PR gold/12525
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 if (input_file == NULL)
53 this->soname_ = name;
54 else
55 {
56 this->soname_ = input_file->found_name();
57 if (this->offset() != 0)
58 {
59 std::string::size_type open_paren = this->name().find('(');
60 std::string::size_type close_paren = this->name().find(')');
61 if (open_paren != std::string::npos
62 && close_paren != std::string::npos)
63 {
64 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
65 open_paren += 1;
66 this->soname_ = this->name().substr(open_paren,
67 close_paren - open_paren);
68 }
69 }
70 }
71 }
72
73 // Class Sized_dynobj.
74
75 template<int size, bool big_endian>
76 Sized_dynobj<size, big_endian>::Sized_dynobj(
77 const std::string& name,
78 Input_file* input_file,
79 off_t offset,
80 const elfcpp::Ehdr<size, big_endian>& ehdr)
81 : Dynobj(name, input_file, offset),
82 elf_file_(this, ehdr),
83 dynsym_shndx_(-1U),
84 symbols_(NULL),
85 defined_count_(0)
86 {
87 }
88
89 // Set up the object.
90
91 template<int size, bool big_endian>
92 void
93 Sized_dynobj<size, big_endian>::setup()
94 {
95 const unsigned int shnum = this->elf_file_.shnum();
96 this->set_shnum(shnum);
97 }
98
99 // Find the SHT_DYNSYM section and the various version sections, and
100 // the dynamic section, given the section headers.
101
102 template<int size, bool big_endian>
103 void
104 Sized_dynobj<size, big_endian>::find_dynsym_sections(
105 const unsigned char* pshdrs,
106 unsigned int* pversym_shndx,
107 unsigned int* pverdef_shndx,
108 unsigned int* pverneed_shndx,
109 unsigned int* pdynamic_shndx)
110 {
111 *pversym_shndx = -1U;
112 *pverdef_shndx = -1U;
113 *pverneed_shndx = -1U;
114 *pdynamic_shndx = -1U;
115
116 unsigned int symtab_shndx = 0;
117 unsigned int xindex_shndx = 0;
118 unsigned int xindex_link = 0;
119 const unsigned int shnum = this->shnum();
120 const unsigned char* p = pshdrs;
121 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
122 {
123 typename This::Shdr shdr(p);
124
125 unsigned int* pi;
126 switch (shdr.get_sh_type())
127 {
128 case elfcpp::SHT_DYNSYM:
129 this->dynsym_shndx_ = i;
130 if (xindex_shndx > 0 && xindex_link == i)
131 {
132 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
133 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
134 pshdrs);
135 this->set_xindex(xindex);
136 }
137 pi = NULL;
138 break;
139 case elfcpp::SHT_SYMTAB:
140 symtab_shndx = i;
141 pi = NULL;
142 break;
143 case elfcpp::SHT_GNU_versym:
144 pi = pversym_shndx;
145 break;
146 case elfcpp::SHT_GNU_verdef:
147 pi = pverdef_shndx;
148 break;
149 case elfcpp::SHT_GNU_verneed:
150 pi = pverneed_shndx;
151 break;
152 case elfcpp::SHT_DYNAMIC:
153 pi = pdynamic_shndx;
154 break;
155 case elfcpp::SHT_SYMTAB_SHNDX:
156 xindex_shndx = i;
157 xindex_link = this->adjust_shndx(shdr.get_sh_link());
158 if (xindex_link == this->dynsym_shndx_)
159 {
160 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
161 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
162 pshdrs);
163 this->set_xindex(xindex);
164 }
165 pi = NULL;
166 break;
167 default:
168 pi = NULL;
169 break;
170 }
171
172 if (pi == NULL)
173 continue;
174
175 if (*pi != -1U)
176 this->error(_("unexpected duplicate type %u section: %u, %u"),
177 shdr.get_sh_type(), *pi, i);
178
179 *pi = i;
180 }
181
182 // If there is no dynamic symbol table, use the normal symbol table.
183 // On some SVR4 systems, a shared library is stored in an archive.
184 // The version stored in the archive only has a normal symbol table.
185 // It has an SONAME entry which points to another copy in the file
186 // system which has a dynamic symbol table as usual. This is way of
187 // addressing the issues which glibc addresses using GROUP with
188 // libc_nonshared.a.
189 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
190 {
191 this->dynsym_shndx_ = symtab_shndx;
192 if (xindex_shndx > 0 && xindex_link == symtab_shndx)
193 {
194 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
195 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
196 pshdrs);
197 this->set_xindex(xindex);
198 }
199 }
200 }
201
202 // Read the contents of section SHNDX. PSHDRS points to the section
203 // headers. TYPE is the expected section type. LINK is the expected
204 // section link. Store the data in *VIEW and *VIEW_SIZE. The
205 // section's sh_info field is stored in *VIEW_INFO.
206
207 template<int size, bool big_endian>
208 void
209 Sized_dynobj<size, big_endian>::read_dynsym_section(
210 const unsigned char* pshdrs,
211 unsigned int shndx,
212 elfcpp::SHT type,
213 unsigned int link,
214 File_view** view,
215 section_size_type* view_size,
216 unsigned int* view_info)
217 {
218 if (shndx == -1U)
219 {
220 *view = NULL;
221 *view_size = 0;
222 *view_info = 0;
223 return;
224 }
225
226 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
227
228 gold_assert(shdr.get_sh_type() == type);
229
230 if (this->adjust_shndx(shdr.get_sh_link()) != link)
231 this->error(_("unexpected link in section %u header: %u != %u"),
232 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
233
234 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
235 true, false);
236 *view_size = convert_to_section_size_type(shdr.get_sh_size());
237 *view_info = shdr.get_sh_info();
238 }
239
240 // Read the dynamic tags. Set the soname field if this shared object
241 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
242 // the section headers. DYNAMIC_SHNDX is the section index of the
243 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
244 // section index and contents of a string table which may be the one
245 // associated with the SHT_DYNAMIC section.
246
247 template<int size, bool big_endian>
248 void
249 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
250 unsigned int dynamic_shndx,
251 unsigned int strtab_shndx,
252 const unsigned char* strtabu,
253 off_t strtab_size)
254 {
255 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
256 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
257
258 const off_t dynamic_size = dynamicshdr.get_sh_size();
259 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
260 dynamic_size, true, false);
261
262 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
263 if (link != strtab_shndx)
264 {
265 if (link >= this->shnum())
266 {
267 this->error(_("DYNAMIC section %u link out of range: %u"),
268 dynamic_shndx, link);
269 return;
270 }
271
272 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
273 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
274 {
275 this->error(_("DYNAMIC section %u link %u is not a strtab"),
276 dynamic_shndx, link);
277 return;
278 }
279
280 strtab_size = strtabshdr.get_sh_size();
281 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
282 false);
283 }
284
285 const char* const strtab = reinterpret_cast<const char*>(strtabu);
286
287 for (const unsigned char* p = pdynamic;
288 p < pdynamic + dynamic_size;
289 p += This::dyn_size)
290 {
291 typename This::Dyn dyn(p);
292
293 switch (dyn.get_d_tag())
294 {
295 case elfcpp::DT_NULL:
296 // We should always see DT_NULL at the end of the dynamic
297 // tags.
