* script.cc (class Lazy_demangler): Recreate--revert part of patch
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr),
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
79 {
80 }
81
82 // Set up the object.
83
84 template<int size, bool big_endian>
85 void
86 Sized_dynobj<size, big_endian>::setup()
87 {
88 const unsigned int shnum = this->elf_file_.shnum();
89 this->set_shnum(shnum);
90 }
91
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
94
95 template<int size, bool big_endian>
96 void
97 Sized_dynobj<size, big_endian>::find_dynsym_sections(
98 const unsigned char* pshdrs,
99 unsigned int* pversym_shndx,
100 unsigned int* pverdef_shndx,
101 unsigned int* pverneed_shndx,
102 unsigned int* pdynamic_shndx)
103 {
104 *pversym_shndx = -1U;
105 *pverdef_shndx = -1U;
106 *pverneed_shndx = -1U;
107 *pdynamic_shndx = -1U;
108
109 unsigned int symtab_shndx = 0;
110 unsigned int xindex_shndx = 0;
111 unsigned int xindex_link = 0;
112 const unsigned int shnum = this->shnum();
113 const unsigned char* p = pshdrs;
114 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
115 {
116 typename This::Shdr shdr(p);
117
118 unsigned int* pi;
119 switch (shdr.get_sh_type())
120 {
121 case elfcpp::SHT_DYNSYM:
122 this->dynsym_shndx_ = i;
123 if (xindex_shndx > 0 && xindex_link == i)
124 {
125 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
126 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
127 pshdrs);
128 this->set_xindex(xindex);
129 }
130 pi = NULL;
131 break;
132 case elfcpp::SHT_SYMTAB:
133 symtab_shndx = i;
134 pi = NULL;
135 break;
136 case elfcpp::SHT_GNU_versym:
137 pi = pversym_shndx;
138 break;
139 case elfcpp::SHT_GNU_verdef:
140 pi = pverdef_shndx;
141 break;
142 case elfcpp::SHT_GNU_verneed:
143 pi = pverneed_shndx;
144 break;
145 case elfcpp::SHT_DYNAMIC:
146 pi = pdynamic_shndx;
147 break;
148 case elfcpp::SHT_SYMTAB_SHNDX:
149 xindex_shndx = i;
150 xindex_link = this->adjust_shndx(shdr.get_sh_link());
151 if (xindex_link == this->dynsym_shndx_)
152 {
153 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
154 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
155 pshdrs);
156 this->set_xindex(xindex);
157 }
158 pi = NULL;
159 break;
160 default:
161 pi = NULL;
162 break;
163 }
164
165 if (pi == NULL)
166 continue;
167
168 if (*pi != -1U)
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr.get_sh_type(), *pi, i);
171
172 *pi = i;
173 }
174
175 // If there is no dynamic symbol table, use the normal symbol table.
176 // On some SVR4 systems, a shared library is stored in an archive.
177 // The version stored in the archive only has a normal symbol table.
178 // It has an SONAME entry which points to another copy in the file
179 // system which has a dynamic symbol table as usual. This is way of
180 // addressing the issues which glibc addresses using GROUP with
181 // libc_nonshared.a.
182 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
183 {
184 this->dynsym_shndx_ = symtab_shndx;
185 if (xindex_shndx > 0 && xindex_link == symtab_shndx)
186 {
187 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
188 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
189 pshdrs);
190 this->set_xindex(xindex);
191 }
192 }
193 }
194
195 // Read the contents of section SHNDX. PSHDRS points to the section
196 // headers. TYPE is the expected section type. LINK is the expected
197 // section link. Store the data in *VIEW and *VIEW_SIZE. The
198 // section's sh_info field is stored in *VIEW_INFO.
199
200 template<int size, bool big_endian>
201 void
202 Sized_dynobj<size, big_endian>::read_dynsym_section(
203 const unsigned char* pshdrs,
204 unsigned int shndx,
205 elfcpp::SHT type,
206 unsigned int link,
207 File_view** view,
208 section_size_type* view_size,
209 unsigned int* view_info)
210 {
211 if (shndx == -1U)
212 {
213 *view = NULL;
214 *view_size = 0;
215 *view_info = 0;
216 return;
217 }
218
219 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
220
221 gold_assert(shdr.get_sh_type() == type);
222
223 if (this->adjust_shndx(shdr.get_sh_link()) != link)
224 this->error(_("unexpected link in section %u header: %u != %u"),
225 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
226
227 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
228 true, false);
229 *view_size = convert_to_section_size_type(shdr.get_sh_size());
230 *view_info = shdr.get_sh_info();
231 }
232
233 // Read the dynamic tags. Set the soname field if this shared object
234 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
235 // the section headers. DYNAMIC_SHNDX is the section index of the
236 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
237 // section index and contents of a string table which may be the one
238 // associated with the SHT_DYNAMIC section.
239
240 template<int size, bool big_endian>
241 void
242 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
243 unsigned int dynamic_shndx,
244 unsigned int strtab_shndx,
245 const unsigned char* strtabu,
246 off_t strtab_size)
247 {
248 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
249 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
250
251 const off_t dynamic_size = dynamicshdr.get_sh_size();
252 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
253 dynamic_size, true, false);
254
255 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
256 if (link != strtab_shndx)
257 {
258 if (link >= this->shnum())
259 {
260 this->error(_("DYNAMIC section %u link out of range: %u"),
261 dynamic_shndx, link);
262 return;
263 }
264
265 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
266 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
267 {
268 this->error(_("DYNAMIC section %u link %u is not a strtab"),
269 dynamic_shndx, link);
270 return;
271 }
272
273 strtab_size = strtabshdr.get_sh_size();
274 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
275 false);
276 }
277
278 const char* const strtab = reinterpret_cast<const char*>(strtabu);
279
280 for (const unsigned char* p = pdynamic;
281 p < pdynamic + dynamic_size;
282 p += This::dyn_size)
283 {
284 typename This::Dyn dyn(p);
285
286 switch (dyn.get_d_tag())
287 {
288 case elfcpp::DT_NULL:
289 // We should always see DT_NULL at the end of the dynamic
290 // tags.
291 return;
292
293 case elfcpp::DT_SONAME:
294 {
295 off_t val = dyn.get_d_val();
296 if (val >= strtab_size)
297 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
298 static_cast<long long>(val),
299 static_cast<long long>(strtab_size));
300 else
301 this->set_soname_string(strtab + val);
302 }
303 break;
304
305 case elfcpp::DT_NEEDED:
306 {
307 off_t val = dyn.get_d_val();
308 if (val >= strtab_size)
309 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
310 static_cast<long long>(val),
311 static_cast<long long>(strtab_size));
312 else
313 this->add_needed(strtab + val);
314 }
315 break;
316
317 default:
318 break;
319 }
320 }
321
322 this->error(_("missing DT_NULL in dynamic segment"));
323 }
324
325 // Read the symbols and sections from a dynamic object. We read the
326 // dynamic symbols, not the normal symbols.
