* dynobj.cc (Versions::Versions): If there is an soname, use it as
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr),
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
79 {
80 }
81
82 // Set up the object.
83
84 template<int size, bool big_endian>
85 void
86 Sized_dynobj<size, big_endian>::setup(
87 const elfcpp::Ehdr<size, big_endian>& ehdr)
88 {
89 this->set_target(ehdr.get_e_machine(), size, big_endian,
90 ehdr.get_e_ident()[elfcpp::EI_OSABI],
91 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
92
93 const unsigned int shnum = this->elf_file_.shnum();
94 this->set_shnum(shnum);
95 }
96
97 // Find the SHT_DYNSYM section and the various version sections, and
98 // the dynamic section, given the section headers.
99
100 template<int size, bool big_endian>
101 void
102 Sized_dynobj<size, big_endian>::find_dynsym_sections(
103 const unsigned char* pshdrs,
104 unsigned int* pversym_shndx,
105 unsigned int* pverdef_shndx,
106 unsigned int* pverneed_shndx,
107 unsigned int* pdynamic_shndx)
108 {
109 *pversym_shndx = -1U;
110 *pverdef_shndx = -1U;
111 *pverneed_shndx = -1U;
112 *pdynamic_shndx = -1U;
113
114 unsigned int xindex_shndx = 0;
115 unsigned int xindex_link = 0;
116 const unsigned int shnum = this->shnum();
117 const unsigned char* p = pshdrs;
118 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
119 {
120 typename This::Shdr shdr(p);
121
122 unsigned int* pi;
123 switch (shdr.get_sh_type())
124 {
125 case elfcpp::SHT_DYNSYM:
126 this->dynsym_shndx_ = i;
127 if (xindex_shndx > 0 && xindex_link == i)
128 {
129 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
130 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
131 pshdrs);
132 this->set_xindex(xindex);
133 }
134 pi = NULL;
135 break;
136 case elfcpp::SHT_GNU_versym:
137 pi = pversym_shndx;
138 break;
139 case elfcpp::SHT_GNU_verdef:
140 pi = pverdef_shndx;
141 break;
142 case elfcpp::SHT_GNU_verneed:
143 pi = pverneed_shndx;
144 break;
145 case elfcpp::SHT_DYNAMIC:
146 pi = pdynamic_shndx;
147 break;
148 case elfcpp::SHT_SYMTAB_SHNDX:
149 xindex_shndx = i;
150 xindex_link = this->adjust_shndx(shdr.get_sh_link());
151 if (xindex_link == this->dynsym_shndx_)
152 {
153 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
154 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
155 pshdrs);
156 this->set_xindex(xindex);
157 }
158 pi = NULL;
159 break;
160 default:
161 pi = NULL;
162 break;
163 }
164
165 if (pi == NULL)
166 continue;
167
168 if (*pi != -1U)
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr.get_sh_type(), *pi, i);
171
172 *pi = i;
173 }
174 }
175
176 // Read the contents of section SHNDX. PSHDRS points to the section
177 // headers. TYPE is the expected section type. LINK is the expected
178 // section link. Store the data in *VIEW and *VIEW_SIZE. The
179 // section's sh_info field is stored in *VIEW_INFO.
180
181 template<int size, bool big_endian>
182 void
183 Sized_dynobj<size, big_endian>::read_dynsym_section(
184 const unsigned char* pshdrs,
185 unsigned int shndx,
186 elfcpp::SHT type,
187 unsigned int link,
188 File_view** view,
189 section_size_type* view_size,
190 unsigned int* view_info)
191 {
192 if (shndx == -1U)
193 {
194 *view = NULL;
195 *view_size = 0;
196 *view_info = 0;
197 return;
198 }
199
200 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
201
202 gold_assert(shdr.get_sh_type() == type);
203
204 if (this->adjust_shndx(shdr.get_sh_link()) != link)
205 this->error(_("unexpected link in section %u header: %u != %u"),
206 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
207
208 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
209 true, false);
210 *view_size = convert_to_section_size_type(shdr.get_sh_size());
211 *view_info = shdr.get_sh_info();
212 }
213
214 // Read the dynamic tags. Set the soname field if this shared object
215 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
216 // the section headers. DYNAMIC_SHNDX is the section index of the
217 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
218 // section index and contents of a string table which may be the one
219 // associated with the SHT_DYNAMIC section.
220
221 template<int size, bool big_endian>
222 void
223 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
224 unsigned int dynamic_shndx,
225 unsigned int strtab_shndx,
226 const unsigned char* strtabu,
227 off_t strtab_size)
228 {
229 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
230 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
231
232 const off_t dynamic_size = dynamicshdr.get_sh_size();
233 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
234 dynamic_size, true, false);
235
236 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
237 if (link != strtab_shndx)
238 {
239 if (link >= this->shnum())
240 {
241 this->error(_("DYNAMIC section %u link out of range: %u"),
242 dynamic_shndx, link);
243 return;
244 }
245
246 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
247 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
248 {
249 this->error(_("DYNAMIC section %u link %u is not a strtab"),
250 dynamic_shndx, link);
251 return;
252 }
253
254 strtab_size = strtabshdr.get_sh_size();
255 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
256 false);
257 }
258
259 const char* const strtab = reinterpret_cast<const char*>(strtabu);
260
261 for (const unsigned char* p = pdynamic;
262 p < pdynamic + dynamic_size;
263 p += This::dyn_size)
264 {
265 typename This::Dyn dyn(p);
266
267 switch (dyn.get_d_tag())
268 {
269 case elfcpp::DT_NULL:
270 // We should always see DT_NULL at the end of the dynamic
271 // tags.
272 return;
273
274 case elfcpp::DT_SONAME:
275 {
276 off_t val = dyn.get_d_val();
277 if (val >= strtab_size)
278 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
279 static_cast<long long>(val),
280 static_cast<long long>(strtab_size));
281 else
282 this->set_soname_string(strtab + val);
283 }
284 break;
285
286 case elfcpp::DT_NEEDED:
287 {
288 off_t val = dyn.get_d_val();
289 if (val >= strtab_size)
290 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
291 static_cast<long long>(val),
292 static_cast<long long>(strtab_size));
293 else
294 this->add_needed(strtab + val);
295 }
296 break;
297
298 default:
299 break;
300 }
301 }
302
303 this->error(_("missing DT_NULL in dynamic segment"));
304 }
305
306 // Read the symbols and sections from a dynamic object. We read the
307 // dynamic symbols, not the normal symbols.
