Don't check assertions until symbols are finalized. Create an output
[deliverable/binutils-gdb.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment. The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols. We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53 // The symbol table.
54 const Symbol_table* symtab;
55 // The layout--we use this to get section information.
56 const Layout* layout;
57 // Whether to check assertions.
58 bool check_assertions;
59 // Whether expressions can refer to the dot symbol. The dot symbol
60 // is only available within a SECTIONS clause.
61 bool is_dot_available;
62 // The current value of the dot symbol.
63 uint64_t dot_value;
64 // The section in which the dot symbol is defined; this is NULL if
65 // it is absolute.
66 Output_section* dot_section;
67 // Points to where the section of the result should be stored.
68 Output_section** result_section_pointer;
69 };
70
71 // Evaluate an expression.
72
73 uint64_t
74 Expression::eval(const Symbol_table* symtab, const Layout* layout,
75 bool check_assertions)
76 {
77 Output_section* dummy;
78 return this->eval_maybe_dot(symtab, layout, check_assertions,
79 false, 0, NULL, &dummy);
80 }
81
82 // Evaluate an expression which may refer to the dot symbol.
83
84 uint64_t
85 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
86 bool check_assertions, uint64_t dot_value,
87 Output_section* dot_section,
88 Output_section** result_section_pointer)
89 {
90 return this->eval_maybe_dot(symtab, layout, check_assertions, true,
91 dot_value, dot_section, result_section_pointer);
92 }
93
94 // Evaluate an expression which may or may not refer to the dot
95 // symbol.
96
97 uint64_t
98 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
99 bool check_assertions, bool is_dot_available,
100 uint64_t dot_value, Output_section* dot_section,
101 Output_section** result_section_pointer)
102 {
103 Expression_eval_info eei;
104 eei.symtab = symtab;
105 eei.layout = layout;
106 eei.check_assertions = check_assertions;
107 eei.is_dot_available = is_dot_available;
108 eei.dot_value = dot_value;
109 eei.dot_section = dot_section;
110
111 // We assume the value is absolute, and only set this to a section
112 // if we find a section relative reference.
113 *result_section_pointer = NULL;
114 eei.result_section_pointer = result_section_pointer;
115
116 return this->value(&eei);
117 }
118
119 // A number.
120
121 class Integer_expression : public Expression
122 {
123 public:
124 Integer_expression(uint64_t val)
125 : val_(val)
126 { }
127
128 uint64_t
129 value(const Expression_eval_info*)
130 { return this->val_; }
131
132 void
133 print(FILE* f) const
134 { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
135
136 private:
137 uint64_t val_;
138 };
139
140 extern "C" Expression*
141 script_exp_integer(uint64_t val)
142 {
143 return new Integer_expression(val);
144 }
145
146 // An expression whose value is the value of a symbol.
147
148 class Symbol_expression : public Expression
149 {
150 public:
151 Symbol_expression(const char* name, size_t length)
152 : name_(name, length)
153 { }
154
155 uint64_t
156 value(const Expression_eval_info*);
157
158 void
159 print(FILE* f) const
160 { fprintf(f, "%s", this->name_.c_str()); }
161
162 private:
163 std::string name_;
164 };
165
166 uint64_t
167 Symbol_expression::value(const Expression_eval_info* eei)
168 {
169 Symbol* sym = eei->symtab->lookup(this->name_.c_str());
170 if (sym == NULL || !sym->is_defined())
171 {
172 gold_error(_("undefined symbol '%s' referenced in expression"),
173 this->name_.c_str());
174 return 0;
175 }
176
177 *eei->result_section_pointer = sym->output_section();
178
179 if (parameters->target().get_size() == 32)
180 return eei->symtab->get_sized_symbol<32>(sym)->value();
181 else if (parameters->target().get_size() == 64)
182 return eei->symtab->get_sized_symbol<64>(sym)->value();
183 else
184 gold_unreachable();
185 }
186
187 // An expression whose value is the value of the special symbol ".".
188 // This is only valid within a SECTIONS clause.