327
328 template<int size, bool big_endian>
329 void
330 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
331 {
332 this->read_section_data(&this->elf_file_, sd);
333
334 const unsigned char* const pshdrs = sd->section_headers->data();
335
336 unsigned int versym_shndx;
337 unsigned int verdef_shndx;
338 unsigned int verneed_shndx;
339 unsigned int dynamic_shndx;
340 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
341 &verneed_shndx, &dynamic_shndx);
342
343 unsigned int strtab_shndx = -1U;
344
345 sd->symbols = NULL;
346 sd->symbols_size = 0;
347 sd->external_symbols_offset = 0;
348 sd->symbol_names = NULL;
349 sd->symbol_names_size = 0;
350 sd->versym = NULL;
351 sd->versym_size = 0;
352 sd->verdef = NULL;
353 sd->verdef_size = 0;
354 sd->verdef_info = 0;
355 sd->verneed = NULL;
356 sd->verneed_size = 0;
357 sd->verneed_info = 0;
358
359 if (this->dynsym_shndx_ != -1U)
360 {
361 // Get the dynamic symbols.
362 typename This::Shdr dynsymshdr(pshdrs
363 + this->dynsym_shndx_ * This::shdr_size);
364
365 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
366 dynsymshdr.get_sh_size(), true,
367 false);
368 sd->symbols_size =
369 convert_to_section_size_type(dynsymshdr.get_sh_size());
370
371 // Get the symbol names.
372 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
373 if (strtab_shndx >= this->shnum())
374 {
375 this->error(_("invalid dynamic symbol table name index: %u"),
376 strtab_shndx);
377 return;
378 }
379 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
380 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
381 {
382 this->error(_("dynamic symbol table name section "
383 "has wrong type: %u"),
384 static_cast<unsigned int>(strtabshdr.get_sh_type()));
385 return;
386 }
387
388 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
389 strtabshdr.get_sh_size(),
390 false, false);
391 sd->symbol_names_size =
392 convert_to_section_size_type(strtabshdr.get_sh_size());
393
394 // Get the version information.
395
396 unsigned int dummy;
397 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
398 this->dynsym_shndx_,
399 &sd->versym, &sd->versym_size, &dummy);
400
401 // We require that the version definition and need section link
402 // to the same string table as the dynamic symbol table. This
403 // is not a technical requirement, but it always happens in
404 // practice. We could change this if necessary.
405
406 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
407 strtab_shndx, &sd->verdef, &sd->verdef_size,
408 &sd->verdef_info);
409
410 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
411 strtab_shndx, &sd->verneed, &sd->verneed_size,
412 &sd->verneed_info);
413 }
414
415 // Read the SHT_DYNAMIC section to find whether this shared object
416 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
417 // doesn't really have anything to do with reading the symbols, but
418 // this is a convenient place to do it.
419 if (dynamic_shndx != -1U)
420 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
421 (sd->symbol_names == NULL
422 ? NULL
423 : sd->symbol_names->data()),
424 sd->symbol_names_size);
425 }
426
427 // Return the Xindex structure to use for object with lots of
428 // sections.
429
430 template<int size, bool big_endian>
431 Xindex*
432 Sized_dynobj<size, big_endian>::do_initialize_xindex()
433 {
434 gold_assert(this->dynsym_shndx_ != -1U);
435 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
436 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
437 return xindex;
438 }
439
440 // Lay out the input sections for a dynamic object. We don't want to
441 // include sections from a dynamic object, so all that we actually do
442 // here is check for .gnu.warning and .note.GNU-split-stack sections.
443
444 template<int size, bool big_endian>
445 void
446 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
447 Layout*,
448 Read_symbols_data* sd)
449 {
450 const unsigned int shnum = this->shnum();
451 if (shnum == 0)
452 return;
453
454 // Get the section headers.
455 const unsigned char* pshdrs = sd->section_headers->data();
456
457 // Get the section names.
458 const unsigned char* pnamesu = sd->section_names->data();
459 const char* pnames = reinterpret_cast<const char*>(pnamesu);
460
461 // Skip the first, dummy, section.
462 pshdrs += This::shdr_size;
463 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
464 {
465 typename This::Shdr shdr(pshdrs);
466
467 if (shdr.get_sh_name() >= sd->section_names_size)
468 {
469 this->error(_("bad section name offset for section %u: %lu"),
470 i, static_cast<unsigned long>(shdr.get_sh_name()));
471 return;
472 }
473
474 const char* name = pnames + shdr.get_sh_name();
475
476 this->handle_gnu_warning_section(name, i, symtab);
477 this->handle_split_stack_section(name);
478 }
479
480 delete sd->section_headers;
481 sd->section_headers = NULL;
482 delete sd->section_names;
483 sd->section_names = NULL;
484 }
485
486 // Add an entry to the vector mapping version numbers to version
487 // strings.
488
489 template<int size, bool big_endian>
490 void
491 Sized_dynobj<size, big_endian>::set_version_map(
492 Version_map* version_map,
493 unsigned int ndx,
494 const char* name) const
495 {
496 if (ndx >= version_map->size())
497 version_map->resize(ndx + 1);
498 if ((*version_map)[ndx] != NULL)
499 this->error(_("duplicate definition for version %u"), ndx);
500 (*version_map)[ndx] = name;
501 }
502
503 // Add mappings for the version definitions to VERSION_MAP.
504
505 template<int size, bool big_endian>
506 void
507 Sized_dynobj<size, big_endian>::make_verdef_map(
508 Read_symbols_data* sd,
509 Version_map* version_map) const
510 {
511 if (sd->verdef == NULL)
512 return;
513
514 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
515 section_size_type names_size = sd->symbol_names_size;
516
517 const unsigned char* pverdef = sd->verdef->data();
518 section_size_type verdef_size = sd->verdef_size;
519 const unsigned int count = sd->verdef_info;
520
521 const unsigned char* p = pverdef;
522 for (unsigned int i = 0; i < count; ++i)
523 {
524 elfcpp::Verdef<size, big_endian> verdef(p);
525
526 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
527 {
528 this->error(_("unexpected verdef version %u"),
529 verdef.get_vd_version());
530 return;
531 }
532
533 const section_size_type vd_ndx = verdef.get_vd_ndx();
534
535 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
536 // sure why.
