* readsyms.cc (Read_symbols::incompatible_warning): New function.
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44
45 namespace gold
46 {
47
48 const char* program_name;
49
50 void
51 gold_exit(bool status)
52 {
53 if (parameters != NULL
54 && parameters->options_valid()
55 && parameters->options().has_plugins())
56 parameters->options().plugins()->cleanup();
57 if (!status && parameters != NULL && parameters->options_valid())
58 unlink_if_ordinary(parameters->options().output_file_name());
59 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
60 }
61
62 void
63 gold_nomem()
64 {
65 // We are out of memory, so try hard to print a reasonable message.
66 // Note that we don't try to translate this message, since the
67 // translation process itself will require memory.
68
69 // LEN only exists to avoid a pointless warning when write is
70 // declared with warn_use_result, as when compiling with
71 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
72 // work, at least not with gcc 4.3.0.
73
74 ssize_t len = write(2, program_name, strlen(program_name));
75 if (len >= 0)
76 {
77 const char* const s = ": out of memory\n";
78 len = write(2, s, strlen(s));
79 }
80 gold_exit(false);
81 }
82
83 // Handle an unreachable case.
84
85 void
86 do_gold_unreachable(const char* filename, int lineno, const char* function)
87 {
88 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
89 program_name, function, filename, lineno);
90 gold_exit(false);
91 }
92
93 // This class arranges to run the functions done in the middle of the
94 // link. It is just a closure.
95
96 class Middle_runner : public Task_function_runner
97 {
98 public:
99 Middle_runner(const General_options& options,
100 const Input_objects* input_objects,
101 Symbol_table* symtab,
102 Layout* layout, Mapfile* mapfile)
103 : options_(options), input_objects_(input_objects), symtab_(symtab),
104 layout_(layout), mapfile_(mapfile)
105 { }
106
107 void
108 run(Workqueue*, const Task*);
109
110 private:
111 const General_options& options_;
112 const Input_objects* input_objects_;
113 Symbol_table* symtab_;
114 Layout* layout_;
115 Mapfile* mapfile_;
116 };
117
118 void
119 Middle_runner::run(Workqueue* workqueue, const Task* task)
120 {
121 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
122 this->layout_, workqueue, this->mapfile_);
123 }
124
125 // This class arranges the tasks to process the relocs for garbage collection.
126
127 class Gc_runner : public Task_function_runner
128 {
129 public:
130 Gc_runner(const General_options& options,
131 const Input_objects* input_objects,
132 Symbol_table* symtab,
133 Layout* layout, Mapfile* mapfile)
134 : options_(options), input_objects_(input_objects), symtab_(symtab),
135 layout_(layout), mapfile_(mapfile)
136 { }
137
138 void
139 run(Workqueue*, const Task*);
140
141 private:
142 const General_options& options_;
143 const Input_objects* input_objects_;
144 Symbol_table* symtab_;
145 Layout* layout_;
146 Mapfile* mapfile_;
147 };
148
149 void
150 Gc_runner::run(Workqueue* workqueue, const Task* task)
151 {
152 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
153 this->symtab_, this->layout_, workqueue,
154 this->mapfile_);
155 }
156
157 // Queue up the initial set of tasks for this link job.
158
159 void
160 queue_initial_tasks(const General_options& options,
161 Dirsearch& search_path,
162 const Command_line& cmdline,
163 Workqueue* workqueue, Input_objects* input_objects,
164 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
165 {
166 if (cmdline.begin() == cmdline.end())
167 gold_fatal(_("no input files"));
168
169 int thread_count = options.thread_count_initial();
170 if (thread_count == 0)
171 thread_count = cmdline.number_of_input_files();
172 workqueue->set_thread_count(thread_count);
173
174 // Read the input files. We have to add the symbols to the symbol
175 // table in order. We do this by creating a separate blocker for
176 // each input file. We associate the blocker with the following
177 // input file, to give us a convenient place to delete it.
