* gdb-index.cc (Gdb_index_info_reader::record_cu_ranges): Allow
[deliverable/binutils-gdb.git] / gold / gdb-index.cc
1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup
2
3 // Copyright 2012 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "gdb-index.h"
26 #include "dwarf_reader.h"
27 #include "dwarf.h"
28 #include "object.h"
29 #include "output.h"
30 #include "demangle.h"
31
32 namespace gold
33 {
34
35 const int gdb_index_version = 5;
36
37 // Sizes of various records in the .gdb_index section.
38 const int gdb_index_offset_size = 4;
39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40 const int gdb_index_cu_size = 16;
41 const int gdb_index_tu_size = 24;
42 const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43 const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44
45 // This class manages the hashed symbol table for the .gdb_index section.
46 // It is essentially equivalent to the hashtab implementation in libiberty,
47 // but is copied into gdb sources and here for compatibility because its
48 // data structure is exposed on disk.
49
50 template <typename T>
51 class Gdb_hashtab
52 {
53 public:
54 Gdb_hashtab()
55 : size_(0), capacity_(0), hashtab_(NULL)
56 { }
57
58 ~Gdb_hashtab()
59 {
60 for (size_t i = 0; i < this->capacity_; ++i)
61 if (this->hashtab_[i] != NULL)
62 delete this->hashtab_[i];
63 delete[] this->hashtab_;
64 }
65
66 // Add a symbol.
67 T*
68 add(T* symbol)
69 {
70 // Resize the hash table if necessary.
71 if (4 * this->size_ / 3 >= this->capacity_)
72 this->expand();
73
74 T** slot = this->find_slot(symbol);
75 if (*slot == NULL)
76 {
77 ++this->size_;
78 *slot = symbol;
79 }
80
81 return *slot;
82 }
83
84 // Return the current size.
85 size_t
86 size() const
87 { return this->size_; }
88
89 // Return the current capacity.
90 size_t
91 capacity() const
92 { return this->capacity_; }
93
94 // Return the contents of slot N.
95 T*
96 operator[](size_t n)
97 { return this->hashtab_[n]; }
98
99 private:
100 // Find a symbol in the hash table, or return an empty slot if
101 // the symbol is not in the table.
102 T**
103 find_slot(T* symbol)
104 {
105 unsigned int index = symbol->hash() & (this->capacity_ - 1);
106 unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107
108 for (;;)
109 {
110 if (this->hashtab_[index] == NULL
111 || this->hashtab_[index]->equal(symbol))
112 return &this->hashtab_[index];
113 index = (index + step) & (this->capacity_ - 1);
114 }
115 }
116
117 // Expand the hash table.
118 void
119 expand()
120 {
121 if (this->capacity_ == 0)
122 {
123 // Allocate the hash table for the first time.
124 this->capacity_ = Gdb_hashtab::initial_size;
125 this->hashtab_ = new T*[this->capacity_];
126 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127 }
128 else
129 {
130 // Expand and rehash.
131 unsigned int old_cap = this->capacity_;
132 T** old_hashtab = this->hashtab_;
133 this->capacity_ *= 2;
134 this->hashtab_ = new T*[this->capacity_];
135 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 for (size_t i = 0; i < old_cap; ++i)
137 {
138 if (old_hashtab[i] != NULL)
139 {
140 T** slot = this->find_slot(old_hashtab[i]);
141 *slot = old_hashtab[i];
142 }
143 }
144 delete[] old_hashtab;
145 }
146 }
147
148 // Initial size of the hash table; must be a power of 2.
149 static const int initial_size = 1024;
150 size_t size_;
151 size_t capacity_;
152 T** hashtab_;
153 };
154
155 // The hash function for strings in the mapped index. This is copied
156 // directly from gdb/dwarf2read.c.
157
158 static unsigned int
159 mapped_index_string_hash(const unsigned char* str)
160 {
161 unsigned int r = 0;
162 unsigned char c;
163
164 while ((c = *str++) != 0)
165 {
166 if (gdb_index_version >= 5)
167 c = tolower (c);
168 r = r * 67 + c - 113;
169 }
170
171 return r;
172 }
173
174 // A specialization of Dwarf_info_reader, for building the .gdb_index.
175
176 class Gdb_index_info_reader : public Dwarf_info_reader
177 {
178 public:
179 Gdb_index_info_reader(bool is_type_unit,
180 Relobj* object,
181 const unsigned char* symbols,
182 off_t symbols_size,
183 unsigned int shndx,
184 unsigned int reloc_shndx,
185 unsigned int reloc_type,
186 Gdb_index* gdb_index)
187 : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 reloc_shndx, reloc_type),
189 gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190 { }
191
192 ~Gdb_index_info_reader()
193 { this->clear_declarations(); }
194
195 // Print usage statistics.
