* target.h (Target::plt_fde_location, do_plt_fde_location): Declare.
[deliverable/binutils-gdb.git] / gold / ehframe.cc
1 // ehframe.cc -- handle exception frame sections for gold
2
3 // Copyright 2006, 2007, 2008, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "symtab.h"
31 #include "reloc.h"
32 #include "ehframe.h"
33
34 namespace gold
35 {
36
37 // This file handles generation of the exception frame header that
38 // gcc's runtime support libraries use to find unwind information at
39 // runtime. This file also handles discarding duplicate exception
40 // frame information.
41
42 // The exception frame header starts with four bytes:
43
44 // 0: The version number, currently 1.
45
46 // 1: The encoding of the pointer to the exception frames. This can
47 // be any DWARF unwind encoding (DW_EH_PE_*). It is normally a 4
48 // byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50 // 2: The encoding of the count of the number of FDE pointers in the
51 // lookup table. This can be any DWARF unwind encoding, and in
52 // particular can be DW_EH_PE_omit if the count is omitted. It is
53 // normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55 // 3: The encoding of the lookup table entries. Currently gcc's
56 // libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57 // which means that the values are 4 byte offsets from the start of
58 // the table.
59
60 // The exception frame header is followed by a pointer to the contents
61 // of the exception frame section (.eh_frame). This pointer is
62 // encoded as specified in the byte at offset 1 of the header (i.e.,
63 // it is normally a 4 byte PC relative offset).
64
65 // If there is a lookup table, this is followed by the count of the
66 // number of FDE pointers, encoded as specified in the byte at offset
67 // 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69 // This is followed by the table, which should start at an 4-byte
70 // aligned address in memory. Each entry in the table is 8 bytes.
71 // Each entry represents an FDE. The first four bytes of each entry
72 // are an offset to the starting PC for the FDE. The last four bytes
73 // of each entry are an offset to the FDE data. The offsets are from
74 // the start of the exception frame header information. The entries
75 // are in sorted order by starting PC.
76
77 const int eh_frame_hdr_size = 4;
78
79 // Construct the exception frame header.
80
81 Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82 const Eh_frame* eh_frame_data)
83 : Output_section_data(4),
84 eh_frame_section_(eh_frame_section),
85 eh_frame_data_(eh_frame_data),
86 fde_offsets_(),
87 any_unrecognized_eh_frame_sections_(false)
88 {
89 }
90
91 // Set the size of the exception frame header.
92
93 void
94 Eh_frame_hdr::set_final_data_size()
95 {
96 unsigned int data_size = eh_frame_hdr_size + 4;
97 if (!this->any_unrecognized_eh_frame_sections_)
98 {
99 unsigned int fde_count = this->eh_frame_data_->fde_count();
100 if (fde_count != 0)
101 data_size += 4 + 8 * fde_count;
102 this->fde_offsets_.reserve(fde_count);
103 }
104 this->set_data_size(data_size);
105 }
106
107 // Write the data to the file.
108
109 void
110 Eh_frame_hdr::do_write(Output_file* of)
111 {
112 switch (parameters->size_and_endianness())
113 {
114 #ifdef HAVE_TARGET_32_LITTLE
115 case Parameters::TARGET_32_LITTLE:
116 this->do_sized_write<32, false>(of);
117 break;
118 #endif
119 #ifdef HAVE_TARGET_32_BIG
120 case Parameters::TARGET_32_BIG:
121 this->do_sized_write<32, true>(of);
122 break;
123 #endif
124 #ifdef HAVE_TARGET_64_LITTLE
125 case Parameters::TARGET_64_LITTLE:
126 this->do_sized_write<64, false>(of);
127 break;
128 #endif
129 #ifdef HAVE_TARGET_64_BIG
130 case Parameters::TARGET_64_BIG:
131 this->do_sized_write<64, true>(of);
132 break;
133 #endif
134 default:
135 gold_unreachable();
136 }
137 }
138
139 // Write the data to the file with the right endianness.
140
141 template<int size, bool big_endian>
142 void
143 Eh_frame_hdr::do_sized_write(Output_file* of)
144 {
145 const off_t off = this->offset();
146 const off_t oview_size = this->data_size();
147 unsigned char* const oview = of->get_output_view(off, oview_size);
148
149 // Version number.
150 oview[0] = 1;
151
152 // Write out a 4 byte PC relative offset to the address of the
153 // .eh_frame section.
154 oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155 uint64_t eh_frame_address = this->eh_frame_section_->address();
156 uint64_t eh_frame_hdr_address = this->address();
157 uint64_t eh_frame_offset = (eh_frame_address -
158 (eh_frame_hdr_address + 4));
159 elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161 if (this->any_unrecognized_eh_frame_sections_
162 || this->fde_offsets_.empty())
163 {
164 // There are no FDEs, or we didn't recognize the format of the
165 // some of the .eh_frame sections, so we can't write out the
166 // sorted table.