178 Task_token* this_blocker = NULL;
179 for (Command_line::const_iterator p = cmdline.begin();
180 p != cmdline.end();
181 ++p)
182 {
183 Task_token* next_blocker = new Task_token(true);
184 next_blocker->add_blocker();
185 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
186 &search_path, 0, mapfile, &*p, NULL,
187 this_blocker, next_blocker));
188 this_blocker = next_blocker;
189 }
190
191 if (options.has_plugins())
192 {
193 Task_token* next_blocker = new Task_token(true);
194 next_blocker->add_blocker();
195 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
196 &search_path, mapfile, this_blocker,
197 next_blocker));
198 this_blocker = next_blocker;
199 }
200
201 if (parameters->options().relocatable()
202 && parameters->options().gc_sections())
203 gold_error(_("cannot mix -r with garbage collection"));
204
205 if (parameters->options().gc_sections())
206 {
207 workqueue->queue(new Task_function(new Gc_runner(options,
208 input_objects,
209 symtab,
210 layout,
211 mapfile),
212 this_blocker,
213 "Task_function Gc_runner"));
214 }
215 else
216 {
217 workqueue->queue(new Task_function(new Middle_runner(options,
218 input_objects,
219 symtab,
220 layout,
221 mapfile),
222 this_blocker,
223 "Task_function Middle_runner"));
224 }
225 }
226
227 // Queue up a set of tasks to be done before queueing the middle set
228 // of tasks. This is only necessary when garbage collection
229 // (--gc-sections) of unused sections is desired. The relocs are read
230 // and processed here early to determine the garbage sections before the
231 // relocs can be scanned in later tasks.
232
233 void
234 queue_middle_gc_tasks(const General_options& options,
235 const Task* ,
236 const Input_objects* input_objects,
237 Symbol_table* symtab,
238 Layout* layout,
239 Workqueue* workqueue,
240 Mapfile* mapfile)
241 {
242 // Read_relocs for all the objects must be done and processed to find
243 // unused sections before any scanning of the relocs can take place.
244 Task_token* blocker = new Task_token(true);
245 Task_token* symtab_lock = new Task_token(false);
246 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
247 p != input_objects->relobj_end();
248 ++p)
249 {
250 // We can read and process the relocations in any order.
251 blocker->add_blocker();
252 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
253 symtab_lock, blocker));
254 }
255
256 Task_token* this_blocker = new Task_token(true);
257 workqueue->queue(new Task_function(new Middle_runner(options,
258 input_objects,
259 symtab,
260 layout,
261 mapfile),
262 this_blocker,
263 "Task_function Middle_runner"));
264 }
265
266 // Queue up the middle set of tasks. These are the tasks which run
267 // after all the input objects have been found and all the symbols
268 // have been read, but before we lay out the output file.
269
270 void
271 queue_middle_tasks(const General_options& options,
272 const Task* task,
273 const Input_objects* input_objects,
274 Symbol_table* symtab,
275 Layout* layout,
276 Workqueue* workqueue,
277 Mapfile* mapfile)
278 {
279 // Add any symbols named with -u options to the symbol table.
280 symtab->add_undefined_symbols_from_command_line();
281
282 // If garbage collection was chosen, relocs have been read and processed
283 // at this point by pre_middle_tasks. Layout can then be done for all
284 // objects.
285 if (parameters->options().gc_sections())
286 {
287 // Find the start symbol if any.
288 Symbol* start_sym;
289 if (parameters->options().entry())
290 start_sym = symtab->lookup(parameters->options().entry());
291 else
292 start_sym = symtab->lookup("_start");
293 if (start_sym !=NULL)
294 {
295 bool is_ordinary;
296 unsigned int shndx = start_sym->shndx(&is_ordinary);
297 if (is_ordinary)
298 {
299 symtab->gc()->worklist().push(
300 Section_id(start_sym->object(), shndx));
301 }
302 }
303 // Symbols named with -u should not be considered garbage.
304 symtab->gc_mark_undef_symbols();
305 gold_assert(symtab->gc() != NULL);
306 // Do a transitive closure on all references to determine the worklist.
307 symtab->gc()->do_transitive_closure();
308 // Call do_layout again to determine the output_sections for all
309 // referenced input sections.
310 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
311 p != input_objects->relobj_end();
312 ++p)
313 {
314 (*p)->layout(symtab, layout, NULL);
315 }
316 }
317 // Layout deferred objects due to plugins.