196 static void
197 print_stats();
198
199 protected:
200 // Visit a compilation unit.
201 virtual void
202 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203
204 // Visit a type unit.
205 virtual void
206 visit_type_unit(off_t tu_offset, off_t type_offset, uint64_t signature,
207 Dwarf_die*);
208
209 private:
210 // A map for recording DIEs we've seen that may be referred to be
211 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212 // The map is indexed by a DIE offset within the compile unit.
213 // PARENT_OFFSET_ is the offset of the DIE that represents the
214 // outer context, and NAME_ is a pointer to a component of the
215 // fully-qualified name.
216 // Normally, the names we point to are in a string table, so we don't
217 // have to manage them, but when we have a fully-qualified name
218 // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219 // indicate a string that we are managing.
220 struct Declaration_pair
221 {
222 Declaration_pair(off_t parent_offset, const char* name)
223 : parent_offset_(parent_offset), name_(name)
224 { }
225
226 off_t parent_offset_;
227 const char* name_;
228 };
229 typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230
231 // Visit a top-level DIE.
232 void
233 visit_top_die(Dwarf_die* die);
234
235 // Visit the children of a DIE.
236 void
237 visit_children(Dwarf_die* die, Dwarf_die* context);
238
239 // Visit a DIE.
240 void
241 visit_die(Dwarf_die* die, Dwarf_die* context);
242
243 // Visit the children of a DIE.
244 void
245 visit_children_for_decls(Dwarf_die* die);
246
247 // Visit a DIE.
248 void
249 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250
251 // Guess a fully-qualified name for a class type, based on member function
252 // linkage names.
253 std::string
254 guess_full_class_name(Dwarf_die* die);
255
256 // Add a declaration DIE to the table of declarations.
257 void
258 add_declaration(Dwarf_die* die, Dwarf_die* context);
259
260 // Add a declaration whose fully-qualified name is already known.
261 void
262 add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263
264 // Return the context for a DIE whose parent is at DIE_OFFSET.
265 std::string
266 get_context(off_t die_offset);
267
268 // Construct a fully-qualified name for DIE.
269 std::string
270 get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271
272 // Record the address ranges for a compilation unit.
273 void
274 record_cu_ranges(Dwarf_die* die);
275
276 // Read the .debug_pubnames and .debug_pubtypes tables.
277 bool
278 read_pubnames_and_pubtypes(Dwarf_die* die);
279
280 // Clear the declarations map.
281 void
282 clear_declarations();
283
284 // The Gdb_index section.
285 Gdb_index* gdb_index_;
286 // The current CU index (negative for a TU).
287 int cu_index_;
288 // The language of the current CU or TU.
289 unsigned int cu_language_;
290 // Map from DIE offset to (parent offset, name) pair,
291 // for DW_AT_specification.
292 Declaration_map declarations_;
293
294 // Statistics.
295 // Total number of DWARF compilation units processed.
296 static unsigned int dwarf_cu_count;
297 // Number of DWARF compilation units with pubnames/pubtypes.
298 static unsigned int dwarf_cu_nopubnames_count;
299 // Total number of DWARF type units processed.
300 static unsigned int dwarf_tu_count;
301 // Number of DWARF type units with pubnames/pubtypes.
302 static unsigned int dwarf_tu_nopubnames_count;
303 };
304
305 // Total number of DWARF compilation units processed.
306 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
307 // Number of DWARF compilation units without pubnames/pubtypes.
308 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
309 // Total number of DWARF type units processed.
310 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
311 // Number of DWARF type units without pubnames/pubtypes.
312 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
313
314 // Process a compilation unit and parse its child DIE.
315
316 void
317 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
318 Dwarf_die* root_die)
319 {
320 ++Gdb_index_info_reader::dwarf_cu_count;
321 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
322 this->visit_top_die(root_die);
323 }
324
325 // Process a type unit and parse its child DIE.
326
327 void
328 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t type_offset,
329 uint64_t signature, Dwarf_die* root_die)
330 {
331 ++Gdb_index_info_reader::dwarf_tu_count;
332 // Use a negative index to flag this as a TU instead of a CU.
333 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
334 signature);
335 this->visit_top_die(root_die);
336 }
337
338 // Process a top-level DIE.
339 // For compile_unit DIEs, record the address ranges. For all
340 // interesting tags, add qualified names to the symbol table
341 // and process interesting children. We may need to process
342 // certain children just for saving declarations that might be
343 // referenced by later DIEs with a DW_AT_specification attribute.
