Remove gcc 3.2 compatibility hacks.
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr)
76 {
77 }
78
79 // Set up the object.
80
81 template<int size, bool big_endian>
82 void
83 Sized_dynobj<size, big_endian>::setup(
84 const elfcpp::Ehdr<size, big_endian>& ehdr)
85 {
86 this->set_target(ehdr.get_e_machine(), size, big_endian,
87 ehdr.get_e_ident()[elfcpp::EI_OSABI],
88 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
89
90 const unsigned int shnum = this->elf_file_.shnum();
91 this->set_shnum(shnum);
92 }
93
94 // Find the SHT_DYNSYM section and the various version sections, and
95 // the dynamic section, given the section headers.
96
97 template<int size, bool big_endian>
98 void
99 Sized_dynobj<size, big_endian>::find_dynsym_sections(
100 const unsigned char* pshdrs,
101 unsigned int* pdynsym_shndx,
102 unsigned int* pversym_shndx,
103 unsigned int* pverdef_shndx,
104 unsigned int* pverneed_shndx,
105 unsigned int* pdynamic_shndx)
106 {
107 *pdynsym_shndx = -1U;
108 *pversym_shndx = -1U;
109 *pverdef_shndx = -1U;
110 *pverneed_shndx = -1U;
111 *pdynamic_shndx = -1U;
112
113 const unsigned int shnum = this->shnum();
114 const unsigned char* p = pshdrs;
115 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
116 {
117 typename This::Shdr shdr(p);
118
119 unsigned int* pi;
120 switch (shdr.get_sh_type())
121 {
122 case elfcpp::SHT_DYNSYM:
123 pi = pdynsym_shndx;
124 break;
125 case elfcpp::SHT_GNU_versym:
126 pi = pversym_shndx;
127 break;
128 case elfcpp::SHT_GNU_verdef:
129 pi = pverdef_shndx;
130 break;
131 case elfcpp::SHT_GNU_verneed:
132 pi = pverneed_shndx;
133 break;
134 case elfcpp::SHT_DYNAMIC:
135 pi = pdynamic_shndx;
136 break;
137 default:
138 pi = NULL;
139 break;
140 }
141
142 if (pi == NULL)
143 continue;
144
145 if (*pi != -1U)
146 this->error(_("unexpected duplicate type %u section: %u, %u"),
147 shdr.get_sh_type(), *pi, i);
148
149 *pi = i;
150 }
151 }
152
153 // Read the contents of section SHNDX. PSHDRS points to the section
154 // headers. TYPE is the expected section type. LINK is the expected
155 // section link. Store the data in *VIEW and *VIEW_SIZE. The
156 // section's sh_info field is stored in *VIEW_INFO.
157
158 template<int size, bool big_endian>
159 void
160 Sized_dynobj<size, big_endian>::read_dynsym_section(
161 const unsigned char* pshdrs,
162 unsigned int shndx,
163 elfcpp::SHT type,
164 unsigned int link,
165 File_view** view,
166 section_size_type* view_size,
167 unsigned int* view_info)
168 {
169 if (shndx == -1U)
170 {
171 *view = NULL;
172 *view_size = 0;
173 *view_info = 0;
174 return;
175 }
176
177 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
178
179 gold_assert(shdr.get_sh_type() == type);
180
181 if (shdr.get_sh_link() != link)
182 this->error(_("unexpected link in section %u header: %u != %u"),
183 shndx, shdr.get_sh_link(), link);
184
185 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
186 false);
187 *view_size = convert_to_section_size_type(shdr.get_sh_size());
188 *view_info = shdr.get_sh_info();
189 }
190
191 // Read the dynamic tags. Set the soname field if this shared object
192 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
193 // the section headers. DYNAMIC_SHNDX is the section index of the
194 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
195 // section index and contents of a string table which may be the one
196 // associated with the SHT_DYNAMIC section.
197
198 template<int size, bool big_endian>
199 void
200 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
201 unsigned int dynamic_shndx,
202 unsigned int strtab_shndx,
203 const unsigned char* strtabu,
204 off_t strtab_size)
205 {
206 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
207 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
208
209 const off_t dynamic_size = dynamicshdr.get_sh_size();
210 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
211 dynamic_size, false);
212
213 const unsigned int link = dynamicshdr.get_sh_link();
214 if (link != strtab_shndx)
215 {
216 if (link >= this->shnum())
217 {
218 this->error(_("DYNAMIC section %u link out of range: %u"),
219 dynamic_shndx, link);
220 return;
221 }
222
223 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
224 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
225 {
226 this->error(_("DYNAMIC section %u link %u is not a strtab"),
227 dynamic_shndx, link);
228 return;
229 }
230
231 strtab_size = strtabshdr.get_sh_size();
232 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false);
233 }
234
235 const char* const strtab = reinterpret_cast<const char*>(strtabu);
236
237 for (const unsigned char* p = pdynamic;
238 p < pdynamic + dynamic_size;
239 p += This::dyn_size)
240 {
241 typename This::Dyn dyn(p);
242
243 switch (dyn.get_d_tag())
244 {
245 case elfcpp::DT_NULL:
246 // We should always see DT_NULL at the end of the dynamic
247 // tags.
248 return;
249
250 case elfcpp::DT_SONAME:
251 {
252 off_t val = dyn.get_d_val();
253 if (val >= strtab_size)
254 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
255 static_cast<long long>(val),
256 static_cast<long long>(strtab_size));
257 else
258 this->set_soname_string(strtab + val);
259 }
260 break;
261
262 case elfcpp::DT_NEEDED:
263 {
264 off_t val = dyn.get_d_val();
265 if (val >= strtab_size)
266 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
267 static_cast<long long>(val),
268 static_cast<long long>(strtab_size));
269 else
270 this->add_needed(strtab + val);
271 }
272 break;
273
274 default:
275 break;
276 }
277 }
278
279 this->error(_("missing DT_NULL in dynamic segment"));
280 }
281
282 // Read the symbols and sections from a dynamic object. We read the
283 // dynamic symbols, not the normal symbols.
