Don't record file offset for CIEs.
[deliverable/binutils-gdb.git] / gold / ehframe.cc
1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
58 // the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
86 fde_offsets_(),
87 any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
94 Eh_frame_hdr::set_final_data_size()
95 {
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
98 {
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
100 if (fde_count != 0)
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
103 }
104 this->set_data_size(data_size);
105 }
106
107 // Write the data to the flie.
108
109 void
110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112 if (parameters->get_size() == 32)
113 {
114 if (!parameters->is_big_endian())
115 {
116 #ifdef HAVE_TARGET_32_LITTLE
117 this->do_sized_write<32, false>(of);
118 #else
119 gold_unreachable();
120 #endif
121 }
122 else
123 {
124 #ifdef HAVE_TARGET_32_BIG
125 this->do_sized_write<32, true>(of);
126 #else
127 gold_unreachable();
128 #endif
129 }
130 }
131 else if (parameters->get_size() == 64)
132 {
133 if (!parameters->is_big_endian())
134 {
135 #ifdef HAVE_TARGET_64_LITTLE
136 this->do_sized_write<64, false>(of);
137 #else
138 gold_unreachable();
139 #endif
140 }
141 else
142 {
143 #ifdef HAVE_TARGET_64_BIG
144 this->do_sized_write<64, true>(of);
145 #else
146 gold_unreachable();
147 #endif
148 }
149 }
150 else
151 gold_unreachable();
152 }
153
154 // Write the data to the file with the right endianness.
155
156 template<int size, bool big_endian>
157 void
158 Eh_frame_hdr::do_sized_write(Output_file* of)
159 {
160 const off_t off = this->offset();
161 const off_t oview_size = this->data_size();
162 unsigned char* const oview = of->get_output_view(off, oview_size);
163
164 // Version number.
165 oview[0] = 1;
166
167 // Write out a 4 byte PC relative offset to the address of the
168 // .eh_frame section.
169 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
170 uint64_t eh_frame_address = this->eh_frame_section_->address();
171 uint64_t eh_frame_hdr_address = this->address();
172 uint64_t eh_frame_offset = (eh_frame_address -
173 (eh_frame_hdr_address + 4));
174 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
175
176 if (this->any_unrecognized_eh_frame_sections_
177 || this->fde_offsets_.empty())
178 {
179 // There are no FDEs, or we didn't recognize the format of the
180 // some of the .eh_frame sections, so we can't write out the
181 // sorted table.
182 oview[2] = elfcpp::DW_EH_PE_omit;
183 oview[3] = elfcpp::DW_EH_PE_omit;
184
185 gold_assert(oview_size == 8);
186 }
187 else
188 {
189 oview[2] = elfcpp::DW_EH_PE_udata4;
190 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
191
192 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
193 this->fde_offsets_.size());
194
195 // We have the offsets of the FDEs in the .eh_frame section. We
196 // couldn't easily get the PC values before, as they depend on
197 // relocations which are, of course, target specific. This code
198 // is run after all those relocations have been applied to the
199 // output file. Here we read the output file again to find the
200 // PC values. Then we sort the list and write it out.
201
202 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
203 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
204 &fde_addresses);
205
206 std::sort(fde_addresses.begin(), fde_addresses.end(),
207 Fde_address_compare<size>());
208
209 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
210 output_address = this->address();
211
212 unsigned char* pfde = oview + 12;
213 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
214 p != fde_addresses.end();
215 ++p)
216 {
217 elfcpp::Swap<32, big_endian>::writeval(pfde,
218 p->first - output_address);
219 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
220 p->second - output_address);
221 pfde += 8;
222 }
223
224 gold_assert(pfde - oview == oview_size);
225 }
226
227 of->write_output_view(off, oview_size, oview);
228 }
229
230 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
231 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
232 // FDE's encoding is FDE_ENCODING, return the output address of the
233 // FDE's PC.
