* archive.cc (Library_base::should_include_member): Move
[deliverable/binutils-gdb.git] / gold / dynobj.cc
1 // dynobj.cc -- dynamic object support for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <vector>
26 #include <cstring>
27
28 #include "elfcpp.h"
29 #include "parameters.h"
30 #include "script.h"
31 #include "symtab.h"
32 #include "dynobj.h"
33
34 namespace gold
35 {
36
37 // Class Dynobj.
38
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
41
42 Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
46 {
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64 }
65
66 // Class Sized_dynobj.
67
68 template<int size, bool big_endian>
69 Sized_dynobj<size, big_endian>::Sized_dynobj(
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
73 const elfcpp::Ehdr<size, big_endian>& ehdr)
74 : Dynobj(name, input_file, offset),
75 elf_file_(this, ehdr),
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
79 {
80 }
81
82 // Set up the object.
83
84 template<int size, bool big_endian>
85 void
86 Sized_dynobj<size, big_endian>::setup()
87 {
88 const unsigned int shnum = this->elf_file_.shnum();
89 this->set_shnum(shnum);
90 }
91
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
94
95 template<int size, bool big_endian>
96 void
97 Sized_dynobj<size, big_endian>::find_dynsym_sections(
98 const unsigned char* pshdrs,
99 unsigned int* pversym_shndx,
100 unsigned int* pverdef_shndx,
101 unsigned int* pverneed_shndx,
102 unsigned int* pdynamic_shndx)
103 {
104 *pversym_shndx = -1U;
105 *pverdef_shndx = -1U;
106 *pverneed_shndx = -1U;
107 *pdynamic_shndx = -1U;
108
109 unsigned int symtab_shndx = 0;
110 unsigned int xindex_shndx = 0;
111 unsigned int xindex_link = 0;
112 const unsigned int shnum = this->shnum();
113 const unsigned char* p = pshdrs;
114 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
115 {
116 typename This::Shdr shdr(p);
117
118 unsigned int* pi;
119 switch (shdr.get_sh_type())
120 {
121 case elfcpp::SHT_DYNSYM:
122 this->dynsym_shndx_ = i;
123 if (xindex_shndx > 0 && xindex_link == i)
124 {
125 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
126 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
127 pshdrs);
128 this->set_xindex(xindex);
129 }
130 pi = NULL;
131 break;
132 case elfcpp::SHT_SYMTAB:
133 symtab_shndx = i;
134 pi = NULL;
135 break;
136 case elfcpp::SHT_GNU_versym:
137 pi = pversym_shndx;
138 break;
139 case elfcpp::SHT_GNU_verdef:
140 pi = pverdef_shndx;
141 break;
142 case elfcpp::SHT_GNU_verneed:
143 pi = pverneed_shndx;
144 break;
145 case elfcpp::SHT_DYNAMIC:
146 pi = pdynamic_shndx;
147 break;
148 case elfcpp::SHT_SYMTAB_SHNDX:
149 xindex_shndx = i;
150 xindex_link = this->adjust_shndx(shdr.get_sh_link());
151 if (xindex_link == this->dynsym_shndx_)
152 {
153 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
154 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
155 pshdrs);
156 this->set_xindex(xindex);
157 }
158 pi = NULL;
159 break;
160 default:
161 pi = NULL;
162 break;
163 }
164
165 if (pi == NULL)
166 continue;
167
168 if (*pi != -1U)
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr.get_sh_type(), *pi, i);
171
172 *pi = i;
173 }
174
175 // If there is no dynamic symbol table, use the normal symbol table.
176 // On some SVR4 systems, a shared library is stored in an archive.
177 // The version stored in the archive only has a normal symbol table.
178 // It has an SONAME entry which points to another copy in the file
179 // system which has a dynamic symbol table as usual. This is way of
180 // addressing the issues which glibc addresses using GROUP with
181 // libc_nonshared.a.
182 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
183 {
184 this->dynsym_shndx_ = symtab_shndx;
185 if (xindex_shndx > 0 && xindex_link == symtab_shndx)
186 {
187 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
188 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
189 pshdrs);
190 this->set_xindex(xindex);
191 }
192 }
193 }
194
195 // Read the contents of section SHNDX. PSHDRS points to the section
196 // headers. TYPE is the expected section type. LINK is the expected
197 // section link. Store the data in *VIEW and *VIEW_SIZE. The
198 // section's sh_info field is stored in *VIEW_INFO.
199
200 template<int size, bool big_endian>
201 void
202 Sized_dynobj<size, big_endian>::read_dynsym_section(
203 const unsigned char* pshdrs,
204 unsigned int shndx,
205 elfcpp::SHT type,
206 unsigned int link,
207 File_view** view,
208 section_size_type* view_size,
209 unsigned int* view_info)
210 {
211 if (shndx == -1U)
212 {
213 *view = NULL;
214 *view_size = 0;
215 *view_info = 0;
216 return;
217 }
218
219 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
220
221 gold_assert(shdr.get_sh_type() == type);
222
223 if (this->adjust_shndx(shdr.get_sh_link()) != link)
224 this->error(_("unexpected link in section %u header: %u != %u"),
225 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
226
227 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
228 true, false);
229 *view_size = convert_to_section_size_type(shdr.get_sh_size());
230 *view_info = shdr.get_sh_info();
231 }
232
233 // Read the dynamic tags. Set the soname field if this shared object
234 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
235 // the section headers. DYNAMIC_SHNDX is the section index of the
236 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
237 // section index and contents of a string table which may be the one
238 // associated with the SHT_DYNAMIC section.
239
240 template<int size, bool big_endian>
241 void
242 Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
243 unsigned int dynamic_shndx,
244 unsigned int strtab_shndx,
245 const unsigned char* strtabu,
246 off_t strtab_size)
247 {
248 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
249 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
250
251 const off_t dynamic_size = dynamicshdr.get_sh_size();
252 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
253 dynamic_size, true, false);
254
255 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
256 if (link != strtab_shndx)
257 {
258 if (link >= this->shnum())
259 {
260 this->error(_("DYNAMIC section %u link out of range: %u"),
261 dynamic_shndx, link);
262 return;
263 }
264
265 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
266 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
267 {
268 this->error(_("DYNAMIC section %u link %u is not a strtab"),
269 dynamic_shndx, link);
270 return;
271 }
272
273 strtab_size = strtabshdr.get_sh_size();
274 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
275 false);
276 }
277
278 const char* const strtab = reinterpret_cast<const char*>(strtabu);
279
280 for (const unsigned char* p = pdynamic;
281 p < pdynamic + dynamic_size;
282 p += This::dyn_size)
283 {
284 typename This::Dyn dyn(p);
285
286 switch (dyn.get_d_tag())
287 {
288 case elfcpp::DT_NULL:
289 // We should always see DT_NULL at the end of the dynamic
290 // tags.