537
538 // The first Verdaux holds the name of this version. Subsequent
539 // ones are versions that this one depends upon, which we don't
540 // care about here.
541 const section_size_type vd_cnt = verdef.get_vd_cnt();
542 if (vd_cnt < 1)
543 {
544 this->error(_("verdef vd_cnt field too small: %u"),
545 static_cast<unsigned int>(vd_cnt));
546 return;
547 }
548
549 const section_size_type vd_aux = verdef.get_vd_aux();
550 if ((p - pverdef) + vd_aux >= verdef_size)
551 {
552 this->error(_("verdef vd_aux field out of range: %u"),
553 static_cast<unsigned int>(vd_aux));
554 return;
555 }
556
557 const unsigned char* pvda = p + vd_aux;
558 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
559
560 const section_size_type vda_name = verdaux.get_vda_name();
561 if (vda_name >= names_size)
562 {
563 this->error(_("verdaux vda_name field out of range: %u"),
564 static_cast<unsigned int>(vda_name));
565 return;
566 }
567
568 this->set_version_map(version_map, vd_ndx, names + vda_name);
569
570 const section_size_type vd_next = verdef.get_vd_next();
571 if ((p - pverdef) + vd_next >= verdef_size)
572 {
573 this->error(_("verdef vd_next field out of range: %u"),
574 static_cast<unsigned int>(vd_next));
575 return;
576 }
577
578 p += vd_next;
579 }
580 }
581
582 // Add mappings for the required versions to VERSION_MAP.
583
584 template<int size, bool big_endian>
585 void
586 Sized_dynobj<size, big_endian>::make_verneed_map(
587 Read_symbols_data* sd,
588 Version_map* version_map) const
589 {
590 if (sd->verneed == NULL)
591 return;
592
593 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
594 section_size_type names_size = sd->symbol_names_size;
595
596 const unsigned char* pverneed = sd->verneed->data();
597 const section_size_type verneed_size = sd->verneed_size;
598 const unsigned int count = sd->verneed_info;
599
600 const unsigned char* p = pverneed;
601 for (unsigned int i = 0; i < count; ++i)
602 {
603 elfcpp::Verneed<size, big_endian> verneed(p);
604
605 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
606 {
607 this->error(_("unexpected verneed version %u"),
608 verneed.get_vn_version());
609 return;
610 }
611
612 const section_size_type vn_aux = verneed.get_vn_aux();
613
614 if ((p - pverneed) + vn_aux >= verneed_size)
615 {
616 this->error(_("verneed vn_aux field out of range: %u"),
617 static_cast<unsigned int>(vn_aux));
618 return;
619 }
620
621 const unsigned int vn_cnt = verneed.get_vn_cnt();
622 const unsigned char* pvna = p + vn_aux;
623 for (unsigned int j = 0; j < vn_cnt; ++j)
624 {
625 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
626
627 const unsigned int vna_name = vernaux.get_vna_name();
628 if (vna_name >= names_size)
629 {
630 this->error(_("vernaux vna_name field out of range: %u"),
631 static_cast<unsigned int>(vna_name));
632 return;
633 }
634
635 this->set_version_map(version_map, vernaux.get_vna_other(),
636 names + vna_name);
637
638 const section_size_type vna_next = vernaux.get_vna_next();
639 if ((pvna - pverneed) + vna_next >= verneed_size)
640 {
641 this->error(_("verneed vna_next field out of range: %u"),
642 static_cast<unsigned int>(vna_next));
643 return;
644 }
645
646 pvna += vna_next;
647 }
648
649 const section_size_type vn_next = verneed.get_vn_next();
650 if ((p - pverneed) + vn_next >= verneed_size)
651 {
652 this->error(_("verneed vn_next field out of range: %u"),
653 static_cast<unsigned int>(vn_next));
654 return;
655 }
656
657 p += vn_next;
658 }
659 }
660
661 // Create a vector mapping version numbers to version strings.
662
663 template<int size, bool big_endian>
664 void
665 Sized_dynobj<size, big_endian>::make_version_map(
666 Read_symbols_data* sd,
667 Version_map* version_map) const
668 {
669 if (sd->verdef == NULL && sd->verneed == NULL)
670 return;
671
672 // A guess at the maximum version number we will see. If this is
673 // wrong we will be less efficient but still correct.
674 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
675
676 this->make_verdef_map(sd, version_map);
677 this->make_verneed_map(sd, version_map);
678 }
679
680 // Add the dynamic symbols to the symbol table.
681
682 template<int size, bool big_endian>
683 void
684 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
685 Read_symbols_data* sd,
686 Layout*)
687 {
688 if (sd->symbols == NULL)
689 {
690 gold_assert(sd->symbol_names == NULL);
691 gold_assert(sd->versym == NULL && sd->verdef == NULL
692 && sd->verneed == NULL);
693 return;
694 }
695
696 const int sym_size = This::sym_size;
697 const size_t symcount = sd->symbols_size / sym_size;
698 gold_assert(sd->external_symbols_offset == 0);
699 if (symcount * sym_size != sd->symbols_size)
700 {
701 this->error(_("size of dynamic symbols is not multiple of symbol size"));
702 return;
703 }
704
705 Version_map version_map;
706 this->make_version_map(sd, &version_map);
707
708 // If printing symbol counts or a cross reference table, we want to
709 // track symbols.
710 if (parameters->options().user_set_print_symbol_counts()
711 || parameters->options().cref())
712 {
713 this->symbols_ = new Symbols();
714 this->symbols_->resize(symcount);
715 }
716
717 const char* sym_names =
718 reinterpret_cast<const char*>(sd->symbol_names->data());
719 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
720 sym_names, sd->symbol_names_size,
721 (sd->versym == NULL
722 ? NULL
723 : sd->versym->data()),
724 sd->versym_size,
725 &version_map,
726 this->symbols_,
727 &this->defined_count_);
728
729 delete sd->symbols;
730 sd->symbols = NULL;
731 delete sd->symbol_names;
732 sd->symbol_names = NULL;
733 if (sd->versym != NULL)
734 {
735 delete sd->versym;
736 sd->versym = NULL;
737 }
738 if (sd->verdef != NULL)
739 {
740 delete sd->verdef;
741 sd->verdef = NULL;
742 }
743 if (sd->verneed != NULL)
744 {
745 delete sd->verneed;
746 sd->verneed = NULL;
747 }
748
749 // This is normally the last time we will read any data from this
750 // file.
751 this->clear_view_cache_marks();
752 }
753
754 // Get symbol counts.
