
164 }
165 pi = NULL;
166 break;
167 default:
168 pi = NULL;
169 break;
170 }
171
172 if (pi == NULL)
173 continue;
174
175 if (*pi != -1U)
176 this->error(_("unexpected duplicate type %u section: %u, %u"),
177 shdr.get_sh_type(), *pi, i);
178
179 *pi = i;
180 }
181
182 // If there is no dynamic symbol table, use the normal symbol table.
183 // On some SVR4 systems, a shared library is stored in an archive.
184 // The version stored in the archive only has a normal symbol table.
185 // It has an SONAME entry which points to another copy in the file
186 // system which has a dynamic symbol table as usual. This is way of
187 // addressing the issues which glibc addresses using GROUP with
188 // libc_nonshared.a.
189 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
190 {
191 this->dynsym_shndx_ = symtab_shndx;
192 if (xindex_shndx > 0 && xindex_link == symtab_shndx)
193 {
194 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
195 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
196 pshdrs);
197 this->set_xindex(xindex);
198 }
199 }
200 }
201
202 // Read the contents of section SHNDX. PSHDRS points to the section
203 // headers. TYPE is the expected section type. LINK is the expected
204 // section link. Store the data in *VIEW and *VIEW_SIZE. The
205 // section's sh_info field is stored in *VIEW_INFO.
206
207 template<int size, bool big_endian>
208 void
209 Sized_dynobj<size, big_endian>::read_dynsym_section(
210 const unsigned char* pshdrs,
211 unsigned int shndx,
212 elfcpp::SHT type,
213 unsigned int link,
214 File_view** view,
215 section_size_type* view_size,
216 unsigned int* view_info)
217 {
218 if (shndx == -1U)
219 {
220 *view = NULL;
221 *view_size = 0;
222 *view_info = 0;
223 return;
224 }
225
226 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
227
228 gold_assert(shdr.get_sh_type() == type);
229
230 if (this->adjust_shndx(shdr.get_sh_link()) != link)
231 this->error(_("unexpected link in section %u header: %u != %u"),
232 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
233
234 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
235 true, false);
236 *view_size = convert_to_section_size_type(shdr.get_sh_size());
237 *view_info = shdr.get_sh_info();
238 }
239
240 // Read the dynamic tags. Set the soname field if this shared object
241 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
242 // the section headers. DYNAMIC_SHNDX is the section index of the
243 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
244 // section index and contents of a string table which may be the one
245 // associated with the SHT_DYNAMIC section.
246
247 template<int size, bool big_endian>
248 void
249 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
250 unsigned int dynamic_shndx,
251 unsigned int strtab_shndx,
252 const unsigned char* strtabu,
253 off_t strtab_size)
254 {
255 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
256 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
257
258 const off_t dynamic_size = dynamicshdr.get_sh_size();
259 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
260 dynamic_size, true, false);
261
262 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
263 if (link != strtab_shndx)
264 {
265 if (link >= this->shnum())
266 {
267 this->error(_("DYNAMIC section %u link out of range: %u"),
268 dynamic_shndx, link);
269 return;
270 }
271
272 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
273 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
274 {
275 this->error(_("DYNAMIC section %u link %u is not a strtab"),
276 dynamic_shndx, link);
277 return;
278 }
279
280 strtab_size = strtabshdr.get_sh_size();
281 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
282 false);
283 }
284
285 const char* const strtab = reinterpret_cast<const char*>(strtabu);
286
287 for (const unsigned char* p = pdynamic;
288 p < pdynamic + dynamic_size;
289 p += This::dyn_size)
290 {
291 typename This::Dyn dyn(p);
292
293 switch (dyn.get_d_tag())
294 {
295 case elfcpp::DT_NULL:
296 // We should always see DT_NULL at the end of the dynamic
297 // tags.
298 return;
299
300 case elfcpp::DT_SONAME:
301 {
302 off_t val = dyn.get_d_val();
303 if (val >= strtab_size)
304 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
305 static_cast<long long>(val),
306 static_cast<long long>(strtab_size));
307 else
308 this->set_soname_string(strtab + val);
309 }
310 break;
311
312 case elfcpp::DT_NEEDED:
313 {
314 off_t val = dyn.get_d_val();
315 if (val >= strtab_size)
316 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
317 static_cast<long long>(val),
318 static_cast<long long>(strtab_size));
319 else
320 this->add_needed(strtab + val);
321 }
322 break;
323
324 default:
325 break;
326 }
327 }
328
329 this->error(_("missing DT_NULL in dynamic segment"));
330 }
331
332 // Read the symbols and sections from a dynamic object. We read the
333 // dynamic symbols, not the normal symbols.
334
335 template<int size, bool big_endian>
336 void
337 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
338 {
339 this->base_read_symbols(sd);
340 }
341
342 // Read the symbols and sections from a dynamic object. We read the
343 // dynamic symbols, not the normal symbols. This is common code for
344 // all target-specific overrides of do_read_symbols().
345
346 template<int size, bool big_endian>
347 void
348 Sized_dynobj<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
349 {
350 this->read_section_data(&this->elf_file_, sd);
351
352 const unsigned char* const pshdrs = sd->section_headers->data();
353
354 unsigned int versym_shndx;
355 unsigned int verdef_shndx;
356 unsigned int verneed_shndx;
357 unsigned int dynamic_shndx;
358 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
359 &verneed_shndx, &dynamic_shndx);
360
361 unsigned int strtab_shndx = -1U;
362
363 sd->symbols = NULL;
364 sd->symbols_size = 0;
365 sd->external_symbols_offset = 0;
366 sd->symbol_names = NULL;
367 sd->symbol_names_size = 0;
368 sd->versym = NULL;
369 sd->versym_size = 0;
370 sd->verdef = NULL;
371 sd->verdef_size = 0;
372 sd->verdef_info = 0;
373 sd->verneed = NULL;
374 sd->verneed_size = 0;
375 sd->verneed_info = 0;
376
377 const unsigned char* namesu = sd->section_names->data();
378 const char* names = reinterpret_cast<const char*>(namesu);
379 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
380 {
381 Compressed_section_map* compressed_sections =
382 build_compressed_section_map<size, big_endian>(
383 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
384 if (compressed_sections != NULL)
385 this->set_compressed_sections(compressed_sections);
386 }
387
388 if (this->dynsym_shndx_ != -1U)
389 {
390 // Get the dynamic symbols.
391 typename This::Shdr dynsymshdr(pshdrs
392 + this->dynsym_shndx_ * This::shdr_size);
393
394 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
395 dynsymshdr.get_sh_size(), true,
396 false);
397 sd->symbols_size =
398 convert_to_section_size_type(dynsymshdr.get_sh_size());
399
400 // Get the symbol names.