298 return;
299
300 case elfcpp::DT_SONAME:
301 {
302 off_t val = dyn.get_d_val();
303 if (val >= strtab_size)
304 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
305 static_cast<long long>(val),
306 static_cast<long long>(strtab_size));
307 else
308 this->set_soname_string(strtab + val);
309 }
310 break;
311
312 case elfcpp::DT_NEEDED:
313 {
314 off_t val = dyn.get_d_val();
315 if (val >= strtab_size)
316 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
317 static_cast<long long>(val),
318 static_cast<long long>(strtab_size));
319 else
320 this->add_needed(strtab + val);
321 }
322 break;
323
324 default:
325 break;
326 }
327 }
328
329 this->error(_("missing DT_NULL in dynamic segment"));
330 }
331
332 // Read the symbols and sections from a dynamic object. We read the
333 // dynamic symbols, not the normal symbols.
334
335 template<int size, bool big_endian>
336 void
337 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
338 {
339 this->read_section_data(&this->elf_file_, sd);
340
341 const unsigned char* const pshdrs = sd->section_headers->data();
342
343 unsigned int versym_shndx;
344 unsigned int verdef_shndx;
345 unsigned int verneed_shndx;
346 unsigned int dynamic_shndx;
347 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
348 &verneed_shndx, &dynamic_shndx);
349
350 unsigned int strtab_shndx = -1U;
351
352 sd->symbols = NULL;
353 sd->symbols_size = 0;
354 sd->external_symbols_offset = 0;
355 sd->symbol_names = NULL;
356 sd->symbol_names_size = 0;
357 sd->versym = NULL;
358 sd->versym_size = 0;
359 sd->verdef = NULL;
360 sd->verdef_size = 0;
361 sd->verdef_info = 0;
362 sd->verneed = NULL;
363 sd->verneed_size = 0;
364 sd->verneed_info = 0;
365
366 if (this->dynsym_shndx_ != -1U)
367 {
368 // Get the dynamic symbols.
369 typename This::Shdr dynsymshdr(pshdrs
370 + this->dynsym_shndx_ * This::shdr_size);
371
372 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
373 dynsymshdr.get_sh_size(), true,
374 false);
375 sd->symbols_size =
376 convert_to_section_size_type(dynsymshdr.get_sh_size());
377
378 // Get the symbol names.
379 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
380 if (strtab_shndx >= this->shnum())
381 {
382 this->error(_("invalid dynamic symbol table name index: %u"),
383 strtab_shndx);
384 return;
385 }
386 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
387 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
388 {
389 this->error(_("dynamic symbol table name section "
390 "has wrong type: %u"),
391 static_cast<unsigned int>(strtabshdr.get_sh_type()));
392 return;
393 }
394
395 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
396 strtabshdr.get_sh_size(),
397 false, false);
398 sd->symbol_names_size =
399 convert_to_section_size_type(strtabshdr.get_sh_size());
400
401 // Get the version information.
402
403 unsigned int dummy;
404 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
405 this->dynsym_shndx_,
406 &sd->versym, &sd->versym_size, &dummy);
407
408 // We require that the version definition and need section link
409 // to the same string table as the dynamic symbol table. This
410 // is not a technical requirement, but it always happens in
411 // practice. We could change this if necessary.
412
413 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
414 strtab_shndx, &sd->verdef, &sd->verdef_size,
415 &sd->verdef_info);
416
417 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
418 strtab_shndx, &sd->verneed, &sd->verneed_size,
419 &sd->verneed_info);
420 }
421
422 // Read the SHT_DYNAMIC section to find whether this shared object
423 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
424 // doesn't really have anything to do with reading the symbols, but
425 // this is a convenient place to do it.
426 if (dynamic_shndx != -1U)
427 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
428 (sd->symbol_names == NULL
429 ? NULL
430 : sd->symbol_names->data()),
431 sd->symbol_names_size);
432 }
433
434 // Return the Xindex structure to use for object with lots of
435 // sections.
436
437 template<int size, bool big_endian>
438 Xindex*
439 Sized_dynobj<size, big_endian>::do_initialize_xindex()
440 {
441 gold_assert(this->dynsym_shndx_ != -1U);
442 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
443 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
444 return xindex;
445 }
446
447 // Lay out the input sections for a dynamic object. We don't want to
448 // include sections from a dynamic object, so all that we actually do
449 // here is check for .gnu.warning and .note.GNU-split-stack sections.
450
451 template<int size, bool big_endian>
452 void
453 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
454 Layout*,
455 Read_symbols_data* sd)
456 {
457 const unsigned int shnum = this->shnum();
458 if (shnum == 0)
459 return;
460
461 // Get the section headers.
462 const unsigned char* pshdrs = sd->section_headers->data();
463
464 // Get the section names.
465 const unsigned char* pnamesu = sd->section_names->data();
466 const char* pnames = reinterpret_cast<const char*>(pnamesu);
467
468 // Skip the first, dummy, section.
469 pshdrs += This::shdr_size;
470 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
471 {
472 typename This::Shdr shdr(pshdrs);
473
474 if (shdr.get_sh_name() >= sd->section_names_size)
475 {
476 this->error(_("bad section name offset for section %u: %lu"),
477 i, static_cast<unsigned long>(shdr.get_sh_name()));
478 return;
479 }
480
481 const char* name = pnames + shdr.get_sh_name();
482
483 this->handle_gnu_warning_section(name, i, symtab);
484 this->handle_split_stack_section(name);
485 }
486
487 delete sd->section_headers;
488 sd->section_headers = NULL;
489 delete sd->section_names;
490 sd->section_names = NULL;
491 }
492
493 // Add an entry to the vector mapping version numbers to version
494 // strings.
495
496 template<int size, bool big_endian>
497 void
498 Sized_dynobj<size, big_endian>::set_version_map(
499 Version_map* version_map,
500 unsigned int ndx,
501 const char* name) const
502 {
503 if (ndx >= version_map->size())
504 version_map->resize(ndx + 1);
505 if ((*version_map)[ndx] != NULL)
506 this->error(_("duplicate definition for version %u"), ndx);
507 (*version_map)[ndx] = name;
508 }
509
510 // Add mappings for the version definitions to VERSION_MAP.
511
512 template<int size, bool big_endian>
513 void
514 Sized_dynobj<size, big_endian>::make_verdef_map(
515 Read_symbols_data* sd,
516 Version_map* version_map) const
517 {
518 if (sd->verdef == NULL)
519 return;
520
521 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
522 section_size_type names_size = sd->symbol_names_size;
523
524 const unsigned char* pverdef = sd->verdef->data();
525 section_size_type verdef_size = sd->verdef_size;
526 const unsigned int count = sd->verdef_info;
527
528 const unsigned char* p = pverdef;
529 for (unsigned int i = 0; i < count; ++i)
530 {
531 elfcpp::Verdef<size, big_endian> verdef(p);
532
533 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
534 {
535 this->error(_("unexpected verdef version %u"),
536 verdef.get_vd_version());
537 return;
538 }
539
540 const section_size_type vd_ndx = verdef.get_vd_ndx();
541
542 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
543 // sure why.
