Track sections for expressions.
[deliverable/binutils-gdb.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment. The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols. We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53 // The symbol table.
54 const Symbol_table* symtab;
55 // The layout--we use this to get section information.
56 const Layout* layout;
57 // Whether expressions can refer to the dot symbol. The dot symbol
58 // is only available within a SECTIONS clause.
59 bool is_dot_available;
60 // The current value of the dot symbol.
61 uint64_t dot_value;
62 // The section in which the dot symbol is defined; this is NULL if
63 // it is absolute.
64 Output_section* dot_section;
65 // Points to where the section of the result should be stored.
66 Output_section** result_section_pointer;
67 };
68
69 // Evaluate an expression.
70
71 uint64_t
72 Expression::eval(const Symbol_table* symtab, const Layout* layout)
73 {
74 Output_section* dummy;
75 return this->eval_maybe_dot(symtab, layout, false, 0, NULL, &dummy);
76 }
77
78 // Evaluate an expression which may refer to the dot symbol.
79
80 uint64_t
81 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
82 uint64_t dot_value, Output_section* dot_section,
83 Output_section** result_section_pointer)
84 {
85 return this->eval_maybe_dot(symtab, layout, true, dot_value, dot_section,
86 result_section_pointer);
87 }
88
89 // Evaluate an expression which may or may not refer to the dot
90 // symbol.
91
92 uint64_t
93 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
94 bool is_dot_available, uint64_t dot_value,
95 Output_section* dot_section,
96 Output_section** result_section_pointer)
97 {
98 Expression_eval_info eei;
99 eei.symtab = symtab;
100 eei.layout = layout;
101 eei.is_dot_available = is_dot_available;
102 eei.dot_value = dot_value;
103 eei.dot_section = dot_section;
104
105 // We assume the value is absolute, and only set this to a section
106 // if we find a section relative reference.
107 *result_section_pointer = NULL;
108 eei.result_section_pointer = result_section_pointer;
109
110 return this->value(&eei);
111 }
112
113 // A number.
114
115 class Integer_expression : public Expression
116 {
117 public:
118 Integer_expression(uint64_t val)
119 : val_(val)
120 { }
121
122 uint64_t
123 value(const Expression_eval_info*)
124 { return this->val_; }
125
126 void
127 print(FILE* f) const
128 { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
129
130 private:
131 uint64_t val_;
132 };
133
134 extern "C" Expression*
135 script_exp_integer(uint64_t val)
136 {
137 return new Integer_expression(val);
138 }
139
140 // An expression whose value is the value of a symbol.
141
142 class Symbol_expression : public Expression
143 {
144 public:
145 Symbol_expression(const char* name, size_t length)
146 : name_(name, length)
147 { }
148
149 uint64_t
150 value(const Expression_eval_info*);
151
152 void
153 print(FILE* f) const
154 { fprintf(f, "%s", this->name_.c_str()); }
155
156 private:
157 std::string name_;
158 };
159
160 uint64_t
161 Symbol_expression::value(const Expression_eval_info* eei)
162 {
163 Symbol* sym = eei->symtab->lookup(this->name_.c_str());
164 if (sym == NULL || !sym->is_defined())
165 {
166 gold_error(_("undefined symbol '%s' referenced in expression"),
167 this->name_.c_str());
168 return 0;
169 }
170
171 *eei->result_section_pointer = sym->output_section();
172
173 if (parameters->get_size() == 32)
174 return eei->symtab->get_sized_symbol<32>(sym)->value();
175 else if (parameters->get_size() == 64)
176 return eei->symtab->get_sized_symbol<64>(sym)->value();
177 else
178 gold_unreachable();
179 }
180
181 // An expression whose value is the value of the special symbol ".".
182 // This is only valid within a SECTIONS clause.