344
345 void
346 Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
347 {
348 this->clear_declarations();
349
350 switch (die->tag())
351 {
352 case elfcpp::DW_TAG_compile_unit:
353 case elfcpp::DW_TAG_type_unit:
354 this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
355 // Check for languages that require specialized knowledge to
356 // construct fully-qualified names, that we don't yet support.
357 if (this->cu_language_ == elfcpp::DW_LANG_Ada83
358 || this->cu_language_ == elfcpp::DW_LANG_Fortran77
359 || this->cu_language_ == elfcpp::DW_LANG_Fortran90
360 || this->cu_language_ == elfcpp::DW_LANG_Java
361 || this->cu_language_ == elfcpp::DW_LANG_Ada95
362 || this->cu_language_ == elfcpp::DW_LANG_Fortran95)
363 {
364 gold_warning(_("%s: --gdb-index currently supports "
365 "only C and C++ languages"),
366 this->object()->name().c_str());
367 return;
368 }
369 if (die->tag() == elfcpp::DW_TAG_compile_unit)
370 this->record_cu_ranges(die);
371 // If there is a pubnames and/or pubtypes section for this
372 // compilation unit, use those; otherwise, parse the DWARF
373 // info to extract the names.
374 if (!this->read_pubnames_and_pubtypes(die))
375 {
376 if (die->tag() == elfcpp::DW_TAG_compile_unit)
377 ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
378 else
379 ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
380 this->visit_children(die, NULL);
381 }
382 break;
383 default:
384 // The top level DIE should be one of the above.
385 gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
386 "or DW_TAG_type_unit"),
387 this->object()->name().c_str());
388 return;
389 }
390
391 }
392
393 // Visit the children of PARENT, looking for symbols to add to the index.
394 // CONTEXT points to the DIE to use for constructing the qualified name --
395 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
396
397 void
398 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
399 {
400 off_t next_offset = 0;
401 for (off_t die_offset = parent->child_offset();
402 die_offset != 0;
403 die_offset = next_offset)
404 {
405 Dwarf_die die(this, die_offset, parent);
406 if (die.tag() == 0)
407 break;
408 this->visit_die(&die, context);
409 next_offset = die.sibling_offset();
410 }
411 }
412
413 // Visit a child DIE, looking for symbols to add to the index.
414 // CONTEXT is the parent DIE, used for constructing the qualified name;
415 // it is NULL if the parent DIE is the top-level DIE.
416
417 void
418 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
419 {
420 switch (die->tag())
421 {
422 case elfcpp::DW_TAG_subprogram:
423 case elfcpp::DW_TAG_constant:
424 case elfcpp::DW_TAG_variable:
425 case elfcpp::DW_TAG_enumerator:
426 case elfcpp::DW_TAG_base_type:
427 if (die->is_declaration())
428 this->add_declaration(die, context);
429 else
430 {
431 // If the DIE is not a declaration, add it to the index.
432 std::string full_name = this->get_qualified_name(die, context);
433 if (!full_name.empty())
434 this->gdb_index_->add_symbol(this->cu_index_, full_name.c_str());
435 }
436 break;
437 case elfcpp::DW_TAG_typedef:
438 case elfcpp::DW_TAG_union_type:
439 case elfcpp::DW_TAG_class_type:
440 case elfcpp::DW_TAG_interface_type:
441 case elfcpp::DW_TAG_structure_type:
442 case elfcpp::DW_TAG_enumeration_type:
443 case elfcpp::DW_TAG_subrange_type:
444 case elfcpp::DW_TAG_namespace:
445 {
446 std::string full_name;
447
448 // For classes at the top level, we need to look for a
449 // member function with a linkage name in order to get
450 // the properly-canonicalized name.
451 if (context == NULL
452 && (die->tag() == elfcpp::DW_TAG_class_type
453 || die->tag() == elfcpp::DW_TAG_structure_type
454 || die->tag() == elfcpp::DW_TAG_union_type))
455 full_name.assign(this->guess_full_class_name(die));
456
457 // Because we will visit the children, we need to add this DIE
458 // to the declarations table.
459 if (full_name.empty())
460 this->add_declaration(die, context);
461 else
462 this->add_declaration_with_full_name(die, full_name.c_str());
463
464 // If the DIE is not a declaration, add it to the index.
465 // Gdb stores a namespace in the index even when it is
466 // a declaration.
467 if (die->tag() == elfcpp::DW_TAG_namespace
468 || !die->is_declaration())
469 {
470 if (full_name.empty())
471 full_name = this->get_qualified_name(die, context);
472 if (!full_name.empty())
473 this->gdb_index_->add_symbol(this->cu_index_,
474 full_name.c_str());
475 }
476
477 // We're interested in the children only for namespaces and
478 // enumeration types. For enumeration types, we do not include
479 // the enumeration tag as part of the full name. For other tags,
480 // visit the children only to collect declarations.