308
309 template<int size, bool big_endian>
310 void
311 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
312 {
313 this->read_section_data(&this->elf_file_, sd);
314
315 const unsigned char* const pshdrs = sd->section_headers->data();
316
317 unsigned int versym_shndx;
318 unsigned int verdef_shndx;
319 unsigned int verneed_shndx;
320 unsigned int dynamic_shndx;
321 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
322 &verneed_shndx, &dynamic_shndx);
323
324 unsigned int strtab_shndx = -1U;
325
326 sd->symbols = NULL;
327 sd->symbols_size = 0;
328 sd->external_symbols_offset = 0;
329 sd->symbol_names = NULL;
330 sd->symbol_names_size = 0;
331
332 if (this->dynsym_shndx_ != -1U)
333 {
334 // Get the dynamic symbols.
335 typename This::Shdr dynsymshdr(pshdrs
336 + this->dynsym_shndx_ * This::shdr_size);
337 gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM);
338
339 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
340 dynsymshdr.get_sh_size(), true,
341 false);
342 sd->symbols_size =
343 convert_to_section_size_type(dynsymshdr.get_sh_size());
344
345 // Get the symbol names.
346 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
347 if (strtab_shndx >= this->shnum())
348 {
349 this->error(_("invalid dynamic symbol table name index: %u"),
350 strtab_shndx);
351 return;
352 }
353 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
354 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
355 {
356 this->error(_("dynamic symbol table name section "
357 "has wrong type: %u"),
358 static_cast<unsigned int>(strtabshdr.get_sh_type()));
359 return;
360 }
361
362 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
363 strtabshdr.get_sh_size(),
364 false, false);
365 sd->symbol_names_size =
366 convert_to_section_size_type(strtabshdr.get_sh_size());
367
368 // Get the version information.
369
370 unsigned int dummy;
371 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
372 this->dynsym_shndx_,
373 &sd->versym, &sd->versym_size, &dummy);
374
375 // We require that the version definition and need section link
376 // to the same string table as the dynamic symbol table. This
377 // is not a technical requirement, but it always happens in
378 // practice. We could change this if necessary.
379
380 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
381 strtab_shndx, &sd->verdef, &sd->verdef_size,
382 &sd->verdef_info);
383
384 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
385 strtab_shndx, &sd->verneed, &sd->verneed_size,
386 &sd->verneed_info);
387 }
388
389 // Read the SHT_DYNAMIC section to find whether this shared object
390 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
391 // doesn't really have anything to do with reading the symbols, but
392 // this is a convenient place to do it.
393 if (dynamic_shndx != -1U)
394 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
395 (sd->symbol_names == NULL
396 ? NULL
397 : sd->symbol_names->data()),
398 sd->symbol_names_size);
399 }
400
401 // Return the Xindex structure to use for object with lots of
402 // sections.
403
404 template<int size, bool big_endian>
405 Xindex*
406 Sized_dynobj<size, big_endian>::do_initialize_xindex()
407 {
408 gold_assert(this->dynsym_shndx_ != -1U);
409 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
410 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
411 return xindex;
412 }
413
414 // Lay out the input sections for a dynamic object. We don't want to
415 // include sections from a dynamic object, so all that we actually do
416 // here is check for .gnu.warning sections.
417
418 template<int size, bool big_endian>
419 void
420 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
421 Layout*,
422 Read_symbols_data* sd)
423 {
424 const unsigned int shnum = this->shnum();
425 if (shnum == 0)
426 return;
427
428 // Get the section headers.
429 const unsigned char* pshdrs = sd->section_headers->data();
430
431 // Get the section names.
432 const unsigned char* pnamesu = sd->section_names->data();
433 const char* pnames = reinterpret_cast<const char*>(pnamesu);
434
435 // Skip the first, dummy, section.
436 pshdrs += This::shdr_size;
437 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
438 {
439 typename This::Shdr shdr(pshdrs);
440
441 if (shdr.get_sh_name() >= sd->section_names_size)
442 {
443 this->error(_("bad section name offset for section %u: %lu"),
444 i, static_cast<unsigned long>(shdr.get_sh_name()));
445 return;
446 }
447
448 const char* name = pnames + shdr.get_sh_name();
449
450 this->handle_gnu_warning_section(name, i, symtab);
451 }
452
453 delete sd->section_headers;
454 sd->section_headers = NULL;
455 delete sd->section_names;
456 sd->section_names = NULL;
457 }
458
459 // Add an entry to the vector mapping version numbers to version
460 // strings.
461
462 template<int size, bool big_endian>
463 void
464 Sized_dynobj<size, big_endian>::set_version_map(
465 Version_map* version_map,
466 unsigned int ndx,
467 const char* name) const
468 {
469 if (ndx >= version_map->size())
470 version_map->resize(ndx + 1);
471 if ((*version_map)[ndx] != NULL)
472 this->error(_("duplicate definition for version %u"), ndx);
473 (*version_map)[ndx] = name;
474 }
475
476 // Add mappings for the version definitions to VERSION_MAP.
477
478 template<int size, bool big_endian>
479 void
480 Sized_dynobj<size, big_endian>::make_verdef_map(
481 Read_symbols_data* sd,
482 Version_map* version_map) const
483 {
484 if (sd->verdef == NULL)
485 return;
486
487 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
488 section_size_type names_size = sd->symbol_names_size;
489
490 const unsigned char* pverdef = sd->verdef->data();
491 section_size_type verdef_size = sd->verdef_size;
492 const unsigned int count = sd->verdef_info;
493
494 const unsigned char* p = pverdef;
495 for (unsigned int i = 0; i < count; ++i)
496 {
497 elfcpp::Verdef<size, big_endian> verdef(p);
498
499 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
500 {
501 this->error(_("unexpected verdef version %u"),
502 verdef.get_vd_version());
503 return;
504 }
505
506 const section_size_type vd_ndx = verdef.get_vd_ndx();
507
508 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
509 // sure why.
510
511 // The first Verdaux holds the name of this version. Subsequent
512 // ones are versions that this one depends upon, which we don't
513 // care about here.
