* expression.cc (eval): Replace dummy argument with NULL.
[deliverable/binutils-gdb.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment. The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols. We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53 // The symbol table.
54 const Symbol_table* symtab;
55 // The layout--we use this to get section information.
56 const Layout* layout;
57 // Whether to check assertions.
58 bool check_assertions;
59 // Whether expressions can refer to the dot symbol. The dot symbol
60 // is only available within a SECTIONS clause.
61 bool is_dot_available;
62 // The current value of the dot symbol.
63 uint64_t dot_value;
64 // The section in which the dot symbol is defined; this is NULL if
65 // it is absolute.
66 Output_section* dot_section;
67 // Points to where the section of the result should be stored.
68 Output_section** result_section_pointer;
69 // Pointer to where the alignment of the result should be stored.
70 uint64_t* result_alignment_pointer;
71 };
72
73 // Evaluate an expression.
74
75 uint64_t
76 Expression::eval(const Symbol_table* symtab, const Layout* layout,
77 bool check_assertions)
78 {
79 return this->eval_maybe_dot(symtab, layout, check_assertions,
80 false, 0, NULL, NULL, NULL);
81 }
82
83 // Evaluate an expression which may refer to the dot symbol.
84
85 uint64_t
86 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
87 bool check_assertions, uint64_t dot_value,
88 Output_section* dot_section,
89 Output_section** result_section_pointer,
90 uint64_t* result_alignment_pointer)
91 {
92 return this->eval_maybe_dot(symtab, layout, check_assertions, true,
93 dot_value, dot_section, result_section_pointer,
94 result_alignment_pointer);
95 }
96
97 // Evaluate an expression which may or may not refer to the dot
98 // symbol.
99
100 uint64_t
101 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
102 bool check_assertions, bool is_dot_available,
103 uint64_t dot_value, Output_section* dot_section,
104 Output_section** result_section_pointer,
105 uint64_t* result_alignment_pointer)
106 {
107 Expression_eval_info eei;
108 eei.symtab = symtab;
109 eei.layout = layout;
110 eei.check_assertions = check_assertions;
111 eei.is_dot_available = is_dot_available;
112 eei.dot_value = dot_value;
113 eei.dot_section = dot_section;
114
115 // We assume the value is absolute, and only set this to a section
116 // if we find a section relative reference.
117 if (result_section_pointer != NULL)
118 *result_section_pointer = NULL;
119 eei.result_section_pointer = result_section_pointer;
120
121 eei.result_alignment_pointer = result_alignment_pointer;
122
123 return this->value(&eei);
124 }
125
126 // A number.
127
128 class Integer_expression : public Expression
129 {
130 public:
131 Integer_expression(uint64_t val)
132 : val_(val)
133 { }
134
135 uint64_t
136 value(const Expression_eval_info*)
137 { return this->val_; }
138
139 void
140 print(FILE* f) const
141 { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
142
143 private:
144 uint64_t val_;
145 };
146
147 extern "C" Expression*
148 script_exp_integer(uint64_t val)
149 {
150 return new Integer_expression(val);
151 }
152
153 // An expression whose value is the value of a symbol.
154
155 class Symbol_expression : public Expression
156 {
157 public:
158 Symbol_expression(const char* name, size_t length)
159 : name_(name, length)
160 { }
161
162 uint64_t
163 value(const Expression_eval_info*);
164
165 void
166 print(FILE* f) const
167 { fprintf(f, "%s", this->name_.c_str()); }
168
169 private:
170 std::string name_;
171 };
172
173 uint64_t
174 Symbol_expression::value(const Expression_eval_info* eei)
175 {
176 Symbol* sym = eei->symtab->lookup(this->name_.c_str());
177 if (sym == NULL || !sym->is_defined())
178 {
179 gold_error(_("undefined symbol '%s' referenced in expression"),
180 this->name_.c_str());
181 return 0;
182 }
183
184 if (eei->result_section_pointer != NULL)
185 *eei->result_section_pointer = sym->output_section();
186
187 if (parameters->target().get_size() == 32)
188 return eei->symtab->get_sized_symbol<32>(sym)->value();
189 else if (parameters->target().get_size() == 64)
190 return eei->symtab->get_sized_symbol<64>(sym)->value();
191 else
192 gold_unreachable();
193 }
194
195 // An expression whose value is the value of the special symbol ".".
