* options.c (General_options::finalize): Add check for -static and
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44
45 namespace gold
46 {
47
48 const char* program_name;
49
50 void
51 gold_exit(bool status)
52 {
53 if (!status && parameters != NULL && parameters->options_valid())
54 unlink_if_ordinary(parameters->options().output_file_name());
55 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
56 }
57
58 void
59 gold_nomem()
60 {
61 // We are out of memory, so try hard to print a reasonable message.
62 // Note that we don't try to translate this message, since the
63 // translation process itself will require memory.
64
65 // LEN only exists to avoid a pointless warning when write is
66 // declared with warn_use_result, as when compiling with
67 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
68 // work, at least not with gcc 4.3.0.
69
70 ssize_t len = write(2, program_name, strlen(program_name));
71 if (len >= 0)
72 {
73 const char* const s = ": out of memory\n";
74 len = write(2, s, strlen(s));
75 }
76 gold_exit(false);
77 }
78
79 // Handle an unreachable case.
80
81 void
82 do_gold_unreachable(const char* filename, int lineno, const char* function)
83 {
84 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
85 program_name, function, filename, lineno);
86 gold_exit(false);
87 }
88
89 // This class arranges to run the functions done in the middle of the
90 // link. It is just a closure.
91
92 class Middle_runner : public Task_function_runner
93 {
94 public:
95 Middle_runner(const General_options& options,
96 const Input_objects* input_objects,
97 Symbol_table* symtab,
98 Layout* layout, Mapfile* mapfile)
99 : options_(options), input_objects_(input_objects), symtab_(symtab),
100 layout_(layout), mapfile_(mapfile)
101 { }
102
103 void
104 run(Workqueue*, const Task*);
105
106 private:
107 const General_options& options_;
108 const Input_objects* input_objects_;
109 Symbol_table* symtab_;
110 Layout* layout_;
111 Mapfile* mapfile_;
112 };
113
114 void
115 Middle_runner::run(Workqueue* workqueue, const Task* task)
116 {
117 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
118 this->layout_, workqueue, this->mapfile_);
119 }
120
121 // Queue up the initial set of tasks for this link job.
122
123 void
124 queue_initial_tasks(const General_options& options,
125 Dirsearch& search_path,
126 const Command_line& cmdline,
127 Workqueue* workqueue, Input_objects* input_objects,
128 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
129 {
130 if (cmdline.begin() == cmdline.end())
131 gold_fatal(_("no input files"));
132
133 int thread_count = options.thread_count_initial();
134 if (thread_count == 0)
135 thread_count = cmdline.number_of_input_files();
136 workqueue->set_thread_count(thread_count);
137
138 // Read the input files. We have to add the symbols to the symbol
139 // table in order. We do this by creating a separate blocker for
140 // each input file. We associate the blocker with the following
141 // input file, to give us a convenient place to delete it.
142 Task_token* this_blocker = NULL;
143 for (Command_line::const_iterator p = cmdline.begin();
144 p != cmdline.end();
145 ++p)
146 {
147 Task_token* next_blocker = new Task_token(true);
148 next_blocker->add_blocker();
149 workqueue->queue(new Read_symbols(options, input_objects, symtab, layout,
150 &search_path, mapfile, &*p, NULL,
151 this_blocker, next_blocker));
152 this_blocker = next_blocker;
153 }
154
155 if (options.has_plugins())
156 {
157 Task_token* next_blocker = new Task_token(true);
158 next_blocker->add_blocker();
159 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
160 &search_path, mapfile, this_blocker,
161 next_blocker));
162 this_blocker = next_blocker;
163 }
164
165 workqueue->queue(new Task_function(new Middle_runner(options,
166 input_objects,
167 symtab,
168 layout,
169 mapfile),
170 this_blocker,
171 "Task_function Middle_runner"));
172 }
173
174 // Queue up the middle set of tasks. These are the tasks which run
175 // after all the input objects have been found and all the symbols
176 // have been read, but before we lay out the output file.