401 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
402 if (strtab_shndx >= this->shnum())
403 {
404 this->error(_("invalid dynamic symbol table name index: %u"),
405 strtab_shndx);
406 return;
407 }
408 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
409 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
410 {
411 this->error(_("dynamic symbol table name section "
412 "has wrong type: %u"),
413 static_cast<unsigned int>(strtabshdr.get_sh_type()));
414 return;
415 }
416
417 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
418 strtabshdr.get_sh_size(),
419 false, false);
420 sd->symbol_names_size =
421 convert_to_section_size_type(strtabshdr.get_sh_size());
422
423 // Get the version information.
424
425 unsigned int dummy;
426 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
427 this->dynsym_shndx_,
428 &sd->versym, &sd->versym_size, &dummy);
429
430 // We require that the version definition and need section link
431 // to the same string table as the dynamic symbol table. This
432 // is not a technical requirement, but it always happens in
433 // practice. We could change this if necessary.
434
435 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
436 strtab_shndx, &sd->verdef, &sd->verdef_size,
437 &sd->verdef_info);
438
439 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
440 strtab_shndx, &sd->verneed, &sd->verneed_size,
441 &sd->verneed_info);
442 }
443
444 // Read the SHT_DYNAMIC section to find whether this shared object
445 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
446 // doesn't really have anything to do with reading the symbols, but
447 // this is a convenient place to do it.
448 if (dynamic_shndx != -1U)
449 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
450 (sd->symbol_names == NULL
451 ? NULL
452 : sd->symbol_names->data()),
453 sd->symbol_names_size);
454 }
455
456 // Return the Xindex structure to use for object with lots of
457 // sections.
458
459 template<int size, bool big_endian>
460 Xindex*
461 Sized_dynobj<size, big_endian>::do_initialize_xindex()
462 {
463 gold_assert(this->dynsym_shndx_ != -1U);
464 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
465 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
466 return xindex;
467 }
468
469 // Lay out the input sections for a dynamic object. We don't want to
470 // include sections from a dynamic object, so all that we actually do
471 // here is check for .gnu.warning and .note.GNU-split-stack sections.
472
473 template<int size, bool big_endian>
474 void
475 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
476 Layout*,
477 Read_symbols_data* sd)
478 {
479 const unsigned int shnum = this->shnum();
480 if (shnum == 0)
481 return;
482
483 // Get the section headers.
484 const unsigned char* pshdrs = sd->section_headers->data();
485
486 // Get the section names.
487 const unsigned char* pnamesu = sd->section_names->data();
488 const char* pnames = reinterpret_cast<const char*>(pnamesu);
489
490 // Skip the first, dummy, section.
491 pshdrs += This::shdr_size;
492 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
493 {
494 typename This::Shdr shdr(pshdrs);
495
496 if (shdr.get_sh_name() >= sd->section_names_size)
497 {
498 this->error(_("bad section name offset for section %u: %lu"),
499 i, static_cast<unsigned long>(shdr.get_sh_name()));
500 return;
501 }
502
503 const char* name = pnames + shdr.get_sh_name();
504
505 this->handle_gnu_warning_section(name, i, symtab);
506 this->handle_split_stack_section(name);
507 }
508
509 delete sd->section_headers;
510 sd->section_headers = NULL;
511 delete sd->section_names;
512 sd->section_names = NULL;
513 }
514
515 // Add an entry to the vector mapping version numbers to version
516 // strings.
517
518 template<int size, bool big_endian>
519 void
520 Sized_dynobj<size, big_endian>::set_version_map(
521 Version_map* version_map,
522 unsigned int ndx,
523 const char* name) const
524 {
525 if (ndx >= version_map->size())
526 version_map->resize(ndx + 1);
527 if ((*version_map)[ndx] != NULL)
528 this->error(_("duplicate definition for version %u"), ndx);
529 (*version_map)[ndx] = name;
530 }
531
532 // Add mappings for the version definitions to VERSION_MAP.
533
534 template<int size, bool big_endian>
535 void
536 Sized_dynobj<size, big_endian>::make_verdef_map(
537 Read_symbols_data* sd,
538 Version_map* version_map) const
539 {
540 if (sd->verdef == NULL)
541 return;
542
543 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
544 section_size_type names_size = sd->symbol_names_size;
545
546 const unsigned char* pverdef = sd->verdef->data();
547 section_size_type verdef_size = sd->verdef_size;
548 const unsigned int count = sd->verdef_info;
549
550 const unsigned char* p = pverdef;
551 for (unsigned int i = 0; i < count; ++i)
552 {
553 elfcpp::Verdef<size, big_endian> verdef(p);
554
555 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
556 {
557 this->error(_("unexpected verdef version %u"),
558 verdef.get_vd_version());
559 return;
560 }
561
562 const section_size_type vd_ndx = verdef.get_vd_ndx();
563
564 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
565 // sure why.
566
567 // The first Verdaux holds the name of this version. Subsequent
568 // ones are versions that this one depends upon, which we don't
569 // care about here.
570 const section_size_type vd_cnt = verdef.get_vd_cnt();
571 if (vd_cnt < 1)
572 {
573 this->error(_("verdef vd_cnt field too small: %u"),
574 static_cast<unsigned int>(vd_cnt));
575 return;
576 }
577
578 const section_size_type vd_aux = verdef.get_vd_aux();
579 if ((p - pverdef) + vd_aux >= verdef_size)
580 {
581 this->error(_("verdef vd_aux field out of range: %u"),
582 static_cast<unsigned int>(vd_aux));
583 return;
584 }
585
586 const unsigned char* pvda = p + vd_aux;
587 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
588
589 const section_size_type vda_name = verdaux.get_vda_name();
590 if (vda_name >= names_size)
591 {
592 this->error(_("verdaux vda_name field out of range: %u"),
593 static_cast<unsigned int>(vda_name));
594 return;
595 }
596
597 this->set_version_map(version_map, vd_ndx, names + vda_name);
598
599 const section_size_type vd_next = verdef.get_vd_next();
600 if ((p - pverdef) + vd_next >= verdef_size)
601 {
602 this->error(_("verdef vd_next field out of range: %u"),
603 static_cast<unsigned int>(vd_next));
604 return;
605 }
606
607 p += vd_next;
608 }
609 }
610
611 // Add mappings for the required versions to VERSION_MAP.