284
285 template<int size, bool big_endian>
286 void
287 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
288 {
289 this->read_section_data(&this->elf_file_, sd);
290
291 const unsigned char* const pshdrs = sd->section_headers->data();
292
293 unsigned int dynsym_shndx;
294 unsigned int versym_shndx;
295 unsigned int verdef_shndx;
296 unsigned int verneed_shndx;
297 unsigned int dynamic_shndx;
298 this->find_dynsym_sections(pshdrs, &dynsym_shndx, &versym_shndx,
299 &verdef_shndx, &verneed_shndx, &dynamic_shndx);
300
301 unsigned int strtab_shndx = -1U;
302
303 sd->symbols = NULL;
304 sd->symbols_size = 0;
305 sd->external_symbols_offset = 0;
306 sd->symbol_names = NULL;
307 sd->symbol_names_size = 0;
308
309 if (dynsym_shndx != -1U)
310 {
311 // Get the dynamic symbols.
312 typename This::Shdr dynsymshdr(pshdrs + dynsym_shndx * This::shdr_size);
313 gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM);
314
315 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
316 dynsymshdr.get_sh_size(), false);
317 sd->symbols_size =
318 convert_to_section_size_type(dynsymshdr.get_sh_size());
319
320 // Get the symbol names.
321 strtab_shndx = dynsymshdr.get_sh_link();
322 if (strtab_shndx >= this->shnum())
323 {
324 this->error(_("invalid dynamic symbol table name index: %u"),
325 strtab_shndx);
326 return;
327 }
328 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
329 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
330 {
331 this->error(_("dynamic symbol table name section "
332 "has wrong type: %u"),
333 static_cast<unsigned int>(strtabshdr.get_sh_type()));
334 return;
335 }
336
337 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
338 strtabshdr.get_sh_size(),
339 false);
340 sd->symbol_names_size =
341 convert_to_section_size_type(strtabshdr.get_sh_size());
342
343 // Get the version information.
344
345 unsigned int dummy;
346 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
347 dynsym_shndx, &sd->versym, &sd->versym_size,
348 &dummy);
349
350 // We require that the version definition and need section link
351 // to the same string table as the dynamic symbol table. This
352 // is not a technical requirement, but it always happens in
353 // practice. We could change this if necessary.
354
355 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
356 strtab_shndx, &sd->verdef, &sd->verdef_size,
357 &sd->verdef_info);
358
359 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
360 strtab_shndx, &sd->verneed, &sd->verneed_size,
361 &sd->verneed_info);
362 }
363
364 // Read the SHT_DYNAMIC section to find whether this shared object
365 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
366 // doesn't really have anything to do with reading the symbols, but
367 // this is a convenient place to do it.
368 if (dynamic_shndx != -1U)
369 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
370 (sd->symbol_names == NULL
371 ? NULL
372 : sd->symbol_names->data()),
373 sd->symbol_names_size);
374 }
375
376 // Lay out the input sections for a dynamic object. We don't want to
377 // include sections from a dynamic object, so all that we actually do
378 // here is check for .gnu.warning sections.
379
380 template<int size, bool big_endian>
381 void
382 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
383 Layout*,
384 Read_symbols_data* sd)
385 {
386 const unsigned int shnum = this->shnum();
387 if (shnum == 0)
388 return;
389
390 // Get the section headers.
391 const unsigned char* pshdrs = sd->section_headers->data();
392
393 // Get the section names.
394 const unsigned char* pnamesu = sd->section_names->data();
395 const char* pnames = reinterpret_cast<const char*>(pnamesu);
396
397 // Skip the first, dummy, section.
398 pshdrs += This::shdr_size;
399 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
400 {
401 typename This::Shdr shdr(pshdrs);
402
403 if (shdr.get_sh_name() >= sd->section_names_size)
404 {
405 this->error(_("bad section name offset for section %u: %lu"),
406 i, static_cast<unsigned long>(shdr.get_sh_name()));
407 return;
408 }
409
410 const char* name = pnames + shdr.get_sh_name();
411
412 this->handle_gnu_warning_section(name, i, symtab);
413 }
414
415 delete sd->section_headers;
416 sd->section_headers = NULL;
417 delete sd->section_names;
418 sd->section_names = NULL;
419 }
420
421 // Add an entry to the vector mapping version numbers to version
422 // strings.
423
424 template<int size, bool big_endian>
425 void
426 Sized_dynobj<size, big_endian>::set_version_map(
427 Version_map* version_map,
428 unsigned int ndx,
429 const char* name) const
430 {
431 if (ndx >= version_map->size())
432 version_map->resize(ndx + 1);
433 if ((*version_map)[ndx] != NULL)
434 this->error(_("duplicate definition for version %u"), ndx);
435 (*version_map)[ndx] = name;
436 }
437
438 // Add mappings for the version definitions to VERSION_MAP.
439
440 template<int size, bool big_endian>
441 void
442 Sized_dynobj<size, big_endian>::make_verdef_map(
443 Read_symbols_data* sd,
444 Version_map* version_map) const
445 {
446 if (sd->verdef == NULL)
447 return;
448
449 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
450 section_size_type names_size = sd->symbol_names_size;
451
452 const unsigned char* pverdef = sd->verdef->data();
453 section_size_type verdef_size = sd->verdef_size;
454 const unsigned int count = sd->verdef_info;
455
456 const unsigned char* p = pverdef;
457 for (unsigned int i = 0; i < count; ++i)
458 {
459 elfcpp::Verdef<size, big_endian> verdef(p);
460
461 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
462 {
463 this->error(_("unexpected verdef version %u"),
464 verdef.get_vd_version());
465 return;
466 }
467
468 const section_size_type vd_ndx = verdef.get_vd_ndx();
469
470 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
471 // sure why.
472
473 // The first Verdaux holds the name of this version. Subsequent
474 // ones are versions that this one depends upon, which we don't
475 // care about here.