481 if (die->tag() == elfcpp::DW_TAG_namespace
482 || die->tag() == elfcpp::DW_TAG_enumeration_type)
483 this->visit_children(die, die);
484 else
485 this->visit_children_for_decls(die);
486 }
487 break;
488 default:
489 break;
490 }
491 }
492
493 // Visit the children of PARENT, looking only for declarations that
494 // may be referenced by later specification DIEs.
495
496 void
497 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
498 {
499 off_t next_offset = 0;
500 for (off_t die_offset = parent->child_offset();
501 die_offset != 0;
502 die_offset = next_offset)
503 {
504 Dwarf_die die(this, die_offset, parent);
505 if (die.tag() == 0)
506 break;
507 this->visit_die_for_decls(&die, parent);
508 next_offset = die.sibling_offset();
509 }
510 }
511
512 // Visit a child DIE, looking only for declarations that
513 // may be referenced by later specification DIEs.
514
515 void
516 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
517 {
518 switch (die->tag())
519 {
520 case elfcpp::DW_TAG_subprogram:
521 case elfcpp::DW_TAG_constant:
522 case elfcpp::DW_TAG_variable:
523 case elfcpp::DW_TAG_enumerator:
524 case elfcpp::DW_TAG_base_type:
525 {
526 if (die->is_declaration())
527 this->add_declaration(die, context);
528 }
529 break;
530 case elfcpp::DW_TAG_typedef:
531 case elfcpp::DW_TAG_union_type:
532 case elfcpp::DW_TAG_class_type:
533 case elfcpp::DW_TAG_interface_type:
534 case elfcpp::DW_TAG_structure_type:
535 case elfcpp::DW_TAG_enumeration_type:
536 case elfcpp::DW_TAG_subrange_type:
537 case elfcpp::DW_TAG_namespace:
538 {
539 if (die->is_declaration())
540 this->add_declaration(die, context);
541 this->visit_children_for_decls(die);
542 }
543 break;
544 default:
545 break;
546 }
547 }
548
549 // Extract the class name from the linkage name of a member function.
550 // This code is adapted from ../gdb/cp-support.c.
551
552 #define d_left(dc) (dc)->u.s_binary.left
553 #define d_right(dc) (dc)->u.s_binary.right
554
555 static char*
556 class_name_from_linkage_name(const char* linkage_name)
557 {
558 void* storage;
559 struct demangle_component* tree =
560 cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
561 if (tree == NULL)
562 return NULL;
563
564 int done = 0;
565
566 // First strip off any qualifiers, if we have a function or
567 // method.
568 while (!done)
569 switch (tree->type)
570 {
571 case DEMANGLE_COMPONENT_CONST:
572 case DEMANGLE_COMPONENT_RESTRICT:
573 case DEMANGLE_COMPONENT_VOLATILE:
574 case DEMANGLE_COMPONENT_CONST_THIS:
575 case DEMANGLE_COMPONENT_RESTRICT_THIS:
576 case DEMANGLE_COMPONENT_VOLATILE_THIS:
577 case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
578 tree = d_left(tree);
579 break;
580 default:
581 done = 1;
582 break;
583 }
584
585 // If what we have now is a function, discard the argument list.
586 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
587 tree = d_left(tree);
588
589 // If what we have now is a template, strip off the template
590 // arguments. The left subtree may be a qualified name.
591 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
592 tree = d_left(tree);
593
594 // What we have now should be a name, possibly qualified.
595 // Additional qualifiers could live in the left subtree or the right
596 // subtree. Find the last piece.
597 done = 0;
598 struct demangle_component* prev_comp = NULL;
599 struct demangle_component* cur_comp = tree;
600 while (!done)
601 switch (cur_comp->type)
602 {
603 case DEMANGLE_COMPONENT_QUAL_NAME:
604 case DEMANGLE_COMPONENT_LOCAL_NAME:
605 prev_comp = cur_comp;
606 cur_comp = d_right(cur_comp);
607 break;
608 case DEMANGLE_COMPONENT_TEMPLATE:
609 case DEMANGLE_COMPONENT_NAME:
610 case DEMANGLE_COMPONENT_CTOR:
611 case DEMANGLE_COMPONENT_DTOR:
612 case DEMANGLE_COMPONENT_OPERATOR:
613 case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
614 done = 1;
615 break;
616 default:
617 done = 1;
618 cur_comp = NULL;
619 break;
620 }
621
622 char* ret = NULL;
623 if (cur_comp != NULL && prev_comp != NULL)
624 {
625 // We want to discard the rightmost child of PREV_COMP.