291 return;
292
293 case elfcpp::DT_SONAME:
294 {
295 off_t val = dyn.get_d_val();
296 if (val >= strtab_size)
297 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
298 static_cast<long long>(val),
299 static_cast<long long>(strtab_size));
300 else
301 this->set_soname_string(strtab + val);
302 }
303 break;
304
305 case elfcpp::DT_NEEDED:
306 {
307 off_t val = dyn.get_d_val();
308 if (val >= strtab_size)
309 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
310 static_cast<long long>(val),
311 static_cast<long long>(strtab_size));
312 else
313 this->add_needed(strtab + val);
314 }
315 break;
316
317 default:
318 break;
319 }
320 }
321
322 this->error(_("missing DT_NULL in dynamic segment"));
323 }
324
325 // Read the symbols and sections from a dynamic object. We read the
326 // dynamic symbols, not the normal symbols.
327
328 template<int size, bool big_endian>
329 void
330 Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
331 {
332 this->read_section_data(&this->elf_file_, sd);
333
334 const unsigned char* const pshdrs = sd->section_headers->data();
335
336 unsigned int versym_shndx;
337 unsigned int verdef_shndx;
338 unsigned int verneed_shndx;
339 unsigned int dynamic_shndx;
340 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
341 &verneed_shndx, &dynamic_shndx);
342
343 unsigned int strtab_shndx = -1U;
344
345 sd->symbols = NULL;
346 sd->symbols_size = 0;
347 sd->external_symbols_offset = 0;
348 sd->symbol_names = NULL;
349 sd->symbol_names_size = 0;
350 sd->versym = NULL;
351 sd->versym_size = 0;
352 sd->verdef = NULL;
353 sd->verdef_size = 0;
354 sd->verdef_info = 0;
355 sd->verneed = NULL;
356 sd->verneed_size = 0;
357 sd->verneed_info = 0;
358
359 if (this->dynsym_shndx_ != -1U)
360 {
361 // Get the dynamic symbols.
362 typename This::Shdr dynsymshdr(pshdrs
363 + this->dynsym_shndx_ * This::shdr_size);
364
365 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
366 dynsymshdr.get_sh_size(), true,
367 false);
368 sd->symbols_size =
369 convert_to_section_size_type(dynsymshdr.get_sh_size());
370
371 // Get the symbol names.
372 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
373 if (strtab_shndx >= this->shnum())
374 {
375 this->error(_("invalid dynamic symbol table name index: %u"),
376 strtab_shndx);
377 return;
378 }
379 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
380 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
381 {
382 this->error(_("dynamic symbol table name section "
383 "has wrong type: %u"),
384 static_cast<unsigned int>(strtabshdr.get_sh_type()));
385 return;
386 }
387
388 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
389 strtabshdr.get_sh_size(),
390 false, false);
391 sd->symbol_names_size =
392 convert_to_section_size_type(strtabshdr.get_sh_size());
393
394 // Get the version information.
395
396 unsigned int dummy;
397 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
398 this->dynsym_shndx_,
399 &sd->versym, &sd->versym_size, &dummy);
400
401 // We require that the version definition and need section link
402 // to the same string table as the dynamic symbol table. This
403 // is not a technical requirement, but it always happens in
404 // practice. We could change this if necessary.
405
406 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
407 strtab_shndx, &sd->verdef, &sd->verdef_size,
408 &sd->verdef_info);
409
410 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
411 strtab_shndx, &sd->verneed, &sd->verneed_size,
412 &sd->verneed_info);
413 }
414
415 // Read the SHT_DYNAMIC section to find whether this shared object
416 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
417 // doesn't really have anything to do with reading the symbols, but
418 // this is a convenient place to do it.
419 if (dynamic_shndx != -1U)
420 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
421 (sd->symbol_names == NULL
422 ? NULL
423 : sd->symbol_names->data()),
424 sd->symbol_names_size);
425 }
426
427 // Return the Xindex structure to use for object with lots of
428 // sections.
429
430 template<int size, bool big_endian>
431 Xindex*
432 Sized_dynobj<size, big_endian>::do_initialize_xindex()
433 {
434 gold_assert(this->dynsym_shndx_ != -1U);
435 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
436 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
437 return xindex;
438 }
439
440 // Lay out the input sections for a dynamic object. We don't want to
441 // include sections from a dynamic object, so all that we actually do
442 // here is check for .gnu.warning and .note.GNU-split-stack sections.
443
444 template<int size, bool big_endian>
445 void
446 Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
447 Layout*,
448 Read_symbols_data* sd)
449 {
450 const unsigned int shnum = this->shnum();
451 if (shnum == 0)
452 return;
453
454 // Get the section headers.
455 const unsigned char* pshdrs = sd->section_headers->data();
456
457 // Get the section names.
458 const unsigned char* pnamesu = sd->section_names->data();
459 const char* pnames = reinterpret_cast<const char*>(pnamesu);
460
461 // Skip the first, dummy, section.
462 pshdrs += This::shdr_size;
463 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
464 {
465 typename This::Shdr shdr(pshdrs);
466
467 if (shdr.get_sh_name() >= sd->section_names_size)
468 {
469 this->error(_("bad section name offset for section %u: %lu"),
470 i, static_cast<unsigned long>(shdr.get_sh_name()));
471 return;
472 }
473
474 const char* name = pnames + shdr.get_sh_name();
475
476 this->handle_gnu_warning_section(name, i, symtab);
477 this->handle_split_stack_section(name);
478 }
479
480 delete sd->section_headers;
481 sd->section_headers = NULL;
482 delete sd->section_names;
483 sd->section_names = NULL;
484 }
485
486 // Add an entry to the vector mapping version numbers to version
487 // strings.
488
489 template<int size, bool big_endian>
490 void
491 Sized_dynobj<size, big_endian>::set_version_map(
492 Version_map* version_map,
493 unsigned int ndx,
494 const char* name) const
495 {
496 if (ndx >= version_map->size())
497 version_map->resize(ndx + 1);
498 if ((*version_map)[ndx] != NULL)
499 this->error(_("duplicate definition for version %u"), ndx);
500 (*version_map)[ndx] = name;
501 }
502
503 // Add mappings for the version definitions to VERSION_MAP.
504
505 template<int size, bool big_endian>
506 void
507 Sized_dynobj<size, big_endian>::make_verdef_map(
508 Read_symbols_data* sd,
509 Version_map* version_map) const
510 {
511 if (sd->verdef == NULL)
512 return;
513
514 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
515 section_size_type names_size = sd->symbol_names_size;
516
517 const unsigned char* pverdef = sd->verdef->data();
518 section_size_type verdef_size = sd->verdef_size;
519 const unsigned int count = sd->verdef_info;
520
521 const unsigned char* p = pverdef;
522 for (unsigned int i = 0; i < count; ++i)
523 {
524 elfcpp::Verdef<size, big_endian> verdef(p);
525
526 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
527 {
528 this->error(_("unexpected verdef version %u"),
529 verdef.get_vd_version());
530 return;
531 }
532
533 const section_size_type vd_ndx = verdef.get_vd_ndx();
534
535 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
536 // sure why.