167 oview[2] = elfcpp::DW_EH_PE_omit;
168 oview[3] = elfcpp::DW_EH_PE_omit;
169
170 gold_assert(oview_size == 8);
171 }
172 else
173 {
174 oview[2] = elfcpp::DW_EH_PE_udata4;
175 oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177 elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178 this->fde_offsets_.size());
179
180 // We have the offsets of the FDEs in the .eh_frame section. We
181 // couldn't easily get the PC values before, as they depend on
182 // relocations which are, of course, target specific. This code
183 // is run after all those relocations have been applied to the
184 // output file. Here we read the output file again to find the
185 // PC values. Then we sort the list and write it out.
186
187 Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188 this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189 &fde_addresses);
190
191 std::sort(fde_addresses.begin(), fde_addresses.end(),
192 Fde_address_compare<size>());
193
194 typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195 output_address = this->address();
196
197 unsigned char* pfde = oview + 12;
198 for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199 p != fde_addresses.end();
200 ++p)
201 {
202 elfcpp::Swap<32, big_endian>::writeval(pfde,
203 p->first - output_address);
204 elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205 p->second - output_address);
206 pfde += 8;
207 }
208
209 gold_assert(pfde - oview == oview_size);
210 }
211
212 of->write_output_view(off, oview_size, oview);
213 }
214
215 // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216 // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217 // FDE's encoding is FDE_ENCODING, return the output address of the
218 // FDE's PC.
219
220 template<int size, bool big_endian>
221 typename elfcpp::Elf_types<size>::Elf_Addr
222 Eh_frame_hdr::get_fde_pc(
223 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224 const unsigned char* eh_frame_contents,
225 section_offset_type fde_offset,
226 unsigned char fde_encoding)
227 {
228 // The FDE starts with a 4 byte length and a 4 byte offset to the
229 // CIE. The PC follows.
230 const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232 typename elfcpp::Elf_types<size>::Elf_Addr pc;
233 bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234 int pc_size = fde_encoding & 7;
235 if (pc_size == elfcpp::DW_EH_PE_absptr)
236 {
237 if (size == 32)
238 pc_size = elfcpp::DW_EH_PE_udata4;
239 else if (size == 64)
240 pc_size = elfcpp::DW_EH_PE_udata8;
241 else
242 gold_unreachable();
243 }
244
245 switch (pc_size)
246 {
247 case elfcpp::DW_EH_PE_udata2:
248 pc = elfcpp::Swap<16, big_endian>::readval(p);
249 if (is_signed)
250 pc = (pc ^ 0x8000) - 0x8000;
251 break;
252
253 case elfcpp::DW_EH_PE_udata4:
254 pc = elfcpp::Swap<32, big_endian>::readval(p);
255 if (size > 32 && is_signed)
256 pc = (pc ^ 0x80000000) - 0x80000000;
257 break;
258
259 case elfcpp::DW_EH_PE_udata8:
260 gold_assert(size == 64);
261 pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262 break;
263
264 default:
265 // All other cases were rejected in Eh_frame::read_cie.
266 gold_unreachable();
267 }
268
269 switch (fde_encoding & 0x70)
270 {
271 case 0:
272 break;
273
274 case elfcpp::DW_EH_PE_pcrel:
275 pc += eh_frame_address + fde_offset + 8;
276 break;
277
278 case elfcpp::DW_EH_PE_datarel:
279 pc += parameters->target().ehframe_datarel_base();
280 break;
281
282 default:
283 // If other cases arise, then we have to handle them, or we have
284 // to reject them by returning false in Eh_frame::read_cie.
285 gold_unreachable();
286 }
287
288 gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
290 return pc;
291 }
292
293 // Given an array of FDE offsets in the .eh_frame section, return an
294 // array of offsets from the exception frame header to the FDE's
295 // output PC and to the output address of the FDE itself. We get the
296 // FDE's PC by actually looking in the .eh_frame section we just wrote
297 // to the output file.
298
299 template<int size, bool big_endian>
300 void
301 Eh_frame_hdr::get_fde_addresses(Output_file* of,
302 const Fde_offsets* fde_offsets,
303 Fde_addresses<size>* fde_addresses)
304 {
305 typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306 eh_frame_address = this->eh_frame_section_->address();
307 off_t eh_frame_offset = this->eh_frame_section_->offset();
308 off_t eh_frame_size = this->eh_frame_section_->data_size();
309 const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310 eh_frame_size);
311
312 for (Fde_offsets::const_iterator p = fde_offsets->begin();
313 p != fde_offsets->end();
314 ++p)
315 {
316 typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317 fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318 eh_frame_contents,
319 p->first, p->second);
320 fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321 }
322
323 of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324 }
325
326 // Class Fde.