544
545 // The first Verdaux holds the name of this version. Subsequent
546 // ones are versions that this one depends upon, which we don't
547 // care about here.
548 const section_size_type vd_cnt = verdef.get_vd_cnt();
549 if (vd_cnt < 1)
550 {
551 this->error(_("verdef vd_cnt field too small: %u"),
552 static_cast<unsigned int>(vd_cnt));
553 return;
554 }
555
556 const section_size_type vd_aux = verdef.get_vd_aux();
557 if ((p - pverdef) + vd_aux >= verdef_size)
558 {
559 this->error(_("verdef vd_aux field out of range: %u"),
560 static_cast<unsigned int>(vd_aux));
561 return;
562 }
563
564 const unsigned char* pvda = p + vd_aux;
565 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
566
567 const section_size_type vda_name = verdaux.get_vda_name();
568 if (vda_name >= names_size)
569 {
570 this->error(_("verdaux vda_name field out of range: %u"),
571 static_cast<unsigned int>(vda_name));
572 return;
573 }
574
575 this->set_version_map(version_map, vd_ndx, names + vda_name);
576
577 const section_size_type vd_next = verdef.get_vd_next();
578 if ((p - pverdef) + vd_next >= verdef_size)
579 {
580 this->error(_("verdef vd_next field out of range: %u"),
581 static_cast<unsigned int>(vd_next));
582 return;
583 }
584
585 p += vd_next;
586 }
587 }
588
589 // Add mappings for the required versions to VERSION_MAP.
590
591 template<int size, bool big_endian>
592 void
593 Sized_dynobj<size, big_endian>::make_verneed_map(
594 Read_symbols_data* sd,
595 Version_map* version_map) const
596 {
597 if (sd->verneed == NULL)
598 return;
599
600 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
601 section_size_type names_size = sd->symbol_names_size;
602
603 const unsigned char* pverneed = sd->verneed->data();
604 const section_size_type verneed_size = sd->verneed_size;
605 const unsigned int count = sd->verneed_info;
606
607 const unsigned char* p = pverneed;
608 for (unsigned int i = 0; i < count; ++i)
609 {
610 elfcpp::Verneed<size, big_endian> verneed(p);
611
612 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
613 {
614 this->error(_("unexpected verneed version %u"),
615 verneed.get_vn_version());
616 return;
617 }
618
619 const section_size_type vn_aux = verneed.get_vn_aux();
620
621 if ((p - pverneed) + vn_aux >= verneed_size)
622 {
623 this->error(_("verneed vn_aux field out of range: %u"),
624 static_cast<unsigned int>(vn_aux));
625 return;
626 }
627
628 const unsigned int vn_cnt = verneed.get_vn_cnt();
629 const unsigned char* pvna = p + vn_aux;
630 for (unsigned int j = 0; j < vn_cnt; ++j)
631 {
632 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
633
634 const unsigned int vna_name = vernaux.get_vna_name();
635 if (vna_name >= names_size)
636 {
637 this->error(_("vernaux vna_name field out of range: %u"),
638 static_cast<unsigned int>(vna_name));
639 return;
640 }
641
642 this->set_version_map(version_map, vernaux.get_vna_other(),
643 names + vna_name);
644
645 const section_size_type vna_next = vernaux.get_vna_next();
646 if ((pvna - pverneed) + vna_next >= verneed_size)
647 {
648 this->error(_("verneed vna_next field out of range: %u"),
649 static_cast<unsigned int>(vna_next));
650 return;
651 }
652
653 pvna += vna_next;
654 }
655
656 const section_size_type vn_next = verneed.get_vn_next();
657 if ((p - pverneed) + vn_next >= verneed_size)
658 {
659 this->error(_("verneed vn_next field out of range: %u"),
660 static_cast<unsigned int>(vn_next));
661 return;
662 }
663
664 p += vn_next;
665 }
666 }
667
668 // Create a vector mapping version numbers to version strings.
669
670 template<int size, bool big_endian>
671 void
672 Sized_dynobj<size, big_endian>::make_version_map(
673 Read_symbols_data* sd,
674 Version_map* version_map) const
675 {
676 if (sd->verdef == NULL && sd->verneed == NULL)
677 return;
678
679 // A guess at the maximum version number we will see. If this is
680 // wrong we will be less efficient but still correct.
681 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
682
683 this->make_verdef_map(sd, version_map);
684 this->make_verneed_map(sd, version_map);
685 }
686
687 // Add the dynamic symbols to the symbol table.
688
689 template<int size, bool big_endian>
690 void
691 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
692 Read_symbols_data* sd,
693 Layout*)
694 {
695 if (sd->symbols == NULL)
696 {
697 gold_assert(sd->symbol_names == NULL);
698 gold_assert(sd->versym == NULL && sd->verdef == NULL
699 && sd->verneed == NULL);
700 return;
701 }
702
703 const int sym_size = This::sym_size;
704 const size_t symcount = sd->symbols_size / sym_size;
705 gold_assert(sd->external_symbols_offset == 0);
706 if (symcount * sym_size != sd->symbols_size)
707 {
708 this->error(_("size of dynamic symbols is not multiple of symbol size"));
709 return;
710 }
711
712 Version_map version_map;
713 this->make_version_map(sd, &version_map);
714
715 // If printing symbol counts or a cross reference table or
716 // preparing for an incremental link, we want to track symbols.
717 if (parameters->options().user_set_print_symbol_counts()
718 || parameters->options().cref()
719 || parameters->incremental())
720 {
721 this->symbols_ = new Symbols();
722 this->symbols_->resize(symcount);
723 }
724
725 const char* sym_names =
726 reinterpret_cast<const char*>(sd->symbol_names->data());
727 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
728 sym_names, sd->symbol_names_size,
729 (sd->versym == NULL
730 ? NULL
731 : sd->versym->data()),
732 sd->versym_size,
733 &version_map,
734 this->symbols_,
735 &this->defined_count_);
736
737 delete sd->symbols;
738 sd->symbols = NULL;
739 delete sd->symbol_names;
740 sd->symbol_names = NULL;
741 if (sd->versym != NULL)
742 {
743 delete sd->versym;
744 sd->versym = NULL;
745 }
746 if (sd->verdef != NULL)
747 {
748 delete sd->verdef;
749 sd->verdef = NULL;
750 }
751 if (sd->verneed != NULL)
752 {
753 delete sd->verneed;
754 sd->verneed = NULL;
755 }
756
757 // This is normally the last time we will read any data from this
758 // file.