234
235 template<int size, bool big_endian>
236 typename elfcpp::Elf_types<size>::Elf_Addr
237 Eh_frame_hdr::get_fde_pc(
238 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
239 const unsigned char* eh_frame_contents,
240 section_offset_type fde_offset,
241 unsigned char fde_encoding)
242 {
243 // The FDE starts with a 4 byte length and a 4 byte offset to the
244 // CIE. The PC follows.
245 const unsigned char* p = eh_frame_contents + fde_offset + 8;
246
247 typename elfcpp::Elf_types<size>::Elf_Addr pc;
248 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
249 int pc_size = fde_encoding & 7;
250 if (pc_size == elfcpp::DW_EH_PE_absptr)
251 {
252 if (size == 32)
253 pc_size = elfcpp::DW_EH_PE_udata4;
254 else if (size == 64)
255 pc_size = elfcpp::DW_EH_PE_udata8;
256 else
257 gold_unreachable();
258 }
259
260 switch (pc_size)
261 {
262 case elfcpp::DW_EH_PE_udata2:
263 pc = elfcpp::Swap<16, big_endian>::readval(p);
264 if (is_signed)
265 pc = (pc ^ 0x8000) - 0x8000;
266 break;
267
268 case elfcpp::DW_EH_PE_udata4:
269 pc = elfcpp::Swap<32, big_endian>::readval(p);
270 if (size > 32 && is_signed)
271 pc = (pc ^ 0x80000000) - 0x80000000;
272 break;
273
274 case elfcpp::DW_EH_PE_udata8:
275 gold_assert(size == 64);
276 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
277 break;
278
279 default:
280 // All other cases were rejected in Eh_frame::read_cie.
281 gold_unreachable();
282 }
283
284 switch (fde_encoding & 0xf0)
285 {
286 case 0:
287 break;
288
289 case elfcpp::DW_EH_PE_pcrel:
290 pc += eh_frame_address + fde_offset + 8;
291 break;
292
293 default:
294 // If other cases arise, then we have to handle them, or we have
295 // to reject them by returning false in Eh_frame::read_cie.
296 gold_unreachable();
297 }
298
299 return pc;
300 }
301
302 // Given an array of FDE offsets in the .eh_frame section, return an
303 // array of offsets from the exception frame header to the FDE's
304 // output PC and to the output address of the FDE itself. We get the
305 // FDE's PC by actually looking in the .eh_frame section we just wrote
306 // to the output file.
307
308 template<int size, bool big_endian>
309 void
310 Eh_frame_hdr::get_fde_addresses(Output_file* of,
311 const Fde_offsets* fde_offsets,
312 Fde_addresses<size>* fde_addresses)
313 {
314 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
315 eh_frame_address = this->eh_frame_section_->address();
316 off_t eh_frame_offset = this->eh_frame_section_->offset();
317 off_t eh_frame_size = this->eh_frame_section_->data_size();
318 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
319 eh_frame_size);
320
321 for (Fde_offsets::const_iterator p = fde_offsets->begin();
322 p != fde_offsets->end();
323 ++p)
324 {
325 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
326 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
327 eh_frame_contents,
328 p->first, p->second);
329 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
330 }
331
332 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
333 }
334
335 // Class Fde.
336
337 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
338 // offset of the CIE in OVIEW. FDE_ENCODING is the encoding, from the
339 // CIE. Record the FDE pc for EH_FRAME_HDR. Return the new offset.
340
341 template<int size, bool big_endian>
342 section_offset_type
343 Fde::write(unsigned char* oview, section_offset_type offset,
344 section_offset_type cie_offset, unsigned char fde_encoding,
345 Eh_frame_hdr* eh_frame_hdr)
346 {
347 size_t length = this->contents_.length();
348
349 // Write the length of the FDE as a 32-bit word. The length word
350 // does not include the four bytes of the length word itself, but it
351 // does include the offset to the CIE.
352 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
353 length + 4);
354
355 // Write the offset to the CIE as a 32-bit word. This is the
356 // difference between the address of the offset word itself and the
357 // CIE address.
