Add .gdb_index version 7 support.
[deliverable/binutils-gdb.git] / gold / gdb-index.cc
1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup
2
3 // Copyright 2012 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "gdb-index.h"
26 #include "dwarf_reader.h"
27 #include "dwarf.h"
28 #include "object.h"
29 #include "output.h"
30 #include "demangle.h"
31
32 namespace gold
33 {
34
35 const int gdb_index_version = 7;
36
37 // Sizes of various records in the .gdb_index section.
38 const int gdb_index_offset_size = 4;
39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40 const int gdb_index_cu_size = 16;
41 const int gdb_index_tu_size = 24;
42 const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43 const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44
45 // This class manages the hashed symbol table for the .gdb_index section.
46 // It is essentially equivalent to the hashtab implementation in libiberty,
47 // but is copied into gdb sources and here for compatibility because its
48 // data structure is exposed on disk.
49
50 template <typename T>
51 class Gdb_hashtab
52 {
53 public:
54 Gdb_hashtab()
55 : size_(0), capacity_(0), hashtab_(NULL)
56 { }
57
58 ~Gdb_hashtab()
59 {
60 for (size_t i = 0; i < this->capacity_; ++i)
61 if (this->hashtab_[i] != NULL)
62 delete this->hashtab_[i];
63 delete[] this->hashtab_;
64 }
65
66 // Add a symbol.
67 T*
68 add(T* symbol)
69 {
70 // Resize the hash table if necessary.
71 if (4 * this->size_ / 3 >= this->capacity_)
72 this->expand();
73
74 T** slot = this->find_slot(symbol);
75 if (*slot == NULL)
76 {
77 ++this->size_;
78 *slot = symbol;
79 }
80
81 return *slot;
82 }
83
84 // Return the current size.
85 size_t
86 size() const
87 { return this->size_; }
88
89 // Return the current capacity.
90 size_t
91 capacity() const
92 { return this->capacity_; }
93
94 // Return the contents of slot N.
95 T*
96 operator[](size_t n)
97 { return this->hashtab_[n]; }
98
99 private:
100 // Find a symbol in the hash table, or return an empty slot if
101 // the symbol is not in the table.
102 T**
103 find_slot(T* symbol)
104 {
105 unsigned int index = symbol->hash() & (this->capacity_ - 1);
106 unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107
108 for (;;)
109 {
110 if (this->hashtab_[index] == NULL
111 || this->hashtab_[index]->equal(symbol))
112 return &this->hashtab_[index];
113 index = (index + step) & (this->capacity_ - 1);
114 }
115 }
116
117 // Expand the hash table.
118 void
119 expand()
120 {
121 if (this->capacity_ == 0)
122 {
123 // Allocate the hash table for the first time.
124 this->capacity_ = Gdb_hashtab::initial_size;
125 this->hashtab_ = new T*[this->capacity_];
126 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127 }
128 else
129 {
130 // Expand and rehash.
131 unsigned int old_cap = this->capacity_;
132 T** old_hashtab = this->hashtab_;
133 this->capacity_ *= 2;
134 this->hashtab_ = new T*[this->capacity_];
135 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 for (size_t i = 0; i < old_cap; ++i)
137 {
138 if (old_hashtab[i] != NULL)
139 {
140 T** slot = this->find_slot(old_hashtab[i]);
141 *slot = old_hashtab[i];
142 }
143 }
144 delete[] old_hashtab;
145 }
146 }
147
148 // Initial size of the hash table; must be a power of 2.
149 static const int initial_size = 1024;
150 size_t size_;
151 size_t capacity_;
152 T** hashtab_;
153 };
154
155 // The hash function for strings in the mapped index. This is copied
156 // directly from gdb/dwarf2read.c.
157
158 static unsigned int
159 mapped_index_string_hash(const unsigned char* str)
160 {
161 unsigned int r = 0;
162 unsigned char c;
163
164 while ((c = *str++) != 0)
165 {
166 if (gdb_index_version >= 5)
167 c = tolower (c);
168 r = r * 67 + c - 113;
169 }
170
171 return r;
172 }
173
174 // A specialization of Dwarf_info_reader, for building the .gdb_index.
175
176 class Gdb_index_info_reader : public Dwarf_info_reader
177 {
178 public:
179 Gdb_index_info_reader(bool is_type_unit,
180 Relobj* object,
181 const unsigned char* symbols,
182 off_t symbols_size,
183 unsigned int shndx,
184 unsigned int reloc_shndx,
185 unsigned int reloc_type,
186 Gdb_index* gdb_index)
187 : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 reloc_shndx, reloc_type),
189 gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190 { }
191
192 ~Gdb_index_info_reader()
193 { this->clear_declarations(); }
194
195 // Print usage statistics.
196 static void
197 print_stats();
198
199 protected:
200 // Visit a compilation unit.
201 virtual void
202 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203
204 // Visit a type unit.
205 virtual void
206 visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
207 uint64_t signature, Dwarf_die*);
208
209 private:
210 // A map for recording DIEs we've seen that may be referred to be
211 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212 // The map is indexed by a DIE offset within the compile unit.
213 // PARENT_OFFSET_ is the offset of the DIE that represents the
214 // outer context, and NAME_ is a pointer to a component of the
215 // fully-qualified name.