537
538 // The first Verdaux holds the name of this version. Subsequent
539 // ones are versions that this one depends upon, which we don't
540 // care about here.
541 const section_size_type vd_cnt = verdef.get_vd_cnt();
542 if (vd_cnt < 1)
543 {
544 this->error(_("verdef vd_cnt field too small: %u"),
545 static_cast<unsigned int>(vd_cnt));
546 return;
547 }
548
549 const section_size_type vd_aux = verdef.get_vd_aux();
550 if ((p - pverdef) + vd_aux >= verdef_size)
551 {
552 this->error(_("verdef vd_aux field out of range: %u"),
553 static_cast<unsigned int>(vd_aux));
554 return;
555 }
556
557 const unsigned char* pvda = p + vd_aux;
558 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
559
560 const section_size_type vda_name = verdaux.get_vda_name();
561 if (vda_name >= names_size)
562 {
563 this->error(_("verdaux vda_name field out of range: %u"),
564 static_cast<unsigned int>(vda_name));
565 return;
566 }
567
568 this->set_version_map(version_map, vd_ndx, names + vda_name);
569
570 const section_size_type vd_next = verdef.get_vd_next();
571 if ((p - pverdef) + vd_next >= verdef_size)
572 {
573 this->error(_("verdef vd_next field out of range: %u"),
574 static_cast<unsigned int>(vd_next));
575 return;
576 }
577
578 p += vd_next;
579 }
580 }
581
582 // Add mappings for the required versions to VERSION_MAP.
583
584 template<int size, bool big_endian>
585 void
586 Sized_dynobj<size, big_endian>::make_verneed_map(
587 Read_symbols_data* sd,
588 Version_map* version_map) const
589 {
590 if (sd->verneed == NULL)
591 return;
592
593 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
594 section_size_type names_size = sd->symbol_names_size;
595
596 const unsigned char* pverneed = sd->verneed->data();
597 const section_size_type verneed_size = sd->verneed_size;
598 const unsigned int count = sd->verneed_info;
599
600 const unsigned char* p = pverneed;
601 for (unsigned int i = 0; i < count; ++i)
602 {
603 elfcpp::Verneed<size, big_endian> verneed(p);
604
605 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
606 {
607 this->error(_("unexpected verneed version %u"),
608 verneed.get_vn_version());
609 return;
610 }
611
612 const section_size_type vn_aux = verneed.get_vn_aux();
613
614 if ((p - pverneed) + vn_aux >= verneed_size)
615 {
616 this->error(_("verneed vn_aux field out of range: %u"),
617 static_cast<unsigned int>(vn_aux));
618 return;
619 }
620
621 const unsigned int vn_cnt = verneed.get_vn_cnt();
622 const unsigned char* pvna = p + vn_aux;
623 for (unsigned int j = 0; j < vn_cnt; ++j)
624 {
625 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
626
627 const unsigned int vna_name = vernaux.get_vna_name();
628 if (vna_name >= names_size)
629 {
630 this->error(_("vernaux vna_name field out of range: %u"),
631 static_cast<unsigned int>(vna_name));
632 return;
633 }
634
635 this->set_version_map(version_map, vernaux.get_vna_other(),
636 names + vna_name);
637
638 const section_size_type vna_next = vernaux.get_vna_next();
639 if ((pvna - pverneed) + vna_next >= verneed_size)
640 {
641 this->error(_("verneed vna_next field out of range: %u"),
642 static_cast<unsigned int>(vna_next));
643 return;
644 }
645
646 pvna += vna_next;
647 }
648
649 const section_size_type vn_next = verneed.get_vn_next();
650 if ((p - pverneed) + vn_next >= verneed_size)
651 {
652 this->error(_("verneed vn_next field out of range: %u"),
653 static_cast<unsigned int>(vn_next));
654 return;
655 }
656
657 p += vn_next;
658 }
659 }
660
661 // Create a vector mapping version numbers to version strings.
662
663 template<int size, bool big_endian>
664 void
665 Sized_dynobj<size, big_endian>::make_version_map(
666 Read_symbols_data* sd,
667 Version_map* version_map) const
668 {
669 if (sd->verdef == NULL && sd->verneed == NULL)
670 return;
671
672 // A guess at the maximum version number we will see. If this is
673 // wrong we will be less efficient but still correct.
674 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
675
676 this->make_verdef_map(sd, version_map);
677 this->make_verneed_map(sd, version_map);
678 }
679
680 // Add the dynamic symbols to the symbol table.
681
682 template<int size, bool big_endian>
683 void
684 Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
685 Read_symbols_data* sd,
686 Layout*)
687 {
688 if (sd->symbols == NULL)
689 {
690 gold_assert(sd->symbol_names == NULL);
691 gold_assert(sd->versym == NULL && sd->verdef == NULL
692 && sd->verneed == NULL);
693 return;
694 }
695
696 const int sym_size = This::sym_size;
697 const size_t symcount = sd->symbols_size / sym_size;
698 gold_assert(sd->external_symbols_offset == 0);
699 if (symcount * sym_size != sd->symbols_size)
700 {
701 this->error(_("size of dynamic symbols is not multiple of symbol size"));
702 return;
703 }
704
705 Version_map version_map;
706 this->make_version_map(sd, &version_map);
707
708 // If printing symbol counts or a cross reference table, we want to
709 // track symbols.
710 if (parameters->options().user_set_print_symbol_counts()
711 || parameters->options().cref())
712 {
713 this->symbols_ = new Symbols();
714 this->symbols_->resize(symcount);
715 }
716
717 const char* sym_names =
718 reinterpret_cast<const char*>(sd->symbol_names->data());
719 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
720 sym_names, sd->symbol_names_size,
721 (sd->versym == NULL
722 ? NULL
723 : sd->versym->data()),
724 sd->versym_size,
725 &version_map,
726 this->symbols_,
727 &this->defined_count_);
728
729 delete sd->symbols;
730 sd->symbols = NULL;
731 delete sd->symbol_names;
732 sd->symbol_names = NULL;
733 if (sd->versym != NULL)
734 {
735 delete sd->versym;
736 sd->versym = NULL;
737 }
738 if (sd->verdef != NULL)
739 {
740 delete sd->verdef;
741 sd->verdef = NULL;
742 }
743 if (sd->verneed != NULL)
744 {
745 delete sd->verneed;
746 sd->verneed = NULL;
747 }
748
749 // This is normally the last time we will read any data from this
750 // file.
751 this->clear_view_cache_marks();
752 }
753
754 template<int size, bool big_endian>
755 Archive::Should_include
756 Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
757 Layout*,
758 Read_symbols_data*,
759 std::string*)
760 {
761 return Archive::SHOULD_INCLUDE_YES;
762 }
763
764 // Iterate over global symbols, calling a visitor class V for each.