755
756 template<int size, bool big_endian>
757 void
758 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
759 const Symbol_table*,
760 size_t* defined,
761 size_t* used) const
762 {
763 *defined = this->defined_count_;
764 size_t count = 0;
765 for (typename Symbols::const_iterator p = this->symbols_->begin();
766 p != this->symbols_->end();
767 ++p)
768 if (*p != NULL
769 && (*p)->source() == Symbol::FROM_OBJECT
770 && (*p)->object() == this
771 && (*p)->is_defined()
772 && (*p)->dynsym_index() != -1U)
773 ++count;
774 *used = count;
775 }
776
777 // Given a vector of hash codes, compute the number of hash buckets to
778 // use.
779
780 unsigned int
781 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
782 bool for_gnu_hash_table)
783 {
784 // FIXME: Implement optional hash table optimization.
785
786 // Array used to determine the number of hash table buckets to use
787 // based on the number of symbols there are. If there are fewer
788 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
789 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
790 // use more than 262147 buckets. This is straight from the old GNU
791 // linker.
792 static const unsigned int buckets[] =
793 {
794 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
795 16411, 32771, 65537, 131101, 262147
796 };
797 const int buckets_count = sizeof buckets / sizeof buckets[0];
798
799 unsigned int symcount = hashcodes.size();
800 unsigned int ret = 1;
801 const double full_fraction
802 = 1.0 - parameters->options().hash_bucket_empty_fraction();
803 for (int i = 0; i < buckets_count; ++i)
804 {
805 if (symcount < buckets[i] * full_fraction)
806 break;
807 ret = buckets[i];
808 }
809
810 if (for_gnu_hash_table && ret < 2)
811 ret = 2;
812
813 return ret;
814 }
815
816 // The standard ELF hash function. This hash function must not
817 // change, as the dynamic linker uses it also.
818
819 uint32_t
820 Dynobj::elf_hash(const char* name)
821 {
822 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
823 uint32_t h = 0;
824 unsigned char c;
825 while ((c = *nameu++) != '\0')
826 {
827 h = (h << 4) + c;
828 uint32_t g = h & 0xf0000000;
829 if (g != 0)
830 {
831 h ^= g >> 24;
832 // The ELF ABI says h &= ~g, but using xor is equivalent in
833 // this case (since g was set from h) and may save one
834 // instruction.
835 h ^= g;
836 }
837 }
838 return h;
839 }
840
841 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
842 // DYNSYMS is a vector with all the global dynamic symbols.
843 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
844 // symbol table.
845
846 void
847 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
848 unsigned int local_dynsym_count,
849 unsigned char** pphash,
850 unsigned int* phashlen)
851 {
852 unsigned int dynsym_count = dynsyms.size();
853
854 // Get the hash values for all the symbols.
855 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
856 for (unsigned int i = 0; i < dynsym_count; ++i)
857 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
858
859 const unsigned int bucketcount =
860 Dynobj::compute_bucket_count(dynsym_hashvals, false);
861
862 std::vector<uint32_t> bucket(bucketcount);
863 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
864
865 for (unsigned int i = 0; i < dynsym_count; ++i)
866 {
867 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
868 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
869 chain[dynsym_index] = bucket[bucketpos];
870 bucket[bucketpos] = dynsym_index;
871 }
872
873 unsigned int hashlen = ((2
874 + bucketcount
875 + local_dynsym_count
876 + dynsym_count)
877 * 4);
878 unsigned char* phash = new unsigned char[hashlen];
879
880 if (parameters->target().is_big_endian())
881 {
882 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
883 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
884 hashlen);
885 #else
886 gold_unreachable();
887 #endif
888 }
889 else
890 {
891 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
892 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
893 hashlen);
894 #else
895 gold_unreachable();
896 #endif
897 }
898
899 *pphash = phash;
900 *phashlen = hashlen;
901 }
902
903 // Fill in an ELF hash table.
904
905 template<bool big_endian>
906 void
907 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
908 const std::vector<uint32_t>& chain,
909 unsigned char* phash,
910 unsigned int hashlen)
911 {
912 unsigned char* p = phash;
913
914 const unsigned int bucketcount = bucket.size();
915 const unsigned int chaincount = chain.size();
916
917 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
918 p += 4;
919 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
920 p += 4;
921
922 for (unsigned int i = 0; i < bucketcount; ++i)
923 {
924 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
925 p += 4;
926 }
927
928 for (unsigned int i = 0; i < chaincount; ++i)
929 {
930 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
931 p += 4;
932 }
933
934 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
935 }
936
937 // The hash function used for the GNU hash table. This hash function
938 // must not change, as the dynamic linker uses it also.
939
940 uint32_t
941 Dynobj::gnu_hash(const char* name)
942 {
943 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
944 uint32_t h = 5381;
945 unsigned char c;
946 while ((c = *nameu++) != '\0')
947 h = (h << 5) + h + c;
948 return h;
949 }
950
951 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
952 // tables are an extension to ELF which are recognized by the GNU
953 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
954 // TARGET is the target. DYNSYMS is a vector with all the global
955 // symbols which will be going into the dynamic symbol table.
956 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
957 // symbol table.
958
959 void
960 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
961 unsigned int local_dynsym_count,
962 unsigned char** pphash,
963 unsigned int* phashlen)
964 {
965 const unsigned int count = dynsyms.size();
966
967 // Sort the dynamic symbols into two vectors. Symbols which we do
968 // not want to put into the hash table we store into
969 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
970 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
971 // and records the hash codes.
972
973 std::vector<Symbol*> unhashed_dynsyms;
974 unhashed_dynsyms.reserve(count);
975
976 std::vector<Symbol*> hashed_dynsyms;
977 hashed_dynsyms.reserve(count);
978
979 std::vector<uint32_t> dynsym_hashvals;
980 dynsym_hashvals.reserve(count);
981
982 for (unsigned int i = 0; i < count; ++i)
983 {
984 Symbol* sym = dynsyms[i];
985
986 if (!sym->needs_dynsym_value()
987 && (sym->is_undefined()
988 || sym->is_from_dynobj()
989 || sym->is_forced_local()))
990 unhashed_dynsyms.push_back(sym);
991 else
992 {
993 hashed_dynsyms.push_back(sym);
994 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
995 }
996 }
997
998 // Put the unhashed symbols at the start of the global portion of
999 // the dynamic symbol table.
1000 const unsigned int unhashed_count = unhashed_dynsyms.size();
1001 unsigned int unhashed_dynsym_index = local_dynsym_count;
1002 for (unsigned int i = 0; i < unhashed_count; ++i)
1003 {
1004 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1005 ++unhashed_dynsym_index;
1006 }
1007
1008 // For the actual data generation we call out to a templatized
1009 // function.