318 if (parameters->options().has_plugins())
319 {
320 Plugin_manager* plugins = parameters->options().plugins();
321 gold_assert(plugins != NULL);
322 plugins->layout_deferred_objects();
323 }
324 if (parameters->options().gc_sections())
325 {
326 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
327 p != input_objects->relobj_end();
328 ++p)
329 {
330 // Update the value of output_section stored in rd.
331 Read_relocs_data *rd = (*p)->get_relocs_data();
332 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
333 q != rd->relocs.end();
334 ++q)
335 {
336 q->output_section = (*p)->output_section(q->data_shndx);
337 q->needs_special_offset_handling =
338 (*p)->is_output_section_offset_invalid(q->data_shndx);
339 }
340 }
341 }
342
343 // We have to support the case of not seeing any input objects, and
344 // generate an empty file. Existing builds depend on being able to
345 // pass an empty archive to the linker and get an empty object file
346 // out. In order to do this we need to use a default target.
347 if (input_objects->number_of_input_objects() == 0)
348 set_parameters_target(&parameters->default_target());
349
350 int thread_count = options.thread_count_middle();
351 if (thread_count == 0)
352 thread_count = std::max(2, input_objects->number_of_input_objects());
353 workqueue->set_thread_count(thread_count);
354
355 // Now we have seen all the input files.
356 const bool doing_static_link = (!input_objects->any_dynamic()
357 && !parameters->options().shared());
358 set_parameters_doing_static_link(doing_static_link);
359 if (!doing_static_link && options.is_static())
360 {
361 // We print out just the first .so we see; there may be others.
362 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
363 gold_error(_("cannot mix -static with dynamic object %s"),
364 (*input_objects->dynobj_begin())->name().c_str());
365 }
366 if (!doing_static_link && parameters->options().relocatable())
367 gold_error(_("cannot mix -r with dynamic object %s"),
368 (*input_objects->dynobj_begin())->name().c_str());
369 if (!doing_static_link
370 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
371 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
372 (*input_objects->dynobj_begin())->name().c_str());
373
374 if (is_debugging_enabled(DEBUG_SCRIPT))
375 layout->script_options()->print(stderr);
376
377 // For each dynamic object, record whether we've seen all the
378 // dynamic objects that it depends upon.
379 input_objects->check_dynamic_dependencies();
380
381 // See if any of the input definitions violate the One Definition Rule.
382 // TODO: if this is too slow, do this as a task, rather than inline.
383 symtab->detect_odr_violations(task, options.output_file_name());
384
385 // Create any output sections required by any linker script.
386 layout->create_script_sections();
387
388 // Define some sections and symbols needed for a dynamic link. This
389 // handles some cases we want to see before we read the relocs.
390 layout->create_initial_dynamic_sections(symtab);
391
392 // Define symbols from any linker scripts.
393 layout->define_script_symbols(symtab);
394
395 // Attach sections to segments.
396 layout->attach_sections_to_segments();
397
398 if (!parameters->options().relocatable())
399 {
400 // Predefine standard symbols.
401 define_standard_symbols(symtab, layout);
402
403 // Define __start and __stop symbols for output sections where
404 // appropriate.
405 layout->define_section_symbols(symtab);
406 }
407
408 // Make sure we have symbols for any required group signatures.
409 layout->define_group_signatures(symtab);
410
411 Task_token* blocker = new Task_token(true);
412 Task_token* symtab_lock = new Task_token(false);
413
414 // If doing garbage collection, the relocations have already been read.
415 // Otherwise, read and scan the relocations.
416 if (parameters->options().gc_sections())
417 {
418 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
419 p != input_objects->relobj_end();
420 ++p)
421 {
422 blocker->add_blocker();
423 workqueue->queue(new Scan_relocs(options, symtab, layout, *p,
424 (*p)->get_relocs_data(),symtab_lock, blocker));
425 }
426 }
427 else
428 {
429 // Read the relocations of the input files. We do this to find
430 // which symbols are used by relocations which require a GOT and/or
431 // a PLT entry, or a COPY reloc. When we implement garbage
432 // collection we will do it here by reading the relocations in a
433 // breadth first search by references.
434 //
435 // We could also read the relocations during the first pass, and
436 // mark symbols at that time. That is how the old GNU linker works.
437 // Doing that is more complex, since we may later decide to discard
438 // some of the sections, and thus change our minds about the types
439 // of references made to the symbols.