765
766 template<int size, bool big_endian>
767 void
768 Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
769 Read_symbols_data* sd,
770 Library_base::Symbol_visitor_base* v)
771 {
772 const char* sym_names =
773 reinterpret_cast<const char*>(sd->symbol_names->data());
774 const unsigned char* syms =
775 sd->symbols->data() + sd->external_symbols_offset;
776 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
777 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
778 / sym_size);
779 const unsigned char* p = syms;
780
781 for (size_t i = 0; i < symcount; ++i, p += sym_size)
782 {
783 elfcpp::Sym<size, big_endian> sym(p);
784 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
785 && sym.get_st_bind() != elfcpp::STB_LOCAL)
786 v->visit(sym_names + sym.get_st_name());
787 }
788 }
789
790 // Get symbol counts.
791
792 template<int size, bool big_endian>
793 void
794 Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
795 const Symbol_table*,
796 size_t* defined,
797 size_t* used) const
798 {
799 *defined = this->defined_count_;
800 size_t count = 0;
801 for (typename Symbols::const_iterator p = this->symbols_->begin();
802 p != this->symbols_->end();
803 ++p)
804 if (*p != NULL
805 && (*p)->source() == Symbol::FROM_OBJECT
806 && (*p)->object() == this
807 && (*p)->is_defined()
808 && (*p)->dynsym_index() != -1U)
809 ++count;
810 *used = count;
811 }
812
813 // Given a vector of hash codes, compute the number of hash buckets to
814 // use.
815
816 unsigned int
817 Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
818 bool for_gnu_hash_table)
819 {
820 // FIXME: Implement optional hash table optimization.
821
822 // Array used to determine the number of hash table buckets to use
823 // based on the number of symbols there are. If there are fewer
824 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
825 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
826 // use more than 262147 buckets. This is straight from the old GNU
827 // linker.
828 static const unsigned int buckets[] =
829 {
830 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
831 16411, 32771, 65537, 131101, 262147
832 };
833 const int buckets_count = sizeof buckets / sizeof buckets[0];
834
835 unsigned int symcount = hashcodes.size();
836 unsigned int ret = 1;
837 const double full_fraction
838 = 1.0 - parameters->options().hash_bucket_empty_fraction();
839 for (int i = 0; i < buckets_count; ++i)
840 {
841 if (symcount < buckets[i] * full_fraction)
842 break;
843 ret = buckets[i];
844 }
845
846 if (for_gnu_hash_table && ret < 2)
847 ret = 2;
848
849 return ret;
850 }
851
852 // The standard ELF hash function. This hash function must not
853 // change, as the dynamic linker uses it also.
854
855 uint32_t
856 Dynobj::elf_hash(const char* name)
857 {
858 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
859 uint32_t h = 0;
860 unsigned char c;
861 while ((c = *nameu++) != '\0')
862 {
863 h = (h << 4) + c;
864 uint32_t g = h & 0xf0000000;
865 if (g != 0)
866 {
867 h ^= g >> 24;
868 // The ELF ABI says h &= ~g, but using xor is equivalent in
869 // this case (since g was set from h) and may save one
870 // instruction.
871 h ^= g;
872 }
873 }
874 return h;
875 }
876
877 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
878 // DYNSYMS is a vector with all the global dynamic symbols.
879 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
880 // symbol table.
881
882 void
883 Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
884 unsigned int local_dynsym_count,
885 unsigned char** pphash,
886 unsigned int* phashlen)
887 {
888 unsigned int dynsym_count = dynsyms.size();
889
890 // Get the hash values for all the symbols.
891 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
892 for (unsigned int i = 0; i < dynsym_count; ++i)
893 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
894
895 const unsigned int bucketcount =
896 Dynobj::compute_bucket_count(dynsym_hashvals, false);
897
898 std::vector<uint32_t> bucket(bucketcount);
899 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
900
901 for (unsigned int i = 0; i < dynsym_count; ++i)
902 {
903 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
904 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
905 chain[dynsym_index] = bucket[bucketpos];
906 bucket[bucketpos] = dynsym_index;
907 }
908
909 unsigned int hashlen = ((2
910 + bucketcount
911 + local_dynsym_count
912 + dynsym_count)
913 * 4);
914 unsigned char* phash = new unsigned char[hashlen];
915
916 if (parameters->target().is_big_endian())
917 {
918 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
919 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
920 hashlen);
921 #else
922 gold_unreachable();
923 #endif
924 }
925 else
926 {
927 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
928 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
929 hashlen);
930 #else
931 gold_unreachable();
932 #endif
933 }
934
935 *pphash = phash;
936 *phashlen = hashlen;
937 }
938
939 // Fill in an ELF hash table.
940
941 template<bool big_endian>
942 void
943 Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
944 const std::vector<uint32_t>& chain,
945 unsigned char* phash,
946 unsigned int hashlen)
947 {
948 unsigned char* p = phash;
949
950 const unsigned int bucketcount = bucket.size();
951 const unsigned int chaincount = chain.size();
952
953 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
954 p += 4;
955 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
956 p += 4;
957
958 for (unsigned int i = 0; i < bucketcount; ++i)
959 {
960 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
961 p += 4;
962 }
963
964 for (unsigned int i = 0; i < chaincount; ++i)
965 {
966 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
967 p += 4;
968 }
969
970 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
971 }
972
973 // The hash function used for the GNU hash table. This hash function
974 // must not change, as the dynamic linker uses it also.
975
976 uint32_t
977 Dynobj::gnu_hash(const char* name)
978 {
979 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
980 uint32_t h = 5381;
981 unsigned char c;
982 while ((c = *nameu++) != '\0')
983 h = (h << 5) + h + c;
984 return h;
985 }
986
987 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
988 // tables are an extension to ELF which are recognized by the GNU
989 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
990 // TARGET is the target. DYNSYMS is a vector with all the global
991 // symbols which will be going into the dynamic symbol table.
992 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
993 // symbol table.
994
995 void
996 Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
997 unsigned int local_dynsym_count,
998 unsigned char** pphash,
999 unsigned int* phashlen)
1000 {
1001 const unsigned int count = dynsyms.size();
1002
1003 // Sort the dynamic symbols into two vectors. Symbols which we do
1004 // not want to put into the hash table we store into
1005 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
1006 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
1007 // and records the hash codes.
1008
1009 std::vector<Symbol*> unhashed_dynsyms;
1010 unhashed_dynsyms.reserve(count);
1011
1012 std::vector<Symbol*> hashed_dynsyms;
1013 hashed_dynsyms.reserve(count);
1014
1015 std::vector<uint32_t> dynsym_hashvals;
1016 dynsym_hashvals.reserve(count);
1017
1018 for (unsigned int i = 0; i < count; ++i)
1019 {
1020 Symbol* sym = dynsyms[i];
1021
1022 if (!sym->needs_dynsym_value()
1023 && (sym->is_undefined()
1024 || sym->is_from_dynobj()
1025 || sym->is_forced_local()))
1026 unhashed_dynsyms.push_back(sym);
1027 else
1028 {
1029 hashed_dynsyms.push_back(sym);
1030 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1031 }
1032 }
1033
1034 // Put the unhashed symbols at the start of the global portion of
1035 // the dynamic symbol table.