476 const section_size_type vd_cnt = verdef.get_vd_cnt();
477 if (vd_cnt < 1)
478 {
479 this->error(_("verdef vd_cnt field too small: %u"),
480 static_cast<unsigned int>(vd_cnt));
481 return;
482 }
483
484 const section_size_type vd_aux = verdef.get_vd_aux();
485 if ((p - pverdef) + vd_aux >= verdef_size)
486 {
487 this->error(_("verdef vd_aux field out of range: %u"),
488 static_cast<unsigned int>(vd_aux));
489 return;
490 }
491
492 const unsigned char* pvda = p + vd_aux;
493 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
494
495 const section_size_type vda_name = verdaux.get_vda_name();
496 if (vda_name >= names_size)
497 {
498 this->error(_("verdaux vda_name field out of range: %u"),
499 static_cast<unsigned int>(vda_name));
500 return;
501 }
502
503 this->set_version_map(version_map, vd_ndx, names + vda_name);
504
505 const section_size_type vd_next = verdef.get_vd_next();
506 if ((p - pverdef) + vd_next >= verdef_size)
507 {
508 this->error(_("verdef vd_next field out of range: %u"),
509 static_cast<unsigned int>(vd_next));
510 return;
511 }
512
513 p += vd_next;
514 }
515 }
516
517 // Add mappings for the required versions to VERSION_MAP.
518
519 template<int size, bool big_endian>
520 void
521 Sized_dynobj<size, big_endian>::make_verneed_map(
522 Read_symbols_data* sd,
523 Version_map* version_map) const
524 {
525 if (sd->verneed == NULL)
526 return;
527
528 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
529 section_size_type names_size = sd->symbol_names_size;
530
531 const unsigned char* pverneed = sd->verneed->data();
532 const section_size_type verneed_size = sd->verneed_size;
533 const unsigned int count = sd->verneed_info;
534
535 const unsigned char* p = pverneed;
536 for (unsigned int i = 0; i < count; ++i)
537 {
538 elfcpp::Verneed<size, big_endian> verneed(p);
539
540 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
541 {
542 this->error(_("unexpected verneed version %u"),
543 verneed.get_vn_version());
544 return;
545 }
546
547 const section_size_type vn_aux = verneed.get_vn_aux();
548
549 if ((p - pverneed) + vn_aux >= verneed_size)
550 {
551 this->error(_("verneed vn_aux field out of range: %u"),
552 static_cast<unsigned int>(vn_aux));
553 return;
554 }
555
556 const unsigned int vn_cnt = verneed.get_vn_cnt();
557 const unsigned char* pvna = p + vn_aux;
558 for (unsigned int j = 0; j < vn_cnt; ++j)
559 {
560 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
561
562 const unsigned int vna_name = vernaux.get_vna_name();
563 if (vna_name >= names_size)
564 {
565 this->error(_("vernaux vna_name field out of range: %u"),
566 static_cast<unsigned int>(vna_name));
567 return;
568 }
569
570 this->set_version_map(version_map, vernaux.get_vna_other(),
571 names + vna_name);
572
573 const section_size_type vna_next = vernaux.get_vna_next();
574 if ((pvna - pverneed) + vna_next >= verneed_size)
575 {
576 this->error(_("verneed vna_next field out of range: %u"),
577 static_cast<unsigned int>(vna_next));
578 return;
579 }
580
581 pvna += vna_next;
582 }
583
584 const section_size_type vn_next = verneed.get_vn_next();
585 if ((p - pverneed) + vn_next >= verneed_size)
586 {
587 this->error(_("verneed vn_next field out of range: %u"),
588 static_cast<unsigned int>(vn_next));
589 return;
590 }
591
592 p += vn_next;
593 }
594 }
595
596 // Create a vector mapping version numbers to version strings.
597
598 template<int size, bool big_endian>
599 void
600 Sized_dynobj<size, big_endian>::make_version_map(
601 Read_symbols_data* sd,
602 Version_map* version_map) const
603 {
604 if (sd->verdef == NULL && sd->verneed == NULL)
605 return;
606
607 // A guess at the maximum version number we will see. If this is
608 // wrong we will be less efficient but still correct.
609 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
610
611 this->make_verdef_map(sd, version_map);
612 this->make_verneed_map(sd, version_map);
613 }
614
615 // Add the dynamic symbols to the symbol table.
616
617 template<int size, bool big_endian>
618 void
619 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
620 Read_symbols_data* sd)
621 {
622 if (sd->symbols == NULL)
623 {
624 gold_assert(sd->symbol_names == NULL);
625 gold_assert(sd->versym == NULL && sd->verdef == NULL
626 && sd->verneed == NULL);
627 return;
628 }
629
630 const int sym_size = This::sym_size;
631 const size_t symcount = sd->symbols_size / sym_size;
632 gold_assert(sd->external_symbols_offset == 0);
633 if (symcount * sym_size != sd->symbols_size)
634 {
635 this->error(_("size of dynamic symbols is not multiple of symbol size"));
636 return;
637 }
638
639 Version_map version_map;
640 this->make_version_map(sd, &version_map);
641
642 const char* sym_names =
643 reinterpret_cast<const char*>(sd->symbol_names->data());
644 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
645 sym_names, sd->symbol_names_size,
646 (sd->versym == NULL
647 ? NULL
648 : sd->versym->data()),
649 sd->versym_size,
650 &version_map);
651
652 delete sd->symbols;
653 sd->symbols = NULL;
654 delete sd->symbol_names;
655 sd->symbol_names = NULL;
656 if (sd->versym != NULL)
657 {
658 delete sd->versym;
659 sd->versym = NULL;
660 }
661 if (sd->verdef != NULL)
662 {
663 delete sd->verdef;
664 sd->verdef = NULL;
665 }
666 if (sd->verneed != NULL)
667 {
668 delete sd->verneed;
669 sd->verneed = NULL;
670 }
671
672 // This is normally the last time we will read any data from this
673 // file.
674 this->clear_view_cache_marks();
675 }
676
677 // Given a vector of hash codes, compute the number of hash buckets to
678 // use.
679
680 unsigned int
681 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
682 bool for_gnu_hash_table)
683 {
684 // FIXME: Implement optional hash table optimization.
685
686 // Array used to determine the number of hash table buckets to use
687 // based on the number of symbols there are. If there are fewer
688 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
689 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
690 // use more than 32771 buckets. This is straight from the old GNU
691 // linker.