612
613 template<int size, bool big_endian>
614 void
615 Sized_dynobj<size, big_endian>::make_verneed_map(
616 Read_symbols_data* sd,
617 Version_map* version_map) const
618 {
619 if (sd->verneed == NULL)
620 return;
621
622 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
623 section_size_type names_size = sd->symbol_names_size;
624
625 const unsigned char* pverneed = sd->verneed->data();
626 const section_size_type verneed_size = sd->verneed_size;
627 const unsigned int count = sd->verneed_info;
628
629 const unsigned char* p = pverneed;
630 for (unsigned int i = 0; i < count; ++i)
631 {
632 elfcpp::Verneed<size, big_endian> verneed(p);
633
634 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
635 {
636 this->error(_("unexpected verneed version %u"),
637 verneed.get_vn_version());
638 return;
639 }
640
641 const section_size_type vn_aux = verneed.get_vn_aux();
642
643 if ((p - pverneed) + vn_aux >= verneed_size)
644 {
645 this->error(_("verneed vn_aux field out of range: %u"),
646 static_cast<unsigned int>(vn_aux));
647 return;
648 }
649
650 const unsigned int vn_cnt = verneed.get_vn_cnt();
651 const unsigned char* pvna = p + vn_aux;
652 for (unsigned int j = 0; j < vn_cnt; ++j)
653 {
654 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
655
656 const unsigned int vna_name = vernaux.get_vna_name();
657 if (vna_name >= names_size)
658 {
659 this->error(_("vernaux vna_name field out of range: %u"),
660 static_cast<unsigned int>(vna_name));
661 return;
662 }
663
664 this->set_version_map(version_map, vernaux.get_vna_other(),
665 names + vna_name);
666
667 const section_size_type vna_next = vernaux.get_vna_next();
668 if ((pvna - pverneed) + vna_next >= verneed_size)
669 {
670 this->error(_("verneed vna_next field out of range: %u"),
671 static_cast<unsigned int>(vna_next));
672 return;
673 }
674
675 pvna += vna_next;
676 }
677
678 const section_size_type vn_next = verneed.get_vn_next();
679 if ((p - pverneed) + vn_next >= verneed_size)
680 {
681 this->error(_("verneed vn_next field out of range: %u"),
682 static_cast<unsigned int>(vn_next));
683 return;
684 }
685
686 p += vn_next;
687 }
688 }
689
690 // Create a vector mapping version numbers to version strings.
691
692 template<int size, bool big_endian>
693 void
694 Sized_dynobj<size, big_endian>::make_version_map(
695 Read_symbols_data* sd,
696 Version_map* version_map) const
697 {
698 if (sd->verdef == NULL && sd->verneed == NULL)
699 return;
700
701 // A guess at the maximum version number we will see. If this is
702 // wrong we will be less efficient but still correct.
703 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
704
705 this->make_verdef_map(sd, version_map);
706 this->make_verneed_map(sd, version_map);
707 }
708
709 // Add the dynamic symbols to the symbol table.
710
711 template<int size, bool big_endian>
712 void
713 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
714 Read_symbols_data* sd,
715 Layout*)
716 {
717 if (sd->symbols == NULL)
718 {
719 gold_assert(sd->symbol_names == NULL);
720 gold_assert(sd->versym == NULL && sd->verdef == NULL
721 && sd->verneed == NULL);
722 return;
723 }
724
725 const int sym_size = This::sym_size;
726 const size_t symcount = sd->symbols_size / sym_size;
727 gold_assert(sd->external_symbols_offset == 0);
728 if (symcount * sym_size != sd->symbols_size)
729 {
730 this->error(_("size of dynamic symbols is not multiple of symbol size"));
731 return;
732 }
733
734 Version_map version_map;
735 this->make_version_map(sd, &version_map);
736
737 // If printing symbol counts or a cross reference table or
738 // preparing for an incremental link, we want to track symbols.
739 if (parameters->options().user_set_print_symbol_counts()
740 || parameters->options().cref()
741 || parameters->incremental())
742 {
743 this->symbols_ = new Symbols();
744 this->symbols_->resize(symcount);
745 }
746
747 const char* sym_names =
748 reinterpret_cast<const char*>(sd->symbol_names->data());
749 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
750 sym_names, sd->symbol_names_size,
751 (sd->versym == NULL
752 ? NULL
753 : sd->versym->data()),
754 sd->versym_size,
755 &version_map,
756 this->symbols_,
757 &this->defined_count_);
758
759 delete sd->symbols;
760 sd->symbols = NULL;
761 delete sd->symbol_names;
762 sd->symbol_names = NULL;
763 if (sd->versym != NULL)
764 {
765 delete sd->versym;
766 sd->versym = NULL;
767 }
768 if (sd->verdef != NULL)
769 {
770 delete sd->verdef;
771 sd->verdef = NULL;
772 }
773 if (sd->verneed != NULL)
774 {
775 delete sd->verneed;
776 sd->verneed = NULL;
777 }
778
779 // This is normally the last time we will read any data from this
780 // file.
781 this->clear_view_cache_marks();
782 }
783
784 template<int size, bool big_endian>
785 Archive::Should_include
786 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
787 Layout*,
788 Read_symbols_data*,
789 std::string*)
790 {
791 return Archive::SHOULD_INCLUDE_YES;
792 }
793
794 // Iterate over global symbols, calling a visitor class V for each.
795
796 template<int size, bool big_endian>
797 void
798 Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
799 Read_symbols_data* sd,
800 Library_base::Symbol_visitor_base* v)
801 {
802 const char* sym_names =
803 reinterpret_cast<const char*>(sd->symbol_names->data());
804 const unsigned char* syms =
805 sd->symbols->data() + sd->external_symbols_offset;
806 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
807 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
808 / sym_size);
809 const unsigned char* p = syms;
810
811 for (size_t i = 0; i < symcount; ++i, p += sym_size)
812 {
813 elfcpp::Sym<size, big_endian> sym(p);
814 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
815 && sym.get_st_bind() != elfcpp::STB_LOCAL)
816 v->visit(sym_names + sym.get_st_name());
817 }
818 }
819
820 // Iterate over local symbols, calling a visitor class V for each GOT offset
821 // associated with a local symbol.
822
823 template<int size, bool big_endian>
824 void
825 Sized_dynobj<size, big_endian>::do_for_all_local_got_entries(
826 Got_offset_list::Visitor*) const
827 {
828 }
829
830 // Get symbol counts.
831
832 template<int size, bool big_endian>
833 void
834 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
835 const Symbol_table*,
836 size_t* defined,
837 size_t* used) const
838 {
839 *defined = this->defined_count_;
840 size_t count = 0;
841 for (typename Symbols::const_iterator p = this->symbols_->begin();
842 p != this->symbols_->end();
843 ++p)
844 if (*p != NULL
845 && (*p)->source() == Symbol::FROM_OBJECT
846 && (*p)->object() == this
847 && (*p)->is_defined()
848 && (*p)->has_dynsym_index())
849 ++count;
850 *used = count;
851 }
852
853 // Given a vector of hash codes, compute the number of hash buckets to
854 // use.