1010 int size = parameters->target().get_size();
1011 bool big_endian = parameters->target().is_big_endian();
1012 if (size == 32)
1013 {
1014 if (big_endian)
1015 {
1016 #ifdef HAVE_TARGET_32_BIG
1017 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1018 dynsym_hashvals,
1019 unhashed_dynsym_index,
1020 pphash,
1021 phashlen);
1022 #else
1023 gold_unreachable();
1024 #endif
1025 }
1026 else
1027 {
1028 #ifdef HAVE_TARGET_32_LITTLE
1029 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1030 dynsym_hashvals,
1031 unhashed_dynsym_index,
1032 pphash,
1033 phashlen);
1034 #else
1035 gold_unreachable();
1036 #endif
1037 }
1038 }
1039 else if (size == 64)
1040 {
1041 if (big_endian)
1042 {
1043 #ifdef HAVE_TARGET_64_BIG
1044 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1045 dynsym_hashvals,
1046 unhashed_dynsym_index,
1047 pphash,
1048 phashlen);
1049 #else
1050 gold_unreachable();
1051 #endif
1052 }
1053 else
1054 {
1055 #ifdef HAVE_TARGET_64_LITTLE
1056 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1057 dynsym_hashvals,
1058 unhashed_dynsym_index,
1059 pphash,
1060 phashlen);
1061 #else
1062 gold_unreachable();
1063 #endif
1064 }
1065 }
1066 else
1067 gold_unreachable();
1068 }
1069
1070 // Create the actual data for a GNU hash table. This is just a copy
1071 // of the code from the old GNU linker.
1072
1073 template<int size, bool big_endian>
1074 void
1075 Dynobj::sized_create_gnu_hash_table(
1076 const std::vector<Symbol*>& hashed_dynsyms,
1077 const std::vector<uint32_t>& dynsym_hashvals,
1078 unsigned int unhashed_dynsym_count,
1079 unsigned char** pphash,
1080 unsigned int* phashlen)
1081 {
1082 if (hashed_dynsyms.empty())
1083 {
1084 // Special case for the empty hash table.
1085 unsigned int hashlen = 5 * 4 + size / 8;
1086 unsigned char* phash = new unsigned char[hashlen];
1087 // One empty bucket.
1088 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1089 // Symbol index above unhashed symbols.
1090 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1091 // One word for bitmask.
1092 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1093 // Only bloom filter.
1094 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1095 // No valid hashes.
1096 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1097 // No hashes in only bucket.
1098 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1099
1100 *phashlen = hashlen;
1101 *pphash = phash;
1102
1103 return;
1104 }
1105
1106 const unsigned int bucketcount =
1107 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1108
1109 const unsigned int nsyms = hashed_dynsyms.size();
1110
1111 uint32_t maskbitslog2 = 1;
1112 uint32_t x = nsyms >> 1;
1113 while (x != 0)
1114 {
1115 ++maskbitslog2;
1116 x >>= 1;
1117 }
1118 if (maskbitslog2 < 3)
1119 maskbitslog2 = 5;
1120 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1121 maskbitslog2 += 3;
1122 else
1123 maskbitslog2 += 2;
1124
1125 uint32_t shift1;
1126 if (size == 32)
1127 shift1 = 5;
1128 else
1129 {
1130 if (maskbitslog2 == 5)
1131 maskbitslog2 = 6;
1132 shift1 = 6;
1133 }
1134 uint32_t mask = (1U << shift1) - 1U;
1135 uint32_t shift2 = maskbitslog2;
1136 uint32_t maskbits = 1U << maskbitslog2;
1137 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1138
1139 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1140 std::vector<Word> bitmask(maskwords);
1141 std::vector<uint32_t> counts(bucketcount);
1142 std::vector<uint32_t> indx(bucketcount);
1143 uint32_t symindx = unhashed_dynsym_count;
1144
1145 // Count the number of times each hash bucket is used.
1146 for (unsigned int i = 0; i < nsyms; ++i)
1147 ++counts[dynsym_hashvals[i] % bucketcount];
1148
1149 unsigned int cnt = symindx;
1150 for (unsigned int i = 0; i < bucketcount; ++i)
1151 {
1152 indx[i] = cnt;
1153 cnt += counts[i];
1154 }
1155
1156 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1157 hashlen += maskbits / 8;
1158 unsigned char* phash = new unsigned char[hashlen];
1159
1160 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1161 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1162 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1163 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1164
1165 unsigned char* p = phash + 16 + maskbits / 8;
1166 for (unsigned int i = 0; i < bucketcount; ++i)
1167 {
1168 if (counts[i] == 0)
1169 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1170 else
1171 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1172 p += 4;
1173 }
1174
1175 for (unsigned int i = 0; i < nsyms; ++i)
1176 {
1177 Symbol* sym = hashed_dynsyms[i];
1178 uint32_t hashval = dynsym_hashvals[i];
1179
1180 unsigned int bucket = hashval % bucketcount;
1181 unsigned int val = ((hashval >> shift1)
1182 & ((maskbits >> shift1) - 1));
1183 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1184 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1185 val = hashval & ~ 1U;
1186 if (counts[bucket] == 1)
1187 {
1188 // Last element terminates the chain.
1189 val |= 1;
1190 }
1191 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1192 val);
1193 --counts[bucket];
1194
1195 sym->set_dynsym_index(indx[bucket]);
1196 ++indx[bucket];
1197 }
1198
1199 p = phash + 16;
1200 for (unsigned int i = 0; i < maskwords; ++i)
1201 {
1202 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1203 p += size / 8;
1204 }
1205
1206 *phashlen = hashlen;
1207 *pphash = phash;
1208 }
1209
1210 // Verdef methods.
1211
1212 // Write this definition to a buffer for the output section.
1213
1214 template<int size, bool big_endian>
1215 unsigned char*
1216 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1217 {
1218 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1219 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1220
1221 elfcpp::Verdef_write<size, big_endian> vd(pb);
1222 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1223 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1224 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1225 vd.set_vd_ndx(this->index());
1226 vd.set_vd_cnt(1 + this->deps_.size());
1227 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1228 vd.set_vd_aux(verdef_size);
1229 vd.set_vd_next(is_last
1230 ? 0
1231 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1232 pb += verdef_size;
1233
1234 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1235 vda.set_vda_name(dynpool->get_offset(this->name()));
1236 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1237 pb += verdaux_size;
1238
1239 Deps::const_iterator p;
1240 unsigned int i;
1241 for (p = this->deps_.begin(), i = 0;
1242 p != this->deps_.end();
1243 ++p, ++i)
1244 {
1245 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1246 vda.set_vda_name(dynpool->get_offset(*p));
1247 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1248 pb += verdaux_size;
1249 }
1250
1251 return pb;
1252 }
1253
1254 // Verneed methods.