189
190 class Dot_expression : public Expression
191 {
192 public:
193 Dot_expression()
194 { }
195
196 uint64_t
197 value(const Expression_eval_info*);
198
199 void
200 print(FILE* f) const
201 { fprintf(f, "."); }
202 };
203
204 uint64_t
205 Dot_expression::value(const Expression_eval_info* eei)
206 {
207 if (!eei->is_dot_available)
208 {
209 gold_error(_("invalid reference to dot symbol outside of "
210 "SECTIONS clause"));
211 return 0;
212 }
213 *eei->result_section_pointer = eei->dot_section;
214 return eei->dot_value;
215 }
216
217 // A string. This is either the name of a symbol, or ".".
218
219 extern "C" Expression*
220 script_exp_string(const char* name, size_t length)
221 {
222 if (length == 1 && name[0] == '.')
223 return new Dot_expression();
224 else
225 return new Symbol_expression(name, length);
226 }
227
228 // A unary expression.
229
230 class Unary_expression : public Expression
231 {
232 public:
233 Unary_expression(Expression* arg)
234 : arg_(arg)
235 { }
236
237 ~Unary_expression()
238 { delete this->arg_; }
239
240 protected:
241 uint64_t
242 arg_value(const Expression_eval_info* eei,
243 Output_section** arg_section_pointer) const
244 {
245 return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
246 eei->check_assertions,
247 eei->is_dot_available,
248 eei->dot_value,
249 eei->dot_section,
250 arg_section_pointer);
251 }
252
253 void
254 arg_print(FILE* f) const
255 { this->arg_->print(f); }
256
257 private:
258 Expression* arg_;
259 };
260
261 // Handle unary operators. We use a preprocessor macro as a hack to
262 // capture the C operator.
263
264 #define UNARY_EXPRESSION(NAME, OPERATOR) \
265 class Unary_ ## NAME : public Unary_expression \
266 { \
267 public: \
268 Unary_ ## NAME(Expression* arg) \
269 : Unary_expression(arg) \
270 { } \
271 \
272 uint64_t \
273 value(const Expression_eval_info* eei) \
274 { \
275 Output_section* arg_section; \
276 uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
277 if (arg_section != NULL && parameters->options().relocatable()) \
278 gold_warning(_("unary " #NAME " applied to section " \
279 "relative value")); \
280 return ret; \
281 } \
282 \
283 void \
284 print(FILE* f) const \
285 { \
286 fprintf(f, "(%s ", #OPERATOR); \
287 this->arg_print(f); \
288 fprintf(f, ")"); \
289 } \
290 }; \
291 \
292 extern "C" Expression* \
293 script_exp_unary_ ## NAME(Expression* arg) \
294 { \
295 return new Unary_ ## NAME(arg); \
296 }
297
298 UNARY_EXPRESSION(minus, -)
299 UNARY_EXPRESSION(logical_not, !)
300 UNARY_EXPRESSION(bitwise_not, ~)
301
302 // A binary expression.
303
304 class Binary_expression : public Expression
305 {
306 public:
307 Binary_expression(Expression* left, Expression* right)
308 : left_(left), right_(right)
309 { }
310
311 ~Binary_expression()
312 {
313 delete this->left_;
314 delete this->right_;
315 }
316
317 protected:
318 uint64_t
319 left_value(const Expression_eval_info* eei,
320 Output_section** section_pointer) const
321 {
322 return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
323 eei->check_assertions,
324 eei->is_dot_available,
325 eei->dot_value,
326 eei->dot_section,
327 section_pointer);
328 }
329
330 uint64_t
331 right_value(const Expression_eval_info* eei,
332 Output_section** section_pointer) const
333 {
334 return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
335 eei->check_assertions,
336 eei->is_dot_available,
337 eei->dot_value,
338 eei->dot_section,
339 section_pointer);
340 }
341
342 void
343 left_print(FILE* f) const
344 { this->left_->print(f); }
345
346 void
347 right_print(FILE* f) const
348 { this->right_->print(f); }
349
350 // This is a call to function FUNCTION_NAME. Print it. This is for
351 // debugging.