358 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
359 offset + 4 - cie_offset);
360
361 // Copy the rest of the FDE. Note that this is run before
362 // relocation processing is done on this section, so the relocations
363 // will later be applied to the FDE data.
364 memcpy(oview + offset + 8, this->contents_.data(), length);
365
366 // Tell the exception frame header about this FDE.
367 if (eh_frame_hdr != NULL)
368 eh_frame_hdr->record_fde(offset, fde_encoding);
369
370 return offset + length + 8;
371 }
372
373 // Class Cie.
374
375 // Destructor.
376
377 Cie::~Cie()
378 {
379 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
380 p != this->fdes_.end();
381 ++p)
382 delete *p;
383 }
384
385 // Set the output offset of a CIE. Return the new output offset.
386
387 section_offset_type
388 Cie::set_output_offset(section_offset_type output_offset,
389 unsigned int addralign,
390 Merge_map* merge_map)
391 {
392 size_t length = this->contents_.length();
393 gold_assert((length & (addralign - 1)) == 0);
394 // Add 4 for length and 4 for zero CIE identifier tag.
395 length += 8;
396
397 merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
398 length, output_offset);
399
400 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
401 p != this->fdes_.end();
402 ++p)
403 {
404 (*p)->add_mapping(output_offset + length, merge_map);
405
406 size_t fde_length = (*p)->length();
407 gold_assert((fde_length & (addralign - 1)) == 0);
408 length += fde_length;
409 }
410
411 return output_offset + length;
412 }
413
414 // Write the CIE to OVIEW starting at OFFSET. EH_FRAME_HDR is for FDE
415 // recording. Return the new offset.
416
417 template<int size, bool big_endian>
418 section_offset_type
419 Cie::write(unsigned char* oview, section_offset_type offset,
420 Eh_frame_hdr* eh_frame_hdr)
421 {
422 section_offset_type cie_offset = offset;
423
424 size_t length = this->contents_.length();
425
426 // Write the length of the CIE as a 32-bit word. The length word
427 // does not include the four bytes of the length word itself.
428 elfcpp::Swap<32, big_endian>::writeval(oview + offset, length + 4);
429
430 // Write the tag which marks this as a CIE: a 32-bit zero.
431 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
432
433 // Write out the CIE data.
434 memcpy(oview + offset + 8, this->contents_.data(), length);
435 offset += length + 8;
436
437 // Write out the associated FDEs.
438 unsigned char fde_encoding = this->fde_encoding_;
439 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
440 p != this->fdes_.end();
441 ++p)
442 offset = (*p)->write<size, big_endian>(oview, offset, cie_offset,
443 fde_encoding, eh_frame_hdr);
444
445 return offset;
446 }
447
448 // We track all the CIEs we see, and merge them when possible. This
449 // works because each FDE holds an offset to the relevant CIE: we
450 // rewrite the FDEs to point to the merged CIE. This is worthwhile
451 // because in a typical C++ program many FDEs in many different object
452 // files will use the same CIE.
453
454 // An equality operator for Cie.
455
456 bool
457 operator==(const Cie& cie1, const Cie& cie2)
458 {
459 return (cie1.personality_name_ == cie2.personality_name_
460 && cie1.contents_ == cie2.contents_);
461 }
462
463 // A less-than operator for Cie.
464
465 bool
466 operator<(const Cie& cie1, const Cie& cie2)
467 {
468 if (cie1.personality_name_ != cie2.personality_name_)
469 return cie1.personality_name_ < cie2.personality_name_;
470 return cie1.contents_ < cie2.contents_;
471 }
472
473 // Class Eh_frame.
474
475 Eh_frame::Eh_frame()
476 : Output_section_data(Output_data::default_alignment()),
477 eh_frame_hdr_(NULL),
478 cie_offsets_(),
479 unmergeable_cie_offsets_(),
480 merge_map_()
481 {
482 }
483
484 // Skip an LEB128, updating *PP to point to the next character.