514 const section_size_type vd_cnt = verdef.get_vd_cnt();
515 if (vd_cnt < 1)
516 {
517 this->error(_("verdef vd_cnt field too small: %u"),
518 static_cast<unsigned int>(vd_cnt));
519 return;
520 }
521
522 const section_size_type vd_aux = verdef.get_vd_aux();
523 if ((p - pverdef) + vd_aux >= verdef_size)
524 {
525 this->error(_("verdef vd_aux field out of range: %u"),
526 static_cast<unsigned int>(vd_aux));
527 return;
528 }
529
530 const unsigned char* pvda = p + vd_aux;
531 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
532
533 const section_size_type vda_name = verdaux.get_vda_name();
534 if (vda_name >= names_size)
535 {
536 this->error(_("verdaux vda_name field out of range: %u"),
537 static_cast<unsigned int>(vda_name));
538 return;
539 }
540
541 this->set_version_map(version_map, vd_ndx, names + vda_name);
542
543 const section_size_type vd_next = verdef.get_vd_next();
544 if ((p - pverdef) + vd_next >= verdef_size)
545 {
546 this->error(_("verdef vd_next field out of range: %u"),
547 static_cast<unsigned int>(vd_next));
548 return;
549 }
550
551 p += vd_next;
552 }
553 }
554
555 // Add mappings for the required versions to VERSION_MAP.
556
557 template<int size, bool big_endian>
558 void
559 Sized_dynobj<size, big_endian>::make_verneed_map(
560 Read_symbols_data* sd,
561 Version_map* version_map) const
562 {
563 if (sd->verneed == NULL)
564 return;
565
566 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
567 section_size_type names_size = sd->symbol_names_size;
568
569 const unsigned char* pverneed = sd->verneed->data();
570 const section_size_type verneed_size = sd->verneed_size;
571 const unsigned int count = sd->verneed_info;
572
573 const unsigned char* p = pverneed;
574 for (unsigned int i = 0; i < count; ++i)
575 {
576 elfcpp::Verneed<size, big_endian> verneed(p);
577
578 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
579 {
580 this->error(_("unexpected verneed version %u"),
581 verneed.get_vn_version());
582 return;
583 }
584
585 const section_size_type vn_aux = verneed.get_vn_aux();
586
587 if ((p - pverneed) + vn_aux >= verneed_size)
588 {
589 this->error(_("verneed vn_aux field out of range: %u"),
590 static_cast<unsigned int>(vn_aux));
591 return;
592 }
593
594 const unsigned int vn_cnt = verneed.get_vn_cnt();
595 const unsigned char* pvna = p + vn_aux;
596 for (unsigned int j = 0; j < vn_cnt; ++j)
597 {
598 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
599
600 const unsigned int vna_name = vernaux.get_vna_name();
601 if (vna_name >= names_size)
602 {
603 this->error(_("vernaux vna_name field out of range: %u"),
604 static_cast<unsigned int>(vna_name));
605 return;
606 }
607
608 this->set_version_map(version_map, vernaux.get_vna_other(),
609 names + vna_name);
610
611 const section_size_type vna_next = vernaux.get_vna_next();
612 if ((pvna - pverneed) + vna_next >= verneed_size)
613 {
614 this->error(_("verneed vna_next field out of range: %u"),
615 static_cast<unsigned int>(vna_next));
616 return;
617 }
618
619 pvna += vna_next;
620 }
621
622 const section_size_type vn_next = verneed.get_vn_next();
623 if ((p - pverneed) + vn_next >= verneed_size)
624 {
625 this->error(_("verneed vn_next field out of range: %u"),
626 static_cast<unsigned int>(vn_next));
627 return;
628 }
629
630 p += vn_next;
631 }
632 }
633
634 // Create a vector mapping version numbers to version strings.
635
636 template<int size, bool big_endian>
637 void
638 Sized_dynobj<size, big_endian>::make_version_map(
639 Read_symbols_data* sd,
640 Version_map* version_map) const
641 {
642 if (sd->verdef == NULL && sd->verneed == NULL)
643 return;
644
645 // A guess at the maximum version number we will see. If this is
646 // wrong we will be less efficient but still correct.
647 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
648
649 this->make_verdef_map(sd, version_map);
650 this->make_verneed_map(sd, version_map);
651 }
652
653 // Add the dynamic symbols to the symbol table.
654
655 template<int size, bool big_endian>
656 void
657 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
658 Read_symbols_data* sd)
659 {
660 if (sd->symbols == NULL)
661 {
662 gold_assert(sd->symbol_names == NULL);
663 gold_assert(sd->versym == NULL && sd->verdef == NULL
664 && sd->verneed == NULL);
665 return;
666 }
667
668 const int sym_size = This::sym_size;
669 const size_t symcount = sd->symbols_size / sym_size;
670 gold_assert(sd->external_symbols_offset == 0);
671 if (symcount * sym_size != sd->symbols_size)
672 {
673 this->error(_("size of dynamic symbols is not multiple of symbol size"));
674 return;
675 }
676
677 Version_map version_map;
678 this->make_version_map(sd, &version_map);
679
680 // If printing symbol counts, we want to track symbols.
681
682 if (parameters->options().user_set_print_symbol_counts())
683 {
684 this->symbols_ = new Symbols();
685 this->symbols_->resize(symcount);
686 }
687
688 const char* sym_names =
689 reinterpret_cast<const char*>(sd->symbol_names->data());
690 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
691 sym_names, sd->symbol_names_size,
692 (sd->versym == NULL
693 ? NULL
694 : sd->versym->data()),
695 sd->versym_size,
696 &version_map,
697 this->symbols_,
698 &this->defined_count_);
699
700 delete sd->symbols;
701 sd->symbols = NULL;
702 delete sd->symbol_names;
703 sd->symbol_names = NULL;
704 if (sd->versym != NULL)
705 {
706 delete sd->versym;
707 sd->versym = NULL;
708 }
709 if (sd->verdef != NULL)
710 {
711 delete sd->verdef;
712 sd->verdef = NULL;
713 }
714 if (sd->verneed != NULL)
715 {
716 delete sd->verneed;
717 sd->verneed = NULL;
718 }
719
720 // This is normally the last time we will read any data from this
721 // file.
722 this->clear_view_cache_marks();
723 }
724
725 // Get symbol counts.
726
727 template<int size, bool big_endian>
728 void
729 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
730 const Symbol_table*,
731 size_t* defined,
732 size_t* used) const
733 {
734 *defined = this->defined_count_;
735 size_t count = 0;
736 for (typename Symbols::const_iterator p = this->symbols_->begin();
737 p != this->symbols_->end();
738 ++p)
739 if (*p != NULL
740 && (*p)->source() == Symbol::FROM_OBJECT
741 && (*p)->object() == this
742 && (*p)->is_defined()
743 && (*p)->dynsym_index() != -1U)
744 ++count;
745 *used = count;
746 }
747
748 // Given a vector of hash codes, compute the number of hash buckets to
749 // use.