626 *prev_comp = *d_left(prev_comp);
627 size_t allocated_size;
628 ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
629 }
630
631 free(storage);
632 return ret;
633 }
634
635 // Guess a fully-qualified name for a class type, based on member function
636 // linkage names. This is needed for class/struct/union types at the
637 // top level, because GCC does not always properly embed them within
638 // the namespace. As in gdb, we look for a member function with a linkage
639 // name and extract the qualified name from the demangled name.
640
641 std::string
642 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
643 {
644 std::string full_name;
645 off_t next_offset = 0;
646
647 // This routine scans ahead in the DIE structure, possibly advancing
648 // the relocation tracker beyond the current DIE. We need to checkpoint
649 // the tracker and reset it when we're done.
650 uint64_t checkpoint = this->get_reloc_checkpoint();
651
652 for (off_t child_offset = die->child_offset();
653 child_offset != 0;
654 child_offset = next_offset)
655 {
656 Dwarf_die child(this, child_offset, die);
657 if (child.tag() == 0)
658 break;
659 if (child.tag() == elfcpp::DW_TAG_subprogram)
660 {
661 const char* linkage_name = child.linkage_name();
662 if (linkage_name != NULL)
663 {
664 char* guess = class_name_from_linkage_name(linkage_name);
665 if (guess != NULL)
666 {
667 full_name.assign(guess);
668 free(guess);
669 break;
670 }
671 }
672 }
673 next_offset = child.sibling_offset();
674 }
675
676 this->reset_relocs(checkpoint);
677 return full_name;
678 }
679
680 // Add a declaration DIE to the table of declarations.
681
682 void
683 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
684 {
685 const char* name = die->name();
686
687 off_t parent_offset = context != NULL ? context->offset() : 0;
688
689 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
690 // attribute, use the parent and name from the earlier declaration.
691 off_t spec = die->specification();
692 if (spec == 0)
693 spec = die->abstract_origin();
694 if (spec > 0)
695 {
696 Declaration_map::iterator it = this->declarations_.find(spec);
697 if (it != this->declarations_.end())
698 {
699 parent_offset = it->second.parent_offset_;
700 name = it->second.name_;
701 }
702 }
703
704 if (name == NULL)
705 {
706 if (die->tag() == elfcpp::DW_TAG_namespace)
707 name = "(anonymous namespace)";
708 else if (die->tag() == elfcpp::DW_TAG_union_type)
709 name = "(anonymous union)";
710 else
711 name = "(unknown)";
712 }
713
714 Declaration_pair decl(parent_offset, name);
715 this->declarations_.insert(std::make_pair(die->offset(), decl));
716 }
717
718 // Add a declaration whose fully-qualified name is already known.
719 // In the case where we had to get the canonical name by demangling
720 // a linkage name, this ensures we use that name instead of the one
721 // provided in DW_AT_name.
722
723 void
724 Gdb_index_info_reader::add_declaration_with_full_name(
725 Dwarf_die* die,
726 const char* full_name)
727 {
728 // We need to copy the name.
729 int len = strlen(full_name);
730 char* copy = new char[len + 1];
731 memcpy(copy, full_name, len + 1);
732
733 // Flag that we now manage the memory this points to.
734 Declaration_pair decl(-1, copy);
735 this->declarations_.insert(std::make_pair(die->offset(), decl));
736 }
737
738 // Return the context for a DIE whose parent is at DIE_OFFSET.
739
740 std::string
741 Gdb_index_info_reader::get_context(off_t die_offset)
742 {
743 std::string context;
744 Declaration_map::iterator it = this->declarations_.find(die_offset);
745 if (it != this->declarations_.end())
746 {
747 off_t parent_offset = it->second.parent_offset_;
748 if (parent_offset > 0)
749 {
750 context = get_context(parent_offset);
751 context.append("::");
752 }
753 if (it->second.name_ != NULL)
754 context.append(it->second.name_);
755 }
756 return context;
757 }
758
759 // Construct the fully-qualified name for DIE.
760
761 std::string
762 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
763 {
764 std::string full_name;
765 const char* name = die->name();
766
767 off_t parent_offset = context != NULL ? context->offset() : 0;
768
769 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
770 // attribute, use the parent and name from the earlier declaration.
771 off_t spec = die->specification();
772 if (spec == 0)
773 spec = die->abstract_origin();
774 if (spec > 0)
775 {
776 Declaration_map::iterator it = this->declarations_.find(spec);
777 if (it != this->declarations_.end())
778 {
779 parent_offset = it->second.parent_offset_;
780 name = it->second.name_;
781 }
782 }
783
784 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
785 name = "(anonymous namespace)";
786 else if (name == NULL)
787 return full_name;
788
789 // If this is an enumerator constant, skip the immediate parent,
790 // which is the enumeration tag.