485 // Return false if we ran off the end of the string.
486
487 bool
488 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
489 {
490 const unsigned char* p;
491 for (p = *pp; p < pend; ++p)
492 {
493 if ((*p & 0x80) == 0)
494 {
495 *pp = p + 1;
496 return true;
497 }
498 }
499 return false;
500 }
501
502 // Add input section SHNDX in OBJECT to an exception frame section.
503 // SYMBOLS is the contents of the symbol table section (size
504 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
505 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
506 // section applying to SHNDX, or 0 if none, or -1U if more than one.
507 // RELOC_TYPE is the type of the reloc section if there is one, either
508 // SHT_REL or SHT_RELA. We try to parse the input exception frame
509 // data into our data structures. If we can't do it, we return false
510 // to mean that the section should be handled as a normal input
511 // section.
512
513 template<int size, bool big_endian>
514 bool
515 Eh_frame::add_ehframe_input_section(
516 Sized_relobj<size, big_endian>* object,
517 const unsigned char* symbols,
518 section_size_type symbols_size,
519 const unsigned char* symbol_names,
520 section_size_type symbol_names_size,
521 unsigned int shndx,
522 unsigned int reloc_shndx,
523 unsigned int reloc_type)
524 {
525 // Get the section contents.
526 section_size_type contents_len;
527 const unsigned char* pcontents = object->section_contents(shndx,
528 &contents_len,
529 false);
530 if (contents_len == 0)
531 return false;
532
533 // If this is the marker section for the end of the data, then
534 // return false to force it to be handled as an ordinary input
535 // section. If we don't do this, we won't correctly handle the case
536 // of unrecognized .eh_frame sections.
537 if (contents_len == 4
538 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
539 return false;
540
541 New_cies new_cies;
542 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
543 symbol_names, symbol_names_size,
544 shndx, reloc_shndx,
545 reloc_type, pcontents,
546 contents_len, &new_cies))
547 {
548 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
549
550 for (New_cies::iterator p = new_cies.begin();
551 p != new_cies.end();
552 ++p)
553 delete p->first;
554
555 return false;
556 }
557
558 // Now that we know we are using this section, record any new CIEs
559 // that we found.
560 for (New_cies::const_iterator p = new_cies.begin();
561 p != new_cies.end();
562 ++p)
563 {
564 if (p->second)
565 this->cie_offsets_.insert(p->first);
566 else
567 this->unmergeable_cie_offsets_.push_back(p->first);
568 }
569
570 return true;
571 }
572
573 // The bulk of the implementation of add_ehframe_input_section.
574
575 template<int size, bool big_endian>
576 bool
577 Eh_frame::do_add_ehframe_input_section(
578 Sized_relobj<size, big_endian>* object,
579 const unsigned char* symbols,
580 section_size_type symbols_size,
581 const unsigned char* symbol_names,
582 section_size_type symbol_names_size,
583 unsigned int shndx,
584 unsigned int reloc_shndx,
585 unsigned int reloc_type,
586 const unsigned char* pcontents,
587 section_size_type contents_len,
588 New_cies* new_cies)
589 {
590 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
591 Track_relocs<size, big_endian> relocs;
592
593 const unsigned char* p = pcontents;
594 const unsigned char* pend = p + contents_len;
595
596 // Get the contents of the reloc section if any.
597 if (!relocs.initialize(object, reloc_shndx, reloc_type))
598 return false;
599
600 // Keep track of which CIEs are at which offsets.
601 Offsets_to_cie cies;
602
603 while (p < pend)
604 {
605 if (pend - p < 4)
606 return false;
607
608 // There shouldn't be any relocations here.
609 if (relocs.advance(p + 4 - pcontents) > 0)
610 return false;
611
612 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
613 p += 4;
614 if (len == 0)
615 {
616 // We should only find a zero-length entry at the end of the
617 // section.
618 if (p < pend)
619 return false;
620 break;
621 }
622 // We don't support a 64-bit .eh_frame.