183
184 class Dot_expression : public Expression
185 {
186 public:
187 Dot_expression()
188 { }
189
190 uint64_t
191 value(const Expression_eval_info*);
192
193 void
194 print(FILE* f) const
195 { fprintf(f, "."); }
196 };
197
198 uint64_t
199 Dot_expression::value(const Expression_eval_info* eei)
200 {
201 if (!eei->is_dot_available)
202 {
203 gold_error(_("invalid reference to dot symbol outside of "
204 "SECTIONS clause"));
205 return 0;
206 }
207 *eei->result_section_pointer = eei->dot_section;
208 return eei->dot_value;
209 }
210
211 // A string. This is either the name of a symbol, or ".".
212
213 extern "C" Expression*
214 script_exp_string(const char* name, size_t length)
215 {
216 if (length == 1 && name[0] == '.')
217 return new Dot_expression();
218 else
219 return new Symbol_expression(name, length);
220 }
221
222 // A unary expression.
223
224 class Unary_expression : public Expression
225 {
226 public:
227 Unary_expression(Expression* arg)
228 : arg_(arg)
229 { }
230
231 ~Unary_expression()
232 { delete this->arg_; }
233
234 protected:
235 uint64_t
236 arg_value(const Expression_eval_info* eei,
237 Output_section** arg_section_pointer) const
238 {
239 return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
240 eei->is_dot_available,
241 eei->dot_value,
242 eei->dot_section,
243 arg_section_pointer);
244 }
245
246 void
247 arg_print(FILE* f) const
248 { this->arg_->print(f); }
249
250 private:
251 Expression* arg_;
252 };
253
254 // Handle unary operators. We use a preprocessor macro as a hack to
255 // capture the C operator.
256
257 #define UNARY_EXPRESSION(NAME, OPERATOR) \
258 class Unary_ ## NAME : public Unary_expression \
259 { \
260 public: \
261 Unary_ ## NAME(Expression* arg) \
262 : Unary_expression(arg) \
263 { } \
264 \
265 uint64_t \
266 value(const Expression_eval_info* eei) \
267 { \
268 Output_section* arg_section; \
269 uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
270 if (arg_section != NULL && parameters->output_is_object()) \
271 gold_warning(_("unary " #NAME " applied to section " \
272 "relative value")); \
273 return ret; \
274 } \
275 \
276 void \
277 print(FILE* f) const \
278 { \
279 fprintf(f, "(%s ", #OPERATOR); \
280 this->arg_print(f); \
281 fprintf(f, ")"); \
282 } \
283 }; \
284 \
285 extern "C" Expression* \
286 script_exp_unary_ ## NAME(Expression* arg) \
287 { \
288 return new Unary_ ## NAME(arg); \
289 }
290
291 UNARY_EXPRESSION(minus, -)
292 UNARY_EXPRESSION(logical_not, !)
293 UNARY_EXPRESSION(bitwise_not, ~)
294
295 // A binary expression.
296
297 class Binary_expression : public Expression
298 {
299 public:
300 Binary_expression(Expression* left, Expression* right)
301 : left_(left), right_(right)
302 { }
303
304 ~Binary_expression()
305 {
306 delete this->left_;
307 delete this->right_;
308 }
309
310 protected:
311 uint64_t
312 left_value(const Expression_eval_info* eei,
313 Output_section** section_pointer) const
314 {
315 return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
316 eei->is_dot_available,
317 eei->dot_value,
318 eei->dot_section,
319 section_pointer);
320 }
321
322 uint64_t
323 right_value(const Expression_eval_info* eei,
324 Output_section** section_pointer) const
325 {
326 return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
327 eei->is_dot_available,
328 eei->dot_value,
329 eei->dot_section,
330 section_pointer);
331 }
332
333 void
334 left_print(FILE* f) const
335 { this->left_->print(f); }
336
337 void
338 right_print(FILE* f) const
339 { this->right_->print(f); }
340
341 // This is a call to function FUNCTION_NAME. Print it. This is for
342 // debugging.
