PR 10450
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr),
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
79 {
80 }
81
82 // Set up the object.
83
84 template<int size, bool big_endian>
85 void
86 Sized_dynobj<size, big_endian>::setup()
87 {
88 const unsigned int shnum = this->elf_file_.shnum();
89 this->set_shnum(shnum);
90 }
91
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
94
95 template<int size, bool big_endian>
96 void
97 Sized_dynobj<size, big_endian>::find_dynsym_sections(
98 const unsigned char* pshdrs,
99 unsigned int* pversym_shndx,
100 unsigned int* pverdef_shndx,
101 unsigned int* pverneed_shndx,
102 unsigned int* pdynamic_shndx)
103 {
104 *pversym_shndx = -1U;
105 *pverdef_shndx = -1U;
106 *pverneed_shndx = -1U;
107 *pdynamic_shndx = -1U;
108
109 unsigned int xindex_shndx = 0;
110 unsigned int xindex_link = 0;
111 const unsigned int shnum = this->shnum();
112 const unsigned char* p = pshdrs;
113 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
114 {
115 typename This::Shdr shdr(p);
116
117 unsigned int* pi;
118 switch (shdr.get_sh_type())
119 {
120 case elfcpp::SHT_DYNSYM:
121 this->dynsym_shndx_ = i;
122 if (xindex_shndx > 0 && xindex_link == i)
123 {
124 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
125 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
126 pshdrs);
127 this->set_xindex(xindex);
128 }
129 pi = NULL;
130 break;
131 case elfcpp::SHT_GNU_versym:
132 pi = pversym_shndx;
133 break;
134 case elfcpp::SHT_GNU_verdef:
135 pi = pverdef_shndx;
136 break;
137 case elfcpp::SHT_GNU_verneed:
138 pi = pverneed_shndx;
139 break;
140 case elfcpp::SHT_DYNAMIC:
141 pi = pdynamic_shndx;
142 break;
143 case elfcpp::SHT_SYMTAB_SHNDX:
144 xindex_shndx = i;
145 xindex_link = this->adjust_shndx(shdr.get_sh_link());
146 if (xindex_link == this->dynsym_shndx_)
147 {
148 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
149 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
150 pshdrs);
151 this->set_xindex(xindex);
152 }
153 pi = NULL;
154 break;
155 default:
156 pi = NULL;
157 break;
158 }
159
160 if (pi == NULL)
161 continue;
162
163 if (*pi != -1U)
164 this->error(_("unexpected duplicate type %u section: %u, %u"),
165 shdr.get_sh_type(), *pi, i);
166
167 *pi = i;
168 }
169 }
170
171 // Read the contents of section SHNDX. PSHDRS points to the section
172 // headers. TYPE is the expected section type. LINK is the expected
173 // section link. Store the data in *VIEW and *VIEW_SIZE. The
174 // section's sh_info field is stored in *VIEW_INFO.
175
176 template<int size, bool big_endian>
177 void
178 Sized_dynobj<size, big_endian>::read_dynsym_section(
179 const unsigned char* pshdrs,
180 unsigned int shndx,
181 elfcpp::SHT type,
182 unsigned int link,
183 File_view** view,
184 section_size_type* view_size,
185 unsigned int* view_info)
186 {
187 if (shndx == -1U)
188 {
189 *view = NULL;
190 *view_size = 0;
191 *view_info = 0;
192 return;
193 }
194
195 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
196
197 gold_assert(shdr.get_sh_type() == type);
198
199 if (this->adjust_shndx(shdr.get_sh_link()) != link)
200 this->error(_("unexpected link in section %u header: %u != %u"),
201 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
202
203 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
204 true, false);
205 *view_size = convert_to_section_size_type(shdr.get_sh_size());
206 *view_info = shdr.get_sh_info();
207 }
208
209 // Read the dynamic tags. Set the soname field if this shared object
210 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
211 // the section headers. DYNAMIC_SHNDX is the section index of the
212 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
213 // section index and contents of a string table which may be the one
214 // associated with the SHT_DYNAMIC section.
215
216 template<int size, bool big_endian>
217 void
218 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
219 unsigned int dynamic_shndx,
220 unsigned int strtab_shndx,
221 const unsigned char* strtabu,
222 off_t strtab_size)
223 {
224 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
225 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
226
227 const off_t dynamic_size = dynamicshdr.get_sh_size();
228 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
229 dynamic_size, true, false);
230
231 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
232 if (link != strtab_shndx)
233 {
234 if (link >= this->shnum())
235 {
236 this->error(_("DYNAMIC section %u link out of range: %u"),
237 dynamic_shndx, link);
238 return;
239 }
240
241 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
242 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
243 {
244 this->error(_("DYNAMIC section %u link %u is not a strtab"),
245 dynamic_shndx, link);
246 return;
247 }
248
249 strtab_size = strtabshdr.get_sh_size();
250 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
251 false);
252 }
253
254 const char* const strtab = reinterpret_cast<const char*>(strtabu);
255
256 for (const unsigned char* p = pdynamic;
257 p < pdynamic + dynamic_size;
258 p += This::dyn_size)
259 {
260 typename This::Dyn dyn(p);
261
262 switch (dyn.get_d_tag())
263 {
264 case elfcpp::DT_NULL:
265 // We should always see DT_NULL at the end of the dynamic
266 // tags.
267 return;
268
269 case elfcpp::DT_SONAME:
270 {
271 off_t val = dyn.get_d_val();
272 if (val >= strtab_size)
273 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
274 static_cast<long long>(val),
275 static_cast<long long>(strtab_size));
276 else
277 this->set_soname_string(strtab + val);
278 }
279 break;
280
281 case elfcpp::DT_NEEDED:
282 {
283 off_t val = dyn.get_d_val();
284 if (val >= strtab_size)
285 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
286 static_cast<long long>(val),
287 static_cast<long long>(strtab_size));
288 else
289 this->add_needed(strtab + val);
290 }
291 break;
292
293 default:
294 break;
295 }
296 }
297
298 this->error(_("missing DT_NULL in dynamic segment"));
299 }
300
301 // Read the symbols and sections from a dynamic object. We read the
302 // dynamic symbols, not the normal symbols.