216 // Normally, the names we point to are in a string table, so we don't
217 // have to manage them, but when we have a fully-qualified name
218 // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219 // indicate a string that we are managing.
220 struct Declaration_pair
221 {
222 Declaration_pair(off_t parent_offset, const char* name)
223 : parent_offset_(parent_offset), name_(name)
224 { }
225
226 off_t parent_offset_;
227 const char* name_;
228 };
229 typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230
231 // Visit a top-level DIE.
232 void
233 visit_top_die(Dwarf_die* die);
234
235 // Visit the children of a DIE.
236 void
237 visit_children(Dwarf_die* die, Dwarf_die* context);
238
239 // Visit a DIE.
240 void
241 visit_die(Dwarf_die* die, Dwarf_die* context);
242
243 // Visit the children of a DIE.
244 void
245 visit_children_for_decls(Dwarf_die* die);
246
247 // Visit a DIE.
248 void
249 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250
251 // Guess a fully-qualified name for a class type, based on member function
252 // linkage names.
253 std::string
254 guess_full_class_name(Dwarf_die* die);
255
256 // Add a declaration DIE to the table of declarations.
257 void
258 add_declaration(Dwarf_die* die, Dwarf_die* context);
259
260 // Add a declaration whose fully-qualified name is already known.
261 void
262 add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263
264 // Return the context for a DIE whose parent is at DIE_OFFSET.
265 std::string
266 get_context(off_t die_offset);
267
268 // Construct a fully-qualified name for DIE.
269 std::string
270 get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271
272 // Record the address ranges for a compilation unit.
273 void
274 record_cu_ranges(Dwarf_die* die);
275
276 // Wrapper for read_pubtable.
277 bool
278 read_pubnames_and_pubtypes(Dwarf_die* die);
279
280 // Read the .debug_pubnames and .debug_pubtypes tables.
281 bool
282 read_pubtable(Dwarf_pubnames_table* table, off_t offset);
283
284 // Clear the declarations map.
285 void
286 clear_declarations();
287
288 // The Gdb_index section.
289 Gdb_index* gdb_index_;
290 // The current CU index (negative for a TU).
291 int cu_index_;
292 // The language of the current CU or TU.
293 unsigned int cu_language_;
294 // Map from DIE offset to (parent offset, name) pair,
295 // for DW_AT_specification.
296 Declaration_map declarations_;
297
298 // Statistics.
299 // Total number of DWARF compilation units processed.
300 static unsigned int dwarf_cu_count;
301 // Number of DWARF compilation units with pubnames/pubtypes.
302 static unsigned int dwarf_cu_nopubnames_count;
303 // Total number of DWARF type units processed.
304 static unsigned int dwarf_tu_count;
305 // Number of DWARF type units with pubnames/pubtypes.
306 static unsigned int dwarf_tu_nopubnames_count;
307 };
308
309 // Total number of DWARF compilation units processed.
310 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
311 // Number of DWARF compilation units without pubnames/pubtypes.
312 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
313 // Total number of DWARF type units processed.
314 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
315 // Number of DWARF type units without pubnames/pubtypes.
316 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
317
318 // Process a compilation unit and parse its child DIE.
319
320 void
321 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
322 Dwarf_die* root_die)
323 {
324 ++Gdb_index_info_reader::dwarf_cu_count;
325 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
326 this->visit_top_die(root_die);
327 }
328
329 // Process a type unit and parse its child DIE.
330
331 void
332 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t,
333 off_t type_offset, uint64_t signature,
334 Dwarf_die* root_die)
335 {
336 ++Gdb_index_info_reader::dwarf_tu_count;
337 // Use a negative index to flag this as a TU instead of a CU.
338 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
339 signature);
340 this->visit_top_die(root_die);
341 }
342
343 // Process a top-level DIE.
344 // For compile_unit DIEs, record the address ranges. For all
345 // interesting tags, add qualified names to the symbol table
346 // and process interesting children. We may need to process
347 // certain children just for saving declarations that might be
348 // referenced by later DIEs with a DW_AT_specification attribute.
349
350 void
351 Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
352 {
353 this->clear_declarations();
354
355 switch (die->tag())
356 {
357 case elfcpp::DW_TAG_compile_unit:
358 case elfcpp::DW_TAG_type_unit:
359 this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
360 // Check for languages that require specialized knowledge to
361 // construct fully-qualified names, that we don't yet support.
362 if (this->cu_language_ == elfcpp::DW_LANG_Ada83
363 || this->cu_language_ == elfcpp::DW_LANG_Fortran77
364 || this->cu_language_ == elfcpp::DW_LANG_Fortran90
365 || this->cu_language_ == elfcpp::DW_LANG_Java
366 || this->cu_language_ == elfcpp::DW_LANG_Ada95
367 || this->cu_language_ == elfcpp::DW_LANG_Fortran95)
368 {
369 gold_warning(_("%s: --gdb-index currently supports "
370 "only C and C++ languages"),
371 this->object()->name().c_str());
372 return;
373 }
374 if (die->tag() == elfcpp::DW_TAG_compile_unit)
375 this->record_cu_ranges(die);
376 // If there is a pubnames and/or pubtypes section for this
377 // compilation unit, use those; otherwise, parse the DWARF
378 // info to extract the names.
