* common.cc (Symbol_table::allocate_commons): Remove options
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43
44 namespace gold
45 {
46
47 const char* program_name;
48
49 void
50 gold_exit(bool status)
51 {
52 if (!status && parameters != NULL && parameters->options_valid())
53 unlink_if_ordinary(parameters->options().output_file_name());
54 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
55 }
56
57 void
58 gold_nomem()
59 {
60 // We are out of memory, so try hard to print a reasonable message.
61 // Note that we don't try to translate this message, since the
62 // translation process itself will require memory.
63 write(2, program_name, strlen(program_name));
64 const char* const s = ": out of memory\n";
65 write(2, s, strlen(s));
66 gold_exit(false);
67 }
68
69 // Handle an unreachable case.
70
71 void
72 do_gold_unreachable(const char* filename, int lineno, const char* function)
73 {
74 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
75 program_name, function, filename, lineno);
76 gold_exit(false);
77 }
78
79 // This class arranges to run the functions done in the middle of the
80 // link. It is just a closure.
81
82 class Middle_runner : public Task_function_runner
83 {
84 public:
85 Middle_runner(const General_options& options,
86 const Input_objects* input_objects,
87 Symbol_table* symtab,
88 Layout* layout)
89 : options_(options), input_objects_(input_objects), symtab_(symtab),
90 layout_(layout)
91 { }
92
93 void
94 run(Workqueue*, const Task*);
95
96 private:
97 const General_options& options_;
98 const Input_objects* input_objects_;
99 Symbol_table* symtab_;
100 Layout* layout_;
101 };
102
103 void
104 Middle_runner::run(Workqueue* workqueue, const Task* task)
105 {
106 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
107 this->layout_, workqueue);
108 }
109
110 // Queue up the initial set of tasks for this link job.
111
112 void
113 queue_initial_tasks(const General_options& options,
114 Dirsearch& search_path,
115 const Command_line& cmdline,
116 Workqueue* workqueue, Input_objects* input_objects,
117 Symbol_table* symtab, Layout* layout)
118 {
119 if (cmdline.begin() == cmdline.end())
120 gold_fatal(_("no input files"));
121
122 int thread_count = options.thread_count_initial();
123 if (thread_count == 0)
124 thread_count = cmdline.number_of_input_files();
125 workqueue->set_thread_count(thread_count);
126
127 // Read the input files. We have to add the symbols to the symbol
128 // table in order. We do this by creating a separate blocker for
129 // each input file. We associate the blocker with the following
130 // input file, to give us a convenient place to delete it.
131 Task_token* this_blocker = NULL;
132 for (Command_line::const_iterator p = cmdline.begin();
133 p != cmdline.end();
134 ++p)
135 {
136 Task_token* next_blocker = new Task_token(true);
137 next_blocker->add_blocker();
138 workqueue->queue(new Read_symbols(options, input_objects, symtab, layout,
139 &search_path, &*p, NULL, this_blocker,
140 next_blocker));
141 this_blocker = next_blocker;
142 }
143
144 workqueue->queue(new Task_function(new Middle_runner(options,
145 input_objects,
146 symtab,
147 layout),
148 this_blocker,
149 "Task_function Middle_runner"));
150 }
151
152 // Queue up the middle set of tasks. These are the tasks which run
153 // after all the input objects have been found and all the symbols
154 // have been read, but before we lay out the output file.
155
156 void
157 queue_middle_tasks(const General_options& options,
158 const Task* task,
159 const Input_objects* input_objects,
160 Symbol_table* symtab,
161 Layout* layout,
162 Workqueue* workqueue)
163 {
164 // We have to support the case of not seeing any input objects, and
165 // generate an empty file. Existing builds depend on being able to
166 // pass an empty archive to the linker and get an empty object file
167 // out. In order to do this we need to use a default target.
168 if (input_objects->number_of_input_objects() == 0)
169 set_parameters_target(&parameters->default_target());
170
171 int thread_count = options.thread_count_middle();
172 if (thread_count == 0)
173 thread_count = std::max(2, input_objects->number_of_input_objects());
174 workqueue->set_thread_count(thread_count);
175
176 // Now we have seen all the input files.
177 const bool doing_static_link = (!input_objects->any_dynamic()
178 && !parameters->options().shared());
179 set_parameters_doing_static_link(doing_static_link);
180 if (!doing_static_link && options.is_static())
181 {
182 // We print out just the first .so we see; there may be others.
183 gold_error(_("cannot mix -static with dynamic object %s"),
184 (*input_objects->dynobj_begin())->name().c_str());
185 }
186 if (!doing_static_link && parameters->options().relocatable())
187 gold_error(_("cannot mix -r with dynamic object %s"),
188 (*input_objects->dynobj_begin())->name().c_str());
189 if (!doing_static_link
190 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
191 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
192 (*input_objects->dynobj_begin())->name().c_str());
193
194 if (is_debugging_enabled(DEBUG_SCRIPT))
195 layout->script_options()->print(stderr);
196
197 // For each dynamic object, record whether we've seen all the
198 // dynamic objects that it depends upon.
199 input_objects->check_dynamic_dependencies();
200
201 // See if any of the input definitions violate the One Definition Rule.
202 // TODO: if this is too slow, do this as a task, rather than inline.
203 symtab->detect_odr_violations(task, options.output_file_name());
204
205 // Create any output sections required by any linker script.
206 layout->create_script_sections();
207
208 // Define some sections and symbols needed for a dynamic link. This
209 // handles some cases we want to see before we read the relocs.