303
304 template<int size, bool big_endian>
305 void
306 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
307 {
308 this->read_section_data(&this->elf_file_, sd);
309
310 const unsigned char* const pshdrs = sd->section_headers->data();
311
312 unsigned int versym_shndx;
313 unsigned int verdef_shndx;
314 unsigned int verneed_shndx;
315 unsigned int dynamic_shndx;
316 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
317 &verneed_shndx, &dynamic_shndx);
318
319 unsigned int strtab_shndx = -1U;
320
321 sd->symbols = NULL;
322 sd->symbols_size = 0;
323 sd->external_symbols_offset = 0;
324 sd->symbol_names = NULL;
325 sd->symbol_names_size = 0;
326 sd->versym = NULL;
327 sd->versym_size = 0;
328 sd->verdef = NULL;
329 sd->verdef_size = 0;
330 sd->verdef_info = 0;
331 sd->verneed = NULL;
332 sd->verneed_size = 0;
333 sd->verneed_info = 0;
334
335 if (this->dynsym_shndx_ != -1U)
336 {
337 // Get the dynamic symbols.
338 typename This::Shdr dynsymshdr(pshdrs
339 + this->dynsym_shndx_ * This::shdr_size);
340 gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM);
341
342 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
343 dynsymshdr.get_sh_size(), true,
344 false);
345 sd->symbols_size =
346 convert_to_section_size_type(dynsymshdr.get_sh_size());
347
348 // Get the symbol names.
349 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
350 if (strtab_shndx >= this->shnum())
351 {
352 this->error(_("invalid dynamic symbol table name index: %u"),
353 strtab_shndx);
354 return;
355 }
356 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
357 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
358 {
359 this->error(_("dynamic symbol table name section "
360 "has wrong type: %u"),
361 static_cast<unsigned int>(strtabshdr.get_sh_type()));
362 return;
363 }
364
365 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
366 strtabshdr.get_sh_size(),
367 false, false);
368 sd->symbol_names_size =
369 convert_to_section_size_type(strtabshdr.get_sh_size());
370
371 // Get the version information.
372
373 unsigned int dummy;
374 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
375 this->dynsym_shndx_,
376 &sd->versym, &sd->versym_size, &dummy);
377
378 // We require that the version definition and need section link
379 // to the same string table as the dynamic symbol table. This
380 // is not a technical requirement, but it always happens in
381 // practice. We could change this if necessary.
382
383 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
384 strtab_shndx, &sd->verdef, &sd->verdef_size,
385 &sd->verdef_info);
386
387 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
388 strtab_shndx, &sd->verneed, &sd->verneed_size,
389 &sd->verneed_info);
390 }
391
392 // Read the SHT_DYNAMIC section to find whether this shared object
393 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
394 // doesn't really have anything to do with reading the symbols, but
395 // this is a convenient place to do it.
396 if (dynamic_shndx != -1U)
397 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
398 (sd->symbol_names == NULL
399 ? NULL
400 : sd->symbol_names->data()),
401 sd->symbol_names_size);
402 }
403
404 // Return the Xindex structure to use for object with lots of
405 // sections.
406
407 template<int size, bool big_endian>
408 Xindex*
409 Sized_dynobj<size, big_endian>::do_initialize_xindex()
410 {
411 gold_assert(this->dynsym_shndx_ != -1U);
412 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
413 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
414 return xindex;
415 }
416
417 // Lay out the input sections for a dynamic object. We don't want to
418 // include sections from a dynamic object, so all that we actually do
419 // here is check for .gnu.warning and .note.GNU-split-stack sections.
420
421 template<int size, bool big_endian>
422 void
423 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
424 Layout*,
425 Read_symbols_data* sd)
426 {
427 const unsigned int shnum = this->shnum();
428 if (shnum == 0)
429 return;
430
431 // Get the section headers.
432 const unsigned char* pshdrs = sd->section_headers->data();
433
434 // Get the section names.
435 const unsigned char* pnamesu = sd->section_names->data();
436 const char* pnames = reinterpret_cast<const char*>(pnamesu);
437
438 // Skip the first, dummy, section.
439 pshdrs += This::shdr_size;
440 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
441 {
442 typename This::Shdr shdr(pshdrs);
443
444 if (shdr.get_sh_name() >= sd->section_names_size)
445 {
446 this->error(_("bad section name offset for section %u: %lu"),
447 i, static_cast<unsigned long>(shdr.get_sh_name()));
448 return;
449 }
450
451 const char* name = pnames + shdr.get_sh_name();
452
453 this->handle_gnu_warning_section(name, i, symtab);
454 this->handle_split_stack_section(name);
455 }
456
457 delete sd->section_headers;
458 sd->section_headers = NULL;
459 delete sd->section_names;
460 sd->section_names = NULL;
461 }
462
463 // Add an entry to the vector mapping version numbers to version
464 // strings.
465
466 template<int size, bool big_endian>
467 void
468 Sized_dynobj<size, big_endian>::set_version_map(
469 Version_map* version_map,
470 unsigned int ndx,
471 const char* name) const
472 {
473 if (ndx >= version_map->size())
474 version_map->resize(ndx + 1);
475 if ((*version_map)[ndx] != NULL)
476 this->error(_("duplicate definition for version %u"), ndx);
477 (*version_map)[ndx] = name;
478 }
479
480 // Add mappings for the version definitions to VERSION_MAP.
481
482 template<int size, bool big_endian>
483 void
484 Sized_dynobj<size, big_endian>::make_verdef_map(
485 Read_symbols_data* sd,
486 Version_map* version_map) const
487 {
488 if (sd->verdef == NULL)
489 return;
490
491 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
492 section_size_type names_size = sd->symbol_names_size;
493
494 const unsigned char* pverdef = sd->verdef->data();
495 section_size_type verdef_size = sd->verdef_size;
496 const unsigned int count = sd->verdef_info;
497
498 const unsigned char* p = pverdef;
499 for (unsigned int i = 0; i < count; ++i)
500 {
501 elfcpp::Verdef<size, big_endian> verdef(p);
502
503 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
504 {
505 this->error(_("unexpected verdef version %u"),
506 verdef.get_vd_version());
507 return;
508 }
509
510 const section_size_type vd_ndx = verdef.get_vd_ndx();
511
512 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
513 // sure why.
514
515 // The first Verdaux holds the name of this version. Subsequent
516 // ones are versions that this one depends upon, which we don't
517 // care about here.