1036 const unsigned int unhashed_count = unhashed_dynsyms.size();
1037 unsigned int unhashed_dynsym_index = local_dynsym_count;
1038 for (unsigned int i = 0; i < unhashed_count; ++i)
1039 {
1040 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1041 ++unhashed_dynsym_index;
1042 }
1043
1044 // For the actual data generation we call out to a templatized
1045 // function.
1046 int size = parameters->target().get_size();
1047 bool big_endian = parameters->target().is_big_endian();
1048 if (size == 32)
1049 {
1050 if (big_endian)
1051 {
1052 #ifdef HAVE_TARGET_32_BIG
1053 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1054 dynsym_hashvals,
1055 unhashed_dynsym_index,
1056 pphash,
1057 phashlen);
1058 #else
1059 gold_unreachable();
1060 #endif
1061 }
1062 else
1063 {
1064 #ifdef HAVE_TARGET_32_LITTLE
1065 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1066 dynsym_hashvals,
1067 unhashed_dynsym_index,
1068 pphash,
1069 phashlen);
1070 #else
1071 gold_unreachable();
1072 #endif
1073 }
1074 }
1075 else if (size == 64)
1076 {
1077 if (big_endian)
1078 {
1079 #ifdef HAVE_TARGET_64_BIG
1080 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1081 dynsym_hashvals,
1082 unhashed_dynsym_index,
1083 pphash,
1084 phashlen);
1085 #else
1086 gold_unreachable();
1087 #endif
1088 }
1089 else
1090 {
1091 #ifdef HAVE_TARGET_64_LITTLE
1092 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1093 dynsym_hashvals,
1094 unhashed_dynsym_index,
1095 pphash,
1096 phashlen);
1097 #else
1098 gold_unreachable();
1099 #endif
1100 }
1101 }
1102 else
1103 gold_unreachable();
1104 }
1105
1106 // Create the actual data for a GNU hash table. This is just a copy
1107 // of the code from the old GNU linker.
1108
1109 template<int size, bool big_endian>
1110 void
1111 Dynobj::sized_create_gnu_hash_table(
1112 const std::vector<Symbol*>& hashed_dynsyms,
1113 const std::vector<uint32_t>& dynsym_hashvals,
1114 unsigned int unhashed_dynsym_count,
1115 unsigned char** pphash,
1116 unsigned int* phashlen)
1117 {
1118 if (hashed_dynsyms.empty())
1119 {
1120 // Special case for the empty hash table.
1121 unsigned int hashlen = 5 * 4 + size / 8;
1122 unsigned char* phash = new unsigned char[hashlen];
1123 // One empty bucket.
1124 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1125 // Symbol index above unhashed symbols.
1126 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1127 // One word for bitmask.
1128 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1129 // Only bloom filter.
1130 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1131 // No valid hashes.
1132 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1133 // No hashes in only bucket.
1134 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1135
1136 *phashlen = hashlen;
1137 *pphash = phash;
1138
1139 return;
1140 }
1141
1142 const unsigned int bucketcount =
1143 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1144
1145 const unsigned int nsyms = hashed_dynsyms.size();
1146
1147 uint32_t maskbitslog2 = 1;
1148 uint32_t x = nsyms >> 1;
1149 while (x != 0)
1150 {
1151 ++maskbitslog2;
1152 x >>= 1;
1153 }
1154 if (maskbitslog2 < 3)
1155 maskbitslog2 = 5;
1156 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1157 maskbitslog2 += 3;
1158 else
1159 maskbitslog2 += 2;
1160
1161 uint32_t shift1;
1162 if (size == 32)
1163 shift1 = 5;
1164 else
1165 {
1166 if (maskbitslog2 == 5)
1167 maskbitslog2 = 6;
1168 shift1 = 6;
1169 }
1170 uint32_t mask = (1U << shift1) - 1U;
1171 uint32_t shift2 = maskbitslog2;
1172 uint32_t maskbits = 1U << maskbitslog2;
1173 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1174
1175 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1176 std::vector<Word> bitmask(maskwords);
1177 std::vector<uint32_t> counts(bucketcount);
1178 std::vector<uint32_t> indx(bucketcount);
1179 uint32_t symindx = unhashed_dynsym_count;
1180
1181 // Count the number of times each hash bucket is used.
1182 for (unsigned int i = 0; i < nsyms; ++i)
1183 ++counts[dynsym_hashvals[i] % bucketcount];
1184
1185 unsigned int cnt = symindx;
1186 for (unsigned int i = 0; i < bucketcount; ++i)
1187 {
1188 indx[i] = cnt;
1189 cnt += counts[i];
1190 }
1191
1192 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1193 hashlen += maskbits / 8;
1194 unsigned char* phash = new unsigned char[hashlen];
1195
1196 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1197 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1198 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1199 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1200
1201 unsigned char* p = phash + 16 + maskbits / 8;
1202 for (unsigned int i = 0; i < bucketcount; ++i)
1203 {
1204 if (counts[i] == 0)
1205 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1206 else
1207 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1208 p += 4;
1209 }
1210
1211 for (unsigned int i = 0; i < nsyms; ++i)
1212 {
1213 Symbol* sym = hashed_dynsyms[i];
1214 uint32_t hashval = dynsym_hashvals[i];
1215
1216 unsigned int bucket = hashval % bucketcount;
1217 unsigned int val = ((hashval >> shift1)
1218 & ((maskbits >> shift1) - 1));
1219 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1220 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1221 val = hashval & ~ 1U;
1222 if (counts[bucket] == 1)
1223 {
1224 // Last element terminates the chain.
1225 val |= 1;
1226 }
1227 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1228 val);
1229 --counts[bucket];
1230
1231 sym->set_dynsym_index(indx[bucket]);
1232 ++indx[bucket];
1233 }
1234
1235 p = phash + 16;
1236 for (unsigned int i = 0; i < maskwords; ++i)
1237 {
1238 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1239 p += size / 8;
1240 }
1241
1242 *phashlen = hashlen;
1243 *pphash = phash;
1244 }
1245
1246 // Verdef methods.
1247
1248 // Write this definition to a buffer for the output section.