343 void
344 print_function(FILE* f, const char *function_name) const
345 {
346 fprintf(f, "%s(", function_name);
347 this->left_print(f);
348 fprintf(f, ", ");
349 this->right_print(f);
350 fprintf(f, ")");
351 }
352
353 private:
354 Expression* left_;
355 Expression* right_;
356 };
357
358 // Handle binary operators. We use a preprocessor macro as a hack to
359 // capture the C operator. KEEP_LEFT means that if the left operand
360 // is section relative and the right operand is not, the result uses
361 // the same section as the left operand. KEEP_RIGHT is the same with
362 // left and right swapped. IS_DIV means that we need to give an error
363 // if the right operand is zero. WARN means that we should warn if
364 // used on section relative values in a relocatable link. We always
365 // warn if used on values in different sections in a relocatable link.
366
367 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
368 class Binary_ ## NAME : public Binary_expression \
369 { \
370 public: \
371 Binary_ ## NAME(Expression* left, Expression* right) \
372 : Binary_expression(left, right) \
373 { } \
374 \
375 uint64_t \
376 value(const Expression_eval_info* eei) \
377 { \
378 Output_section* left_section; \
379 uint64_t left = this->left_value(eei, &left_section); \
380 Output_section* right_section; \
381 uint64_t right = this->right_value(eei, &right_section); \
382 if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
383 *eei->result_section_pointer = right_section; \
384 else if (KEEP_LEFT \
385 && left_section != NULL \
386 && right_section == NULL) \
387 *eei->result_section_pointer = left_section; \
388 else if ((WARN || left_section != right_section) \
389 && (left_section != NULL || right_section != NULL) \
390 && parameters->output_is_object()) \
391 gold_warning(_("binary " #NAME " applied to section " \
392 "relative value")); \
393 if (IS_DIV && right == 0) \
394 { \
395 gold_error(_(#NAME " by zero")); \
396 return 0; \
397 } \
398 return left OPERATOR right; \
399 } \
400 \
401 void \
402 print(FILE* f) const \
403 { \
404 fprintf(f, "("); \
405 this->left_print(f); \
406 fprintf(f, " %s ", #OPERATOR); \
407 this->right_print(f); \
408 fprintf(f, ")"); \
409 } \
410 }; \
411 \
412 extern "C" Expression* \
413 script_exp_binary_ ## NAME(Expression* left, Expression* right) \
414 { \
415 return new Binary_ ## NAME(left, right); \
416 }
417
418 BINARY_EXPRESSION(mult, *, false, false, false, true)
419 BINARY_EXPRESSION(div, /, false, false, true, true)
420 BINARY_EXPRESSION(mod, %, false, false, true, true)
421 BINARY_EXPRESSION(add, +, true, true, false, true)
422 BINARY_EXPRESSION(sub, -, true, false, false, false)
423 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
424 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
425 BINARY_EXPRESSION(eq, ==, false, false, false, false)
426 BINARY_EXPRESSION(ne, !=, false, false, false, false)
427 BINARY_EXPRESSION(le, <=, false, false, false, false)
428 BINARY_EXPRESSION(ge, >=, false, false, false, false)
429 BINARY_EXPRESSION(lt, <, false, false, false, false)
430 BINARY_EXPRESSION(gt, >, false, false, false, false)
431 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
432 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
433 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
434 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
435 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
436
437 // A trinary expression.