518 const section_size_type vd_cnt = verdef.get_vd_cnt();
519 if (vd_cnt < 1)
520 {
521 this->error(_("verdef vd_cnt field too small: %u"),
522 static_cast<unsigned int>(vd_cnt));
523 return;
524 }
525
526 const section_size_type vd_aux = verdef.get_vd_aux();
527 if ((p - pverdef) + vd_aux >= verdef_size)
528 {
529 this->error(_("verdef vd_aux field out of range: %u"),
530 static_cast<unsigned int>(vd_aux));
531 return;
532 }
533
534 const unsigned char* pvda = p + vd_aux;
535 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
536
537 const section_size_type vda_name = verdaux.get_vda_name();
538 if (vda_name >= names_size)
539 {
540 this->error(_("verdaux vda_name field out of range: %u"),
541 static_cast<unsigned int>(vda_name));
542 return;
543 }
544
545 this->set_version_map(version_map, vd_ndx, names + vda_name);
546
547 const section_size_type vd_next = verdef.get_vd_next();
548 if ((p - pverdef) + vd_next >= verdef_size)
549 {
550 this->error(_("verdef vd_next field out of range: %u"),
551 static_cast<unsigned int>(vd_next));
552 return;
553 }
554
555 p += vd_next;
556 }
557 }
558
559 // Add mappings for the required versions to VERSION_MAP.
560
561 template<int size, bool big_endian>
562 void
563 Sized_dynobj<size, big_endian>::make_verneed_map(
564 Read_symbols_data* sd,
565 Version_map* version_map) const
566 {
567 if (sd->verneed == NULL)
568 return;
569
570 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
571 section_size_type names_size = sd->symbol_names_size;
572
573 const unsigned char* pverneed = sd->verneed->data();
574 const section_size_type verneed_size = sd->verneed_size;
575 const unsigned int count = sd->verneed_info;
576
577 const unsigned char* p = pverneed;
578 for (unsigned int i = 0; i < count; ++i)
579 {
580 elfcpp::Verneed<size, big_endian> verneed(p);
581
582 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
583 {
584 this->error(_("unexpected verneed version %u"),
585 verneed.get_vn_version());
586 return;
587 }
588
589 const section_size_type vn_aux = verneed.get_vn_aux();
590
591 if ((p - pverneed) + vn_aux >= verneed_size)
592 {
593 this->error(_("verneed vn_aux field out of range: %u"),
594 static_cast<unsigned int>(vn_aux));
595 return;
596 }
597
598 const unsigned int vn_cnt = verneed.get_vn_cnt();
599 const unsigned char* pvna = p + vn_aux;
600 for (unsigned int j = 0; j < vn_cnt; ++j)
601 {
602 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
603
604 const unsigned int vna_name = vernaux.get_vna_name();
605 if (vna_name >= names_size)
606 {
607 this->error(_("vernaux vna_name field out of range: %u"),
608 static_cast<unsigned int>(vna_name));
609 return;
610 }
611
612 this->set_version_map(version_map, vernaux.get_vna_other(),
613 names + vna_name);
614
615 const section_size_type vna_next = vernaux.get_vna_next();
616 if ((pvna - pverneed) + vna_next >= verneed_size)
617 {
618 this->error(_("verneed vna_next field out of range: %u"),
619 static_cast<unsigned int>(vna_next));
620 return;
621 }
622
623 pvna += vna_next;
624 }
625
626 const section_size_type vn_next = verneed.get_vn_next();
627 if ((p - pverneed) + vn_next >= verneed_size)
628 {
629 this->error(_("verneed vn_next field out of range: %u"),
630 static_cast<unsigned int>(vn_next));
631 return;
632 }
633
634 p += vn_next;
635 }
636 }
637
638 // Create a vector mapping version numbers to version strings.
639
640 template<int size, bool big_endian>
641 void
642 Sized_dynobj<size, big_endian>::make_version_map(
643 Read_symbols_data* sd,
644 Version_map* version_map) const
645 {
646 if (sd->verdef == NULL && sd->verneed == NULL)
647 return;
648
649 // A guess at the maximum version number we will see. If this is
650 // wrong we will be less efficient but still correct.
651 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
652
653 this->make_verdef_map(sd, version_map);
654 this->make_verneed_map(sd, version_map);
655 }
656
657 // Add the dynamic symbols to the symbol table.
658
659 template<int size, bool big_endian>
660 void
661 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
662 Read_symbols_data* sd,
663 Layout*)
664 {
665 if (sd->symbols == NULL)
666 {
667 gold_assert(sd->symbol_names == NULL);
668 gold_assert(sd->versym == NULL && sd->verdef == NULL
669 && sd->verneed == NULL);
670 return;
671 }
672
673 const int sym_size = This::sym_size;
674 const size_t symcount = sd->symbols_size / sym_size;
675 gold_assert(sd->external_symbols_offset == 0);
676 if (symcount * sym_size != sd->symbols_size)
677 {
678 this->error(_("size of dynamic symbols is not multiple of symbol size"));
679 return;
680 }
681
682 Version_map version_map;
683 this->make_version_map(sd, &version_map);
684
685 // If printing symbol counts, we want to track symbols.
686
687 if (parameters->options().user_set_print_symbol_counts())
688 {
689 this->symbols_ = new Symbols();
690 this->symbols_->resize(symcount);
691 }
692
693 const char* sym_names =
694 reinterpret_cast<const char*>(sd->symbol_names->data());
695 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
696 sym_names, sd->symbol_names_size,
697 (sd->versym == NULL
698 ? NULL
699 : sd->versym->data()),
700 sd->versym_size,
701 &version_map,
702 this->symbols_,
703 &this->defined_count_);
704
705 delete sd->symbols;
706 sd->symbols = NULL;
707 delete sd->symbol_names;
708 sd->symbol_names = NULL;
709 if (sd->versym != NULL)
710 {
711 delete sd->versym;
712 sd->versym = NULL;
713 }
714 if (sd->verdef != NULL)
715 {
716 delete sd->verdef;
717 sd->verdef = NULL;
718 }
719 if (sd->verneed != NULL)
720 {
721 delete sd->verneed;
722 sd->verneed = NULL;
723 }
724
725 // This is normally the last time we will read any data from this
726 // file.
727 this->clear_view_cache_marks();
728 }
729
730 // Get symbol counts.
731
732 template<int size, bool big_endian>
733 void
734 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
735 const Symbol_table*,
736 size_t* defined,
737 size_t* used) const
738 {
739 *defined = this->defined_count_;
740 size_t count = 0;
741 for (typename Symbols::const_iterator p = this->symbols_->begin();
742 p != this->symbols_->end();
743 ++p)
744 if (*p != NULL
745 && (*p)->source() == Symbol::FROM_OBJECT
746 && (*p)->object() == this
747 && (*p)->is_defined()
748 && (*p)->dynsym_index() != -1U)
749 ++count;
750 *used = count;
751 }
752
753 // Given a vector of hash codes, compute the number of hash buckets to
754 // use.