759 this->clear_view_cache_marks();
760 }
761
762 template<int size, bool big_endian>
763 Archive::Should_include
764 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
765 Layout*,
766 Read_symbols_data*,
767 std::string*)
768 {
769 return Archive::SHOULD_INCLUDE_YES;
770 }
771
772 // Iterate over global symbols, calling a visitor class V for each.
773
774 template<int size, bool big_endian>
775 void
776 Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
777 Read_symbols_data* sd,
778 Library_base::Symbol_visitor_base* v)
779 {
780 const char* sym_names =
781 reinterpret_cast<const char*>(sd->symbol_names->data());
782 const unsigned char* syms =
783 sd->symbols->data() + sd->external_symbols_offset;
784 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
785 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
786 / sym_size);
787 const unsigned char* p = syms;
788
789 for (size_t i = 0; i < symcount; ++i, p += sym_size)
790 {
791 elfcpp::Sym<size, big_endian> sym(p);
792 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
793 && sym.get_st_bind() != elfcpp::STB_LOCAL)
794 v->visit(sym_names + sym.get_st_name());
795 }
796 }
797
798 // Iterate over local symbols, calling a visitor class V for each GOT offset
799 // associated with a local symbol.
800
801 template<int size, bool big_endian>
802 void
803 Sized_dynobj<size, big_endian>::do_for_all_local_got_entries(
804 Got_offset_list::Visitor*) const
805 {
806 }
807
808 // Get symbol counts.
809
810 template<int size, bool big_endian>
811 void
812 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
813 const Symbol_table*,
814 size_t* defined,
815 size_t* used) const
816 {
817 *defined = this->defined_count_;
818 size_t count = 0;
819 for (typename Symbols::const_iterator p = this->symbols_->begin();
820 p != this->symbols_->end();
821 ++p)
822 if (*p != NULL
823 && (*p)->source() == Symbol::FROM_OBJECT
824 && (*p)->object() == this
825 && (*p)->is_defined()
826 && (*p)->dynsym_index() != -1U)
827 ++count;
828 *used = count;
829 }
830
831 // Given a vector of hash codes, compute the number of hash buckets to
832 // use.
833
834 unsigned int
835 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
836 bool for_gnu_hash_table)
837 {
838 // FIXME: Implement optional hash table optimization.
839
840 // Array used to determine the number of hash table buckets to use
841 // based on the number of symbols there are. If there are fewer
842 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
843 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
844 // use more than 262147 buckets. This is straight from the old GNU
845 // linker.
846 static const unsigned int buckets[] =
847 {
848 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
849 16411, 32771, 65537, 131101, 262147
850 };
851 const int buckets_count = sizeof buckets / sizeof buckets[0];
852
853 unsigned int symcount = hashcodes.size();
854 unsigned int ret = 1;
855 const double full_fraction
856 = 1.0 - parameters->options().hash_bucket_empty_fraction();
857 for (int i = 0; i < buckets_count; ++i)
858 {
859 if (symcount < buckets[i] * full_fraction)
860 break;
861 ret = buckets[i];
862 }
863
864 if (for_gnu_hash_table && ret < 2)
865 ret = 2;
866
867 return ret;
868 }
869
870 // The standard ELF hash function. This hash function must not
871 // change, as the dynamic linker uses it also.
872
873 uint32_t
874 Dynobj::elf_hash(const char* name)
875 {
876 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
877 uint32_t h = 0;
878 unsigned char c;
879 while ((c = *nameu++) != '\0')
880 {
881 h = (h << 4) + c;
882 uint32_t g = h & 0xf0000000;
883 if (g != 0)
884 {
885 h ^= g >> 24;
886 // The ELF ABI says h &= ~g, but using xor is equivalent in
887 // this case (since g was set from h) and may save one
888 // instruction.
889 h ^= g;
890 }
891 }
892 return h;
893 }
894
895 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
896 // DYNSYMS is a vector with all the global dynamic symbols.
897 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
898 // symbol table.
899
900 void
901 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
902 unsigned int local_dynsym_count,
903 unsigned char** pphash,
904 unsigned int* phashlen)
905 {
906 unsigned int dynsym_count = dynsyms.size();
907
908 // Get the hash values for all the symbols.
909 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
910 for (unsigned int i = 0; i < dynsym_count; ++i)
911 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
912
913 const unsigned int bucketcount =
914 Dynobj::compute_bucket_count(dynsym_hashvals, false);
915
916 std::vector<uint32_t> bucket(bucketcount);
917 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
918
919 for (unsigned int i = 0; i < dynsym_count; ++i)
920 {
921 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
922 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
923 chain[dynsym_index] = bucket[bucketpos];
924 bucket[bucketpos] = dynsym_index;
925 }
926
927 unsigned int hashlen = ((2
928 + bucketcount
929 + local_dynsym_count
930 + dynsym_count)
931 * 4);
932 unsigned char* phash = new unsigned char[hashlen];
933
934 if (parameters->target().is_big_endian())
935 {
936 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
937 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
938 hashlen);
939 #else
940 gold_unreachable();
941 #endif
942 }
943 else
944 {
945 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
946 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
947 hashlen);
948 #else
949 gold_unreachable();
950 #endif
951 }
952
953 *pphash = phash;
954 *phashlen = hashlen;
955 }
956
957 // Fill in an ELF hash table.
958
959 template<bool big_endian>
960 void
961 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
962 const std::vector<uint32_t>& chain,
963 unsigned char* phash,
964 unsigned int hashlen)
965 {
966 unsigned char* p = phash;
967
968 const unsigned int bucketcount = bucket.size();
969 const unsigned int chaincount = chain.size();
970
971 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
972 p += 4;
973 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
974 p += 4;
975
976 for (unsigned int i = 0; i < bucketcount; ++i)
977 {
978 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
979 p += 4;
980 }
981
982 for (unsigned int i = 0; i < chaincount; ++i)
983 {
984 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
985 p += 4;
986 }
987
988 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
989 }
990
991 // The hash function used for the GNU hash table. This hash function
992 // must not change, as the dynamic linker uses it also.
993
994 uint32_t
995 Dynobj::gnu_hash(const char* name)
996 {
997 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
998 uint32_t h = 5381;
999 unsigned char c;
1000 while ((c = *nameu++) != '\0')
1001 h = (h << 5) + h + c;
1002 return h;
1003 }
1004
1005 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
1006 // tables are an extension to ELF which are recognized by the GNU
1007 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
1008 // TARGET is the target. DYNSYMS is a vector with all the global
1009 // symbols which will be going into the dynamic symbol table.
1010 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
1011 // symbol table.
1012
1013 void
1014 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
1015 unsigned int local_dynsym_count,
1016 unsigned char** pphash,
1017 unsigned int* phashlen)
1018 {
1019 const unsigned int count = dynsyms.size();
1020
1021 // Sort the dynamic symbols into two vectors. Symbols which we do
1022 // not want to put into the hash table we store into
1023 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
1024 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
1025 // and records the hash codes.