1255
1256 Verneed::~Verneed()
1257 {
1258 for (Need_versions::iterator p = this->need_versions_.begin();
1259 p != this->need_versions_.end();
1260 ++p)
1261 delete *p;
1262 }
1263
1264 // Add a new version to this file reference.
1265
1266 Verneed_version*
1267 Verneed::add_name(const char* name)
1268 {
1269 Verneed_version* vv = new Verneed_version(name);
1270 this->need_versions_.push_back(vv);
1271 return vv;
1272 }
1273
1274 // Set the version indexes starting at INDEX.
1275
1276 unsigned int
1277 Verneed::finalize(unsigned int index)
1278 {
1279 for (Need_versions::iterator p = this->need_versions_.begin();
1280 p != this->need_versions_.end();
1281 ++p)
1282 {
1283 (*p)->set_index(index);
1284 ++index;
1285 }
1286 return index;
1287 }
1288
1289 // Write this list of referenced versions to a buffer for the output
1290 // section.
1291
1292 template<int size, bool big_endian>
1293 unsigned char*
1294 Verneed::write(const Stringpool* dynpool, bool is_last,
1295 unsigned char* pb) const
1296 {
1297 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1298 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1299
1300 elfcpp::Verneed_write<size, big_endian> vn(pb);
1301 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1302 vn.set_vn_cnt(this->need_versions_.size());
1303 vn.set_vn_file(dynpool->get_offset(this->filename()));
1304 vn.set_vn_aux(verneed_size);
1305 vn.set_vn_next(is_last
1306 ? 0
1307 : verneed_size + this->need_versions_.size() * vernaux_size);
1308 pb += verneed_size;
1309
1310 Need_versions::const_iterator p;
1311 unsigned int i;
1312 for (p = this->need_versions_.begin(), i = 0;
1313 p != this->need_versions_.end();
1314 ++p, ++i)
1315 {
1316 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1317 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1318 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1319 vna.set_vna_flags(0);
1320 vna.set_vna_other((*p)->index());
1321 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1322 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1323 ? 0
1324 : vernaux_size);
1325 pb += vernaux_size;
1326 }
1327
1328 return pb;
1329 }
1330
1331 // Versions methods.
1332
1333 Versions::Versions(const Version_script_info& version_script,
1334 Stringpool* dynpool)
1335 : defs_(), needs_(), version_table_(),
1336 is_finalized_(false), version_script_(version_script),
1337 needs_base_version_(parameters->options().shared())
1338 {
1339 if (!this->version_script_.empty())
1340 {
1341 // Parse the version script, and insert each declared version into
1342 // defs_ and version_table_.
1343 std::vector<std::string> versions = this->version_script_.get_versions();
1344
1345 if (this->needs_base_version_ && !versions.empty())
1346 this->define_base_version(dynpool);
1347
1348 for (size_t k = 0; k < versions.size(); ++k)
1349 {
1350 Stringpool::Key version_key;
1351 const char* version = dynpool->add(versions[k].c_str(),
1352 true, &version_key);
1353 Verdef* const vd = new Verdef(
1354 version,
1355 this->version_script_.get_dependencies(version),
1356 false, false, false);
1357 this->defs_.push_back(vd);
1358 Key key(version_key, 0);
1359 this->version_table_.insert(std::make_pair(key, vd));
1360 }
1361 }
1362 }
1363
1364 Versions::~Versions()
1365 {
1366 for (Defs::iterator p = this->defs_.begin();
1367 p != this->defs_.end();
1368 ++p)
1369 delete *p;
1370
1371 for (Needs::iterator p = this->needs_.begin();
1372 p != this->needs_.end();
1373 ++p)
1374 delete *p;
1375 }
1376
1377 // Define the base version of a shared library. The base version definition
1378 // must be the first entry in defs_. We insert it lazily so that defs_ is
1379 // empty if no symbol versioning is used. Then layout can just drop the
1380 // version sections.
1381
1382 void
1383 Versions::define_base_version(Stringpool* dynpool)
1384 {
1385 // If we do any versioning at all, we always need a base version, so
1386 // define that first. Nothing explicitly declares itself as part of base,
1387 // so it doesn't need to be in version_table_.
1388 gold_assert(this->defs_.empty());
1389 const char* name = parameters->options().soname();
1390 if (name == NULL)
1391 name = parameters->options().output_file_name();
1392 name = dynpool->add(name, false, NULL);
1393 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1394 true, false, true);
1395 this->defs_.push_back(vdbase);
1396 this->needs_base_version_ = false;
1397 }
1398
1399 // Return the dynamic object which a symbol refers to.
1400
1401 Dynobj*
1402 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1403 const Symbol* sym) const
1404 {
1405 if (sym->is_copied_from_dynobj())
1406 return symtab->get_copy_source(sym);
1407 else
1408 {
1409 Object* object = sym->object();
1410 gold_assert(object->is_dynamic());
1411 return static_cast<Dynobj*>(object);
1412 }
1413 }
1414
1415 // Record version information for a symbol going into the dynamic
1416 // symbol table.
1417
1418 void
1419 Versions::record_version(const Symbol_table* symtab,
1420 Stringpool* dynpool, const Symbol* sym)
1421 {
1422 gold_assert(!this->is_finalized_);
1423 gold_assert(sym->version() != NULL);
1424
1425 Stringpool::Key version_key;
1426 const char* version = dynpool->add(sym->version(), false, &version_key);
1427
1428 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1429 {
1430 if (parameters->options().shared())
1431 this->add_def(sym, version, version_key);
1432 }
1433 else
1434 {
1435 // This is a version reference.
1436 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1437 this->add_need(dynpool, dynobj->soname(), version, version_key);
1438 }
1439 }
1440
1441 // We've found a symbol SYM defined in version VERSION.
1442
1443 void
1444 Versions::add_def(const Symbol* sym, const char* version,
1445 Stringpool::Key version_key)
1446 {
1447 Key k(version_key, 0);
1448 Version_base* const vbnull = NULL;
1449 std::pair<Version_table::iterator, bool> ins =
1450 this->version_table_.insert(std::make_pair(k, vbnull));
1451
1452 if (!ins.second)
1453 {
1454 // We already have an entry for this version.
1455 Version_base* vb = ins.first->second;
1456
1457 // We have now seen a symbol in this version, so it is not
1458 // weak.
1459 gold_assert(vb != NULL);
1460 vb->clear_weak();
1461 }
1462 else
1463 {
1464 // If we are creating a shared object, it is an error to
1465 // find a definition of a symbol with a version which is not
1466 // in the version script.