196 // This is only valid within a SECTIONS clause.
197
198 class Dot_expression : public Expression
199 {
200 public:
201 Dot_expression()
202 { }
203
204 uint64_t
205 value(const Expression_eval_info*);
206
207 void
208 print(FILE* f) const
209 { fprintf(f, "."); }
210 };
211
212 uint64_t
213 Dot_expression::value(const Expression_eval_info* eei)
214 {
215 if (!eei->is_dot_available)
216 {
217 gold_error(_("invalid reference to dot symbol outside of "
218 "SECTIONS clause"));
219 return 0;
220 }
221 if (eei->result_section_pointer != NULL)
222 *eei->result_section_pointer = eei->dot_section;
223 return eei->dot_value;
224 }
225
226 // A string. This is either the name of a symbol, or ".".
227
228 extern "C" Expression*
229 script_exp_string(const char* name, size_t length)
230 {
231 if (length == 1 && name[0] == '.')
232 return new Dot_expression();
233 else
234 return new Symbol_expression(name, length);
235 }
236
237 // A unary expression.
238
239 class Unary_expression : public Expression
240 {
241 public:
242 Unary_expression(Expression* arg)
243 : arg_(arg)
244 { }
245
246 ~Unary_expression()
247 { delete this->arg_; }
248
249 protected:
250 uint64_t
251 arg_value(const Expression_eval_info* eei,
252 Output_section** arg_section_pointer) const
253 {
254 return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
255 eei->check_assertions,
256 eei->is_dot_available,
257 eei->dot_value,
258 eei->dot_section,
259 arg_section_pointer,
260 eei->result_alignment_pointer);
261 }
262
263 void
264 arg_print(FILE* f) const
265 { this->arg_->print(f); }
266
267 private:
268 Expression* arg_;
269 };
270
271 // Handle unary operators. We use a preprocessor macro as a hack to
272 // capture the C operator.
273
274 #define UNARY_EXPRESSION(NAME, OPERATOR) \
275 class Unary_ ## NAME : public Unary_expression \
276 { \
277 public: \
278 Unary_ ## NAME(Expression* arg) \
279 : Unary_expression(arg) \
280 { } \
281 \
282 uint64_t \
283 value(const Expression_eval_info* eei) \
284 { \
285 Output_section* arg_section; \
286 uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
287 if (arg_section != NULL && parameters->options().relocatable()) \
288 gold_warning(_("unary " #NAME " applied to section " \
289 "relative value")); \
290 return ret; \
291 } \
292 \
293 void \
294 print(FILE* f) const \
295 { \
296 fprintf(f, "(%s ", #OPERATOR); \
297 this->arg_print(f); \
298 fprintf(f, ")"); \
299 } \
300 }; \
301 \
302 extern "C" Expression* \
303 script_exp_unary_ ## NAME(Expression* arg) \
304 { \
305 return new Unary_ ## NAME(arg); \
306 }
307
308 UNARY_EXPRESSION(minus, -)
309 UNARY_EXPRESSION(logical_not, !)
310 UNARY_EXPRESSION(bitwise_not, ~)
311
312 // A binary expression.
313
314 class Binary_expression : public Expression
315 {
316 public:
317 Binary_expression(Expression* left, Expression* right)
318 : left_(left), right_(right)
319 { }
320
321 ~Binary_expression()
322 {
323 delete this->left_;
324 delete this->right_;
325 }
326
327 protected:
328 uint64_t
329 left_value(const Expression_eval_info* eei,
330 Output_section** section_pointer,
331 uint64_t* alignment_pointer) const
332 {
333 return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
334 eei->check_assertions,
335 eei->is_dot_available,
336 eei->dot_value,
337 eei->dot_section,
338 section_pointer,
339 alignment_pointer);
340 }
341
342 uint64_t
343 right_value(const Expression_eval_info* eei,
344 Output_section** section_pointer,
345 uint64_t* alignment_pointer) const
346 {
347 return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
348 eei->check_assertions,
349 eei->is_dot_available,
350 eei->dot_value,
351 eei->dot_section,
352 section_pointer,
353 alignment_pointer);
354 }
355
356 void
357 left_print(FILE* f) const
358 { this->left_->print(f); }
359
360 void
361 right_print(FILE* f) const
362 { this->right_->print(f); }
363
364 // This is a call to function FUNCTION_NAME. Print it. This is for
365 // debugging.