750
751 unsigned int
752 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
753 bool for_gnu_hash_table)
754 {
755 // FIXME: Implement optional hash table optimization.
756
757 // Array used to determine the number of hash table buckets to use
758 // based on the number of symbols there are. If there are fewer
759 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
760 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
761 // use more than 262147 buckets. This is straight from the old GNU
762 // linker.
763 static const unsigned int buckets[] =
764 {
765 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
766 16411, 32771, 65537, 131101, 262147
767 };
768 const int buckets_count = sizeof buckets / sizeof buckets[0];
769
770 unsigned int symcount = hashcodes.size();
771 unsigned int ret = 1;
772 const double full_fraction
773 = 1.0 - parameters->options().hash_bucket_empty_fraction();
774 for (int i = 0; i < buckets_count; ++i)
775 {
776 if (symcount < buckets[i] * full_fraction)
777 break;
778 ret = buckets[i];
779 }
780
781 if (for_gnu_hash_table && ret < 2)
782 ret = 2;
783
784 return ret;
785 }
786
787 // The standard ELF hash function. This hash function must not
788 // change, as the dynamic linker uses it also.
789
790 uint32_t
791 Dynobj::elf_hash(const char* name)
792 {
793 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
794 uint32_t h = 0;
795 unsigned char c;
796 while ((c = *nameu++) != '\0')
797 {
798 h = (h << 4) + c;
799 uint32_t g = h & 0xf0000000;
800 if (g != 0)
801 {
802 h ^= g >> 24;
803 // The ELF ABI says h &= ~g, but using xor is equivalent in
804 // this case (since g was set from h) and may save one
805 // instruction.
806 h ^= g;
807 }
808 }
809 return h;
810 }
811
812 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
813 // DYNSYMS is a vector with all the global dynamic symbols.
814 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
815 // symbol table.
816
817 void
818 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
819 unsigned int local_dynsym_count,
820 unsigned char** pphash,
821 unsigned int* phashlen)
822 {
823 unsigned int dynsym_count = dynsyms.size();
824
825 // Get the hash values for all the symbols.
826 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
827 for (unsigned int i = 0; i < dynsym_count; ++i)
828 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
829
830 const unsigned int bucketcount =
831 Dynobj::compute_bucket_count(dynsym_hashvals, false);
832
833 std::vector<uint32_t> bucket(bucketcount);
834 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
835
836 for (unsigned int i = 0; i < dynsym_count; ++i)
837 {
838 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
839 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
840 chain[dynsym_index] = bucket[bucketpos];
841 bucket[bucketpos] = dynsym_index;
842 }
843
844 unsigned int hashlen = ((2
845 + bucketcount
846 + local_dynsym_count
847 + dynsym_count)
848 * 4);
849 unsigned char* phash = new unsigned char[hashlen];
850
851 if (parameters->target().is_big_endian())
852 {
853 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
854 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
855 hashlen);
856 #else
857 gold_unreachable();
858 #endif
859 }
860 else
861 {
862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
863 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
864 hashlen);
865 #else
866 gold_unreachable();
867 #endif
868 }
869
870 *pphash = phash;
871 *phashlen = hashlen;
872 }
873
874 // Fill in an ELF hash table.
875
876 template<bool big_endian>
877 void
878 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
879 const std::vector<uint32_t>& chain,
880 unsigned char* phash,
881 unsigned int hashlen)
882 {
883 unsigned char* p = phash;
884
885 const unsigned int bucketcount = bucket.size();
886 const unsigned int chaincount = chain.size();
887
888 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
889 p += 4;
890 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
891 p += 4;
892
893 for (unsigned int i = 0; i < bucketcount; ++i)
894 {
895 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
896 p += 4;
897 }
898
899 for (unsigned int i = 0; i < chaincount; ++i)
900 {
901 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
902 p += 4;
903 }
904
905 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
906 }
907
908 // The hash function used for the GNU hash table. This hash function
909 // must not change, as the dynamic linker uses it also.
910
911 uint32_t
912 Dynobj::gnu_hash(const char* name)
913 {
914 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
915 uint32_t h = 5381;
916 unsigned char c;
917 while ((c = *nameu++) != '\0')
918 h = (h << 5) + h + c;
919 return h;
920 }
921
922 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
923 // tables are an extension to ELF which are recognized by the GNU
924 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
925 // TARGET is the target. DYNSYMS is a vector with all the global
926 // symbols which will be going into the dynamic symbol table.
927 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
928 // symbol table.
929
930 void
931 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
932 unsigned int local_dynsym_count,
933 unsigned char** pphash,
934 unsigned int* phashlen)
935 {
936 const unsigned int count = dynsyms.size();
937
938 // Sort the dynamic symbols into two vectors. Symbols which we do
939 // not want to put into the hash table we store into
940 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
941 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
942 // and records the hash codes.
943
944 std::vector<Symbol*> unhashed_dynsyms;
945 unhashed_dynsyms.reserve(count);
946
947 std::vector<Symbol*> hashed_dynsyms;
948 hashed_dynsyms.reserve(count);
949
950 std::vector<uint32_t> dynsym_hashvals;
951 dynsym_hashvals.reserve(count);
952
953 for (unsigned int i = 0; i < count; ++i)
954 {
955 Symbol* sym = dynsyms[i];
956
957 // FIXME: Should put on unhashed_dynsyms if the symbol is
958 // hidden.
959 if (sym->is_undefined())
960 unhashed_dynsyms.push_back(sym);
961 else
962 {
963 hashed_dynsyms.push_back(sym);
964 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
965 }
966 }
967
968 // Put the unhashed symbols at the start of the global portion of
969 // the dynamic symbol table.
970 const unsigned int unhashed_count = unhashed_dynsyms.size();
971 unsigned int unhashed_dynsym_index = local_dynsym_count;
972 for (unsigned int i = 0; i < unhashed_count; ++i)
973 {
974 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
975 ++unhashed_dynsym_index;
976 }
977
978 // For the actual data generation we call out to a templatized
979 // function.