177
178 void
179 queue_middle_tasks(const General_options& options,
180 const Task* task,
181 const Input_objects* input_objects,
182 Symbol_table* symtab,
183 Layout* layout,
184 Workqueue* workqueue,
185 Mapfile* mapfile)
186 {
187 // We have to support the case of not seeing any input objects, and
188 // generate an empty file. Existing builds depend on being able to
189 // pass an empty archive to the linker and get an empty object file
190 // out. In order to do this we need to use a default target.
191 if (input_objects->number_of_input_objects() == 0)
192 set_parameters_target(&parameters->default_target());
193
194 int thread_count = options.thread_count_middle();
195 if (thread_count == 0)
196 thread_count = std::max(2, input_objects->number_of_input_objects());
197 workqueue->set_thread_count(thread_count);
198
199 // Now we have seen all the input files.
200 const bool doing_static_link = (!input_objects->any_dynamic()
201 && !parameters->options().shared());
202 set_parameters_doing_static_link(doing_static_link);
203 if (!doing_static_link && options.is_static())
204 {
205 // We print out just the first .so we see; there may be others.
206 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
207 gold_error(_("cannot mix -static with dynamic object %s"),
208 (*input_objects->dynobj_begin())->name().c_str());
209 }
210 if (!doing_static_link && parameters->options().relocatable())
211 gold_error(_("cannot mix -r with dynamic object %s"),
212 (*input_objects->dynobj_begin())->name().c_str());
213 if (!doing_static_link
214 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
215 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
216 (*input_objects->dynobj_begin())->name().c_str());
217
218 if (is_debugging_enabled(DEBUG_SCRIPT))
219 layout->script_options()->print(stderr);
220
221 // For each dynamic object, record whether we've seen all the
222 // dynamic objects that it depends upon.
223 input_objects->check_dynamic_dependencies();
224
225 // See if any of the input definitions violate the One Definition Rule.
226 // TODO: if this is too slow, do this as a task, rather than inline.
227 symtab->detect_odr_violations(task, options.output_file_name());
228
229 // Create any output sections required by any linker script.
230 layout->create_script_sections();
231
232 // Define some sections and symbols needed for a dynamic link. This
233 // handles some cases we want to see before we read the relocs.
234 layout->create_initial_dynamic_sections(symtab);
235
236 // Define symbols from any linker scripts.
237 layout->define_script_symbols(symtab);
238
239 // Add any symbols named with -u options to the symbol table.
240 symtab->add_undefined_symbols_from_command_line();
241
242 // Attach sections to segments.
243 layout->attach_sections_to_segments();
244
245 if (!parameters->options().relocatable())
246 {
247 // Predefine standard symbols.
248 define_standard_symbols(symtab, layout);
249
250 // Define __start and __stop symbols for output sections where
251 // appropriate.
252 layout->define_section_symbols(symtab);
253 }
254
255 // Make sure we have symbols for any required group signatures.
256 layout->define_group_signatures(symtab);
257
258 // Read the relocations of the input files. We do this to find
259 // which symbols are used by relocations which require a GOT and/or
260 // a PLT entry, or a COPY reloc. When we implement garbage
261 // collection we will do it here by reading the relocations in a
262 // breadth first search by references.
263 //
264 // We could also read the relocations during the first pass, and
265 // mark symbols at that time. That is how the old GNU linker works.
266 // Doing that is more complex, since we may later decide to discard
267 // some of the sections, and thus change our minds about the types
268 // of references made to the symbols.
269 Task_token* blocker = new Task_token(true);
270 Task_token* symtab_lock = new Task_token(false);
271 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
272 p != input_objects->relobj_end();
273 ++p)
274 {
275 // We can read and process the relocations in any order. But we
276 // only want one task to write to the symbol table at a time.
277 // So we queue up a task for each object to read the
278 // relocations. That task will in turn queue a task to wait
279 // until it can write to the symbol table.
