PR 10980
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr),
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
79 {
80 }
81
82 // Set up the object.
83
84 template<int size, bool big_endian>
85 void
86 Sized_dynobj<size, big_endian>::setup()
87 {
88 const unsigned int shnum = this->elf_file_.shnum();
89 this->set_shnum(shnum);
90 }
91
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
94
95 template<int size, bool big_endian>
96 void
97 Sized_dynobj<size, big_endian>::find_dynsym_sections(
98 const unsigned char* pshdrs,
99 unsigned int* pversym_shndx,
100 unsigned int* pverdef_shndx,
101 unsigned int* pverneed_shndx,
102 unsigned int* pdynamic_shndx)
103 {
104 *pversym_shndx = -1U;
105 *pverdef_shndx = -1U;
106 *pverneed_shndx = -1U;
107 *pdynamic_shndx = -1U;
108
109 unsigned int xindex_shndx = 0;
110 unsigned int xindex_link = 0;
111 const unsigned int shnum = this->shnum();
112 const unsigned char* p = pshdrs;
113 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
114 {
115 typename This::Shdr shdr(p);
116
117 unsigned int* pi;
118 switch (shdr.get_sh_type())
119 {
120 case elfcpp::SHT_DYNSYM:
121 this->dynsym_shndx_ = i;
122 if (xindex_shndx > 0 && xindex_link == i)
123 {
124 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
125 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
126 pshdrs);
127 this->set_xindex(xindex);
128 }
129 pi = NULL;
130 break;
131 case elfcpp::SHT_GNU_versym:
132 pi = pversym_shndx;
133 break;
134 case elfcpp::SHT_GNU_verdef:
135 pi = pverdef_shndx;
136 break;
137 case elfcpp::SHT_GNU_verneed:
138 pi = pverneed_shndx;
139 break;
140 case elfcpp::SHT_DYNAMIC:
141 pi = pdynamic_shndx;
142 break;
143 case elfcpp::SHT_SYMTAB_SHNDX:
144 xindex_shndx = i;
145 xindex_link = this->adjust_shndx(shdr.get_sh_link());
146 if (xindex_link == this->dynsym_shndx_)
147 {
148 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
149 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
150 pshdrs);
151 this->set_xindex(xindex);
152 }
153 pi = NULL;
154 break;
155 default:
156 pi = NULL;
157 break;
158 }
159
160 if (pi == NULL)
161 continue;
162
163 if (*pi != -1U)
164 this->error(_("unexpected duplicate type %u section: %u, %u"),
165 shdr.get_sh_type(), *pi, i);
166
167 *pi = i;
168 }
169 }
170
171 // Read the contents of section SHNDX. PSHDRS points to the section
172 // headers. TYPE is the expected section type. LINK is the expected
173 // section link. Store the data in *VIEW and *VIEW_SIZE. The
174 // section's sh_info field is stored in *VIEW_INFO.
175
176 template<int size, bool big_endian>
177 void
178 Sized_dynobj<size, big_endian>::read_dynsym_section(
179 const unsigned char* pshdrs,
180 unsigned int shndx,
181 elfcpp::SHT type,
182 unsigned int link,
183 File_view** view,
184 section_size_type* view_size,
185 unsigned int* view_info)
186 {
187 if (shndx == -1U)
188 {
189 *view = NULL;
190 *view_size = 0;
191 *view_info = 0;
192 return;
193 }
194
195 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
196
197 gold_assert(shdr.get_sh_type() == type);
198
199 if (this->adjust_shndx(shdr.get_sh_link()) != link)
200 this->error(_("unexpected link in section %u header: %u != %u"),
201 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
202
203 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
204 true, false);
205 *view_size = convert_to_section_size_type(shdr.get_sh_size());
206 *view_info = shdr.get_sh_info();
207 }
208
209 // Read the dynamic tags. Set the soname field if this shared object
210 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
211 // the section headers. DYNAMIC_SHNDX is the section index of the
212 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
213 // section index and contents of a string table which may be the one
214 // associated with the SHT_DYNAMIC section.
215
216 template<int size, bool big_endian>
217 void
218 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
219 unsigned int dynamic_shndx,
220 unsigned int strtab_shndx,
221 const unsigned char* strtabu,
222 off_t strtab_size)
223 {
224 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
225 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
226
227 const off_t dynamic_size = dynamicshdr.get_sh_size();
228 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
229 dynamic_size, true, false);
230
231 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
232 if (link != strtab_shndx)
233 {
234 if (link >= this->shnum())
235 {
236 this->error(_("DYNAMIC section %u link out of range: %u"),
237 dynamic_shndx, link);
238 return;
239 }
240
241 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
242 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
243 {
244 this->error(_("DYNAMIC section %u link %u is not a strtab"),
245 dynamic_shndx, link);
246 return;
247 }
248
249 strtab_size = strtabshdr.get_sh_size();
250 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
251 false);
252 }
253
254 const char* const strtab = reinterpret_cast<const char*>(strtabu);
255
256 for (const unsigned char* p = pdynamic;
257 p < pdynamic + dynamic_size;
258 p += This::dyn_size)
259 {
260 typename This::Dyn dyn(p);
261
262 switch (dyn.get_d_tag())
263 {
264 case elfcpp::DT_NULL:
265 // We should always see DT_NULL at the end of the dynamic
266 // tags.
267 return;
268
269 case elfcpp::DT_SONAME:
270 {
271 off_t val = dyn.get_d_val();
272 if (val >= strtab_size)
273 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
274 static_cast<long long>(val),
275 static_cast<long long>(strtab_size));
276 else
277 this->set_soname_string(strtab + val);
278 }
279 break;
280
281 case elfcpp::DT_NEEDED:
282 {
283 off_t val = dyn.get_d_val();
284 if (val >= strtab_size)
285 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
286 static_cast<long long>(val),
287 static_cast<long long>(strtab_size));
288 else
289 this->add_needed(strtab + val);
290 }
291 break;
292
293 default:
294 break;
295 }
296 }
297
298 this->error(_("missing DT_NULL in dynamic segment"));
299 }
300
301 // Read the symbols and sections from a dynamic object. We read the
302 // dynamic symbols, not the normal symbols.