352 void
353 print_function(FILE* f, const char *function_name) const
354 {
355 fprintf(f, "%s(", function_name);
356 this->left_print(f);
357 fprintf(f, ", ");
358 this->right_print(f);
359 fprintf(f, ")");
360 }
361
362 private:
363 Expression* left_;
364 Expression* right_;
365 };
366
367 // Handle binary operators. We use a preprocessor macro as a hack to
368 // capture the C operator. KEEP_LEFT means that if the left operand
369 // is section relative and the right operand is not, the result uses
370 // the same section as the left operand. KEEP_RIGHT is the same with
371 // left and right swapped. IS_DIV means that we need to give an error
372 // if the right operand is zero. WARN means that we should warn if
373 // used on section relative values in a relocatable link. We always
374 // warn if used on values in different sections in a relocatable link.
375
376 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
377 class Binary_ ## NAME : public Binary_expression \
378 { \
379 public: \
380 Binary_ ## NAME(Expression* left, Expression* right) \
381 : Binary_expression(left, right) \
382 { } \
383 \
384 uint64_t \
385 value(const Expression_eval_info* eei) \
386 { \
387 Output_section* left_section; \
388 uint64_t left = this->left_value(eei, &left_section); \
389 Output_section* right_section; \
390 uint64_t right = this->right_value(eei, &right_section); \
391 if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
392 *eei->result_section_pointer = right_section; \
393 else if (KEEP_LEFT \
394 && left_section != NULL \
395 && right_section == NULL) \
396 *eei->result_section_pointer = left_section; \
397 else if ((WARN || left_section != right_section) \
398 && (left_section != NULL || right_section != NULL) \
399 && parameters->options().relocatable()) \
400 gold_warning(_("binary " #NAME " applied to section " \
401 "relative value")); \
402 if (IS_DIV && right == 0) \
403 { \
404 gold_error(_(#NAME " by zero")); \
405 return 0; \
406 } \
407 return left OPERATOR right; \
408 } \
409 \
410 void \
411 print(FILE* f) const \
412 { \
413 fprintf(f, "("); \
414 this->left_print(f); \
415 fprintf(f, " %s ", #OPERATOR); \
416 this->right_print(f); \
417 fprintf(f, ")"); \
418 } \
419 }; \
420 \
421 extern "C" Expression* \
422 script_exp_binary_ ## NAME(Expression* left, Expression* right) \
423 { \
424 return new Binary_ ## NAME(left, right); \
425 }
426
427 BINARY_EXPRESSION(mult, *, false, false, false, true)
428 BINARY_EXPRESSION(div, /, false, false, true, true)
429 BINARY_EXPRESSION(mod, %, false, false, true, true)
430 BINARY_EXPRESSION(add, +, true, true, false, true)
431 BINARY_EXPRESSION(sub, -, true, false, false, false)
432 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
433 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
434 BINARY_EXPRESSION(eq, ==, false, false, false, false)
435 BINARY_EXPRESSION(ne, !=, false, false, false, false)
436 BINARY_EXPRESSION(le, <=, false, false, false, false)
437 BINARY_EXPRESSION(ge, >=, false, false, false, false)
438 BINARY_EXPRESSION(lt, <, false, false, false, false)
439 BINARY_EXPRESSION(gt, >, false, false, false, false)
440 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
441 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
442 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
443 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
444 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
445
446 // A trinary expression.