755
756 unsigned int
757 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
758 bool for_gnu_hash_table)
759 {
760 // FIXME: Implement optional hash table optimization.
761
762 // Array used to determine the number of hash table buckets to use
763 // based on the number of symbols there are. If there are fewer
764 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
765 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
766 // use more than 262147 buckets. This is straight from the old GNU
767 // linker.
768 static const unsigned int buckets[] =
769 {
770 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
771 16411, 32771, 65537, 131101, 262147
772 };
773 const int buckets_count = sizeof buckets / sizeof buckets[0];
774
775 unsigned int symcount = hashcodes.size();
776 unsigned int ret = 1;
777 const double full_fraction
778 = 1.0 - parameters->options().hash_bucket_empty_fraction();
779 for (int i = 0; i < buckets_count; ++i)
780 {
781 if (symcount < buckets[i] * full_fraction)
782 break;
783 ret = buckets[i];
784 }
785
786 if (for_gnu_hash_table && ret < 2)
787 ret = 2;
788
789 return ret;
790 }
791
792 // The standard ELF hash function. This hash function must not
793 // change, as the dynamic linker uses it also.
794
795 uint32_t
796 Dynobj::elf_hash(const char* name)
797 {
798 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
799 uint32_t h = 0;
800 unsigned char c;
801 while ((c = *nameu++) != '\0')
802 {
803 h = (h << 4) + c;
804 uint32_t g = h & 0xf0000000;
805 if (g != 0)
806 {
807 h ^= g >> 24;
808 // The ELF ABI says h &= ~g, but using xor is equivalent in
809 // this case (since g was set from h) and may save one
810 // instruction.
811 h ^= g;
812 }
813 }
814 return h;
815 }
816
817 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
818 // DYNSYMS is a vector with all the global dynamic symbols.
819 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
820 // symbol table.
821
822 void
823 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
824 unsigned int local_dynsym_count,
825 unsigned char** pphash,
826 unsigned int* phashlen)
827 {
828 unsigned int dynsym_count = dynsyms.size();
829
830 // Get the hash values for all the symbols.
831 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
832 for (unsigned int i = 0; i < dynsym_count; ++i)
833 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
834
835 const unsigned int bucketcount =
836 Dynobj::compute_bucket_count(dynsym_hashvals, false);
837
838 std::vector<uint32_t> bucket(bucketcount);
839 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
840
841 for (unsigned int i = 0; i < dynsym_count; ++i)
842 {
843 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
844 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
845 chain[dynsym_index] = bucket[bucketpos];
846 bucket[bucketpos] = dynsym_index;
847 }
848
849 unsigned int hashlen = ((2
850 + bucketcount
851 + local_dynsym_count
852 + dynsym_count)
853 * 4);
854 unsigned char* phash = new unsigned char[hashlen];
855
856 if (parameters->target().is_big_endian())
857 {
858 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
859 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
860 hashlen);
861 #else
862 gold_unreachable();
863 #endif
864 }
865 else
866 {
867 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
868 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
869 hashlen);
870 #else
871 gold_unreachable();
872 #endif
873 }
874
875 *pphash = phash;
876 *phashlen = hashlen;
877 }
878
879 // Fill in an ELF hash table.
880
881 template<bool big_endian>
882 void
883 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
884 const std::vector<uint32_t>& chain,
885 unsigned char* phash,
886 unsigned int hashlen)
887 {
888 unsigned char* p = phash;
889
890 const unsigned int bucketcount = bucket.size();
891 const unsigned int chaincount = chain.size();
892
893 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
894 p += 4;
895 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
896 p += 4;
897
898 for (unsigned int i = 0; i < bucketcount; ++i)
899 {
900 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
901 p += 4;
902 }
903
904 for (unsigned int i = 0; i < chaincount; ++i)
905 {
906 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
907 p += 4;
908 }
909
910 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
911 }
912
913 // The hash function used for the GNU hash table. This hash function
914 // must not change, as the dynamic linker uses it also.
915
916 uint32_t
917 Dynobj::gnu_hash(const char* name)
918 {
919 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
920 uint32_t h = 5381;
921 unsigned char c;
922 while ((c = *nameu++) != '\0')
923 h = (h << 5) + h + c;
924 return h;
925 }
926
927 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
928 // tables are an extension to ELF which are recognized by the GNU
929 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
930 // TARGET is the target. DYNSYMS is a vector with all the global
931 // symbols which will be going into the dynamic symbol table.
932 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
933 // symbol table.
934
935 void
936 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
937 unsigned int local_dynsym_count,
938 unsigned char** pphash,
939 unsigned int* phashlen)
940 {
941 const unsigned int count = dynsyms.size();
942
943 // Sort the dynamic symbols into two vectors. Symbols which we do
944 // not want to put into the hash table we store into
945 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
946 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
947 // and records the hash codes.
948
949 std::vector<Symbol*> unhashed_dynsyms;
950 unhashed_dynsyms.reserve(count);
951
952 std::vector<Symbol*> hashed_dynsyms;
953 hashed_dynsyms.reserve(count);
954
955 std::vector<uint32_t> dynsym_hashvals;
956 dynsym_hashvals.reserve(count);
957
958 for (unsigned int i = 0; i < count; ++i)
959 {
960 Symbol* sym = dynsyms[i];
961
962 if (!sym->needs_dynsym_value()
963 && (sym->is_undefined()
964 || sym->is_from_dynobj()
965 || sym->is_forced_local()))
966 unhashed_dynsyms.push_back(sym);
967 else
968 {
969 hashed_dynsyms.push_back(sym);
970 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
971 }
972 }
973
974 // Put the unhashed symbols at the start of the global portion of
975 // the dynamic symbol table.
976 const unsigned int unhashed_count = unhashed_dynsyms.size();
977 unsigned int unhashed_dynsym_index = local_dynsym_count;
978 for (unsigned int i = 0; i < unhashed_count; ++i)
979 {
980 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
981 ++unhashed_dynsym_index;
982 }
983
984 // For the actual data generation we call out to a templatized
985 // function.