327
328 // Write the FDE to OVIEW starting at OFFSET. CIE_OFFSET is the
329 // offset of the CIE in OVIEW. FDE_ENCODING is the encoding, from the
330 // CIE. ADDRALIGN is the required alignment. ADDRESS is the virtual
331 // address of OVIEW. Record the FDE pc for EH_FRAME_HDR. Return the
332 // new offset.
333
334 template<int size, bool big_endian>
335 section_offset_type
336 Fde::write(unsigned char* oview, section_offset_type offset,
337 uint64_t address, unsigned int addralign,
338 section_offset_type cie_offset, unsigned char fde_encoding,
339 Eh_frame_hdr* eh_frame_hdr)
340 {
341 gold_assert((offset & (addralign - 1)) == 0);
342
343 size_t length = this->contents_.length();
344
345 // We add 8 when getting the aligned length to account for the
346 // length word and the CIE offset.
347 size_t aligned_full_length = align_address(length + 8, addralign);
348
349 // Write the length of the FDE as a 32-bit word. The length word
350 // does not include the four bytes of the length word itself, but it
351 // does include the offset to the CIE.
352 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
353 aligned_full_length - 4);
354
355 // Write the offset to the CIE as a 32-bit word. This is the
356 // difference between the address of the offset word itself and the
357 // CIE address.
358 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
359 offset + 4 - cie_offset);
360
361 // Copy the rest of the FDE. Note that this is run before
362 // relocation processing is done on this section, so the relocations
363 // will later be applied to the FDE data.
364 memcpy(oview + offset + 8, this->contents_.data(), length);
365
366 // If this FDE is associated with a PLT, fill in the PLT's address
367 // and size.
368 if (this->object_ == NULL)
369 {
370 gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
371 uint64_t paddress;
372 off_t psize;
373 parameters->target().plt_fde_location(this->u_.from_linker.plt,
374 oview + offset + 8,
375 &paddress, &psize);
376 uint64_t poffset = paddress - (address + offset + 8);
377 int32_t spoffset = static_cast<int32_t>(poffset);
378 uint32_t upsize = static_cast<uint32_t>(psize);
379 if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
380 || static_cast<off_t>(upsize) != psize)
381 gold_warning(_("overflow in PLT unwind data; "
382 "unwinding through PLT may fail"));
383 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
384 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
385 }
386
387 if (aligned_full_length > length + 8)
388 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
389
390 // Tell the exception frame header about this FDE.
391 if (eh_frame_hdr != NULL)
392 eh_frame_hdr->record_fde(offset, fde_encoding);
393
394 return offset + aligned_full_length;
395 }
396
397 // Class Cie.
398
399 // Destructor.
400
401 Cie::~Cie()
402 {
403 for (std::vector<Fde*>::iterator p = this->fdes_.begin();
404 p != this->fdes_.end();
405 ++p)
406 delete *p;
407 }
408
409 // Set the output offset of a CIE. Return the new output offset.
410
411 section_offset_type
412 Cie::set_output_offset(section_offset_type output_offset,
413 unsigned int addralign,
414 Merge_map* merge_map)
415 {
416 size_t length = this->contents_.length();
417
418 // Add 4 for length and 4 for zero CIE identifier tag.
419 length += 8;
420
421 if (this->object_ != NULL)
422 {
423 // Add a mapping so that relocations are applied correctly.
424 merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
425 length, output_offset);
426 }
427
428 length = align_address(length, addralign);
429
430 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
431 p != this->fdes_.end();
432 ++p)
433 {
434 (*p)->add_mapping(output_offset + length, merge_map);
435
436 size_t fde_length = (*p)->length();
437 fde_length = align_address(fde_length, addralign);
438 length += fde_length;
439 }
440
441 return output_offset + length;
442 }
443
444 // A FDE plus some info from a CIE to allow later writing of the FDE.
445
446 struct Post_fde
447 {
448 Post_fde(Fde* f, section_offset_type cie_off, unsigned char encoding)
449 : fde(f), cie_offset(cie_off), fde_encoding(encoding)
450 { }
451
452 Fde* fde;
453 section_offset_type cie_offset;
454 unsigned char fde_encoding;
455 };
456
457 // Write the CIE to OVIEW starting at OFFSET. Round up the bytes to
458 // ADDRALIGN. ADDRESS is the virtual address of OVIEW.
459 // EH_FRAME_HDR is the exception frame header for FDE recording.
460 // POST_FDES stashes FDEs created after mappings were done, for later
461 // writing. Return the new offset.
462
463 template<int size, bool big_endian>
464 section_offset_type
465 Cie::write(unsigned char* oview, section_offset_type offset,
466 uint64_t address, unsigned int addralign,
467 Eh_frame_hdr* eh_frame_hdr, Post_fdes* post_fdes)
468 {
469 gold_assert((offset & (addralign - 1)) == 0);
470
471 section_offset_type cie_offset = offset;
472
473 size_t length = this->contents_.length();
474
475 // We add 8 when getting the aligned length to account for the
476 // length word and the CIE tag.