447
448 class Trinary_expression : public Expression
449 {
450 public:
451 Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
452 : arg1_(arg1), arg2_(arg2), arg3_(arg3)
453 { }
454
455 ~Trinary_expression()
456 {
457 delete this->arg1_;
458 delete this->arg2_;
459 delete this->arg3_;
460 }
461
462 protected:
463 uint64_t
464 arg1_value(const Expression_eval_info* eei,
465 Output_section** section_pointer) const
466 {
467 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
468 eei->check_assertions,
469 eei->is_dot_available,
470 eei->dot_value,
471 eei->dot_section,
472 section_pointer);
473 }
474
475 uint64_t
476 arg2_value(const Expression_eval_info* eei,
477 Output_section** section_pointer) const
478 {
479 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
480 eei->check_assertions,
481 eei->is_dot_available,
482 eei->dot_value,
483 eei->dot_section,
484 section_pointer);
485 }
486
487 uint64_t
488 arg3_value(const Expression_eval_info* eei,
489 Output_section** section_pointer) const
490 {
491 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
492 eei->check_assertions,
493 eei->is_dot_available,
494 eei->dot_value,
495 eei->dot_section,
496 section_pointer);
497 }
498
499 void
500 arg1_print(FILE* f) const
501 { this->arg1_->print(f); }
502
503 void
504 arg2_print(FILE* f) const
505 { this->arg2_->print(f); }
506
507 void
508 arg3_print(FILE* f) const
509 { this->arg3_->print(f); }
510
511 private:
512 Expression* arg1_;
513 Expression* arg2_;
514 Expression* arg3_;
515 };
516
517 // The conditional operator.
518
519 class Trinary_cond : public Trinary_expression
520 {
521 public:
522 Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
523 : Trinary_expression(arg1, arg2, arg3)
524 { }
525
526 uint64_t
527 value(const Expression_eval_info* eei)
528 {
529 Output_section* arg1_section;
530 uint64_t arg1 = this->arg1_value(eei, &arg1_section);
531 return (arg1
532 ? this->arg2_value(eei, eei->result_section_pointer)
533 : this->arg3_value(eei, eei->result_section_pointer));
534 }
535
536 void
537 print(FILE* f) const
538 {
539 fprintf(f, "(");
540 this->arg1_print(f);
541 fprintf(f, " ? ");
542 this->arg2_print(f);
543 fprintf(f, " : ");
544 this->arg3_print(f);
545 fprintf(f, ")");
546 }
547 };
548
549 extern "C" Expression*
550 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
551 {
552 return new Trinary_cond(arg1, arg2, arg3);
553 }
554
555 // Max function.
556
557 class Max_expression : public Binary_expression
558 {
559 public:
560 Max_expression(Expression* left, Expression* right)
561 : Binary_expression(left, right)
562 { }
563
564 uint64_t
565 value(const Expression_eval_info* eei)
566 {
567 Output_section* left_section;
568 uint64_t left = this->left_value(eei, &left_section);
569 Output_section* right_section;
570 uint64_t right = this->right_value(eei, &right_section);
571 if (left_section == right_section)
572 *eei->result_section_pointer = left_section;
573 else if ((left_section != NULL || right_section != NULL)
574 && parameters->options().relocatable())
575 gold_warning(_("max applied to section relative value"));
576 return std::max(left, right);
577 }
578
579 void
580 print(FILE* f) const
581 { this->print_function(f, "MAX"); }
582 };
583
584 extern "C" Expression*
585 script_exp_function_max(Expression* left, Expression* right)
586 {
587 return new Max_expression(left, right);
588 }
589
590 // Min function.
591
592 class Min_expression : public Binary_expression
593 {
594 public:
595 Min_expression(Expression* left, Expression* right)
596 : Binary_expression(left, right)
597 { }
598
599 uint64_t
600 value(const Expression_eval_info* eei)
601 {
602 Output_section* left_section;
603 uint64_t left = this->left_value(eei, &left_section);
604 Output_section* right_section;
605 uint64_t right = this->right_value(eei, &right_section);
606 if (left_section == right_section)
607 *eei->result_section_pointer = left_section;
608 else if ((left_section != NULL || right_section != NULL)
609 && parameters->options().relocatable())
610 gold_warning(_("min applied to section relative value"));
611 return std::min(left, right);
612 }
613
614 void
615 print(FILE* f) const
616 { this->print_function(f, "MIN"); }
617 };
618
619 extern "C" Expression*
620 script_exp_function_min(Expression* left, Expression* right)
621 {
622 return new Min_expression(left, right);
623 }
624
625 // Class Section_expression. This is a parent class used for
626 // functions which take the name of an output section.