986 int size = parameters->target().get_size();
987 bool big_endian = parameters->target().is_big_endian();
988 if (size == 32)
989 {
990 if (big_endian)
991 {
992 #ifdef HAVE_TARGET_32_BIG
993 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
994 dynsym_hashvals,
995 unhashed_dynsym_index,
996 pphash,
997 phashlen);
998 #else
999 gold_unreachable();
1000 #endif
1001 }
1002 else
1003 {
1004 #ifdef HAVE_TARGET_32_LITTLE
1005 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1006 dynsym_hashvals,
1007 unhashed_dynsym_index,
1008 pphash,
1009 phashlen);
1010 #else
1011 gold_unreachable();
1012 #endif
1013 }
1014 }
1015 else if (size == 64)
1016 {
1017 if (big_endian)
1018 {
1019 #ifdef HAVE_TARGET_64_BIG
1020 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1021 dynsym_hashvals,
1022 unhashed_dynsym_index,
1023 pphash,
1024 phashlen);
1025 #else
1026 gold_unreachable();
1027 #endif
1028 }
1029 else
1030 {
1031 #ifdef HAVE_TARGET_64_LITTLE
1032 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1033 dynsym_hashvals,
1034 unhashed_dynsym_index,
1035 pphash,
1036 phashlen);
1037 #else
1038 gold_unreachable();
1039 #endif
1040 }
1041 }
1042 else
1043 gold_unreachable();
1044 }
1045
1046 // Create the actual data for a GNU hash table. This is just a copy
1047 // of the code from the old GNU linker.
1048
1049 template<int size, bool big_endian>
1050 void
1051 Dynobj::sized_create_gnu_hash_table(
1052 const std::vector<Symbol*>& hashed_dynsyms,
1053 const std::vector<uint32_t>& dynsym_hashvals,
1054 unsigned int unhashed_dynsym_count,
1055 unsigned char** pphash,
1056 unsigned int* phashlen)
1057 {
1058 if (hashed_dynsyms.empty())
1059 {
1060 // Special case for the empty hash table.
1061 unsigned int hashlen = 5 * 4 + size / 8;
1062 unsigned char* phash = new unsigned char[hashlen];
1063 // One empty bucket.
1064 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1065 // Symbol index above unhashed symbols.
1066 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1067 // One word for bitmask.
1068 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1069 // Only bloom filter.
1070 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1071 // No valid hashes.
1072 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1073 // No hashes in only bucket.
1074 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1075
1076 *phashlen = hashlen;
1077 *pphash = phash;
1078
1079 return;
1080 }
1081
1082 const unsigned int bucketcount =
1083 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1084
1085 const unsigned int nsyms = hashed_dynsyms.size();
1086
1087 uint32_t maskbitslog2 = 1;
1088 uint32_t x = nsyms >> 1;
1089 while (x != 0)
1090 {
1091 ++maskbitslog2;
1092 x >>= 1;
1093 }
1094 if (maskbitslog2 < 3)
1095 maskbitslog2 = 5;
1096 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1097 maskbitslog2 += 3;
1098 else
1099 maskbitslog2 += 2;
1100
1101 uint32_t shift1;
1102 if (size == 32)
1103 shift1 = 5;
1104 else
1105 {
1106 if (maskbitslog2 == 5)
1107 maskbitslog2 = 6;
1108 shift1 = 6;
1109 }
1110 uint32_t mask = (1U << shift1) - 1U;
1111 uint32_t shift2 = maskbitslog2;
1112 uint32_t maskbits = 1U << maskbitslog2;
1113 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1114
1115 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1116 std::vector<Word> bitmask(maskwords);
1117 std::vector<uint32_t> counts(bucketcount);
1118 std::vector<uint32_t> indx(bucketcount);
1119 uint32_t symindx = unhashed_dynsym_count;
1120
1121 // Count the number of times each hash bucket is used.
1122 for (unsigned int i = 0; i < nsyms; ++i)
1123 ++counts[dynsym_hashvals[i] % bucketcount];
1124
1125 unsigned int cnt = symindx;
1126 for (unsigned int i = 0; i < bucketcount; ++i)
1127 {
1128 indx[i] = cnt;
1129 cnt += counts[i];
1130 }
1131
1132 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1133 hashlen += maskbits / 8;
1134 unsigned char* phash = new unsigned char[hashlen];
1135
1136 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1137 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1138 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1139 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1140
1141 unsigned char* p = phash + 16 + maskbits / 8;
1142 for (unsigned int i = 0; i < bucketcount; ++i)
1143 {
1144 if (counts[i] == 0)
1145 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1146 else
1147 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1148 p += 4;
1149 }
1150
1151 for (unsigned int i = 0; i < nsyms; ++i)
1152 {
1153 Symbol* sym = hashed_dynsyms[i];
1154 uint32_t hashval = dynsym_hashvals[i];
1155
1156 unsigned int bucket = hashval % bucketcount;
1157 unsigned int val = ((hashval >> shift1)
1158 & ((maskbits >> shift1) - 1));
1159 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1160 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1161 val = hashval & ~ 1U;
1162 if (counts[bucket] == 1)
1163 {
1164 // Last element terminates the chain.
1165 val |= 1;
1166 }
1167 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1168 val);
1169 --counts[bucket];
1170
1171 sym->set_dynsym_index(indx[bucket]);
1172 ++indx[bucket];
1173 }
1174
1175 p = phash + 16;
1176 for (unsigned int i = 0; i < maskwords; ++i)
1177 {
1178 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1179 p += size / 8;
1180 }
1181
1182 *phashlen = hashlen;
1183 *pphash = phash;
1184 }
1185
1186 // Verdef methods.
1187
1188 // Write this definition to a buffer for the output section.
1189
1190 template<int size, bool big_endian>
1191 unsigned char*
1192 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1193 {
1194 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1195 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1196
1197 elfcpp::Verdef_write<size, big_endian> vd(pb);
1198 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1199 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1200 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1201 vd.set_vd_ndx(this->index());
1202 vd.set_vd_cnt(1 + this->deps_.size());
1203 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1204 vd.set_vd_aux(verdef_size);
1205 vd.set_vd_next(is_last
1206 ? 0
1207 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1208 pb += verdef_size;
1209
1210 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1211 vda.set_vda_name(dynpool->get_offset(this->name()));
1212 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1213 pb += verdaux_size;
1214
1215 Deps::const_iterator p;
1216 unsigned int i;
1217 for (p = this->deps_.begin(), i = 0;
1218 p != this->deps_.end();
1219 ++p, ++i)
1220 {
1221 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1222 vda.set_vda_name(dynpool->get_offset(*p));
1223 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1224 pb += verdaux_size;
1225 }
1226
1227 return pb;
1228 }
1229
1230 // Verneed methods.
1231
1232 Verneed::~Verneed()
1233 {
1234 for (Need_versions::iterator p = this->need_versions_.begin();
1235 p != this->need_versions_.end();
1236 ++p)
1237 delete *p;
1238 }
1239
1240 // Add a new version to this file reference.