438
439 class Trinary_expression : public Expression
440 {
441 public:
442 Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
443 : arg1_(arg1), arg2_(arg2), arg3_(arg3)
444 { }
445
446 ~Trinary_expression()
447 {
448 delete this->arg1_;
449 delete this->arg2_;
450 delete this->arg3_;
451 }
452
453 protected:
454 uint64_t
455 arg1_value(const Expression_eval_info* eei,
456 Output_section** section_pointer) const
457 {
458 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
459 eei->is_dot_available,
460 eei->dot_value,
461 eei->dot_section,
462 section_pointer);
463 }
464
465 uint64_t
466 arg2_value(const Expression_eval_info* eei,
467 Output_section** section_pointer) const
468 {
469 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
470 eei->is_dot_available,
471 eei->dot_value,
472 eei->dot_section,
473 section_pointer);
474 }
475
476 uint64_t
477 arg3_value(const Expression_eval_info* eei,
478 Output_section** section_pointer) const
479 {
480 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
481 eei->is_dot_available,
482 eei->dot_value,
483 eei->dot_section,
484 section_pointer);
485 }
486
487 void
488 arg1_print(FILE* f) const
489 { this->arg1_->print(f); }
490
491 void
492 arg2_print(FILE* f) const
493 { this->arg2_->print(f); }
494
495 void
496 arg3_print(FILE* f) const
497 { this->arg3_->print(f); }
498
499 private:
500 Expression* arg1_;
501 Expression* arg2_;
502 Expression* arg3_;
503 };
504
505 // The conditional operator.
506
507 class Trinary_cond : public Trinary_expression
508 {
509 public:
510 Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
511 : Trinary_expression(arg1, arg2, arg3)
512 { }
513
514 uint64_t
515 value(const Expression_eval_info* eei)
516 {
517 Output_section* arg1_section;
518 uint64_t arg1 = this->arg1_value(eei, &arg1_section);
519 return (arg1
520 ? this->arg2_value(eei, eei->result_section_pointer)
521 : this->arg3_value(eei, eei->result_section_pointer));
522 }
523
524 void
525 print(FILE* f) const
526 {
527 fprintf(f, "(");
528 this->arg1_print(f);
529 fprintf(f, " ? ");
530 this->arg2_print(f);
531 fprintf(f, " : ");
532 this->arg3_print(f);
533 fprintf(f, ")");
534 }
535 };
536
537 extern "C" Expression*
538 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
539 {
540 return new Trinary_cond(arg1, arg2, arg3);
541 }
542
543 // Max function.
544
545 class Max_expression : public Binary_expression
546 {
547 public:
548 Max_expression(Expression* left, Expression* right)
549 : Binary_expression(left, right)
550 { }
551
552 uint64_t
553 value(const Expression_eval_info* eei)
554 {
555 Output_section* left_section;
556 uint64_t left = this->left_value(eei, &left_section);
557 Output_section* right_section;
558 uint64_t right = this->right_value(eei, &right_section);
559 if (left_section == right_section)
560 *eei->result_section_pointer = left_section;
561 else if ((left_section != NULL || right_section != NULL)
562 && parameters->output_is_object())
563 gold_warning(_("max applied to section relative value"));
564 return std::max(left, right);
565 }
566
567 void
568 print(FILE* f) const
569 { this->print_function(f, "MAX"); }
570 };
571
572 extern "C" Expression*
573 script_exp_function_max(Expression* left, Expression* right)
574 {
575 return new Max_expression(left, right);
576 }
577
578 // Min function.
579
580 class Min_expression : public Binary_expression
581 {
582 public:
583 Min_expression(Expression* left, Expression* right)
584 : Binary_expression(left, right)
585 { }
586
587 uint64_t
588 value(const Expression_eval_info* eei)
589 {
590 Output_section* left_section;
591 uint64_t left = this->left_value(eei, &left_section);
592 Output_section* right_section;
593 uint64_t right = this->right_value(eei, &right_section);
594 if (left_section == right_section)
595 *eei->result_section_pointer = left_section;
596 else if ((left_section != NULL || right_section != NULL)
597 && parameters->output_is_object())
598 gold_warning(_("min applied to section relative value"));
599 return std::min(left, right);
600 }
601
602 void
603 print(FILE* f) const
604 { this->print_function(f, "MIN"); }
605 };
606
607 extern "C" Expression*
608 script_exp_function_min(Expression* left, Expression* right)
609 {
610 return new Min_expression(left, right);
611 }
612
613 // Align function.