477 size_t aligned_full_length = align_address(length + 8, addralign);
478
479 // Write the length of the CIE as a 32-bit word. The length word
480 // does not include the four bytes of the length word itself.
481 elfcpp::Swap<32, big_endian>::writeval(oview + offset,
482 aligned_full_length - 4);
483
484 // Write the tag which marks this as a CIE: a 32-bit zero.
485 elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
486
487 // Write out the CIE data.
488 memcpy(oview + offset + 8, this->contents_.data(), length);
489
490 if (aligned_full_length > length + 8)
491 memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
492
493 offset += aligned_full_length;
494
495 // Write out the associated FDEs.
496 unsigned char fde_encoding = this->fde_encoding_;
497 for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
498 p != this->fdes_.end();
499 ++p)
500 {
501 if ((*p)->post_map())
502 post_fdes->push_back(new Post_fde(*p, cie_offset, fde_encoding));
503 else
504 offset = (*p)->write<size, big_endian>(oview, offset, address,
505 addralign, cie_offset,
506 fde_encoding, eh_frame_hdr);
507 }
508
509 return offset;
510 }
511
512 // We track all the CIEs we see, and merge them when possible. This
513 // works because each FDE holds an offset to the relevant CIE: we
514 // rewrite the FDEs to point to the merged CIE. This is worthwhile
515 // because in a typical C++ program many FDEs in many different object
516 // files will use the same CIE.
517
518 // An equality operator for Cie.
519
520 bool
521 operator==(const Cie& cie1, const Cie& cie2)
522 {
523 return (cie1.personality_name_ == cie2.personality_name_
524 && cie1.contents_ == cie2.contents_);
525 }
526
527 // A less-than operator for Cie.
528
529 bool
530 operator<(const Cie& cie1, const Cie& cie2)
531 {
532 if (cie1.personality_name_ != cie2.personality_name_)
533 return cie1.personality_name_ < cie2.personality_name_;
534 return cie1.contents_ < cie2.contents_;
535 }
536
537 // Class Eh_frame.
538
539 Eh_frame::Eh_frame()
540 : Output_section_data(Output_data::default_alignment()),
541 eh_frame_hdr_(NULL),
542 cie_offsets_(),
543 unmergeable_cie_offsets_(),
544 merge_map_(),
545 mappings_are_done_(false),
546 final_data_size_(0)
547 {
548 }
549
550 // Skip an LEB128, updating *PP to point to the next character.
551 // Return false if we ran off the end of the string.
552
553 bool
554 Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
555 {
556 const unsigned char* p;
557 for (p = *pp; p < pend; ++p)
558 {
559 if ((*p & 0x80) == 0)
560 {
561 *pp = p + 1;
562 return true;
563 }
564 }
565 return false;
566 }
567
568 // Add input section SHNDX in OBJECT to an exception frame section.
569 // SYMBOLS is the contents of the symbol table section (size
570 // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
571 // SYMBOL_NAMES_SIZE). RELOC_SHNDX is the index of a relocation
572 // section applying to SHNDX, or 0 if none, or -1U if more than one.
573 // RELOC_TYPE is the type of the reloc section if there is one, either
574 // SHT_REL or SHT_RELA. We try to parse the input exception frame
575 // data into our data structures. If we can't do it, we return false
576 // to mean that the section should be handled as a normal input
577 // section.
578
579 template<int size, bool big_endian>
580 bool
581 Eh_frame::add_ehframe_input_section(
582 Sized_relobj_file<size, big_endian>* object,
583 const unsigned char* symbols,
584 section_size_type symbols_size,
585 const unsigned char* symbol_names,
586 section_size_type symbol_names_size,
587 unsigned int shndx,
588 unsigned int reloc_shndx,
589 unsigned int reloc_type)
590 {
591 // Get the section contents.
592 section_size_type contents_len;
593 const unsigned char* pcontents = object->section_contents(shndx,
594 &contents_len,
595 false);
596 if (contents_len == 0)
597 return false;
598
599 // If this is the marker section for the end of the data, then
600 // return false to force it to be handled as an ordinary input
601 // section. If we don't do this, we won't correctly handle the case
602 // of unrecognized .eh_frame sections.
603 if (contents_len == 4
604 && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
605 return false;
606
607 New_cies new_cies;
608 if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
609 symbol_names, symbol_names_size,
610 shndx, reloc_shndx,
611 reloc_type, pcontents,
612 contents_len, &new_cies))
613 {
614 if (this->eh_frame_hdr_ != NULL)
615 this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
616
617 for (New_cies::iterator p = new_cies.begin();
618 p != new_cies.end();
619 ++p)
620 delete p->first;
621
622 return false;
623 }
624
625 // Now that we know we are using this section, record any new CIEs
626 // that we found.
