* gc.h (gc_process_relocs): Check if icf is enabled using new
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44 #include "gc.h"
45 #include "icf.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 const char* program_name;
52
53 void
54 gold_exit(bool status)
55 {
56 if (parameters != NULL
57 && parameters->options_valid()
58 && parameters->options().has_plugins())
59 parameters->options().plugins()->cleanup();
60 if (!status && parameters != NULL && parameters->options_valid())
61 unlink_if_ordinary(parameters->options().output_file_name());
62 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
63 }
64
65 void
66 gold_nomem()
67 {
68 // We are out of memory, so try hard to print a reasonable message.
69 // Note that we don't try to translate this message, since the
70 // translation process itself will require memory.
71
72 // LEN only exists to avoid a pointless warning when write is
73 // declared with warn_use_result, as when compiling with
74 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
75 // work, at least not with gcc 4.3.0.
76
77 ssize_t len = write(2, program_name, strlen(program_name));
78 if (len >= 0)
79 {
80 const char* const s = ": out of memory\n";
81 len = write(2, s, strlen(s));
82 }
83 gold_exit(false);
84 }
85
86 // Handle an unreachable case.
87
88 void
89 do_gold_unreachable(const char* filename, int lineno, const char* function)
90 {
91 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
92 program_name, function, filename, lineno);
93 gold_exit(false);
94 }
95
96 // This class arranges to run the functions done in the middle of the
97 // link. It is just a closure.
98
99 class Middle_runner : public Task_function_runner
100 {
101 public:
102 Middle_runner(const General_options& options,
103 const Input_objects* input_objects,
104 Symbol_table* symtab,
105 Layout* layout, Mapfile* mapfile)
106 : options_(options), input_objects_(input_objects), symtab_(symtab),
107 layout_(layout), mapfile_(mapfile)
108 { }
109
110 void
111 run(Workqueue*, const Task*);
112
113 private:
114 const General_options& options_;
115 const Input_objects* input_objects_;
116 Symbol_table* symtab_;
117 Layout* layout_;
118 Mapfile* mapfile_;
119 };
120
121 void
122 Middle_runner::run(Workqueue* workqueue, const Task* task)
123 {
124 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
125 this->layout_, workqueue, this->mapfile_);
126 }
127
128 // This class arranges the tasks to process the relocs for garbage collection.
129
130 class Gc_runner : public Task_function_runner
131 {
132 public:
133 Gc_runner(const General_options& options,
134 const Input_objects* input_objects,
135 Symbol_table* symtab,
136 Layout* layout, Mapfile* mapfile)
137 : options_(options), input_objects_(input_objects), symtab_(symtab),
138 layout_(layout), mapfile_(mapfile)
139 { }
140
141 void
142 run(Workqueue*, const Task*);
143
144 private:
145 const General_options& options_;
146 const Input_objects* input_objects_;
147 Symbol_table* symtab_;
148 Layout* layout_;
149 Mapfile* mapfile_;
150 };
151
152 void
153 Gc_runner::run(Workqueue* workqueue, const Task* task)
154 {
155 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
156 this->symtab_, this->layout_, workqueue,
157 this->mapfile_);
158 }
159
160 // Queue up the initial set of tasks for this link job.
161
162 void
163 queue_initial_tasks(const General_options& options,
164 Dirsearch& search_path,
165 const Command_line& cmdline,
166 Workqueue* workqueue, Input_objects* input_objects,
167 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
168 {
169 if (cmdline.begin() == cmdline.end())
170 {
171 if (options.printed_version())
172 gold_exit(true);
173 gold_fatal(_("no input files"));
174 }
175
176 int thread_count = options.thread_count_initial();
177 if (thread_count == 0)
178 thread_count = cmdline.number_of_input_files();
179 workqueue->set_thread_count(thread_count);
180
181 if (cmdline.options().incremental())
182 {
183 Incremental_checker incremental_checker(
184 parameters->options().output_file_name(),
185 layout->incremental_inputs());
186 if (incremental_checker.can_incrementally_link_output_file())
187 {
188 // TODO: remove when incremental linking implemented.
189 printf("Incremental linking might be possible "
190 "(not implemented yet)\n");
191 }
192 // TODO: If we decide on an incremental build, fewer tasks
193 // should be scheduled.
194 }
195
196 // Read the input files. We have to add the symbols to the symbol
197 // table in order. We do this by creating a separate blocker for
198 // each input file. We associate the blocker with the following
199 // input file, to give us a convenient place to delete it.