1241
1242 Verneed_version*
1243 Verneed::add_name(const char* name)
1244 {
1245 Verneed_version* vv = new Verneed_version(name);
1246 this->need_versions_.push_back(vv);
1247 return vv;
1248 }
1249
1250 // Set the version indexes starting at INDEX.
1251
1252 unsigned int
1253 Verneed::finalize(unsigned int index)
1254 {
1255 for (Need_versions::iterator p = this->need_versions_.begin();
1256 p != this->need_versions_.end();
1257 ++p)
1258 {
1259 (*p)->set_index(index);
1260 ++index;
1261 }
1262 return index;
1263 }
1264
1265 // Write this list of referenced versions to a buffer for the output
1266 // section.
1267
1268 template<int size, bool big_endian>
1269 unsigned char*
1270 Verneed::write(const Stringpool* dynpool, bool is_last,
1271 unsigned char* pb) const
1272 {
1273 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1274 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1275
1276 elfcpp::Verneed_write<size, big_endian> vn(pb);
1277 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1278 vn.set_vn_cnt(this->need_versions_.size());
1279 vn.set_vn_file(dynpool->get_offset(this->filename()));
1280 vn.set_vn_aux(verneed_size);
1281 vn.set_vn_next(is_last
1282 ? 0
1283 : verneed_size + this->need_versions_.size() * vernaux_size);
1284 pb += verneed_size;
1285
1286 Need_versions::const_iterator p;
1287 unsigned int i;
1288 for (p = this->need_versions_.begin(), i = 0;
1289 p != this->need_versions_.end();
1290 ++p, ++i)
1291 {
1292 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1293 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1294 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1295 vna.set_vna_flags(0);
1296 vna.set_vna_other((*p)->index());
1297 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1298 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1299 ? 0
1300 : vernaux_size);
1301 pb += vernaux_size;
1302 }
1303
1304 return pb;
1305 }
1306
1307 // Versions methods.
1308
1309 Versions::Versions(const Version_script_info& version_script,
1310 Stringpool* dynpool)
1311 : defs_(), needs_(), version_table_(),
1312 is_finalized_(false), version_script_(version_script),
1313 needs_base_version_(parameters->options().shared())
1314 {
1315 if (!this->version_script_.empty())
1316 {
1317 // Parse the version script, and insert each declared version into
1318 // defs_ and version_table_.
1319 std::vector<std::string> versions = this->version_script_.get_versions();
1320
1321 if (this->needs_base_version_ && !versions.empty())
1322 this->define_base_version(dynpool);
1323
1324 for (size_t k = 0; k < versions.size(); ++k)
1325 {
1326 Stringpool::Key version_key;
1327 const char* version = dynpool->add(versions[k].c_str(),
1328 true, &version_key);
1329 Verdef* const vd = new Verdef(
1330 version,
1331 this->version_script_.get_dependencies(version),
1332 false, false, false);
1333 this->defs_.push_back(vd);
1334 Key key(version_key, 0);
1335 this->version_table_.insert(std::make_pair(key, vd));
1336 }
1337 }
1338 }
1339
1340 Versions::~Versions()
1341 {
1342 for (Defs::iterator p = this->defs_.begin();
1343 p != this->defs_.end();
1344 ++p)
1345 delete *p;
1346
1347 for (Needs::iterator p = this->needs_.begin();
1348 p != this->needs_.end();
1349 ++p)
1350 delete *p;
1351 }
1352
1353 // Define the base version of a shared library. The base version definition
1354 // must be the first entry in defs_. We insert it lazily so that defs_ is
1355 // empty if no symbol versioning is used. Then layout can just drop the
1356 // version sections.
1357
1358 void
1359 Versions::define_base_version(Stringpool* dynpool)
1360 {
1361 // If we do any versioning at all, we always need a base version, so
1362 // define that first. Nothing explicitly declares itself as part of base,
1363 // so it doesn't need to be in version_table_.
1364 gold_assert(this->defs_.empty());
1365 const char* name = parameters->options().soname();
1366 if (name == NULL)
1367 name = parameters->options().output_file_name();
1368 name = dynpool->add(name, false, NULL);
1369 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1370 true, false, true);
1371 this->defs_.push_back(vdbase);
1372 this->needs_base_version_ = false;
1373 }
1374
1375 // Return the dynamic object which a symbol refers to.
1376
1377 Dynobj*
1378 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1379 const Symbol* sym) const
1380 {
1381 if (sym->is_copied_from_dynobj())
1382 return symtab->get_copy_source(sym);
1383 else
1384 {
1385 Object* object = sym->object();
1386 gold_assert(object->is_dynamic());
1387 return static_cast<Dynobj*>(object);
1388 }
1389 }
1390
1391 // Record version information for a symbol going into the dynamic
1392 // symbol table.
1393
1394 void
1395 Versions::record_version(const Symbol_table* symtab,
1396 Stringpool* dynpool, const Symbol* sym)
1397 {
1398 gold_assert(!this->is_finalized_);
1399 gold_assert(sym->version() != NULL);
1400
1401 Stringpool::Key version_key;
1402 const char* version = dynpool->add(sym->version(), false, &version_key);
1403
1404 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1405 {
1406 if (parameters->options().shared())
1407 this->add_def(sym, version, version_key);
1408 }
1409 else
1410 {
1411 // This is a version reference.
1412 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1413 this->add_need(dynpool, dynobj->soname(), version, version_key);
1414 }
1415 }
1416
1417 // We've found a symbol SYM defined in version VERSION.
1418
1419 void
1420 Versions::add_def(const Symbol* sym, const char* version,
1421 Stringpool::Key version_key)
1422 {
1423 Key k(version_key, 0);
1424 Version_base* const vbnull = NULL;
1425 std::pair<Version_table::iterator, bool> ins =
1426 this->version_table_.insert(std::make_pair(k, vbnull));
1427
1428 if (!ins.second)
1429 {
1430 // We already have an entry for this version.
1431 Version_base* vb = ins.first->second;
1432
1433 // We have now seen a symbol in this version, so it is not
1434 // weak.
1435 gold_assert(vb != NULL);
1436 vb->clear_weak();
1437 }
1438 else
1439 {
1440 // If we are creating a shared object, it is an error to
1441 // find a definition of a symbol with a version which is not
1442 // in the version script.
1443 if (parameters->options().shared())
1444 gold_error(_("symbol %s has undefined version %s"),
1445 sym->demangled_name().c_str(), version);
1446 else
1447 // We only insert a base version for shared library.