303
304 template<int size, bool big_endian>
305 void
306 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
307 {
308 this->read_section_data(&this->elf_file_, sd);
309
310 const unsigned char* const pshdrs = sd->section_headers->data();
311
312 unsigned int versym_shndx;
313 unsigned int verdef_shndx;
314 unsigned int verneed_shndx;
315 unsigned int dynamic_shndx;
316 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
317 &verneed_shndx, &dynamic_shndx);
318
319 unsigned int strtab_shndx = -1U;
320
321 sd->symbols = NULL;
322 sd->symbols_size = 0;
323 sd->external_symbols_offset = 0;
324 sd->symbol_names = NULL;
325 sd->symbol_names_size = 0;
326 sd->versym = NULL;
327 sd->versym_size = 0;
328 sd->verdef = NULL;
329 sd->verdef_size = 0;
330 sd->verdef_info = 0;
331 sd->verneed = NULL;
332 sd->verneed_size = 0;
333 sd->verneed_info = 0;
334
335 if (this->dynsym_shndx_ != -1U)
336 {
337 // Get the dynamic symbols.
338 typename This::Shdr dynsymshdr(pshdrs
339 + this->dynsym_shndx_ * This::shdr_size);
340 gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM);
341
342 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
343 dynsymshdr.get_sh_size(), true,
344 false);
345 sd->symbols_size =
346 convert_to_section_size_type(dynsymshdr.get_sh_size());
347
348 // Get the symbol names.
349 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
350 if (strtab_shndx >= this->shnum())
351 {
352 this->error(_("invalid dynamic symbol table name index: %u"),
353 strtab_shndx);
354 return;
355 }
356 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
357 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
358 {
359 this->error(_("dynamic symbol table name section "
360 "has wrong type: %u"),
361 static_cast<unsigned int>(strtabshdr.get_sh_type()));
362 return;
363 }
364
365 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
366 strtabshdr.get_sh_size(),
367 false, false);
368 sd->symbol_names_size =
369 convert_to_section_size_type(strtabshdr.get_sh_size());
370
371 // Get the version information.
372
373 unsigned int dummy;
374 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
375 this->dynsym_shndx_,
376 &sd->versym, &sd->versym_size, &dummy);
377
378 // We require that the version definition and need section link
379 // to the same string table as the dynamic symbol table. This
380 // is not a technical requirement, but it always happens in
381 // practice. We could change this if necessary.
382
383 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
384 strtab_shndx, &sd->verdef, &sd->verdef_size,
385 &sd->verdef_info);
386
387 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
388 strtab_shndx, &sd->verneed, &sd->verneed_size,
389 &sd->verneed_info);
390 }
391
392 // Read the SHT_DYNAMIC section to find whether this shared object
393 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
394 // doesn't really have anything to do with reading the symbols, but
395 // this is a convenient place to do it.
396 if (dynamic_shndx != -1U)
397 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
398 (sd->symbol_names == NULL
399 ? NULL
400 : sd->symbol_names->data()),
401 sd->symbol_names_size);
402 }
403
404 // Return the Xindex structure to use for object with lots of
405 // sections.
406
407 template<int size, bool big_endian>
408 Xindex*
409 Sized_dynobj<size, big_endian>::do_initialize_xindex()
410 {
411 gold_assert(this->dynsym_shndx_ != -1U);
412 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
413 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
414 return xindex;
415 }
416
417 // Lay out the input sections for a dynamic object. We don't want to
418 // include sections from a dynamic object, so all that we actually do
419 // here is check for .gnu.warning and .note.GNU-split-stack sections.
420
421 template<int size, bool big_endian>
422 void
423 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
424 Layout*,
425 Read_symbols_data* sd)
426 {
427 const unsigned int shnum = this->shnum();
428 if (shnum == 0)
429 return;
430
431 // Get the section headers.
432 const unsigned char* pshdrs = sd->section_headers->data();
433
434 // Get the section names.
435 const unsigned char* pnamesu = sd->section_names->data();
436 const char* pnames = reinterpret_cast<const char*>(pnamesu);
437
438 // Skip the first, dummy, section.
439 pshdrs += This::shdr_size;
440 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
441 {
442 typename This::Shdr shdr(pshdrs);
443
444 if (shdr.get_sh_name() >= sd->section_names_size)
445 {
446 this->error(_("bad section name offset for section %u: %lu"),
447 i, static_cast<unsigned long>(shdr.get_sh_name()));
448 return;
449 }
450
451 const char* name = pnames + shdr.get_sh_name();
452
453 this->handle_gnu_warning_section(name, i, symtab);
454 this->handle_split_stack_section(name);
455 }
456
457 delete sd->section_headers;
458 sd->section_headers = NULL;
459 delete sd->section_names;
460 sd->section_names = NULL;
461 }
462
463 // Add an entry to the vector mapping version numbers to version
464 // strings.
465
466 template<int size, bool big_endian>
467 void
468 Sized_dynobj<size, big_endian>::set_version_map(
469 Version_map* version_map,
470 unsigned int ndx,
471 const char* name) const
472 {
473 if (ndx >= version_map->size())
474 version_map->resize(ndx + 1);
475 if ((*version_map)[ndx] != NULL)
476 this->error(_("duplicate definition for version %u"), ndx);
477 (*version_map)[ndx] = name;
478 }
479
480 // Add mappings for the version definitions to VERSION_MAP.
481
482 template<int size, bool big_endian>
483 void
484 Sized_dynobj<size, big_endian>::make_verdef_map(
485 Read_symbols_data* sd,
486 Version_map* version_map) const
487 {
488 if (sd->verdef == NULL)
489 return;
490
491 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
492 section_size_type names_size = sd->symbol_names_size;
493
494 const unsigned char* pverdef = sd->verdef->data();
495 section_size_type verdef_size = sd->verdef_size;
496 const unsigned int count = sd->verdef_info;
497
498 const unsigned char* p = pverdef;
499 for (unsigned int i = 0; i < count; ++i)
500 {
501 elfcpp::Verdef<size, big_endian> verdef(p);
502
503 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
504 {
505 this->error(_("unexpected verdef version %u"),
506 verdef.get_vd_version());
507 return;
508 }
509
510 const section_size_type vd_ndx = verdef.get_vd_ndx();
511
512 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
513 // sure why.
514
515 // The first Verdaux holds the name of this version. Subsequent
516 // ones are versions that this one depends upon, which we don't
517 // care about here.