200 Task_token* this_blocker = NULL;
201 for (Command_line::const_iterator p = cmdline.begin();
202 p != cmdline.end();
203 ++p)
204 {
205 Task_token* next_blocker = new Task_token(true);
206 next_blocker->add_blocker();
207 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
208 &search_path, 0, mapfile, &*p, NULL,
209 this_blocker, next_blocker));
210 this_blocker = next_blocker;
211 }
212
213 if (options.has_plugins())
214 {
215 Task_token* next_blocker = new Task_token(true);
216 next_blocker->add_blocker();
217 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
218 &search_path, mapfile, this_blocker,
219 next_blocker));
220 this_blocker = next_blocker;
221 }
222
223 if (parameters->options().relocatable()
224 && (parameters->options().gc_sections()
225 || parameters->options().icf_enabled()))
226 gold_error(_("cannot mix -r with --gc-sections or --icf"));
227
228 if (parameters->options().gc_sections()
229 || parameters->options().icf_enabled())
230 {
231 workqueue->queue(new Task_function(new Gc_runner(options,
232 input_objects,
233 symtab,
234 layout,
235 mapfile),
236 this_blocker,
237 "Task_function Gc_runner"));
238 }
239 else
240 {
241 workqueue->queue(new Task_function(new Middle_runner(options,
242 input_objects,
243 symtab,
244 layout,
245 mapfile),
246 this_blocker,
247 "Task_function Middle_runner"));
248 }
249 }
250
251 // Queue up a set of tasks to be done before queueing the middle set
252 // of tasks. This is only necessary when garbage collection
253 // (--gc-sections) of unused sections is desired. The relocs are read
254 // and processed here early to determine the garbage sections before the
255 // relocs can be scanned in later tasks.
256
257 void
258 queue_middle_gc_tasks(const General_options& options,
259 const Task* ,
260 const Input_objects* input_objects,
261 Symbol_table* symtab,
262 Layout* layout,
263 Workqueue* workqueue,
264 Mapfile* mapfile)
265 {
266 // Read_relocs for all the objects must be done and processed to find
267 // unused sections before any scanning of the relocs can take place.
268 Task_token* blocker = new Task_token(true);
269 Task_token* symtab_lock = new Task_token(false);
270 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
271 p != input_objects->relobj_end();
272 ++p)
273 {
274 // We can read and process the relocations in any order.
275 blocker->add_blocker();
276 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
277 symtab_lock, blocker));
278 }
279
280 Task_token* this_blocker = new Task_token(true);
281 workqueue->queue(new Task_function(new Middle_runner(options,
282 input_objects,
283 symtab,
284 layout,
285 mapfile),
286 this_blocker,
287 "Task_function Middle_runner"));
288 }
289
290 // Queue up the middle set of tasks. These are the tasks which run
291 // after all the input objects have been found and all the symbols
292 // have been read, but before we lay out the output file.
293
294 void
295 queue_middle_tasks(const General_options& options,
296 const Task* task,
297 const Input_objects* input_objects,
298 Symbol_table* symtab,
299 Layout* layout,
300 Workqueue* workqueue,
301 Mapfile* mapfile)
302 {
303 // Add any symbols named with -u options to the symbol table.
304 symtab->add_undefined_symbols_from_command_line();
305
306 // If garbage collection was chosen, relocs have been read and processed
307 // at this point by pre_middle_tasks. Layout can then be done for all
308 // objects.
309 if (parameters->options().gc_sections())
310 {
311 // Find the start symbol if any.
312 Symbol* start_sym;
313 if (parameters->options().entry())
314 start_sym = symtab->lookup(parameters->options().entry());
315 else
316 start_sym = symtab->lookup("_start");
317 if (start_sym !=NULL)
318 {
319 bool is_ordinary;
320 unsigned int shndx = start_sym->shndx(&is_ordinary);
321 if (is_ordinary)
322 {
323 symtab->gc()->worklist().push(
324 Section_id(start_sym->object(), shndx));
325 }
326 }
327 // Symbols named with -u should not be considered garbage.
328 symtab->gc_mark_undef_symbols();
329 gold_assert(symtab->gc() != NULL);
330 // Do a transitive closure on all references to determine the worklist.
331 symtab->gc()->do_transitive_closure();
332 }
333
334 // If identical code folding (--icf) is chosen it makes sense to do it
335 // only after garbage collection (--gc-sections) as we do not want to
336 // be folding sections that will be garbage.
337 if (parameters->options().icf_enabled())
338 {
339 symtab->icf()->find_identical_sections(input_objects, symtab);
340 }
341
342 // Call Object::layout for the second time to determine the
343 // output_sections for all referenced input sections. When
344 // --gc-sections or --icf is turned on, Object::layout is
345 // called twice. It is called the first time when the
346 // symbols are added.
347 if (parameters->options().gc_sections()
348 || parameters->options().icf_enabled())
349 {
350 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
351 p != input_objects->relobj_end();
352 ++p)
353 {
354 (*p)->layout(symtab, layout, NULL);
355 }
356 }
357
358 // Layout deferred objects due to plugins.