980 int size = parameters->target().get_size();
981 bool big_endian = parameters->target().is_big_endian();
982 if (size == 32)
983 {
984 if (big_endian)
985 {
986 #ifdef HAVE_TARGET_32_BIG
987 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
988 dynsym_hashvals,
989 unhashed_dynsym_index,
990 pphash,
991 phashlen);
992 #else
993 gold_unreachable();
994 #endif
995 }
996 else
997 {
998 #ifdef HAVE_TARGET_32_LITTLE
999 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1000 dynsym_hashvals,
1001 unhashed_dynsym_index,
1002 pphash,
1003 phashlen);
1004 #else
1005 gold_unreachable();
1006 #endif
1007 }
1008 }
1009 else if (size == 64)
1010 {
1011 if (big_endian)
1012 {
1013 #ifdef HAVE_TARGET_64_BIG
1014 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1015 dynsym_hashvals,
1016 unhashed_dynsym_index,
1017 pphash,
1018 phashlen);
1019 #else
1020 gold_unreachable();
1021 #endif
1022 }
1023 else
1024 {
1025 #ifdef HAVE_TARGET_64_LITTLE
1026 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1027 dynsym_hashvals,
1028 unhashed_dynsym_index,
1029 pphash,
1030 phashlen);
1031 #else
1032 gold_unreachable();
1033 #endif
1034 }
1035 }
1036 else
1037 gold_unreachable();
1038 }
1039
1040 // Create the actual data for a GNU hash table. This is just a copy
1041 // of the code from the old GNU linker.
1042
1043 template<int size, bool big_endian>
1044 void
1045 Dynobj::sized_create_gnu_hash_table(
1046 const std::vector<Symbol*>& hashed_dynsyms,
1047 const std::vector<uint32_t>& dynsym_hashvals,
1048 unsigned int unhashed_dynsym_count,
1049 unsigned char** pphash,
1050 unsigned int* phashlen)
1051 {
1052 if (hashed_dynsyms.empty())
1053 {
1054 // Special case for the empty hash table.
1055 unsigned int hashlen = 5 * 4 + size / 8;
1056 unsigned char* phash = new unsigned char[hashlen];
1057 // One empty bucket.
1058 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1059 // Symbol index above unhashed symbols.
1060 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1061 // One word for bitmask.
1062 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1063 // Only bloom filter.
1064 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1065 // No valid hashes.
1066 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1067 // No hashes in only bucket.
1068 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1069
1070 *phashlen = hashlen;
1071 *pphash = phash;
1072
1073 return;
1074 }
1075
1076 const unsigned int bucketcount =
1077 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1078
1079 const unsigned int nsyms = hashed_dynsyms.size();
1080
1081 uint32_t maskbitslog2 = 1;
1082 uint32_t x = nsyms >> 1;
1083 while (x != 0)
1084 {
1085 ++maskbitslog2;
1086 x >>= 1;
1087 }
1088 if (maskbitslog2 < 3)
1089 maskbitslog2 = 5;
1090 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1091 maskbitslog2 += 3;
1092 else
1093 maskbitslog2 += 2;
1094
1095 uint32_t shift1;
1096 if (size == 32)
1097 shift1 = 5;
1098 else
1099 {
1100 if (maskbitslog2 == 5)
1101 maskbitslog2 = 6;
1102 shift1 = 6;
1103 }
1104 uint32_t mask = (1U << shift1) - 1U;
1105 uint32_t shift2 = maskbitslog2;
1106 uint32_t maskbits = 1U << maskbitslog2;
1107 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1108
1109 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1110 std::vector<Word> bitmask(maskwords);
1111 std::vector<uint32_t> counts(bucketcount);
1112 std::vector<uint32_t> indx(bucketcount);
1113 uint32_t symindx = unhashed_dynsym_count;
1114
1115 // Count the number of times each hash bucket is used.
1116 for (unsigned int i = 0; i < nsyms; ++i)
1117 ++counts[dynsym_hashvals[i] % bucketcount];
1118
1119 unsigned int cnt = symindx;
1120 for (unsigned int i = 0; i < bucketcount; ++i)
1121 {
1122 indx[i] = cnt;
1123 cnt += counts[i];
1124 }
1125
1126 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1127 hashlen += maskbits / 8;
1128 unsigned char* phash = new unsigned char[hashlen];
1129
1130 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1131 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1132 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1133 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1134
1135 unsigned char* p = phash + 16 + maskbits / 8;
1136 for (unsigned int i = 0; i < bucketcount; ++i)
1137 {
1138 if (counts[i] == 0)
1139 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1140 else
1141 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1142 p += 4;
1143 }
1144
1145 for (unsigned int i = 0; i < nsyms; ++i)
1146 {
1147 Symbol* sym = hashed_dynsyms[i];
1148 uint32_t hashval = dynsym_hashvals[i];
1149
1150 unsigned int bucket = hashval % bucketcount;
1151 unsigned int val = ((hashval >> shift1)
1152 & ((maskbits >> shift1) - 1));
1153 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1154 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1155 val = hashval & ~ 1U;
1156 if (counts[bucket] == 1)
1157 {
1158 // Last element terminates the chain.
1159 val |= 1;
1160 }
1161 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1162 val);
1163 --counts[bucket];
1164
1165 sym->set_dynsym_index(indx[bucket]);
1166 ++indx[bucket];
1167 }
1168
1169 p = phash + 16;
1170 for (unsigned int i = 0; i < maskwords; ++i)
1171 {
1172 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1173 p += size / 8;
1174 }
1175
1176 *phashlen = hashlen;
1177 *pphash = phash;
1178 }
1179
1180 // Verdef methods.
1181
1182 // Write this definition to a buffer for the output section.
1183
1184 template<int size, bool big_endian>
1185 unsigned char*
1186 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1187 {
1188 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1189 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1190
1191 elfcpp::Verdef_write<size, big_endian> vd(pb);
1192 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1193 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1194 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1195 vd.set_vd_ndx(this->index());
1196 vd.set_vd_cnt(1 + this->deps_.size());
1197 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1198 vd.set_vd_aux(verdef_size);
1199 vd.set_vd_next(is_last
1200 ? 0
1201 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1202 pb += verdef_size;
1203
1204 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1205 vda.set_vda_name(dynpool->get_offset(this->name()));
1206 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1207 pb += verdaux_size;
1208
1209 Deps::const_iterator p;
1210 unsigned int i;
1211 for (p = this->deps_.begin(), i = 0;
1212 p != this->deps_.end();
1213 ++p, ++i)
1214 {
1215 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1216 vda.set_vda_name(dynpool->get_offset(*p));
1217 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1218 pb += verdaux_size;
1219 }
1220
1221 return pb;
1222 }
1223
1224 // Verneed methods.