518 const section_size_type vd_cnt = verdef.get_vd_cnt();
519 if (vd_cnt < 1)
520 {
521 this->error(_("verdef vd_cnt field too small: %u"),
522 static_cast<unsigned int>(vd_cnt));
523 return;
524 }
525
526 const section_size_type vd_aux = verdef.get_vd_aux();
527 if ((p - pverdef) + vd_aux >= verdef_size)
528 {
529 this->error(_("verdef vd_aux field out of range: %u"),
530 static_cast<unsigned int>(vd_aux));
531 return;
532 }
533
534 const unsigned char* pvda = p + vd_aux;
535 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
536
537 const section_size_type vda_name = verdaux.get_vda_name();
538 if (vda_name >= names_size)
539 {
540 this->error(_("verdaux vda_name field out of range: %u"),
541 static_cast<unsigned int>(vda_name));
542 return;
543 }
544
545 this->set_version_map(version_map, vd_ndx, names + vda_name);
546
547 const section_size_type vd_next = verdef.get_vd_next();
548 if ((p - pverdef) + vd_next >= verdef_size)
549 {
550 this->error(_("verdef vd_next field out of range: %u"),
551 static_cast<unsigned int>(vd_next));
552 return;
553 }
554
555 p += vd_next;
556 }
557 }
558
559 // Add mappings for the required versions to VERSION_MAP.
560
561 template<int size, bool big_endian>
562 void
563 Sized_dynobj<size, big_endian>::make_verneed_map(
564 Read_symbols_data* sd,
565 Version_map* version_map) const
566 {
567 if (sd->verneed == NULL)
568 return;
569
570 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
571 section_size_type names_size = sd->symbol_names_size;
572
573 const unsigned char* pverneed = sd->verneed->data();
574 const section_size_type verneed_size = sd->verneed_size;
575 const unsigned int count = sd->verneed_info;
576
577 const unsigned char* p = pverneed;
578 for (unsigned int i = 0; i < count; ++i)
579 {
580 elfcpp::Verneed<size, big_endian> verneed(p);
581
582 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
583 {
584 this->error(_("unexpected verneed version %u"),
585 verneed.get_vn_version());
586 return;
587 }
588
589 const section_size_type vn_aux = verneed.get_vn_aux();
590
591 if ((p - pverneed) + vn_aux >= verneed_size)
592 {
593 this->error(_("verneed vn_aux field out of range: %u"),
594 static_cast<unsigned int>(vn_aux));
595 return;
596 }
597
598 const unsigned int vn_cnt = verneed.get_vn_cnt();
599 const unsigned char* pvna = p + vn_aux;
600 for (unsigned int j = 0; j < vn_cnt; ++j)
601 {
602 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
603
604 const unsigned int vna_name = vernaux.get_vna_name();
605 if (vna_name >= names_size)
606 {
607 this->error(_("vernaux vna_name field out of range: %u"),
608 static_cast<unsigned int>(vna_name));
609 return;
610 }
611
612 this->set_version_map(version_map, vernaux.get_vna_other(),
613 names + vna_name);
614
615 const section_size_type vna_next = vernaux.get_vna_next();
616 if ((pvna - pverneed) + vna_next >= verneed_size)
617 {
618 this->error(_("verneed vna_next field out of range: %u"),
619 static_cast<unsigned int>(vna_next));
620 return;
621 }
622
623 pvna += vna_next;
624 }
625
626 const section_size_type vn_next = verneed.get_vn_next();
627 if ((p - pverneed) + vn_next >= verneed_size)
628 {
629 this->error(_("verneed vn_next field out of range: %u"),
630 static_cast<unsigned int>(vn_next));
631 return;
632 }
633
634 p += vn_next;
635 }
636 }
637
638 // Create a vector mapping version numbers to version strings.
639
640 template<int size, bool big_endian>
641 void
642 Sized_dynobj<size, big_endian>::make_version_map(
643 Read_symbols_data* sd,
644 Version_map* version_map) const
645 {
646 if (sd->verdef == NULL && sd->verneed == NULL)
647 return;
648
649 // A guess at the maximum version number we will see. If this is
650 // wrong we will be less efficient but still correct.
651 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
652
653 this->make_verdef_map(sd, version_map);
654 this->make_verneed_map(sd, version_map);
655 }
656
657 // Add the dynamic symbols to the symbol table.
658
659 template<int size, bool big_endian>
660 void
661 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
662 Read_symbols_data* sd,
663 Layout*)
664 {
665 if (sd->symbols == NULL)
666 {
667 gold_assert(sd->symbol_names == NULL);
668 gold_assert(sd->versym == NULL && sd->verdef == NULL
669 && sd->verneed == NULL);
670 return;
671 }
672
673 const int sym_size = This::sym_size;
674 const size_t symcount = sd->symbols_size / sym_size;
675 gold_assert(sd->external_symbols_offset == 0);
676 if (symcount * sym_size != sd->symbols_size)
677 {
678 this->error(_("size of dynamic symbols is not multiple of symbol size"));
679 return;
680 }
681
682 Version_map version_map;
683 this->make_version_map(sd, &version_map);
684
685 // If printing symbol counts or a cross reference table, we want to
686 // track symbols.
687 if (parameters->options().user_set_print_symbol_counts()
688 || parameters->options().cref())
689 {
690 this->symbols_ = new Symbols();
691 this->symbols_->resize(symcount);
692 }
693
694 const char* sym_names =
695 reinterpret_cast<const char*>(sd->symbol_names->data());
696 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
697 sym_names, sd->symbol_names_size,
698 (sd->versym == NULL
699 ? NULL
700 : sd->versym->data()),
701 sd->versym_size,
702 &version_map,
703 this->symbols_,
704 &this->defined_count_);
705
706 delete sd->symbols;
707 sd->symbols = NULL;
708 delete sd->symbol_names;
709 sd->symbol_names = NULL;
710 if (sd->versym != NULL)
711 {
712 delete sd->versym;
713 sd->versym = NULL;
714 }
715 if (sd->verdef != NULL)
716 {
717 delete sd->verdef;
718 sd->verdef = NULL;
719 }
720 if (sd->verneed != NULL)
721 {
722 delete sd->verneed;
723 sd->verneed = NULL;
724 }
725
726 // This is normally the last time we will read any data from this
727 // file.
728 this->clear_view_cache_marks();
729 }
730
731 // Get symbol counts.
732
733 template<int size, bool big_endian>
734 void
735 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
736 const Symbol_table*,
737 size_t* defined,
738 size_t* used) const
739 {
740 *defined = this->defined_count_;
741 size_t count = 0;
742 for (typename Symbols::const_iterator p = this->symbols_->begin();
743 p != this->symbols_->end();
744 ++p)
745 if (*p != NULL
746 && (*p)->source() == Symbol::FROM_OBJECT
747 && (*p)->object() == this
748 && (*p)->is_defined()
749 && (*p)->dynsym_index() != -1U)
750 ++count;
751 *used = count;
752 }
753
754 // Given a vector of hash codes, compute the number of hash buckets to
755 // use.