1026
1027 std::vector<Symbol*> unhashed_dynsyms;
1028 unhashed_dynsyms.reserve(count);
1029
1030 std::vector<Symbol*> hashed_dynsyms;
1031 hashed_dynsyms.reserve(count);
1032
1033 std::vector<uint32_t> dynsym_hashvals;
1034 dynsym_hashvals.reserve(count);
1035
1036 for (unsigned int i = 0; i < count; ++i)
1037 {
1038 Symbol* sym = dynsyms[i];
1039
1040 if (!sym->needs_dynsym_value()
1041 && (sym->is_undefined()
1042 || sym->is_from_dynobj()
1043 || sym->is_forced_local()))
1044 unhashed_dynsyms.push_back(sym);
1045 else
1046 {
1047 hashed_dynsyms.push_back(sym);
1048 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1049 }
1050 }
1051
1052 // Put the unhashed symbols at the start of the global portion of
1053 // the dynamic symbol table.
1054 const unsigned int unhashed_count = unhashed_dynsyms.size();
1055 unsigned int unhashed_dynsym_index = local_dynsym_count;
1056 for (unsigned int i = 0; i < unhashed_count; ++i)
1057 {
1058 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1059 ++unhashed_dynsym_index;
1060 }
1061
1062 // For the actual data generation we call out to a templatized
1063 // function.
1064 int size = parameters->target().get_size();
1065 bool big_endian = parameters->target().is_big_endian();
1066 if (size == 32)
1067 {
1068 if (big_endian)
1069 {
1070 #ifdef HAVE_TARGET_32_BIG
1071 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1072 dynsym_hashvals,
1073 unhashed_dynsym_index,
1074 pphash,
1075 phashlen);
1076 #else
1077 gold_unreachable();
1078 #endif
1079 }
1080 else
1081 {
1082 #ifdef HAVE_TARGET_32_LITTLE
1083 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1084 dynsym_hashvals,
1085 unhashed_dynsym_index,
1086 pphash,
1087 phashlen);
1088 #else
1089 gold_unreachable();
1090 #endif
1091 }
1092 }
1093 else if (size == 64)
1094 {
1095 if (big_endian)
1096 {
1097 #ifdef HAVE_TARGET_64_BIG
1098 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1099 dynsym_hashvals,
1100 unhashed_dynsym_index,
1101 pphash,
1102 phashlen);
1103 #else
1104 gold_unreachable();
1105 #endif
1106 }
1107 else
1108 {
1109 #ifdef HAVE_TARGET_64_LITTLE
1110 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1111 dynsym_hashvals,
1112 unhashed_dynsym_index,
1113 pphash,
1114 phashlen);
1115 #else
1116 gold_unreachable();
1117 #endif
1118 }
1119 }
1120 else
1121 gold_unreachable();
1122 }
1123
1124 // Create the actual data for a GNU hash table. This is just a copy
1125 // of the code from the old GNU linker.
1126
1127 template<int size, bool big_endian>
1128 void
1129 Dynobj::sized_create_gnu_hash_table(
1130 const std::vector<Symbol*>& hashed_dynsyms,
1131 const std::vector<uint32_t>& dynsym_hashvals,
1132 unsigned int unhashed_dynsym_count,
1133 unsigned char** pphash,
1134 unsigned int* phashlen)
1135 {
1136 if (hashed_dynsyms.empty())
1137 {
1138 // Special case for the empty hash table.
1139 unsigned int hashlen = 5 * 4 + size / 8;
1140 unsigned char* phash = new unsigned char[hashlen];
1141 // One empty bucket.
1142 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1143 // Symbol index above unhashed symbols.
1144 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1145 // One word for bitmask.
1146 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1147 // Only bloom filter.
1148 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1149 // No valid hashes.
1150 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1151 // No hashes in only bucket.
1152 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1153
1154 *phashlen = hashlen;
1155 *pphash = phash;
1156
1157 return;
1158 }
1159
1160 const unsigned int bucketcount =
1161 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1162
1163 const unsigned int nsyms = hashed_dynsyms.size();
1164
1165 uint32_t maskbitslog2 = 1;
1166 uint32_t x = nsyms >> 1;
1167 while (x != 0)
1168 {
1169 ++maskbitslog2;
1170 x >>= 1;
1171 }
1172 if (maskbitslog2 < 3)
1173 maskbitslog2 = 5;
1174 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1175 maskbitslog2 += 3;
1176 else
1177 maskbitslog2 += 2;
1178
1179 uint32_t shift1;
1180 if (size == 32)
1181 shift1 = 5;
1182 else
1183 {
1184 if (maskbitslog2 == 5)
1185 maskbitslog2 = 6;
1186 shift1 = 6;
1187 }
1188 uint32_t mask = (1U << shift1) - 1U;
1189 uint32_t shift2 = maskbitslog2;
1190 uint32_t maskbits = 1U << maskbitslog2;
1191 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1192
1193 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1194 std::vector<Word> bitmask(maskwords);
1195 std::vector<uint32_t> counts(bucketcount);
1196 std::vector<uint32_t> indx(bucketcount);
1197 uint32_t symindx = unhashed_dynsym_count;
1198
1199 // Count the number of times each hash bucket is used.
1200 for (unsigned int i = 0; i < nsyms; ++i)
1201 ++counts[dynsym_hashvals[i] % bucketcount];
1202
1203 unsigned int cnt = symindx;
1204 for (unsigned int i = 0; i < bucketcount; ++i)
1205 {
1206 indx[i] = cnt;
1207 cnt += counts[i];
1208 }
1209
1210 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1211 hashlen += maskbits / 8;
1212 unsigned char* phash = new unsigned char[hashlen];
1213
1214 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1215 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1216 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1217 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1218
1219 unsigned char* p = phash + 16 + maskbits / 8;
1220 for (unsigned int i = 0; i < bucketcount; ++i)
1221 {
1222 if (counts[i] == 0)
1223 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1224 else
1225 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1226 p += 4;
1227 }
1228
1229 for (unsigned int i = 0; i < nsyms; ++i)
1230 {
1231 Symbol* sym = hashed_dynsyms[i];
1232 uint32_t hashval = dynsym_hashvals[i];
1233
1234 unsigned int bucket = hashval % bucketcount;
1235 unsigned int val = ((hashval >> shift1)
1236 & ((maskbits >> shift1) - 1));
1237 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1238 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1239 val = hashval & ~ 1U;
1240 if (counts[bucket] == 1)
1241 {
1242 // Last element terminates the chain.
1243 val |= 1;
1244 }
1245 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1246 val);
1247 --counts[bucket];
1248
1249 sym->set_dynsym_index(indx[bucket]);
1250 ++indx[bucket];
1251 }
1252
1253 p = phash + 16;
1254 for (unsigned int i = 0; i < maskwords; ++i)
1255 {
1256 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1257 p += size / 8;
1258 }
1259
1260 *phashlen = hashlen;
1261 *pphash = phash;
1262 }
1263
1264 // Verdef methods.
1265
1266 // Write this definition to a buffer for the output section.