379 if (!this->read_pubnames_and_pubtypes(die))
380 {
381 if (die->tag() == elfcpp::DW_TAG_compile_unit)
382 ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
383 else
384 ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
385 this->visit_children(die, NULL);
386 }
387 break;
388 default:
389 // The top level DIE should be one of the above.
390 gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
391 "or DW_TAG_type_unit"),
392 this->object()->name().c_str());
393 return;
394 }
395
396 }
397
398 // Visit the children of PARENT, looking for symbols to add to the index.
399 // CONTEXT points to the DIE to use for constructing the qualified name --
400 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
401
402 void
403 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
404 {
405 off_t next_offset = 0;
406 for (off_t die_offset = parent->child_offset();
407 die_offset != 0;
408 die_offset = next_offset)
409 {
410 Dwarf_die die(this, die_offset, parent);
411 if (die.tag() == 0)
412 break;
413 this->visit_die(&die, context);
414 next_offset = die.sibling_offset();
415 }
416 }
417
418 // Visit a child DIE, looking for symbols to add to the index.
419 // CONTEXT is the parent DIE, used for constructing the qualified name;
420 // it is NULL if the parent DIE is the top-level DIE.
421
422 void
423 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
424 {
425 switch (die->tag())
426 {
427 case elfcpp::DW_TAG_subprogram:
428 case elfcpp::DW_TAG_constant:
429 case elfcpp::DW_TAG_variable:
430 case elfcpp::DW_TAG_enumerator:
431 case elfcpp::DW_TAG_base_type:
432 if (die->is_declaration())
433 this->add_declaration(die, context);
434 else
435 {
436 // If the DIE is not a declaration, add it to the index.
437 std::string full_name = this->get_qualified_name(die, context);
438 if (!full_name.empty())
439 this->gdb_index_->add_symbol(this->cu_index_,
440 full_name.c_str(), 0);
441 }
442 break;
443 case elfcpp::DW_TAG_typedef:
444 case elfcpp::DW_TAG_union_type:
445 case elfcpp::DW_TAG_class_type:
446 case elfcpp::DW_TAG_interface_type:
447 case elfcpp::DW_TAG_structure_type:
448 case elfcpp::DW_TAG_enumeration_type:
449 case elfcpp::DW_TAG_subrange_type:
450 case elfcpp::DW_TAG_namespace:
451 {
452 std::string full_name;
453
454 // For classes at the top level, we need to look for a
455 // member function with a linkage name in order to get
456 // the properly-canonicalized name.
457 if (context == NULL
458 && (die->tag() == elfcpp::DW_TAG_class_type
459 || die->tag() == elfcpp::DW_TAG_structure_type
460 || die->tag() == elfcpp::DW_TAG_union_type))
461 full_name.assign(this->guess_full_class_name(die));
462
463 // Because we will visit the children, we need to add this DIE
464 // to the declarations table.
465 if (full_name.empty())
466 this->add_declaration(die, context);
467 else
468 this->add_declaration_with_full_name(die, full_name.c_str());
469
470 // If the DIE is not a declaration, add it to the index.
471 // Gdb stores a namespace in the index even when it is
472 // a declaration.
473 if (die->tag() == elfcpp::DW_TAG_namespace
474 || !die->is_declaration())
475 {
476 if (full_name.empty())
477 full_name = this->get_qualified_name(die, context);
478 if (!full_name.empty())
479 this->gdb_index_->add_symbol(this->cu_index_,
480 full_name.c_str(), 0);
481 }
482
483 // We're interested in the children only for namespaces and
484 // enumeration types. For enumeration types, we do not include
485 // the enumeration tag as part of the full name. For other tags,
486 // visit the children only to collect declarations.
487 if (die->tag() == elfcpp::DW_TAG_namespace
488 || die->tag() == elfcpp::DW_TAG_enumeration_type)
489 this->visit_children(die, die);
490 else
491 this->visit_children_for_decls(die);
492 }
493 break;
494 default:
495 break;
496 }
497 }
498
499 // Visit the children of PARENT, looking only for declarations that
500 // may be referenced by later specification DIEs.
501
502 void
503 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
504 {
505 off_t next_offset = 0;
506 for (off_t die_offset = parent->child_offset();
507 die_offset != 0;
508 die_offset = next_offset)
509 {
510 Dwarf_die die(this, die_offset, parent);
511 if (die.tag() == 0)
512 break;
513 this->visit_die_for_decls(&die, parent);
514 next_offset = die.sibling_offset();
515 }
516 }
517
518 // Visit a child DIE, looking only for declarations that
519 // may be referenced by later specification DIEs.
520
521 void
522 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
523 {
524 switch (die->tag())
525 {
526 case elfcpp::DW_TAG_subprogram:
527 case elfcpp::DW_TAG_constant:
528 case elfcpp::DW_TAG_variable:
529 case elfcpp::DW_TAG_enumerator:
530 case elfcpp::DW_TAG_base_type:
531 {
532 if (die->is_declaration())
533 this->add_declaration(die, context);
534 }
535 break;
536 case elfcpp::DW_TAG_typedef:
537 case elfcpp::DW_TAG_union_type:
538 case elfcpp::DW_TAG_class_type:
539 case elfcpp::DW_TAG_interface_type:
540 case elfcpp::DW_TAG_structure_type:
541 case elfcpp::DW_TAG_enumeration_type:
542 case elfcpp::DW_TAG_subrange_type:
543 case elfcpp::DW_TAG_namespace:
544 {
545 if (die->is_declaration())
546 this->add_declaration(die, context);
547 this->visit_children_for_decls(die);
548 }
549 break;
550 default:
551 break;
552 }
553 }
554
555 // Extract the class name from the linkage name of a member function.