614
615 class Align_expression : public Binary_expression
616 {
617 public:
618 Align_expression(Expression* left, Expression* right)
619 : Binary_expression(left, right)
620 { }
621
622 uint64_t
623 value(const Expression_eval_info* eei)
624 {
625 Output_section* align_section;
626 uint64_t align = this->right_value(eei, &align_section);
627 if (align_section != NULL
628 && parameters->output_is_object())
629 gold_warning(_("aligning to section relative value"));
630
631 uint64_t value = this->left_value(eei, eei->result_section_pointer);
632 if (align <= 1)
633 return value;
634 return ((value + align - 1) / align) * align;
635 }
636
637 void
638 print(FILE* f) const
639 { this->print_function(f, "ALIGN"); }
640 };
641
642 extern "C" Expression*
643 script_exp_function_align(Expression* left, Expression* right)
644 {
645 return new Align_expression(left, right);
646 }
647
648 // Assert function.
649
650 class Assert_expression : public Unary_expression
651 {
652 public:
653 Assert_expression(Expression* arg, const char* message, size_t length)
654 : Unary_expression(arg), message_(message, length)
655 { }
656
657 uint64_t
658 value(const Expression_eval_info* eei)
659 {
660 uint64_t value = this->arg_value(eei, eei->result_section_pointer);
661 if (!value)
662 gold_error("%s", this->message_.c_str());
663 return value;
664 }
665
666 void
667 print(FILE* f) const
668 {
669 fprintf(f, "ASSERT(");
670 this->arg_print(f);
671 fprintf(f, ", %s)", this->message_.c_str());
672 }
673
674 private:
675 std::string message_;
676 };
677
678 extern "C" Expression*
679 script_exp_function_assert(Expression* expr, const char* message,
680 size_t length)
681 {
682 return new Assert_expression(expr, message, length);
683 }
684
685 // Addr function.
686
687 class Addr_expression : public Expression
688 {
689 public:
690 Addr_expression(const char* section_name, size_t section_name_len)
691 : section_name_(section_name, section_name_len)
692 { }
693
694 uint64_t
695 value(const Expression_eval_info*);
696
697 void
698 print(FILE* f) const
699 { fprintf(f, "ADDR(%s)", this->section_name_.c_str()); }
700
701 private:
702 std::string section_name_;
703 };
704
705 uint64_t
706 Addr_expression::value(const Expression_eval_info* eei)
707 {
708 const char* section_name = this->section_name_.c_str();
709 Output_section* os = eei->layout->find_output_section(section_name);
710 if (os == NULL)
711 {
712 gold_error("ADDR called on nonexistent output section '%s'",
713 section_name);
714 return 0;
715 }
716
717 *eei->result_section_pointer = os;
718
719 return os->address();
720 }
721
722 extern "C" Expression*
723 script_exp_function_addr(const char* section_name, size_t section_name_len)
724 {
725 return new Addr_expression(section_name, section_name_len);
726 }
727
728 // CONSTANT. It would be nice if we could simply evaluate this
729 // immediately and return an Integer_expression, but unfortunately we
730 // don't know the target.
731
732 class Constant_expression : public Expression
733 {
734 public:
735 Constant_expression(const char* name, size_t length);
736
737 uint64_t
738 value(const Expression_eval_info*);
739
740 void
741 print(FILE* f) const;
742
743 private:
744 enum Constant_function
745 {
746 CONSTANT_MAXPAGESIZE,
747 CONSTANT_COMMONPAGESIZE
748 };
749
750 Constant_function function_;
751 };
752
753 Constant_expression::Constant_expression(const char* name, size_t length)
754 {
755 if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
756 this->function_ = CONSTANT_MAXPAGESIZE;
757 else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
758 this->function_ = CONSTANT_COMMONPAGESIZE;
759 else
760 {
761 std::string s(name, length);
762 gold_error(_("unknown constant %s"), s.c_str());
763 this->function_ = CONSTANT_MAXPAGESIZE;
764 }
765 }
766
767 uint64_t
768 Constant_expression::value(const Expression_eval_info*)
769 {
770 switch (this->function_)
771 {
772 case CONSTANT_MAXPAGESIZE:
773 return parameters->target()->abi_pagesize();
774 case CONSTANT_COMMONPAGESIZE:
775 return parameters->target()->common_pagesize();
776 default:
777 gold_unreachable();
778 }
779 }
780
781 void
782 Constant_expression::print(FILE* f) const
783 {
784 const char* name;
785 switch (this->function_)
786 {
787 case CONSTANT_MAXPAGESIZE:
788 name = "MAXPAGESIZE";
789 break;
790 case CONSTANT_COMMONPAGESIZE:
791 name = "COMMONPAGESIZE";
792 break;
793 default:
794 gold_unreachable();
795 }
796 fprintf(f, "CONSTANT(%s)", name);
797 }
798
799 extern "C" Expression*
800 script_exp_function_constant(const char* name, size_t length)
801 {
802 return new Constant_expression(name, length);
803 }
804
805 // DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
806 // back to the general case.