1225
1226 Verneed::~Verneed()
1227 {
1228 for (Need_versions::iterator p = this->need_versions_.begin();
1229 p != this->need_versions_.end();
1230 ++p)
1231 delete *p;
1232 }
1233
1234 // Add a new version to this file reference.
1235
1236 Verneed_version*
1237 Verneed::add_name(const char* name)
1238 {
1239 Verneed_version* vv = new Verneed_version(name);
1240 this->need_versions_.push_back(vv);
1241 return vv;
1242 }
1243
1244 // Set the version indexes starting at INDEX.
1245
1246 unsigned int
1247 Verneed::finalize(unsigned int index)
1248 {
1249 for (Need_versions::iterator p = this->need_versions_.begin();
1250 p != this->need_versions_.end();
1251 ++p)
1252 {
1253 (*p)->set_index(index);
1254 ++index;
1255 }
1256 return index;
1257 }
1258
1259 // Write this list of referenced versions to a buffer for the output
1260 // section.
1261
1262 template<int size, bool big_endian>
1263 unsigned char*
1264 Verneed::write(const Stringpool* dynpool, bool is_last,
1265 unsigned char* pb) const
1266 {
1267 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1268 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1269
1270 elfcpp::Verneed_write<size, big_endian> vn(pb);
1271 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1272 vn.set_vn_cnt(this->need_versions_.size());
1273 vn.set_vn_file(dynpool->get_offset(this->filename()));
1274 vn.set_vn_aux(verneed_size);
1275 vn.set_vn_next(is_last
1276 ? 0
1277 : verneed_size + this->need_versions_.size() * vernaux_size);
1278 pb += verneed_size;
1279
1280 Need_versions::const_iterator p;
1281 unsigned int i;
1282 for (p = this->need_versions_.begin(), i = 0;
1283 p != this->need_versions_.end();
1284 ++p, ++i)
1285 {
1286 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1287 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1288 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1289 vna.set_vna_flags(0);
1290 vna.set_vna_other((*p)->index());
1291 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1292 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1293 ? 0
1294 : vernaux_size);
1295 pb += vernaux_size;
1296 }
1297
1298 return pb;
1299 }
1300
1301 // Versions methods.
1302
1303 Versions::Versions(const Version_script_info& version_script,
1304 Stringpool* dynpool)
1305 : defs_(), needs_(), version_table_(),
1306 is_finalized_(false), version_script_(version_script)
1307 {
1308 // We always need a base version, so define that first. Nothing
1309 // explicitly declares itself as part of base, so it doesn't need to
1310 // be in version_table_.
1311 // FIXME: Should use soname here when creating a shared object. Is
1312 // this fixme still valid? It looks like it's doing the right thing
1313 // to me.
1314 if (parameters->options().shared())
1315 {
1316 const char* name = parameters->options().soname();
1317 if (name == NULL)
1318 name = parameters->options().output_file_name();
1319 name = dynpool->add(name, false, NULL);
1320 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1321 true, false, true);
1322 this->defs_.push_back(vdbase);
1323 }
1324
1325 if (!this->version_script_.empty())
1326 {
1327 // Parse the version script, and insert each declared version into
1328 // defs_ and version_table_.
1329 std::vector<std::string> versions = this->version_script_.get_versions();
1330 for (size_t k = 0; k < versions.size(); ++k)
1331 {
1332 Stringpool::Key version_key;
1333 const char* version = dynpool->add(versions[k].c_str(),
1334 true, &version_key);
1335 Verdef* const vd = new Verdef(
1336 version,
1337 this->version_script_.get_dependencies(version),
1338 false, false, false);
1339 this->defs_.push_back(vd);
1340 Key key(version_key, 0);
1341 this->version_table_.insert(std::make_pair(key, vd));
1342 }
1343 }
1344 }
1345
1346 Versions::~Versions()
1347 {
1348 for (Defs::iterator p = this->defs_.begin();
1349 p != this->defs_.end();
1350 ++p)
1351 delete *p;
1352
1353 for (Needs::iterator p = this->needs_.begin();
1354 p != this->needs_.end();
1355 ++p)
1356 delete *p;
1357 }
1358
1359 // Return the dynamic object which a symbol refers to.
1360
1361 Dynobj*
1362 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1363 const Symbol* sym) const
1364 {
1365 if (sym->is_copied_from_dynobj())
1366 return symtab->get_copy_source(sym);
1367 else
1368 {
1369 Object* object = sym->object();
1370 gold_assert(object->is_dynamic());
1371 return static_cast<Dynobj*>(object);
1372 }
1373 }
1374
1375 // Record version information for a symbol going into the dynamic
1376 // symbol table.
1377
1378 void
1379 Versions::record_version(const Symbol_table* symtab,
1380 Stringpool* dynpool, const Symbol* sym)
1381 {
1382 gold_assert(!this->is_finalized_);
1383 gold_assert(sym->version() != NULL);
1384
1385 Stringpool::Key version_key;
1386 const char* version = dynpool->add(sym->version(), false, &version_key);
1387
1388 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1389 {
1390 if (parameters->options().shared())
1391 this->add_def(sym, version, version_key);
1392 }
1393 else
1394 {
1395 // This is a version reference.
1396 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1397 this->add_need(dynpool, dynobj->soname(), version, version_key);
1398 }
1399 }
1400
1401 // We've found a symbol SYM defined in version VERSION.
1402
1403 void
1404 Versions::add_def(const Symbol* sym, const char* version,
1405 Stringpool::Key version_key)
1406 {
1407 Key k(version_key, 0);
1408 Version_base* const vbnull = NULL;
1409 std::pair<Version_table::iterator, bool> ins =
1410 this->version_table_.insert(std::make_pair(k, vbnull));
1411
1412 if (!ins.second)
1413 {
1414 // We already have an entry for this version.
1415 Version_base* vb = ins.first->second;
1416
1417 // We have now seen a symbol in this version, so it is not
1418 // weak.
1419 gold_assert(vb != NULL);
1420 vb->clear_weak();
1421 }
1422 else
1423 {
1424 // If we are creating a shared object, it is an error to
1425 // find a definition of a symbol with a version which is not
1426 // in the version script.