627 for (New_cies::const_iterator p = new_cies.begin();
628 p != new_cies.end();
629 ++p)
630 {
631 if (p->second)
632 this->cie_offsets_.insert(p->first);
633 else
634 this->unmergeable_cie_offsets_.push_back(p->first);
635 }
636
637 return true;
638 }
639
640 // The bulk of the implementation of add_ehframe_input_section.
641
642 template<int size, bool big_endian>
643 bool
644 Eh_frame::do_add_ehframe_input_section(
645 Sized_relobj_file<size, big_endian>* object,
646 const unsigned char* symbols,
647 section_size_type symbols_size,
648 const unsigned char* symbol_names,
649 section_size_type symbol_names_size,
650 unsigned int shndx,
651 unsigned int reloc_shndx,
652 unsigned int reloc_type,
653 const unsigned char* pcontents,
654 section_size_type contents_len,
655 New_cies* new_cies)
656 {
657 Track_relocs<size, big_endian> relocs;
658
659 const unsigned char* p = pcontents;
660 const unsigned char* pend = p + contents_len;
661
662 // Get the contents of the reloc section if any.
663 if (!relocs.initialize(object, reloc_shndx, reloc_type))
664 return false;
665
666 // Keep track of which CIEs are at which offsets.
667 Offsets_to_cie cies;
668
669 while (p < pend)
670 {
671 if (pend - p < 4)
672 return false;
673
674 // There shouldn't be any relocations here.
675 if (relocs.advance(p + 4 - pcontents) > 0)
676 return false;
677
678 unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
679 p += 4;
680 if (len == 0)
681 {
682 // We should only find a zero-length entry at the end of the
683 // section.
684 if (p < pend)
685 return false;
686 break;
687 }
688 // We don't support a 64-bit .eh_frame.
689 if (len == 0xffffffff)
690 return false;
691 if (static_cast<unsigned int>(pend - p) < len)
692 return false;
693
694 const unsigned char* const pentend = p + len;
695
696 if (pend - p < 4)
697 return false;
698 if (relocs.advance(p + 4 - pcontents) > 0)
699 return false;
700
701 unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
702 p += 4;
703
704 if (id == 0)
705 {
706 // CIE.
707 if (!this->read_cie(object, shndx, symbols, symbols_size,
708 symbol_names, symbol_names_size,
709 pcontents, p, pentend, &relocs, &cies,
710 new_cies))
711 return false;
712 }
713 else
714 {
715 // FDE.
716 if (!this->read_fde(object, shndx, symbols, symbols_size,
717 pcontents, id, p, pentend, &relocs, &cies))
718 return false;
719 }
720
721 p = pentend;
722 }
723
724 return true;
725 }
726
727 // Read a CIE. Return false if we can't parse the information.
728
729 template<int size, bool big_endian>
730 bool
731 Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
732 unsigned int shndx,
733 const unsigned char* symbols,
734 section_size_type symbols_size,
735 const unsigned char* symbol_names,
736 section_size_type symbol_names_size,
737 const unsigned char* pcontents,
738 const unsigned char* pcie,
739 const unsigned char* pcieend,
740 Track_relocs<size, big_endian>* relocs,
741 Offsets_to_cie* cies,
742 New_cies* new_cies)
743 {
744 bool mergeable = true;
745
746 // We need to find the personality routine if there is one, since we
747 // can only merge CIEs which use the same routine. We also need to
748 // find the FDE encoding if there is one, so that we can read the PC
749 // from the FDE.
750
751 const unsigned char* p = pcie;
752
753 if (pcieend - p < 1)
754 return false;
755 unsigned char version = *p++;
756 if (version != 1 && version != 3)
757 return false;
758
759 const unsigned char* paug = p;
760 const void* paugendv = memchr(p, '\0', pcieend - p);
761 const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
762 if (paugend == NULL)
763 return false;
764 p = paugend + 1;
765
766 if (paug[0] == 'e' && paug[1] == 'h')
767 {
768 // This is a CIE from gcc before version 3.0. We can't merge
769 // these. We can still read the FDEs.
770 mergeable = false;
771 paug += 2;
772 if (*paug != '\0')
773 return false;
774 if (pcieend - p < size / 8)
775 return false;
776 p += size / 8;
777 }
778
779 // Skip the code alignment.
780 if (!skip_leb128(&p, pcieend))
781 return false;
782
783 // Skip the data alignment.
784 if (!skip_leb128(&p, pcieend))
785 return false;
786
787 // Skip the return column.
788 if (version == 1)
789 {
790 if (pcieend - p < 1)
791 return false;
792 ++p;
793 }
794 else
795 {
796 if (!skip_leb128(&p, pcieend))
797 return false;
798 }
799
800 if (*paug == 'z')
801 {
802 ++paug;
803 // Skip the augmentation size.