692 static const unsigned int buckets[] =
693 {
694 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
695 16411, 32771
696 };
697 const int buckets_count = sizeof buckets / sizeof buckets[0];
698
699 unsigned int symcount = hashcodes.size();
700 unsigned int ret = 1;
701 for (int i = 0; i < buckets_count; ++i)
702 {
703 if (symcount < buckets[i])
704 break;
705 ret = buckets[i];
706 }
707
708 if (for_gnu_hash_table && ret < 2)
709 ret = 2;
710
711 return ret;
712 }
713
714 // The standard ELF hash function. This hash function must not
715 // change, as the dynamic linker uses it also.
716
717 uint32_t
718 Dynobj::elf_hash(const char* name)
719 {
720 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
721 uint32_t h = 0;
722 unsigned char c;
723 while ((c = *nameu++) != '\0')
724 {
725 h = (h << 4) + c;
726 uint32_t g = h & 0xf0000000;
727 if (g != 0)
728 {
729 h ^= g >> 24;
730 // The ELF ABI says h &= ~g, but using xor is equivalent in
731 // this case (since g was set from h) and may save one
732 // instruction.
733 h ^= g;
734 }
735 }
736 return h;
737 }
738
739 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
740 // DYNSYMS is a vector with all the global dynamic symbols.
741 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
742 // symbol table.
743
744 void
745 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
746 unsigned int local_dynsym_count,
747 unsigned char** pphash,
748 unsigned int* phashlen)
749 {
750 unsigned int dynsym_count = dynsyms.size();
751
752 // Get the hash values for all the symbols.
753 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
754 for (unsigned int i = 0; i < dynsym_count; ++i)
755 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
756
757 const unsigned int bucketcount =
758 Dynobj::compute_bucket_count(dynsym_hashvals, false);
759
760 std::vector<uint32_t> bucket(bucketcount);
761 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
762
763 for (unsigned int i = 0; i < dynsym_count; ++i)
764 {
765 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
766 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
767 chain[dynsym_index] = bucket[bucketpos];
768 bucket[bucketpos] = dynsym_index;
769 }
770
771 unsigned int hashlen = ((2
772 + bucketcount
773 + local_dynsym_count
774 + dynsym_count)
775 * 4);
776 unsigned char* phash = new unsigned char[hashlen];
777
778 if (parameters->target().is_big_endian())
779 {
780 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
781 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
782 hashlen);
783 #else
784 gold_unreachable();
785 #endif
786 }
787 else
788 {
789 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
790 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
791 hashlen);
792 #else
793 gold_unreachable();
794 #endif
795 }
796
797 *pphash = phash;
798 *phashlen = hashlen;
799 }
800
801 // Fill in an ELF hash table.
802
803 template<bool big_endian>
804 void
805 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
806 const std::vector<uint32_t>& chain,
807 unsigned char* phash,
808 unsigned int hashlen)
809 {
810 unsigned char* p = phash;
811
812 const unsigned int bucketcount = bucket.size();
813 const unsigned int chaincount = chain.size();
814
815 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
816 p += 4;
817 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
818 p += 4;
819
820 for (unsigned int i = 0; i < bucketcount; ++i)
821 {
822 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
823 p += 4;
824 }
825
826 for (unsigned int i = 0; i < chaincount; ++i)
827 {
828 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
829 p += 4;
830 }
831
832 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
833 }
834
835 // The hash function used for the GNU hash table. This hash function
836 // must not change, as the dynamic linker uses it also.
837
838 uint32_t
839 Dynobj::gnu_hash(const char* name)
840 {
841 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
842 uint32_t h = 5381;
843 unsigned char c;
844 while ((c = *nameu++) != '\0')
845 h = (h << 5) + h + c;
846 return h;
847 }
848
849 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
850 // tables are an extension to ELF which are recognized by the GNU
851 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
852 // TARGET is the target. DYNSYMS is a vector with all the global
853 // symbols which will be going into the dynamic symbol table.
854 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
855 // symbol table.
856
857 void
858 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
859 unsigned int local_dynsym_count,
860 unsigned char** pphash,
861 unsigned int* phashlen)
862 {
863 const unsigned int count = dynsyms.size();
864
865 // Sort the dynamic symbols into two vectors. Symbols which we do
866 // not want to put into the hash table we store into
867 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
868 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
869 // and records the hash codes.
870
871 std::vector<Symbol*> unhashed_dynsyms;
872 unhashed_dynsyms.reserve(count);
873
874 std::vector<Symbol*> hashed_dynsyms;
875 hashed_dynsyms.reserve(count);
876
877 std::vector<uint32_t> dynsym_hashvals;
878 dynsym_hashvals.reserve(count);
879
880 for (unsigned int i = 0; i < count; ++i)
881 {
882 Symbol* sym = dynsyms[i];
883
884 // FIXME: Should put on unhashed_dynsyms if the symbol is
885 // hidden.
886 if (sym->is_undefined())
887 unhashed_dynsyms.push_back(sym);
888 else
889 {
890 hashed_dynsyms.push_back(sym);
891 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
892 }
893 }
894
895 // Put the unhashed symbols at the start of the global portion of
896 // the dynamic symbol table.
897 const unsigned int unhashed_count = unhashed_dynsyms.size();
898 unsigned int unhashed_dynsym_index = local_dynsym_count;
899 for (unsigned int i = 0; i < unhashed_count; ++i)
900 {
901 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
902 ++unhashed_dynsym_index;
903 }
904
905 // For the actual data generation we call out to a templatized
906 // function.
907 int size = parameters->target().get_size();
908 bool big_endian = parameters->target().is_big_endian();
909 if (size == 32)
910 {
911 if (big_endian)
912 {
913 #ifdef HAVE_TARGET_32_BIG
914 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
915 dynsym_hashvals,
916 unhashed_dynsym_index,
917 pphash,
918 phashlen);
919 #else
920 gold_unreachable();
921 #endif
922 }
923 else
924 {
925 #ifdef HAVE_TARGET_32_LITTLE
926 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
927 dynsym_hashvals,
928 unhashed_dynsym_index,
929 pphash,
930 phashlen);
931 #else
932 gold_unreachable();
933 #endif
934 }
935 }
936 else if (size == 64)
937 {
938 if (big_endian)
939 {
940 #ifdef HAVE_TARGET_64_BIG
941 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
942 dynsym_hashvals,
943 unhashed_dynsym_index,
944 pphash,
945 phashlen);
946 #else
947 gold_unreachable();
948 #endif
949 }
950 else
951 {
952 #ifdef HAVE_TARGET_64_LITTLE
953 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
954 dynsym_hashvals,
955 unhashed_dynsym_index,
956 pphash,
957 phashlen);
958 #else
959 gold_unreachable();
960 #endif
961 }
962 }
963 else
964 gold_unreachable();
965 }
966
967 // Create the actual data for a GNU hash table. This is just a copy
968 // of the code from the old GNU linker.