280 blocker->add_blocker();
281 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
282 symtab_lock, blocker));
283 }
284
285 // Allocate common symbols. This requires write access to the
286 // symbol table, but is independent of the relocation processing.
287 if (parameters->options().define_common())
288 {
289 blocker->add_blocker();
290 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
291 symtab_lock, blocker));
292 }
293
294 // When all those tasks are complete, we can start laying out the
295 // output file.
296 // TODO(csilvers): figure out a more principled way to get the target
297 Target* target = const_cast<Target*>(&parameters->target());
298 workqueue->queue(new Task_function(new Layout_task_runner(options,
299 input_objects,
300 symtab,
301 target,
302 layout,
303 mapfile),
304 blocker,
305 "Task_function Layout_task_runner"));
306 }
307
308 // Queue up the final set of tasks. This is called at the end of
309 // Layout_task.
310
311 void
312 queue_final_tasks(const General_options& options,
313 const Input_objects* input_objects,
314 const Symbol_table* symtab,
315 Layout* layout,
316 Workqueue* workqueue,
317 Output_file* of)
318 {
319 int thread_count = options.thread_count_final();
320 if (thread_count == 0)
321 thread_count = std::max(2, input_objects->number_of_input_objects());
322 workqueue->set_thread_count(thread_count);
323
324 bool any_postprocessing_sections = layout->any_postprocessing_sections();
325
326 // Use a blocker to wait until all the input sections have been
327 // written out.
328 Task_token* input_sections_blocker = NULL;
329 if (!any_postprocessing_sections)
330 input_sections_blocker = new Task_token(true);
331
332 // Use a blocker to block any objects which have to wait for the
333 // output sections to complete before they can apply relocations.
334 Task_token* output_sections_blocker = new Task_token(true);
335
336 // Use a blocker to block the final cleanup task.
337 Task_token* final_blocker = new Task_token(true);
338
339 // Queue a task to write out the symbol table.
340 final_blocker->add_blocker();
341 workqueue->queue(new Write_symbols_task(layout,
342 symtab,
343 input_objects,
344 layout->sympool(),
345 layout->dynpool(),
346 of,
347 final_blocker));
348
349 // Queue a task to write out the output sections.
350 output_sections_blocker->add_blocker();
351 final_blocker->add_blocker();
352 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
353 final_blocker));
354
355 // Queue a task to write out everything else.
356 final_blocker->add_blocker();
357 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
358
359 // Queue a task for each input object to relocate the sections and
360 // write out the local symbols.
361 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
362 p != input_objects->relobj_end();
363 ++p)
364 {
365 if (input_sections_blocker != NULL)
366 input_sections_blocker->add_blocker();
367 final_blocker->add_blocker();
368 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
369 input_sections_blocker,
370 output_sections_blocker,
371 final_blocker));
372 }
373
374 // Queue a task to write out the output sections which depend on
375 // input sections. If there are any sections which require
376 // postprocessing, then we need to do this last, since it may resize
377 // the output file.
378 if (!any_postprocessing_sections)
379 {
380 final_blocker->add_blocker();
381 Task* t = new Write_after_input_sections_task(layout, of,
382 input_sections_blocker,
383 final_blocker);
384 workqueue->queue(t);
385 }
386 else
387 {
388 Task_token *new_final_blocker = new Task_token(true);
389 new_final_blocker->add_blocker();
390 Task* t = new Write_after_input_sections_task(layout, of,
391 final_blocker,
392 new_final_blocker);
393 workqueue->queue(t);
394 final_blocker = new_final_blocker;
395 }
396
397 // Queue a task to close the output file. This will be blocked by
398 // FINAL_BLOCKER.
399 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
400 of),
401 final_blocker,
402 "Task_function Close_task_runner"));
403 }
404
405 } // End namespace gold.
This page took 0.039914 seconds and 5 git commands to generate.