804 if (!skip_leb128(&p, pcieend))
805 return false;
806 }
807
808 unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
809 int per_offset = -1;
810 while (*paug != '\0')
811 {
812 switch (*paug)
813 {
814 case 'L': // LSDA encoding.
815 if (pcieend - p < 1)
816 return false;
817 ++p;
818 break;
819
820 case 'R': // FDE encoding.
821 if (pcieend - p < 1)
822 return false;
823 fde_encoding = *p;
824 switch (fde_encoding & 7)
825 {
826 case elfcpp::DW_EH_PE_absptr:
827 case elfcpp::DW_EH_PE_udata2:
828 case elfcpp::DW_EH_PE_udata4:
829 case elfcpp::DW_EH_PE_udata8:
830 break;
831 default:
832 // We don't expect to see any other cases here, and
833 // we're not prepared to handle them.
834 return false;
835 }
836 ++p;
837 break;
838
839 case 'S':
840 break;
841
842 case 'P':
843 // Personality encoding.
844 {
845 if (pcieend - p < 1)
846 return false;
847 unsigned char per_encoding = *p;
848 ++p;
849
850 if ((per_encoding & 0x60) == 0x60)
851 return false;
852 unsigned int per_width;
853 switch (per_encoding & 7)
854 {
855 case elfcpp::DW_EH_PE_udata2:
856 per_width = 2;
857 break;
858 case elfcpp::DW_EH_PE_udata4:
859 per_width = 4;
860 break;
861 case elfcpp::DW_EH_PE_udata8:
862 per_width = 8;
863 break;
864 case elfcpp::DW_EH_PE_absptr:
865 per_width = size / 8;
866 break;
867 default:
868 return false;
869 }
870
871 if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
872 {
873 unsigned int len = p - pcie;
874 len += per_width - 1;
875 len &= ~ (per_width - 1);
876 if (static_cast<unsigned int>(pcieend - p) < len)
877 return false;
878 p += len;
879 }
880
881 per_offset = p - pcontents;
882
883 if (static_cast<unsigned int>(pcieend - p) < per_width)
884 return false;
885 p += per_width;
886 }
887 break;
888
889 default:
890 return false;
891 }
892
893 ++paug;
894 }
895
896 const char* personality_name = "";
897 if (per_offset != -1)
898 {
899 if (relocs->advance(per_offset) > 0)
900 return false;
901 if (relocs->next_offset() != per_offset)
902 return false;
903
904 unsigned int personality_symndx = relocs->next_symndx();
905 if (personality_symndx == -1U)
906 return false;
907
908 if (personality_symndx < object->local_symbol_count())
909 {
910 // We can only merge this CIE if the personality routine is
911 // a global symbol. We can still read the FDEs.
912 mergeable = false;
913 }
914 else
915 {
916 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
917 if (personality_symndx >= symbols_size / sym_size)
918 return false;
919 elfcpp::Sym<size, big_endian> sym(symbols
920 + (personality_symndx * sym_size));
921 unsigned int name_offset = sym.get_st_name();
922 if (name_offset >= symbol_names_size)
923 return false;
924 personality_name = (reinterpret_cast<const char*>(symbol_names)
925 + name_offset);
926 }
927
928 int r = relocs->advance(per_offset + 1);
929 gold_assert(r == 1);
930 }
931
932 if (relocs->advance(pcieend - pcontents) > 0)
933 return false;
934
935 Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
936 personality_name, pcie, pcieend - pcie);
937 Cie* cie_pointer = NULL;
938 if (mergeable)
939 {
940 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
941 if (find_cie != this->cie_offsets_.end())
942 cie_pointer = *find_cie;
943 else
944 {
945 // See if we already saw this CIE in this object file.
946 for (New_cies::const_iterator pc = new_cies->begin();
947 pc != new_cies->end();
948 ++pc)
949 {
950 if (*(pc->first) == cie)
951 {
952 cie_pointer = pc->first;
953 break;
954 }
955 }
956 }
957 }
958
959 if (cie_pointer == NULL)
960 {
961 cie_pointer = new Cie(cie);
962 new_cies->push_back(std::make_pair(cie_pointer, mergeable));
963 }
964 else
965 {
966 // We are deleting this CIE. Record that in our mapping from
967 // input sections to the output section. At this point we don't
968 // know for sure that we are doing a special mapping for this
969 // input section, but that's OK--if we don't do a special
970 // mapping, nobody will ever ask for the mapping we add here.
971 this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
972 pcieend - (pcie - 8), -1);
973 }
974
975 // Record this CIE plus the offset in the input section.
976 cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
977
978 return true;
979 }
980
981 // Read an FDE. Return false if we can't parse the information.