623 if (len == 0xffffffff)
624 return false;
625 if (static_cast<unsigned int>(pend - p) < len)
626 return false;
627
628 const unsigned char* const pentend = p + len;
629
630 if (pend - p < 4)
631 return false;
632 if (relocs.advance(p + 4 - pcontents) > 0)
633 return false;
634
635 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
636 p += 4;
637
638 if (id == 0)
639 {
640 // CIE.
641 if (!this->read_cie(object, shndx, symbols, symbols_size,
642 symbol_names, symbol_names_size,
643 pcontents, p, pentend, &relocs, &cies,
644 new_cies))
645 return false;
646 }
647 else
648 {
649 // FDE.
650 if (!this->read_fde(object, shndx, symbols, symbols_size,
651 pcontents, id, p, pentend, &relocs, &cies))
652 return false;
653 }
654
655 p = pentend;
656 }
657
658 return true;
659 }
660
661 // Read a CIE. Return false if we can't parse the information.
662
663 template<int size, bool big_endian>
664 bool
665 Eh_frame::read_cie(Sized_relobj<size, big_endian>* object,
666 unsigned int shndx,
667 const unsigned char* symbols,
668 section_size_type symbols_size,
669 const unsigned char* symbol_names,
670 section_size_type symbol_names_size,
671 const unsigned char* pcontents,
672 const unsigned char* pcie,
673 const unsigned char *pcieend,
674 Track_relocs<size, big_endian>* relocs,
675 Offsets_to_cie* cies,
676 New_cies* new_cies)
677 {
678 bool mergeable = true;
679
680 // We need to find the personality routine if there is one, since we
681 // can only merge CIEs which use the same routine. We also need to
682 // find the FDE encoding if there is one, so that we can read the PC
683 // from the FDE.
684
685 const unsigned char* p = pcie;
686
687 if (pcieend - p < 1)
688 return false;
689 unsigned char version = *p++;
690 if (version != 1 && version != 3)
691 return false;
692
693 const unsigned char* paug = p;
694 const void* paugendv = memchr(p, '\0', pcieend - p);
695 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
696 if (paugend == NULL)
697 return false;
698 p = paugend + 1;
699
700 if (paug[0] == 'e' && paug[1] == 'h')
701 {
702 // This is a CIE from gcc before version 3.0. We can't merge
703 // these. We can still read the FDEs.
704 mergeable = false;
705 paug += 2;
706 if (*paug != '\0')
707 return false;
708 if (pcieend - p < size / 8)
709 return false;
710 p += size / 8;
711 }
712
713 // Skip the code alignment.
714 if (!skip_leb128(&p, pcieend))
715 return false;
716
717 // Skip the data alignment.
718 if (!skip_leb128(&p, pcieend))
719 return false;
720
721 // Skip the return column.
722 if (version == 1)
723 {
724 if (pcieend - p < 1)
725 return false;
726 ++p;
727 }
728 else
729 {
730 if (!skip_leb128(&p, pcieend))
731 return false;
732 }
733
734 if (*paug == 'z')
735 {
736 ++paug;
737 // Skip the augmentation size.
738 if (!skip_leb128(&p, pcieend))
739 return false;
740 }
741
742 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
743 int per_offset = -1;
744 while (*paug != '\0')
745 {
746 switch (*paug)
747 {
748 case 'L': // LSDA encoding.
749 if (pcieend - p < 1)
750 return false;
751 ++p;
752 break;
753
754 case 'R': // FDE encoding.
755 if (pcieend - p < 1)
756 return false;
757 fde_encoding = *p;
758 switch (fde_encoding & 7)
759 {
760 case elfcpp::DW_EH_PE_absptr:
761 case elfcpp::DW_EH_PE_udata2:
762 case elfcpp::DW_EH_PE_udata4:
763 case elfcpp::DW_EH_PE_udata8:
764 break;
765 default:
766 // We don't expect to see any other cases here, and
767 // we're not prepared to handle them.