556 // This code is adapted from ../gdb/cp-support.c.
557
558 #define d_left(dc) (dc)->u.s_binary.left
559 #define d_right(dc) (dc)->u.s_binary.right
560
561 static char*
562 class_name_from_linkage_name(const char* linkage_name)
563 {
564 void* storage;
565 struct demangle_component* tree =
566 cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
567 if (tree == NULL)
568 return NULL;
569
570 int done = 0;
571
572 // First strip off any qualifiers, if we have a function or
573 // method.
574 while (!done)
575 switch (tree->type)
576 {
577 case DEMANGLE_COMPONENT_CONST:
578 case DEMANGLE_COMPONENT_RESTRICT:
579 case DEMANGLE_COMPONENT_VOLATILE:
580 case DEMANGLE_COMPONENT_CONST_THIS:
581 case DEMANGLE_COMPONENT_RESTRICT_THIS:
582 case DEMANGLE_COMPONENT_VOLATILE_THIS:
583 case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
584 tree = d_left(tree);
585 break;
586 default:
587 done = 1;
588 break;
589 }
590
591 // If what we have now is a function, discard the argument list.
592 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
593 tree = d_left(tree);
594
595 // If what we have now is a template, strip off the template
596 // arguments. The left subtree may be a qualified name.
597 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
598 tree = d_left(tree);
599
600 // What we have now should be a name, possibly qualified.
601 // Additional qualifiers could live in the left subtree or the right
602 // subtree. Find the last piece.
603 done = 0;
604 struct demangle_component* prev_comp = NULL;
605 struct demangle_component* cur_comp = tree;
606 while (!done)
607 switch (cur_comp->type)
608 {
609 case DEMANGLE_COMPONENT_QUAL_NAME:
610 case DEMANGLE_COMPONENT_LOCAL_NAME:
611 prev_comp = cur_comp;
612 cur_comp = d_right(cur_comp);
613 break;
614 case DEMANGLE_COMPONENT_TEMPLATE:
615 case DEMANGLE_COMPONENT_NAME:
616 case DEMANGLE_COMPONENT_CTOR:
617 case DEMANGLE_COMPONENT_DTOR:
618 case DEMANGLE_COMPONENT_OPERATOR:
619 case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
620 done = 1;
621 break;
622 default:
623 done = 1;
624 cur_comp = NULL;
625 break;
626 }
627
628 char* ret = NULL;
629 if (cur_comp != NULL && prev_comp != NULL)
630 {
631 // We want to discard the rightmost child of PREV_COMP.
632 *prev_comp = *d_left(prev_comp);
633 size_t allocated_size;
634 ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
635 }
636
637 free(storage);
638 return ret;
639 }
640
641 // Guess a fully-qualified name for a class type, based on member function
642 // linkage names. This is needed for class/struct/union types at the
643 // top level, because GCC does not always properly embed them within
644 // the namespace. As in gdb, we look for a member function with a linkage
645 // name and extract the qualified name from the demangled name.
646
647 std::string
648 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
649 {
650 std::string full_name;
651 off_t next_offset = 0;
652
653 // This routine scans ahead in the DIE structure, possibly advancing
654 // the relocation tracker beyond the current DIE. We need to checkpoint
655 // the tracker and reset it when we're done.
656 uint64_t checkpoint = this->get_reloc_checkpoint();
657
658 for (off_t child_offset = die->child_offset();
659 child_offset != 0;
660 child_offset = next_offset)
661 {
662 Dwarf_die child(this, child_offset, die);
663 if (child.tag() == 0)
664 break;
665 if (child.tag() == elfcpp::DW_TAG_subprogram)
666 {
667 const char* linkage_name = child.linkage_name();
668 if (linkage_name != NULL)
669 {
670 char* guess = class_name_from_linkage_name(linkage_name);
671 if (guess != NULL)
672 {
673 full_name.assign(guess);
674 free(guess);
675 break;
676 }
677 }
678 }
679 next_offset = child.sibling_offset();
680 }
681
682 this->reset_relocs(checkpoint);
683 return full_name;
684 }
685
686 // Add a declaration DIE to the table of declarations.
687
688 void
689 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
690 {
691 const char* name = die->name();
692
693 off_t parent_offset = context != NULL ? context->offset() : 0;
694
695 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
696 // attribute, use the parent and name from the earlier declaration.