440 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
441 p != input_objects->relobj_end();
442 ++p)
443 {
444 // We can read and process the relocations in any order. But we
445 // only want one task to write to the symbol table at a time.
446 // So we queue up a task for each object to read the
447 // relocations. That task will in turn queue a task to wait
448 // until it can write to the symbol table.
449 blocker->add_blocker();
450 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
451 symtab_lock, blocker));
452 }
453 }
454
455 // Allocate common symbols. This requires write access to the
456 // symbol table, but is independent of the relocation processing.
457 if (parameters->options().define_common())
458 {
459 blocker->add_blocker();
460 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
461 symtab_lock, blocker));
462 }
463
464 // When all those tasks are complete, we can start laying out the
465 // output file.
466 // TODO(csilvers): figure out a more principled way to get the target
467 Target* target = const_cast<Target*>(&parameters->target());
468 workqueue->queue(new Task_function(new Layout_task_runner(options,
469 input_objects,
470 symtab,
471 target,
472 layout,
473 mapfile),
474 blocker,
475 "Task_function Layout_task_runner"));
476 }
477
478 // Queue up the final set of tasks. This is called at the end of
479 // Layout_task.
480
481 void
482 queue_final_tasks(const General_options& options,
483 const Input_objects* input_objects,
484 const Symbol_table* symtab,
485 Layout* layout,
486 Workqueue* workqueue,
487 Output_file* of)
488 {
489 int thread_count = options.thread_count_final();
490 if (thread_count == 0)
491 thread_count = std::max(2, input_objects->number_of_input_objects());
492 workqueue->set_thread_count(thread_count);
493
494 bool any_postprocessing_sections = layout->any_postprocessing_sections();
495
496 // Use a blocker to wait until all the input sections have been
497 // written out.
498 Task_token* input_sections_blocker = NULL;
499 if (!any_postprocessing_sections)
500 input_sections_blocker = new Task_token(true);
501
502 // Use a blocker to block any objects which have to wait for the
503 // output sections to complete before they can apply relocations.
504 Task_token* output_sections_blocker = new Task_token(true);
505
506 // Use a blocker to block the final cleanup task.
507 Task_token* final_blocker = new Task_token(true);
508
509 // Queue a task to write out the symbol table.
510 final_blocker->add_blocker();
511 workqueue->queue(new Write_symbols_task(layout,
512 symtab,
513 input_objects,
514 layout->sympool(),
515 layout->dynpool(),
516 of,
517 final_blocker));
518
519 // Queue a task to write out the output sections.
520 output_sections_blocker->add_blocker();
521 final_blocker->add_blocker();
522 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
523 final_blocker));
524
525 // Queue a task to write out everything else.
526 final_blocker->add_blocker();
527 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
528
529 // Queue a task for each input object to relocate the sections and
530 // write out the local symbols.
531 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
532 p != input_objects->relobj_end();
533 ++p)
534 {
535 if (input_sections_blocker != NULL)
536 input_sections_blocker->add_blocker();
537 final_blocker->add_blocker();
538 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
539 input_sections_blocker,
540 output_sections_blocker,
541 final_blocker));
542 }
543
544 // Queue a task to write out the output sections which depend on
545 // input sections. If there are any sections which require
546 // postprocessing, then we need to do this last, since it may resize
547 // the output file.
548 if (!any_postprocessing_sections)
549 {
550 final_blocker->add_blocker();
551 Task* t = new Write_after_input_sections_task(layout, of,
552 input_sections_blocker,
553 final_blocker);
554 workqueue->queue(t);
555 }
556 else
557 {
558 Task_token *new_final_blocker = new Task_token(true);
559 new_final_blocker->add_blocker();
560 Task* t = new Write_after_input_sections_task(layout, of,
561 final_blocker,
562 new_final_blocker);
563 workqueue->queue(t);
564 final_blocker = new_final_blocker;
565 }
566
567 // Queue a task to close the output file. This will be blocked by
568 // FINAL_BLOCKER.
569 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
570 of),
571 final_blocker,
572 "Task_function Close_task_runner"));
573 }
574
575 } // End namespace gold.
This page took 0.040915 seconds and 5 git commands to generate.