768 return false;
769 }
770 ++p;
771 break;
772
773 case 'S':
774 break;
775
776 case 'P':
777 // Personality encoding.
778 {
779 if (pcieend - p < 1)
780 return false;
781 unsigned char per_encoding = *p;
782 ++p;
783
784 if ((per_encoding & 0x60) == 0x60)
785 return false;
786 unsigned int per_width;
787 switch (per_encoding & 7)
788 {
789 case elfcpp::DW_EH_PE_udata2:
790 per_width = 2;
791 break;
792 case elfcpp::DW_EH_PE_udata4:
793 per_width = 4;
794 break;
795 case elfcpp::DW_EH_PE_udata8:
796 per_width = 8;
797 break;
798 case elfcpp::DW_EH_PE_absptr:
799 per_width = size / 8;
800 break;
801 default:
802 return false;
803 }
804
805 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
806 {
807 unsigned int len = p - pcie;
808 len += per_width - 1;
809 len &= ~ (per_width - 1);
810 if (static_cast<unsigned int>(pcieend - p) < len)
811 return false;
812 p += len;
813 }
814
815 per_offset = p - pcontents;
816
817 if (static_cast<unsigned int>(pcieend - p) < per_width)
818 return false;
819 p += per_width;
820 }
821 break;
822
823 default:
824 return false;
825 }
826
827 ++paug;
828 }
829
830 const char* personality_name = "";
831 if (per_offset != -1)
832 {
833 if (relocs->advance(per_offset) > 0)
834 return false;
835 if (relocs->next_offset() != per_offset)
836 return false;
837
838 unsigned int personality_symndx = relocs->next_symndx();
839 if (personality_symndx == -1U)
840 return false;
841
842 if (personality_symndx < object->local_symbol_count())
843 {
844 // We can only merge this CIE if the personality routine is
845 // a global symbol. We can still read the FDEs.
846 mergeable = false;
847 }
848 else
849 {
850 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
851 if (personality_symndx >= symbols_size / sym_size)
852 return false;
853 elfcpp::Sym<size, big_endian> sym(symbols
854 + (personality_symndx * sym_size));
855 unsigned int name_offset = sym.get_st_name();
856 if (name_offset >= symbol_names_size)
857 return false;
858 personality_name = (reinterpret_cast<const char*>(symbol_names)
859 + name_offset);
860 }
861
862 int r = relocs->advance(per_offset + 1);
863 gold_assert(r == 1);
864 }
865
866 if (relocs->advance(pcieend - pcontents) > 0)
867 return false;
868
869 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
870 personality_name, pcie, pcieend - pcie);
871 Cie* cie_pointer = NULL;
872 if (mergeable)
873 {
874 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
875 if (find_cie != this->cie_offsets_.end())
876 cie_pointer = *find_cie;
877 else
878 {
879 // See if we already saw this CIE in this object file.
880 for (New_cies::const_iterator pc = new_cies->begin();
881 pc != new_cies->end();
882 ++pc)
883 {
884 if (*(pc->first) == cie)
885 {
886 cie_pointer = pc->first;
887 break;
888 }
889 }
890 }
891 }
892
893 if (cie_pointer == NULL)
894 {
895 cie_pointer = new Cie(cie);
896 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
897 }
898 else
899 {
900 // We are deleting this CIE. Record that in our mapping from
901 // input sections to the output section. At this point we don't
902 // know for sure that we are doing a special mapping for this
903 // input section, but that's OK--if we don't do a special
904 // mapping, nobody will ever ask for the mapping we add here.
905 this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
906 pcieend - (pcie - 8), -1);
907 }
908
909 // Record this CIE plus the offset in the input section.
910 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
911
912 return true;
913 }
914
915 // Read an FDE. Return false if we can't parse the information.