697 off_t spec = die->specification();
698 if (spec == 0)
699 spec = die->abstract_origin();
700 if (spec > 0)
701 {
702 Declaration_map::iterator it = this->declarations_.find(spec);
703 if (it != this->declarations_.end())
704 {
705 parent_offset = it->second.parent_offset_;
706 name = it->second.name_;
707 }
708 }
709
710 if (name == NULL)
711 {
712 if (die->tag() == elfcpp::DW_TAG_namespace)
713 name = "(anonymous namespace)";
714 else if (die->tag() == elfcpp::DW_TAG_union_type)
715 name = "(anonymous union)";
716 else
717 name = "(unknown)";
718 }
719
720 Declaration_pair decl(parent_offset, name);
721 this->declarations_.insert(std::make_pair(die->offset(), decl));
722 }
723
724 // Add a declaration whose fully-qualified name is already known.
725 // In the case where we had to get the canonical name by demangling
726 // a linkage name, this ensures we use that name instead of the one
727 // provided in DW_AT_name.
728
729 void
730 Gdb_index_info_reader::add_declaration_with_full_name(
731 Dwarf_die* die,
732 const char* full_name)
733 {
734 // We need to copy the name.
735 int len = strlen(full_name);
736 char* copy = new char[len + 1];
737 memcpy(copy, full_name, len + 1);
738
739 // Flag that we now manage the memory this points to.
740 Declaration_pair decl(-1, copy);
741 this->declarations_.insert(std::make_pair(die->offset(), decl));
742 }
743
744 // Return the context for a DIE whose parent is at DIE_OFFSET.
745
746 std::string
747 Gdb_index_info_reader::get_context(off_t die_offset)
748 {
749 std::string context;
750 Declaration_map::iterator it = this->declarations_.find(die_offset);
751 if (it != this->declarations_.end())
752 {
753 off_t parent_offset = it->second.parent_offset_;
754 if (parent_offset > 0)
755 {
756 context = get_context(parent_offset);
757 context.append("::");
758 }
759 if (it->second.name_ != NULL)
760 context.append(it->second.name_);
761 }
762 return context;
763 }
764
765 // Construct the fully-qualified name for DIE.
766
767 std::string
768 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
769 {
770 std::string full_name;
771 const char* name = die->name();
772
773 off_t parent_offset = context != NULL ? context->offset() : 0;
774
775 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
776 // attribute, use the parent and name from the earlier declaration.
777 off_t spec = die->specification();
778 if (spec == 0)
779 spec = die->abstract_origin();
780 if (spec > 0)
781 {
782 Declaration_map::iterator it = this->declarations_.find(spec);
783 if (it != this->declarations_.end())
784 {
785 parent_offset = it->second.parent_offset_;
786 name = it->second.name_;
787 }
788 }
789
790 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
791 name = "(anonymous namespace)";
792 else if (name == NULL)
793 return full_name;
794
795 // If this is an enumerator constant, skip the immediate parent,
796 // which is the enumeration tag.
797 if (die->tag() == elfcpp::DW_TAG_enumerator)
798 {
799 Declaration_map::iterator it = this->declarations_.find(parent_offset);
800 if (it != this->declarations_.end())
801 parent_offset = it->second.parent_offset_;
802 }
803
804 if (parent_offset > 0)
805 {
806 full_name.assign(this->get_context(parent_offset));
807 full_name.append("::");
808 }
809 full_name.append(name);
810
811 return full_name;
812 }
813
814 // Record the address ranges for a compilation unit.
815
816 void
817 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
818 {
819 unsigned int shndx;
820 unsigned int shndx2;
821
822 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
823 if (ranges_offset != -1)
824 {
825 Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
826 if (ranges != NULL)
827 this->gdb_index_->add_address_range_list(this->object(),
828 this->cu_index_, ranges);
829 return;
830 }
831
832 off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
833 off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
834 if (high_pc == -1)
835 {
836 high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
837 high_pc += low_pc;
838 shndx2 = shndx;
839 }
840 if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
841 {
842 if (shndx != shndx2)
843 {
844 gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
845 "are in different sections"),
846 this->object()->name().c_str());
847 return;
848 }
849 if (shndx == 0 || this->object()->is_section_included(shndx))
850 {
851 Dwarf_range_list* ranges = new Dwarf_range_list();
852 ranges->add(shndx, low_pc, high_pc);
853 this->gdb_index_->add_address_range_list(this->object(),
854 this->cu_index_, ranges);
855 }
856 }
857 }
858
859 // Read table and add the relevant names to the index. Returns true
860 // if any names were added.
861
862 bool
863 Gdb_index_info_reader::read_pubtable(Dwarf_pubnames_table* table, off_t offset)
864 {
865 // If we couldn't read the section when building the cu_pubname_map,
866 // then we won't find any pubnames now.
867 if (table == NULL)
868 return false;
869
870 if (!table->read_header(offset))
871 return false;
872 while (true)
873 {
874 uint8_t flag_byte;
875 const char* name = table->next_name(&flag_byte);
876 if (name == NULL)
877 break;
878
879 this->gdb_index_->add_symbol(this->cu_index_, name, flag_byte);
880 }
881 return true;
882 }
883
884 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
885 // Returns TRUE if either a pubnames or pubtypes section was found.
886
887 bool
888 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
889 {
890 // If this is a skeleton debug-type die (generated via
891 // -gsplit-dwarf), then the associated pubnames should have been
892 // read along with the corresponding CU. In any case, there isn't
893 // enough info inside to build a gdb index entry.