855
856 unsigned int
857 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
858 bool for_gnu_hash_table)
859 {
860 // FIXME: Implement optional hash table optimization.
861
862 // Array used to determine the number of hash table buckets to use
863 // based on the number of symbols there are. If there are fewer
864 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
865 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
866 // use more than 262147 buckets. This is straight from the old GNU
867 // linker.
868 static const unsigned int buckets[] =
869 {
870 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
871 16411, 32771, 65537, 131101, 262147
872 };
873 const int buckets_count = sizeof buckets / sizeof buckets[0];
874
875 unsigned int symcount = hashcodes.size();
876 unsigned int ret = 1;
877 const double full_fraction
878 = 1.0 - parameters->options().hash_bucket_empty_fraction();
879 for (int i = 0; i < buckets_count; ++i)
880 {
881 if (symcount < buckets[i] * full_fraction)
882 break;
883 ret = buckets[i];
884 }
885
886 if (for_gnu_hash_table && ret < 2)
887 ret = 2;
888
889 return ret;
890 }
891
892 // The standard ELF hash function. This hash function must not
893 // change, as the dynamic linker uses it also.
894
895 uint32_t
896 Dynobj::elf_hash(const char* name)
897 {
898 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
899 uint32_t h = 0;
900 unsigned char c;
901 while ((c = *nameu++) != '\0')
902 {
903 h = (h << 4) + c;
904 uint32_t g = h & 0xf0000000;
905 if (g != 0)
906 {
907 h ^= g >> 24;
908 // The ELF ABI says h &= ~g, but using xor is equivalent in
909 // this case (since g was set from h) and may save one
910 // instruction.
911 h ^= g;
912 }
913 }
914 return h;
915 }
916
917 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
918 // DYNSYMS is a vector with all the global dynamic symbols.
919 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
920 // symbol table.
921
922 void
923 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
924 unsigned int local_dynsym_count,
925 unsigned char** pphash,
926 unsigned int* phashlen)
927 {
928 unsigned int dynsym_count = dynsyms.size();
929
930 // Get the hash values for all the symbols.
931 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
932 for (unsigned int i = 0; i < dynsym_count; ++i)
933 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
934
935 const unsigned int bucketcount =
936 Dynobj::compute_bucket_count(dynsym_hashvals, false);
937
938 std::vector<uint32_t> bucket(bucketcount);
939 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
940
941 for (unsigned int i = 0; i < dynsym_count; ++i)
942 {
943 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
944 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
945 chain[dynsym_index] = bucket[bucketpos];
946 bucket[bucketpos] = dynsym_index;
947 }
948
949 unsigned int hashlen = ((2
950 + bucketcount
951 + local_dynsym_count
952 + dynsym_count)
953 * 4);
954 unsigned char* phash = new unsigned char[hashlen];
955
956 if (parameters->target().is_big_endian())
957 {
958 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
959 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
960 hashlen);
961 #else
962 gold_unreachable();
963 #endif
964 }
965 else
966 {
967 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
968 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
969 hashlen);
970 #else
971 gold_unreachable();
972 #endif
973 }
974
975 *pphash = phash;
976 *phashlen = hashlen;
977 }
978
979 // Fill in an ELF hash table.
980
981 template<bool big_endian>
982 void
983 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
984 const std::vector<uint32_t>& chain,
985 unsigned char* phash,
986 unsigned int hashlen)
987 {
988 unsigned char* p = phash;
989
990 const unsigned int bucketcount = bucket.size();
991 const unsigned int chaincount = chain.size();
992
993 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
994 p += 4;
995 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
996 p += 4;
997
998 for (unsigned int i = 0; i < bucketcount; ++i)
999 {
1000 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
1001 p += 4;
1002 }
1003
1004 for (unsigned int i = 0; i < chaincount; ++i)
1005 {
1006 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
1007 p += 4;
1008 }
1009
1010 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
1011 }
1012
1013 // The hash function used for the GNU hash table. This hash function
1014 // must not change, as the dynamic linker uses it also.
1015
1016 uint32_t
1017 Dynobj::gnu_hash(const char* name)
1018 {
1019 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
1020 uint32_t h = 5381;
1021 unsigned char c;
1022 while ((c = *nameu++) != '\0')
1023 h = (h << 5) + h + c;
1024 return h;
1025 }
1026
1027 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
1028 // tables are an extension to ELF which are recognized by the GNU
1029 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
1030 // TARGET is the target. DYNSYMS is a vector with all the global
1031 // symbols which will be going into the dynamic symbol table.
1032 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
1033 // symbol table.
1034
1035 void
1036 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
1037 unsigned int local_dynsym_count,
1038 unsigned char** pphash,
1039 unsigned int* phashlen)
1040 {
1041 const unsigned int count = dynsyms.size();
1042
1043 // Sort the dynamic symbols into two vectors. Symbols which we do
1044 // not want to put into the hash table we store into
1045 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
1046 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
1047 // and records the hash codes.
1048
1049 std::vector<Symbol*> unhashed_dynsyms;
1050 unhashed_dynsyms.reserve(count);
1051
1052 std::vector<Symbol*> hashed_dynsyms;
1053 hashed_dynsyms.reserve(count);
1054
1055 std::vector<uint32_t> dynsym_hashvals;
1056 dynsym_hashvals.reserve(count);
1057
1058 for (unsigned int i = 0; i < count; ++i)
1059 {
1060 Symbol* sym = dynsyms[i];
1061
1062 if (!sym->needs_dynsym_value()
1063 && (sym->is_undefined()
1064 || sym->is_from_dynobj()
1065 || sym->is_forced_local()))
1066 unhashed_dynsyms.push_back(sym);
1067 else
1068 {
1069 hashed_dynsyms.push_back(sym);
1070 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1071 }
1072 }
1073
1074 // Put the unhashed symbols at the start of the global portion of
1075 // the dynamic symbol table.
1076 const unsigned int unhashed_count = unhashed_dynsyms.size();
1077 unsigned int unhashed_dynsym_index = local_dynsym_count;
1078 for (unsigned int i = 0; i < unhashed_count; ++i)
1079 {
1080 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1081 ++unhashed_dynsym_index;
1082 }
1083
1084 // For the actual data generation we call out to a templatized
1085 // function.