1267
1268 template<int size, bool big_endian>
1269 unsigned char*
1270 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1271 {
1272 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1273 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1274
1275 elfcpp::Verdef_write<size, big_endian> vd(pb);
1276 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1277 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1278 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1279 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
1280 vd.set_vd_ndx(this->index());
1281 vd.set_vd_cnt(1 + this->deps_.size());
1282 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1283 vd.set_vd_aux(verdef_size);
1284 vd.set_vd_next(is_last
1285 ? 0
1286 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1287 pb += verdef_size;
1288
1289 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1290 vda.set_vda_name(dynpool->get_offset(this->name()));
1291 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1292 pb += verdaux_size;
1293
1294 Deps::const_iterator p;
1295 unsigned int i;
1296 for (p = this->deps_.begin(), i = 0;
1297 p != this->deps_.end();
1298 ++p, ++i)
1299 {
1300 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1301 vda.set_vda_name(dynpool->get_offset(*p));
1302 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1303 pb += verdaux_size;
1304 }
1305
1306 return pb;
1307 }
1308
1309 // Verneed methods.
1310
1311 Verneed::~Verneed()
1312 {
1313 for (Need_versions::iterator p = this->need_versions_.begin();
1314 p != this->need_versions_.end();
1315 ++p)
1316 delete *p;
1317 }
1318
1319 // Add a new version to this file reference.
1320
1321 Verneed_version*
1322 Verneed::add_name(const char* name)
1323 {
1324 Verneed_version* vv = new Verneed_version(name);
1325 this->need_versions_.push_back(vv);
1326 return vv;
1327 }
1328
1329 // Set the version indexes starting at INDEX.
1330
1331 unsigned int
1332 Verneed::finalize(unsigned int index)
1333 {
1334 for (Need_versions::iterator p = this->need_versions_.begin();
1335 p != this->need_versions_.end();
1336 ++p)
1337 {
1338 (*p)->set_index(index);
1339 ++index;
1340 }
1341 return index;
1342 }
1343
1344 // Write this list of referenced versions to a buffer for the output
1345 // section.
1346
1347 template<int size, bool big_endian>
1348 unsigned char*
1349 Verneed::write(const Stringpool* dynpool, bool is_last,
1350 unsigned char* pb) const
1351 {
1352 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1353 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1354
1355 elfcpp::Verneed_write<size, big_endian> vn(pb);
1356 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1357 vn.set_vn_cnt(this->need_versions_.size());
1358 vn.set_vn_file(dynpool->get_offset(this->filename()));
1359 vn.set_vn_aux(verneed_size);
1360 vn.set_vn_next(is_last
1361 ? 0
1362 : verneed_size + this->need_versions_.size() * vernaux_size);
1363 pb += verneed_size;
1364
1365 Need_versions::const_iterator p;
1366 unsigned int i;
1367 for (p = this->need_versions_.begin(), i = 0;
1368 p != this->need_versions_.end();
1369 ++p, ++i)
1370 {
1371 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1372 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1373 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1374 vna.set_vna_flags(0);
1375 vna.set_vna_other((*p)->index());
1376 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1377 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1378 ? 0
1379 : vernaux_size);
1380 pb += vernaux_size;
1381 }
1382
1383 return pb;
1384 }
1385
1386 // Versions methods.
1387
1388 Versions::Versions(const Version_script_info& version_script,
1389 Stringpool* dynpool)
1390 : defs_(), needs_(), version_table_(),
1391 is_finalized_(false), version_script_(version_script),
1392 needs_base_version_(parameters->options().shared())
1393 {
1394 if (!this->version_script_.empty())
1395 {
1396 // Parse the version script, and insert each declared version into
1397 // defs_ and version_table_.
1398 std::vector<std::string> versions = this->version_script_.get_versions();
1399
1400 if (this->needs_base_version_ && !versions.empty())
1401 this->define_base_version(dynpool);
1402
1403 for (size_t k = 0; k < versions.size(); ++k)
1404 {
1405 Stringpool::Key version_key;
1406 const char* version = dynpool->add(versions[k].c_str(),
1407 true, &version_key);
1408 Verdef* const vd = new Verdef(
1409 version,
1410 this->version_script_.get_dependencies(version),
1411 false, false, false, false);
1412 this->defs_.push_back(vd);
1413 Key key(version_key, 0);
1414 this->version_table_.insert(std::make_pair(key, vd));
1415 }
1416 }
1417 }
1418
1419 Versions::~Versions()
1420 {
1421 for (Defs::iterator p = this->defs_.begin();
1422 p != this->defs_.end();
1423 ++p)
1424 delete *p;
1425
1426 for (Needs::iterator p = this->needs_.begin();
1427 p != this->needs_.end();
1428 ++p)
1429 delete *p;
1430 }
1431
1432 // Define the base version of a shared library. The base version definition
1433 // must be the first entry in defs_. We insert it lazily so that defs_ is
1434 // empty if no symbol versioning is used. Then layout can just drop the
1435 // version sections.
1436
1437 void
1438 Versions::define_base_version(Stringpool* dynpool)
1439 {
1440 // If we do any versioning at all, we always need a base version, so
1441 // define that first. Nothing explicitly declares itself as part of base,
1442 // so it doesn't need to be in version_table_.
1443 gold_assert(this->defs_.empty());
1444 const char* name = parameters->options().soname();
1445 if (name == NULL)
1446 name = parameters->options().output_file_name();
1447 name = dynpool->add(name, false, NULL);
1448 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1449 true, false, false, true);
1450 this->defs_.push_back(vdbase);
1451 this->needs_base_version_ = false;
1452 }
1453
1454 // Return the dynamic object which a symbol refers to.
1455
1456 Dynobj*
1457 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1458 const Symbol* sym) const
1459 {
1460 if (sym->is_copied_from_dynobj())
1461 return symtab->get_copy_source(sym);
1462 else
1463 {
1464 Object* object = sym->object();
1465 gold_assert(object->is_dynamic());
1466 return static_cast<Dynobj*>(object);
1467 }
1468 }
1469
1470 // Record version information for a symbol going into the dynamic
1471 // symbol table.
1472
1473 void
1474 Versions::record_version(const Symbol_table* symtab,
1475 Stringpool* dynpool, const Symbol* sym)
1476 {
1477 gold_assert(!this->is_finalized_);
1478 gold_assert(sym->version() != NULL);
1479
1480 Stringpool::Key version_key;
1481 const char* version = dynpool->add(sym->version(), false, &version_key);
1482
1483 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1484 {
1485 if (parameters->options().shared())
1486 this->add_def(dynpool, sym, version, version_key);
1487 }
1488 else
1489 {
1490 // This is a version reference.
1491 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1492 this->add_need(dynpool, dynobj->soname(), version, version_key);
1493 }
1494 }
1495
1496 // We've found a symbol SYM defined in version VERSION.