894 if (die->tag() == elfcpp::DW_TAG_type_unit
895 && die->string_attribute(elfcpp::DW_AT_GNU_dwo_name))
896 return true;
897
898 // We use stmt_list_off as a unique identifier for the
899 // compilation unit and its associated type units.
900 unsigned int shndx;
901 off_t stmt_list_off = die->ref_attribute (elfcpp::DW_AT_stmt_list,
902 &shndx);
903 // Look for the attr as either a flag or a ref.
904 off_t offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, &shndx);
905
906 // Newer versions of GCC generate CUs, but not TUs, with
907 // DW_AT_FORM_flag_present.
908 unsigned int flag = die->uint_attribute(elfcpp::DW_AT_GNU_pubnames);
909 if (offset == -1 && flag == 0)
910 {
911 // Didn't find the attribute.
912 if (die->tag() == elfcpp::DW_TAG_type_unit)
913 {
914 // If die is a TU, then it might correspond to a CU which we
915 // have read. If it does, then no need to read the pubnames.
916 // If it doesn't, then the caller will have to parse the
917 // dies manually to find the names.
918 return this->gdb_index_->pubnames_read(this->object(),
919 stmt_list_off);
920 }
921 else
922 {
923 // No attribute on the CU means that no pubnames were read.
924 return false;
925 }
926 }
927
928 // We found the attribute, so we can check if the corresponding
929 // pubnames have been read.
930 if (this->gdb_index_->pubnames_read(this->object(), stmt_list_off))
931 return true;
932
933 this->gdb_index_->set_pubnames_read(this->object(), stmt_list_off);
934
935 // We have an attribute, and the pubnames haven't been read, so read
936 // them.
937 bool names = false;
938 // In some of the cases, we could rely on the previous value of
939 // offset here, but sorting out which cases complicates the logic
940 // enough that it isn't worth it. So just look up the offset again.
941 offset = this->gdb_index_->find_pubname_offset(this->cu_offset());
942 names = this->read_pubtable(this->gdb_index_->pubnames_table(), offset);
943
944 bool types = false;
945 offset = this->gdb_index_->find_pubtype_offset(this->cu_offset());
946 types = this->read_pubtable(this->gdb_index_->pubtypes_table(), offset);
947 return names || types;
948 }
949
950 // Clear the declarations map.
951 void
952 Gdb_index_info_reader::clear_declarations()
953 {
954 // Free strings in memory we manage.
955 for (Declaration_map::iterator it = this->declarations_.begin();
956 it != this->declarations_.end();
957 ++it)
958 {
959 if (it->second.parent_offset_ == -1)
960 delete[] it->second.name_;
961 }
962
963 this->declarations_.clear();
964 }
965
966 // Print usage statistics.
967 void
968 Gdb_index_info_reader::print_stats()
969 {
970 fprintf(stderr, _("%s: DWARF CUs: %u\n"),
971 program_name, Gdb_index_info_reader::dwarf_cu_count);
972 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
973 program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
974 fprintf(stderr, _("%s: DWARF TUs: %u\n"),
975 program_name, Gdb_index_info_reader::dwarf_tu_count);
976 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
977 program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
978 }
979
980 // Class Gdb_index.
981
982 // Construct the .gdb_index section.
983
984 Gdb_index::Gdb_index(Output_section* gdb_index_section)
985 : Output_section_data(4),
986 pubnames_table_(NULL),
987 pubtypes_table_(NULL),
988 gdb_index_section_(gdb_index_section),
989 comp_units_(),
990 type_units_(),
991 ranges_(),
992 cu_vector_list_(),
993 cu_vector_offsets_(NULL),
994 stringpool_(),
995 tu_offset_(0),
996 addr_offset_(0),
997 symtab_offset_(0),
998 cu_pool_offset_(0),
999 stringpool_offset_(0),
1000 pubnames_object_(NULL),
1001 stmt_list_offset_(-1)
1002 {
1003 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
1004 }
1005
1006 Gdb_index::~Gdb_index()
1007 {
1008 // Free the memory used by the symbol table.
1009 delete this->gdb_symtab_;
1010 // Free the memory used by the CU vectors.
1011 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1012 delete this->cu_vector_list_[i];
1013 }
1014
1015
1016 // Scan the pubnames and pubtypes sections and build a map of the
1017 // various cus and tus they refer to, so we can process the entries
1018 // when we encounter the die for that cu or tu.
1019 // Return the just-read table so it can be cached.
1020
1021 Dwarf_pubnames_table*
1022 Gdb_index::map_pubtable_to_dies(unsigned int attr,
1023 Gdb_index_info_reader* dwinfo,
1024 Relobj* object,
1025 const unsigned char* symbols,
1026 off_t symbols_size)
1027 {
1028 uint64_t section_offset = 0;
1029 Dwarf_pubnames_table* table;
1030 Pubname_offset_map* map;
1031
1032 if (attr == elfcpp::DW_AT_GNU_pubnames)
1033 {
1034 table = new Dwarf_pubnames_table(dwinfo, false);
1035 map = &this->cu_pubname_map_;
1036 }
1037 else
1038 {
1039 table = new Dwarf_pubnames_table(dwinfo, true);
1040 map = &this->cu_pubtype_map_;
1041 }
1042
1043 map->clear();
1044 if (!table->read_section(object, symbols, symbols_size))
1045 return NULL;
1046
1047 while (table->read_header(section_offset))
1048 {
1049 map->insert(std::make_pair(table->cu_offset(), section_offset));
1050 section_offset += table->subsection_size();
1051 }
1052
1053 return table;
1054 }
1055
1056 // Wrapper for map_pubtable_to_dies
1057
1058 void
1059 Gdb_index::map_pubnames_and_types_to_dies(Gdb_index_info_reader* dwinfo,
1060 Relobj* object,
1061 const unsigned char* symbols,
1062 off_t symbols_size)
1063 {
1064 // This is a new object, so reset the relevant variables.