791 if (die->tag() == elfcpp::DW_TAG_enumerator)
792 {
793 Declaration_map::iterator it = this->declarations_.find(parent_offset);
794 if (it != this->declarations_.end())
795 parent_offset = it->second.parent_offset_;
796 }
797
798 if (parent_offset > 0)
799 {
800 full_name.assign(this->get_context(parent_offset));
801 full_name.append("::");
802 }
803 full_name.append(name);
804
805 return full_name;
806 }
807
808 // Record the address ranges for a compilation unit.
809
810 void
811 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
812 {
813 unsigned int shndx;
814 unsigned int shndx2;
815
816 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
817 if (ranges_offset != -1)
818 {
819 Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
820 if (ranges != NULL)
821 this->gdb_index_->add_address_range_list(this->object(),
822 this->cu_index_, ranges);
823 return;
824 }
825
826 off_t low_pc = die->ref_attribute(elfcpp::DW_AT_low_pc, &shndx);
827 off_t high_pc = die->ref_attribute(elfcpp::DW_AT_high_pc, &shndx2);
828 if ((low_pc != 0 || high_pc != 0) && low_pc != -1 && high_pc != -1)
829 {
830 if (shndx != shndx2)
831 {
832 gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
833 "are in different sections"),
834 this->object()->name().c_str());
835 return;
836 }
837 if (shndx == 0 || this->object()->is_section_included(shndx))
838 {
839 Dwarf_range_list* ranges = new Dwarf_range_list();
840 ranges->add(shndx, low_pc, high_pc);
841 this->gdb_index_->add_address_range_list(this->object(),
842 this->cu_index_, ranges);
843 }
844 }
845 }
846
847 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
848 // Returns TRUE if either a pubnames or pubtypes section was found.
849
850 bool
851 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
852 {
853 bool ret = false;
854
855 // If we find a DW_AT_GNU_pubnames attribute, read the pubnames table.
856 unsigned int pubnames_shndx;
857 off_t pubnames_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames,
858 &pubnames_shndx);
859 if (pubnames_offset != -1)
860 {
861 if (this->gdb_index_->pubnames_read(pubnames_shndx, pubnames_offset))
862 ret = true;
863 else
864 {
865 Dwarf_pubnames_table pubnames(false);
866 if (!pubnames.read_section(this->object(), pubnames_shndx))
867 return false;
868 if (!pubnames.read_header(pubnames_offset))
869 return false;
870 while (true)
871 {
872 const char* name = pubnames.next_name();
873 if (name == NULL)
874 break;
875 this->gdb_index_->add_symbol(this->cu_index_, name);
876 }
877 ret = true;
878 }
879 }
880
881 // If we find a DW_AT_GNU_pubtypes attribute, read the pubtypes table.
882 unsigned int pubtypes_shndx;
883 off_t pubtypes_offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubtypes,
884 &pubtypes_shndx);
885 if (pubtypes_offset != -1)
886 {
887 if (this->gdb_index_->pubtypes_read(pubtypes_shndx, pubtypes_offset))
888 ret = true;
889 else
890 {
891 Dwarf_pubnames_table pubtypes(true);
892 if (!pubtypes.read_section(this->object(), pubtypes_shndx))
893 return false;
894 if (!pubtypes.read_header(pubtypes_offset))
895 return false;
896 while (true)
897 {
898 const char* name = pubtypes.next_name();
899 if (name == NULL)
900 break;
901 this->gdb_index_->add_symbol(this->cu_index_, name);
902 }
903 ret = true;
904 }
905 }
906
907 return ret;
908 }
909
910 // Clear the declarations map.
911 void
912 Gdb_index_info_reader::clear_declarations()
913 {
914 // Free strings in memory we manage.
915 for (Declaration_map::iterator it = this->declarations_.begin();
916 it != this->declarations_.end();
917 ++it)
918 {
919 if (it->second.parent_offset_ == -1)
920 delete[] it->second.name_;
921 }
922
923 this->declarations_.clear();
924 }
925
926 // Print usage statistics.
927 void
928 Gdb_index_info_reader::print_stats()
929 {
930 fprintf(stderr, _("%s: DWARF CUs: %u\n"),
931 program_name, Gdb_index_info_reader::dwarf_cu_count);
932 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
933 program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
934 fprintf(stderr, _("%s: DWARF TUs: %u\n"),
935 program_name, Gdb_index_info_reader::dwarf_tu_count);
936 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
937 program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
938 }
939
940 // Class Gdb_index.
941
942 // Construct the .gdb_index section.