1497
1498 void
1499 Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version,
1500 Stringpool::Key version_key)
1501 {
1502 Key k(version_key, 0);
1503 Version_base* const vbnull = NULL;
1504 std::pair<Version_table::iterator, bool> ins =
1505 this->version_table_.insert(std::make_pair(k, vbnull));
1506
1507 if (!ins.second)
1508 {
1509 // We already have an entry for this version.
1510 Version_base* vb = ins.first->second;
1511
1512 // We have now seen a symbol in this version, so it is not
1513 // weak.
1514 gold_assert(vb != NULL);
1515 vb->clear_weak();
1516 }
1517 else
1518 {
1519 // If we are creating a shared object, it is an error to
1520 // find a definition of a symbol with a version which is not
1521 // in the version script.
1522 if (parameters->options().shared())
1523 {
1524 gold_error(_("symbol %s has undefined version %s"),
1525 sym->demangled_name().c_str(), version);
1526 if (this->needs_base_version_)
1527 this->define_base_version(dynpool);
1528 }
1529 else
1530 // We only insert a base version for shared library.
1531 gold_assert(!this->needs_base_version_);
1532
1533 // When creating a regular executable, automatically define
1534 // a new version.
1535 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1536 false, false, false, false);
1537 this->defs_.push_back(vd);
1538 ins.first->second = vd;
1539 }
1540 }
1541
1542 // Add a reference to version NAME in file FILENAME.
1543
1544 void
1545 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1546 Stringpool::Key name_key)
1547 {
1548 Stringpool::Key filename_key;
1549 filename = dynpool->add(filename, true, &filename_key);
1550
1551 Key k(name_key, filename_key);
1552 Version_base* const vbnull = NULL;
1553 std::pair<Version_table::iterator, bool> ins =
1554 this->version_table_.insert(std::make_pair(k, vbnull));
1555
1556 if (!ins.second)
1557 {
1558 // We already have an entry for this filename/version.
1559 return;
1560 }
1561
1562 // See whether we already have this filename. We don't expect many
1563 // version references, so we just do a linear search. This could be
1564 // replaced by a hash table.
1565 Verneed* vn = NULL;
1566 for (Needs::iterator p = this->needs_.begin();
1567 p != this->needs_.end();
1568 ++p)
1569 {
1570 if ((*p)->filename() == filename)
1571 {
1572 vn = *p;
1573 break;
1574 }
1575 }
1576
1577 if (vn == NULL)
1578 {
1579 // Create base version definition lazily for shared library.
1580 if (this->needs_base_version_)
1581 this->define_base_version(dynpool);
1582
1583 // We have a new filename.
1584 vn = new Verneed(filename);
1585 this->needs_.push_back(vn);
1586 }
1587
1588 ins.first->second = vn->add_name(name);
1589 }
1590
1591 // Set the version indexes. Create a new dynamic version symbol for
1592 // each new version definition.
1593
1594 unsigned int
1595 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1596 std::vector<Symbol*>* syms)
1597 {
1598 gold_assert(!this->is_finalized_);
1599
1600 unsigned int vi = 1;
1601
1602 for (Defs::iterator p = this->defs_.begin();
1603 p != this->defs_.end();
1604 ++p)
1605 {
1606 (*p)->set_index(vi);
1607 ++vi;
1608
1609 // Create a version symbol if necessary.
1610 if (!(*p)->is_symbol_created())
1611 {
1612 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1613 (*p)->name(),
1614 Symbol_table::PREDEFINED,
1615 0, 0,
1616 elfcpp::STT_OBJECT,
1617 elfcpp::STB_GLOBAL,
1618 elfcpp::STV_DEFAULT, 0,
1619 false, false);
1620 vsym->set_needs_dynsym_entry();
1621 vsym->set_dynsym_index(dynsym_index);
1622 vsym->set_is_default();
1623 ++dynsym_index;
1624 syms->push_back(vsym);
1625 // The name is already in the dynamic pool.
1626 }
1627 }
1628
1629 // Index 1 is used for global symbols.
1630 if (vi == 1)
1631 {
1632 gold_assert(this->defs_.empty());
1633 vi = 2;
1634 }
1635
1636 for (Needs::iterator p = this->needs_.begin();
1637 p != this->needs_.end();
1638 ++p)
1639 vi = (*p)->finalize(vi);
1640
1641 this->is_finalized_ = true;
1642
1643 return dynsym_index;
1644 }
1645
1646 // Return the version index to use for a symbol. This does two hash
1647 // table lookups: one in DYNPOOL and one in this->version_table_.
1648 // Another approach alternative would be store a pointer in SYM, which
1649 // would increase the size of the symbol table. Or perhaps we could
1650 // use a hash table from dynamic symbol pointer values to Version_base
1651 // pointers.
1652
1653 unsigned int
1654 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1655 const Symbol* sym) const
1656 {
1657 Stringpool::Key version_key;
1658 const char* version = dynpool->find(sym->version(), &version_key);
1659 gold_assert(version != NULL);
1660
1661 Key k;
1662 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1663 {
1664 if (!parameters->options().shared())
1665 return elfcpp::VER_NDX_GLOBAL;
1666 k = Key(version_key, 0);
1667 }
1668 else
1669 {
1670 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1671
1672 Stringpool::Key filename_key;
1673 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1674 gold_assert(filename != NULL);
1675
1676 k = Key(version_key, filename_key);
1677 }
1678
1679 Version_table::const_iterator p = this->version_table_.find(k);
1680 gold_assert(p != this->version_table_.end());
1681
1682 return p->second->index();
1683 }
1684
1685 // Return an allocated buffer holding the contents of the symbol
1686 // version section.
1687
1688 template<int size, bool big_endian>
1689 void
1690 Versions::symbol_section_contents(const Symbol_table* symtab,
1691 const Stringpool* dynpool,
1692 unsigned int local_symcount,
1693 const std::vector<Symbol*>& syms,
1694 unsigned char** pp,
1695 unsigned int* psize) const
1696 {
1697 gold_assert(this->is_finalized_);
1698
1699 unsigned int sz = (local_symcount + syms.size()) * 2;
1700 unsigned char* pbuf = new unsigned char[sz];
1701
1702 for (unsigned int i = 0; i < local_symcount; ++i)
1703 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1704 elfcpp::VER_NDX_LOCAL);
1705
1706 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1707 p != syms.end();
1708 ++p)
1709 {
1710 unsigned int version_index;
1711 const char* version = (*p)->version();
1712 if (version != NULL)
1713 version_index = this->version_index(symtab, dynpool, *p);
1714 else
1715 {
1716 if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1717 version_index = elfcpp::VER_NDX_GLOBAL;
1718 else
1719 version_index = elfcpp::VER_NDX_LOCAL;
1720 }
1721 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1722 // the hidden bit.
1723 if ((*p)->version() != NULL && !(*p)->is_default())
1724 version_index |= elfcpp::VERSYM_HIDDEN;
1725 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1726 version_index);
1727 }
1728
1729 *pp = pbuf;
1730 *psize = sz;
1731 }
1732
1733 // Return an allocated buffer holding the contents of the version
1734 // definition section.