359 if (parameters->options().has_plugins())
360 {
361 Plugin_manager* plugins = parameters->options().plugins();
362 gold_assert(plugins != NULL);
363 plugins->layout_deferred_objects();
364 }
365
366 if (parameters->options().gc_sections()
367 || parameters->options().icf_enabled())
368 {
369 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
370 p != input_objects->relobj_end();
371 ++p)
372 {
373 // Update the value of output_section stored in rd.
374 Read_relocs_data *rd = (*p)->get_relocs_data();
375 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
376 q != rd->relocs.end();
377 ++q)
378 {
379 q->output_section = (*p)->output_section(q->data_shndx);
380 q->needs_special_offset_handling =
381 (*p)->is_output_section_offset_invalid(q->data_shndx);
382 }
383 }
384 }
385
386 // We have to support the case of not seeing any input objects, and
387 // generate an empty file. Existing builds depend on being able to
388 // pass an empty archive to the linker and get an empty object file
389 // out. In order to do this we need to use a default target.
390 if (input_objects->number_of_input_objects() == 0)
391 parameters_force_valid_target();
392
393 int thread_count = options.thread_count_middle();
394 if (thread_count == 0)
395 thread_count = std::max(2, input_objects->number_of_input_objects());
396 workqueue->set_thread_count(thread_count);
397
398 // Now we have seen all the input files.
399 const bool doing_static_link = (!input_objects->any_dynamic()
400 && !parameters->options().shared());
401 set_parameters_doing_static_link(doing_static_link);
402 if (!doing_static_link && options.is_static())
403 {
404 // We print out just the first .so we see; there may be others.
405 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
406 gold_error(_("cannot mix -static with dynamic object %s"),
407 (*input_objects->dynobj_begin())->name().c_str());
408 }
409 if (!doing_static_link && parameters->options().relocatable())
410 gold_fatal(_("cannot mix -r with dynamic object %s"),
411 (*input_objects->dynobj_begin())->name().c_str());
412 if (!doing_static_link
413 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
414 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
415 (*input_objects->dynobj_begin())->name().c_str());
416
417 if (parameters->options().relocatable())
418 {
419 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
420 if (p != input_objects->relobj_end())
421 {
422 bool uses_split_stack = (*p)->uses_split_stack();
423 for (++p; p != input_objects->relobj_end(); ++p)
424 {
425 if ((*p)->uses_split_stack() != uses_split_stack)
426 gold_fatal(_("cannot mix split-stack '%s' and "
427 "non-split-stack '%s' when using -r"),
428 (*input_objects->relobj_begin())->name().c_str(),
429 (*p)->name().c_str());
430 }
431 }
432 }
433
434 if (is_debugging_enabled(DEBUG_SCRIPT))
435 layout->script_options()->print(stderr);
436
437 // For each dynamic object, record whether we've seen all the
438 // dynamic objects that it depends upon.
439 input_objects->check_dynamic_dependencies();
440
441 // See if any of the input definitions violate the One Definition Rule.
442 // TODO: if this is too slow, do this as a task, rather than inline.
443 symtab->detect_odr_violations(task, options.output_file_name());
444
445 // Create any automatic note sections.
446 layout->create_notes();
447
448 // Create any output sections required by any linker script.
449 layout->create_script_sections();
450
451 // Define some sections and symbols needed for a dynamic link. This
452 // handles some cases we want to see before we read the relocs.
453 layout->create_initial_dynamic_sections(symtab);
454
455 // Define symbols from any linker scripts.
456 layout->define_script_symbols(symtab);
457
458 // Attach sections to segments.
459 layout->attach_sections_to_segments();
460
461 if (!parameters->options().relocatable())
462 {
463 // Predefine standard symbols.
464 define_standard_symbols(symtab, layout);
465
466 // Define __start and __stop symbols for output sections where
467 // appropriate.
468 layout->define_section_symbols(symtab);
469 }
470
471 // Make sure we have symbols for any required group signatures.
472 layout->define_group_signatures(symtab);
473
474 Task_token* blocker = new Task_token(true);
475 Task_token* symtab_lock = new Task_token(false);
476
477 // If doing garbage collection, the relocations have already been read.
478 // Otherwise, read and scan the relocations.
479 if (parameters->options().gc_sections()
480 || parameters->options().icf_enabled())
481 {
482 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
483 p != input_objects->relobj_end();
484 ++p)
485 {
486 blocker->add_blocker();
487 workqueue->queue(new Scan_relocs(options, symtab, layout, *p,
488 (*p)->get_relocs_data(),symtab_lock, blocker));
489 }
490 }
491 else
492 {
493 // Read the relocations of the input files. We do this to find
494 // which symbols are used by relocations which require a GOT and/or
495 // a PLT entry, or a COPY reloc. When we implement garbage
496 // collection we will do it here by reading the relocations in a
497 // breadth first search by references.