943
944 Gdb_index::Gdb_index(Output_section* gdb_index_section)
945 : Output_section_data(4),
946 gdb_index_section_(gdb_index_section),
947 comp_units_(),
948 type_units_(),
949 ranges_(),
950 cu_vector_list_(),
951 cu_vector_offsets_(NULL),
952 stringpool_(),
953 tu_offset_(0),
954 addr_offset_(0),
955 symtab_offset_(0),
956 cu_pool_offset_(0),
957 stringpool_offset_(0),
958 pubnames_shndx_(0),
959 pubnames_offset_(0),
960 pubtypes_shndx_(0),
961 pubtypes_offset_(0)
962 {
963 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
964 }
965
966 Gdb_index::~Gdb_index()
967 {
968 // Free the memory used by the symbol table.
969 delete this->gdb_symtab_;
970 // Free the memory used by the CU vectors.
971 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
972 delete this->cu_vector_list_[i];
973 }
974
975 // Scan a .debug_info or .debug_types input section.
976
977 void
978 Gdb_index::scan_debug_info(bool is_type_unit,
979 Relobj* object,
980 const unsigned char* symbols,
981 off_t symbols_size,
982 unsigned int shndx,
983 unsigned int reloc_shndx,
984 unsigned int reloc_type)
985 {
986 Gdb_index_info_reader dwinfo(is_type_unit, object,
987 symbols, symbols_size,
988 shndx, reloc_shndx,
989 reloc_type, this);
990 dwinfo.parse();
991 }
992
993 // Add a symbol.
994
995 void
996 Gdb_index::add_symbol(int cu_index, const char* sym_name)
997 {
998 unsigned int hash = mapped_index_string_hash(
999 reinterpret_cast<const unsigned char*>(sym_name));
1000 Gdb_symbol* sym = new Gdb_symbol();
1001 this->stringpool_.add(sym_name, true, &sym->name_key);
1002 sym->hashval = hash;
1003 sym->cu_vector_index = 0;
1004
1005 Gdb_symbol* found = this->gdb_symtab_->add(sym);
1006 if (found == sym)
1007 {
1008 // New symbol -- allocate a new CU index vector.
1009 found->cu_vector_index = this->cu_vector_list_.size();
1010 this->cu_vector_list_.push_back(new Cu_vector());
1011 }
1012 else
1013 {
1014 // Found an existing symbol -- append to the existing
1015 // CU index vector.
1016 delete sym;
1017 }
1018
1019 // Add the CU index to the vector list for this symbol,
1020 // if it's not already on the list. We only need to
1021 // check the last added entry.
1022 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1023 if (cu_vec->size() == 0 || cu_vec->back() != cu_index)
1024 cu_vec->push_back(cu_index);
1025 }
1026
1027 // Return TRUE if we have already processed the pubnames set at
1028 // OFFSET in section SHNDX
1029
1030 bool
1031 Gdb_index::pubnames_read(unsigned int shndx, off_t offset)
1032 {
1033 bool ret = (this->pubnames_shndx_ == shndx
1034 && this->pubnames_offset_ == offset);
1035 this->pubnames_shndx_ = shndx;
1036 this->pubnames_offset_ = offset;
1037 return ret;
1038 }
1039
1040 // Return TRUE if we have already processed the pubtypes set at
1041 // OFFSET in section SHNDX
1042
1043 bool
1044 Gdb_index::pubtypes_read(unsigned int shndx, off_t offset)
1045 {
1046 bool ret = (this->pubtypes_shndx_ == shndx
1047 && this->pubtypes_offset_ == offset);
1048 this->pubtypes_shndx_ = shndx;
1049 this->pubtypes_offset_ = offset;
1050 return ret;
1051 }
1052
1053 // Set the size of the .gdb_index section.
1054
1055 void
1056 Gdb_index::set_final_data_size()
1057 {
1058 // Finalize the string pool.
1059 this->stringpool_.set_string_offsets();
1060
1061 // Compute the total size of the CU vectors.
1062 // For each CU vector, include one entry for the count at the
1063 // beginning of the vector.
1064 unsigned int cu_vector_count = this->cu_vector_list_.size();
1065 unsigned int cu_vector_size = 0;
1066 this->cu_vector_offsets_ = new off_t[cu_vector_count];
1067 for (unsigned int i = 0; i < cu_vector_count; ++i)
1068 {
1069 Cu_vector* cu_vec = this->cu_vector_list_[i];
1070 cu_vector_offsets_[i] = cu_vector_size;
1071 cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1072 }
1073
1074 // Assign relative offsets to each portion of the index,
1075 // and find the total size of the section.