969
970 template<int size, bool big_endian>
971 void
972 Dynobj::sized_create_gnu_hash_table(
973 const std::vector<Symbol*>& hashed_dynsyms,
974 const std::vector<uint32_t>& dynsym_hashvals,
975 unsigned int unhashed_dynsym_count,
976 unsigned char** pphash,
977 unsigned int* phashlen)
978 {
979 if (hashed_dynsyms.empty())
980 {
981 // Special case for the empty hash table.
982 unsigned int hashlen = 5 * 4 + size / 8;
983 unsigned char* phash = new unsigned char[hashlen];
984 // One empty bucket.
985 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
986 // Symbol index above unhashed symbols.
987 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
988 // One word for bitmask.
989 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
990 // Only bloom filter.
991 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
992 // No valid hashes.
993 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
994 // No hashes in only bucket.
995 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
996
997 *phashlen = hashlen;
998 *pphash = phash;
999
1000 return;
1001 }
1002
1003 const unsigned int bucketcount =
1004 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1005
1006 const unsigned int nsyms = hashed_dynsyms.size();
1007
1008 uint32_t maskbitslog2 = 1;
1009 uint32_t x = nsyms >> 1;
1010 while (x != 0)
1011 {
1012 ++maskbitslog2;
1013 x >>= 1;
1014 }
1015 if (maskbitslog2 < 3)
1016 maskbitslog2 = 5;
1017 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1018 maskbitslog2 += 3;
1019 else
1020 maskbitslog2 += 2;
1021
1022 uint32_t shift1;
1023 if (size == 32)
1024 shift1 = 5;
1025 else
1026 {
1027 if (maskbitslog2 == 5)
1028 maskbitslog2 = 6;
1029 shift1 = 6;
1030 }
1031 uint32_t mask = (1U << shift1) - 1U;
1032 uint32_t shift2 = maskbitslog2;
1033 uint32_t maskbits = 1U << maskbitslog2;
1034 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1035
1036 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1037 std::vector<Word> bitmask(maskwords);
1038 std::vector<uint32_t> counts(bucketcount);
1039 std::vector<uint32_t> indx(bucketcount);
1040 uint32_t symindx = unhashed_dynsym_count;
1041
1042 // Count the number of times each hash bucket is used.
1043 for (unsigned int i = 0; i < nsyms; ++i)
1044 ++counts[dynsym_hashvals[i] % bucketcount];
1045
1046 unsigned int cnt = symindx;
1047 for (unsigned int i = 0; i < bucketcount; ++i)
1048 {
1049 indx[i] = cnt;
1050 cnt += counts[i];
1051 }
1052
1053 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1054 hashlen += maskbits / 8;
1055 unsigned char* phash = new unsigned char[hashlen];
1056
1057 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1058 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1059 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1060 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1061
1062 unsigned char* p = phash + 16 + maskbits / 8;
1063 for (unsigned int i = 0; i < bucketcount; ++i)
1064 {
1065 if (counts[i] == 0)
1066 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1067 else
1068 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1069 p += 4;
1070 }
1071
1072 for (unsigned int i = 0; i < nsyms; ++i)
1073 {
1074 Symbol* sym = hashed_dynsyms[i];
1075 uint32_t hashval = dynsym_hashvals[i];
1076
1077 unsigned int bucket = hashval % bucketcount;
1078 unsigned int val = ((hashval >> shift1)
1079 & ((maskbits >> shift1) - 1));
1080 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1081 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1082 val = hashval & ~ 1U;
1083 if (counts[bucket] == 1)
1084 {
1085 // Last element terminates the chain.
1086 val |= 1;
1087 }
1088 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1089 val);
1090 --counts[bucket];
1091
1092 sym->set_dynsym_index(indx[bucket]);
1093 ++indx[bucket];
1094 }
1095
1096 p = phash + 16;
1097 for (unsigned int i = 0; i < maskwords; ++i)
1098 {
1099 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1100 p += size / 8;
1101 }
1102
1103 *phashlen = hashlen;
1104 *pphash = phash;
1105 }
1106
1107 // Verdef methods.
1108
1109 // Write this definition to a buffer for the output section.
1110
1111 template<int size, bool big_endian>
1112 unsigned char*
1113 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1114 {
1115 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1116 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1117
1118 elfcpp::Verdef_write<size, big_endian> vd(pb);
1119 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1120 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1121 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1122 vd.set_vd_ndx(this->index());
1123 vd.set_vd_cnt(1 + this->deps_.size());
1124 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1125 vd.set_vd_aux(verdef_size);
1126 vd.set_vd_next(is_last
1127 ? 0
1128 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1129 pb += verdef_size;
1130
1131 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1132 vda.set_vda_name(dynpool->get_offset(this->name()));
1133 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1134 pb += verdaux_size;
1135
1136 Deps::const_iterator p;
1137 unsigned int i;
1138 for (p = this->deps_.begin(), i = 0;
1139 p != this->deps_.end();
1140 ++p, ++i)
1141 {
1142 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1143 vda.set_vda_name(dynpool->get_offset(*p));
1144 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1145 pb += verdaux_size;
1146 }
1147
1148 return pb;
1149 }
1150
1151 // Verneed methods.
1152
1153 Verneed::~Verneed()
1154 {
1155 for (Need_versions::iterator p = this->need_versions_.begin();
1156 p != this->need_versions_.end();
1157 ++p)
1158 delete *p;
1159 }
1160
1161 // Add a new version to this file reference.
1162
1163 Verneed_version*
1164 Verneed::add_name(const char* name)
1165 {
1166 Verneed_version* vv = new Verneed_version(name);
1167 this->need_versions_.push_back(vv);
1168 return vv;
1169 }
1170
1171 // Set the version indexes starting at INDEX.