1448 gold_assert(!this->needs_base_version_);
1449
1450 // When creating a regular executable, automatically define
1451 // a new version.
1452 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1453 false, false, false);
1454 this->defs_.push_back(vd);
1455 ins.first->second = vd;
1456 }
1457 }
1458
1459 // Add a reference to version NAME in file FILENAME.
1460
1461 void
1462 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1463 Stringpool::Key name_key)
1464 {
1465 Stringpool::Key filename_key;
1466 filename = dynpool->add(filename, true, &filename_key);
1467
1468 Key k(name_key, filename_key);
1469 Version_base* const vbnull = NULL;
1470 std::pair<Version_table::iterator, bool> ins =
1471 this->version_table_.insert(std::make_pair(k, vbnull));
1472
1473 if (!ins.second)
1474 {
1475 // We already have an entry for this filename/version.
1476 return;
1477 }
1478
1479 // See whether we already have this filename. We don't expect many
1480 // version references, so we just do a linear search. This could be
1481 // replaced by a hash table.
1482 Verneed* vn = NULL;
1483 for (Needs::iterator p = this->needs_.begin();
1484 p != this->needs_.end();
1485 ++p)
1486 {
1487 if ((*p)->filename() == filename)
1488 {
1489 vn = *p;
1490 break;
1491 }
1492 }
1493
1494 if (vn == NULL)
1495 {
1496 // Create base version definition lazily for shared library.
1497 if (this->needs_base_version_)
1498 this->define_base_version(dynpool);
1499
1500 // We have a new filename.
1501 vn = new Verneed(filename);
1502 this->needs_.push_back(vn);
1503 }
1504
1505 ins.first->second = vn->add_name(name);
1506 }
1507
1508 // Set the version indexes. Create a new dynamic version symbol for
1509 // each new version definition.
1510
1511 unsigned int
1512 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1513 std::vector<Symbol*>* syms)
1514 {
1515 gold_assert(!this->is_finalized_);
1516
1517 unsigned int vi = 1;
1518
1519 for (Defs::iterator p = this->defs_.begin();
1520 p != this->defs_.end();
1521 ++p)
1522 {
1523 (*p)->set_index(vi);
1524 ++vi;
1525
1526 // Create a version symbol if necessary.
1527 if (!(*p)->is_symbol_created())
1528 {
1529 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1530 (*p)->name(),
1531 Symbol_table::PREDEFINED,
1532 0, 0,
1533 elfcpp::STT_OBJECT,
1534 elfcpp::STB_GLOBAL,
1535 elfcpp::STV_DEFAULT, 0,
1536 false, false);
1537 vsym->set_needs_dynsym_entry();
1538 vsym->set_dynsym_index(dynsym_index);
1539 ++dynsym_index;
1540 syms->push_back(vsym);
1541 // The name is already in the dynamic pool.
1542 }
1543 }
1544
1545 // Index 1 is used for global symbols.
1546 if (vi == 1)
1547 {
1548 gold_assert(this->defs_.empty());
1549 vi = 2;
1550 }
1551
1552 for (Needs::iterator p = this->needs_.begin();
1553 p != this->needs_.end();
1554 ++p)
1555 vi = (*p)->finalize(vi);
1556
1557 this->is_finalized_ = true;
1558
1559 return dynsym_index;
1560 }
1561
1562 // Return the version index to use for a symbol. This does two hash
1563 // table lookups: one in DYNPOOL and one in this->version_table_.
1564 // Another approach alternative would be store a pointer in SYM, which
1565 // would increase the size of the symbol table. Or perhaps we could
1566 // use a hash table from dynamic symbol pointer values to Version_base
1567 // pointers.
1568
1569 unsigned int
1570 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1571 const Symbol* sym) const
1572 {
1573 Stringpool::Key version_key;
1574 const char* version = dynpool->find(sym->version(), &version_key);
1575 gold_assert(version != NULL);
1576
1577 Key k;
1578 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1579 {
1580 if (!parameters->options().shared())
1581 return elfcpp::VER_NDX_GLOBAL;
1582 k = Key(version_key, 0);
1583 }
1584 else
1585 {
1586 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1587
1588 Stringpool::Key filename_key;
1589 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1590 gold_assert(filename != NULL);
1591
1592 k = Key(version_key, filename_key);
1593 }
1594
1595 Version_table::const_iterator p = this->version_table_.find(k);
1596 gold_assert(p != this->version_table_.end());
1597
1598 return p->second->index();
1599 }
1600
1601 // Return an allocated buffer holding the contents of the symbol
1602 // version section.
1603
1604 template<int size, bool big_endian>
1605 void
1606 Versions::symbol_section_contents(const Symbol_table* symtab,
1607 const Stringpool* dynpool,
1608 unsigned int local_symcount,
1609 const std::vector<Symbol*>& syms,
1610 unsigned char** pp,
1611 unsigned int* psize) const
1612 {
1613 gold_assert(this->is_finalized_);
1614
1615 unsigned int sz = (local_symcount + syms.size()) * 2;
1616 unsigned char* pbuf = new unsigned char[sz];
1617
1618 for (unsigned int i = 0; i < local_symcount; ++i)
1619 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1620 elfcpp::VER_NDX_LOCAL);
1621
1622 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1623 p != syms.end();
1624 ++p)
1625 {
1626 unsigned int version_index;
1627 const char* version = (*p)->version();
1628 if (version == NULL)
1629 version_index = elfcpp::VER_NDX_GLOBAL;
1630 else
1631 version_index = this->version_index(symtab, dynpool, *p);
1632 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1633 // the hidden bit.
1634 if ((*p)->version() != NULL && !(*p)->is_default())
1635 version_index |= elfcpp::VERSYM_HIDDEN;
1636 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1637 version_index);
1638 }
1639
1640 *pp = pbuf;
1641 *psize = sz;
1642 }
1643
1644 // Return an allocated buffer holding the contents of the version
1645 // definition section.