756
757 unsigned int
758 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
759 bool for_gnu_hash_table)
760 {
761 // FIXME: Implement optional hash table optimization.
762
763 // Array used to determine the number of hash table buckets to use
764 // based on the number of symbols there are. If there are fewer
765 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
766 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
767 // use more than 262147 buckets. This is straight from the old GNU
768 // linker.
769 static const unsigned int buckets[] =
770 {
771 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
772 16411, 32771, 65537, 131101, 262147
773 };
774 const int buckets_count = sizeof buckets / sizeof buckets[0];
775
776 unsigned int symcount = hashcodes.size();
777 unsigned int ret = 1;
778 const double full_fraction
779 = 1.0 - parameters->options().hash_bucket_empty_fraction();
780 for (int i = 0; i < buckets_count; ++i)
781 {
782 if (symcount < buckets[i] * full_fraction)
783 break;
784 ret = buckets[i];
785 }
786
787 if (for_gnu_hash_table && ret < 2)
788 ret = 2;
789
790 return ret;
791 }
792
793 // The standard ELF hash function. This hash function must not
794 // change, as the dynamic linker uses it also.
795
796 uint32_t
797 Dynobj::elf_hash(const char* name)
798 {
799 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
800 uint32_t h = 0;
801 unsigned char c;
802 while ((c = *nameu++) != '\0')
803 {
804 h = (h << 4) + c;
805 uint32_t g = h & 0xf0000000;
806 if (g != 0)
807 {
808 h ^= g >> 24;
809 // The ELF ABI says h &= ~g, but using xor is equivalent in
810 // this case (since g was set from h) and may save one
811 // instruction.
812 h ^= g;
813 }
814 }
815 return h;
816 }
817
818 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
819 // DYNSYMS is a vector with all the global dynamic symbols.
820 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
821 // symbol table.
822
823 void
824 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
825 unsigned int local_dynsym_count,
826 unsigned char** pphash,
827 unsigned int* phashlen)
828 {
829 unsigned int dynsym_count = dynsyms.size();
830
831 // Get the hash values for all the symbols.
832 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
833 for (unsigned int i = 0; i < dynsym_count; ++i)
834 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
835
836 const unsigned int bucketcount =
837 Dynobj::compute_bucket_count(dynsym_hashvals, false);
838
839 std::vector<uint32_t> bucket(bucketcount);
840 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
841
842 for (unsigned int i = 0; i < dynsym_count; ++i)
843 {
844 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
845 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
846 chain[dynsym_index] = bucket[bucketpos];
847 bucket[bucketpos] = dynsym_index;
848 }
849
850 unsigned int hashlen = ((2
851 + bucketcount
852 + local_dynsym_count
853 + dynsym_count)
854 * 4);
855 unsigned char* phash = new unsigned char[hashlen];
856
857 if (parameters->target().is_big_endian())
858 {
859 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
860 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
861 hashlen);
862 #else
863 gold_unreachable();
864 #endif
865 }
866 else
867 {
868 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
869 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
870 hashlen);
871 #else
872 gold_unreachable();
873 #endif
874 }
875
876 *pphash = phash;
877 *phashlen = hashlen;
878 }
879
880 // Fill in an ELF hash table.
881
882 template<bool big_endian>
883 void
884 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
885 const std::vector<uint32_t>& chain,
886 unsigned char* phash,
887 unsigned int hashlen)
888 {
889 unsigned char* p = phash;
890
891 const unsigned int bucketcount = bucket.size();
892 const unsigned int chaincount = chain.size();
893
894 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
895 p += 4;
896 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
897 p += 4;
898
899 for (unsigned int i = 0; i < bucketcount; ++i)
900 {
901 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
902 p += 4;
903 }
904
905 for (unsigned int i = 0; i < chaincount; ++i)
906 {
907 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
908 p += 4;
909 }
910
911 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
912 }
913
914 // The hash function used for the GNU hash table. This hash function
915 // must not change, as the dynamic linker uses it also.
916
917 uint32_t
918 Dynobj::gnu_hash(const char* name)
919 {
920 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
921 uint32_t h = 5381;
922 unsigned char c;
923 while ((c = *nameu++) != '\0')
924 h = (h << 5) + h + c;
925 return h;
926 }
927
928 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
929 // tables are an extension to ELF which are recognized by the GNU
930 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
931 // TARGET is the target. DYNSYMS is a vector with all the global
932 // symbols which will be going into the dynamic symbol table.
933 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
934 // symbol table.
935
936 void
937 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
938 unsigned int local_dynsym_count,
939 unsigned char** pphash,
940 unsigned int* phashlen)
941 {
942 const unsigned int count = dynsyms.size();
943
944 // Sort the dynamic symbols into two vectors. Symbols which we do
945 // not want to put into the hash table we store into
946 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
947 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
948 // and records the hash codes.
949
950 std::vector<Symbol*> unhashed_dynsyms;
951 unhashed_dynsyms.reserve(count);
952
953 std::vector<Symbol*> hashed_dynsyms;
954 hashed_dynsyms.reserve(count);
955
956 std::vector<uint32_t> dynsym_hashvals;
957 dynsym_hashvals.reserve(count);
958
959 for (unsigned int i = 0; i < count; ++i)
960 {
961 Symbol* sym = dynsyms[i];
962
963 if (!sym->needs_dynsym_value()
964 && (sym->is_undefined()
965 || sym->is_from_dynobj()
966 || sym->is_forced_local()))
967 unhashed_dynsyms.push_back(sym);
968 else
969 {
970 hashed_dynsyms.push_back(sym);
971 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
972 }
973 }
974
975 // Put the unhashed symbols at the start of the global portion of
976 // the dynamic symbol table.
977 const unsigned int unhashed_count = unhashed_dynsyms.size();
978 unsigned int unhashed_dynsym_index = local_dynsym_count;
979 for (unsigned int i = 0; i < unhashed_count; ++i)
980 {
981 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
982 ++unhashed_dynsym_index;
983 }
984
985 // For the actual data generation we call out to a templatized
986 // function.