1065 this->pubnames_object_ = object;
1066 this->stmt_list_offset_ = -1;
1067
1068 delete this->pubnames_table_;
1069 this->pubnames_table_
1070 = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubnames, dwinfo,
1071 object, symbols, symbols_size);
1072 delete this->pubtypes_table_;
1073 this->pubtypes_table_
1074 = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubtypes, dwinfo,
1075 object, symbols, symbols_size);
1076 }
1077
1078 // Given a cu_offset, find the associated section of the pubnames
1079 // table.
1080
1081 off_t
1082 Gdb_index::find_pubname_offset(off_t cu_offset)
1083 {
1084 Pubname_offset_map::iterator it = this->cu_pubname_map_.find(cu_offset);
1085 if (it != this->cu_pubname_map_.end())
1086 return it->second;
1087 return -1;
1088 }
1089
1090 // Given a cu_offset, find the associated section of the pubnames
1091 // table.
1092
1093 off_t
1094 Gdb_index::find_pubtype_offset(off_t cu_offset)
1095 {
1096 Pubname_offset_map::iterator it = this->cu_pubtype_map_.find(cu_offset);
1097 if (it != this->cu_pubtype_map_.end())
1098 return it->second;
1099 return -1;
1100 }
1101
1102 // Scan a .debug_info or .debug_types input section.
1103
1104 void
1105 Gdb_index::scan_debug_info(bool is_type_unit,
1106 Relobj* object,
1107 const unsigned char* symbols,
1108 off_t symbols_size,
1109 unsigned int shndx,
1110 unsigned int reloc_shndx,
1111 unsigned int reloc_type)
1112 {
1113 Gdb_index_info_reader dwinfo(is_type_unit, object,
1114 symbols, symbols_size,
1115 shndx, reloc_shndx,
1116 reloc_type, this);
1117 if (object != this->pubnames_object_)
1118 map_pubnames_and_types_to_dies(&dwinfo, object, symbols, symbols_size);
1119 dwinfo.parse();
1120 }
1121
1122 // Add a symbol.
1123
1124 void
1125 Gdb_index::add_symbol(int cu_index, const char* sym_name, uint8_t flags)
1126 {
1127 unsigned int hash = mapped_index_string_hash(
1128 reinterpret_cast<const unsigned char*>(sym_name));
1129 Gdb_symbol* sym = new Gdb_symbol();
1130 this->stringpool_.add(sym_name, true, &sym->name_key);
1131 sym->hashval = hash;
1132 sym->cu_vector_index = 0;
1133
1134 Gdb_symbol* found = this->gdb_symtab_->add(sym);
1135 if (found == sym)
1136 {
1137 // New symbol -- allocate a new CU index vector.
1138 found->cu_vector_index = this->cu_vector_list_.size();
1139 this->cu_vector_list_.push_back(new Cu_vector());
1140 }
1141 else
1142 {
1143 // Found an existing symbol -- append to the existing
1144 // CU index vector.
1145 delete sym;
1146 }
1147
1148 // Add the CU index to the vector list for this symbol,
1149 // if it's not already on the list. We only need to
1150 // check the last added entry.
1151 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1152 if (cu_vec->size() == 0
1153 || cu_vec->back().first != cu_index
1154 || cu_vec->back().second != flags)
1155 cu_vec->push_back(std::make_pair(cu_index, flags));
1156 }
1157
1158 // Return TRUE if we have already processed the pubnames associated
1159 // with the statement list at the given OFFSET.
1160
1161 bool
1162 Gdb_index::pubnames_read(const Relobj* object, off_t offset)
1163 {
1164 bool ret = (this->pubnames_object_ == object
1165 && this->stmt_list_offset_ == offset);
1166 return ret;
1167 }
1168
1169 // Record that we have processed the pubnames associated with the
1170 // statement list for OBJECT at the given OFFSET.
1171
1172 void
1173 Gdb_index::set_pubnames_read(const Relobj* object, off_t offset)
1174 {
1175 this->pubnames_object_ = object;
1176 this->stmt_list_offset_ = offset;
1177 }
1178
1179 // Set the size of the .gdb_index section.
1180
1181 void
1182 Gdb_index::set_final_data_size()
1183 {
1184 // Finalize the string pool.
1185 this->stringpool_.set_string_offsets();
1186
1187 // Compute the total size of the CU vectors.
1188 // For each CU vector, include one entry for the count at the
1189 // beginning of the vector.