366 void
367 print_function(FILE* f, const char* function_name) const
368 {
369 fprintf(f, "%s(", function_name);
370 this->left_print(f);
371 fprintf(f, ", ");
372 this->right_print(f);
373 fprintf(f, ")");
374 }
375
376 private:
377 Expression* left_;
378 Expression* right_;
379 };
380
381 // Handle binary operators. We use a preprocessor macro as a hack to
382 // capture the C operator. KEEP_LEFT means that if the left operand
383 // is section relative and the right operand is not, the result uses
384 // the same section as the left operand. KEEP_RIGHT is the same with
385 // left and right swapped. IS_DIV means that we need to give an error
386 // if the right operand is zero. WARN means that we should warn if
387 // used on section relative values in a relocatable link. We always
388 // warn if used on values in different sections in a relocatable link.
389
390 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
391 class Binary_ ## NAME : public Binary_expression \
392 { \
393 public: \
394 Binary_ ## NAME(Expression* left, Expression* right) \
395 : Binary_expression(left, right) \
396 { } \
397 \
398 uint64_t \
399 value(const Expression_eval_info* eei) \
400 { \
401 Output_section* left_section; \
402 uint64_t left_alignment; \
403 uint64_t left = this->left_value(eei, &left_section, \
404 &left_alignment); \
405 Output_section* right_section; \
406 uint64_t right_alignment; \
407 uint64_t right = this->right_value(eei, &right_section, \
408 &right_alignment); \
409 if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
410 { \
411 if (eei->result_section_pointer != NULL) \
412 *eei->result_section_pointer = right_section; \
413 if (eei->result_alignment_pointer != NULL) \
414 *eei->result_alignment_pointer = right_alignment; \
415 } \
416 else if (KEEP_LEFT \
417 && left_section != NULL \
418 && right_section == NULL) \
419 { \
420 if (eei->result_section_pointer != NULL) \
421 *eei->result_section_pointer = left_section; \
422 if (eei->result_alignment_pointer != NULL) \
423 *eei->result_alignment_pointer = right_alignment; \
424 } \
425 else if ((WARN || left_section != right_section) \
426 && (left_section != NULL || right_section != NULL) \
427 && parameters->options().relocatable()) \
428 gold_warning(_("binary " #NAME " applied to section " \
429 "relative value")); \
430 if (IS_DIV && right == 0) \
431 { \
432 gold_error(_(#NAME " by zero")); \
433 return 0; \
434 } \
435 return left OPERATOR right; \
436 } \
437 \
438 void \
439 print(FILE* f) const \
440 { \
441 fprintf(f, "("); \
442 this->left_print(f); \
443 fprintf(f, " %s ", #OPERATOR); \
444 this->right_print(f); \
445 fprintf(f, ")"); \
446 } \
447 }; \
448 \
449 extern "C" Expression* \
450 script_exp_binary_ ## NAME(Expression* left, Expression* right) \
451 { \
452 return new Binary_ ## NAME(left, right); \
453 }
454
455 BINARY_EXPRESSION(mult, *, false, false, false, true)
456 BINARY_EXPRESSION(div, /, false, false, true, true)
457 BINARY_EXPRESSION(mod, %, false, false, true, true)
458 BINARY_EXPRESSION(add, +, true, true, false, true)
459 BINARY_EXPRESSION(sub, -, true, false, false, false)
460 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
461 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
462 BINARY_EXPRESSION(eq, ==, false, false, false, false)
463 BINARY_EXPRESSION(ne, !=, false, false, false, false)
464 BINARY_EXPRESSION(le, <=, false, false, false, false)
465 BINARY_EXPRESSION(ge, >=, false, false, false, false)
466 BINARY_EXPRESSION(lt, <, false, false, false, false)
467 BINARY_EXPRESSION(gt, >, false, false, false, false)
468 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
469 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
470 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
471 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
472 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
473
474 // A trinary expression.