1249
1250 template<int size, bool big_endian>
1251 unsigned char*
1252 Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1253 {
1254 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1255 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1256
1257 elfcpp::Verdef_write<size, big_endian> vd(pb);
1258 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1259 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1260 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1261 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
1262 vd.set_vd_ndx(this->index());
1263 vd.set_vd_cnt(1 + this->deps_.size());
1264 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1265 vd.set_vd_aux(verdef_size);
1266 vd.set_vd_next(is_last
1267 ? 0
1268 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1269 pb += verdef_size;
1270
1271 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1272 vda.set_vda_name(dynpool->get_offset(this->name()));
1273 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1274 pb += verdaux_size;
1275
1276 Deps::const_iterator p;
1277 unsigned int i;
1278 for (p = this->deps_.begin(), i = 0;
1279 p != this->deps_.end();
1280 ++p, ++i)
1281 {
1282 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1283 vda.set_vda_name(dynpool->get_offset(*p));
1284 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1285 pb += verdaux_size;
1286 }
1287
1288 return pb;
1289 }
1290
1291 // Verneed methods.
1292
1293 Verneed::~Verneed()
1294 {
1295 for (Need_versions::iterator p = this->need_versions_.begin();
1296 p != this->need_versions_.end();
1297 ++p)
1298 delete *p;
1299 }
1300
1301 // Add a new version to this file reference.
1302
1303 Verneed_version*
1304 Verneed::add_name(const char* name)
1305 {
1306 Verneed_version* vv = new Verneed_version(name);
1307 this->need_versions_.push_back(vv);
1308 return vv;
1309 }
1310
1311 // Set the version indexes starting at INDEX.
1312
1313 unsigned int
1314 Verneed::finalize(unsigned int index)
1315 {
1316 for (Need_versions::iterator p = this->need_versions_.begin();
1317 p != this->need_versions_.end();
1318 ++p)
1319 {
1320 (*p)->set_index(index);
1321 ++index;
1322 }
1323 return index;
1324 }
1325
1326 // Write this list of referenced versions to a buffer for the output
1327 // section.
1328
1329 template<int size, bool big_endian>
1330 unsigned char*
1331 Verneed::write(const Stringpool* dynpool, bool is_last,
1332 unsigned char* pb) const
1333 {
1334 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1335 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1336
1337 elfcpp::Verneed_write<size, big_endian> vn(pb);
1338 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1339 vn.set_vn_cnt(this->need_versions_.size());
1340 vn.set_vn_file(dynpool->get_offset(this->filename()));
1341 vn.set_vn_aux(verneed_size);
1342 vn.set_vn_next(is_last
1343 ? 0
1344 : verneed_size + this->need_versions_.size() * vernaux_size);
1345 pb += verneed_size;
1346
1347 Need_versions::const_iterator p;
1348 unsigned int i;
1349 for (p = this->need_versions_.begin(), i = 0;
1350 p != this->need_versions_.end();
1351 ++p, ++i)
1352 {
1353 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1354 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1355 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1356 vna.set_vna_flags(0);
1357 vna.set_vna_other((*p)->index());
1358 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1359 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1360 ? 0
1361 : vernaux_size);
1362 pb += vernaux_size;
1363 }
1364
1365 return pb;
1366 }
1367
1368 // Versions methods.
1369
1370 Versions::Versions(const Version_script_info& version_script,
1371 Stringpool* dynpool)
1372 : defs_(), needs_(), version_table_(),
1373 is_finalized_(false), version_script_(version_script),
1374 needs_base_version_(parameters->options().shared())
1375 {
1376 if (!this->version_script_.empty())
1377 {
1378 // Parse the version script, and insert each declared version into
1379 // defs_ and version_table_.
1380 std::vector<std::string> versions = this->version_script_.get_versions();
1381
1382 if (this->needs_base_version_ && !versions.empty())
1383 this->define_base_version(dynpool);
1384
1385 for (size_t k = 0; k < versions.size(); ++k)
1386 {
1387 Stringpool::Key version_key;
1388 const char* version = dynpool->add(versions[k].c_str(),
1389 true, &version_key);
1390 Verdef* const vd = new Verdef(
1391 version,
1392 this->version_script_.get_dependencies(version),
1393 false, false, false, false);
1394 this->defs_.push_back(vd);
1395 Key key(version_key, 0);
1396 this->version_table_.insert(std::make_pair(key, vd));
1397 }
1398 }
1399 }
1400
1401 Versions::~Versions()
1402 {
1403 for (Defs::iterator p = this->defs_.begin();
1404 p != this->defs_.end();
1405 ++p)
1406 delete *p;
1407
1408 for (Needs::iterator p = this->needs_.begin();
1409 p != this->needs_.end();
1410 ++p)
1411 delete *p;
1412 }
1413
1414 // Define the base version of a shared library. The base version definition
1415 // must be the first entry in defs_. We insert it lazily so that defs_ is
1416 // empty if no symbol versioning is used. Then layout can just drop the
1417 // version sections.
1418
1419 void
1420 Versions::define_base_version(Stringpool* dynpool)
1421 {
1422 // If we do any versioning at all, we always need a base version, so
1423 // define that first. Nothing explicitly declares itself as part of base,
1424 // so it doesn't need to be in version_table_.
1425 gold_assert(this->defs_.empty());
1426 const char* name = parameters->options().soname();
1427 if (name == NULL)
1428 name = parameters->options().output_file_name();
1429 name = dynpool->add(name, false, NULL);
1430 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1431 true, false, false, true);
1432 this->defs_.push_back(vdbase);
1433 this->needs_base_version_ = false;
1434 }
1435
1436 // Return the dynamic object which a symbol refers to.
1437
1438 Dynobj*
1439 Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1440 const Symbol* sym) const
1441 {
1442 if (sym->is_copied_from_dynobj())
1443 return symtab->get_copy_source(sym);
1444 else
1445 {
1446 Object* object = sym->object();
1447 gold_assert(object->is_dynamic());
1448 return static_cast<Dynobj*>(object);
1449 }
1450 }
1451
1452 // Record version information for a symbol going into the dynamic
1453 // symbol table.
1454
1455 void
1456 Versions::record_version(const Symbol_table* symtab,
1457 Stringpool* dynpool, const Symbol* sym)
1458 {
1459 gold_assert(!this->is_finalized_);
1460 gold_assert(sym->version() != NULL);
1461
1462 Stringpool::Key version_key;
1463 const char* version = dynpool->add(sym->version(), false, &version_key);
1464
1465 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1466 {
1467 if (parameters->options().shared())
1468 this->add_def(sym, version, version_key);
1469 }
1470 else
1471 {
1472 // This is a version reference.
1473 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1474 this->add_need(dynpool, dynobj->soname(), version, version_key);
1475 }
1476 }
1477
1478 // We've found a symbol SYM defined in version VERSION.
1479
1480 void
1481 Versions::add_def(const Symbol* sym, const char* version,
1482 Stringpool::Key version_key)
1483 {
1484 Key k(version_key, 0);
1485 Version_base* const vbnull = NULL;
1486 std::pair<Version_table::iterator, bool> ins =
1487 this->version_table_.insert(std::make_pair(k, vbnull));
1488
1489 if (!ins.second)
1490 {
1491 // We already have an entry for this version.