1086 int size = parameters->target().get_size();
1087 bool big_endian = parameters->target().is_big_endian();
1088 if (size == 32)
1089 {
1090 if (big_endian)
1091 {
1092 #ifdef HAVE_TARGET_32_BIG
1093 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1094 dynsym_hashvals,
1095 unhashed_dynsym_index,
1096 pphash,
1097 phashlen);
1098 #else
1099 gold_unreachable();
1100 #endif
1101 }
1102 else
1103 {
1104 #ifdef HAVE_TARGET_32_LITTLE
1105 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1106 dynsym_hashvals,
1107 unhashed_dynsym_index,
1108 pphash,
1109 phashlen);
1110 #else
1111 gold_unreachable();
1112 #endif
1113 }
1114 }
1115 else if (size == 64)
1116 {
1117 if (big_endian)
1118 {
1119 #ifdef HAVE_TARGET_64_BIG
1120 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1121 dynsym_hashvals,
1122 unhashed_dynsym_index,
1123 pphash,
1124 phashlen);
1125 #else
1126 gold_unreachable();
1127 #endif
1128 }
1129 else
1130 {
1131 #ifdef HAVE_TARGET_64_LITTLE
1132 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1133 dynsym_hashvals,
1134 unhashed_dynsym_index,
1135 pphash,
1136 phashlen);
1137 #else
1138 gold_unreachable();
1139 #endif
1140 }
1141 }
1142 else
1143 gold_unreachable();
1144 }
1145
1146 // Create the actual data for a GNU hash table. This is just a copy
1147 // of the code from the old GNU linker.
1148
1149 template<int size, bool big_endian>
1150 void
1151 Dynobj::sized_create_gnu_hash_table(
1152 const std::vector<Symbol*>& hashed_dynsyms,
1153 const std::vector<uint32_t>& dynsym_hashvals,
1154 unsigned int unhashed_dynsym_count,
1155 unsigned char** pphash,
1156 unsigned int* phashlen)
1157 {
1158 if (hashed_dynsyms.empty())
1159 {
1160 // Special case for the empty hash table.
1161 unsigned int hashlen = 5 * 4 + size / 8;
1162 unsigned char* phash = new unsigned char[hashlen];
1163 // One empty bucket.
1164 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1165 // Symbol index above unhashed symbols.
1166 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1167 // One word for bitmask.
1168 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1169 // Only bloom filter.
1170 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1171 // No valid hashes.
1172 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1173 // No hashes in only bucket.
1174 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1175
1176 *phashlen = hashlen;
1177 *pphash = phash;
1178
1179 return;
1180 }
1181
1182 const unsigned int bucketcount =
1183 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1184
1185 const unsigned int nsyms = hashed_dynsyms.size();
1186
1187 uint32_t maskbitslog2 = 1;
1188 uint32_t x = nsyms >> 1;
1189 while (x != 0)
1190 {
1191 ++maskbitslog2;
1192 x >>= 1;
1193 }
1194 if (maskbitslog2 < 3)
1195 maskbitslog2 = 5;
1196 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1197 maskbitslog2 += 3;
1198 else
1199 maskbitslog2 += 2;
1200
1201 uint32_t shift1;
1202 if (size == 32)
1203 shift1 = 5;
1204 else
1205 {
1206 if (maskbitslog2 == 5)
1207 maskbitslog2 = 6;
1208 shift1 = 6;
1209 }
1210 uint32_t mask = (1U << shift1) - 1U;
1211 uint32_t shift2 = maskbitslog2;
1212 uint32_t maskbits = 1U << maskbitslog2;
1213 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1214
1215 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1216 std::vector<Word> bitmask(maskwords);
1217 std::vector<uint32_t> counts(bucketcount);
1218 std::vector<uint32_t> indx(bucketcount);
1219 uint32_t symindx = unhashed_dynsym_count;
1220
1221 // Count the number of times each hash bucket is used.
1222 for (unsigned int i = 0; i < nsyms; ++i)
1223 ++counts[dynsym_hashvals[i] % bucketcount];
1224
1225 unsigned int cnt = symindx;
1226 for (unsigned int i = 0; i < bucketcount; ++i)
1227 {
1228 indx[i] = cnt;
1229 cnt += counts[i];
1230 }
1231
1232 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1233 hashlen += maskbits / 8;
1234 unsigned char* phash = new unsigned char[hashlen];
1235
1236 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1237 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1238 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1239 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1240
1241 unsigned char* p = phash + 16 + maskbits / 8;
1242 for (unsigned int i = 0; i < bucketcount; ++i)
1243 {
1244 if (counts[i] == 0)
1245 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1246 else
1247 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1248 p += 4;
1249 }
1250
1251 for (unsigned int i = 0; i < nsyms; ++i)
1252 {
1253 Symbol* sym = hashed_dynsyms[i];
1254 uint32_t hashval = dynsym_hashvals[i];
1255
1256 unsigned int bucket = hashval % bucketcount;
1257 unsigned int val = ((hashval >> shift1)
1258 & ((maskbits >> shift1) - 1));
1259 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1260 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1261 val = hashval & ~ 1U;
1262 if (counts[bucket] == 1)
1263 {
1264 // Last element terminates the chain.
1265 val |= 1;
1266 }
1267 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1268 val);
1269 --counts[bucket];
1270
1271 sym->set_dynsym_index(indx[bucket]);
1272 ++indx[bucket];
1273 }
1274
1275 p = phash + 16;
1276 for (unsigned int i = 0; i < maskwords; ++i)
1277 {
1278 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1279 p += size / 8;
1280 }
1281
1282 *phashlen = hashlen;
1283 *pphash = phash;
1284 }
1285
1286 // Verdef methods.
1287
1288 // Write this definition to a buffer for the output section.
1289
1290 template<int size, bool big_endian>
1291 unsigned char*
1292 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1293 {
1294 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1295 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1296
1297 elfcpp::Verdef_write<size, big_endian> vd(pb);
1298 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1299 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1300 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1301 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
1302 vd.set_vd_ndx(this->index());
1303 vd.set_vd_cnt(1 + this->deps_.size());
1304 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1305 vd.set_vd_aux(verdef_size);
1306 vd.set_vd_next(is_last
1307 ? 0
1308 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1309 pb += verdef_size;
1310
1311 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1312 vda.set_vda_name(dynpool->get_offset(this->name()));
1313 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1314 pb += verdaux_size;
1315
1316 Deps::const_iterator p;
1317 unsigned int i;
1318 for (p = this->deps_.begin(), i = 0;
1319 p != this->deps_.end();
1320 ++p, ++i)
1321 {
1322 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1323 vda.set_vda_name(dynpool->get_offset(*p));
1324 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1325 pb += verdaux_size;
1326 }
1327
1328 return pb;
1329 }
1330
1331 // Verneed methods.