498 //
499 // We could also read the relocations during the first pass, and
500 // mark symbols at that time. That is how the old GNU linker works.
501 // Doing that is more complex, since we may later decide to discard
502 // some of the sections, and thus change our minds about the types
503 // of references made to the symbols.
504 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
505 p != input_objects->relobj_end();
506 ++p)
507 {
508 // We can read and process the relocations in any order. But we
509 // only want one task to write to the symbol table at a time.
510 // So we queue up a task for each object to read the
511 // relocations. That task will in turn queue a task to wait
512 // until it can write to the symbol table.
513 blocker->add_blocker();
514 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
515 symtab_lock, blocker));
516 }
517 }
518
519 // Allocate common symbols. This requires write access to the
520 // symbol table, but is independent of the relocation processing.
521 if (parameters->options().define_common())
522 {
523 blocker->add_blocker();
524 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
525 symtab_lock, blocker));
526 }
527
528 // When all those tasks are complete, we can start laying out the
529 // output file.
530 // TODO(csilvers): figure out a more principled way to get the target
531 Target* target = const_cast<Target*>(&parameters->target());
532 workqueue->queue(new Task_function(new Layout_task_runner(options,
533 input_objects,
534 symtab,
535 target,
536 layout,
537 mapfile),
538 blocker,
539 "Task_function Layout_task_runner"));
540 }
541
542 // Queue up the final set of tasks. This is called at the end of
543 // Layout_task.
544
545 void
546 queue_final_tasks(const General_options& options,
547 const Input_objects* input_objects,
548 const Symbol_table* symtab,
549 Layout* layout,
550 Workqueue* workqueue,
551 Output_file* of)
552 {
553 int thread_count = options.thread_count_final();
554 if (thread_count == 0)
555 thread_count = std::max(2, input_objects->number_of_input_objects());
556 workqueue->set_thread_count(thread_count);
557
558 bool any_postprocessing_sections = layout->any_postprocessing_sections();
559
560 // Use a blocker to wait until all the input sections have been
561 // written out.
562 Task_token* input_sections_blocker = NULL;
563 if (!any_postprocessing_sections)
564 input_sections_blocker = new Task_token(true);
565
566 // Use a blocker to block any objects which have to wait for the
567 // output sections to complete before they can apply relocations.
568 Task_token* output_sections_blocker = new Task_token(true);
569
570 // Use a blocker to block the final cleanup task.
571 Task_token* final_blocker = new Task_token(true);
572
573 // Queue a task to write out the symbol table.
574 final_blocker->add_blocker();
575 workqueue->queue(new Write_symbols_task(layout,
576 symtab,
577 input_objects,
578 layout->sympool(),
579 layout->dynpool(),
580 of,
581 final_blocker));
582
583 // Queue a task to write out the output sections.
584 output_sections_blocker->add_blocker();
585 final_blocker->add_blocker();
586 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
587 final_blocker));
588
589 // Queue a task to write out everything else.
590 final_blocker->add_blocker();
591 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
592
593 // Queue a task for each input object to relocate the sections and
594 // write out the local symbols.
595 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
596 p != input_objects->relobj_end();
597 ++p)
598 {
599 if (input_sections_blocker != NULL)
600 input_sections_blocker->add_blocker();
601 final_blocker->add_blocker();
602 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
603 input_sections_blocker,
604 output_sections_blocker,
605 final_blocker));
606 }
607
608 // Queue a task to write out the output sections which depend on
609 // input sections. If there are any sections which require
610 // postprocessing, then we need to do this last, since it may resize
611 // the output file.
612 if (!any_postprocessing_sections)
613 {
614 final_blocker->add_blocker();
615 Task* t = new Write_after_input_sections_task(layout, of,
616 input_sections_blocker,
617 final_blocker);
618 workqueue->queue(t);
619 }
620 else
621 {
622 Task_token *new_final_blocker = new Task_token(true);
623 new_final_blocker->add_blocker();
624 Task* t = new Write_after_input_sections_task(layout, of,
625 final_blocker,
626 new_final_blocker);
627 workqueue->queue(t);
628 final_blocker = new_final_blocker;
629 }
630
631 // Queue a task to close the output file. This will be blocked by
632 // FINAL_BLOCKER.
633 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
634 of),
635 final_blocker,
636 "Task_function Close_task_runner"));
637 }
638
639 } // End namespace gold.
This page took 0.047506 seconds and 5 git commands to generate.