475
476 class Trinary_expression : public Expression
477 {
478 public:
479 Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
480 : arg1_(arg1), arg2_(arg2), arg3_(arg3)
481 { }
482
483 ~Trinary_expression()
484 {
485 delete this->arg1_;
486 delete this->arg2_;
487 delete this->arg3_;
488 }
489
490 protected:
491 uint64_t
492 arg1_value(const Expression_eval_info* eei,
493 Output_section** section_pointer) const
494 {
495 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
496 eei->check_assertions,
497 eei->is_dot_available,
498 eei->dot_value,
499 eei->dot_section,
500 section_pointer,
501 NULL);
502 }
503
504 uint64_t
505 arg2_value(const Expression_eval_info* eei,
506 Output_section** section_pointer,
507 uint64_t* alignment_pointer) const
508 {
509 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
510 eei->check_assertions,
511 eei->is_dot_available,
512 eei->dot_value,
513 eei->dot_section,
514 section_pointer,
515 alignment_pointer);
516 }
517
518 uint64_t
519 arg3_value(const Expression_eval_info* eei,
520 Output_section** section_pointer,
521 uint64_t* alignment_pointer) const
522 {
523 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
524 eei->check_assertions,
525 eei->is_dot_available,
526 eei->dot_value,
527 eei->dot_section,
528 section_pointer,
529 alignment_pointer);
530 }
531
532 void
533 arg1_print(FILE* f) const
534 { this->arg1_->print(f); }
535
536 void
537 arg2_print(FILE* f) const
538 { this->arg2_->print(f); }
539
540 void
541 arg3_print(FILE* f) const
542 { this->arg3_->print(f); }
543
544 private:
545 Expression* arg1_;
546 Expression* arg2_;
547 Expression* arg3_;
548 };
549
550 // The conditional operator.
551
552 class Trinary_cond : public Trinary_expression
553 {
554 public:
555 Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
556 : Trinary_expression(arg1, arg2, arg3)
557 { }
558
559 uint64_t
560 value(const Expression_eval_info* eei)
561 {
562 Output_section* arg1_section;
563 uint64_t arg1 = this->arg1_value(eei, &arg1_section);
564 return (arg1
565 ? this->arg2_value(eei, eei->result_section_pointer,
566 eei->result_alignment_pointer)
567 : this->arg3_value(eei, eei->result_section_pointer,
568 eei->result_alignment_pointer));
569 }
570
571 void
572 print(FILE* f) const
573 {
574 fprintf(f, "(");
575 this->arg1_print(f);
576 fprintf(f, " ? ");
577 this->arg2_print(f);
578 fprintf(f, " : ");
579 this->arg3_print(f);
580 fprintf(f, ")");
581 }
582 };
583
584 extern "C" Expression*
585 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
586 {
587 return new Trinary_cond(arg1, arg2, arg3);
588 }
589
590 // Max function.
591
592 class Max_expression : public Binary_expression
593 {
594 public:
595 Max_expression(Expression* left, Expression* right)
596 : Binary_expression(left, right)
597 { }
598
599 uint64_t
600 value(const Expression_eval_info* eei)
601 {
602 Output_section* left_section;
603 uint64_t left_alignment;
604 uint64_t left = this->left_value(eei, &left_section, &left_alignment);
605 Output_section* right_section;
606 uint64_t right_alignment;
607 uint64_t right = this->right_value(eei, &right_section, &right_alignment);
608 if (left_section == right_section)
609 {
610 if (eei->result_section_pointer != NULL)
611 *eei->result_section_pointer = left_section;
612 }
613 else if ((left_section != NULL || right_section != NULL)
614 && parameters->options().relocatable())
615 gold_warning(_("max applied to section relative value"));
616 if (eei->result_alignment_pointer != NULL)
617 {
618 uint64_t ra = *eei->result_alignment_pointer;
619 if (left > right)
620 ra = std::max(ra, left_alignment);
621 else if (right > left)
622 ra = std::max(ra, right_alignment);
623 else
624 ra = std::max(ra, std::max(left_alignment, right_alignment));
625 *eei->result_alignment_pointer = ra;
626 }
627 return std::max(left, right);
628 }
629
630 void
631 print(FILE* f) const
632 { this->print_function(f, "MAX"); }
633 };
634
635 extern "C" Expression*
636 script_exp_function_max(Expression* left, Expression* right)
637 {
638 return new Max_expression(left, right);
639 }
640
641 // Min function.