982
983 template<int size, bool big_endian>
984 bool
985 Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
986 unsigned int shndx,
987 const unsigned char* symbols,
988 section_size_type symbols_size,
989 const unsigned char* pcontents,
990 unsigned int offset,
991 const unsigned char* pfde,
992 const unsigned char* pfdeend,
993 Track_relocs<size, big_endian>* relocs,
994 Offsets_to_cie* cies)
995 {
996 // OFFSET is the distance between the 4 bytes before PFDE to the
997 // start of the CIE. The offset we recorded for the CIE is 8 bytes
998 // after the start of the CIE--after the length and the zero tag.
999 unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
1000 Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
1001 if (pcie == cies->end())
1002 return false;
1003 Cie* cie = pcie->second;
1004
1005 // The FDE should start with a reloc to the start of the code which
1006 // it describes.
1007 if (relocs->advance(pfde - pcontents) > 0)
1008 return false;
1009
1010 if (relocs->next_offset() != pfde - pcontents)
1011 return false;
1012
1013 unsigned int symndx = relocs->next_symndx();
1014 if (symndx == -1U)
1015 return false;
1016
1017 // There can be another reloc in the FDE, if the CIE specifies an
1018 // LSDA (language specific data area). We currently don't care. We
1019 // will care later if we want to optimize the LSDA from an absolute
1020 // pointer to a PC relative offset when generating a shared library.
1021 relocs->advance(pfdeend - pcontents);
1022
1023 unsigned int fde_shndx;
1024 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1025 if (symndx >= symbols_size / sym_size)
1026 return false;
1027 elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1028 bool is_ordinary;
1029 fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1030 &is_ordinary);
1031
1032 if (is_ordinary
1033 && fde_shndx != elfcpp::SHN_UNDEF
1034 && fde_shndx < object->shnum()
1035 && !object->is_section_included(fde_shndx))
1036 {
1037 // This FDE applies to a section which we are discarding. We
1038 // can discard this FDE.
1039 this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
1040 pfdeend - (pfde - 8), -1);
1041 return true;
1042 }
1043
1044 cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1045 pfde, pfdeend - pfde));
1046
1047 return true;
1048 }
1049
1050 // Add unwind information for a PLT.
1051
1052 void
1053 Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1054 size_t cie_length, const unsigned char* fde_data,
1055 size_t fde_length)
1056 {
1057 Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1058 cie_data, cie_length);
1059 Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1060 Cie* pcie;
1061 if (find_cie != this->cie_offsets_.end())
1062 pcie = *find_cie;
1063 else
1064 {
1065 gold_assert(!this->mappings_are_done_);
1066 pcie = new Cie(cie);
1067 this->cie_offsets_.insert(pcie);
1068 }
1069
1070 Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_);
1071 pcie->add_fde(fde);
1072
1073 if (this->mappings_are_done_)
1074 this->final_data_size_ += align_address(fde_length + 8, this->addralign());
1075 }
1076
1077 // Return the number of FDEs.
1078
1079 unsigned int
1080 Eh_frame::fde_count() const
1081 {
1082 unsigned int ret = 0;
1083 for (Unmergeable_cie_offsets::const_iterator p =
1084 this->unmergeable_cie_offsets_.begin();
1085 p != this->unmergeable_cie_offsets_.end();
1086 ++p)
1087 ret += (*p)->fde_count();
1088 for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1089 p != this->cie_offsets_.end();
1090 ++p)
1091 ret += (*p)->fde_count();
1092 return ret;
1093 }
1094
1095 // Set the final data size.
1096
1097 void
1098 Eh_frame::set_final_data_size()
1099 {
1100 // We can be called more than once if Layout::set_segment_offsets
1101 // finds a better mapping. We don't want to add all the mappings
1102 // again.
1103 if (this->mappings_are_done_)
1104 {
1105 this->set_data_size(this->final_data_size_);
1106 return;
1107 }
1108
1109 section_offset_type output_offset = 0;
1110
1111 for (Unmergeable_cie_offsets::iterator p =
1112 this->unmergeable_cie_offsets_.begin();
1113 p != this->unmergeable_cie_offsets_.end();
1114 ++p)
1115 output_offset = (*p)->set_output_offset(output_offset,
1116 this->addralign(),
1117 &this->merge_map_);
1118
1119 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1120 p != this->cie_offsets_.end();
1121 ++p)
1122 output_offset = (*p)->set_output_offset(output_offset,
1123 this->addralign(),
1124 &this->merge_map_);
1125
1126 this->mappings_are_done_ = true;
1127 this->final_data_size_ = output_offset;
1128
1129 gold_assert((output_offset & (this->addralign() - 1)) == 0);
1130 this->set_data_size(output_offset);
1131 }
1132
1133 // Return an output offset for an input offset.
1134
1135 bool
1136 Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1137 section_offset_type offset,
1138 section_offset_type* poutput) const
1139 {
1140 return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1141 }
1142
1143 // Return whether this is the merge section for an input section.