1467 if (parameters->options().shared())
1468 gold_error(_("symbol %s has undefined version %s"),
1469 sym->demangled_name().c_str(), version);
1470 else
1471 // We only insert a base version for shared library.
1472 gold_assert(!this->needs_base_version_);
1473
1474 // When creating a regular executable, automatically define
1475 // a new version.
1476 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1477 false, false, false);
1478 this->defs_.push_back(vd);
1479 ins.first->second = vd;
1480 }
1481 }
1482
1483 // Add a reference to version NAME in file FILENAME.
1484
1485 void
1486 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1487 Stringpool::Key name_key)
1488 {
1489 Stringpool::Key filename_key;
1490 filename = dynpool->add(filename, true, &filename_key);
1491
1492 Key k(name_key, filename_key);
1493 Version_base* const vbnull = NULL;
1494 std::pair<Version_table::iterator, bool> ins =
1495 this->version_table_.insert(std::make_pair(k, vbnull));
1496
1497 if (!ins.second)
1498 {
1499 // We already have an entry for this filename/version.
1500 return;
1501 }
1502
1503 // See whether we already have this filename. We don't expect many
1504 // version references, so we just do a linear search. This could be
1505 // replaced by a hash table.
1506 Verneed* vn = NULL;
1507 for (Needs::iterator p = this->needs_.begin();
1508 p != this->needs_.end();
1509 ++p)
1510 {
1511 if ((*p)->filename() == filename)
1512 {
1513 vn = *p;
1514 break;
1515 }
1516 }
1517
1518 if (vn == NULL)
1519 {
1520 // Create base version definition lazily for shared library.
1521 if (this->needs_base_version_)
1522 this->define_base_version(dynpool);
1523
1524 // We have a new filename.
1525 vn = new Verneed(filename);
1526 this->needs_.push_back(vn);
1527 }
1528
1529 ins.first->second = vn->add_name(name);
1530 }
1531
1532 // Set the version indexes. Create a new dynamic version symbol for
1533 // each new version definition.
1534
1535 unsigned int
1536 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1537 std::vector<Symbol*>* syms)
1538 {
1539 gold_assert(!this->is_finalized_);
1540
1541 unsigned int vi = 1;
1542
1543 for (Defs::iterator p = this->defs_.begin();
1544 p != this->defs_.end();
1545 ++p)
1546 {
1547 (*p)->set_index(vi);
1548 ++vi;
1549
1550 // Create a version symbol if necessary.
1551 if (!(*p)->is_symbol_created())
1552 {
1553 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1554 (*p)->name(),
1555 Symbol_table::PREDEFINED,
1556 0, 0,
1557 elfcpp::STT_OBJECT,
1558 elfcpp::STB_GLOBAL,
1559 elfcpp::STV_DEFAULT, 0,
1560 false, false);
1561 vsym->set_needs_dynsym_entry();
1562 vsym->set_dynsym_index(dynsym_index);
1563 vsym->set_is_default();
1564 ++dynsym_index;
1565 syms->push_back(vsym);
1566 // The name is already in the dynamic pool.
1567 }
1568 }
1569
1570 // Index 1 is used for global symbols.
1571 if (vi == 1)
1572 {
1573 gold_assert(this->defs_.empty());
1574 vi = 2;
1575 }
1576
1577 for (Needs::iterator p = this->needs_.begin();
1578 p != this->needs_.end();
1579 ++p)
1580 vi = (*p)->finalize(vi);
1581
1582 this->is_finalized_ = true;
1583
1584 return dynsym_index;
1585 }
1586
1587 // Return the version index to use for a symbol. This does two hash
1588 // table lookups: one in DYNPOOL and one in this->version_table_.
1589 // Another approach alternative would be store a pointer in SYM, which
1590 // would increase the size of the symbol table. Or perhaps we could
1591 // use a hash table from dynamic symbol pointer values to Version_base
1592 // pointers.
1593
1594 unsigned int
1595 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1596 const Symbol* sym) const
1597 {
1598 Stringpool::Key version_key;
1599 const char* version = dynpool->find(sym->version(), &version_key);
1600 gold_assert(version != NULL);
1601
1602 Key k;
1603 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1604 {
1605 if (!parameters->options().shared())
1606 return elfcpp::VER_NDX_GLOBAL;
1607 k = Key(version_key, 0);
1608 }
1609 else
1610 {
1611 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1612
1613 Stringpool::Key filename_key;
1614 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1615 gold_assert(filename != NULL);
1616
1617 k = Key(version_key, filename_key);
1618 }
1619
1620 Version_table::const_iterator p = this->version_table_.find(k);
1621 gold_assert(p != this->version_table_.end());
1622
1623 return p->second->index();
1624 }
1625
1626 // Return an allocated buffer holding the contents of the symbol
1627 // version section.
1628
1629 template<int size, bool big_endian>
1630 void
1631 Versions::symbol_section_contents(const Symbol_table* symtab,
1632 const Stringpool* dynpool,
1633 unsigned int local_symcount,
1634 const std::vector<Symbol*>& syms,
1635 unsigned char** pp,
1636 unsigned int* psize) const
1637 {
1638 gold_assert(this->is_finalized_);
1639
1640 unsigned int sz = (local_symcount + syms.size()) * 2;
1641 unsigned char* pbuf = new unsigned char[sz];
1642
1643 for (unsigned int i = 0; i < local_symcount; ++i)
1644 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1645 elfcpp::VER_NDX_LOCAL);
1646
1647 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1648 p != syms.end();
1649 ++p)
1650 {
1651 unsigned int version_index;
1652 const char* version = (*p)->version();
1653 if (version != NULL)
1654 version_index = this->version_index(symtab, dynpool, *p);
1655 else
1656 {
1657 if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1658 version_index = elfcpp::VER_NDX_GLOBAL;
1659 else
1660 version_index = elfcpp::VER_NDX_LOCAL;
1661 }
1662 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1663 // the hidden bit.
1664 if ((*p)->version() != NULL && !(*p)->is_default())
1665 version_index |= elfcpp::VERSYM_HIDDEN;
1666 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1667 version_index);
1668 }
1669
1670 *pp = pbuf;
1671 *psize = sz;
1672 }
1673
1674 // Return an allocated buffer holding the contents of the version
1675 // definition section.