1646
1647 template<int size, bool big_endian>
1648 void
1649 Versions::def_section_contents(const Stringpool* dynpool,
1650 unsigned char** pp, unsigned int* psize,
1651 unsigned int* pentries) const
1652 {
1653 gold_assert(this->is_finalized_);
1654 gold_assert(!this->defs_.empty());
1655
1656 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1657 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1658
1659 unsigned int sz = 0;
1660 for (Defs::const_iterator p = this->defs_.begin();
1661 p != this->defs_.end();
1662 ++p)
1663 {
1664 sz += verdef_size + verdaux_size;
1665 sz += (*p)->count_dependencies() * verdaux_size;
1666 }
1667
1668 unsigned char* pbuf = new unsigned char[sz];
1669
1670 unsigned char* pb = pbuf;
1671 Defs::const_iterator p;
1672 unsigned int i;
1673 for (p = this->defs_.begin(), i = 0;
1674 p != this->defs_.end();
1675 ++p, ++i)
1676 pb = (*p)->write<size, big_endian>(dynpool,
1677 i + 1 >= this->defs_.size(),
1678 pb);
1679
1680 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1681
1682 *pp = pbuf;
1683 *psize = sz;
1684 *pentries = this->defs_.size();
1685 }
1686
1687 // Return an allocated buffer holding the contents of the version
1688 // reference section.
1689
1690 template<int size, bool big_endian>
1691 void
1692 Versions::need_section_contents(const Stringpool* dynpool,
1693 unsigned char** pp, unsigned int *psize,
1694 unsigned int *pentries) const
1695 {
1696 gold_assert(this->is_finalized_);
1697 gold_assert(!this->needs_.empty());
1698
1699 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1700 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1701
1702 unsigned int sz = 0;
1703 for (Needs::const_iterator p = this->needs_.begin();
1704 p != this->needs_.end();
1705 ++p)
1706 {
1707 sz += verneed_size;
1708 sz += (*p)->count_versions() * vernaux_size;
1709 }
1710
1711 unsigned char* pbuf = new unsigned char[sz];
1712
1713 unsigned char* pb = pbuf;
1714 Needs::const_iterator p;
1715 unsigned int i;
1716 for (p = this->needs_.begin(), i = 0;
1717 p != this->needs_.end();
1718 ++p, ++i)
1719 pb = (*p)->write<size, big_endian>(dynpool,
1720 i + 1 >= this->needs_.size(),
1721 pb);
1722
1723 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1724
1725 *pp = pbuf;
1726 *psize = sz;
1727 *pentries = this->needs_.size();
1728 }
1729
1730 // Instantiate the templates we need. We could use the configure
1731 // script to restrict this to only the ones for implemented targets.
1732
1733 #ifdef HAVE_TARGET_32_LITTLE
1734 template
1735 class Sized_dynobj<32, false>;
1736 #endif
1737
1738 #ifdef HAVE_TARGET_32_BIG
1739 template
1740 class Sized_dynobj<32, true>;
1741 #endif
1742
1743 #ifdef HAVE_TARGET_64_LITTLE
1744 template
1745 class Sized_dynobj<64, false>;
1746 #endif
1747
1748 #ifdef HAVE_TARGET_64_BIG
1749 template
1750 class Sized_dynobj<64, true>;
1751 #endif
1752
1753 #ifdef HAVE_TARGET_32_LITTLE
1754 template
1755 void
1756 Versions::symbol_section_contents<32, false>(
1757 const Symbol_table*,
1758 const Stringpool*,
1759 unsigned int,
1760 const std::vector<Symbol*>&,
1761 unsigned char**,
1762 unsigned int*) const;
1763 #endif
1764
1765 #ifdef HAVE_TARGET_32_BIG
1766 template
1767 void
1768 Versions::symbol_section_contents<32, true>(
1769 const Symbol_table*,
1770 const Stringpool*,
1771 unsigned int,
1772 const std::vector<Symbol*>&,
1773 unsigned char**,
1774 unsigned int*) const;
1775 #endif
1776
1777 #ifdef HAVE_TARGET_64_LITTLE
1778 template
1779 void
1780 Versions::symbol_section_contents<64, false>(
1781 const Symbol_table*,
1782 const Stringpool*,
1783 unsigned int,
1784 const std::vector<Symbol*>&,
1785 unsigned char**,
1786 unsigned int*) const;
1787 #endif
1788
1789 #ifdef HAVE_TARGET_64_BIG
1790 template
1791 void
1792 Versions::symbol_section_contents<64, true>(
1793 const Symbol_table*,
1794 const Stringpool*,
1795 unsigned int,
1796 const std::vector<Symbol*>&,
1797 unsigned char**,
1798 unsigned int*) const;
1799 #endif
1800
1801 #ifdef HAVE_TARGET_32_LITTLE
1802 template
1803 void
1804 Versions::def_section_contents<32, false>(
1805 const Stringpool*,
1806 unsigned char**,
1807 unsigned int*,
1808 unsigned int*) const;
1809 #endif
1810
1811 #ifdef HAVE_TARGET_32_BIG
1812 template
1813 void
1814 Versions::def_section_contents<32, true>(
1815 const Stringpool*,
1816 unsigned char**,
1817 unsigned int*,
1818 unsigned int*) const;
1819 #endif
1820
1821 #ifdef HAVE_TARGET_64_LITTLE
1822 template
1823 void
1824 Versions::def_section_contents<64, false>(
1825 const Stringpool*,
1826 unsigned char**,
1827 unsigned int*,
1828 unsigned int*) const;
1829 #endif
1830
1831 #ifdef HAVE_TARGET_64_BIG
1832 template
1833 void
1834 Versions::def_section_contents<64, true>(
1835 const Stringpool*,
1836 unsigned char**,
1837 unsigned int*,
1838 unsigned int*) const;
1839 #endif
1840
1841 #ifdef HAVE_TARGET_32_LITTLE
1842 template
1843 void
1844 Versions::need_section_contents<32, false>(
1845 const Stringpool*,
1846 unsigned char**,
1847 unsigned int*,
1848 unsigned int*) const;
1849 #endif
1850
1851 #ifdef HAVE_TARGET_32_BIG
1852 template
1853 void
1854 Versions::need_section_contents<32, true>(
1855 const Stringpool*,
1856 unsigned char**,
1857 unsigned int*,
1858 unsigned int*) const;
1859 #endif
1860
1861 #ifdef HAVE_TARGET_64_LITTLE
1862 template
1863 void
1864 Versions::need_section_contents<64, false>(
1865 const Stringpool*,
1866 unsigned char**,
1867 unsigned int*,
1868 unsigned int*) const;
1869 #endif
1870
1871 #ifdef HAVE_TARGET_64_BIG
1872 template
1873 void
1874 Versions::need_section_contents<64, true>(
1875 const Stringpool*,
1876 unsigned char**,
1877 unsigned int*,
1878 unsigned int*) const;
1879 #endif
1880
1881 } // End namespace gold.
This page took 0.081691 seconds and 5 git commands to generate.