627
628 class Section_expression : public Expression
629 {
630 public:
631 Section_expression(const char* section_name, size_t section_name_len)
632 : section_name_(section_name, section_name_len)
633 { }
634
635 uint64_t
636 value(const Expression_eval_info*);
637
638 void
639 print(FILE* f) const
640 { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
641
642 protected:
643 // The child class must implement this.
644 virtual uint64_t
645 value_from_output_section(const Expression_eval_info*,
646 Output_section*) = 0;
647
648 // The child class must implement this.
649 virtual const char*
650 function_name() const = 0;
651
652 private:
653 std::string section_name_;
654 };
655
656 uint64_t
657 Section_expression::value(const Expression_eval_info* eei)
658 {
659 const char* section_name = this->section_name_.c_str();
660 Output_section* os = eei->layout->find_output_section(section_name);
661 if (os == NULL)
662 {
663 gold_error("%s called on nonexistent output section '%s'",
664 this->function_name(), section_name);
665 return 0;
666 }
667
668 return this->value_from_output_section(eei, os);
669 }
670
671 // ABSOLUTE function.
672
673 class Absolute_expression : public Unary_expression
674 {
675 public:
676 Absolute_expression(Expression* arg)
677 : Unary_expression(arg)
678 { }
679
680 uint64_t
681 value(const Expression_eval_info* eei)
682 {
683 Output_section* dummy;
684 uint64_t ret = this->arg_value(eei, &dummy);
685 // Force the value to be absolute.
686 *eei->result_section_pointer = NULL;
687 return ret;
688 }
689
690 void
691 print(FILE* f) const
692 {
693 fprintf(f, "ABSOLUTE(");
694 this->arg_print(f);
695 fprintf(f, ")");
696 }
697 };
698
699 extern "C" Expression*
700 script_exp_function_absolute(Expression* arg)
701 {
702 return new Absolute_expression(arg);
703 }
704
705 // ALIGN function.
706
707 class Align_expression : public Binary_expression
708 {
709 public:
710 Align_expression(Expression* left, Expression* right)
711 : Binary_expression(left, right)
712 { }
713
714 uint64_t
715 value(const Expression_eval_info* eei)
716 {
717 Output_section* align_section;
718 uint64_t align = this->right_value(eei, &align_section);
719 if (align_section != NULL
720 && parameters->options().relocatable())
721 gold_warning(_("aligning to section relative value"));
722
723 uint64_t value = this->left_value(eei, eei->result_section_pointer);
724 if (align <= 1)
725 return value;
726 return ((value + align - 1) / align) * align;
727 }
728
729 void
730 print(FILE* f) const
731 { this->print_function(f, "ALIGN"); }
732 };
733
734 extern "C" Expression*
735 script_exp_function_align(Expression* left, Expression* right)
736 {
737 return new Align_expression(left, right);
738 }
739
740 // ASSERT function.
741
742 class Assert_expression : public Unary_expression
743 {
744 public:
745 Assert_expression(Expression* arg, const char* message, size_t length)
746 : Unary_expression(arg), message_(message, length)
747 { }
748
749 uint64_t
750 value(const Expression_eval_info* eei)
751 {
752 uint64_t value = this->arg_value(eei, eei->result_section_pointer);
753 if (!value && eei->check_assertions)
754 gold_error("%s", this->message_.c_str());
755 return value;
756 }
757
758 void
759 print(FILE* f) const
760 {
761 fprintf(f, "ASSERT(");
762 this->arg_print(f);
763 fprintf(f, ", %s)", this->message_.c_str());
764 }
765
766 private:
767 std::string message_;
768 };
769
770 extern "C" Expression*
771 script_exp_function_assert(Expression* expr, const char* message,
772 size_t length)
773 {
774 return new Assert_expression(expr, message, length);
775 }
776
777 // ADDR function.
778
779 class Addr_expression : public Section_expression
780 {
781 public:
782 Addr_expression(const char* section_name, size_t section_name_len)
783 : Section_expression(section_name, section_name_len)
784 { }
785
786 protected:
787 uint64_t
788 value_from_output_section(const Expression_eval_info* eei,
789 Output_section* os)
790 {
791 *eei->result_section_pointer = os;
792 return os->address();
793 }
794
795 const char*
796 function_name() const
797 { return "ADDR"; }
798 };
799
800 extern "C" Expression*
801 script_exp_function_addr(const char* section_name, size_t section_name_len)
802 {
803 return new Addr_expression(section_name, section_name_len);
804 }
805
806 // ALIGNOF.