807
808 extern "C" Expression*
809 script_exp_function_data_segment_align(Expression* left, Expression*)
810 {
811 Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
812 Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
813 Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
814 e2);
815 return script_exp_binary_add(e1, e3);
816 }
817
818 // DATA_SEGMENT_RELRO. FIXME: This is not implemented.
819
820 extern "C" Expression*
821 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
822 {
823 return right;
824 }
825
826 // DATA_SEGMENT_END. FIXME: This is not implemented.
827
828 extern "C" Expression*
829 script_exp_function_data_segment_end(Expression* val)
830 {
831 return val;
832 }
833
834 // SIZEOF_HEADERS.
835
836 class Sizeof_headers_expression : public Expression
837 {
838 public:
839 Sizeof_headers_expression()
840 { }
841
842 uint64_t
843 value(const Expression_eval_info*);
844
845 void
846 print(FILE* f) const
847 { fprintf(f, "SIZEOF_HEADERS"); }
848 };
849
850 uint64_t
851 Sizeof_headers_expression::value(const Expression_eval_info* eei)
852 {
853 unsigned int ehdr_size;
854 unsigned int phdr_size;
855 if (parameters->get_size() == 32)
856 {
857 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
858 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
859 }
860 else if (parameters->get_size() == 64)
861 {
862 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
863 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
864 }
865 else
866 gold_unreachable();
867
868 return ehdr_size + phdr_size * eei->layout->expected_segment_count();
869 }
870
871 extern "C" Expression*
872 script_exp_function_sizeof_headers()
873 {
874 return new Sizeof_headers_expression();
875 }
876
877 // Functions.
878
879 extern "C" Expression*
880 script_exp_function_defined(const char*, size_t)
881 {
882 gold_fatal(_("DEFINED not implemented"));
883 }
884
885 extern "C" Expression*
886 script_exp_function_alignof(const char*, size_t)
887 {
888 gold_fatal(_("ALIGNOF not implemented"));
889 }
890
891 extern "C" Expression*
892 script_exp_function_sizeof(const char*, size_t)
893 {
894 gold_fatal(_("SIZEOF not implemented"));
895 }
896
897 extern "C" Expression*
898 script_exp_function_loadaddr(const char*, size_t)
899 {
900 gold_fatal(_("LOADADDR not implemented"));
901 }
902
903 extern "C" Expression*
904 script_exp_function_origin(const char*, size_t)
905 {
906 gold_fatal(_("ORIGIN not implemented"));
907 }
908
909 extern "C" Expression*
910 script_exp_function_length(const char*, size_t)
911 {
912 gold_fatal(_("LENGTH not implemented"));
913 }
914
915 extern "C" Expression*
916 script_exp_function_absolute(Expression*)
917 {
918 gold_fatal(_("ABSOLUTE not implemented"));
919 }
920
921 extern "C" Expression*
922 script_exp_function_segment_start(const char*, size_t, Expression*)
923 {
924 gold_fatal(_("SEGMENT_START not implemented"));
925 }
926
927 } // End namespace gold.
This page took 0.049282 seconds and 5 git commands to generate.