987 int size = parameters->target().get_size();
988 bool big_endian = parameters->target().is_big_endian();
989 if (size == 32)
990 {
991 if (big_endian)
992 {
993 #ifdef HAVE_TARGET_32_BIG
994 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
995 dynsym_hashvals,
996 unhashed_dynsym_index,
997 pphash,
998 phashlen);
999 #else
1000 gold_unreachable();
1001 #endif
1002 }
1003 else
1004 {
1005 #ifdef HAVE_TARGET_32_LITTLE
1006 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1007 dynsym_hashvals,
1008 unhashed_dynsym_index,
1009 pphash,
1010 phashlen);
1011 #else
1012 gold_unreachable();
1013 #endif
1014 }
1015 }
1016 else if (size == 64)
1017 {
1018 if (big_endian)
1019 {
1020 #ifdef HAVE_TARGET_64_BIG
1021 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1022 dynsym_hashvals,
1023 unhashed_dynsym_index,
1024 pphash,
1025 phashlen);
1026 #else
1027 gold_unreachable();
1028 #endif
1029 }
1030 else
1031 {
1032 #ifdef HAVE_TARGET_64_LITTLE
1033 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1034 dynsym_hashvals,
1035 unhashed_dynsym_index,
1036 pphash,
1037 phashlen);
1038 #else
1039 gold_unreachable();
1040 #endif
1041 }
1042 }
1043 else
1044 gold_unreachable();
1045 }
1046
1047 // Create the actual data for a GNU hash table. This is just a copy
1048 // of the code from the old GNU linker.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Dynobj::sized_create_gnu_hash_table(
1053 const std::vector<Symbol*>& hashed_dynsyms,
1054 const std::vector<uint32_t>& dynsym_hashvals,
1055 unsigned int unhashed_dynsym_count,
1056 unsigned char** pphash,
1057 unsigned int* phashlen)
1058 {
1059 if (hashed_dynsyms.empty())
1060 {
1061 // Special case for the empty hash table.
1062 unsigned int hashlen = 5 * 4 + size / 8;
1063 unsigned char* phash = new unsigned char[hashlen];
1064 // One empty bucket.
1065 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1066 // Symbol index above unhashed symbols.
1067 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1068 // One word for bitmask.
1069 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1070 // Only bloom filter.
1071 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1072 // No valid hashes.
1073 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1074 // No hashes in only bucket.
1075 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1076
1077 *phashlen = hashlen;
1078 *pphash = phash;
1079
1080 return;
1081 }
1082
1083 const unsigned int bucketcount =
1084 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1085
1086 const unsigned int nsyms = hashed_dynsyms.size();
1087
1088 uint32_t maskbitslog2 = 1;
1089 uint32_t x = nsyms >> 1;
1090 while (x != 0)
1091 {
1092 ++maskbitslog2;
1093 x >>= 1;
1094 }
1095 if (maskbitslog2 < 3)
1096 maskbitslog2 = 5;
1097 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1098 maskbitslog2 += 3;
1099 else
1100 maskbitslog2 += 2;
1101
1102 uint32_t shift1;
1103 if (size == 32)
1104 shift1 = 5;
1105 else
1106 {
1107 if (maskbitslog2 == 5)
1108 maskbitslog2 = 6;
1109 shift1 = 6;
1110 }
1111 uint32_t mask = (1U << shift1) - 1U;
1112 uint32_t shift2 = maskbitslog2;
1113 uint32_t maskbits = 1U << maskbitslog2;
1114 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1115
1116 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1117 std::vector<Word> bitmask(maskwords);
1118 std::vector<uint32_t> counts(bucketcount);
1119 std::vector<uint32_t> indx(bucketcount);
1120 uint32_t symindx = unhashed_dynsym_count;
1121
1122 // Count the number of times each hash bucket is used.
1123 for (unsigned int i = 0; i < nsyms; ++i)
1124 ++counts[dynsym_hashvals[i] % bucketcount];
1125
1126 unsigned int cnt = symindx;
1127 for (unsigned int i = 0; i < bucketcount; ++i)
1128 {
1129 indx[i] = cnt;
1130 cnt += counts[i];
1131 }
1132
1133 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1134 hashlen += maskbits / 8;
1135 unsigned char* phash = new unsigned char[hashlen];
1136
1137 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1138 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1139 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1140 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1141
1142 unsigned char* p = phash + 16 + maskbits / 8;
1143 for (unsigned int i = 0; i < bucketcount; ++i)
1144 {
1145 if (counts[i] == 0)
1146 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1147 else
1148 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1149 p += 4;
1150 }
1151
1152 for (unsigned int i = 0; i < nsyms; ++i)
1153 {
1154 Symbol* sym = hashed_dynsyms[i];
1155 uint32_t hashval = dynsym_hashvals[i];
1156
1157 unsigned int bucket = hashval % bucketcount;
1158 unsigned int val = ((hashval >> shift1)
1159 & ((maskbits >> shift1) - 1));
1160 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1161 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1162 val = hashval & ~ 1U;
1163 if (counts[bucket] == 1)
1164 {
1165 // Last element terminates the chain.
1166 val |= 1;
1167 }
1168 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1169 val);
1170 --counts[bucket];
1171
1172 sym->set_dynsym_index(indx[bucket]);
1173 ++indx[bucket];
1174 }
1175
1176 p = phash + 16;
1177 for (unsigned int i = 0; i < maskwords; ++i)
1178 {
1179 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1180 p += size / 8;
1181 }
1182
1183 *phashlen = hashlen;
1184 *pphash = phash;
1185 }
1186
1187 // Verdef methods.
1188
1189 // Write this definition to a buffer for the output section.
1190
1191 template<int size, bool big_endian>
1192 unsigned char*
1193 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1194 {
1195 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1196 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1197
1198 elfcpp::Verdef_write<size, big_endian> vd(pb);
1199 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1200 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1201 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1202 vd.set_vd_ndx(this->index());
1203 vd.set_vd_cnt(1 + this->deps_.size());
1204 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1205 vd.set_vd_aux(verdef_size);
1206 vd.set_vd_next(is_last
1207 ? 0
1208 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1209 pb += verdef_size;
1210
1211 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1212 vda.set_vda_name(dynpool->get_offset(this->name()));
1213 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1214 pb += verdaux_size;
1215
1216 Deps::const_iterator p;
1217 unsigned int i;
1218 for (p = this->deps_.begin(), i = 0;
1219 p != this->deps_.end();
1220 ++p, ++i)
1221 {
1222 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1223 vda.set_vda_name(dynpool->get_offset(*p));
1224 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1225 pb += verdaux_size;
1226 }
1227
1228 return pb;
1229 }
1230
1231 // Verneed methods.
1232
1233 Verneed::~Verneed()
1234 {
1235 for (Need_versions::iterator p = this->need_versions_.begin();
1236 p != this->need_versions_.end();
1237 ++p)
1238 delete *p;
1239 }
1240
1241 // Add a new version to this file reference.