1076 section_size_type data_size = gdb_index_hdr_size;
1077 data_size += this->comp_units_.size() * gdb_index_cu_size;
1078 this->tu_offset_ = data_size;
1079 data_size += this->type_units_.size() * gdb_index_tu_size;
1080 this->addr_offset_ = data_size;
1081 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1082 data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1083 this->symtab_offset_ = data_size;
1084 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1085 this->cu_pool_offset_ = data_size;
1086 data_size += cu_vector_size;
1087 this->stringpool_offset_ = data_size;
1088 data_size += this->stringpool_.get_strtab_size();
1089
1090 this->set_data_size(data_size);
1091 }
1092
1093 // Write the data to the file.
1094
1095 void
1096 Gdb_index::do_write(Output_file* of)
1097 {
1098 const off_t off = this->offset();
1099 const off_t oview_size = this->data_size();
1100 unsigned char* const oview = of->get_output_view(off, oview_size);
1101 unsigned char* pov = oview;
1102
1103 // Write the file header.
1104 // (1) Version number.
1105 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1106 pov += 4;
1107 // (2) Offset of the CU list.
1108 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1109 pov += 4;
1110 // (3) Offset of the types CU list.
1111 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1112 pov += 4;
1113 // (4) Offset of the address area.
1114 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1115 pov += 4;
1116 // (5) Offset of the symbol table.
1117 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1118 pov += 4;
1119 // (6) Offset of the constant pool.
1120 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1121 pov += 4;
1122
1123 gold_assert(pov - oview == gdb_index_hdr_size);
1124
1125 // Write the CU list.
1126 unsigned int comp_units_count = this->comp_units_.size();
1127 for (unsigned int i = 0; i < comp_units_count; ++i)
1128 {
1129 const Comp_unit& cu = this->comp_units_[i];
1130 elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1131 elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1132 pov += 16;
1133 }
1134
1135 gold_assert(pov - oview == this->tu_offset_);
1136
1137 // Write the types CU list.
1138 for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1139 {
1140 const Type_unit& tu = this->type_units_[i];
1141 elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1142 elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1143 elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1144 pov += 24;
1145 }
1146
1147 gold_assert(pov - oview == this->addr_offset_);
1148
1149 // Write the address area.
1150 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1151 {
1152 int cu_index = this->ranges_[i].cu_index;
1153 // Translate negative indexes, which refer to a TU, to a
1154 // logical index into a concatenated CU/TU list.
1155 if (cu_index < 0)
1156 cu_index = comp_units_count + (-1 - cu_index);
1157 Relobj* object = this->ranges_[i].object;
1158 const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1159 for (unsigned int j = 0; j < ranges.size(); ++j)
1160 {
1161 const Dwarf_range_list::Range& range = ranges[j];
1162 uint64_t base = 0;
1163 if (range.shndx > 0)
1164 {
1165 const Output_section* os = object->output_section(range.shndx);
1166 base = (os->address()
1167 + object->output_section_offset(range.shndx));
1168 }
1169 elfcpp::Swap<64, false>::writeval(pov, base + range.start);
1170 elfcpp::Swap<64, false>::writeval(pov + 8, base + range.end);
1171 elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1172 pov += 20;
1173 }
1174 }
1175
1176 gold_assert(pov - oview == this->symtab_offset_);
1177
1178 // Write the symbol table.
1179 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1180 {
1181 const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1182 section_offset_type name_offset = 0;
1183 unsigned int cu_vector_offset = 0;
1184 if (sym != NULL)
1185 {
1186 name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1187 + this->stringpool_offset_ - this->cu_pool_offset_);
1188 cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1189 }
1190 elfcpp::Swap<32, false>::writeval(pov, name_offset);
1191 elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1192 pov += 8;
1193 }
1194
1195 gold_assert(pov - oview == this->cu_pool_offset_);
1196
1197 // Write the CU vectors into the constant pool.
1198 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1199 {
1200 Cu_vector* cu_vec = this->cu_vector_list_[i];
1201 elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1202 pov += 4;
1203 for (unsigned int j = 0; j < cu_vec->size(); ++j)
1204 {
1205 int cu_index = (*cu_vec)[j];
1206 if (cu_index < 0)
1207 cu_index = comp_units_count + (-1 - cu_index);
1208 elfcpp::Swap<32, false>::writeval(pov, cu_index);
1209 pov += 4;
1210 }
1211 }
1212
1213 gold_assert(pov - oview == this->stringpool_offset_);
1214
1215 // Write the strings into the constant pool.
1216 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1217
1218 of->write_output_view(off, oview_size, oview);
1219 }
1220
1221 // Print usage statistics.
1222 void
1223 Gdb_index::print_stats()
1224 {
1225 if (parameters->options().gdb_index())
1226 Gdb_index_info_reader::print_stats();
1227 }
1228
1229 } // End namespace gold.
This page took 0.05515 seconds and 5 git commands to generate.