642
643 class Min_expression : public Binary_expression
644 {
645 public:
646 Min_expression(Expression* left, Expression* right)
647 : Binary_expression(left, right)
648 { }
649
650 uint64_t
651 value(const Expression_eval_info* eei)
652 {
653 Output_section* left_section;
654 uint64_t left_alignment;
655 uint64_t left = this->left_value(eei, &left_section, &left_alignment);
656 Output_section* right_section;
657 uint64_t right_alignment;
658 uint64_t right = this->right_value(eei, &right_section, &right_alignment);
659 if (left_section == right_section)
660 {
661 if (eei->result_section_pointer != NULL)
662 *eei->result_section_pointer = left_section;
663 }
664 else if ((left_section != NULL || right_section != NULL)
665 && parameters->options().relocatable())
666 gold_warning(_("min applied to section relative value"));
667 if (eei->result_alignment_pointer != NULL)
668 {
669 uint64_t ra = *eei->result_alignment_pointer;
670 if (left < right)
671 ra = std::max(ra, left_alignment);
672 else if (right < left)
673 ra = std::max(ra, right_alignment);
674 else
675 ra = std::max(ra, std::max(left_alignment, right_alignment));
676 *eei->result_alignment_pointer = ra;
677 }
678 return std::min(left, right);
679 }
680
681 void
682 print(FILE* f) const
683 { this->print_function(f, "MIN"); }
684 };
685
686 extern "C" Expression*
687 script_exp_function_min(Expression* left, Expression* right)
688 {
689 return new Min_expression(left, right);
690 }
691
692 // Class Section_expression. This is a parent class used for
693 // functions which take the name of an output section.
694
695 class Section_expression : public Expression
696 {
697 public:
698 Section_expression(const char* section_name, size_t section_name_len)
699 : section_name_(section_name, section_name_len)
700 { }
701
702 uint64_t
703 value(const Expression_eval_info*);
704
705 void
706 print(FILE* f) const
707 { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
708
709 protected:
710 // The child class must implement this.
711 virtual uint64_t
712 value_from_output_section(const Expression_eval_info*,
713 Output_section*) = 0;
714
715 // The child class must implement this.
716 virtual uint64_t
717 value_from_script_output_section(uint64_t address, uint64_t load_address,
718 uint64_t addralign, uint64_t size) = 0;
719
720 // The child class must implement this.
721 virtual const char*
722 function_name() const = 0;
723
724 private:
725 std::string section_name_;
726 };
727
728 uint64_t
729 Section_expression::value(const Expression_eval_info* eei)
730 {
731 const char* section_name = this->section_name_.c_str();
732 Output_section* os = eei->layout->find_output_section(section_name);
733 if (os != NULL)
734 return this->value_from_output_section(eei, os);
735
736 uint64_t address;
737 uint64_t load_address;
738 uint64_t addralign;
739 uint64_t size;
740 const Script_options* ss = eei->layout->script_options();
741 if (ss->saw_sections_clause())
742 {
743 if (ss->script_sections()->get_output_section_info(section_name,
744 &address,
745 &load_address,
746 &addralign,
747 &size))
748 return this->value_from_script_output_section(address, load_address,
749 addralign, size);
750 }
751
752 gold_error("%s called on nonexistent output section '%s'",
753 this->function_name(), section_name);
754 return 0;
755 }
756
757 // ABSOLUTE function.
758
759 class Absolute_expression : public Unary_expression
760 {
761 public:
762 Absolute_expression(Expression* arg)
763 : Unary_expression(arg)
764 { }
765
766 uint64_t
767 value(const Expression_eval_info* eei)
768 {
769 uint64_t ret = this->arg_value(eei, NULL);
770 // Force the value to be absolute.