1676
1677 template<int size, bool big_endian>
1678 void
1679 Versions::def_section_contents(const Stringpool* dynpool,
1680 unsigned char** pp, unsigned int* psize,
1681 unsigned int* pentries) const
1682 {
1683 gold_assert(this->is_finalized_);
1684 gold_assert(!this->defs_.empty());
1685
1686 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1687 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1688
1689 unsigned int sz = 0;
1690 for (Defs::const_iterator p = this->defs_.begin();
1691 p != this->defs_.end();
1692 ++p)
1693 {
1694 sz += verdef_size + verdaux_size;
1695 sz += (*p)->count_dependencies() * verdaux_size;
1696 }
1697
1698 unsigned char* pbuf = new unsigned char[sz];
1699
1700 unsigned char* pb = pbuf;
1701 Defs::const_iterator p;
1702 unsigned int i;
1703 for (p = this->defs_.begin(), i = 0;
1704 p != this->defs_.end();
1705 ++p, ++i)
1706 pb = (*p)->write<size, big_endian>(dynpool,
1707 i + 1 >= this->defs_.size(),
1708 pb);
1709
1710 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1711
1712 *pp = pbuf;
1713 *psize = sz;
1714 *pentries = this->defs_.size();
1715 }
1716
1717 // Return an allocated buffer holding the contents of the version
1718 // reference section.
1719
1720 template<int size, bool big_endian>
1721 void
1722 Versions::need_section_contents(const Stringpool* dynpool,
1723 unsigned char** pp, unsigned int *psize,
1724 unsigned int *pentries) const
1725 {
1726 gold_assert(this->is_finalized_);
1727 gold_assert(!this->needs_.empty());
1728
1729 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1730 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1731
1732 unsigned int sz = 0;
1733 for (Needs::const_iterator p = this->needs_.begin();
1734 p != this->needs_.end();
1735 ++p)
1736 {
1737 sz += verneed_size;
1738 sz += (*p)->count_versions() * vernaux_size;
1739 }
1740
1741 unsigned char* pbuf = new unsigned char[sz];
1742
1743 unsigned char* pb = pbuf;
1744 Needs::const_iterator p;
1745 unsigned int i;
1746 for (p = this->needs_.begin(), i = 0;
1747 p != this->needs_.end();
1748 ++p, ++i)
1749 pb = (*p)->write<size, big_endian>(dynpool,
1750 i + 1 >= this->needs_.size(),
1751 pb);
1752
1753 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1754
1755 *pp = pbuf;
1756 *psize = sz;
1757 *pentries = this->needs_.size();
1758 }
1759
1760 // Instantiate the templates we need. We could use the configure
1761 // script to restrict this to only the ones for implemented targets.
1762
1763 #ifdef HAVE_TARGET_32_LITTLE
1764 template
1765 class Sized_dynobj<32, false>;
1766 #endif
1767
1768 #ifdef HAVE_TARGET_32_BIG
1769 template
1770 class Sized_dynobj<32, true>;
1771 #endif
1772
1773 #ifdef HAVE_TARGET_64_LITTLE
1774 template
1775 class Sized_dynobj<64, false>;
1776 #endif
1777
1778 #ifdef HAVE_TARGET_64_BIG
1779 template
1780 class Sized_dynobj<64, true>;
1781 #endif
1782
1783 #ifdef HAVE_TARGET_32_LITTLE
1784 template
1785 void
1786 Versions::symbol_section_contents<32, false>(
1787 const Symbol_table*,
1788 const Stringpool*,
1789 unsigned int,
1790 const std::vector<Symbol*>&,
1791 unsigned char**,
1792 unsigned int*) const;
1793 #endif
1794
1795 #ifdef HAVE_TARGET_32_BIG
1796 template
1797 void
1798 Versions::symbol_section_contents<32, true>(
1799 const Symbol_table*,
1800 const Stringpool*,
1801 unsigned int,
1802 const std::vector<Symbol*>&,
1803 unsigned char**,
1804 unsigned int*) const;
1805 #endif
1806
1807 #ifdef HAVE_TARGET_64_LITTLE
1808 template
1809 void
1810 Versions::symbol_section_contents<64, false>(
1811 const Symbol_table*,
1812 const Stringpool*,
1813 unsigned int,
1814 const std::vector<Symbol*>&,
1815 unsigned char**,
1816 unsigned int*) const;
1817 #endif
1818
1819 #ifdef HAVE_TARGET_64_BIG
1820 template
1821 void
1822 Versions::symbol_section_contents<64, true>(
1823 const Symbol_table*,
1824 const Stringpool*,
1825 unsigned int,
1826 const std::vector<Symbol*>&,
1827 unsigned char**,
1828 unsigned int*) const;
1829 #endif
1830
1831 #ifdef HAVE_TARGET_32_LITTLE
1832 template
1833 void
1834 Versions::def_section_contents<32, false>(
1835 const Stringpool*,
1836 unsigned char**,
1837 unsigned int*,
1838 unsigned int*) const;
1839 #endif
1840
1841 #ifdef HAVE_TARGET_32_BIG
1842 template
1843 void
1844 Versions::def_section_contents<32, true>(
1845 const Stringpool*,
1846 unsigned char**,
1847 unsigned int*,
1848 unsigned int*) const;
1849 #endif
1850
1851 #ifdef HAVE_TARGET_64_LITTLE
1852 template
1853 void
1854 Versions::def_section_contents<64, false>(
1855 const Stringpool*,
1856 unsigned char**,
1857 unsigned int*,
1858 unsigned int*) const;
1859 #endif
1860
1861 #ifdef HAVE_TARGET_64_BIG
1862 template
1863 void
1864 Versions::def_section_contents<64, true>(
1865 const Stringpool*,
1866 unsigned char**,
1867 unsigned int*,
1868 unsigned int*) const;
1869 #endif
1870
1871 #ifdef HAVE_TARGET_32_LITTLE
1872 template
1873 void
1874 Versions::need_section_contents<32, false>(
1875 const Stringpool*,
1876 unsigned char**,
1877 unsigned int*,
1878 unsigned int*) const;
1879 #endif
1880
1881 #ifdef HAVE_TARGET_32_BIG
1882 template
1883 void
1884 Versions::need_section_contents<32, true>(
1885 const Stringpool*,
1886 unsigned char**,
1887 unsigned int*,
1888 unsigned int*) const;
1889 #endif
1890
1891 #ifdef HAVE_TARGET_64_LITTLE
1892 template
1893 void
1894 Versions::need_section_contents<64, false>(
1895 const Stringpool*,
1896 unsigned char**,
1897 unsigned int*,
1898 unsigned int*) const;
1899 #endif
1900
1901 #ifdef HAVE_TARGET_64_BIG
1902 template
1903 void
1904 Versions::need_section_contents<64, true>(
1905 const Stringpool*,
1906 unsigned char**,
1907 unsigned int*,
1908 unsigned int*) const;
1909 #endif
1910
1911 } // End namespace gold.
This page took 0.068219 seconds and 5 git commands to generate.