807
808 class Alignof_expression : public Section_expression
809 {
810 public:
811 Alignof_expression(const char* section_name, size_t section_name_len)
812 : Section_expression(section_name, section_name_len)
813 { }
814
815 protected:
816 uint64_t
817 value_from_output_section(const Expression_eval_info*,
818 Output_section* os)
819 { return os->addralign(); }
820
821 const char*
822 function_name() const
823 { return "ALIGNOF"; }
824 };
825
826 extern "C" Expression*
827 script_exp_function_alignof(const char* section_name, size_t section_name_len)
828 {
829 return new Alignof_expression(section_name, section_name_len);
830 }
831
832 // CONSTANT. It would be nice if we could simply evaluate this
833 // immediately and return an Integer_expression, but unfortunately we
834 // don't know the target.
835
836 class Constant_expression : public Expression
837 {
838 public:
839 Constant_expression(const char* name, size_t length);
840
841 uint64_t
842 value(const Expression_eval_info*);
843
844 void
845 print(FILE* f) const;
846
847 private:
848 enum Constant_function
849 {
850 CONSTANT_MAXPAGESIZE,
851 CONSTANT_COMMONPAGESIZE
852 };
853
854 Constant_function function_;
855 };
856
857 Constant_expression::Constant_expression(const char* name, size_t length)
858 {
859 if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
860 this->function_ = CONSTANT_MAXPAGESIZE;
861 else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
862 this->function_ = CONSTANT_COMMONPAGESIZE;
863 else
864 {
865 std::string s(name, length);
866 gold_error(_("unknown constant %s"), s.c_str());
867 this->function_ = CONSTANT_MAXPAGESIZE;
868 }
869 }
870
871 uint64_t
872 Constant_expression::value(const Expression_eval_info*)
873 {
874 switch (this->function_)
875 {
876 case CONSTANT_MAXPAGESIZE:
877 return parameters->target().abi_pagesize();
878 case CONSTANT_COMMONPAGESIZE:
879 return parameters->target().common_pagesize();
880 default:
881 gold_unreachable();
882 }
883 }
884
885 void
886 Constant_expression::print(FILE* f) const
887 {
888 const char* name;
889 switch (this->function_)
890 {
891 case CONSTANT_MAXPAGESIZE:
892 name = "MAXPAGESIZE";
893 break;
894 case CONSTANT_COMMONPAGESIZE:
895 name = "COMMONPAGESIZE";
896 break;
897 default:
898 gold_unreachable();
899 }
900 fprintf(f, "CONSTANT(%s)", name);
901 }
902
903 extern "C" Expression*
904 script_exp_function_constant(const char* name, size_t length)
905 {
906 return new Constant_expression(name, length);
907 }
908
909 // DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
910 // back to the general case.
911
912 extern "C" Expression*
913 script_exp_function_data_segment_align(Expression* left, Expression*)
914 {
915 Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
916 Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
917 Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
918 e2);
919 return script_exp_binary_add(e1, e3);
920 }
921
922 // DATA_SEGMENT_RELRO. FIXME: This is not implemented.
923
924 extern "C" Expression*
925 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
926 {
927 return right;
928 }
929
930 // DATA_SEGMENT_END. FIXME: This is not implemented.
931
932 extern "C" Expression*
933 script_exp_function_data_segment_end(Expression* val)
934 {
935 return val;
936 }
937
938 // DEFINED function.