1332
1333 Verneed::~Verneed()
1334 {
1335 for (Need_versions::iterator p = this->need_versions_.begin();
1336 p != this->need_versions_.end();
1337 ++p)
1338 delete *p;
1339 }
1340
1341 // Add a new version to this file reference.
1342
1343 Verneed_version*
1344 Verneed::add_name(const char* name)
1345 {
1346 Verneed_version* vv = new Verneed_version(name);
1347 this->need_versions_.push_back(vv);
1348 return vv;
1349 }
1350
1351 // Set the version indexes starting at INDEX.
1352
1353 unsigned int
1354 Verneed::finalize(unsigned int index)
1355 {
1356 for (Need_versions::iterator p = this->need_versions_.begin();
1357 p != this->need_versions_.end();
1358 ++p)
1359 {
1360 (*p)->set_index(index);
1361 ++index;
1362 }
1363 return index;
1364 }
1365
1366 // Write this list of referenced versions to a buffer for the output
1367 // section.
1368
1369 template<int size, bool big_endian>
1370 unsigned char*
1371 Verneed::write(const Stringpool* dynpool, bool is_last,
1372 unsigned char* pb) const
1373 {
1374 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1375 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1376
1377 elfcpp::Verneed_write<size, big_endian> vn(pb);
1378 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1379 vn.set_vn_cnt(this->need_versions_.size());
1380 vn.set_vn_file(dynpool->get_offset(this->filename()));
1381 vn.set_vn_aux(verneed_size);
1382 vn.set_vn_next(is_last
1383 ? 0
1384 : verneed_size + this->need_versions_.size() * vernaux_size);
1385 pb += verneed_size;
1386
1387 Need_versions::const_iterator p;
1388 unsigned int i;
1389 for (p = this->need_versions_.begin(), i = 0;
1390 p != this->need_versions_.end();
1391 ++p, ++i)
1392 {
1393 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1394 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1395 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1396 vna.set_vna_flags(0);
1397 vna.set_vna_other((*p)->index());
1398 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1399 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1400 ? 0
1401 : vernaux_size);
1402 pb += vernaux_size;
1403 }
1404
1405 return pb;
1406 }
1407
1408 // Versions methods.
1409
1410 Versions::Versions(const Version_script_info& version_script,
1411 Stringpool* dynpool)
1412 : defs_(), needs_(), version_table_(),
1413 is_finalized_(false), version_script_(version_script),
1414 needs_base_version_(parameters->options().shared())
1415 {
1416 if (!this->version_script_.empty())
1417 {
1418 // Parse the version script, and insert each declared version into
1419 // defs_ and version_table_.
1420 std::vector<std::string> versions = this->version_script_.get_versions();
1421
1422 if (this->needs_base_version_ && !versions.empty())
1423 this->define_base_version(dynpool);
1424
1425 for (size_t k = 0; k < versions.size(); ++k)
1426 {
1427 Stringpool::Key version_key;
1428 const char* version = dynpool->add(versions[k].c_str(),
1429 true, &version_key);
1430 Verdef* const vd = new Verdef(
1431 version,
1432 this->version_script_.get_dependencies(version),
1433 false, false, false, false);
1434 this->defs_.push_back(vd);
1435 Key key(version_key, 0);
1436 this->version_table_.insert(std::make_pair(key, vd));
1437 }
1438 }
1439 }
1440
1441 Versions::~Versions()
1442 {
1443 for (Defs::iterator p = this->defs_.begin();
1444 p != this->defs_.end();
1445 ++p)
1446 delete *p;
1447
1448 for (Needs::iterator p = this->needs_.begin();
1449 p != this->needs_.end();
1450 ++p)
1451 delete *p;
1452 }
1453
1454 // Define the base version of a shared library. The base version definition
1455 // must be the first entry in defs_. We insert it lazily so that defs_ is
1456 // empty if no symbol versioning is used. Then layout can just drop the
1457 // version sections.
1458
1459 void
1460 Versions::define_base_version(Stringpool* dynpool)
1461 {
1462 // If we do any versioning at all, we always need a base version, so
1463 // define that first. Nothing explicitly declares itself as part of base,
1464 // so it doesn't need to be in version_table_.
1465 gold_assert(this->defs_.empty());
1466 const char* name = parameters->options().soname();
1467 if (name == NULL)
1468 name = parameters->options().output_file_name();
1469 name = dynpool->add(name, false, NULL);
1470 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1471 true, false, false, true);
1472 this->defs_.push_back(vdbase);
1473 this->needs_base_version_ = false;
1474 }
1475
1476 // Return the dynamic object which a symbol refers to.
1477
1478 Dynobj*
1479 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1480 const Symbol* sym) const
1481 {
1482 if (sym->is_copied_from_dynobj())
1483 return symtab->get_copy_source(sym);
1484 else
1485 {
1486 Object* object = sym->object();
1487 gold_assert(object->is_dynamic());
1488 return static_cast<Dynobj*>(object);
1489 }
1490 }
1491
1492 // Record version information for a symbol going into the dynamic
1493 // symbol table.
1494
1495 void
1496 Versions::record_version(const Symbol_table* symtab,
1497 Stringpool* dynpool, const Symbol* sym)
1498 {
1499 gold_assert(!this->is_finalized_);
1500 gold_assert(sym->version() != NULL);
1501
1502 Stringpool::Key version_key;
1503 const char* version = dynpool->add(sym->version(), false, &version_key);
1504
1505 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1506 {
1507 if (parameters->options().shared())
1508 this->add_def(dynpool, sym, version, version_key);
1509 }
1510 else
1511 {
1512 // This is a version reference.
1513 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1514 this->add_need(dynpool, dynobj->soname(), version, version_key);
1515 }
1516 }
1517
1518 // We've found a symbol SYM defined in version VERSION.
1519
1520 void
1521 Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version,
1522 Stringpool::Key version_key)
1523 {
1524 Key k(version_key, 0);
1525 Version_base* const vbnull = NULL;
1526 std::pair<Version_table::iterator, bool> ins =
1527 this->version_table_.insert(std::make_pair(k, vbnull));
1528
1529 if (!ins.second)
1530 {
1531 // We already have an entry for this version.
1532 Version_base* vb = ins.first->second;
1533
1534 // We have now seen a symbol in this version, so it is not
1535 // weak.
1536 gold_assert(vb != NULL);
1537 vb->clear_weak();
1538 }
1539 else
1540 {
1541 // If we are creating a shared object, it is an error to
1542 // find a definition of a symbol with a version which is not
1543 // in the version script.