771 if (eei->result_section_pointer != NULL)
772 *eei->result_section_pointer = NULL;
773 return ret;
774 }
775
776 void
777 print(FILE* f) const
778 {
779 fprintf(f, "ABSOLUTE(");
780 this->arg_print(f);
781 fprintf(f, ")");
782 }
783 };
784
785 extern "C" Expression*
786 script_exp_function_absolute(Expression* arg)
787 {
788 return new Absolute_expression(arg);
789 }
790
791 // ALIGN function.
792
793 class Align_expression : public Binary_expression
794 {
795 public:
796 Align_expression(Expression* left, Expression* right)
797 : Binary_expression(left, right)
798 { }
799
800 uint64_t
801 value(const Expression_eval_info* eei)
802 {
803 Output_section* align_section;
804 uint64_t align = this->right_value(eei, &align_section, NULL);
805 if (align_section != NULL
806 && parameters->options().relocatable())
807 gold_warning(_("aligning to section relative value"));
808
809 if (eei->result_alignment_pointer != NULL
810 && align > *eei->result_alignment_pointer)
811 {
812 uint64_t a = align;
813 while ((a & (a - 1)) != 0)
814 a &= a - 1;
815 *eei->result_alignment_pointer = a;
816 }
817
818 uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
819 if (align <= 1)
820 return value;
821 return ((value + align - 1) / align) * align;
822 }
823
824 void
825 print(FILE* f) const
826 { this->print_function(f, "ALIGN"); }
827 };
828
829 extern "C" Expression*
830 script_exp_function_align(Expression* left, Expression* right)
831 {
832 return new Align_expression(left, right);
833 }
834
835 // ASSERT function.
836
837 class Assert_expression : public Unary_expression
838 {
839 public:
840 Assert_expression(Expression* arg, const char* message, size_t length)
841 : Unary_expression(arg), message_(message, length)
842 { }
843
844 uint64_t
845 value(const Expression_eval_info* eei)
846 {
847 uint64_t value = this->arg_value(eei, eei->result_section_pointer);
848 if (!value && eei->check_assertions)
849 gold_error("%s", this->message_.c_str());
850 return value;
851 }
852
853 void
854 print(FILE* f) const
855 {
856 fprintf(f, "ASSERT(");
857 this->arg_print(f);
858 fprintf(f, ", %s)", this->message_.c_str());
859 }
860
861 private:
862 std::string message_;
863 };
864
865 extern "C" Expression*
866 script_exp_function_assert(Expression* expr, const char* message,
867 size_t length)
868 {
869 return new Assert_expression(expr, message, length);
870 }
871
872 // ADDR function.
873
874 class Addr_expression : public Section_expression
875 {
876 public:
877 Addr_expression(const char* section_name, size_t section_name_len)
878 : Section_expression(section_name, section_name_len)
879 { }
880
881 protected:
882 uint64_t
883 value_from_output_section(const Expression_eval_info* eei,
884 Output_section* os)
885 {
886 if (eei->result_section_pointer != NULL)
887 *eei->result_section_pointer = os;
888 return os->address();
889 }
890
891 uint64_t
892 value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
893 uint64_t)
894 { return address; }
895
896 const char*
897 function_name() const
898 { return "ADDR"; }
899 };
900
901 extern "C" Expression*
902 script_exp_function_addr(const char* section_name, size_t section_name_len)
903 {
904 return new Addr_expression(section_name, section_name_len);
905 }
906
907 // ALIGNOF.
908
909 class Alignof_expression : public Section_expression
910 {
911 public:
912 Alignof_expression(const char* section_name, size_t section_name_len)
913 : Section_expression(section_name, section_name_len)
914 { }
915
916 protected:
917 uint64_t
918 value_from_output_section(const Expression_eval_info*,
919 Output_section* os)
920 { return os->addralign(); }
921
922 uint64_t
923 value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
924 uint64_t)
925 { return addralign; }
926
927 const char*
928 function_name() const
929 { return "ALIGNOF"; }
930 };
931
932 extern "C" Expression*
933 script_exp_function_alignof(const char* section_name, size_t section_name_len)
934 {
935 return new Alignof_expression(section_name, section_name_len);
936 }
937
938 // CONSTANT. It would be nice if we could simply evaluate this
939 // immediately and return an Integer_expression, but unfortunately we
940 // don't know the target.