1492 Version_base* vb = ins.first->second;
1493
1494 // We have now seen a symbol in this version, so it is not
1495 // weak.
1496 gold_assert(vb != NULL);
1497 vb->clear_weak();
1498 }
1499 else
1500 {
1501 // If we are creating a shared object, it is an error to
1502 // find a definition of a symbol with a version which is not
1503 // in the version script.
1504 if (parameters->options().shared())
1505 gold_error(_("symbol %s has undefined version %s"),
1506 sym->demangled_name().c_str(), version);
1507 else
1508 // We only insert a base version for shared library.
1509 gold_assert(!this->needs_base_version_);
1510
1511 // When creating a regular executable, automatically define
1512 // a new version.
1513 Verdef* vd = new Verdef(version, std::vector<std::string>(),
1514 false, false, false, false);
1515 this->defs_.push_back(vd);
1516 ins.first->second = vd;
1517 }
1518 }
1519
1520 // Add a reference to version NAME in file FILENAME.
1521
1522 void
1523 Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1524 Stringpool::Key name_key)
1525 {
1526 Stringpool::Key filename_key;
1527 filename = dynpool->add(filename, true, &filename_key);
1528
1529 Key k(name_key, filename_key);
1530 Version_base* const vbnull = NULL;
1531 std::pair<Version_table::iterator, bool> ins =
1532 this->version_table_.insert(std::make_pair(k, vbnull));
1533
1534 if (!ins.second)
1535 {
1536 // We already have an entry for this filename/version.
1537 return;
1538 }
1539
1540 // See whether we already have this filename. We don't expect many
1541 // version references, so we just do a linear search. This could be
1542 // replaced by a hash table.
1543 Verneed* vn = NULL;
1544 for (Needs::iterator p = this->needs_.begin();
1545 p != this->needs_.end();
1546 ++p)
1547 {
1548 if ((*p)->filename() == filename)
1549 {
1550 vn = *p;
1551 break;
1552 }
1553 }
1554
1555 if (vn == NULL)
1556 {
1557 // Create base version definition lazily for shared library.
1558 if (this->needs_base_version_)
1559 this->define_base_version(dynpool);
1560
1561 // We have a new filename.
1562 vn = new Verneed(filename);
1563 this->needs_.push_back(vn);
1564 }
1565
1566 ins.first->second = vn->add_name(name);
1567 }
1568
1569 // Set the version indexes. Create a new dynamic version symbol for
1570 // each new version definition.
1571
1572 unsigned int
1573 Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1574 std::vector<Symbol*>* syms)
1575 {
1576 gold_assert(!this->is_finalized_);
1577
1578 unsigned int vi = 1;
1579
1580 for (Defs::iterator p = this->defs_.begin();
1581 p != this->defs_.end();
1582 ++p)
1583 {
1584 (*p)->set_index(vi);
1585 ++vi;
1586
1587 // Create a version symbol if necessary.
1588 if (!(*p)->is_symbol_created())
1589 {
1590 Symbol* vsym = symtab->define_as_constant((*p)->name(),
1591 (*p)->name(),
1592 Symbol_table::PREDEFINED,
1593 0, 0,
1594 elfcpp::STT_OBJECT,
1595 elfcpp::STB_GLOBAL,
1596 elfcpp::STV_DEFAULT, 0,
1597 false, false);
1598 vsym->set_needs_dynsym_entry();
1599 vsym->set_dynsym_index(dynsym_index);
1600 vsym->set_is_default();
1601 ++dynsym_index;
1602 syms->push_back(vsym);
1603 // The name is already in the dynamic pool.
1604 }
1605 }
1606
1607 // Index 1 is used for global symbols.
1608 if (vi == 1)
1609 {
1610 gold_assert(this->defs_.empty());
1611 vi = 2;
1612 }
1613
1614 for (Needs::iterator p = this->needs_.begin();
1615 p != this->needs_.end();
1616 ++p)
1617 vi = (*p)->finalize(vi);
1618
1619 this->is_finalized_ = true;
1620
1621 return dynsym_index;
1622 }
1623
1624 // Return the version index to use for a symbol. This does two hash
1625 // table lookups: one in DYNPOOL and one in this->version_table_.
1626 // Another approach alternative would be store a pointer in SYM, which
1627 // would increase the size of the symbol table. Or perhaps we could
1628 // use a hash table from dynamic symbol pointer values to Version_base
1629 // pointers.
1630
1631 unsigned int
1632 Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1633 const Symbol* sym) const
1634 {
1635 Stringpool::Key version_key;
1636 const char* version = dynpool->find(sym->version(), &version_key);
1637 gold_assert(version != NULL);
1638
1639 Key k;
1640 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1641 {
1642 if (!parameters->options().shared())
1643 return elfcpp::VER_NDX_GLOBAL;
1644 k = Key(version_key, 0);
1645 }
1646 else
1647 {
1648 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1649
1650 Stringpool::Key filename_key;
1651 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1652 gold_assert(filename != NULL);
1653
1654 k = Key(version_key, filename_key);
1655 }
1656
1657 Version_table::const_iterator p = this->version_table_.find(k);
1658 gold_assert(p != this->version_table_.end());
1659
1660 return p->second->index();
1661 }
1662
1663 // Return an allocated buffer holding the contents of the symbol
1664 // version section.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Versions::symbol_section_contents(const Symbol_table* symtab,
1669 const Stringpool* dynpool,
1670 unsigned int local_symcount,
1671 const std::vector<Symbol*>& syms,
1672 unsigned char** pp,
1673 unsigned int* psize) const
1674 {
1675 gold_assert(this->is_finalized_);
1676
1677 unsigned int sz = (local_symcount + syms.size()) * 2;
1678 unsigned char* pbuf = new unsigned char[sz];
1679
1680 for (unsigned int i = 0; i < local_symcount; ++i)
1681 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1682 elfcpp::VER_NDX_LOCAL);
1683
1684 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1685 p != syms.end();
1686 ++p)
1687 {
1688 unsigned int version_index;
1689 const char* version = (*p)->version();
1690 if (version != NULL)
1691 version_index = this->version_index(symtab, dynpool, *p);
1692 else
1693 {
1694 if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1695 version_index = elfcpp::VER_NDX_GLOBAL;
1696 else
1697 version_index = elfcpp::VER_NDX_LOCAL;
1698 }
1699 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1700 // the hidden bit.
1701 if ((*p)->version() != NULL && !(*p)->is_default())
1702 version_index |= elfcpp::VERSYM_HIDDEN;
1703 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1704 version_index);
1705 }
1706
1707 *pp = pbuf;
1708 *psize = sz;
1709 }
1710
1711 // Return an allocated buffer holding the contents of the version
1712 // definition section.