1172
1173 unsigned int
1174 Verneed::finalize(unsigned int index)
1175 {
1176 for (Need_versions::iterator p = this->need_versions_.begin();
1177 p != this->need_versions_.end();
1178 ++p)
1179 {
1180 (*p)->set_index(index);
1181 ++index;
1182 }
1183 return index;
1184 }
1185
1186 // Write this list of referenced versions to a buffer for the output
1187 // section.
1188
1189 template<int size, bool big_endian>
1190 unsigned char*
1191 Verneed::write(const Stringpool* dynpool, bool is_last,
1192 unsigned char* pb) const
1193 {
1194 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1195 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1196
1197 elfcpp::Verneed_write<size, big_endian> vn(pb);
1198 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1199 vn.set_vn_cnt(this->need_versions_.size());
1200 vn.set_vn_file(dynpool->get_offset(this->filename()));
1201 vn.set_vn_aux(verneed_size);
1202 vn.set_vn_next(is_last
1203 ? 0
1204 : verneed_size + this->need_versions_.size() * vernaux_size);
1205 pb += verneed_size;
1206
1207 Need_versions::const_iterator p;
1208 unsigned int i;
1209 for (p = this->need_versions_.begin(), i = 0;
1210 p != this->need_versions_.end();
1211 ++p, ++i)
1212 {
1213 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1214 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1215 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1216 vna.set_vna_flags(0);
1217 vna.set_vna_other((*p)->index());
1218 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1219 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1220 ? 0
1221 : vernaux_size);
1222 pb += vernaux_size;
1223 }
1224
1225 return pb;
1226 }
1227
1228 // Versions methods.
1229
1230 Versions::Versions(const Version_script_info& version_script,
1231 Stringpool* dynpool)
1232 : defs_(), needs_(), version_table_(),
1233 is_finalized_(false), version_script_(version_script)
1234 {
1235 // We always need a base version, so define that first. Nothing
1236 // explicitly declares itself as part of base, so it doesn't need to
1237 // be in version_table_.
1238 // FIXME: Should use soname here when creating a shared object. Is
1239 // this fixme still valid? It looks like it's doing the right thing
1240 // to me.
1241 if (parameters->options().shared())
1242 {
1243 const char* name = dynpool->add(parameters->options().output_file_name(),
1244 false, NULL);
1245 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1246 true, false, true);
1247 this->defs_.push_back(vdbase);
1248 }
1249
1250 if (!this->version_script_.empty())
1251 {
1252 // Parse the version script, and insert each declared version into
1253 // defs_ and version_table_.
1254 std::vector<std::string> versions = this->version_script_.get_versions();
1255 for (size_t k = 0; k < versions.size(); ++k)
1256 {
1257 Stringpool::Key version_key;
1258 const char* version = dynpool->add(versions[k].c_str(),
1259 true, &version_key);
1260 Verdef* const vd = new Verdef(
1261 version,
1262 this->version_script_.get_dependencies(version),
1263 false, false, false);
1264 this->defs_.push_back(vd);
1265 Key key(version_key, 0);
1266 this->version_table_.insert(std::make_pair(key, vd));
1267 }
1268 }
1269 }
1270
1271 Versions::~Versions()
1272 {
1273 for (Defs::iterator p = this->defs_.begin();
1274 p != this->defs_.end();
1275 ++p)
1276 delete *p;
1277
1278 for (Needs::iterator p = this->needs_.begin();
1279 p != this->needs_.end();
1280 ++p)
1281 delete *p;
1282 }
1283
1284 // Return the dynamic object which a symbol refers to.
1285
1286 Dynobj*
1287 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1288 const Symbol* sym) const
1289 {
1290 if (sym->is_copied_from_dynobj())
1291 return symtab->get_copy_source(sym);
1292 else
1293 {
1294 Object* object = sym->object();
1295 gold_assert(object->is_dynamic());
1296 return static_cast<Dynobj*>(object);
1297 }
1298 }
1299
1300 // Record version information for a symbol going into the dynamic
1301 // symbol table.
1302
1303 void
1304 Versions::record_version(const Symbol_table* symtab,
1305 Stringpool* dynpool, const Symbol* sym)
1306 {
1307 gold_assert(!this->is_finalized_);
1308 gold_assert(sym->version() != NULL);
1309
1310 Stringpool::Key version_key;
1311 const char* version = dynpool->add(sym->version(), false, &version_key);
1312
1313 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1314 {
1315 if (parameters->options().shared())
1316 this->add_def(sym, version, version_key);
1317 }
1318 else
1319 {
1320 // This is a version reference.
1321 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1322 this->add_need(dynpool, dynobj->soname(), version, version_key);
1323 }
1324 }
1325
1326 // We've found a symbol SYM defined in version VERSION.
1327
1328 void
1329 Versions::add_def(const Symbol* sym, const char* version,
1330 Stringpool::Key version_key)
1331 {
1332 Key k(version_key, 0);
1333 Version_base* const vbnull = NULL;
1334 std::pair<Version_table::iterator, bool> ins =
1335 this->version_table_.insert(std::make_pair(k, vbnull));
1336
1337 if (!ins.second)
1338 {
1339 // We already have an entry for this version.
1340 Version_base* vb = ins.first->second;
1341
1342 // We have now seen a symbol in this version, so it is not
1343 // weak.
1344 gold_assert(vb != NULL);
1345 vb->clear_weak();
1346 }
1347 else
1348 {
1349 // If we are creating a shared object, it is an error to
1350 // find a definition of a symbol with a version which is not
1351 // in the version script.
1352 if (parameters->options().shared())
1353 {
1354 gold_error(_("symbol %s has undefined version %s"),
1355 sym->demangled_name().c_str(), version);
1356 return;
1357 }
1358
1359 // When creating a regular executable, automatically define
1360 // a new version.
1361 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1362 false, false, false);
1363 this->defs_.push_back(vd);
1364 ins.first->second = vd;
1365 }
1366 }
1367
1368 // Add a reference to version NAME in file FILENAME.