1544 if (parameters->options().shared())
1545 {
1546 gold_error(_("symbol %s has undefined version %s"),
1547 sym->demangled_name().c_str(), version);
1548 if (this->needs_base_version_)
1549 this->define_base_version(dynpool);
1550 }
1551 else
1552 // We only insert a base version for shared library.
1553 gold_assert(!this->needs_base_version_);
1554
1555 // When creating a regular executable, automatically define
1556 // a new version.
1557 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1558 false, false, false, false);
1559 this->defs_.push_back(vd);
1560 ins.first->second = vd;
1561 }
1562 }
1563
1564 // Add a reference to version NAME in file FILENAME.
1565
1566 void
1567 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1568 Stringpool::Key name_key)
1569 {
1570 Stringpool::Key filename_key;
1571 filename = dynpool->add(filename, true, &filename_key);
1572
1573 Key k(name_key, filename_key);
1574 Version_base* const vbnull = NULL;
1575 std::pair<Version_table::iterator, bool> ins =
1576 this->version_table_.insert(std::make_pair(k, vbnull));
1577
1578 if (!ins.second)
1579 {
1580 // We already have an entry for this filename/version.
1581 return;
1582 }
1583
1584 // See whether we already have this filename. We don't expect many
1585 // version references, so we just do a linear search. This could be
1586 // replaced by a hash table.
1587 Verneed* vn = NULL;
1588 for (Needs::iterator p = this->needs_.begin();
1589 p != this->needs_.end();
1590 ++p)
1591 {
1592 if ((*p)->filename() == filename)
1593 {
1594 vn = *p;
1595 break;
1596 }
1597 }
1598
1599 if (vn == NULL)
1600 {
1601 // Create base version definition lazily for shared library.
1602 if (this->needs_base_version_)
1603 this->define_base_version(dynpool);
1604
1605 // We have a new filename.
1606 vn = new Verneed(filename);
1607 this->needs_.push_back(vn);
1608 }
1609
1610 ins.first->second = vn->add_name(name);
1611 }
1612
1613 // Set the version indexes. Create a new dynamic version symbol for
1614 // each new version definition.
1615
1616 unsigned int
1617 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1618 std::vector<Symbol*>* syms)
1619 {
1620 gold_assert(!this->is_finalized_);
1621
1622 unsigned int vi = 1;
1623
1624 for (Defs::iterator p = this->defs_.begin();
1625 p != this->defs_.end();
1626 ++p)
1627 {
1628 (*p)->set_index(vi);
1629 ++vi;
1630
1631 // Create a version symbol if necessary.
1632 if (!(*p)->is_symbol_created())
1633 {
1634 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1635 (*p)->name(),
1636 Symbol_table::PREDEFINED,
1637 0, 0,
1638 elfcpp::STT_OBJECT,
1639 elfcpp::STB_GLOBAL,
1640 elfcpp::STV_DEFAULT, 0,
1641 false, false);
1642 vsym->set_needs_dynsym_entry();
1643 vsym->set_dynsym_index(dynsym_index);
1644 vsym->set_is_default();
1645 ++dynsym_index;
1646 syms->push_back(vsym);
1647 // The name is already in the dynamic pool.
1648 }
1649 }
1650
1651 // Index 1 is used for global symbols.
1652 if (vi == 1)
1653 {
1654 gold_assert(this->defs_.empty());
1655 vi = 2;
1656 }
1657
1658 for (Needs::iterator p = this->needs_.begin();
1659 p != this->needs_.end();
1660 ++p)
1661 vi = (*p)->finalize(vi);
1662
1663 this->is_finalized_ = true;
1664
1665 return dynsym_index;
1666 }
1667
1668 // Return the version index to use for a symbol. This does two hash
1669 // table lookups: one in DYNPOOL and one in this->version_table_.
1670 // Another approach alternative would be store a pointer in SYM, which
1671 // would increase the size of the symbol table. Or perhaps we could
1672 // use a hash table from dynamic symbol pointer values to Version_base
1673 // pointers.
1674
1675 unsigned int
1676 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1677 const Symbol* sym) const
1678 {
1679 Stringpool::Key version_key;
1680 const char* version = dynpool->find(sym->version(), &version_key);
1681 gold_assert(version != NULL);
1682
1683 Key k;
1684 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1685 {
1686 if (!parameters->options().shared())
1687 return elfcpp::VER_NDX_GLOBAL;
1688 k = Key(version_key, 0);
1689 }
1690 else
1691 {
1692 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1693
1694 Stringpool::Key filename_key;
1695 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1696 gold_assert(filename != NULL);
1697
1698 k = Key(version_key, filename_key);
1699 }
1700
1701 Version_table::const_iterator p = this->version_table_.find(k);
1702 gold_assert(p != this->version_table_.end());
1703
1704 return p->second->index();
1705 }
1706
1707 // Return an allocated buffer holding the contents of the symbol
1708 // version section.
1709
1710 template<int size, bool big_endian>
1711 void
1712 Versions::symbol_section_contents(const Symbol_table* symtab,
1713 const Stringpool* dynpool,
1714 unsigned int local_symcount,
1715 const std::vector<Symbol*>& syms,
1716 unsigned char** pp,
1717 unsigned int* psize) const
1718 {
1719 gold_assert(this->is_finalized_);
1720
1721 unsigned int sz = (local_symcount + syms.size()) * 2;
1722 unsigned char* pbuf = new unsigned char[sz];
1723
1724 for (unsigned int i = 0; i < local_symcount; ++i)
1725 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1726 elfcpp::VER_NDX_LOCAL);
1727
1728 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1729 p != syms.end();
1730 ++p)
1731 {
1732 unsigned int version_index;
1733 const char* version = (*p)->version();
1734 if (version != NULL)
1735 version_index = this->version_index(symtab, dynpool, *p);
1736 else
1737 {
1738 if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1739 version_index = elfcpp::VER_NDX_GLOBAL;
1740 else
1741 version_index = elfcpp::VER_NDX_LOCAL;
1742 }
1743 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1744 // the hidden bit.
1745 if ((*p)->version() != NULL && !(*p)->is_default())
1746 version_index |= elfcpp::VERSYM_HIDDEN;
1747 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1748 version_index);
1749 }
1750
1751 *pp = pbuf;
1752 *psize = sz;
1753 }
1754
1755 // Return an allocated buffer holding the contents of the version
1756 // definition section.