941
942 class Constant_expression : public Expression
943 {
944 public:
945 Constant_expression(const char* name, size_t length);
946
947 uint64_t
948 value(const Expression_eval_info*);
949
950 void
951 print(FILE* f) const;
952
953 private:
954 enum Constant_function
955 {
956 CONSTANT_MAXPAGESIZE,
957 CONSTANT_COMMONPAGESIZE
958 };
959
960 Constant_function function_;
961 };
962
963 Constant_expression::Constant_expression(const char* name, size_t length)
964 {
965 if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
966 this->function_ = CONSTANT_MAXPAGESIZE;
967 else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
968 this->function_ = CONSTANT_COMMONPAGESIZE;
969 else
970 {
971 std::string s(name, length);
972 gold_error(_("unknown constant %s"), s.c_str());
973 this->function_ = CONSTANT_MAXPAGESIZE;
974 }
975 }
976
977 uint64_t
978 Constant_expression::value(const Expression_eval_info*)
979 {
980 switch (this->function_)
981 {
982 case CONSTANT_MAXPAGESIZE:
983 return parameters->target().abi_pagesize();
984 case CONSTANT_COMMONPAGESIZE:
985 return parameters->target().common_pagesize();
986 default:
987 gold_unreachable();
988 }
989 }
990
991 void
992 Constant_expression::print(FILE* f) const
993 {
994 const char* name;
995 switch (this->function_)
996 {
997 case CONSTANT_MAXPAGESIZE:
998 name = "MAXPAGESIZE";
999 break;
1000 case CONSTANT_COMMONPAGESIZE:
1001 name = "COMMONPAGESIZE";
1002 break;
1003 default:
1004 gold_unreachable();
1005 }
1006 fprintf(f, "CONSTANT(%s)", name);
1007 }
1008
1009 extern "C" Expression*
1010 script_exp_function_constant(const char* name, size_t length)
1011 {
1012 return new Constant_expression(name, length);
1013 }
1014
1015 // DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
1016 // back to the general case.
1017
1018 extern "C" Expression*
1019 script_exp_function_data_segment_align(Expression* left, Expression*)
1020 {
1021 Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
1022 Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
1023 Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
1024 e2);
1025 return script_exp_binary_add(e1, e3);
1026 }
1027
1028 // DATA_SEGMENT_RELRO. FIXME: This is not implemented.
1029
1030 extern "C" Expression*
1031 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
1032 {
1033 return right;
1034 }
1035
1036 // DATA_SEGMENT_END. FIXME: This is not implemented.
1037
1038 extern "C" Expression*
1039 script_exp_function_data_segment_end(Expression* val)
1040 {
1041 return val;
1042 }
1043
1044 // DEFINED function.
1045
1046 class Defined_expression : public Expression
1047 {
1048 public:
1049 Defined_expression(const char* symbol_name, size_t symbol_name_len)
1050 : symbol_name_(symbol_name, symbol_name_len)
1051 { }
1052
1053 uint64_t
1054 value(const Expression_eval_info* eei)
1055 {
1056 Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
1057 return sym != NULL && sym->is_defined();
1058 }
1059
1060 void
1061 print(FILE* f) const
1062 { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
1063
1064 private:
1065 std::string symbol_name_;
1066 };
1067
1068 extern "C" Expression*
1069 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
1070 {
1071 return new Defined_expression(symbol_name, symbol_name_len);
1072 }
1073
1074 // LOADADDR function
1075
1076 class Loadaddr_expression : public Section_expression
1077 {
1078 public:
1079 Loadaddr_expression(const char* section_name, size_t section_name_len)
1080 : Section_expression(section_name, section_name_len)
1081 { }
1082
1083 protected:
1084 uint64_t
1085 value_from_output_section(const Expression_eval_info* eei,
1086 Output_section* os)
1087 {
1088 if (os->has_load_address())
1089 return os->load_address();
1090 else
1091 {
1092 if (eei->result_section_pointer != NULL)
1093 *eei->result_section_pointer = os;
1094 return os->address();
1095 }
1096 }
1097
1098 uint64_t
1099 value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1100 uint64_t)
1101 { return load_address; }
1102
1103 const char*
1104 function_name() const
1105 { return "LOADADDR"; }
1106 };
1107
1108 extern "C" Expression*
1109 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1110 {
1111 return new Loadaddr_expression(section_name, section_name_len);
1112 }
1113
1114 // SIZEOF function
1115
1116 class Sizeof_expression : public Section_expression
1117 {
1118 public:
1119 Sizeof_expression(const char* section_name, size_t section_name_len)
1120 : Section_expression(section_name, section_name_len)
1121 { }
1122
1123 protected:
1124 uint64_t
1125 value_from_output_section(const Expression_eval_info*,
1126 Output_section* os)
1127 {
1128 // We can not use data_size here, as the size of the section may
1129 // not have been finalized. Instead we get whatever the current
1130 // size is. This will work correctly for backward references in
1131 // linker scripts.