1369
1370 void
1371 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1372 Stringpool::Key name_key)
1373 {
1374 Stringpool::Key filename_key;
1375 filename = dynpool->add(filename, true, &filename_key);
1376
1377 Key k(name_key, filename_key);
1378 Version_base* const vbnull = NULL;
1379 std::pair<Version_table::iterator, bool> ins =
1380 this->version_table_.insert(std::make_pair(k, vbnull));
1381
1382 if (!ins.second)
1383 {
1384 // We already have an entry for this filename/version.
1385 return;
1386 }
1387
1388 // See whether we already have this filename. We don't expect many
1389 // version references, so we just do a linear search. This could be
1390 // replaced by a hash table.
1391 Verneed* vn = NULL;
1392 for (Needs::iterator p = this->needs_.begin();
1393 p != this->needs_.end();
1394 ++p)
1395 {
1396 if ((*p)->filename() == filename)
1397 {
1398 vn = *p;
1399 break;
1400 }
1401 }
1402
1403 if (vn == NULL)
1404 {
1405 // We have a new filename.
1406 vn = new Verneed(filename);
1407 this->needs_.push_back(vn);
1408 }
1409
1410 ins.first->second = vn->add_name(name);
1411 }
1412
1413 // Set the version indexes. Create a new dynamic version symbol for
1414 // each new version definition.
1415
1416 unsigned int
1417 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1418 std::vector<Symbol*>* syms)
1419 {
1420 gold_assert(!this->is_finalized_);
1421
1422 unsigned int vi = 1;
1423
1424 for (Defs::iterator p = this->defs_.begin();
1425 p != this->defs_.end();
1426 ++p)
1427 {
1428 (*p)->set_index(vi);
1429 ++vi;
1430
1431 // Create a version symbol if necessary.
1432 if (!(*p)->is_symbol_created())
1433 {
1434 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1435 (*p)->name(), 0, 0,
1436 elfcpp::STT_OBJECT,
1437 elfcpp::STB_GLOBAL,
1438 elfcpp::STV_DEFAULT, 0,
1439 false, false);
1440 vsym->set_needs_dynsym_entry();
1441 vsym->set_dynsym_index(dynsym_index);
1442 ++dynsym_index;
1443 syms->push_back(vsym);
1444 // The name is already in the dynamic pool.
1445 }
1446 }
1447
1448 // Index 1 is used for global symbols.
1449 if (vi == 1)
1450 {
1451 gold_assert(this->defs_.empty());
1452 vi = 2;
1453 }
1454
1455 for (Needs::iterator p = this->needs_.begin();
1456 p != this->needs_.end();
1457 ++p)
1458 vi = (*p)->finalize(vi);
1459
1460 this->is_finalized_ = true;
1461
1462 return dynsym_index;
1463 }
1464
1465 // Return the version index to use for a symbol. This does two hash
1466 // table lookups: one in DYNPOOL and one in this->version_table_.
1467 // Another approach alternative would be store a pointer in SYM, which
1468 // would increase the size of the symbol table. Or perhaps we could
1469 // use a hash table from dynamic symbol pointer values to Version_base
1470 // pointers.
1471
1472 unsigned int
1473 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1474 const Symbol* sym) const
1475 {
1476 Stringpool::Key version_key;
1477 const char* version = dynpool->find(sym->version(), &version_key);
1478 gold_assert(version != NULL);
1479
1480 Key k;
1481 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1482 {
1483 if (!parameters->options().shared())
1484 return elfcpp::VER_NDX_GLOBAL;
1485 k = Key(version_key, 0);
1486 }
1487 else
1488 {
1489 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1490
1491 Stringpool::Key filename_key;
1492 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1493 gold_assert(filename != NULL);
1494
1495 k = Key(version_key, filename_key);
1496 }
1497
1498 Version_table::const_iterator p = this->version_table_.find(k);
1499 gold_assert(p != this->version_table_.end());
1500
1501 return p->second->index();
1502 }
1503
1504 // Return an allocated buffer holding the contents of the symbol
1505 // version section.
1506
1507 template<int size, bool big_endian>
1508 void
1509 Versions::symbol_section_contents(const Symbol_table* symtab,
1510 const Stringpool* dynpool,
1511 unsigned int local_symcount,
1512 const std::vector<Symbol*>& syms,
1513 unsigned char** pp,
1514 unsigned int* psize) const
1515 {
1516 gold_assert(this->is_finalized_);
1517
1518 unsigned int sz = (local_symcount + syms.size()) * 2;
1519 unsigned char* pbuf = new unsigned char[sz];
1520
1521 for (unsigned int i = 0; i < local_symcount; ++i)
1522 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1523 elfcpp::VER_NDX_LOCAL);
1524
1525 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1526 p != syms.end();
1527 ++p)
1528 {
1529 unsigned int version_index;
1530 const char* version = (*p)->version();
1531 if (version == NULL)
1532 version_index = elfcpp::VER_NDX_GLOBAL;
1533 else
1534 version_index = this->version_index(symtab, dynpool, *p);
1535 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1536 // the hidden bit.
1537 if ((*p)->version() != NULL && !(*p)->is_default())
1538 version_index |= elfcpp::VERSYM_HIDDEN;
1539 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1540 version_index);
1541 }
1542
1543 *pp = pbuf;
1544 *psize = sz;
1545 }
1546
1547 // Return an allocated buffer holding the contents of the version
1548 // definition section.
1549
1550 template<int size, bool big_endian>
1551 void
1552 Versions::def_section_contents(const Stringpool* dynpool,
1553 unsigned char** pp, unsigned int* psize,
1554 unsigned int* pentries) const
1555 {
1556 gold_assert(this->is_finalized_);
1557 gold_assert(!this->defs_.empty());
1558
1559 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1560 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1561
1562 unsigned int sz = 0;
1563 for (Defs::const_iterator p = this->defs_.begin();
1564 p != this->defs_.end();
1565 ++p)
1566 {
1567 sz += verdef_size + verdaux_size;
1568 sz += (*p)->count_dependencies() * verdaux_size;
1569 }
1570
1571 unsigned char* pbuf = new unsigned char[sz];
1572
1573 unsigned char* pb = pbuf;
1574 Defs::const_iterator p;
1575 unsigned int i;
1576 for (p = this->defs_.begin(), i = 0;
1577 p != this->defs_.end();
1578 ++p, ++i)
1579 pb = (*p)->write<size, big_endian>(dynpool,
1580 i + 1 >= this->defs_.size(),
1581 pb);
1582
1583 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1584
1585 *pp = pbuf;
1586 *psize = sz;
1587 *pentries = this->defs_.size();
1588 }
1589
1590 // Return an allocated buffer holding the contents of the version
1591 // reference section.