1242
1243 Verneed_version*
1244 Verneed::add_name(const char* name)
1245 {
1246 Verneed_version* vv = new Verneed_version(name);
1247 this->need_versions_.push_back(vv);
1248 return vv;
1249 }
1250
1251 // Set the version indexes starting at INDEX.
1252
1253 unsigned int
1254 Verneed::finalize(unsigned int index)
1255 {
1256 for (Need_versions::iterator p = this->need_versions_.begin();
1257 p != this->need_versions_.end();
1258 ++p)
1259 {
1260 (*p)->set_index(index);
1261 ++index;
1262 }
1263 return index;
1264 }
1265
1266 // Write this list of referenced versions to a buffer for the output
1267 // section.
1268
1269 template<int size, bool big_endian>
1270 unsigned char*
1271 Verneed::write(const Stringpool* dynpool, bool is_last,
1272 unsigned char* pb) const
1273 {
1274 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1275 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1276
1277 elfcpp::Verneed_write<size, big_endian> vn(pb);
1278 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1279 vn.set_vn_cnt(this->need_versions_.size());
1280 vn.set_vn_file(dynpool->get_offset(this->filename()));
1281 vn.set_vn_aux(verneed_size);
1282 vn.set_vn_next(is_last
1283 ? 0
1284 : verneed_size + this->need_versions_.size() * vernaux_size);
1285 pb += verneed_size;
1286
1287 Need_versions::const_iterator p;
1288 unsigned int i;
1289 for (p = this->need_versions_.begin(), i = 0;
1290 p != this->need_versions_.end();
1291 ++p, ++i)
1292 {
1293 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1294 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1295 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1296 vna.set_vna_flags(0);
1297 vna.set_vna_other((*p)->index());
1298 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1299 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1300 ? 0
1301 : vernaux_size);
1302 pb += vernaux_size;
1303 }
1304
1305 return pb;
1306 }
1307
1308 // Versions methods.
1309
1310 Versions::Versions(const Version_script_info& version_script,
1311 Stringpool* dynpool)
1312 : defs_(), needs_(), version_table_(),
1313 is_finalized_(false), version_script_(version_script),
1314 needs_base_version_(parameters->options().shared())
1315 {
1316 if (!this->version_script_.empty())
1317 {
1318 // Parse the version script, and insert each declared version into
1319 // defs_ and version_table_.
1320 std::vector<std::string> versions = this->version_script_.get_versions();
1321
1322 if (this->needs_base_version_ && !versions.empty())
1323 this->define_base_version(dynpool);
1324
1325 for (size_t k = 0; k < versions.size(); ++k)
1326 {
1327 Stringpool::Key version_key;
1328 const char* version = dynpool->add(versions[k].c_str(),
1329 true, &version_key);
1330 Verdef* const vd = new Verdef(
1331 version,
1332 this->version_script_.get_dependencies(version),
1333 false, false, false);
1334 this->defs_.push_back(vd);
1335 Key key(version_key, 0);
1336 this->version_table_.insert(std::make_pair(key, vd));
1337 }
1338 }
1339 }
1340
1341 Versions::~Versions()
1342 {
1343 for (Defs::iterator p = this->defs_.begin();
1344 p != this->defs_.end();
1345 ++p)
1346 delete *p;
1347
1348 for (Needs::iterator p = this->needs_.begin();
1349 p != this->needs_.end();
1350 ++p)
1351 delete *p;
1352 }
1353
1354 // Define the base version of a shared library. The base version definition
1355 // must be the first entry in defs_. We insert it lazily so that defs_ is
1356 // empty if no symbol versioning is used. Then layout can just drop the
1357 // version sections.
1358
1359 void
1360 Versions::define_base_version(Stringpool* dynpool)
1361 {
1362 // If we do any versioning at all, we always need a base version, so
1363 // define that first. Nothing explicitly declares itself as part of base,
1364 // so it doesn't need to be in version_table_.
1365 gold_assert(this->defs_.empty());
1366 const char* name = parameters->options().soname();
1367 if (name == NULL)
1368 name = parameters->options().output_file_name();
1369 name = dynpool->add(name, false, NULL);
1370 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1371 true, false, true);
1372 this->defs_.push_back(vdbase);
1373 this->needs_base_version_ = false;
1374 }
1375
1376 // Return the dynamic object which a symbol refers to.
1377
1378 Dynobj*
1379 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1380 const Symbol* sym) const
1381 {
1382 if (sym->is_copied_from_dynobj())
1383 return symtab->get_copy_source(sym);
1384 else
1385 {
1386 Object* object = sym->object();
1387 gold_assert(object->is_dynamic());
1388 return static_cast<Dynobj*>(object);
1389 }
1390 }
1391
1392 // Record version information for a symbol going into the dynamic
1393 // symbol table.
1394
1395 void
1396 Versions::record_version(const Symbol_table* symtab,
1397 Stringpool* dynpool, const Symbol* sym)
1398 {
1399 gold_assert(!this->is_finalized_);
1400 gold_assert(sym->version() != NULL);
1401
1402 Stringpool::Key version_key;
1403 const char* version = dynpool->add(sym->version(), false, &version_key);
1404
1405 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1406 {
1407 if (parameters->options().shared())
1408 this->add_def(sym, version, version_key);
1409 }
1410 else
1411 {
1412 // This is a version reference.
1413 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1414 this->add_need(dynpool, dynobj->soname(), version, version_key);
1415 }
1416 }
1417
1418 // We've found a symbol SYM defined in version VERSION.
1419
1420 void
1421 Versions::add_def(const Symbol* sym, const char* version,
1422 Stringpool::Key version_key)
1423 {
1424 Key k(version_key, 0);
1425 Version_base* const vbnull = NULL;
1426 std::pair<Version_table::iterator, bool> ins =
1427 this->version_table_.insert(std::make_pair(k, vbnull));
1428
1429 if (!ins.second)
1430 {
1431 // We already have an entry for this version.
1432 Version_base* vb = ins.first->second;
1433
1434 // We have now seen a symbol in this version, so it is not
1435 // weak.
1436 gold_assert(vb != NULL);
1437 vb->clear_weak();
1438 }
1439 else
1440 {
1441 // If we are creating a shared object, it is an error to
1442 // find a definition of a symbol with a version which is not
1443 // in the version script.
1444 if (parameters->options().shared())
1445 gold_error(_("symbol %s has undefined version %s"),
1446 sym->demangled_name().c_str(), version);
1447 else
1448 // We only insert a base version for shared library.