210 layout->create_initial_dynamic_sections(symtab);
211
212 // Define symbols from any linker scripts.
213 layout->define_script_symbols(symtab);
214
215 // Attach sections to segments.
216 layout->attach_sections_to_segments();
217
218 if (!parameters->options().relocatable())
219 {
220 // Predefine standard symbols.
221 define_standard_symbols(symtab, layout);
222
223 // Define __start and __stop symbols for output sections where
224 // appropriate.
225 layout->define_section_symbols(symtab);
226 }
227
228 // Make sure we have symbols for any required group signatures.
229 layout->define_group_signatures(symtab);
230
231 // Read the relocations of the input files. We do this to find
232 // which symbols are used by relocations which require a GOT and/or
233 // a PLT entry, or a COPY reloc. When we implement garbage
234 // collection we will do it here by reading the relocations in a
235 // breadth first search by references.
236 //
237 // We could also read the relocations during the first pass, and
238 // mark symbols at that time. That is how the old GNU linker works.
239 // Doing that is more complex, since we may later decide to discard
240 // some of the sections, and thus change our minds about the types
241 // of references made to the symbols.
242 Task_token* blocker = new Task_token(true);
243 Task_token* symtab_lock = new Task_token(false);
244 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
245 p != input_objects->relobj_end();
246 ++p)
247 {
248 // We can read and process the relocations in any order. But we
249 // only want one task to write to the symbol table at a time.
250 // So we queue up a task for each object to read the
251 // relocations. That task will in turn queue a task to wait
252 // until it can write to the symbol table.
253 blocker->add_blocker();
254 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
255 symtab_lock, blocker));
256 }
257
258 // Allocate common symbols. This requires write access to the
259 // symbol table, but is independent of the relocation processing.
260 if (parameters->options().define_common())
261 {
262 blocker->add_blocker();
263 workqueue->queue(new Allocate_commons_task(symtab, layout, symtab_lock,
264 blocker));
265 }
266
267 // When all those tasks are complete, we can start laying out the
268 // output file.
269 // TODO(csilvers): figure out a more principled way to get the target
270 Target* target = const_cast<Target*>(&parameters->target());
271 workqueue->queue(new Task_function(new Layout_task_runner(options,
272 input_objects,
273 symtab,
274 target,
275 layout),
276 blocker,
277 "Task_function Layout_task_runner"));
278 }
279
280 // Queue up the final set of tasks. This is called at the end of
281 // Layout_task.
282
283 void
284 queue_final_tasks(const General_options& options,
285 const Input_objects* input_objects,
286 const Symbol_table* symtab,
287 Layout* layout,
288 Workqueue* workqueue,
289 Output_file* of)
290 {
291 int thread_count = options.thread_count_final();
292 if (thread_count == 0)
293 thread_count = std::max(2, input_objects->number_of_input_objects());
294 workqueue->set_thread_count(thread_count);
295
296 bool any_postprocessing_sections = layout->any_postprocessing_sections();
297
298 // Use a blocker to wait until all the input sections have been
299 // written out.
300 Task_token* input_sections_blocker = NULL;
301 if (!any_postprocessing_sections)
302 input_sections_blocker = new Task_token(true);
303
304 // Use a blocker to block any objects which have to wait for the
305 // output sections to complete before they can apply relocations.
306 Task_token* output_sections_blocker = new Task_token(true);
307
308 // Use a blocker to block the final cleanup task.
309 Task_token* final_blocker = new Task_token(true);
310
311 // Queue a task to write out the symbol table.
312 final_blocker->add_blocker();
313 workqueue->queue(new Write_symbols_task(symtab,
314 input_objects,
315 layout->sympool(),
316 layout->dynpool(),
317 of,
318 final_blocker));
319
320 // Queue a task to write out the output sections.
321 output_sections_blocker->add_blocker();
322 final_blocker->add_blocker();
323 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
324 final_blocker));
325
326 // Queue a task to write out everything else.
327 final_blocker->add_blocker();
328 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
329
330 // Queue a task for each input object to relocate the sections and
331 // write out the local symbols.
332 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
333 p != input_objects->relobj_end();
334 ++p)
335 {
336 if (input_sections_blocker != NULL)
337 input_sections_blocker->add_blocker();
338 final_blocker->add_blocker();
339 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
340 input_sections_blocker,
341 output_sections_blocker,
342 final_blocker));
343 }
344
345 // Queue a task to write out the output sections which depend on
346 // input sections. If there are any sections which require
347 // postprocessing, then we need to do this last, since it may resize
348 // the output file.
349 if (!any_postprocessing_sections)
350 {
351 final_blocker->add_blocker();
352 Task* t = new Write_after_input_sections_task(layout, of,
353 input_sections_blocker,
354 final_blocker);
355 workqueue->queue(t);
356 }
357 else
358 {
359 Task_token *new_final_blocker = new Task_token(true);
360 new_final_blocker->add_blocker();
361 Task* t = new Write_after_input_sections_task(layout, of,
362 final_blocker,
363 new_final_blocker);
364 workqueue->queue(t);
365 final_blocker = new_final_blocker;
366 }
367
368 // Queue a task to close the output file. This will be blocked by
369 // FINAL_BLOCKER.
370 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
371 of),
372 final_blocker,
373 "Task_function Close_task_runner"));
374 }
375
376 } // End namespace gold.
This page took 0.038474 seconds and 5 git commands to generate.