1427 if (parameters->options().shared())
1428 gold_error(_("symbol %s has undefined version %s"),
1429 sym->demangled_name().c_str(), version);
1430
1431 // When creating a regular executable, automatically define
1432 // a new version.
1433 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1434 false, false, false);
1435 this->defs_.push_back(vd);
1436 ins.first->second = vd;
1437 }
1438 }
1439
1440 // Add a reference to version NAME in file FILENAME.
1441
1442 void
1443 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1444 Stringpool::Key name_key)
1445 {
1446 Stringpool::Key filename_key;
1447 filename = dynpool->add(filename, true, &filename_key);
1448
1449 Key k(name_key, filename_key);
1450 Version_base* const vbnull = NULL;
1451 std::pair<Version_table::iterator, bool> ins =
1452 this->version_table_.insert(std::make_pair(k, vbnull));
1453
1454 if (!ins.second)
1455 {
1456 // We already have an entry for this filename/version.
1457 return;
1458 }
1459
1460 // See whether we already have this filename. We don't expect many
1461 // version references, so we just do a linear search. This could be
1462 // replaced by a hash table.
1463 Verneed* vn = NULL;
1464 for (Needs::iterator p = this->needs_.begin();
1465 p != this->needs_.end();
1466 ++p)
1467 {
1468 if ((*p)->filename() == filename)
1469 {
1470 vn = *p;
1471 break;
1472 }
1473 }
1474
1475 if (vn == NULL)
1476 {
1477 // We have a new filename.
1478 vn = new Verneed(filename);
1479 this->needs_.push_back(vn);
1480 }
1481
1482 ins.first->second = vn->add_name(name);
1483 }
1484
1485 // Set the version indexes. Create a new dynamic version symbol for
1486 // each new version definition.
1487
1488 unsigned int
1489 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1490 std::vector<Symbol*>* syms)
1491 {
1492 gold_assert(!this->is_finalized_);
1493
1494 unsigned int vi = 1;
1495
1496 for (Defs::iterator p = this->defs_.begin();
1497 p != this->defs_.end();
1498 ++p)
1499 {
1500 (*p)->set_index(vi);
1501 ++vi;
1502
1503 // Create a version symbol if necessary.
1504 if (!(*p)->is_symbol_created())
1505 {
1506 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1507 (*p)->name(), 0, 0,
1508 elfcpp::STT_OBJECT,
1509 elfcpp::STB_GLOBAL,
1510 elfcpp::STV_DEFAULT, 0,
1511 false, false);
1512 vsym->set_needs_dynsym_entry();
1513 vsym->set_dynsym_index(dynsym_index);
1514 ++dynsym_index;
1515 syms->push_back(vsym);
1516 // The name is already in the dynamic pool.
1517 }
1518 }
1519
1520 // Index 1 is used for global symbols.
1521 if (vi == 1)
1522 {
1523 gold_assert(this->defs_.empty());
1524 vi = 2;
1525 }
1526
1527 for (Needs::iterator p = this->needs_.begin();
1528 p != this->needs_.end();
1529 ++p)
1530 vi = (*p)->finalize(vi);
1531
1532 this->is_finalized_ = true;
1533
1534 return dynsym_index;
1535 }
1536
1537 // Return the version index to use for a symbol. This does two hash
1538 // table lookups: one in DYNPOOL and one in this->version_table_.
1539 // Another approach alternative would be store a pointer in SYM, which
1540 // would increase the size of the symbol table. Or perhaps we could
1541 // use a hash table from dynamic symbol pointer values to Version_base
1542 // pointers.
1543
1544 unsigned int
1545 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1546 const Symbol* sym) const
1547 {
1548 Stringpool::Key version_key;
1549 const char* version = dynpool->find(sym->version(), &version_key);
1550 gold_assert(version != NULL);
1551
1552 Key k;
1553 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1554 {
1555 if (!parameters->options().shared())
1556 return elfcpp::VER_NDX_GLOBAL;
1557 k = Key(version_key, 0);
1558 }
1559 else
1560 {
1561 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1562
1563 Stringpool::Key filename_key;
1564 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1565 gold_assert(filename != NULL);
1566
1567 k = Key(version_key, filename_key);
1568 }
1569
1570 Version_table::const_iterator p = this->version_table_.find(k);
1571 gold_assert(p != this->version_table_.end());
1572
1573 return p->second->index();
1574 }
1575
1576 // Return an allocated buffer holding the contents of the symbol
1577 // version section.
1578
1579 template<int size, bool big_endian>
1580 void
1581 Versions::symbol_section_contents(const Symbol_table* symtab,
1582 const Stringpool* dynpool,
1583 unsigned int local_symcount,
1584 const std::vector<Symbol*>& syms,
1585 unsigned char** pp,
1586 unsigned int* psize) const
1587 {
1588 gold_assert(this->is_finalized_);
1589
1590 unsigned int sz = (local_symcount + syms.size()) * 2;
1591 unsigned char* pbuf = new unsigned char[sz];
1592
1593 for (unsigned int i = 0; i < local_symcount; ++i)
1594 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1595 elfcpp::VER_NDX_LOCAL);
1596
1597 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1598 p != syms.end();
1599 ++p)
1600 {
1601 unsigned int version_index;
1602 const char* version = (*p)->version();
1603 if (version == NULL)
1604 version_index = elfcpp::VER_NDX_GLOBAL;
1605 else
1606 version_index = this->version_index(symtab, dynpool, *p);
1607 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1608 // the hidden bit.
1609 if ((*p)->version() != NULL && !(*p)->is_default())
1610 version_index |= elfcpp::VERSYM_HIDDEN;
1611 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1612 version_index);
1613 }
1614
1615 *pp = pbuf;
1616 *psize = sz;
1617 }
1618
1619 // Return an allocated buffer holding the contents of the version
1620 // definition section.