1449 gold_assert(!this->needs_base_version_);
1450
1451 // When creating a regular executable, automatically define
1452 // a new version.
1453 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1454 false, false, false);
1455 this->defs_.push_back(vd);
1456 ins.first->second = vd;
1457 }
1458 }
1459
1460 // Add a reference to version NAME in file FILENAME.
1461
1462 void
1463 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1464 Stringpool::Key name_key)
1465 {
1466 Stringpool::Key filename_key;
1467 filename = dynpool->add(filename, true, &filename_key);
1468
1469 Key k(name_key, filename_key);
1470 Version_base* const vbnull = NULL;
1471 std::pair<Version_table::iterator, bool> ins =
1472 this->version_table_.insert(std::make_pair(k, vbnull));
1473
1474 if (!ins.second)
1475 {
1476 // We already have an entry for this filename/version.
1477 return;
1478 }
1479
1480 // See whether we already have this filename. We don't expect many
1481 // version references, so we just do a linear search. This could be
1482 // replaced by a hash table.
1483 Verneed* vn = NULL;
1484 for (Needs::iterator p = this->needs_.begin();
1485 p != this->needs_.end();
1486 ++p)
1487 {
1488 if ((*p)->filename() == filename)
1489 {
1490 vn = *p;
1491 break;
1492 }
1493 }
1494
1495 if (vn == NULL)
1496 {
1497 // Create base version definition lazily for shared library.
1498 if (this->needs_base_version_)
1499 this->define_base_version(dynpool);
1500
1501 // We have a new filename.
1502 vn = new Verneed(filename);
1503 this->needs_.push_back(vn);
1504 }
1505
1506 ins.first->second = vn->add_name(name);
1507 }
1508
1509 // Set the version indexes. Create a new dynamic version symbol for
1510 // each new version definition.
1511
1512 unsigned int
1513 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1514 std::vector<Symbol*>* syms)
1515 {
1516 gold_assert(!this->is_finalized_);
1517
1518 unsigned int vi = 1;
1519
1520 for (Defs::iterator p = this->defs_.begin();
1521 p != this->defs_.end();
1522 ++p)
1523 {
1524 (*p)->set_index(vi);
1525 ++vi;
1526
1527 // Create a version symbol if necessary.
1528 if (!(*p)->is_symbol_created())
1529 {
1530 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1531 (*p)->name(),
1532 Symbol_table::PREDEFINED,
1533 0, 0,
1534 elfcpp::STT_OBJECT,
1535 elfcpp::STB_GLOBAL,
1536 elfcpp::STV_DEFAULT, 0,
1537 false, false);
1538 vsym->set_needs_dynsym_entry();
1539 vsym->set_dynsym_index(dynsym_index);
1540 ++dynsym_index;
1541 syms->push_back(vsym);
1542 // The name is already in the dynamic pool.
1543 }
1544 }
1545
1546 // Index 1 is used for global symbols.
1547 if (vi == 1)
1548 {
1549 gold_assert(this->defs_.empty());
1550 vi = 2;
1551 }
1552
1553 for (Needs::iterator p = this->needs_.begin();
1554 p != this->needs_.end();
1555 ++p)
1556 vi = (*p)->finalize(vi);
1557
1558 this->is_finalized_ = true;
1559
1560 return dynsym_index;
1561 }
1562
1563 // Return the version index to use for a symbol. This does two hash
1564 // table lookups: one in DYNPOOL and one in this->version_table_.
1565 // Another approach alternative would be store a pointer in SYM, which
1566 // would increase the size of the symbol table. Or perhaps we could
1567 // use a hash table from dynamic symbol pointer values to Version_base
1568 // pointers.
1569
1570 unsigned int
1571 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1572 const Symbol* sym) const
1573 {
1574 Stringpool::Key version_key;
1575 const char* version = dynpool->find(sym->version(), &version_key);
1576 gold_assert(version != NULL);
1577
1578 Key k;
1579 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1580 {
1581 if (!parameters->options().shared())
1582 return elfcpp::VER_NDX_GLOBAL;
1583 k = Key(version_key, 0);
1584 }
1585 else
1586 {
1587 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1588
1589 Stringpool::Key filename_key;
1590 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1591 gold_assert(filename != NULL);
1592
1593 k = Key(version_key, filename_key);
1594 }
1595
1596 Version_table::const_iterator p = this->version_table_.find(k);
1597 gold_assert(p != this->version_table_.end());
1598
1599 return p->second->index();
1600 }
1601
1602 // Return an allocated buffer holding the contents of the symbol
1603 // version section.
1604
1605 template<int size, bool big_endian>
1606 void
1607 Versions::symbol_section_contents(const Symbol_table* symtab,
1608 const Stringpool* dynpool,
1609 unsigned int local_symcount,
1610 const std::vector<Symbol*>& syms,
1611 unsigned char** pp,
1612 unsigned int* psize) const
1613 {
1614 gold_assert(this->is_finalized_);
1615
1616 unsigned int sz = (local_symcount + syms.size()) * 2;
1617 unsigned char* pbuf = new unsigned char[sz];
1618
1619 for (unsigned int i = 0; i < local_symcount; ++i)
1620 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1621 elfcpp::VER_NDX_LOCAL);
1622
1623 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1624 p != syms.end();
1625 ++p)
1626 {
1627 unsigned int version_index;
1628 const char* version = (*p)->version();
1629 if (version == NULL)
1630 version_index = elfcpp::VER_NDX_GLOBAL;
1631 else
1632 version_index = this->version_index(symtab, dynpool, *p);
1633 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1634 // the hidden bit.
1635 if ((*p)->version() != NULL && !(*p)->is_default())
1636 version_index |= elfcpp::VERSYM_HIDDEN;
1637 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1638 version_index);
1639 }
1640
1641 *pp = pbuf;
1642 *psize = sz;
1643 }
1644
1645 // Return an allocated buffer holding the contents of the version
1646 // definition section.