1144
1145 bool
1146 Eh_frame::do_is_merge_section_for(const Relobj* object,
1147 unsigned int shndx) const
1148 {
1149 return this->merge_map_.is_merge_section_for(object, shndx);
1150 }
1151
1152 // Write the data to the output file.
1153
1154 void
1155 Eh_frame::do_write(Output_file* of)
1156 {
1157 const off_t offset = this->offset();
1158 const off_t oview_size = this->data_size();
1159 unsigned char* const oview = of->get_output_view(offset, oview_size);
1160
1161 switch (parameters->size_and_endianness())
1162 {
1163 #ifdef HAVE_TARGET_32_LITTLE
1164 case Parameters::TARGET_32_LITTLE:
1165 this->do_sized_write<32, false>(oview);
1166 break;
1167 #endif
1168 #ifdef HAVE_TARGET_32_BIG
1169 case Parameters::TARGET_32_BIG:
1170 this->do_sized_write<32, true>(oview);
1171 break;
1172 #endif
1173 #ifdef HAVE_TARGET_64_LITTLE
1174 case Parameters::TARGET_64_LITTLE:
1175 this->do_sized_write<64, false>(oview);
1176 break;
1177 #endif
1178 #ifdef HAVE_TARGET_64_BIG
1179 case Parameters::TARGET_64_BIG:
1180 this->do_sized_write<64, true>(oview);
1181 break;
1182 #endif
1183 default:
1184 gold_unreachable();
1185 }
1186
1187 of->write_output_view(offset, oview_size, oview);
1188 }
1189
1190 // Write the data to the output file--template version.
1191
1192 template<int size, bool big_endian>
1193 void
1194 Eh_frame::do_sized_write(unsigned char* oview)
1195 {
1196 uint64_t address = this->address();
1197 unsigned int addralign = this->addralign();
1198 section_offset_type o = 0;
1199 Post_fdes post_fdes;
1200 for (Unmergeable_cie_offsets::iterator p =
1201 this->unmergeable_cie_offsets_.begin();
1202 p != this->unmergeable_cie_offsets_.end();
1203 ++p)
1204 o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1205 this->eh_frame_hdr_, &post_fdes);
1206 for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1207 p != this->cie_offsets_.end();
1208 ++p)
1209 o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1210 this->eh_frame_hdr_, &post_fdes);
1211 for (Post_fdes::iterator p = post_fdes.begin();
1212 p != post_fdes.end();
1213 ++p)
1214 {
1215 o = (*p)->fde->write<size, big_endian>(oview, o, address, addralign,
1216 (*p)->cie_offset,
1217 (*p)->fde_encoding,
1218 this->eh_frame_hdr_);
1219 delete *p;
1220 }
1221 }
1222
1223 #ifdef HAVE_TARGET_32_LITTLE
1224 template
1225 bool
1226 Eh_frame::add_ehframe_input_section<32, false>(
1227 Sized_relobj_file<32, false>* object,
1228 const unsigned char* symbols,
1229 section_size_type symbols_size,
1230 const unsigned char* symbol_names,
1231 section_size_type symbol_names_size,
1232 unsigned int shndx,
1233 unsigned int reloc_shndx,
1234 unsigned int reloc_type);
1235 #endif
1236
1237 #ifdef HAVE_TARGET_32_BIG
1238 template
1239 bool
1240 Eh_frame::add_ehframe_input_section<32, true>(
1241 Sized_relobj_file<32, true>* object,
1242 const unsigned char* symbols,
1243 section_size_type symbols_size,
1244 const unsigned char* symbol_names,
1245 section_size_type symbol_names_size,
1246 unsigned int shndx,
1247 unsigned int reloc_shndx,
1248 unsigned int reloc_type);
1249 #endif
1250
1251 #ifdef HAVE_TARGET_64_LITTLE
1252 template
1253 bool
1254 Eh_frame::add_ehframe_input_section<64, false>(
1255 Sized_relobj_file<64, false>* object,
1256 const unsigned char* symbols,
1257 section_size_type symbols_size,
1258 const unsigned char* symbol_names,
1259 section_size_type symbol_names_size,
1260 unsigned int shndx,
1261 unsigned int reloc_shndx,
1262 unsigned int reloc_type);
1263 #endif
1264
1265 #ifdef HAVE_TARGET_64_BIG
1266 template
1267 bool
1268 Eh_frame::add_ehframe_input_section<64, true>(
1269 Sized_relobj_file<64, true>* object,
1270 const unsigned char* symbols,
1271 section_size_type symbols_size,
1272 const unsigned char* symbol_names,
1273 section_size_type symbol_names_size,
1274 unsigned int shndx,
1275 unsigned int reloc_shndx,
1276 unsigned int reloc_type);
1277 #endif
1278
1279 } // End namespace gold.
This page took 0.056011 seconds and 5 git commands to generate.