1621
1622 template<int size, bool big_endian>
1623 void
1624 Versions::def_section_contents(const Stringpool* dynpool,
1625 unsigned char** pp, unsigned int* psize,
1626 unsigned int* pentries) const
1627 {
1628 gold_assert(this->is_finalized_);
1629 gold_assert(!this->defs_.empty());
1630
1631 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1632 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1633
1634 unsigned int sz = 0;
1635 for (Defs::const_iterator p = this->defs_.begin();
1636 p != this->defs_.end();
1637 ++p)
1638 {
1639 sz += verdef_size + verdaux_size;
1640 sz += (*p)->count_dependencies() * verdaux_size;
1641 }
1642
1643 unsigned char* pbuf = new unsigned char[sz];
1644
1645 unsigned char* pb = pbuf;
1646 Defs::const_iterator p;
1647 unsigned int i;
1648 for (p = this->defs_.begin(), i = 0;
1649 p != this->defs_.end();
1650 ++p, ++i)
1651 pb = (*p)->write<size, big_endian>(dynpool,
1652 i + 1 >= this->defs_.size(),
1653 pb);
1654
1655 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1656
1657 *pp = pbuf;
1658 *psize = sz;
1659 *pentries = this->defs_.size();
1660 }
1661
1662 // Return an allocated buffer holding the contents of the version
1663 // reference section.
1664
1665 template<int size, bool big_endian>
1666 void
1667 Versions::need_section_contents(const Stringpool* dynpool,
1668 unsigned char** pp, unsigned int *psize,
1669 unsigned int *pentries) const
1670 {
1671 gold_assert(this->is_finalized_);
1672 gold_assert(!this->needs_.empty());
1673
1674 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1675 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1676
1677 unsigned int sz = 0;
1678 for (Needs::const_iterator p = this->needs_.begin();
1679 p != this->needs_.end();
1680 ++p)
1681 {
1682 sz += verneed_size;
1683 sz += (*p)->count_versions() * vernaux_size;
1684 }
1685
1686 unsigned char* pbuf = new unsigned char[sz];
1687
1688 unsigned char* pb = pbuf;
1689 Needs::const_iterator p;
1690 unsigned int i;
1691 for (p = this->needs_.begin(), i = 0;
1692 p != this->needs_.end();
1693 ++p, ++i)
1694 pb = (*p)->write<size, big_endian>(dynpool,
1695 i + 1 >= this->needs_.size(),
1696 pb);
1697
1698 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1699
1700 *pp = pbuf;
1701 *psize = sz;
1702 *pentries = this->needs_.size();
1703 }
1704
1705 // Instantiate the templates we need. We could use the configure
1706 // script to restrict this to only the ones for implemented targets.
1707
1708 #ifdef HAVE_TARGET_32_LITTLE
1709 template
1710 class Sized_dynobj<32, false>;
1711 #endif
1712
1713 #ifdef HAVE_TARGET_32_BIG
1714 template
1715 class Sized_dynobj<32, true>;
1716 #endif
1717
1718 #ifdef HAVE_TARGET_64_LITTLE
1719 template
1720 class Sized_dynobj<64, false>;
1721 #endif
1722
1723 #ifdef HAVE_TARGET_64_BIG
1724 template
1725 class Sized_dynobj<64, true>;
1726 #endif
1727
1728 #ifdef HAVE_TARGET_32_LITTLE
1729 template
1730 void
1731 Versions::symbol_section_contents<32, false>(
1732 const Symbol_table*,
1733 const Stringpool*,
1734 unsigned int,
1735 const std::vector<Symbol*>&,
1736 unsigned char**,
1737 unsigned int*) const;
1738 #endif
1739
1740 #ifdef HAVE_TARGET_32_BIG
1741 template
1742 void
1743 Versions::symbol_section_contents<32, true>(
1744 const Symbol_table*,
1745 const Stringpool*,
1746 unsigned int,
1747 const std::vector<Symbol*>&,
1748 unsigned char**,
1749 unsigned int*) const;
1750 #endif
1751
1752 #ifdef HAVE_TARGET_64_LITTLE
1753 template
1754 void
1755 Versions::symbol_section_contents<64, false>(
1756 const Symbol_table*,
1757 const Stringpool*,
1758 unsigned int,
1759 const std::vector<Symbol*>&,
1760 unsigned char**,
1761 unsigned int*) const;
1762 #endif
1763
1764 #ifdef HAVE_TARGET_64_BIG
1765 template
1766 void
1767 Versions::symbol_section_contents<64, true>(
1768 const Symbol_table*,
1769 const Stringpool*,
1770 unsigned int,
1771 const std::vector<Symbol*>&,
1772 unsigned char**,
1773 unsigned int*) const;
1774 #endif
1775
1776 #ifdef HAVE_TARGET_32_LITTLE
1777 template
1778 void
1779 Versions::def_section_contents<32, false>(
1780 const Stringpool*,
1781 unsigned char**,
1782 unsigned int*,
1783 unsigned int*) const;
1784 #endif
1785
1786 #ifdef HAVE_TARGET_32_BIG
1787 template
1788 void
1789 Versions::def_section_contents<32, true>(
1790 const Stringpool*,
1791 unsigned char**,
1792 unsigned int*,
1793 unsigned int*) const;
1794 #endif
1795
1796 #ifdef HAVE_TARGET_64_LITTLE
1797 template
1798 void
1799 Versions::def_section_contents<64, false>(
1800 const Stringpool*,
1801 unsigned char**,
1802 unsigned int*,
1803 unsigned int*) const;
1804 #endif
1805
1806 #ifdef HAVE_TARGET_64_BIG
1807 template
1808 void
1809 Versions::def_section_contents<64, true>(
1810 const Stringpool*,
1811 unsigned char**,
1812 unsigned int*,
1813 unsigned int*) const;
1814 #endif
1815
1816 #ifdef HAVE_TARGET_32_LITTLE
1817 template
1818 void
1819 Versions::need_section_contents<32, false>(
1820 const Stringpool*,
1821 unsigned char**,
1822 unsigned int*,
1823 unsigned int*) const;
1824 #endif
1825
1826 #ifdef HAVE_TARGET_32_BIG
1827 template
1828 void
1829 Versions::need_section_contents<32, true>(
1830 const Stringpool*,
1831 unsigned char**,
1832 unsigned int*,
1833 unsigned int*) const;
1834 #endif
1835
1836 #ifdef HAVE_TARGET_64_LITTLE
1837 template
1838 void
1839 Versions::need_section_contents<64, false>(
1840 const Stringpool*,
1841 unsigned char**,
1842 unsigned int*,
1843 unsigned int*) const;
1844 #endif
1845
1846 #ifdef HAVE_TARGET_64_BIG
1847 template
1848 void
1849 Versions::need_section_contents<64, true>(
1850 const Stringpool*,
1851 unsigned char**,
1852 unsigned int*,
1853 unsigned int*) const;
1854 #endif
1855
1856 } // End namespace gold.
This page took 0.096457 seconds and 5 git commands to generate.