916
917 template<int size, bool big_endian>
918 bool
919 Eh_frame::read_fde(Sized_relobj<size, big_endian>* object,
920 unsigned int shndx,
921 const unsigned char* symbols,
922 section_size_type symbols_size,
923 const unsigned char* pcontents,
924 unsigned int offset,
925 const unsigned char* pfde,
926 const unsigned char *pfdeend,
927 Track_relocs<size, big_endian>* relocs,
928 Offsets_to_cie* cies)
929 {
930 // OFFSET is the distance between the 4 bytes before PFDE to the
931 // start of the CIE. The offset we recorded for the CIE is 8 bytes
932 // after the start of the CIE--after the length and the zero tag.
933 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
934 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
935 if (pcie == cies->end())
936 return false;
937 Cie* cie = pcie->second;
938
939 // The FDE should start with a reloc to the start of the code which
940 // it describes.
941 if (relocs->advance(pfde - pcontents) > 0)
942 return false;
943
944 if (relocs->next_offset() != pfde - pcontents)
945 return false;
946
947 unsigned int symndx = relocs->next_symndx();
948 if (symndx == -1U)
949 return false;
950
951 // There can be another reloc in the FDE, if the CIE specifies an
952 // LSDA (language specific data area). We currently don't care. We
953 // will care later if we want to optimize the LSDA from an absolute
954 // pointer to a PC relative offset when generating a shared library.
955 relocs->advance(pfdeend - pcontents);
956
957 unsigned int fde_shndx;
958 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
959 if (symndx >= symbols_size / sym_size)
960 return false;
961 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
962 fde_shndx = sym.get_st_shndx();
963
964 if (fde_shndx != elfcpp::SHN_UNDEF
965 && fde_shndx < object->shnum()
966 && !object->is_section_included(fde_shndx))
967 {
968 // This FDE applies to a section which we are discarding. We
969 // can discard this FDE.
970 this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
971 pfdeend - (pfde - 8), -1);
972 return true;
973 }
974
975 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
976 pfde, pfdeend - pfde));
977
978 return true;
979 }
980
981 // Return the number of FDEs.
982
983 unsigned int
984 Eh_frame::fde_count() const
985 {
986 unsigned int ret = 0;
987 for (Unmergeable_cie_offsets::const_iterator p =
988 this->unmergeable_cie_offsets_.begin();
989 p != this->unmergeable_cie_offsets_.end();
990 ++p)
991 ret += (*p)->fde_count();
992 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
993 p != this->cie_offsets_.end();
994 ++p)
995 ret += (*p)->fde_count();
996 return ret;
997 }
998
999 // Set the final data size.
1000
1001 void
1002 Eh_frame::set_final_data_size()
1003 {
1004 section_offset_type output_offset = 0;
1005
1006 for (Unmergeable_cie_offsets::iterator p =
1007 this->unmergeable_cie_offsets_.begin();
1008 p != this->unmergeable_cie_offsets_.end();
1009 ++p)
1010 output_offset = (*p)->set_output_offset(output_offset,
1011 this->addralign(),
1012 &this->merge_map_);
1013
1014 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1015 p != this->cie_offsets_.end();
1016 ++p)
1017 output_offset = (*p)->set_output_offset(output_offset,
1018 this->addralign(),
1019 &this->merge_map_);
1020
1021 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1022 this->set_data_size(output_offset);
1023 }
1024
1025 // Return an output offset for an input offset.
1026
1027 bool
1028 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1029 section_offset_type offset,
1030 section_offset_type* poutput) const
1031 {
1032 return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1033 }
1034
1035 // Return whether this is the merge section for an input section.
1036
1037 bool
1038 Eh_frame::do_is_merge_section_for(const Relobj* object,
1039 unsigned int shndx) const
1040 {
1041 return this->merge_map_.is_merge_section_for(object, shndx);
1042 }
1043
1044 // Write the data to the output file.