1713
1714 template<int size, bool big_endian>
1715 void
1716 Versions::def_section_contents(const Stringpool* dynpool,
1717 unsigned char** pp, unsigned int* psize,
1718 unsigned int* pentries) const
1719 {
1720 gold_assert(this->is_finalized_);
1721 gold_assert(!this->defs_.empty());
1722
1723 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1724 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1725
1726 unsigned int sz = 0;
1727 for (Defs::const_iterator p = this->defs_.begin();
1728 p != this->defs_.end();
1729 ++p)
1730 {
1731 sz += verdef_size + verdaux_size;
1732 sz += (*p)->count_dependencies() * verdaux_size;
1733 }
1734
1735 unsigned char* pbuf = new unsigned char[sz];
1736
1737 unsigned char* pb = pbuf;
1738 Defs::const_iterator p;
1739 unsigned int i;
1740 for (p = this->defs_.begin(), i = 0;
1741 p != this->defs_.end();
1742 ++p, ++i)
1743 pb = (*p)->write<size, big_endian>(dynpool,
1744 i + 1 >= this->defs_.size(),
1745 pb);
1746
1747 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1748
1749 *pp = pbuf;
1750 *psize = sz;
1751 *pentries = this->defs_.size();
1752 }
1753
1754 // Return an allocated buffer holding the contents of the version
1755 // reference section.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Versions::need_section_contents(const Stringpool* dynpool,
1760 unsigned char** pp, unsigned int* psize,
1761 unsigned int* pentries) const
1762 {
1763 gold_assert(this->is_finalized_);
1764 gold_assert(!this->needs_.empty());
1765
1766 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1767 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1768
1769 unsigned int sz = 0;
1770 for (Needs::const_iterator p = this->needs_.begin();
1771 p != this->needs_.end();
1772 ++p)
1773 {
1774 sz += verneed_size;
1775 sz += (*p)->count_versions() * vernaux_size;
1776 }
1777
1778 unsigned char* pbuf = new unsigned char[sz];
1779
1780 unsigned char* pb = pbuf;
1781 Needs::const_iterator p;
1782 unsigned int i;
1783 for (p = this->needs_.begin(), i = 0;
1784 p != this->needs_.end();
1785 ++p, ++i)
1786 pb = (*p)->write<size, big_endian>(dynpool,
1787 i + 1 >= this->needs_.size(),
1788 pb);
1789
1790 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1791
1792 *pp = pbuf;
1793 *psize = sz;
1794 *pentries = this->needs_.size();
1795 }
1796
1797 // Instantiate the templates we need. We could use the configure
1798 // script to restrict this to only the ones for implemented targets.
1799
1800 #ifdef HAVE_TARGET_32_LITTLE
1801 template
1802 class Sized_dynobj<32, false>;
1803 #endif
1804
1805 #ifdef HAVE_TARGET_32_BIG
1806 template
1807 class Sized_dynobj<32, true>;
1808 #endif
1809
1810 #ifdef HAVE_TARGET_64_LITTLE
1811 template
1812 class Sized_dynobj<64, false>;
1813 #endif
1814
1815 #ifdef HAVE_TARGET_64_BIG
1816 template
1817 class Sized_dynobj<64, true>;
1818 #endif
1819
1820 #ifdef HAVE_TARGET_32_LITTLE
1821 template
1822 void
1823 Versions::symbol_section_contents<32, false>(
1824 const Symbol_table*,
1825 const Stringpool*,
1826 unsigned int,
1827 const std::vector<Symbol*>&,
1828 unsigned char**,
1829 unsigned int*) const;
1830 #endif
1831
1832 #ifdef HAVE_TARGET_32_BIG
1833 template
1834 void
1835 Versions::symbol_section_contents<32, true>(
1836 const Symbol_table*,
1837 const Stringpool*,
1838 unsigned int,
1839 const std::vector<Symbol*>&,
1840 unsigned char**,
1841 unsigned int*) const;
1842 #endif
1843
1844 #ifdef HAVE_TARGET_64_LITTLE
1845 template
1846 void
1847 Versions::symbol_section_contents<64, false>(
1848 const Symbol_table*,
1849 const Stringpool*,
1850 unsigned int,
1851 const std::vector<Symbol*>&,
1852 unsigned char**,
1853 unsigned int*) const;
1854 #endif
1855
1856 #ifdef HAVE_TARGET_64_BIG
1857 template
1858 void
1859 Versions::symbol_section_contents<64, true>(
1860 const Symbol_table*,
1861 const Stringpool*,
1862 unsigned int,
1863 const std::vector<Symbol*>&,
1864 unsigned char**,
1865 unsigned int*) const;
1866 #endif
1867
1868 #ifdef HAVE_TARGET_32_LITTLE
1869 template
1870 void
1871 Versions::def_section_contents<32, false>(
1872 const Stringpool*,
1873 unsigned char**,
1874 unsigned int*,
1875 unsigned int*) const;
1876 #endif
1877
1878 #ifdef HAVE_TARGET_32_BIG
1879 template
1880 void
1881 Versions::def_section_contents<32, true>(
1882 const Stringpool*,
1883 unsigned char**,
1884 unsigned int*,
1885 unsigned int*) const;
1886 #endif
1887
1888 #ifdef HAVE_TARGET_64_LITTLE
1889 template
1890 void
1891 Versions::def_section_contents<64, false>(
1892 const Stringpool*,
1893 unsigned char**,
1894 unsigned int*,
1895 unsigned int*) const;
1896 #endif
1897
1898 #ifdef HAVE_TARGET_64_BIG
1899 template
1900 void
1901 Versions::def_section_contents<64, true>(
1902 const Stringpool*,
1903 unsigned char**,
1904 unsigned int*,
1905 unsigned int*) const;
1906 #endif
1907
1908 #ifdef HAVE_TARGET_32_LITTLE
1909 template
1910 void
1911 Versions::need_section_contents<32, false>(
1912 const Stringpool*,
1913 unsigned char**,
1914 unsigned int*,
1915 unsigned int*) const;
1916 #endif
1917
1918 #ifdef HAVE_TARGET_32_BIG
1919 template
1920 void
1921 Versions::need_section_contents<32, true>(
1922 const Stringpool*,
1923 unsigned char**,
1924 unsigned int*,
1925 unsigned int*) const;
1926 #endif
1927
1928 #ifdef HAVE_TARGET_64_LITTLE
1929 template
1930 void
1931 Versions::need_section_contents<64, false>(
1932 const Stringpool*,
1933 unsigned char**,
1934 unsigned int*,
1935 unsigned int*) const;
1936 #endif
1937
1938 #ifdef HAVE_TARGET_64_BIG
1939 template
1940 void
1941 Versions::need_section_contents<64, true>(
1942 const Stringpool*,
1943 unsigned char**,
1944 unsigned int*,
1945 unsigned int*) const;
1946 #endif
1947
1948 } // End namespace gold.
This page took 0.06841 seconds and 5 git commands to generate.