1647
1648 template<int size, bool big_endian>
1649 void
1650 Versions::def_section_contents(const Stringpool* dynpool,
1651 unsigned char** pp, unsigned int* psize,
1652 unsigned int* pentries) const
1653 {
1654 gold_assert(this->is_finalized_);
1655 gold_assert(!this->defs_.empty());
1656
1657 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1658 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1659
1660 unsigned int sz = 0;
1661 for (Defs::const_iterator p = this->defs_.begin();
1662 p != this->defs_.end();
1663 ++p)
1664 {
1665 sz += verdef_size + verdaux_size;
1666 sz += (*p)->count_dependencies() * verdaux_size;
1667 }
1668
1669 unsigned char* pbuf = new unsigned char[sz];
1670
1671 unsigned char* pb = pbuf;
1672 Defs::const_iterator p;
1673 unsigned int i;
1674 for (p = this->defs_.begin(), i = 0;
1675 p != this->defs_.end();
1676 ++p, ++i)
1677 pb = (*p)->write<size, big_endian>(dynpool,
1678 i + 1 >= this->defs_.size(),
1679 pb);
1680
1681 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1682
1683 *pp = pbuf;
1684 *psize = sz;
1685 *pentries = this->defs_.size();
1686 }
1687
1688 // Return an allocated buffer holding the contents of the version
1689 // reference section.
1690
1691 template<int size, bool big_endian>
1692 void
1693 Versions::need_section_contents(const Stringpool* dynpool,
1694 unsigned char** pp, unsigned int *psize,
1695 unsigned int *pentries) const
1696 {
1697 gold_assert(this->is_finalized_);
1698 gold_assert(!this->needs_.empty());
1699
1700 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1701 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1702
1703 unsigned int sz = 0;
1704 for (Needs::const_iterator p = this->needs_.begin();
1705 p != this->needs_.end();
1706 ++p)
1707 {
1708 sz += verneed_size;
1709 sz += (*p)->count_versions() * vernaux_size;
1710 }
1711
1712 unsigned char* pbuf = new unsigned char[sz];
1713
1714 unsigned char* pb = pbuf;
1715 Needs::const_iterator p;
1716 unsigned int i;
1717 for (p = this->needs_.begin(), i = 0;
1718 p != this->needs_.end();
1719 ++p, ++i)
1720 pb = (*p)->write<size, big_endian>(dynpool,
1721 i + 1 >= this->needs_.size(),
1722 pb);
1723
1724 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1725
1726 *pp = pbuf;
1727 *psize = sz;
1728 *pentries = this->needs_.size();
1729 }
1730
1731 // Instantiate the templates we need. We could use the configure
1732 // script to restrict this to only the ones for implemented targets.
1733
1734 #ifdef HAVE_TARGET_32_LITTLE
1735 template
1736 class Sized_dynobj<32, false>;
1737 #endif
1738
1739 #ifdef HAVE_TARGET_32_BIG
1740 template
1741 class Sized_dynobj<32, true>;
1742 #endif
1743
1744 #ifdef HAVE_TARGET_64_LITTLE
1745 template
1746 class Sized_dynobj<64, false>;
1747 #endif
1748
1749 #ifdef HAVE_TARGET_64_BIG
1750 template
1751 class Sized_dynobj<64, true>;
1752 #endif
1753
1754 #ifdef HAVE_TARGET_32_LITTLE
1755 template
1756 void
1757 Versions::symbol_section_contents<32, false>(
1758 const Symbol_table*,
1759 const Stringpool*,
1760 unsigned int,
1761 const std::vector<Symbol*>&,
1762 unsigned char**,
1763 unsigned int*) const;
1764 #endif
1765
1766 #ifdef HAVE_TARGET_32_BIG
1767 template
1768 void
1769 Versions::symbol_section_contents<32, true>(
1770 const Symbol_table*,
1771 const Stringpool*,
1772 unsigned int,
1773 const std::vector<Symbol*>&,
1774 unsigned char**,
1775 unsigned int*) const;
1776 #endif
1777
1778 #ifdef HAVE_TARGET_64_LITTLE
1779 template
1780 void
1781 Versions::symbol_section_contents<64, false>(
1782 const Symbol_table*,
1783 const Stringpool*,
1784 unsigned int,
1785 const std::vector<Symbol*>&,
1786 unsigned char**,
1787 unsigned int*) const;
1788 #endif
1789
1790 #ifdef HAVE_TARGET_64_BIG
1791 template
1792 void
1793 Versions::symbol_section_contents<64, true>(
1794 const Symbol_table*,
1795 const Stringpool*,
1796 unsigned int,
1797 const std::vector<Symbol*>&,
1798 unsigned char**,
1799 unsigned int*) const;
1800 #endif
1801
1802 #ifdef HAVE_TARGET_32_LITTLE
1803 template
1804 void
1805 Versions::def_section_contents<32, false>(
1806 const Stringpool*,
1807 unsigned char**,
1808 unsigned int*,
1809 unsigned int*) const;
1810 #endif
1811
1812 #ifdef HAVE_TARGET_32_BIG
1813 template
1814 void
1815 Versions::def_section_contents<32, true>(
1816 const Stringpool*,
1817 unsigned char**,
1818 unsigned int*,
1819 unsigned int*) const;
1820 #endif
1821
1822 #ifdef HAVE_TARGET_64_LITTLE
1823 template
1824 void
1825 Versions::def_section_contents<64, false>(
1826 const Stringpool*,
1827 unsigned char**,
1828 unsigned int*,
1829 unsigned int*) const;
1830 #endif
1831
1832 #ifdef HAVE_TARGET_64_BIG
1833 template
1834 void
1835 Versions::def_section_contents<64, true>(
1836 const Stringpool*,
1837 unsigned char**,
1838 unsigned int*,
1839 unsigned int*) const;
1840 #endif
1841
1842 #ifdef HAVE_TARGET_32_LITTLE
1843 template
1844 void
1845 Versions::need_section_contents<32, false>(
1846 const Stringpool*,
1847 unsigned char**,
1848 unsigned int*,
1849 unsigned int*) const;
1850 #endif
1851
1852 #ifdef HAVE_TARGET_32_BIG
1853 template
1854 void
1855 Versions::need_section_contents<32, true>(
1856 const Stringpool*,
1857 unsigned char**,
1858 unsigned int*,
1859 unsigned int*) const;
1860 #endif
1861
1862 #ifdef HAVE_TARGET_64_LITTLE
1863 template
1864 void
1865 Versions::need_section_contents<64, false>(
1866 const Stringpool*,
1867 unsigned char**,
1868 unsigned int*,
1869 unsigned int*) const;
1870 #endif
1871
1872 #ifdef HAVE_TARGET_64_BIG
1873 template
1874 void
1875 Versions::need_section_contents<64, true>(
1876 const Stringpool*,
1877 unsigned char**,
1878 unsigned int*,
1879 unsigned int*) const;
1880 #endif
1881
1882 } // End namespace gold.
This page took 0.074343 seconds and 5 git commands to generate.