1045
1046 void
1047 Eh_frame::do_write(Output_file* of)
1048 {
1049 const off_t offset = this->offset();
1050 const off_t oview_size = this->data_size();
1051 unsigned char* const oview = of->get_output_view(offset, oview_size);
1052
1053 if (parameters->get_size() == 32)
1054 {
1055 if (!parameters->is_big_endian())
1056 {
1057 #ifdef HAVE_TARGET_32_LITTLE
1058 this->do_sized_write<32, false>(oview);
1059 #else
1060 gold_unreachable();
1061 #endif
1062 }
1063 else
1064 {
1065 #ifdef HAVE_TARGET_32_BIG
1066 this->do_sized_write<32, true>(oview);
1067 #else
1068 gold_unreachable();
1069 #endif
1070 }
1071 }
1072 else if (parameters->get_size() == 64)
1073 {
1074 if (!parameters->is_big_endian())
1075 {
1076 #ifdef HAVE_TARGET_64_LITTLE
1077 this->do_sized_write<64, false>(oview);
1078 #else
1079 gold_unreachable();
1080 #endif
1081 }
1082 else
1083 {
1084 #ifdef HAVE_TARGET_64_BIG
1085 this->do_sized_write<64, true>(oview);
1086 #else
1087 gold_unreachable();
1088 #endif
1089 }
1090 }
1091 else
1092 gold_unreachable();
1093
1094 of->write_output_view(offset, oview_size, oview);
1095 }
1096
1097 // Write the data to the output file--template version.
1098
1099 template<int size, bool big_endian>
1100 void
1101 Eh_frame::do_sized_write(unsigned char* oview)
1102 {
1103 section_offset_type o = 0;
1104 for (Unmergeable_cie_offsets::iterator p =
1105 this->unmergeable_cie_offsets_.begin();
1106 p != this->unmergeable_cie_offsets_.end();
1107 ++p)
1108 o = (*p)->write<size, big_endian>(oview, o, this->eh_frame_hdr_);
1109 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1110 p != this->cie_offsets_.end();
1111 ++p)
1112 o = (*p)->write<size, big_endian>(oview, o, this->eh_frame_hdr_);
1113 }
1114
1115 #ifdef HAVE_TARGET_32_LITTLE
1116 template
1117 bool
1118 Eh_frame::add_ehframe_input_section<32, false>(
1119 Sized_relobj<32, false>* object,
1120 const unsigned char* symbols,
1121 section_size_type symbols_size,
1122 const unsigned char* symbol_names,
1123 section_size_type symbol_names_size,
1124 unsigned int shndx,
1125 unsigned int reloc_shndx,
1126 unsigned int reloc_type);
1127 #endif
1128
1129 #ifdef HAVE_TARGET_32_BIG
1130 template
1131 bool
1132 Eh_frame::add_ehframe_input_section<32, true>(
1133 Sized_relobj<32, true>* object,
1134 const unsigned char* symbols,
1135 section_size_type symbols_size,
1136 const unsigned char* symbol_names,
1137 section_size_type symbol_names_size,
1138 unsigned int shndx,
1139 unsigned int reloc_shndx,
1140 unsigned int reloc_type);
1141 #endif
1142
1143 #ifdef HAVE_TARGET_64_LITTLE
1144 template
1145 bool
1146 Eh_frame::add_ehframe_input_section<64, false>(
1147 Sized_relobj<64, false>* object,
1148 const unsigned char* symbols,
1149 section_size_type symbols_size,
1150 const unsigned char* symbol_names,
1151 section_size_type symbol_names_size,
1152 unsigned int shndx,
1153 unsigned int reloc_shndx,
1154 unsigned int reloc_type);
1155 #endif
1156
1157 #ifdef HAVE_TARGET_64_BIG
1158 template
1159 bool
1160 Eh_frame::add_ehframe_input_section<64, true>(
1161 Sized_relobj<64, true>* object,
1162 const unsigned char* symbols,
1163 section_size_type symbols_size,
1164 const unsigned char* symbol_names,
1165 section_size_type symbol_names_size,
1166 unsigned int shndx,
1167 unsigned int reloc_shndx,
1168 unsigned int reloc_type);
1169 #endif
1170
1171 } // End namespace gold.
This page took 0.058564 seconds and 5 git commands to generate.