1735
1736 template<int size, bool big_endian>
1737 void
1738 Versions::def_section_contents(const Stringpool* dynpool,
1739 unsigned char** pp, unsigned int* psize,
1740 unsigned int* pentries) const
1741 {
1742 gold_assert(this->is_finalized_);
1743 gold_assert(!this->defs_.empty());
1744
1745 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1746 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1747
1748 unsigned int sz = 0;
1749 for (Defs::const_iterator p = this->defs_.begin();
1750 p != this->defs_.end();
1751 ++p)
1752 {
1753 sz += verdef_size + verdaux_size;
1754 sz += (*p)->count_dependencies() * verdaux_size;
1755 }
1756
1757 unsigned char* pbuf = new unsigned char[sz];
1758
1759 unsigned char* pb = pbuf;
1760 Defs::const_iterator p;
1761 unsigned int i;
1762 for (p = this->defs_.begin(), i = 0;
1763 p != this->defs_.end();
1764 ++p, ++i)
1765 pb = (*p)->write<size, big_endian>(dynpool,
1766 i + 1 >= this->defs_.size(),
1767 pb);
1768
1769 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1770
1771 *pp = pbuf;
1772 *psize = sz;
1773 *pentries = this->defs_.size();
1774 }
1775
1776 // Return an allocated buffer holding the contents of the version
1777 // reference section.
1778
1779 template<int size, bool big_endian>
1780 void
1781 Versions::need_section_contents(const Stringpool* dynpool,
1782 unsigned char** pp, unsigned int* psize,
1783 unsigned int* pentries) const
1784 {
1785 gold_assert(this->is_finalized_);
1786 gold_assert(!this->needs_.empty());
1787
1788 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1789 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1790
1791 unsigned int sz = 0;
1792 for (Needs::const_iterator p = this->needs_.begin();
1793 p != this->needs_.end();
1794 ++p)
1795 {
1796 sz += verneed_size;
1797 sz += (*p)->count_versions() * vernaux_size;
1798 }
1799
1800 unsigned char* pbuf = new unsigned char[sz];
1801
1802 unsigned char* pb = pbuf;
1803 Needs::const_iterator p;
1804 unsigned int i;
1805 for (p = this->needs_.begin(), i = 0;
1806 p != this->needs_.end();
1807 ++p, ++i)
1808 pb = (*p)->write<size, big_endian>(dynpool,
1809 i + 1 >= this->needs_.size(),
1810 pb);
1811
1812 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1813
1814 *pp = pbuf;
1815 *psize = sz;
1816 *pentries = this->needs_.size();
1817 }
1818
1819 // Instantiate the templates we need. We could use the configure
1820 // script to restrict this to only the ones for implemented targets.
1821
1822 #ifdef HAVE_TARGET_32_LITTLE
1823 template
1824 class Sized_dynobj<32, false>;
1825 #endif
1826
1827 #ifdef HAVE_TARGET_32_BIG
1828 template
1829 class Sized_dynobj<32, true>;
1830 #endif
1831
1832 #ifdef HAVE_TARGET_64_LITTLE
1833 template
1834 class Sized_dynobj<64, false>;
1835 #endif
1836
1837 #ifdef HAVE_TARGET_64_BIG
1838 template
1839 class Sized_dynobj<64, true>;
1840 #endif
1841
1842 #ifdef HAVE_TARGET_32_LITTLE
1843 template
1844 void
1845 Versions::symbol_section_contents<32, false>(
1846 const Symbol_table*,
1847 const Stringpool*,
1848 unsigned int,
1849 const std::vector<Symbol*>&,
1850 unsigned char**,
1851 unsigned int*) const;
1852 #endif
1853
1854 #ifdef HAVE_TARGET_32_BIG
1855 template
1856 void
1857 Versions::symbol_section_contents<32, true>(
1858 const Symbol_table*,
1859 const Stringpool*,
1860 unsigned int,
1861 const std::vector<Symbol*>&,
1862 unsigned char**,
1863 unsigned int*) const;
1864 #endif
1865
1866 #ifdef HAVE_TARGET_64_LITTLE
1867 template
1868 void
1869 Versions::symbol_section_contents<64, false>(
1870 const Symbol_table*,
1871 const Stringpool*,
1872 unsigned int,
1873 const std::vector<Symbol*>&,
1874 unsigned char**,
1875 unsigned int*) const;
1876 #endif
1877
1878 #ifdef HAVE_TARGET_64_BIG
1879 template
1880 void
1881 Versions::symbol_section_contents<64, true>(
1882 const Symbol_table*,
1883 const Stringpool*,
1884 unsigned int,
1885 const std::vector<Symbol*>&,
1886 unsigned char**,
1887 unsigned int*) const;
1888 #endif
1889
1890 #ifdef HAVE_TARGET_32_LITTLE
1891 template
1892 void
1893 Versions::def_section_contents<32, false>(
1894 const Stringpool*,
1895 unsigned char**,
1896 unsigned int*,
1897 unsigned int*) const;
1898 #endif
1899
1900 #ifdef HAVE_TARGET_32_BIG
1901 template
1902 void
1903 Versions::def_section_contents<32, true>(
1904 const Stringpool*,
1905 unsigned char**,
1906 unsigned int*,
1907 unsigned int*) const;
1908 #endif
1909
1910 #ifdef HAVE_TARGET_64_LITTLE
1911 template
1912 void
1913 Versions::def_section_contents<64, false>(
1914 const Stringpool*,
1915 unsigned char**,
1916 unsigned int*,
1917 unsigned int*) const;
1918 #endif
1919
1920 #ifdef HAVE_TARGET_64_BIG
1921 template
1922 void
1923 Versions::def_section_contents<64, true>(
1924 const Stringpool*,
1925 unsigned char**,
1926 unsigned int*,
1927 unsigned int*) const;
1928 #endif
1929
1930 #ifdef HAVE_TARGET_32_LITTLE
1931 template
1932 void
1933 Versions::need_section_contents<32, false>(
1934 const Stringpool*,
1935 unsigned char**,
1936 unsigned int*,
1937 unsigned int*) const;
1938 #endif
1939
1940 #ifdef HAVE_TARGET_32_BIG
1941 template
1942 void
1943 Versions::need_section_contents<32, true>(
1944 const Stringpool*,
1945 unsigned char**,
1946 unsigned int*,
1947 unsigned int*) const;
1948 #endif
1949
1950 #ifdef HAVE_TARGET_64_LITTLE
1951 template
1952 void
1953 Versions::need_section_contents<64, false>(
1954 const Stringpool*,
1955 unsigned char**,
1956 unsigned int*,
1957 unsigned int*) const;
1958 #endif
1959
1960 #ifdef HAVE_TARGET_64_BIG
1961 template
1962 void
1963 Versions::need_section_contents<64, true>(
1964 const Stringpool*,
1965 unsigned char**,
1966 unsigned int*,
1967 unsigned int*) const;
1968 #endif
1969
1970 } // End namespace gold.
This page took 0.092832 seconds and 5 git commands to generate.