1190 unsigned int cu_vector_count = this->cu_vector_list_.size();
1191 unsigned int cu_vector_size = 0;
1192 this->cu_vector_offsets_ = new off_t[cu_vector_count];
1193 for (unsigned int i = 0; i < cu_vector_count; ++i)
1194 {
1195 Cu_vector* cu_vec = this->cu_vector_list_[i];
1196 cu_vector_offsets_[i] = cu_vector_size;
1197 cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1198 }
1199
1200 // Assign relative offsets to each portion of the index,
1201 // and find the total size of the section.
1202 section_size_type data_size = gdb_index_hdr_size;
1203 data_size += this->comp_units_.size() * gdb_index_cu_size;
1204 this->tu_offset_ = data_size;
1205 data_size += this->type_units_.size() * gdb_index_tu_size;
1206 this->addr_offset_ = data_size;
1207 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1208 data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1209 this->symtab_offset_ = data_size;
1210 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1211 this->cu_pool_offset_ = data_size;
1212 data_size += cu_vector_size;
1213 this->stringpool_offset_ = data_size;
1214 data_size += this->stringpool_.get_strtab_size();
1215
1216 this->set_data_size(data_size);
1217 }
1218
1219 // Write the data to the file.
1220
1221 void
1222 Gdb_index::do_write(Output_file* of)
1223 {
1224 const off_t off = this->offset();
1225 const off_t oview_size = this->data_size();
1226 unsigned char* const oview = of->get_output_view(off, oview_size);
1227 unsigned char* pov = oview;
1228
1229 // Write the file header.
1230 // (1) Version number.
1231 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1232 pov += 4;
1233 // (2) Offset of the CU list.
1234 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1235 pov += 4;
1236 // (3) Offset of the types CU list.
1237 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1238 pov += 4;
1239 // (4) Offset of the address area.
1240 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1241 pov += 4;
1242 // (5) Offset of the symbol table.
1243 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1244 pov += 4;
1245 // (6) Offset of the constant pool.
1246 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1247 pov += 4;
1248
1249 gold_assert(pov - oview == gdb_index_hdr_size);
1250
1251 // Write the CU list.
1252 unsigned int comp_units_count = this->comp_units_.size();
1253 for (unsigned int i = 0; i < comp_units_count; ++i)
1254 {
1255 const Comp_unit& cu = this->comp_units_[i];
1256 elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1257 elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1258 pov += 16;
1259 }
1260
1261 gold_assert(pov - oview == this->tu_offset_);
1262
1263 // Write the types CU list.
1264 for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1265 {
1266 const Type_unit& tu = this->type_units_[i];
1267 elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1268 elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1269 elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1270 pov += 24;
1271 }
1272
1273 gold_assert(pov - oview == this->addr_offset_);
1274
1275 // Write the address area.
1276 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1277 {
1278 int cu_index = this->ranges_[i].cu_index;
1279 // Translate negative indexes, which refer to a TU, to a
1280 // logical index into a concatenated CU/TU list.
1281 if (cu_index < 0)
1282 cu_index = comp_units_count + (-1 - cu_index);
1283 Relobj* object = this->ranges_[i].object;
1284 const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1285 for (unsigned int j = 0; j < ranges.size(); ++j)
1286 {
1287 const Dwarf_range_list::Range& range = ranges[j];
1288 uint64_t base = 0;
1289 if (range.shndx > 0)
1290 {
1291 const Output_section* os = object->output_section(range.shndx);
1292 base = (os->address()
1293 + object->output_section_offset(range.shndx));
1294 }
1295 elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1296 elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1297 base + range.end);
1298 elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1299 pov += 20;
1300 }
1301 }
1302
1303 gold_assert(pov - oview == this->symtab_offset_);
1304
1305 // Write the symbol table.
1306 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1307 {
1308 const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1309 section_offset_type name_offset = 0;
1310 unsigned int cu_vector_offset = 0;
1311 if (sym != NULL)
1312 {
1313 name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1314 + this->stringpool_offset_ - this->cu_pool_offset_);
1315 cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1316 }
1317 elfcpp::Swap<32, false>::writeval(pov, name_offset);
1318 elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1319 pov += 8;
1320 }
1321
1322 gold_assert(pov - oview == this->cu_pool_offset_);
1323
1324 // Write the CU vectors into the constant pool.
1325 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1326 {
1327 Cu_vector* cu_vec = this->cu_vector_list_[i];
1328 elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1329 pov += 4;
1330 for (unsigned int j = 0; j < cu_vec->size(); ++j)
1331 {
1332 int cu_index = (*cu_vec)[j].first;
1333 uint8_t flags = (*cu_vec)[j].second;
1334 if (cu_index < 0)
1335 cu_index = comp_units_count + (-1 - cu_index);
1336 cu_index |= flags << 24;
1337 elfcpp::Swap<32, false>::writeval(pov, cu_index);
1338 pov += 4;
1339 }
1340 }
1341
1342 gold_assert(pov - oview == this->stringpool_offset_);
1343
1344 // Write the strings into the constant pool.
1345 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1346
1347 of->write_output_view(off, oview_size, oview);
1348 }
1349
1350 // Print usage statistics.
1351 void
1352 Gdb_index::print_stats()
1353 {
1354 if (parameters->options().gdb_index())
1355 Gdb_index_info_reader::print_stats();
1356 }
1357
1358 } // End namespace gold.
This page took 0.066624 seconds and 5 git commands to generate.