1132 return os->current_data_size();
1133 }
1134
1135 uint64_t
1136 value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1137 uint64_t size)
1138 { return size; }
1139
1140 const char*
1141 function_name() const
1142 { return "SIZEOF"; }
1143 };
1144
1145 extern "C" Expression*
1146 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1147 {
1148 return new Sizeof_expression(section_name, section_name_len);
1149 }
1150
1151 // SIZEOF_HEADERS.
1152
1153 class Sizeof_headers_expression : public Expression
1154 {
1155 public:
1156 Sizeof_headers_expression()
1157 { }
1158
1159 uint64_t
1160 value(const Expression_eval_info*);
1161
1162 void
1163 print(FILE* f) const
1164 { fprintf(f, "SIZEOF_HEADERS"); }
1165 };
1166
1167 uint64_t
1168 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1169 {
1170 unsigned int ehdr_size;
1171 unsigned int phdr_size;
1172 if (parameters->target().get_size() == 32)
1173 {
1174 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1175 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1176 }
1177 else if (parameters->target().get_size() == 64)
1178 {
1179 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1180 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1181 }
1182 else
1183 gold_unreachable();
1184
1185 return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1186 }
1187
1188 extern "C" Expression*
1189 script_exp_function_sizeof_headers()
1190 {
1191 return new Sizeof_headers_expression();
1192 }
1193
1194 // SEGMENT_START.
1195
1196 class Segment_start_expression : public Unary_expression
1197 {
1198 public:
1199 Segment_start_expression(const char* segment_name, size_t segment_name_len,
1200 Expression* default_value)
1201 : Unary_expression(default_value),
1202 segment_name_(segment_name, segment_name_len)
1203 { }
1204
1205 uint64_t
1206 value(const Expression_eval_info*);
1207
1208 void
1209 print(FILE* f) const
1210 {
1211 fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
1212 this->arg_print(f);
1213 fprintf(f, ")");
1214 }
1215
1216 private:
1217 std::string segment_name_;
1218 };
1219
1220 uint64_t
1221 Segment_start_expression::value(const Expression_eval_info* eei)
1222 {
1223 // Check for command line overrides.
1224 if (parameters->options().user_set_Ttext()
1225 && this->segment_name_ == ".text")
1226 return parameters->options().Ttext();
1227 else if (parameters->options().user_set_Tdata()
1228 && this->segment_name_ == ".data")
1229 return parameters->options().Tdata();
1230 else if (parameters->options().user_set_Tbss()
1231 && this->segment_name_ == ".bss")
1232 return parameters->options().Tbss();
1233 else
1234 {
1235 uint64_t ret = this->arg_value(eei, NULL);
1236 // Force the value to be absolute.
1237 if (eei->result_section_pointer != NULL)
1238 *eei->result_section_pointer = NULL;
1239 return ret;
1240 }
1241 }
1242
1243 extern "C" Expression*
1244 script_exp_function_segment_start(const char* segment_name,
1245 size_t segment_name_len,
1246 Expression* default_value)
1247 {
1248 return new Segment_start_expression(segment_name, segment_name_len,
1249 default_value);
1250 }
1251
1252 } // End namespace gold.
This page took 0.055203 seconds and 5 git commands to generate.