1757
1758 template<int size, bool big_endian>
1759 void
1760 Versions::def_section_contents(const Stringpool* dynpool,
1761 unsigned char** pp, unsigned int* psize,
1762 unsigned int* pentries) const
1763 {
1764 gold_assert(this->is_finalized_);
1765 gold_assert(!this->defs_.empty());
1766
1767 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1768 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1769
1770 unsigned int sz = 0;
1771 for (Defs::const_iterator p = this->defs_.begin();
1772 p != this->defs_.end();
1773 ++p)
1774 {
1775 sz += verdef_size + verdaux_size;
1776 sz += (*p)->count_dependencies() * verdaux_size;
1777 }
1778
1779 unsigned char* pbuf = new unsigned char[sz];
1780
1781 unsigned char* pb = pbuf;
1782 Defs::const_iterator p;
1783 unsigned int i;
1784 for (p = this->defs_.begin(), i = 0;
1785 p != this->defs_.end();
1786 ++p, ++i)
1787 pb = (*p)->write<size, big_endian>(dynpool,
1788 i + 1 >= this->defs_.size(),
1789 pb);
1790
1791 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1792
1793 *pp = pbuf;
1794 *psize = sz;
1795 *pentries = this->defs_.size();
1796 }
1797
1798 // Return an allocated buffer holding the contents of the version
1799 // reference section.
1800
1801 template<int size, bool big_endian>
1802 void
1803 Versions::need_section_contents(const Stringpool* dynpool,
1804 unsigned char** pp, unsigned int* psize,
1805 unsigned int* pentries) const
1806 {
1807 gold_assert(this->is_finalized_);
1808 gold_assert(!this->needs_.empty());
1809
1810 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1811 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1812
1813 unsigned int sz = 0;
1814 for (Needs::const_iterator p = this->needs_.begin();
1815 p != this->needs_.end();
1816 ++p)
1817 {
1818 sz += verneed_size;
1819 sz += (*p)->count_versions() * vernaux_size;
1820 }
1821
1822 unsigned char* pbuf = new unsigned char[sz];
1823
1824 unsigned char* pb = pbuf;
1825 Needs::const_iterator p;
1826 unsigned int i;
1827 for (p = this->needs_.begin(), i = 0;
1828 p != this->needs_.end();
1829 ++p, ++i)
1830 pb = (*p)->write<size, big_endian>(dynpool,
1831 i + 1 >= this->needs_.size(),
1832 pb);
1833
1834 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1835
1836 *pp = pbuf;
1837 *psize = sz;
1838 *pentries = this->needs_.size();
1839 }
1840
1841 // Instantiate the templates we need. We could use the configure
1842 // script to restrict this to only the ones for implemented targets.
1843
1844 #ifdef HAVE_TARGET_32_LITTLE
1845 template
1846 class Sized_dynobj<32, false>;
1847 #endif
1848
1849 #ifdef HAVE_TARGET_32_BIG
1850 template
1851 class Sized_dynobj<32, true>;
1852 #endif
1853
1854 #ifdef HAVE_TARGET_64_LITTLE
1855 template
1856 class Sized_dynobj<64, false>;
1857 #endif
1858
1859 #ifdef HAVE_TARGET_64_BIG
1860 template
1861 class Sized_dynobj<64, true>;
1862 #endif
1863
1864 #ifdef HAVE_TARGET_32_LITTLE
1865 template
1866 void
1867 Versions::symbol_section_contents<32, false>(
1868 const Symbol_table*,
1869 const Stringpool*,
1870 unsigned int,
1871 const std::vector<Symbol*>&,
1872 unsigned char**,
1873 unsigned int*) const;
1874 #endif
1875
1876 #ifdef HAVE_TARGET_32_BIG
1877 template
1878 void
1879 Versions::symbol_section_contents<32, true>(
1880 const Symbol_table*,
1881 const Stringpool*,
1882 unsigned int,
1883 const std::vector<Symbol*>&,
1884 unsigned char**,
1885 unsigned int*) const;
1886 #endif
1887
1888 #ifdef HAVE_TARGET_64_LITTLE
1889 template
1890 void
1891 Versions::symbol_section_contents<64, false>(
1892 const Symbol_table*,
1893 const Stringpool*,
1894 unsigned int,
1895 const std::vector<Symbol*>&,
1896 unsigned char**,
1897 unsigned int*) const;
1898 #endif
1899
1900 #ifdef HAVE_TARGET_64_BIG
1901 template
1902 void
1903 Versions::symbol_section_contents<64, true>(
1904 const Symbol_table*,
1905 const Stringpool*,
1906 unsigned int,
1907 const std::vector<Symbol*>&,
1908 unsigned char**,
1909 unsigned int*) const;
1910 #endif
1911
1912 #ifdef HAVE_TARGET_32_LITTLE
1913 template
1914 void
1915 Versions::def_section_contents<32, false>(
1916 const Stringpool*,
1917 unsigned char**,
1918 unsigned int*,
1919 unsigned int*) const;
1920 #endif
1921
1922 #ifdef HAVE_TARGET_32_BIG
1923 template
1924 void
1925 Versions::def_section_contents<32, true>(
1926 const Stringpool*,
1927 unsigned char**,
1928 unsigned int*,
1929 unsigned int*) const;
1930 #endif
1931
1932 #ifdef HAVE_TARGET_64_LITTLE
1933 template
1934 void
1935 Versions::def_section_contents<64, false>(
1936 const Stringpool*,
1937 unsigned char**,
1938 unsigned int*,
1939 unsigned int*) const;
1940 #endif
1941
1942 #ifdef HAVE_TARGET_64_BIG
1943 template
1944 void
1945 Versions::def_section_contents<64, true>(
1946 const Stringpool*,
1947 unsigned char**,
1948 unsigned int*,
1949 unsigned int*) const;
1950 #endif
1951
1952 #ifdef HAVE_TARGET_32_LITTLE
1953 template
1954 void
1955 Versions::need_section_contents<32, false>(
1956 const Stringpool*,
1957 unsigned char**,
1958 unsigned int*,
1959 unsigned int*) const;
1960 #endif
1961
1962 #ifdef HAVE_TARGET_32_BIG
1963 template
1964 void
1965 Versions::need_section_contents<32, true>(
1966 const Stringpool*,
1967 unsigned char**,
1968 unsigned int*,
1969 unsigned int*) const;
1970 #endif
1971
1972 #ifdef HAVE_TARGET_64_LITTLE
1973 template
1974 void
1975 Versions::need_section_contents<64, false>(
1976 const Stringpool*,
1977 unsigned char**,
1978 unsigned int*,
1979 unsigned int*) const;
1980 #endif
1981
1982 #ifdef HAVE_TARGET_64_BIG
1983 template
1984 void
1985 Versions::need_section_contents<64, true>(
1986 const Stringpool*,
1987 unsigned char**,
1988 unsigned int*,
1989 unsigned int*) const;
1990 #endif
1991
1992 } // End namespace gold.
This page took 0.068967 seconds and 5 git commands to generate.