939
940 class Defined_expression : public Expression
941 {
942 public:
943 Defined_expression(const char* symbol_name, size_t symbol_name_len)
944 : symbol_name_(symbol_name, symbol_name_len)
945 { }
946
947 uint64_t
948 value(const Expression_eval_info* eei)
949 {
950 Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
951 return sym != NULL && sym->is_defined();
952 }
953
954 void
955 print(FILE* f) const
956 { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
957
958 private:
959 std::string symbol_name_;
960 };
961
962 extern "C" Expression*
963 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
964 {
965 return new Defined_expression(symbol_name, symbol_name_len);
966 }
967
968 // LOADADDR function
969
970 class Loadaddr_expression : public Section_expression
971 {
972 public:
973 Loadaddr_expression(const char* section_name, size_t section_name_len)
974 : Section_expression(section_name, section_name_len)
975 { }
976
977 protected:
978 uint64_t
979 value_from_output_section(const Expression_eval_info* eei,
980 Output_section* os)
981 {
982 if (os->has_load_address())
983 return os->load_address();
984 else
985 {
986 *eei->result_section_pointer = os;
987 return os->address();
988 }
989 }
990
991 const char*
992 function_name() const
993 { return "LOADADDR"; }
994 };
995
996 extern "C" Expression*
997 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
998 {
999 return new Loadaddr_expression(section_name, section_name_len);
1000 }
1001
1002 // SIZEOF function
1003
1004 class Sizeof_expression : public Section_expression
1005 {
1006 public:
1007 Sizeof_expression(const char* section_name, size_t section_name_len)
1008 : Section_expression(section_name, section_name_len)
1009 { }
1010
1011 protected:
1012 uint64_t
1013 value_from_output_section(const Expression_eval_info*,
1014 Output_section* os)
1015 {
1016 // We can not use data_size here, as the size of the section may
1017 // not have been finalized. Instead we get whatever the current
1018 // size is. This will work correctly for backward references in
1019 // linker scripts.
1020 return os->current_data_size();
1021 }
1022
1023 const char*
1024 function_name() const
1025 { return "SIZEOF"; }
1026 };
1027
1028 extern "C" Expression*
1029 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1030 {
1031 return new Sizeof_expression(section_name, section_name_len);
1032 }
1033
1034 // SIZEOF_HEADERS.
1035
1036 class Sizeof_headers_expression : public Expression
1037 {
1038 public:
1039 Sizeof_headers_expression()
1040 { }
1041
1042 uint64_t
1043 value(const Expression_eval_info*);
1044
1045 void
1046 print(FILE* f) const
1047 { fprintf(f, "SIZEOF_HEADERS"); }
1048 };
1049
1050 uint64_t
1051 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1052 {
1053 unsigned int ehdr_size;
1054 unsigned int phdr_size;
1055 if (parameters->target().get_size() == 32)
1056 {
1057 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1058 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1059 }
1060 else if (parameters->target().get_size() == 64)
1061 {
1062 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1063 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1064 }
1065 else
1066 gold_unreachable();
1067
1068 return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1069 }
1070
1071 extern "C" Expression*
1072 script_exp_function_sizeof_headers()
1073 {
1074 return new Sizeof_headers_expression();
1075 }
1076
1077 // In the GNU linker SEGMENT_START basically returns the value for
1078 // -Ttext, -Tdata, or -Tbss. We could implement this by copying the
1079 // values from General_options to Parameters. But I doubt that
1080 // anybody actually uses it. The point of it for the GNU linker was
1081 // because -Ttext set the address of the .text section rather than the
1082 // text segment. In gold -Ttext sets the text segment address anyhow.
1083
1084 extern "C" Expression*
1085 script_exp_function_segment_start(const char*, size_t, Expression*)
1086 {
1087 gold_fatal(_("SEGMENT_START not implemented"));
1088 }
1089
1090 // Functions for memory regions. These can not be implemented unless
1091 // and until we implement memory regions.
1092
1093 extern "C" Expression*
1094 script_exp_function_origin(const char*, size_t)
1095 {
1096 gold_fatal(_("ORIGIN not implemented"));
1097 }
1098
1099 extern "C" Expression*
1100 script_exp_function_length(const char*, size_t)
1101 {
1102 gold_fatal(_("LENGTH not implemented"));
1103 }
1104
1105 } // End namespace gold.
This page took 0.05561 seconds and 5 git commands to generate.