1592
1593 template<int size, bool big_endian>
1594 void
1595 Versions::need_section_contents(const Stringpool* dynpool,
1596 unsigned char** pp, unsigned int *psize,
1597 unsigned int *pentries) const
1598 {
1599 gold_assert(this->is_finalized_);
1600 gold_assert(!this->needs_.empty());
1601
1602 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1603 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1604
1605 unsigned int sz = 0;
1606 for (Needs::const_iterator p = this->needs_.begin();
1607 p != this->needs_.end();
1608 ++p)
1609 {
1610 sz += verneed_size;
1611 sz += (*p)->count_versions() * vernaux_size;
1612 }
1613
1614 unsigned char* pbuf = new unsigned char[sz];
1615
1616 unsigned char* pb = pbuf;
1617 Needs::const_iterator p;
1618 unsigned int i;
1619 for (p = this->needs_.begin(), i = 0;
1620 p != this->needs_.end();
1621 ++p, ++i)
1622 pb = (*p)->write<size, big_endian>(dynpool,
1623 i + 1 >= this->needs_.size(),
1624 pb);
1625
1626 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1627
1628 *pp = pbuf;
1629 *psize = sz;
1630 *pentries = this->needs_.size();
1631 }
1632
1633 // Instantiate the templates we need. We could use the configure
1634 // script to restrict this to only the ones for implemented targets.
1635
1636 #ifdef HAVE_TARGET_32_LITTLE
1637 template
1638 class Sized_dynobj<32, false>;
1639 #endif
1640
1641 #ifdef HAVE_TARGET_32_BIG
1642 template
1643 class Sized_dynobj<32, true>;
1644 #endif
1645
1646 #ifdef HAVE_TARGET_64_LITTLE
1647 template
1648 class Sized_dynobj<64, false>;
1649 #endif
1650
1651 #ifdef HAVE_TARGET_64_BIG
1652 template
1653 class Sized_dynobj<64, true>;
1654 #endif
1655
1656 #ifdef HAVE_TARGET_32_LITTLE
1657 template
1658 void
1659 Versions::symbol_section_contents<32, false>(
1660 const Symbol_table*,
1661 const Stringpool*,
1662 unsigned int,
1663 const std::vector<Symbol*>&,
1664 unsigned char**,
1665 unsigned int*) const;
1666 #endif
1667
1668 #ifdef HAVE_TARGET_32_BIG
1669 template
1670 void
1671 Versions::symbol_section_contents<32, true>(
1672 const Symbol_table*,
1673 const Stringpool*,
1674 unsigned int,
1675 const std::vector<Symbol*>&,
1676 unsigned char**,
1677 unsigned int*) const;
1678 #endif
1679
1680 #ifdef HAVE_TARGET_64_LITTLE
1681 template
1682 void
1683 Versions::symbol_section_contents<64, false>(
1684 const Symbol_table*,
1685 const Stringpool*,
1686 unsigned int,
1687 const std::vector<Symbol*>&,
1688 unsigned char**,
1689 unsigned int*) const;
1690 #endif
1691
1692 #ifdef HAVE_TARGET_64_BIG
1693 template
1694 void
1695 Versions::symbol_section_contents<64, true>(
1696 const Symbol_table*,
1697 const Stringpool*,
1698 unsigned int,
1699 const std::vector<Symbol*>&,
1700 unsigned char**,
1701 unsigned int*) const;
1702 #endif
1703
1704 #ifdef HAVE_TARGET_32_LITTLE
1705 template
1706 void
1707 Versions::def_section_contents<32, false>(
1708 const Stringpool*,
1709 unsigned char**,
1710 unsigned int*,
1711 unsigned int*) const;
1712 #endif
1713
1714 #ifdef HAVE_TARGET_32_BIG
1715 template
1716 void
1717 Versions::def_section_contents<32, true>(
1718 const Stringpool*,
1719 unsigned char**,
1720 unsigned int*,
1721 unsigned int*) const;
1722 #endif
1723
1724 #ifdef HAVE_TARGET_64_LITTLE
1725 template
1726 void
1727 Versions::def_section_contents<64, false>(
1728 const Stringpool*,
1729 unsigned char**,
1730 unsigned int*,
1731 unsigned int*) const;
1732 #endif
1733
1734 #ifdef HAVE_TARGET_64_BIG
1735 template
1736 void
1737 Versions::def_section_contents<64, true>(
1738 const Stringpool*,
1739 unsigned char**,
1740 unsigned int*,
1741 unsigned int*) const;
1742 #endif
1743
1744 #ifdef HAVE_TARGET_32_LITTLE
1745 template
1746 void
1747 Versions::need_section_contents<32, false>(
1748 const Stringpool*,
1749 unsigned char**,
1750 unsigned int*,
1751 unsigned int*) const;
1752 #endif
1753
1754 #ifdef HAVE_TARGET_32_BIG
1755 template
1756 void
1757 Versions::need_section_contents<32, true>(
1758 const Stringpool*,
1759 unsigned char**,
1760 unsigned int*,
1761 unsigned int*) const;
1762 #endif
1763
1764 #ifdef HAVE_TARGET_64_LITTLE
1765 template
1766 void
1767 Versions::need_section_contents<64, false>(
1768 const Stringpool*,
1769 unsigned char**,
1770 unsigned int*,
1771 unsigned int*) const;
1772 #endif
1773
1774 #ifdef HAVE_TARGET_64_BIG
1775 template
1776 void
1777 Versions::need_section_contents<64, true>(
1778 const Stringpool*,
1779 unsigned char**,
1780 unsigned int*,
1781 unsigned int*) const;
1782 #endif
1783
1784 } // End namespace gold.
This page took 0.072006 seconds and 5 git commands to generate.